
1. INTRODUCTION

1.1 Objective 1.3 Scope

The data analysis portion of a nuclear power plant
probabilistic risk assessment (PRA) provides estimates
ofthe parameters used to determine the frequencies and
probabilities of the various events modeled in a PRA.
The objective of this handbook is to provide methods
for estimating the parameters used in PRA models and
for quantifying the uncertainties in the estimates.

1.2 Background

Probabilistic risk assessment is a mature technology
that can provide a quantitative assessment of the risk
from accidents in nuclear powerplants. It involves the
development of models that delineate the response of
systems and operators to accident initiating events.
Additional models are generated to identify the
component failure modes required to cause the accident
mitigating systems to fail. Each component failure
mode is represented as an individual "basic event" in
the systems models. Estimates of risk are obtained by
propagating the uncertainty distributions for each ofthe
parameters through the PRA models.

During the last several years, both the U.S. Nuclear
Regulatory Commission (NRC) and the nuclear industry
have recognized that PRA has evolved to the point
where it can be used in a variety of applications,
including as a tool in the regulatory decision-making
process. The increased use of PRA has led to the
conclusion that the PRA scope and model must be
commensurate with the applications. Several
procedural guides and standards have been and are
being developed that identify requirements for the PRA
models. This handbook was generated to supplement
these documents. It provides a compendium of good
practices that a PRA analyst can use to generate the
parameter distributions required for quantifying PRA
models.

The increased use of risk assessment has also helped
promote the idea that the collection and analysis of
event data is an important activity in and of itself. In
particular, the monitoring of equipment performance
and evaluation of equipment trends can be used to
enhance plant performance and reliability. The
guidance provided in this handbook can support those
efforts.

This handbook provides guidance on sources of
information and methods for estimating parameter
distributions. This includes determination of both
plant-specific and generic estimates for initiating event
frequencies, component failure rates and
unavailabilities, and equipment non-recovery probabili-
ties.

This handbook provides the basic information needed
to generate estimates of the parameters listed above. It
begins by describing the probability models and plant
data used to evaluate each of the parameters. Possible
sources for the plant data are identified and guidance on
the collection, screening, and interpretation is provided.
The statistical techniques (both Bayesian and classical
methods) required to analyze the collected data and test
the validity of statistical models are described.
Examples are provided to help the PRA analyst utilize
the different techniques.

This handbook also provides advanced techniques that
address modeling of time trends. Methods for
combining data from a number of similar, but not
identical, sources are also provided. These are the
empirical and hierarchical Bayesian approaches.
Again, examples are provided to guide the analyst.

This handbook does not provide guidance on parameter
estimation for all of the events included in a PRA.
Specifically, common cause failure and human error
probabilities are not addressed. In addition, guidance
is not provided with regard to the use of expert
elicitation. For these topics, the PRA analyst should
consult other sources, such as the following references:

Common cause failures

* NUREG/CR-5497 (Marshall et al. 1998),
* NUREG/CR-6268 (Kvarfordt et al. 1998),
* NUREG/CR-5485 (Mosleh et al. 1998),
* NUREG/CR-4780 (Mosleh et al. 1988), and
* EPRI NP-3967 (Fleming, 1985).

Human errors

* NUREG/CR-1278 (Swain and Guttman, 1983),
* NLtREG/CR-4772 (Swain, 1987),
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* NUREG- 1624 (NRC, 2000b), and
* EPRI TR-TR-100259 (Parry et al. 1992).

Expert Judgement

* NUREG/CR-6372 (Budnitz et al. 1997) and
* NUREG/CR- 1563 (Kotra et al. 1996).

This list is not meant to be a comprehensive list of all of
the methodologies available for performing these types
of analyses.

1.4 Contents of the Handbook

This section provides a road map of the contents of the
handbook and an overview discussion on how to use the
handbook to perform the elements of a data analysis.
The basics of probability and statistics described in
Appendices A and B, respectively, are provided as
reference material for the analyst. Appendix C provides
statistical tables for selected distribution types that can
be used in the data analysis.

1.4.1 Identification of Probability Models

The handbook provides guidance on the evaluation of
five types of parameters that are included in a PRA:

* initiating events,
* failures to start or change state,
* failures to run or maintain state,
* durations, and
* unavailability from being out of service.

A description of each of these parameters along with
examples, is provided in Chapter 2. Chapter 2 is
fundamental reading for all users of this handbook.

The first step in a data analysis is to determine the
appropriate probability models to represent the
parameter. Chapter 2 provides a detailed description
of the standard probability models for each event. This
includes a discussion of the assumptions on the physical
process inherent in the models and a description of the
kind of data that can be observed. The type of data
required to estimate the model parameter(s) are
described and example data sets are examined in the
light of the model assumptions. These examinations
illustrate the kind of thinking necessary for the data
analyst. Finally, a short discussion of related issues is
presented for the analyst to consider.

1.4.2 Collection of Plant Specific Data

Once probability models have been defined for the
basic events, plant-specific data should be evaluated for
the purpose of quantifying estimates of the probability
model parameters. Plant-specific data, if available in
sufficient quantity and quality, is the most desirable
basis for estimating parameter values. Chapter 5
discusses the process by which plant-specific data
should be identified, collected, screened, and
interpreted for applicability to the basic events defined
in the systems analysis and to their probability models.
To ensure that the collection and evaluation of plant-
specific data is thorough, consistent, and accurate, the
steps laid out in Chapter 5 should be followed for
events defined in a PRA. The identification and
evaluation of appropriate sources of plant-specific data
for the basic events are discussed in Section 4.1.

The process for collecting and evaluating data for
initiating events is discussed in Section 5.1. Guidance
is provided for screening the data, for grouping the data
into appropriate categories of initiating events, and for
evaluating the denominator associated with the data.

The process for collecting and evaluating data for
component failures is discussed in Section 5.2. It is
critical that data be collected and processed accurately
according to the definition of the component boundary.
For example, it should be clearly noted whether or not
a pump's control circuit is within or without the
physical boundaries of the component for purposes of
systems modeling. If failure of the control circuit has
been modeled separately from hardware failures of the
pump, then data involving failure of the pump should be
carefully evaluated to ensure that actuation failures and
other pump faults are not erroneously combined. This
process could result in some iteration between the
systems analysis task and the data collection task. It is
possible that system models may be simplified or
expanded based on insights derived during the data
collection. Chapter 3 describes the difference between
faults and failures, and discusses component boundary
definitions and failure severity as it relates to data
collection and analysis.

Other aspects of data collection for component failures
discussed in Section 5.2 include classification and
screening of the data, allocation of the data to
appropriate component failure modes, and exposure
evaluation (determining the denominator for parameter
estimates).
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The collection of data for recovery events is described
in Section 5.3. Guidance is provided on where to find
recovery-related data and on how to interpret such data.

1A.3 Quantification of Probability
Model Parameters

Once appropriate probability models have been selected
for each basic event, estimates for the model parameters
must be quantified. There are two basic approaches: 1)
statistical estimation based on available data; and 2)
utilization of generic parameter estimates based on
previous studies. Both approaches can incorporate
generic data. Several generic data sources currently
available and used throughout the nuclear PRA industry
are identified in Section 4.2.

1.43.1 Parameter Estimation from
Plant-Specific Data

If the plant-specific data collection process yields data
of sufficient quantity and quality for the development of
parameter estimates, the statistical methods in Chapter
6 can be applied to the data to derive and validate
parameter estimates for the basic events.

Chapter 6 discusses the statistical methods for
estimating the parameters of the probability models
defined in Chapter 2. Note that Appendix B discusses
basic concepts of statistics that will help the user to
understand the methods presented in Chapter 6.

For each type ofevent, two fundamental approaches are
presented for parameter estimation: classical
(frequentist) and Bayesian. An overview and
comparison of these two approaches are presented in
Section 6.1. The Bayesian approach is more commonly
used in PRA applications, but classical methods have
some use in PRA, as discussed in Section 6.1.

The probability models discussed in Chapter 2 for each
type of event are applicable for most applications.
However, erroneous results can occur in some cases if
the assumptions of the model are not checked against
the data. In some applications (e.g., if the impact of
casual factors on component reliability is being
examined) it is imperative that the probability model
chosen for each basic event be validated given the
available data. It may seem sensible to first confirm the
appropriateness of the model and then estimate the
parameters of the model. However, validation of a
model is usually possible only after the model has been
assumed and the corresponding parameters have been
estimated. Thus, estimation methods are presented first

in Chapter 6 for each type of probability model; then
methods for validating the models against the available
data are presented.

1.A3.2 Parameter Estimation from Existing Data
Bases

If actual data are unavailable or of insufficient quality
or quantity then a generic data base will have to be
used. Several generic data sources currently available
and used throughout the nuclear PRA industry are
identified in Section 4.2. Section 4.2.6 provides
guidance on the selection of parameter estimates from
existing generic data bases.

1.4.4 Advanced Methods

The last two chapters of the handbook describes some
methods for analyzing trends in data and Bayesian
approaches for combining data from a number of
similar sources.

1AA.1 Analyzing Data for Trends and Aging

Data can be analyzed to assess the presence of time
trends in probability model failure rates and
probabilities (i.e., A and p). Such trends might be in
terms of calendar time or in terms of system age.
Ordinarily, the analysis of data to model time trends
involves complex mathematical techniques. However,
the discussion ofChapter 7 presents various approaches
that have been implemented in computer software. The
discussion in Chapter 7 focuses on the interpretation of
the computer output for application in PRA.

1AA.2 Parameter Estimation Using Data from
Different Sources

Two Bayesian approaches for combining data from a
number of similar, but not identical, sources are
discussed in Chapter 8.

1.5 How to Use This Handbook

This handbook is intended for workers in probabilistic
risk assessment (PRA), especially those who are
concerned with estimating parameters used in PRA
modeling. Broadly speaking, three groups of readers
are anticipated: data collectors, who will be finding,
interpreting, and recording the data used for the
estimates; parameter estimators, who will be
constructing the parameter estimates from the data and
quantifying the uncertainties in the estimates; and (to a
lesser extent) PRA analysts, who will be using the
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estimated parameters. These three groups will find
their primary interests in different portions of the
handbook, as discussed below.

The major sections of the handbook can be grouped
into several areas:

* Foundation: Chapters I and 2;
* Data Collection: Chapters 3, 4, and 5;
* Parameter Estimation: Chapters 6, 7, and 8; and
* Supporting Material: Appendices, References,

Index.

These sections are shown in Figure 1.1, a schematic
representation of the contents of the handbook.

PRA analysts will be most interested in the foundational
material. Data collectors will need to read much of the
foundational material, and then read the chapters on
data collection. Parameter estimators will need to read
the foundational chapters, but may then wish to skip
directly to the relevant sections on parameter
estimation. The supporting material can be read by
anyone at any time.

The arrows in Figure 1.1 help the reader find the
quickest way to the sections of interest. For example,
the figure shows that Chapters 3-5 and Chapters 6-8 do

not refer to each other or assume material from the
other section, so it is possible to read from one section
and not the other. The only strong dependencies are
shown by the arrows: read Chapter 2 before starting
Chapter 3 or 6, read Chapter 3 before starting Chapter
4 or 5, and so forth. In practice, data collectors, data
analysts, and PRA analysts must work together, giving
feedback to each other. The handbook, on the other
hand, is formed of distinct segments, each of which can
be read in isolation from the others.

The material for PRA analysts and data collectors is
intended to be accessible by anyone with an engineering
background and some experience in PRA. The material
for data analysts, on the other hand, begins with
elementary techniques but eventually covers advanced
models and methods. These advanced topics will not
be needed in most cases, but are included as reference
material.

To aid the reader, Appendices A and B summarize the
basics of probability and statistics, and Appendix C
provides useful statistical tables. A glossary of terms is
provided in Appendix D. Persons who have no
previous experience with probability or statistics will
need a more thorough introduction than is provided in
these sections of the handbook.
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2. BASIC EVENT PROBABILITY MODELS

2.1 Overview

This chapter introduces the models used for basic
events and for initiating events. This first section is an
overview, and the remaining sections of the chapter
give further detail.

Probabilistic risk assessment (PRA) considers various
possible accident sequences. An accident sequence
begins with an initiating event which challenges the
safety of the plant. Typically, one or more standby
safety systems are then demanded, and other, normally
operating, systems must continue operating to ensure
that no serious undesirable consequences occur. For
the systems to fail to bring the situation under control,
several components must either fail or be unavailable.
The logic events in the PRA model that represent these
failures or modes of unavailability are called basic
events.

It is not possible to predict precisely when an initiating
event or a component failure will occur, because the
processes that lead to their occurrences are complex.
Therefore, the initiating events and basic events are
modeled as resulting from random processes.

The first step in the data analysis task is, therefore, to
determine the appropriate probability model to repre-
sent the initiating event or basic event. (Probability is
reviewed in Appendix A, and the probability models
introduced here are presented more fully there.) These
probability models typically have one or more
parameters. The next major step is to estimate the
values of these parameters. This estimation is based on
the most applicable and available data. The process of
choosing data sources, extracting the data in an
appropriate form, and using it to estimate the
parameters is the main subject of this handbook.

Basic events are customarily divided into unavailability
(because the equipment is undergoing testing or
maintenance), failure to start or change state, and
failure to run (after successfully starting) or maintain
state to the end of the required mission time.
Unavailability and failure to run are each modeled in a
single way. On the other hand, two different probability
models have been used to represent a failure to start or
to change state. The first method is to model the
failures as having a constant probability of failure on
a demand. The second method is to model the failures
as occurring, in an unrevealed way, randomly in time.

The failed condition is then discovered at the time of
the demand. This is usually called the standby failure-
rate model. Both models are discussed here.

The above events are the typical ones considered in a
PRA. In addition, one must occasionally analyze
durations, such as the time to restore offsite power or
time to recover a failed component. Although such an
analysis is not needed for a typical accident sequence,
it is discussed in this handbook. Also, methods for
analyzing durations can be used when estimating
unavailability.

In summary, five topics are considered in the rest of this
chapter:

* initiating events,
* failures to start or change state (modeled in two

possible ways),
* failures to run or maintain state,
* durations, and
* unavailability from being out of service.

These topics are the subjects of Sections 2.2 through
2.6. Each section begins with examples of the data that
might be analyzed. This is followed by a brief
subsection presenting the assumptions of the usual
model for the random process (the result of underlying
physical mechanisms) and describing the kind of data
that can be observed. The next subsection summarizes
the data required to estimate the model parameter(s).
The example data sets are then examined in the light of
the model assumptions. These examinations illustrate
the kind of thinking necessary for the data analyst.
Finally, the section may conclude with a short
discussion of related issues.

As a preview, Table 2.1 indicates the models, the
parameters, and the data needed for each of the topics
in the above five bullets. The top line of the table also
indicates which section of Chapter 2 treats the topic.

The term system is used to denote the set of hardware
for which data are collected; it may be an entire nuclear
power plant (NPP), or a system in the traditional sense,
such as the auxiliary feedwater (AFW) system, or a
train, component, or even piece part. This reduces the
need for phrases such as "system or component."

The lengthiest part of each section below consists of the
examination of examples to see whether the
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Basic Event Probability Models

Table 2.1 Kinds of models considered.

2.2 Initiating 2.3 Failures to Start or Change 2.4 Failures to Run 2.5 Durations 2.6 Unavailability
Events State (2 models) or Maintain State

Typical Event

Event occurs Standby system fails on demand System in operation A condition System is unavail-
initiating an fails to run, or persists for a able, intentionally
accident component changes random time out of service,
sequence state during mission period when demanded

Parameter(s) to Estimate

A, event For failure on For standby A, rate of failure to Parameters of q, fraction of time
frequency demand: failure: run assumed when system will

p, probability 1, rate of probability be out of service
of failure on occurrence of distribution of
demand standby duration time

failures

Data Required to Estimate Parameters

Number of Number of Number of Number of failures, Depends on Onset times and
events, x, in failures, x, in failures, x, in x, in total running model, but durations of
total time, t total number of total standby time, t typically the observed out-of-

demands, n time, t lengths of the service events; OR
observed observed fractions
durations of time when

system was out of
service

I I

a The data here are the minimal requirements to estimate the parameter. More detailed data are needed to check the
model assumptions.

assumptions of the probability model appear to be
satisfied. Verifying model assumptions is an important
part of good data analysis. Ways to investigate the
appropriateness of assumptions are considered in
Chapter 6, along with parameter estimation. The
present chapter, however, only introduces the
assumptions and illustrates their meanings through
examples. If the assumptions are clearly not satisfied,
some mention is given of ways to generalize the model,
although such generalizations are not presented until
Chapters 7 and 8 in this handbook.

Also, examples and extended discussion of examples
are printed in Anal font, to distinguish them from the
more general material.

2.2 Initiating Events

2.2.1 Examples

In the context of a nuclear-power-plant PRA, an
initiating event is any event that perturbs the steady
state operation of the plant, thereby initiating an
abnormal event such as a transient or a loss-of-coolant
accident within a plant. Initiating events begin
sequences of events that challenge plant control and
safety systems. Failure of these systems can lead to
core damage and a release of radioactivity to the
environment. However, the consideration of the
potential plant response to initiating events is irrelevant
when estimating their frequencies.
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Here are several examples of data sets counting such
initiating events.

Example 2.1 Unplanned reactor trips

A U.S. commercial nuclear power plant had 34
unplanned reactor trips in 1987 through 1995. It
had its initial criticality on Jan. 3, 1987, and
experienced a total of 64651 critical hours, or
7.38 critical years (Poloski et al. 1999a).

Example 2.2 Shutdown loss of offsIte power

In U.S. commercial nuclear power plants in 1980-
1996, there were 80 plant-centered loss-of-offsite-
power (LOSP) events during shutdown. In that
period, the plants experienced 455.5 reactor-
shutdown years (Atwood et al. 1998).

Example 2.3 Through-wall pipe leaks

In world-wide experience of western-style
pressurized water reactors (PWR)s (3362
calendar years of operation), a single through-wall
leak event has been reported in large-diameter
piping ( Poloski et al. 1999a, Appendix J).

and an exposure time, or time at risk, when the events
could have occurred. The next subsection will present
a simple probability model that gives rise to random
events in time. In addition, in each of the above
examples corrective action is taken after any event, so
that the system then resumes operation (the system is
repairable.) This means that the recorded operating
history consists of a sequence of random event
occurrences, which is summarized as a count of events
in some fixed time. This type of data will direct us to
a particular type of analysis, presented in Chapter 6.

The events may be the initiating events of an ordinary
PRA (Example 2.1), initiating events of a shutdown
PRA (Example 2.2), failures in a passive system
(Example 2.3), which incidentally happen to be
initiating events in a PRA. As mentioned above,
Example 2.4 does not describe initiating events in the
traditional PRA sense. However, the example may be
analyzed in the same way as the first three examples,
because the sensor/transmitter failures occur in a
continuously running system and they initiate quick
repair action. A PRA analyst would distinguish among
the examples based on their safety consequences. The
present discussion, however, adopts the viewpoint of
probability modeling, in which the important fact is not
the consequence of the events, but the way that they
occur randomly in time. Reactor trip initiators are the
prototypical examples of such events, but are not the
only examples.

The exposure time is the length of time during which
the events could possibly occur. In Example 2.1, the
exposure time is reactor-critical-years, because a
reactor trip can only occur when the reactor is at power.
Because only one plant is considered, "critical years"
can be used as shorthand for "reactor-critical-years."
In Example 2.2, the event of interest is LOSP during
shutdown, so the exposure time must be the number of
reactor-shutdown-years in the study period. In Example
2.3, reactor-calendar-years are used, primarily because
more detailed worldwide data could not be easily
obtained. The model therefore assumes that a crack in
large-diameter piping could occur with equal
probability during operation and during shutdown. The
model also does not consider differences between
plants, such as differences in the total length of large-
diameter piping at a plant. In Example 2.4, the
exposure time is the number of component-years,
because the components operate constantly.

The possible examples are endless. The events could
be unplanned demands for a safety system, forced
outage events, or many other kinds of events that
resemble initiating events.

The final example of this section does not have
initiating events in the usual sense. However, the model
assumptions and the form of the data are exactly the
same as for initiating events. Therefore, such data can
be analyzed just like initiating-event data.

Example 2.4 Temperature sensorltransmftters

Eide et al. (1999a) report that temperature sensor/
transmitters in the reactor protection system
(RPS) of Westinghouse NPPs had 32 failures in
2264.1 component-years. These sensor/transmit-
ters operate continuously, and when they fail they
are repaired or replaced in a relatively short time.
The numberof failures is conservatively estimated
from sometimes incomplete Nuclear Plant
Reliability Data System (NPRDS) data, and the
number of component years Is based on an
estimated number of components per loop.

These examples have several elements in common.
First, they involve a number of events that occurred,
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The data given in the above examples are expressed in
the crudest summary terms: a count of events in a total
exposure time. This is sufficient for the simple model
of this section. Section 2.5 will consider more sophist-
icated models using the exact event times.

The data could also be broken down into smaller
pieces. For example, the initiating event data could be
summarized for each calendar year, with an event count
and an exposure time reported separately for each year
from 1987 through 1995. This additional information
allows one to look for trends or other patterns, as
discussed in later chapters.

2.2.2 Probability Model

The assumptions concerning the physical process are
given here, along with a description of the kind of data
that can be observed.

It is standard to assume that the event count has a
Poisson distribution. As listed in Section A.6.2, the
usual assumptions (following Thompson 1981) for a
Poisson process are:

1. The probability that an event will occur in any
specified short exposure time period is
approximately proportional to the length of the
time period. In other words, there is a rate A > 0,
such that for any interval with short exposure time
At the probability of an occurrence in the interval
is approximately A x At.

2. Exactly simultaneous events do not occur.

3. Occurrences of events in disjoint exposure time
periods are statistically independent.

In addition, it is worthwhile to spell out the kind of data
that can be observed.

A random number of events occur in some
prespecified, fixed time period. As a minimum, the
total number of events and the corresponding time
period are observed.

Under the above assumptions, the number of
occurrences X in some fixed exposure time t is a
Poisson distributed random variable with mean " = At,

(Throughout this handbook, upper case letters are used
for random variables and lower case letters are used for
particular numbers.)

The parameter A is a rate or frequency. To make
things more clear, the kind of event is often stated, that
is, "initiating event rate" in Example 2.1, "through-
wall-crack occurrence frequency" in Example 2.3, and
so forth. Because the count of events during a fixed
period is a unitless quantity, the mean number of
occurrences p is also unitless. However, the rate A
depends on the units for measuring time. In other
words, the units of 1 are per unit of time, such as 1/year
or 1/reactor-critical-hour.

This model is called a Poisson process. It is extremely
simple, because it is completely specified by the
exposure time, t, and the one unknown parameter, A.
Assumption I implies that the rate 1 does not change
over time, neither with a monotonic trend, nor
cyclically, nor in any other way. Assumption 2 says
that exactly simultaneous events do not occur. The only
way that they could occur (other than by incredible
coincidence) is if some synchronizing mechanism exists
- a common cause. Therefore, the operational
interpretation of Assumption 2 is that common-cause
events do not occur. Assumption 3 says that the past
history does not affect the present. In particular,
occurrence of an event yesterday does not make the
probability of another event tomorrow either more or
less likely. This says that the events do not tend to
occur in clusters, but nor do they tend to be
systematically spaced and evenly separated.

As stated above, a common cause that synchronizes
events violates Assumption 2. However, some
common-cause mechanisms do not exactly synchronize
the events. Instead, the second event may occur very
soon after the first, as a slightly delayed result of the
common cause. In this case, Assumption 3 is violated,
because the occurrence of one event increases the
probability of a second event soon after. One way or
the other, however, common-cause events violate the
assumptions of a Poisson process, by violating either
Assumption 2 or Assumption 3.

2.2.3 Data Needed to Validate the Model
and Estimate A

Suppose that the Poisson model holds. Then any
reasonable estimator of A needs only two pieces of
information: the total exposure time, t, in the data
period, and the number of events, x, that occurred then.

Pr(X = x) = e 0AX / x ! (2.1)

The probability distribution function (p.d.f.) is
sometimes used to abbreviate this: Jfx) = Pr(X = x).
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However, more information is needed to investigate
whether the Poisson model is valid. For example, the
data might cover a number of years or a number of
plants, and A might not be constant over time or the
same at all plants. These possibilities are not allowed
by the listed model assumptions. To study whether they
occur, the times and locations of the initiating events
should be recorded, or at least the data should be
partitioned into subsets, for example corresponding to
plants or years. Then the event count and exposure
time, x, and t,, should be given for each subset.

2.2A Case Studies: Validity of Model
Assumptions in Examples

Let us examine the reasonableness of the Poisson model
assumptions for Examples 2.1 through 2A. Chapter 6
will address this issue by performing data analysis.
Here we will merely cite the results of published studies
and use critical thinking.

Example 2.1 Initiating Events

An initiating event is an event with the reactor critical,
causing an unplanned reactor trip. Assume that any
time interval starts on some date at some time and
ends on some date at some time, and that the length
of the interval, At, is the number of critical years
contained between the start and stop of the time
interval. For example, if the time period is two 24-
hour days and the reactor was critical for half of that
time, then At= 1/365 critical years.

Assumption I is violated in two ways. First, in the
industry as a whole, and presumably in individual
plants, the probability of an initiating event in an
interval of length At (such as one critical day) has not
been constant. Instead, the probability dropped
substantially from 1987 to 1995. Equivalently, the
event rate, A, dropped from 1987 to 1995. This
violation can be eliminated by considering only a
short time period for the study, such as one calendar
year instead of nine years. If, however, the whole
nine-year period is of interest, a more complicated
model must be used, such as one of the trend
models described in Chapter 7.

A second violation of Assumption 1 arises because
this particular plant was new at the start of the study
period, with initial criticality on January 3, 1987, and
commercial start on May 2, 1987. Many new plants
seem to experience a learning period for Initiating
events, and this plant had 15 of its 34 initiating
events during the first six months of 1987. After that
initial period with a high event rate, the event rate
dropped sharply. This violation of Assumption 1 can
be resolved by eliminating data before the plant
reached a certain age. That is, not counting either

the operating time or the initiating events from the
plant until it has reached a certain age - excluding
that portion of the plant's history from the universe
being studied.

Assumption 2 says that exactly simultaneous
initiating events do not occur. This is reasonable for
events at a single plant.

Assumption 3 says that the probability of an initiating
event in one time period does not depend on the
presence or absence of an initiating event in any
earlier time period. This assumption may be
challenged if the plant personnel learn from the first
event, thus reducing the probability of a second
event. This kind of dependence of one event on
another is not allowed by Assumption 3. Suppose,
however, that the learning is modeled as a general
kind of leaming, so that the event rate decreases
over time but not as a clear result of any particular
event(s). This may justify using a Poisson model
with a trend in the event rate, as considered in detail
in Chapter 7.

There is a length of time when the reactor is down
after a reactor trip when an initiating event cannot
possibly occur. This does not violate Assumption 3
because during that time the plant has dropped out
of the study. Its shutdown hours are not counted in
the exposure time. Only when the reactor comes up
again does it begin contributing hours of exposure
time and possible initiating events.

Example 2.2 Shutdown LOSP

Just as with the previous example, consider the three
assumptions of the Poisson model. In this case,
because data come from the entire industry, A is
interpreted asthe average rateforthe entire industry.

First consider Assumption 1. The report that
analyzed this data (Atwood et al. 1998) found no
evidence of a trend in the time period 1980 through
1996. It did find evidence of differences between
plants, however. These differences can affect the
industry average, because plants enter the study
when they start up and leave the study when they
are decommissioned. When a plant with an
especially high or low event rate enters or leaves the
study, this will affect the industry average. However,
the event rate at the worst plant differed from the
industry average by only a factor of about 3.4, and
the best plant differed from the average by less than
that. Many plants (116) were considered. Therefore,
the effect of a single plant's startup or
decommissioning should be small. Therefore, it
appears that the overall industry event rate was
approximately constant, as required by Assumption
I1.
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Assumption 2 rules out exactly simultaneous events.
In this example, however, events at sister units at a
single site are somewhat dependent, because a
common cause can result in LOSP events that are
simultaneous or nearly simultaneous at both units.

Of the 80 events in the data, two pairs of events
occurred together at sister units, each pair from a
common cause. Thus, simultaneous events do
occur, but they are not frequent. This departure from
Assumption 2 is probably not large enough to be
serious.

Assumption 3 requires statistical independence of
the number of events in disjoint time intervals. As
with Example 2.1, there may be some leaming,
although the lack of trend indicates that any learning
is minimal.

In summary, the assumptions for the Poisson model
seem to be approximately satisfied.

Example 2.3 Through-Wall Leaks

This differs from the other examples in that the
number of events is very small. Any departures from
the Poisson assumptions cannot be seen in the data,
because so few events have occurred. With no
theoretical reason to postulate a trend or other
nonconstancy, or a high rate of multiple events, or
dependence between events, we accept the Poisson
assumptions. The assumptions may not be perfectly
true, and a different model may be more accurate,
but the Poisson model is simple, and good enough
for analyzing such a sparse data set.

Example 2.4 Temperature Sensor/Transmitters

A report by Elde et al. (1 999a) divides the total study
time for instrumentation failures into two halves, and
finds a difference between A in 1984-1989 and A in
1990-1995. The example here is for 1990-1995 only.
Within this time period the report does not see strong
evidence of a trend. That is, a small trend may be
present, but the time period is too short, and the
failures too few, for any trend to be clear. Further,
because the components are regularly maintained, it
is reasonable to assume that the failure rate, A, is
roughly constant, as required by Assumption 1.

Assumption 2 requires that common-cause failures
be negligible. However, the report states that 14 of
the 32 component failures occurred during four
common-cause events. Thus, Assumption 2 is
seriously violated.

Finally, Assumption 3 requires independence of the
number of events in disjoint time intervals. The
report does not address this issue, but independence
appears plausible.

In summary, the example violates Assumption 2, but
probably satisfies the other two assumptions. One
way to deal with the violation of Assumption 2 would
be to model the independent failures and the
common-cause failures separately, although Eide et
al. do not do this.

2.2.5 Discussion

2.2.5.1 More General Models

The model considered thus far is a homogeneous
Poisson process (HPP), which has a constant event
occurrence rate, A. The number of events in time t is a
Poisson random variable with parameter At = At. A
generalization is a nonhomogeneous Poisson process
(NHPP), in which A is a function of t. Such a model is
useful for analyzing trends. Chapter 6 includes ways to
test the assumptions of a homogeneous Poisson process,
and Chapter 7 includes ways to analyze data where a
trend is present.

When data come from the industry, one may consider
the differences between plants. Ways to model such
differences are discussed in Chapter 8 of this handbook.
The present chapter's interest is restricted to A4 when no
such variation is present. Of course, if the data come
from only one plant, A refers to that plant and the issue
of differences typically does not arise.

Any mathematical model, such as the model for a
homogeneous Poisson process given here, is an
imperfect approximation of the true process that
generated the data. Data are used to validate or refute
the adequacy of the model. The data set may be sparse
- in the present context, this means that the data set
contains few events. In this case, two consequences
typically result: (a) it is difficult or impossible to see
evidence of departures from the model, and (b) the data
set contains too little information to allow realistic
estimation of the parameters of a more complicated
model. If, instead, the data set has many events,
departures from the model become visible, and typically
a more complicated model is appropriate. These
statements have been illustrated by the small and large
data sets given as examples.

2.2.5.2 Non-randomness of t

In the model considered here, the exposure time is
treated as fixed, and the number of events is treated as
random. This is a common type of data found in PRA
work. Sometimes, however, a fixed number of events
is specified by the data collector, and the corresponding
total time is random, as in the following two examples.

11
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One example occurs when equipment is tested until it
fails. That is, a predetermined number of items are
tested, say x items. Each item is run until it fails, and
the total running time of the items is random. The
second example occurs in a PRA context if the analyst
thinks that the event frequency has changed over time
and that only the recent history fully represents current
conditions. The analyst may then decide to consider
only the most recent events. If there are four recent
events, x is fixed at 4, and the corresponding time,
measured backwards from the present to the 4th event
in the past, is random.

These are examples of duration data with
exponentially distributed durations, discussed in
Section 2.5. The probability model is the Poisson
process presented above, but the data collection, and
resulting data analysis, are different. Because the time
t until the xth event can be called a waiting time, these
models are also sometimes called waiting time models.

2.3 Failure to Change State

This section considers two probability models, in
Subsections 2.3.2 and 2.3.3. First, however, example
data sets are given.

2.3.1 Examples

Here are four examples of failure to change state, three
with failure to start and one with failure to close.

Example 2.5 HPCI failures to start

Example 2.7 Steam binding in AFW

Between demands, steam binding can develop in
the AFW system, so that one or more pumps cannot
function when demanded. This is mentioned by
Wheeler et al. (1989). and by Nickolaus et al.
(1992). J

Example 2.8 Failures of isolation valves

Nickolaus et al. (1992) review the causes of about
45 failures of air-operated and motor-operated
isolation valves. Some of the principal causes are
corrosion, instrument drift, and moisture in
instrument and control circuits. Other causes
include contamination and corrosion products in the
instrument air system, and debris in the system.
These are all conditions that can develop while the
valves are not being used.

At 23 BWRs in the 1987-1993 time period, the high
pressure coolant Injection (HPCI) system had 59
unplanned attempts to start. The system failed to
start on 5 of these demands (Grant et al. 1999a).
The failures were typically erratic starts, which the
operator stabilized manually. These demands
occurred during 113.94 reactor-critIcal-years.

2.3.2 Failure on Demand

All these examples involve a number of demands and a
number of failures, where the terms "demand" and
"failure" can be defined according to the purposes of
the study. Non-PRA contexts provide many other
examples of failures on demand. A simple example in
elementary probability or statistics courses is tossing a
coin n times, and counting the number of heads. Count
either a head or a tail as a "failure." Just as in the PRA
examples, this example has a number of demands, with
a random number of the demands resulting in failures.

2.3.2.1 Probability Model

The standard model for such data assumes that the
number of failures has a binomial distribution. The
assumptions are listed in Appendix A.6. 1. These
assumptions can be restated as two assumptions about
the physical process and one about the observable data:

1. On each demand, the outcome is a failure with
some probability p, and a success with probability
I - p. This probability p is the same for all
demands.

2. Occurrences of failures for different demands are
statistically independent; that is, the probability of
a failure on one demand is not affected by what
happens on other demands.

The following kind of data can be observed:

Example 2.6 EDG failures to start

Emergency diesel generators (EDGs) are
sometimes demanded because of unplanned loss of
power to a safety bus, and they are also tested
periodically, with one set of tests during each
operating cycle and another set of tests monthly. In
addition, a retum-to-service test is normally
performed after maintenance of an EDG. At one
plant over an 18-month time period, the number of
such demands is counted, and the number of
failures to start is counted.
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* A random number of failures occur during some
fixed, prespecified number of demands. As a
minimum, the total number of failures and number
of demands are observed.

Under these assumptions, the random number of
failures, X, in some fixed number of demands, n, has a
binomial (n, p) distribution.

Pr(X ) (X) P ( P
(2.2)

x =.n

where

xn)= n!
x x !(n - x)!

This distribution has two parameters, n and p, of which
only the second is unknown. (Although n may not
always be known exactly, it is treated as known in this
handbook. Lack of perfect knowledge of n, and other
uncertainties in the data, are discussed briefly in Section
6.1.3.2)

Example 2.5 HPCI Failures to Start

Assumption 1 says that the probability of failure on
demand is the same for every demand. If data are
collected over a long time period, this assumption
requires that the failure probability does not change.
Likewise, if the data are collected from various
plants, the assumption is that p is the same at all
plants.

In the HPCI example, the five failures do not reveal
any clear trend in time. However, one Licensee
Event Report (LER) mentions that a better-designed
switch had already been ordered before the HPCI
failure. This gives some evidence of a gradual
improvement in the HPCI system, which might be
visible with more data.

As for differences between plants, it happens that
three of the five failures occurred at a single plant.
Therefore, it might be wise to analyze that one plant
(three failures in nine demands) separately from the
rest of the industry (two failures in 50 demands). In
fact, Grant et al. (1995) did not analyze the data that
way, because they considered two types of failure to
start, and they also considered additional data from
full system tests performed once per operating cycle.
However, the high failure probability for the one plant
was recognized in the published analysis.

2.3.2.2 Data Needed to Validate the Model and
Estimate p

Suppose that the binomial model is appropriate. Then
any reasonable estimator of p needs only two pieces of
information: the number of demands, n, in the data
period, and the number of failures, x, that then
occurred.

However, more information is needed to investigate
whether the binomial model is valid. For example,
Assumption I assumes that p is the same on all
demands. If the data cover a number of years or a
number of systems or plants, p might not be constant
over time or the same at all systems or plants. To study
whether this is true, the times and locations of the
demands and failures should be recorded, or at least the
data should be partitioned into subsets, for example
corresponding to systems, plants, or years. Then the
failure and demand counts, x, and ni, should be given
for each subset.

2.3.23 Case Studies: Validity of Model
Assumptions in Examples

Let us examine Examples 2.5 through 2.8 to see if the
assumptions appear to be valid.

Assumption 2 says that the outcome of one demand
does not influence the outcomes of later demands.
Presumably, events at one plant have little effect on
events at a different plant. However, the experience
of one failure might cause a change in procedures or
design that reduces the failure probability on later
demands at the same plant. One of the five LERs
mentions a permanent corrective action as a result of
the HPCI failure, a change of piping to allow faster
throttling. This shows some evidence of dependence
of later outcomes on an earlier outcome at that plant.

Example 2.6 EDG Failures to Start

Assumption 1 says that every demand has the same
probability, p, of failure. This is certainly not true for
retum-to-service tests, because such tests are
guaranteed to result in success. If the EDG does not
start on the test, maintenance is resumed and the
test is regarded as a part of the maintenance, not as
a retum-to-service test. Therefore, any retum-to-
service tests should not be used with the rest of the
data.

As for the other demands, one must decide whether
the unplanned demands, operating-cycle tests, and
monthly tests are similar enough to have the same
value of p. Can plant personnel warm up or
otherwise prime the diesel before the test? Can an
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operator stop the test if the EDG is clearly having
trouble, and then not consider the event as a test?
If so, the different types of demands do not have the
same p, and they should not be analyzed as one
data set. For PRA purposes, one is normally most
interested in the failure probability on an actual un-
planned demand. To estimate this, one should use
only data from unplanned demands and from tests
that closely mimic unplanned demands.

If the EDGs in the data set differ in some way, such
as having different manufacturers, this may also lead
to different values of p on different demands.
Analyzing the data while ignoring differences
between the individual EDGs will allow us to estimate
the average p, corresponding to failure to start for a
random EDG. However, this average p is not the
same as the p for a particular EDG.

Assumption 2 says that the outcome on one demand
does not affect the probability of failure on a different
demand. When the plant is very new there may be
some learning from individual failures, but when the
plant is mature, failure or success on one demand
should not change the chances of failure or success
on later demands. The only way for such
dependence to arise is if the first failure results from
a common cause. If the plant is mature and
common-cause failures are rare, then Assumption 2
is approximately satisfied.

Example 2.7 Steam binding In AFW

Assumption 1 says that every demand corresponds
to the same probability of failure. if the steam comes
from backflow through a check valve, it will build up,
and become more of a problem when the AFW
system has been unattended longer. Technically,
this is a violation of Assumption 1. However,
ignoring the differences between demands results in
estimating pforan average demand, and this may be
adequate for many purposes.

Assumption 2 says that the AFW pumps fail
independently of each other. However, steam-
binding of the AFW system was a recognized
common-cause mechanism in the 1 970s and 1 980s.
This means that Assumption 2 may be plausible if
interest is in the performance of a single AFW pump,
but not if interest Is in an interconnected set of
pumps.

Section D-1 of Poloski et al. (1998) says that steam
binding has not been seen in 1987-1995 AFW
experience. Therefore, Example 2.7 is probably no
longer relevant, although it received great attention
at one time.

Example 2.8 Failures of Isolation valves

The causes of valve failures postulated in this
example are degradations, so the probability of
failure increases over time, violating Assumption 1.
If failures from such causes are rare, then the
increase in failure probability may not be a problem.
In general, ignoring the differences results in
estimating an average p, averaged over components
that have been allowed to degrade for different
amounts of time. This may be acceptable.

As in Example 2.7, some of the mechanisms for
valve failure are common causes, violating the inde-
pendence required by Assumption 2. The
seriousness of the violation depends on how many
multiple failures occur.

2.3.2.4 Discussion

232.4.1 More General Models

The model considered above has a constant failure
probability, p. A generalization would let p be a
function of time. Such a model is useful for analyzing
trends. Chapter 6 includes ways to test the assumptions
of the model assumed above, and Chapter 7 includes
ways to analyze data where a trend is present.

When data come from the industry, one might consider
the differences between plants, just as for initiating
events. Ways to model such differences are discussed
in Chapter 8. The present section's interest is restricted
to p for the industry as a whole, the average of all the
plants. Of course, if the data come from only one plant,
p refers to that plant and the issue of differences
typically does not arise.

Any mathematical model is an imperfect approximation
of the true process that generated the data. When the
data set is sparse (few demands, or few or no failures,
or few or no successes), (a) it is difficult or impossible
to see evidence of departures from the model, and (b)
the data set is too small to allow realistic estimation of
the parameters of a more complicated model. When the
data set has many events, departures from the model
become visible, and a more complicated model may be
appropriate.

2.3±4.2 Non-randomness of n

One could argue that the numbers of demands in the
examples are not really fixed in advance. That is, no
one decided in advance to look at the outcomes of 59
unplanned HPCI demands. Instead, Grant et al.
decided to look at seven years of data from 23 plants,
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and they observed that 59 demands had taken place.
The response to this argument is that we are actually
conditioning on the number of demands, that is, dealing
with conditional probabilities assuming that 59
demands take place. Conditioning on the number of
demands enables us to focus on the quantity of interest,
p. Treating both the number of failures and the number
of demands as random is needlessly complicated, and
yields essentially the same conclusions about p as do
the simpler methods in this handbook.

In the model considered here, the number of demands
is treated as fixed, and the number of failures is treated
as random. Sometimes, however, the number of
failures is specified in advance and the corresponding
number of demands is random. For example, the
analyst may believe that p has been changing, and that
only the most recent history is relevant. In this case, the
analyst might decide to consider only the most recent
failures and to treat the corresponding number of
demands as random. For example, if only the four most
recent failures are included, one would count
backwards from the present until x = 4 failures were
seen in the plant records, and record the corresponding
number of demands, n, regarded as an observation of a
random variable. This is a waiting time model, with n
equal to the waiting time until the 4th failure. Bayesian
analysis of such data is discussed briefly in Section
6.3.2.6.

2.3.3 Standby Failure

As stated in the introduction to this chapter, failure to
change state can be modeled in two ways. One way
was given in Section 2.3.2. The second way is given
here, in which the system (typically a component) is
assumed to transform to the failed state while the
system is in standby. This transition occurs at a random
time with a constant transition rate. The latent failed
condition ensures that the system will fail when it is
next demanded, but the condition is not discovered until
the next inspection, test, or actual demand.

2.3.3.1 Probability Model

The underlying assumption is that the transition to the
failed condition occurs randomly in time. Two settings
must be distinguished:

I. the data, the operational experiences in the past
that allow us to estimate A, and

2. the application to PRA, in which the estimate of A
is used to estimate the probability that a component
will fail when demanded.

These two settings are discussed in the next two
subsections.

2.3.3.1.1 Probability Model for the Data

It is customary to consider only the simplest model.

I. Assuming that the system is operable at time t, the
probability that the system will fail during a short
time period from t to t + At is approximately
proportional to the length of the exposure period,
At. The probability does not depend on the
starting time of the period, t, or on anything else.

2. Failures of distinct systems, or of one system
during distinct standby periods, are independent of
each other.

The kind of observable data is spelled out here. It is
obvious, but is written down here for later comparison
with the data for similar models.

* At times unrelated to the state of the system, the
condition of each system (failed or not) can be
observed. As a minimum, the total number of
failures and the corresponding total standby time
are observed.

The times mentioned here can be scheduled tests or
unplanned demands.

Assumption I is essentially the same as for a Poisson
process in Section 2.2.2. It implies that there is a
proportionality constant, A, satisfying

AAt = Pr(t < T < t + At I T> t),

where T is the random time when the system becomes
failed. Then the probability that the system is failed
when observed at time t is

Pr(system is in failed state at time t) = I - eh. (2.3)

This follows from Equation 2.6, given in Section 2.5 for
the exponential distribution. The parameter A is called
the standby failure rate. It is so named because the
failed condition develops while the system is in
standby, waiting for the next demand.

2.3.3.1.2 Application of the Model to PRA

The model is used to evaluate the probability of failure
on an unplanned demand. For this, one assumes that
there are periodic tests and the unplanned demand
occurs at a random time within the testing cycle. Then
the probability of failure on demand is approximated by
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p = t,,,,2, (2.4)

where A is the standby failure rate and t,,, is the time
interval between tests.

A more accurate expression is the average of terms
from Equation 2.3, averaging over all the possible
demand times in the test interval:

P = - | (1 - e2s)ds
test

= 1- (1 - e-- )/(ke,

This equation is approximated by Equation 2.4, as can
be verified by use of the second-order Taylor
expansion:

exp(-At) = I + (-At) + (-At) 212!.

When more than one system is considered, the formulas
become more complicated. For example, suppose that
two systems (such as two pumps) are tested periodically
and at essentially the same time. Suppose that we are
interested in the event that both fail on an unplanned
demand. This is:

2.3.3.3 Case Studies: Validity of Model
Assumptions in Examples

Let us now examine the applicability of the model
assumptions in the examples given above. Much of the
discussion in Section 2.3.2.3 applies here as well. In
particular, when Section 2.3.2.3 sees a violation of an
assumption and suggests a remedy, an analogous
violation is probably present here, with an analogous
remedy.

Example 2.5 HPCI Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else. As
discussed in Section 2.3.2.3, there is no clear
evidence of a trend in time. It may be, however, that
the probability of failure is higher at one plant than at
the other plants. If true, this would violate Assump-
tion 1, and suggests that the outlying plant be
analyzed separately from the others.

Assumption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, there may be a very
small amount of leaming, causing fewer failures later
in the history.

Example 2.6 EDG Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else.
Section 2.3.2.3 discusses different types of tests of
EDGs. That discussion is applicable here as well. If
an EDG fails on one type of test more readily than on
another type of test, Assumption 1 is violated.
Another interpretation of this situation is that the
bulleted assumption on the data is false: it is not true
that a failed condition is always discovered on a test.
Some tests discover only major failed conditions
while other, more demanding tests discover less
obvious failed conditions. Just as mentioned in
Section 2.3.2.3, if the primary interest is the
probability of failure on an unplanned demand then
one should use only data from unplanned demands
and from tests that closely mimic unplanned
demands.

Assurmption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, this is probably true
if the plant is mature and if common-cause failures
are rare.

Pr(both fail)

= I ... p(I - e-As) 2ds
test

= (At ,, ) 2/3

(2.5)

When more systems are involved, or when testing is
staggered, the same ideas can be applied.

2.33.2 Data Needed to Validate the Model and
Estimate A

Suppose that the standby failure rate model holds. If
the standby times are all similar, then an estimator of A
needs only two pieces of information: the number of
failures, x, in the data period, and the corresponding
total standby time, t. If, instead, the standby times vary
substantially, then the total standby times should be
recorded separately for the failures and the successes,
as explained in Section 6.4.

To validate the model, the data could be partitioned.
As with initiating events, if the data come from various
years or plants, the data could be partitioned by year
and/or by plant, and the above information should be
given for each subset.
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Example 2.7 Steam Binding in AFW and 2.5 show that

Assumption 1 says that the failed-condition event is
as likely to hit the system in one time interval as in
another of the same length. As discussed in Section
2.3.2.3, steam binding can result from a gradual
buildup, and become more of a problem when the
AFW system has been unattended longer. In this
case, Assumption 1 is violated. Ignoring this fact is
equivalent to treating the average of AFW conditions.

Pr(one fails) - 1t,,,/2

Pr(both fail) - (At,,,) 2 13

so that

Pr(both fail) * [Pr(one fails)]2.

As discussed in Section 2.3.2.3, steam binding is a
common-cause mechanism. Therefore Assumption
2, independence of distinct AFW pumps, is violated.

Example 2.8 Failures of Isolation Valves

Just as discussed in Section 2.3.2.3, the causes
listed for Example 2.3 are degradations, violating
Assumption 1. However, it may be acceptable to
ignore the changes over time, and estimation of an
average parameter A Also, as discussed in Section
2.3.2.3, some of the mechanismsforvalvefailure are
common causes, violating the independence
required by Assumption 2. The seriousness of the
violation depends on how many multiple failures
occur.

2.3.4 Comparison of the Two Models for
Failure to Change State

Two models have been presented for failure to change
state, the failure-on-demand model and the standby-
failure model. Several aspects of the models are
compared here.

2.3.4.1 Ease of Estimation

One great appeal of the standby-failure model is that the
analyst does not need knowledge of the number of
demands. Standby time is normally much easier to
obtain than a count of demands.

2.3.4.2 Use in PRA Cut Sets

The two models differ in their application to cut sets in
a PRA model. Consider failure of two redundant
components, each having the same probability of
failure. When the failure-on-demand model is used, we
have

Pr(both fail) = p2 = [Pr(one fails)]2.

On the other hand, when the standby-failure model is
used and the two components are tested periodically at
the same time, with time t between tests, Equations 2.4

This fact is often ignored.

2.3.4.3 Estimates Obtained

The two models can produce different estimates of
basic event probabilities. For example, suppose that an
EDG is tested monthly by starting it. In 100 monthly
tests, 2 failures have been seen. A simple estimate of p,
the probability of failure on demand, is 2/100 = 0.02.
A simple estimate of A, the standby failure rate, is
0.02/month. Now suppose that a basic event in a PRA
is that the EDG fails to start, when demanded at a
random time. Based on the estimate of p, the estimated
probability of the basic event is

Pr(EDG fails to start) = p = 0.02.

Based on the estimate of ,I and Equation 2.4, the
estimated probability of the basic event is

Pr(EDG fails to start) A It/2
(0.02/month)x(1 month)/2 = 0.01 .

The two models give estimates that differ by a factor
of two, with the failure-on-demand model being more
pessimistic than the standby-failure model. The reason
is simple: All, or virtually all, of the failures and
demands in the data occur at the end of test intervals.
However, unplanned demands might occur at any time
between tests. The standby-failure model says that de-
mands soon after a successful test have smaller
probability of failure. The failure-on-demand model
says that all demands have the same probability of
failure.

The differences can be more extreme. For example,
suppose that two EDGs are tested monthly, and tested
at essentially the same time rather than in a staggered
way. According to the failure-on-demand model, the
probability that both EDGs fail to start is p2 . which is
estimated by (0.02)2. On the other hand, according to
the standby-failure model, Equation (2.5) shows that the
same probability is approximately (1te)2I3, which is
estimated by (0.02)2/3. The two models give estimates
that differ by a factor of three. More extreme examples
can be constructed.
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It might be mentioned that these numerical differences
between estimates disappear if only unplanned demands
are used in the data. However, unplanned demands are
rare, and so most analysts prefer to use test data if
possible.

2.3AA A Model Involving Both Terms

The model described next postulates two reasons for the
observed randomness of failures.

One reason for the randomness of failures is that
demands are not all equally stressful. When a demand
occurs that is unusually harsh, the system will fail.
From the viewpoint of an outside observer, it appears
that failures just occur randomly with some probability
p, but the underlying cause is the variability in the
severity of the demands.

The other reason for randomness of the failures is that
the unattended system degrades, and becomes
inoperable at unpredictable times. This is simplified in
the standby-failure model by supposing that the system
changes suddenly from perfectly operable to completely
failed, with these transitions occurring at random times.
This leads to the standby-failure model, with failure-
transition rate A, and with probability of failure At at
time t after the last system restoration.
If just one of the two mechanisms described above is
considered, we are led to either the failure-on-demand
model or the standby-failure model. It is possible,
however, to construct a model that involves both terms,
corresponding to the two kinds of variation. In this
two-parameter model, the probability of failure isp + It
at time t after the last system restoration. (For example,
see Section 5.2.10 of Samanta et al. 1994.)

Lofgren and Thaggard (1992) state "it is virtually
impossible to directly determine from work
maintenance record descriptions whether the
component has failed from standby or demand stress
causes." However, they look for patterns in data from
EDGs and motor-operated valves (MOVs) at a small
number of plants that use different test intervals. Their
data suggest that the standby-failure-rate model is most
appropriate for MOV failures, and the two-parameter
model is best for EDGs.

In a similar spirit, the T-Book (TUD Office and P6rn
Consulting, 2000) uses the two-parameter model for
many components. The T-Book does not attempt to
identify which mechanism applies to which failures, but
instead estimates the two parameters from overall
patterns in the data. Some of the resulting estimates

have large uncertainties; for example, at a typical plant
the estimate of p for EDO failure to start has an error
factor of about 13. For components that cannot be
analyzed in this way, the T-Book uses the standby-
failure model. For details, see Porn (1990).

23.4.5 Choosing a Model

No consensus exists among PRA workers as to which
model is most advantageous. In particular, the typical
mechanisms of failure are not understood well enough
to justify a theoretical basis for a model. Most current
work uses one of the two simple models given here:
failure on demand or standby failure. Therefore, this
handbook presents only these two models. The user
may choose between them.

2A Failure to Run during Mission

Aspects of this type of failure closely resemble the
initiating events of Section 2.2. One important
difference is in the kind of data normally present. The
difference is summarized here.

Example 2.4 of Section 2.2 is an example of continu-
ously running components (temperature sensor/trans-
mitters) that occasionally failed to run. When a
component failed, it was repaired or replaced in a
relatively short time, and resumed operation. That is,
the component was repairable. The present section
considers components or systems that do not run
continuously. Instead, they are occasionally demanded
to start, and then to run for some mission time. If they
fail during the mission, they are nonrepairable, that is,
they cannot be repaired or replaced quickly. Two
points deserve clarification:

* Some failures may be recoverable. They would
not be modeled as failures in the sense of causing
mission failure. Unrecoverable failures cause
mission failure, however.

e Given enough time, almost any system can be
repaired. During a mission, however, time is not
available. Because the component or system
cannot be repaired within the tine constraints, it is
called "nonrepairable."

As stated earlier, the word system is used in this
handbook for any piece of hardware for which data are
taken. In particular, components and trains are kinds of
systems.
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2.4.1 Examples

Here are two examples of failures to run during
missions.

Example 2.9 EDG failures to run

Grant et al. (1 999b) report that in 844 demands of
30 minutes or more for EDGs to run, there were
approximately 11 unrecovered failures to run in
the first 30 minutes. The count is approximate
because a few failure times were not given and
had to be inferred.

Two assumptions are made concerning the physical
process:

l. Assuming that no failure has occurred by time t,
the probability that a failure will occur in a short
time period t to t + At is approximately propor-
tional to the length of the exposure period, At. The
probability does not depend on the starting time of
the period, t, or on anything else.

2. Failures of distinct systems, or of one system
during distinct missions, are independent of each
other.

The kind of observable data is as follows:

Example 2.10 AFW turbine train failures to run

Poloski et al. (1998) report that in 583 unplanned
demands of AFW system turbine trains, the train
failed to run 2 times, and the total running time
was 371 train-hours. The information is taken
from LERs, only 17% of which report running
times for the train. The total running time of 371
hours is an extrapolation from the LERs with
reported run times.

These examples are typical, in that hardly any of the
demands to run resulted in a failure. Therefore, for
most demands the time when failure would eventually
have occurred is unknown.

2.4.2 Probability Model

In principle, the times to failure are durations.
Section 2.5 deals with duration data, in the context of
recovery times. That section mentions various possible
distributions of time to failure, of which the simplest is
the exponential distribution.

Data for this section differ from data of Section 2.5,
however, because nearly all of the observed times in
this section are truncated before failure. This is
illustrated by the above examples. Therefore, the full
distribution of the time to failure cannot be observed.
In Example 2.9, no information is given about the
distribution of failures times after the first 30 minutes.
In Example 2.10, the average run time was only 38
minutes, and most AFW missions lasted for less than
one hour. In such cases the exponential distribution,
restricted to the observed time period, is a simple,
reasonable approximation of the observable portion of
the distribution.

* For each observed mission, the run time is
observable. Also, it is known whether the run
terminated in failure or in successful completion of
the mission. As a minimum, the total run time and
the number of failures to run are observed.

Assumption I implies that the time to failure is
exponentially distributed with parameter 2. The inter-
pretation of A is that if the system is running, the
probability of failure in the next short interval of length
At is approximately AAt. That is

AtZ Pr(t < T s t + At I T> t),

where Tis the random time until failure. When defined
this way, A is sometimes called the failure rate, or rate
of failure to run. Many authors use the term hazard
rate, denoted by h, and discussed in Appendix A.4.4.
Note, the definition of A is different for repairable
systems (Section 2.2) and nonrepairable systems (the
present section), even though it is represented by the
same Greek letter and is called "failure rate" in both
cases. See Thompson (1981) for a reasonably clear
discussion of the subtle differences, and the glossary of
this handbook for a summary of the definitions. The
topic is discussed further in Appendix A.4.4.

It is instructive to compare the models for failure to run
and standby failure. The physical process is essentially
identical, but the observable data differs in the two
models. That is, Assumptions I and 2 in the two
sections agree except for small differences of wording.
However, the time of failure to run is observable,
whereas the time of transition to a standby failure is
never known.

It may also be somewhat instructive to compare the
Assumptions I and 2 here with the Assumptions 1-3 of
the Poisson process in Section 2.2.2. For the standby-
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failure model and the failure-to-run model, Assump-
tions I and 2 do not explicitly include an assumption
ruling out simultaneous failures. The reason is that
simultaneous failures are ruled out by the other two
assumptions: it is not meaningful for a system to fail
twice simultaneously; and distinct systems are assumed
to fail independently of each other, and therefore not
exactly simultaneously.

2.4.3 Data Needed to Validate the Model
and Estimate A

Suppose that the time to failure has an exponential
distribution. Then, any reasonable estimator of A needs
only two pieces of information: the total running time,
t, in the data period, and the number of failures to run,
x, that occurred then.

However, more information is needed to investigate
whether the exponential distribution is valid. Assump-
tion I says that A is constant during the mission. To
investigate this, the analyst should know the failure
times, that is, how long the failed pumps ran before
failing. The analyst should also know the mission
times, that is, how long the system ran when it did not
fail; often, however, this information is not recorded
and can only be estimated or approximated.

Implicit in Assumption 1 is that A is the same over all
the years of data, at all the plants where the data were
collected. To investigate this, the data should be
divided into subsets, corresponding to the different
plants and years. Then the failure count and running
time, xi and t1, should be given for each subset. This is
the exact analogue of what was said in Section 2.2.3 for
initiating events.

2.4.4 Case Studies: Validity of Model
Assumptions In Examples

Consider now whether the assumptions of the model are
plausible for the two examples.

Example 2.9 EDG Failures to Run

Assumption 1 says that a running EDG is as likely to
fail in one short time interval as in any other time
interval of the same length. That Is, the EDG does
not experience bum-in or wear-out failures. The
reference report (Grant et al. 1 999b) says that this is
not true over a 24-hr mission. Indeed, that report
divides the EDG mission into three time periods (first
half hour, from one-half hour to 14 hours, and from

14 to 24 hours) to account for different failure rates
during different time periods. Within the first half
hour, however, the data do not give reason for
believing that any short time interval is more likely to
have a failure than any other time interval.
Therefore, Assumption 1 can be accepted.

Assumption 2 is violated by common-cause failures.
It is also violated if a failure's root cause is incorrectly
diagnosed, and persists on the next demand. If
these two conditions are rare the assumption may be
an adequate approximation. More subtle dependen-
cies are difficult to detect from data.

Example 2.10 AFW Turbine Train Failures to Run

Assumption 1 says that a running turbine train is as
likely to fail in one short time interval as in any other
time interval of the same length. The data are too
sparse - only 2 observed failures - to confirm or
refute this assumption. The data are also too sparse
to confirm or refute Assumption 2, although failures
in separate plants are virtually certain to be
independent. In such a situation, it is common to
accept the simple model as adequate. A more
complicated model is justified only when a larger
data set is available.

2.4.5 Discussion

The exponential time to failure can also be derived as
the time to first failure in a Poisson process of
Section 2.2. This is possible because the time to first
failure and the times between subsequent failures are all
exponentially distributed when the failures follow a
Poisson process. The present context is simpler,
however, because the process ends after the first event,
failure to run. The Poisson-process assumptions about
hypothetical additional failures are irrelevant.

2.5 Recovery Times and Other
Random Duration Times

This section is about modeling of time data. Often, a
measurement of interest is a random duration time, such
as the time required to return a failed system to service
or the lifetime of a piece of hardware. The distinction
between random duration times here and events in time
in Sections 2.2 and 2.4 is that here the individual times
are measured on a continuous scale with units such as
minutes or hours, while the earlier data sets involve
discrete counts of the number of events occurring in a
total length of time.
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2.5.1 Examples

Here are some examples involving random duration
times. They are only summarized here. Actual exam-
ples, with lists of durations times, will be analyzed in
Chapter 6.

Example 2.11 Recovery times from loss of
offsite power

A plant occasionally loses offsite power. When
this happens, the plant reports the time until
power is restored. Atwood et al. (1998) present
such durations for LOSP events in 1980-1996.

Example 2.12 Repair times for turbine-driven
pumps

A turbine-driven pump must occasionally be taken
out of service for unplanned maintenance. The
duration of time out of service for maintenance
may be extractable from maintenance records.

repairs, and the time to complete documentation
required before returning the plant to normal operating
conditions. Example 2.13 is a failure-to-run example,
similar to those of Section 2.4. This example differs
from that of Section 2.4, however, because here it is
assumed that virtually all of the times to failure are
recorded. In Section 2.4, on the other hand, most of the
systems did not fail during the test period or operational
mission. The severe truncation of the data in Section
2.4 meant that only a simple model could be
considered. The more complete data here allows
analysis of a more complex model. Example 2.14 is
complicated by the lack of exact knowledge of the
duration time. Finally, Example 2.15 gives a realistic
conceptual way to model the gradual degradations
encountered in Section 2.3.1, although good data are
unobtainable.

All five examples involve a duration time that is
uncertain due to random factors. Consequently, the
duration times are modeled as continuous random
variables.

Example 2.13 Time to failure of a component

A typical power plant will have many individual
components such as compressors. When a
component is put into service, it operates
intermittently until it fails to perform its required
function for some reason. H0yland and Rausand
(1994) give an example of such data.

Example 2.14 Times to suppress fires

When a fire occurs in a nuclear power plant, the
time until the fire is suppressed is of interest.
Nowlen et al. (2002) report on analysis of such
suppression times. One difficulty is that the time
of fire onset often is not exactly known.

2.5.2 Duration-Time Models

The duration, T, is random, following some probability
distribution. Two assumptions are made about the
process:

1. Each duration is statistically independent of the
others, and

2. All the random durations come from the same
probability distribution.

The data description is simple:

The individual durations are observable. As a bare
minimum, the number of durations and the total
duration time are observed.

Assumptions 1 and 2 can be summarized by saying that
the durations are independent and identically
distributed. Independence means that one duration
does not influence the probability of any other duration.
The assumption of identical distributions means that
each random duration is as likely as any other to be
long or short. If the durations are from distinct
systems, the systems are assumed to be identical and to
act independently. If the durations are in sequence, as
for a system that alternates being up and down, the
assumption implies that no learning or long-term aging
takes place, and that each repair restores the system to
a condition as good as new. Such a process is called a
renewal process.

Example2.15 Gradual degradation until failure

Examples 2.7 (steam binding) and 2.8 (failure of
isolation valves) involve gradual degradation,
which builds up until the system is inoperable.
The time until the system is inoperable can be
modeled as a duration time.

The common element in these examples is a duration
time that varies in an unpredictable way. In Examples
2.11 and 2.12, the recovery time is composed of several
factors such as the time to diagnose, perform and test
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The assumptions do not require a particular distribution
for the time between events. The most important such
distributions in PRA applications are:

* lognormal,
* exponential,
* Weibull, and
* gamma.

A related function, denoted by fit), is called a
probability density function (p.d.f.) foracontinuously
distributed positive-valued random variable T. It is
related to the c.d.f. by

d
f (t) =-F(t) and

dt

These distributions are summarized in Appendix A.7.
An important part of the data analysis consists of
deciding on the form (or several plausible forms) of the
distribution. This will be discussed in Chapter 6. For
now, we simply note that these and other distributions
are possible.

There are different ways to specify a probability
distribution, and the next material summarizes some of
the concepts: their definitions, how to interpret them.
and how they are related to each other. The data-
analysis techniques of Chapter 6 will use these ways of
characterizing distributions. The usual convention is to
denote the random variables using capital letters, T. and
observed times as lower case, t. The letter T is used,
rather than some other letter such as X, because the
random quantities are times. As seen from the
examples, the durations may be times to repair, times to
failure, or other times. However, the concepts and
formulas are valid for any application.

The cumulative distribution function (c.d.f.) of a real-
valued random variable T is defined as

F(t) = Pr(T _ t)

for all real numbers t. The name is sometimes
abbreviated to distribution function. The c.d.f. is the
probability that the random variable T will assume a
value that is less than or equal to t. The c.d.f. is a
monotonically increasing function of t, with the limiting
properties F(O) = 0 and F(+c) = 1. [For random
variables that, unlike durations, can take negative
values, the limiting properties are F(-co) = 0 and F(+o)
= 1. That general case has few applications in this
handbook.]

The distribution is commonly used to characterize the
lifetimes, or recovery times, or some other kind of
durations, of a whole population of systems. The
population might be a large set of identical systems that
are operating in similar applications and with durations
that vary due to random influences. F(t) is the fraction
of items that have durations t or less, in a hypothetical
infinite population.

F(t) = tf(udu .
0

The variable u is a dummy variable of integration, and
t is the upper limit of the integral. An example of a
p.d.f. and the associated c.d.f. are shown in Figure 2.1.

Time t

Figure 2.1 Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

It follows that probabilities corresponding
occurrences in a small interval of time
approximately proportional to the p.d.f.,

to
are

Pr(t < T s t + At) = f(t)At.

Therefore, the ordinate of a p.d.f. has units of
"probability density" and not probability (as for a
c.d.f.). Thus, a p.d.f. determines how to assign
probability over small intervals of time. Now consider
an arbitrary interval from a to b. In this case we have

Pr(a< T <b) = f OAd .

The simplest distribution is the exponential distribu-
tion. It arises when Assumption I of Section 2.4.2 is
satisfied. (That assumption is phrased as if T is a time
until failure.) In that case, the probability distribution
is exponential, and determined by a single parameter, 1.
The p.d.f. and c.d.f. are given by

At) = Xe-

FQt)= I - e* (2.6)
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When deriving the distribution mathematically from
Assumption 1, it is necessary to assume that F(O) = 0,
that is, failures at time 0 have zero probability.
Although not stated explicitly, this assumption is
implicit in the context of failure to run, because any
failures at time 0 would be counted as failures to start,
not failures to run.

2.5.3 Data Needed to Estimate
Distribution of Durations and
Validate Model

In general, a sample of observed durations is needed to
estimate the distribution of duration times. These
durations must independent and identically distributed,
that is, they must be generated by a process satisfying
the two assumptions given at the beginning of Section
2.5.2.

The special case when the times are assumed to have an
exponential (l) distribution is simpler. Only the
number of durations and the total duration time are
needed to estimate A,. However, the individual
durations are still needed to investigate whether the
distribution is exponential or of some other form.
Incidentally, when the distribution is assumed to be
exponential, the model given here differs from the
standby-failure model (Section 2.3.3. 1. 1) and from the
failure-to-run model (Section 2.4.2) only by the kind of
data that can be observed.

To validate whether the distribution is the same for all
the data, extra information should be recorded for each
duration, the relevant circumstances of each duration.
The circumstances of interest are those that might affect
the durations, such as time of the event, system
location, and system condition just before the event.

2.5.4 Case Studies: Validity of Model
Assumptions in the Examples

Examples 2.11 through 2.13 all appear to satisfy the
assumptions of Section 2.5.2. Example 2.14 also
does, except that the durations are not observed
exactly.

In each case, all the distributions come from some
distribution. Discovering the form of that distribution
is a task for the data analyst.

One might ask whether the durations are statistically
independent. For example, does a long repair time
for a turbine-driven pump add an extra benefit to the
pump, so that the next few repair times will be short?

One might also ask, for each example, whether the
durations all come from the same probability distribu-
tion. For example, if the data cover a period of
years, has there been any long-term leaming, so that
recovery times or repair times tend to be shorter than
at the start of the data period? Are different
durations associated with different systems for the
turbine-driven pumps, with different causes of loss of
offsite power, or with different kinds of fires?

The above are questions that could be investigated
during the data analysis, if enough durations have
been observed.

Example 2.14 is complicated by lack of exact
measurements of the durations. Bounds can be
given, and the analysis must be based on these
upper and lower bounds rather than on exact times.

Example 2.15 is different because the durations are
not observable at all. It might be theoretically
interesting to model the time until the system is in a
failed condition as a duration, but there is no monitor
on the pump or valve that says, 'At this time the
system just became inoperable.' Therefore, the
durations are not directly observable, not even in
principle. Therefore, the methods of this handbook
are not applicable to this example.

Fortunately, degradation mechanisms have become
minor contributors to risk. When a degradation
mechanism is recognized as important, the natural
response is not to collect data to better estimate the
rate of degradation. Instead, the natural response is
(a) to shorten the interval between preventive
maintenance activities, and so to identify and correct
incipient degradation, or (b) to modify the plant to
mitigate or eliminate the problem. Examples are the
apparent elimination of steam-binding in AFW
pumps, mentioned above, and of intergranular stress
corrosion cracking (IGSCC) in BWR piping (Poloski
et al. 1 999a, Appendix J).

2.6 Unavailability

This section considers test-and-maintenance
unavailability, corresponding to intentional removal of
the equipment from service for testing and/or
maintenance. This section does not consider
unavailability resulting from the hardware being in an
unrecognized failed condition; that topic was treated in
Section 2.3.3.

The discussion here is presented in terms of trains,
although other hardware configurations, such as
individual components, could be considered equally
well. A standby train, such as the single train of the
HPCI system or a motor-driven train of the AFW
system, is normally available if it should be demanded,

I i
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but sometimes it is out of service for planned or
unplanned maintenance. The event of a train being
unavailable is called an outage, and the length of time
when it is unavailable is called an outage time or out-
of-service time. In a data set, the exposure time is the
time (e.g. number of hours) when the train should have
been available. The unavailability is the long-term
ratio of outage time to exposure time - the fraction of
time that the system is out of service when it should be
available. More precisely, the planned-maintenance
unavailability is the fraction of time that the system is
out of service for planned testing and maintenance, and
the unplanned-maintenance unavailability is defined
similarly. In summary, outage times are random but the
unavailability is a parameter, an unknown constant,
denoted here by q. Subscripts such as "planned" and
"unplanned" can be attached to q for clarity if needed.

2.6.1 Example

Example 2.16 CVC unavailability for test and
maintenance

Train outages of various durations occurred
during 15 calendar months at a plant with two
trains in the chemical and volume control (CVC)
system. For each month, the outage durations
are given by Atwood and Engelhardt (2003).

2.6.2 Probability Model

The assumed underlying model is an alternating
renewal process. At any point in time a system is in
one of two states: "up" or "down," corresponding in our
application to being available or out of service.
Initially, the system is up, and it remains up for a
random time Y.; it then goes down, and stays down for
a random time Z.. Then it then goes up for a time Y2,
and then down for a time Z2, and so forth. The
assumptions needed for the data analysis methods in
Chapter 6 are the following:

1. The random variables Y, have one distribution that
is continuous with a finite mean, and so do the
random variables Z1.

2. All the random variables are independent of each
other

The sum of the down times, EZZ, is the total outage time
in the data. The sum of all the times, EY, + EZ 1, is the
exposure time - the time when the system should be
available. Time when the system is not required to be
available is not counted in either the up time or the
down time.

Two kinds of data can be considered:

* Detailed data: the onset time and duration of each
individual outage are recorded, as well as the total
time when the train should have been available;
and

* Summary data. Data totals are given for
"reporting periods," such as calendar months. For
each reporting period, the total outage time and
exposure time are recorded.

Section 6.7 describes how to analyze both types of data.

2.6.3 Data Needed to Validate the Model
and Estimate q

The unavailability, q, can be estimated from either kind
of data. Enough data should be collected so that any
periodic, lengthy, planned outages are appropriately
represented - neither over-represented nor under-
represented.

In addition, if summary data are used, the methods
given in Chapter 6 combine reporting periods into
larger subsets of the data, at the very least so that the
aggregated subsets do not contain outage times of zero.
Therefore, a large enough set of summary data is

A way to picture the status of a standby train or other
repairable system uses a state variable, defined as S(Q)
= I if the system is up at time t, and S(t) = 0 if it is
down at time t. A particular system history is illustrated
in Figure 2.2, from Engelhardt (1996). This figure
shows when a particular system was operating (S = 1)
or shut down (S = 0). A nominally identical system
would have a somewhat different history for the same
period, or the same system would have a different
history over a different time period of the same length.

o 500o ooa tSOO 2000 2500 3000
Time t

Figure 2.2 Uptime and downtime status for one system.

As stated above, the long-term fraction of time when
the system is down is called the system unavailability.
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needed so that it consists of at least two (as a bare
minimum) subsets of approximately equal exposure
time, with each subset containing nonzero outage time.

To validate the model, any information that might be
related to unavailability should be recorded. For
example, if a motor-driven pump has most of its
scheduled maintenance during the plant's refueling
outages, and the pump's availability during shutdown is
of interest, then the data should indicate which outages
and exposure times correspond to reactor shutdown.
Separate analyses will probably need to be performed
for the time when the reactor is up and when the reactor
is down, to keep Assumption 1 from being violated.

2.6.4 Case Study: Validity of Model
Assumptions in Example

The ideas here are applicable to virtually any system,
with Example 2.16 being just one example.

The trains may undergo periodic, infrequent, lengthy
testing and maintenance, and less lengthy testing and
maintenance at more frequent intervals. This
periodicity of planned maintenance means that
Assumption 2 cannot be exactly true. The lengthiest
outages tend to be evenly spaced, not random as
assumed. However, more realistic assumptions would
be very difficult to work with.

It seems plausible that this deterministic periodicity
should lead to conservative estimates. That is, analysis
methods that assume pure randomness will tend to
overestimate the variance, so that the resulting
uncertainty in q is overestimated. However, this
conjecture has not been carefully investigated, and the
15 months of data in Example 2.16, analyzed in Section
6.7, do not support the conjecture.

Assumption 1, on the other hand, is surely correct. The
distributions are continuous, and it is inconceivable that
the durations for an operating power plant would have
infinite means.
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