United States Nuclear Regulatory Commission - Protecting People and the Environment

Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit (NUREG/CR-6747)

On this page:

Download complete document

Publication Information

Manuscript Completed: July 2001
Date Published: October 2001

Prepared by:
J. C. Wagner

Oak Ridge National Laboratory
Managed by UT-Battelle, LLC
Oak Ridge, TN 37831-6370

R. Y. Lee, NRC Project Manager

Prepared for:
Division of Systems Analysis and Regulatory Effectiveness
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code W6479

Availability Notice

Abstract

This report proposes and documents a computational benchmark problem for the estimation of the additional reactivity margin available in spent nuclear fuel (SNF) from fission products and minor actinides in a burnupcredit storage/transport environment, relative to SNF compositions containing only the major actinides. The benchmark problemlconfiguration is a generic burnup credit cask designed to hold 32 pressurized water reactor (PWR) assemblies. The purpose of this computational benchmark is to provide a reference configuration for the estimation of the additional reactivity margin, which is encouraged in the U.S. Nuclear Regulatory Commission (NRC) guidance for partial burnup credit (ISG8), and document reference estimations of the additional reactivity margin as a function of initial enrichment, burnup, and cooling time. Consequently, the geometry and material specifications are provided in sufficient detail to enable independent evaluations. Estimates of additional reactivity margin for this reference configuration may be compared to those of similar burnup-credit casks to provide an indication of the validity of design-specific estimates of fission-product margin. The reference solutions were generated with the SAS2H-depletion and CSAS25-criticality sequences of the SCALE 4.4a package. Although the SAS2H and CSAS25 sequences have been extensively validated elsewhere, the reference solutions are not directly or indirectly based on experimental results. Consequently, this computational benchmark cannot be used to satisfy the ANS 8.1 requirements for validation of calculational methods and is not intended to be used to establish biases for burnup credit analyses.

Page Last Reviewed/Updated Wednesday, June 12, 2013