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ABSTRACT

This report contains papers from the nuclear fuels sessions of the 2004 Nuclear Safety
Research Conference held at the Marriott Hotel at Metro Center in Washington, DC,
October 25-27, 2004.

This information describes programs and results of work sponsored by the U.S. Nuclear
Regulatory Commission's Office of Nuclear Regulatory Research. Also included are invited
papers from others involved in nuclear fuels research.

The summaries, presentation slides, and full papers have been compiled here to provide a

basis of information that was exchanged during the course of the meeting, and these are
provided in the order they were presented.
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High-Burnup Cladding Mechanical Performance during Cask Storage and Post-Storage
Handling and Transportation

Robert S. Daum, Hanchung Tsai, Yung Liu, and Michael C. Billone

Argonne National Laboratory (ANL)
Argonne, Illinois, USA

The assessment of cladding performance during spent-nuclear-fuel (SNF) pre-storage operations, dry-
cask storage, and post-storage handling and transport, including hypothetical accidents, is important in
ensuring that sub-criticality is maintained, that radioactivity is contained, that cask external dose rates are
limited, and that SNF assemblies can be safely retrieved, handled and transported at the end of dry-cask
storage. Although cladding failure is not prohibited by federal regulations (CFR 71 and 72), the failure
mode and extent of cladding failure have a significant effect on the possible reconfiguration of SNF
within storage and transport casks. High-burnup, SNF Zircaloy-4 (Zry-4) cladding from pressurized-
water reactors is more susceptible to failure and possible fuel dispersal than low-burnup Zry-4 due to
higher hydrogen pickup, higher internal pressure and higher corrosion level. Hydride precipitation,
corrosion (i.e., wall thinning), irradiation-induced defects, and possibly even post-reactor thermal creep,
will reduce cladding ductility and impact resistance. Also, transfer-and-drying operations conducted from
the SNF pool to the storage cask may result in thermo-mechanical conditions that promote radial-hydride-
induced degradation of cladding ductility and impact resistance during severe loadings associated with
hypothetical accidents. Such cladding would be more susceptible to brittle failure at the end of dry
storage when temperatures are expected to be 150-250°C — below the ductile-to-brittle transition
temperature for zirconium hydrides. A testing program has been developed to investigate these effects in
high-burnup Zry-4 cladding, with particular emphasis on the conditions that promote radial-hydride
precipitation and the effects of these radial hydrides on cladding integrity. Preliminary experimental
results are presented from axial tensile and thermal creep tests, as well as conditions for radial-hydride
precipitation. The test plan, which includes ring-compression-ductility and ring-crush-impact screening
tests, is also described

The current regulations for storage and transportation of SNF are designed primarily to maintain sub-
criticality and to ensure that doses are less than regulatory limits, that the cask provides adequate fuel
confinement and containment, and that the fuel is retrievable. Interim Staff Guidance No. 11, Revision 3
limits high-burnup cladding temperatures to <400°C during short-term operations and normal storage
conditions. Although this temperature limit is intended to minimize radial-hydride precipitation in high-
burnup cladding, license applications for high-burnup storage, storage-and-transport, and transport casks
are evaluated on a case-by-case basis due to the lack of pertinent data to assess high-burnup cladding
behavior during the complete cycle of pre-storage operations, storage and post-storage handling and
transport. The data generated within the ANL test program are to be used both by applicants for high-
burnup cask licenses (e.g., nuclear industry and DOE-RW) and by cask-license evaluators (NRC-SFPO).

Experiments have concentrated on the microstructural characterization and mechanical-property testing of
stress-relieved Zry-4 (15x15 design) irradiated in H.B. Robinson Unit No. 2 to a rod-average burnup of
67 GWd/MTU and a fast neutron fluence (E > 1 MeV) of 14x10? n/m”. In Grid Spans 3 and 4 (fuel
midplane to 0.7-m above the fuel midplane), destructive examinations of the as-irradiated cladding have
been performed. Circumferentially averaged (8 locations) corrosion layers of 70+10 to 100+£10 pum, with
no spalling, have been measured, along with cross-section-averaged (90° segments) hydrogen contents of
550480 to 75090 wppm. Precipitation of circumferential hydrides shows varying distribution, density,
and particle size along the axial, azimuthal, and radial directions of the cladding. In a few cladding



locations, transverse metallography in an etched condition shows a significantly high hydride density
localized in roughly a 90° arc directly under the outer-surface corrosion layer and to a radial depth of
~100 pum, suggesting the presence of a hydride “lens.” Such hydride microstructures are known to reduce
cladding ductility under tensile loading, but little is known about the evolution of these microstructures
under thermo-mechanical conditions associated with SNF drying, transfer and storage.

As compared to non-irradiated Zry-4 (15x15 design), room-temperature axial tensile properties of the
high-burnup (690+40 wppm H) Zry-4 at a strain rate of 0.1%/s show an increase in yield (600 = 770
MPa) and ultimate tensile (765 > 950 MPa) strengths and a decrease in uniform (6 > 3%) and total (14
- 4%) elongations. The strength increase appears to be due mainly to radiation-induced hardening,
while the ductility decrease appears to be due to both radiation- and hydride-induced embrittlement.
Thermal annealing tests with high-burnup Zry-4 samples show that strength properties (based on
microhardness data) appear to recover by =75% and circumferential hydrides tend to homogenize across
the cladding radius after 72 hours at 420°C. These results suggest that SNF drying operations may
partially anneal radiation-induced hardening. The degree of ductility recovery with annealing remains to
be demonstrated.

Two thermal creep tests (C14 and C15) have been completed using defueled high-burnup Zry-4 cladding
specimens, which are top-welded to active internal-gas-pressurization systems in order to maintain
constant gas pressure inside the creep specimens. These tests were conducted at 400°C for 101 days at a
pressure of 29.5 MPa and an initial hoop stress of 190 MPa. The specimens were depressurized
periodically prior to cooling to room-temperature for diameter measurements. Both specimens remained
intact, no localized bulging (precursor to rupture) was observed, the average hoop creep strains were
~3.6% and the peak hoop creep strains were ~5%. In order to induce radial-hydride precipitation, the C15
specimen was cooled at =2.4°C/s from 400°C under full pressure during the final shut-down. The sample
depressurized at 205°C and a midplane true hoop stress of =205 MPa due to failure in the upper weld
region. Post-test metallography at three axial locations showed significant radial-hydride and negligible
circumferential-hydride precipitation. However, post-test hydrogen measurements indicated substantial
loss of hydrogen from the C15 specimen (=670 = 320 wppm at the midplane) to the Zircadyne-702 end-
fittings (12 = 210 wppm at the bottom end-plug). Redesign of the thermal creep test train and furnace is
in progress to minimize the hydrogen loss and the axial temperature gradient from the specimen midplane
(400°C) to 30 mm above the midplane (=390°C). However, it is interesting to note that the hydrogen
solubility of non-irradiated Zry-4 is =210 wppm at 400°C. The absence of visible circumferential
hydrides at the specimen midplane (with 320 wppm) suggests that high-burnup Zry-4 is capable of
trapping about 100 wppm of hydrogen, which most likely precipitates during rapid cooling as sub-
micron-size hydrides. It will be interesting to determine if this excess hydrogen precipitates as visible
radial hydrides under the slow cooling rates (<4°C/day) typical of drying-transfer-storage.

The preliminary axial-tensile, thermal-creep, and hydride-reorientation results have been used to develop
a test plan to better understand the mechanical behavior of high-burnup Zry-4 cladding under drying-
transfer, storage, and post-storage handling-transport conditions. In additional to tensile and creep tests of
pool-stored high-burnup Zry-4, sealed specimens will be annealed for =3 days at 380-420°C and at hoop
stresses of 0, 60, 90, 120, and 150 MPa and slow-cooled at ~3°C/day under decreasing pressure. Rings
cut from these 100-mm-long samples will be subjected to ductility (diametral compression at 0.1%/s and
100%/s) and crush-impact failure-energy screening tests. These tests will be conducted at room-
temperature and 150°C. The decreases in ductility and failure-impact energy will be correlated to the
extent of radial hydride formation to map out cooling conditions — especially stress at 400°C — that are
detrimental to high-burnup Zry-4 cladding integrity. Additional tests (e.g., fracture toughness) may be
conducted on cladding subjected to these detrimental cooling conditions.
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Mechanical Performance of High-Burnup Fuel Cladding during Cask Storage and Post-
Storage Handling and Transportation

Robert S. Daum, Hanchung Tsai, Yung Liu, Saurin Majumdar, and Michael C. Billone
Energy Technology Division
Argonne National Laboratory
Argonne, Illinois, USA

Abstract

The assessment of cladding performance during spent-nuclear-fuel
(SNF) pre-storage operations, dry-cask storage, and post-storage
handling and transport, including hypothetical accidents, is important in
ensuring that sub-criticality is maintained, that radioactivity is contained,
that cask external dose rates are limited, and that SNF assemblies can be
safely retrieved, handled and transported at the end of dry-cask storage.
Although cladding failure is not prohibited by federal regulations, the
failure mode and extent of cladding failure have a significant effect on
the possible reconfiguration of SNF within storage and transport casks.
High-burnup SNF Zircaloy-4 (Zry-4) cladding from pressurized water
reactors is more susceptible to failure and possible fuel dispersal than
low-burnup Zry-4 due to higher hydrogen pickup, internal pressure, and
corrosion level. A testing program has been developed to investigate
these effects in high-burnup Zry-4 cladding, with particular emphasis on
the conditions that promote radial-hydride precipitation and the effects of
these radial hydrides on cladding integrity. Preliminary experimental
results are presented from axial tensile and thermal creep tests, as well as
conditions for radial-hydride precipitation.

Introduction

Current U.S. regulations for storage (10 CFR 72) and transportation (10 CFR 71) of spent nuclear fuel
(SNF) are designed primarily to maintain sub-criticality and to ensure that doses are less than regulatory
limits, that the cask provides adequate fuel confinement and containment, and that the fuel is retrievable.
As discharge fuel burnup increases, SNF Zircaloy-4 (Zry-4) cladding may become more susceptible to
brittle failure under normal conditions and postulated accidents during SNF handling, storage, and
transportation. Although cladding failure is not prohibited by federal regulations, such failure and gross
fuel dispersal may compromise these regulatory requirements.

Specifically, hydride precipitation, corrosion (i.e., wall thinning), irradiation-induced defects, and
possibly even post-reactor thermal creep will reduce cladding ductility and impact resistance. Speculated
to be the most degrading, transfer-and-drying operations conducted from the SNF pool to the storage cask
may result in thermo-mechanical conditions that promote radial-hydride-induced degradation of cladding
ductility and impact resistance during severe loadings associated with hypothetical accidents. Such
cladding would be more susceptible to brittle failure at the end of dry storage when temperatures are
expected to be 150-250°C—below the ductile-to-brittle transition temperature (DBTT) for zirconium
hydrides and within a range of temperature in which more hydrogen is precipitated as hydride as
compared to temperatures at the beginning of storage.
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In fact, Marshall and Louthan [/] showed that cold-worked Zircaloy-2 (Zry-2) was completely brittle at
room temperature during uniaxial tensile testing when, regardless of total hydrogen content, as little as 50
weight parts per million (wppm) of hydrogen precipitated as radial hydride platelets, which were oriented
between 50 and 90° to the principal tensile stress (where 90° is fully perpendicular to the principal tensile
stress). Singh et al. [2] found that Zr-2.5%Nb alloy containing 100-wppm hydrogen as radial hydrides
and subjected to uniaxial tension showed as little as 9% total elongation at temperatures <150°C but twice
that at >150°C. This increase in elongation may be attributed to an increase in radial-hydride ductility,
suggesting that the DBTT is between room temperature and 150°C. Likewise, Choubey and Puls [3]
observed a ductile-to-brittle transition in Zr-2.5%Nb with radial hydrides as temperatures dropped below
100°C. Obviously, few data for Zry-4 are available to yield a clear understanding regarding the
temperature effects of radial-hydride precipitation on ductility.

Given this radial-hydride-induced embrittlement, identifying the thermo-mechanical conditions that
promote radial-hydride precipitation has been the subject of numerous studies. First, to understand
hydride dissolution kinetics, McMinn et al. [4], Kearns [5], and Vizcaino et al. [6] experimentally
determined the terminal solid solubility for hydride dissolution upon heating. As shown in Fig. 1, the
solubility increases with temperature such that only 10 wppm is in solution at 200°C whereas
approximately 300 wppm of hydrogen would be in solution at 450°C. Although their respective absolute
values of solubility differed, McMinn et al. [4] and Vizcaino et al. [6] both observed an increase in
solubility with irradiation, most likely due to hydrogen trapping by radiation-induced defects.

Temperature (K)

450 500 550 600 650 700

300 T T ‘ T T T ‘ T L ‘ T T T ‘ T T T ‘ T T T ‘ T T
—_ : Refs: McMinn et al., 12th Zr in Nuclear Industry, :
1S L 2000, pp. 173-195. 4
Q L Kearns, J. of Nuclear Materials, v22, il
£ 250 - 1967, pp. 292-303. ]
= L i
o r 7
5 i 1
S 200 - --o- - 2zry-2 Tube (McMinn) -
2 r & Zry-4 Weld (McMinn) ]
%, L —+H— Zry-4 RXA (Kearns) i
= r [} Zry-2 Tube (McMinn) b
= 150 n & Zry-4 Weld (McMinn) 7
S
S r 1
%) r ]
= 100 - ]
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Figure 1 — Hydrogen terminal solid solubility for dissolution of hydrides
in non-irradiated and irradiated Zircaloy alloys [4],[5].

Discharged high-burnup Zry-4 fuel cladding contains roughly 600-800 wppm hydrogen, and at room
temperature, this hydrogen is predominantly precipitated as circumferentially oriented hydride platelets
localized in the form of a rim toward the outer surface. During short-term drying operations, in which
temperatures may be >400°C, it is likely that, based on the results of Fig. 1, >200 wppm of hydrogen will
be in solution. This hydrogen in solution is available to precipitate as radial hydrides upon cooling;
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however, the application of a threshold or critical cladding hoop stress at elevated temperatures is
required to nucleate and grow these hydrides along the radial direction; if the hoop stress is lower than
this threshold value, only circumferential-hydride precipitation occurs. In fact, Bai et al. [7]
thermodynamically modeled this combination of stress and temperature that promotes radial-hydride
nucleation and growth in recrystallized Zry-4. At 400°C, both the model and radial-hydride treatments of
fully recrystallized Zry-4 sheet specimens show a threshold stress of approximately 95 MPa, whereas
treatments of stress-relieved specimens suggest values as high as 180 MPa.

Ignoring the influences of composition, manufacturing histories, and test techniques for a moment, Singh
et al. [2] exposed tensile specimens machined with tapered gauge sections from non-irradiated Zr-
2.5%Nb pressure tubes containing ~100 wppm hydrogen to radial-hydride treatments at 150-350°C. This
study found that, when 50% of the specimen thickness exhibited radial-hydride precipitation, the
corresponding threshold stress is approximately 130 MPa at 350°C. Using a similar technique, Leger and
Donner [8] found a threshold stress of as low as 75 MPa at 300°C for non-irradiated Zry-2 pressure-tube
material, but they speculated that, because of uncertainties in assessing the effects of residual stress due to
specimen preparation, it may be even 15-20 MPa higher.

As for irradiated Zry-4, Einziger and Kohli [9] found ~90% radial-hydride precipitation in low-burnup
Zry-4 (<100 wppm hydrogen) after cooling to room temperature from 323°C under internal pressurization
to 135-MPa hoop stress. Tsai and Billone [/0] also found that, after accumulating 0.35% permanent
creep strain, low-burnup Zry-4 (=250 wppm hydrogen) cooled from 380°C under 190-MPa hoop stress
resulted in mostly radial hydrides. Most recently, Chung [/ /] presented a review of stress-relieved Zry-4
cladding studies and concluded that this threshold stress is =80-100 MPa between 250 and 550°C. In
addition to tensile hoop stress, many of these cited studies emphasize that residual stress may also play a
significant role in hydride reorientation, and the effects of radiation-induced damage on residual stresses
in irradiated Zry-4 may further exacerbate radial-hydride precipitation.

In comparison, the internal pressure of high-burnup-fuel Zry-4 rods is permitted to be up to but not
exceed the reactor coolant pressure (roughly 15.5 MPa for pressurized water reactors), resulting in an
applied hoop stress of 110 MPa at 330°C. Furthermore, limited numbers of peak power rods are
permitted to be 1.3 times the coolant pressure and, therefore, may have an applied hoop stress of 145
MPa. If drying operations occur at temperatures upwards of 400°C, these hoop stresses may increase to
as much as 160 MPa. Therefore, given these potentially Aigh hoop stresses and the fact that few data are
available, it is essential to determine the threshold stress for hydride reorientation in high-burnup Zry-4.

Based on this limited database, the current technical basis [/2] limits peak cladding temperatures to
<400°C during short-term operations (namely, drying operations) and normal storage conditions to
mitigate the above conditions, which may potentially exacerbate cladding-failure propensity. Note that
this technical basis also includes limiting hoop stresses in low-burnup SNF Zry-4 cladding to 90 MPa.
Brown et al. [/3] provided further details for this basis but, until more pertinent data to more thoroughly
assess high-burnup cladding behavior during the complete cycle of pre-storage operations, storage and
post-storage handling and transport becomes available, license applications for high-burnup storage,
storage-and-transport, and transport casks are evaluated on a case-by-case basis.

Therefore, understanding the conditions that may promote radial-hydride precipitation, the associated
mechanical performance, and resulting failure susceptibility of high-burnup Zry-4 cladding is essential for
license application and evaluation of storage and transportation systems, as well as the handling of such
systems and individual SNF assemblies. The data generated within the ANL test program are to be used
both by applicants for high-burnup cask licenses and by cask-license evaluators. Preliminary results and a
test plan, which includes ring-compression-ductility and ring-crush-impact screening tests, are also
described.
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Experimental Procedures

Experiments have concentrated on the microstructural characterization, mechanical-property testing, and
radial-hydride treatment of stress-relieved Zry-4 (15x15 design) in a non-irradiated condition and
irradiated to both low and high fuel burnups in Surry Unit No. 2 (referred as Surry) and H.B. Robinson
Unit No. 2 (referred as HBR), respectively. Characterization of these materials has been previously
reported elsewhere [/0],[/4],[15]. Table I summarizes these materials and properties.

Uniaxial tensile tests were conducted at room temperature and 400°C and at a nominal strain rate of
0.001/sec (0.1%/sec). Gauge sections were machined from defueled cladding using an electro-discharge
machine and then either welded or transverse-pin-loaded to the tensile grips, as seen in Fig. 2. The
welded-grip technique was found to have insufficient strength to couple HBR cladding to the load train,
most likely due to excessive contamination of weldment by reactor-produced oxide and/or hydrogen.
Isothermal creep tests were conducted using defueled, internally pressurized cladding tubes at
temperatures of 360-400°C and initial hoop stress of 160-220 MPa. To promote radial-hydride
precipitation, some creep specimens were cooled to room temperature at ~2.5°C/min while maintaining
internal pressure. References [/0], [/4], and [15] provide further details regarding these test techniques,
specimen preparation, and test conditions.

Table I — Zry-4 cladding materials and properties.

Cladding Sn Content  Average Rod Burnup Fast Neutron Fluence Peak Oxide Peak H Content

Material (Wt%) (GWdA/MTU) (x10* n/m* E>1MeV)  Thickness (um) (Wppm)

F-ANP* 1.30 0 0 0 1800°
Surry® =1.5 36 0.7 30 350
HBR 1.41 67 14 110 850

*F-ANP denotes the manufacturer, Framatome-Advanced Nuclear Products.
PF-ANP cladding was gas-charged at 400°C to contents of 200-1800 wppm.
“Surry cladding was dry-cask-stored for =15 years after discharge from the SNF pool.
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Figure 2 — Images of axial-tensile specimens after testing at 400°C
showing tensile-grip techniques using (a) welded grips for Surry (thin
corrosion layer and low hydrogen content) and (b) transverse-pin-loaded
grips for HBR (thick corrosion layer and high hydrogen content); note,
the left-side transverse pin has been removed in (b).
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Results and Discussion

Engineering stress versus plastic strain responses for F-ANP, Surry, and HBR cladding materials are
shown in Fig. 3. The engineering mechanical properties are presented in Table II and plotted in Fig. 4. It
is worth noting that Surry cladding was dry-cask stored for =15 years, during which time peak cladding
temperature ranged between 415°C (in vacuum) and 350°C (in helium), and partial annealing of radiation
damage may have occurred [/4],[/6].
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Figure 3 — Longitudinal (or axial) engineering stress vs. plastic strain
response for non-irradiated (F-ANP), low-burnup-and-dry-cask-stored
(Surry), and high-burnup (HBR) Zry-4 at room temperature and 400°C.

Table II — Average mechanical properties from longitudinal tensile
testing of non-irradiated (F-ANP), low-burnup (Surry), and high-burnup
(HBR) Zry-4 at a nominal strain rate of 0.1%/s.

Cladding Temp. 0.2% Yield Ultimate Uniform Total Critical Strain Energy
Material  (°C)  Strength (MPa)  Strength (MPa) Elongation (%) Elongation (%) Density (MPa)
F-ANP 605 765 5.7 14.0 106
Surry 26 680 868 4.6 8.2 83
HBR 803 980 3.3 4.0 42
F-ANP 355 400 2.8 13.8 55
Surry 400 433 512 2.1 10.2 54
HBR 490 612 3.1 8.3 56
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As compared to non-irradiated F-ANP Zry-4, tensile properties of irradiated cladding show an increase in
yield and ultimate tensile strengths and a decrease in uniform and total elongations at room temperature.
The strength increase appears to be due mainly to radiation-induced hardening, while the ductility
decrease appears to be due to both radiation- and hydride-induced embrittlement. In fact, fractography of
an HBR specimen tested at room temperature shows transitions between brittle, mixed brittlet+ductile, and
predominantly ductile fracture, as shown in Fig. 5. When compared to the hydride microstructure and
distribution (as seen in Fig. 4a), these transitions appear to coincide with decreases in hydride density and
are consistent with other studies [/7].

High-Density
Hydride Rim

“Lower”-Density &=

Mixed Brittle &
Continuation of Ductile
Hydride Rim Failure

Relatively Predominantly
Hydride-Free Ductile
Substrate Fracture
" Cladding Inner Surface oy

"Wwe,

(b)

Figure 5 — Post-test images of HBR specimen after axial-tensile testing at
room temperature showing (a) hydride microstructure ~0.5 mm from the
fracture surface and (b) fracture-surface topography; note, corrosion
layer was removed from specimen to facilitate specimen machining.

At 400°C, radiation-induced hardening is still evident but cladding embrittlement is less noticeable than at
room temperature. In particular, the uniform elongation and critical strain energy density (i.e., integration
area under the engineering stress vs. total strain) of all cladding tested in this study are essentially
identical. Although fractography of 400°C specimens is pending, this enhancement in relative ductility at
elevated temperatures is consistent with the increased ductility of the hydride microstructure.

Isothermal annealing tests of HBR cladding were conducted previously [/0] and showed that strength properties
(based on microhardness data) appear to recover by ~75% and circumferential hydrides tend to homogenize across
the cladding radius after 72 hours at 420°C. These results suggest that SNF drying operations may partially
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anneal radiation-induced hardening. The degree of ductility recovery and the effects on creep behavior
with annealing remain to be investigated.

With regard to creep, testing of both Surry and HBR cladding have been reported elsewhere [10],[15],[16]
and have shown that both cladding materials retain >3% creep capacity. In light of the above tensile
results and neglecting any strength anisotropy, these creep tests were conducted at ~0.4 times the yield
strength. During cooling (=2.5°C/min) from creep-test temperatures under ~190-MPa hoop stress, radial-
hydride precipitation was found to predominantly occur in both Surry [/0] and HBR cladding, as shown
in Fig. 6. Using the procedure developed by American Standard for Testing and Materials [/&], radial-
hydride fraction (F,) was measured to be approximately 0.70 and 0.85 for Figs. 6a and 6b, respectively.

Upon examination of Fig. 6, the amount of hydrogen appears lower than expected as compared to that
found in regions of the Surry and HBR rods adjacent to the creep specimens. Therefore, hydrogen
contents were measured in radial-hydride specimens and compared to measurements from regions
adjacent to those regions in Fig. 7. Surry hydrogen contents from regions adjacent to those in Figs. 6a and

(a) | )

Figure 6 — Transverse micrographs showing radial-hydride precipitation
after creep testing followed by cooling to room temperature for (a) Surry
cladding (0.35% strain at 380°C/190 MPa) and (b) HBR cladding (3.5%
strain at 400°C/190 MPa); note, corrosion layer at the left of images.

(a)

Figure 7 — Transverse micrographs showing mostly circumferential-
hydride precipitation in (a) as-irradiated-and-dry-cask-stored Surry and
(b) as-irradiated HBR cladding; note, corrosion layer to the left.
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7a were found to be 130 and =250 wppm, respectively. Similarly, HBR hydrogen contents adjacent to
regions of Figs. 6b and 7b were found to be 320 and =650 wppm, respectively. It was speculated that
hydrogen migrated axially from the cladding specimen to welded components of the high-pressure gas
system. In fact, the hydrogen content in one such HBR-specimen component (fabricated from Zircadyne
702 alloy) was found to be 210 wppm, as compared with 10 wppm for the as-received material, indicating
that indeed hydrogen diffused into the component.

Redesign of the thermal creep test train and furnace is in progress to minimize the hydrogen loss.
However, note that the hydrogen solubility of non-irradiated Zry-4 is =200 wppm at 400°C, as shown in
Fig. 1. The absence of visible circumferential hydrides at the specimen midplane (with 320 wppm)
suggests that high-burnup Zry-4 is capable of trapping about 100 wppm of hydrogen, which most likely
precipitates during rapid cooling as sub-micron-size hydrides. It will be interesting to determine if this
excess hydrogen precipitates as visible radial hydrides under the low cooling rates (=4°C/hr) typical of
drying-transfer-storage.

Upon closer inspection of Fig. 6b, we found that creep deformation caused the fracture of the corrosion
layer, allowing subsequent oxidation of the cladding to occur, as seen in Fig. 8. This local oxidation
appears to coincide with enhanced hydride precipitation, which may be the result of a stress
concentration. Although this experiment was conducted under more aggressive conditions than those
expected during storage, this may present conditions favorable to the onset of delayed hydride cracking
upon severe mechanical loading like that during transportation or accident conditions. Furthermore, the
high degree of radial-hydride continuity or networking through the cladding thickness in Fig. 6b is an
interesting phenomenon, especially considering that this figure represents a total hydrogen content of 320
wppm in this specimen. For actual hydrogen contents of >600 wppm for high-burnup Zry-4, we expect
an even higher density of hydrides but with a homogeneous mixture of radial and circumferential
hydrides. Quantification of such hydride continuity may be a better metric to correlate to macroscopic
ductility and will be the subject of continuing study.

Figure 7 — Transverse micrograph of HBR creep specimen (3.5%
permanent strain at 400°C/190 MPa) after cooling under stress showing
corrosion-layer cracking and subsequent cladding oxidation and
enhancement of hydride precipitation near crack; note, corrosion layer at
the left of image.
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Future Work

The preliminary axial-tensile, thermal-creep, and hydride-reorientation results have been used to develop
a test plan to better understand the mechanical behavior of high-burnup Zry-4 cladding under drying-
transfer, storage, and post-storage handling-transport conditions. In addition to tensile and creep tests of
pool-stored high-burnup Zry-4, sealed specimens will be annealed for =3 days at 380-420°C and at hoop
stresses of 0, 60, 90, 120, and 150 MPa and slow-cooled at ~4°C/hr under decreasing pressure. Rings cut
from these 100-mm-long samples will be subjected to ductility (diametral compression at 0.1%/s and
100%/s) and crush-impact failure-energy screening tests. These tests will be conducted at room
temperature and 150°C. Metallographic examinations of post-annealing-treatment rings and post-
ductility-test rings will be conducted to estimate the threshold stress to promote radial hydrides.

Additionally, rings will be cut directly from the discharge rods and annealed at identical temperatures and
average hoop stresses using ring-stretch-tensile grips but then cooled at a much higher rate (=2°C/min) to
contrast hydride size and morphology to those produced by lower cooling rates of the sealed specimens.
Because the ring-stretch-tensile grips will induce bending stress in the ring specimen, finite-element
modeling will be used to estimate the threshold stress for radial-hydride precipitation.

The decreases in ductility and failure-impact energy will be correlated to the extent of radial hydride
formation to map out cooling conditions — especially stress at 400°C — that are detrimental to high-burnup
Zry-4 cladding integrity. Additional tests (e.g., fracture toughness) may be conducted on cladding
subjected to these detrimental cooling conditions. Regardless of test technique, post-test specimens will
be characterized, and the hydride microstructure will be quantified to correlate to ductility, impact energy,
and/or toughness.

Conclusions

An experimental program is ongoing at Argonne National Laboratory to provide data to support license
application and evaluation of SNF waste packages. In particular, the objectives of this program are to
determine the mechanical behavior of SNF Zry-4 cladding materials and those conditions that promote
radial-hydride precipitation. The following are the conclusions of this program:

1. Results of tensile and creep testing suggest that high-burnup Zry-4 retains >3% uniform ductility
between room temperature and 400°C, enveloping those temperatures of drying operations and
long-term storage.

2. Initial testing shows that radial-hydride precipitation (£, = 0.85) occurs in high-burnup Zry-4
after fast cooling from 400°C to room temperature under 190-MPa hoop stress; these conditions
and observations are consistent with other studies. Additional tests are planned to determine the
threshold conditions (temperature [380-420°C], hoop stress [0-150 MPa], and cooling rate) that
promote radial-hydride precipitation.

3. Screening ring-compression tests at 0.1 and >100%/sec strain rates are planned to determine the
relative change in ductility and failure energy due to radial-hydride precipitation on cladding. In
addition, ring-crush impact tests are planned to determine impact-failure energy. These tests will
be the prelude to a more comprehensive testing program.
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Data Needs for the Transportation and Storage of High Burnup Fuel

RE Einziger, CL Brown, CG Interrante and GP Hornseth

US Nuclear Regulatory Commission
Spent Fuel Program Office

The storage and transportation of low to medium burnup spent nuclear fuel
(<45 GWd/MTU) are mature, ongoing operations with a strong safety record. In order to
improve nuclear reactor utilization, utilities are operating plants with fuel that is licensed
for extended burnup. Fuel with burnups up to 62 GWd/MTU and possibly beyond will
need to be stored and transported. In addition, events of recent years have raised the
question of the safety of transport and storage casks that might come under terrorist
attacks.

The NRC has been recently focusing on the storage and transportation of the higher
burnup fuel because its cladding may have degraded mechanical properties relative to
lower burnup fuel. The increased fluence and time-in-reactor have caused changes in the
fuel pellet and cladding characteristics, In addition, newer cladding alloys are in use that
have been developed to meet in-reactor performance standards.

During extended operation, the fuel is in the reactor for a longer time, hence more
cladding oxidation occurs. Approximately 15-20% of the hydrogen generated during the
oxidation process diffuses into the cladding, and for the most part accumulates at the
outer cooler edge. Depending on the alloy, the hydrogen concentration in this outer rim
of the cladding can reach above 600 wppm compared to 300 wppm or less in lower
burnup fuel. As the temperature of the fuel is raised in the drying process, after cask
loading, much of this hydrogen will go back into solution. Later cooling of the fuel will
re-precipitate the hydrogen as hydrides as the solubility limit decreases with decreasing
temperature. If the applied hoop stress due to the internal rod gas pressure is sufficient,
radial hydrides will form. Radial hydrides may degrade the mechanical properties of the
cladding and possibly lead to rod breach during transportation and storage conditions. At
the current time, this critical stress is not well defined.

To meet the performance needs in-reactor, the vendors have developed a number of new
alloys that have more corrosion resistance than Zircaloy at comparable burnups. The
corrosion of these alloys produces less hydrogen thus making the potential for hydride
generation and reorientation potentially less detrimental. A comparative data base on the
creep behavior, fracture toughness, and other mechanical properties must be established
by the licensee to determine if these alloys fall under the same guidelines for storage and
transportation as the Zircaloy alloys.

At higher burnup, the fuel pellet forms a rim region, representing about 4-8% by volume

of the fuel. This rim retains fission gas under high pressure, restructures to a submicron
grain size, and has higher plutonium content than the body of the pellet. Very little is
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known about the behavior of this rim region under impacts that might be characteristic of
a severe drop or terrorist attack. Since the fuel grains are already in the respirable size
range, it is important to know the relative fracture and dispersal behavior of this fine-
grained material compared to behavior of grains from lower burnup fuel that are 100
times larger.

To address the effects of these changes on the safe transportation and storage of spent
fuel, expansion of the current data bases by the vendors and utilities is expected. The
NRC has instituted a confirmatory data gathering activity to allow the staff to evaluate
the adequacy of these data bases when license applications for the storage and
transportation of high burnup fuels are submitted.

The NRC continues to seek data and analysis methods from the nuclear industry to
support the safe storage and transportation of high burnup fuel. This paper will discuss
data that are needed to evaluate the storage and transportation of high burnup spent
nuclear fuel, and the NRC confirmatory programs to obtain data. Furthermore, the
implications of the uncertainties on pending changes for Interim Staff Guidance ISG-11
Revision 3 will also be discussed.
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Data Needs for Storage and Transportation of High Burnup Fuel

RE Einziger, CL Brown, GP Hornseth and CG Interrante
US Nuclear Regulatory Commission
Spent Fuel Project Office

Abstract

The NRC has recently focused on the storage and transportation of high
burnup fuel because its cladding may have degraded mechanical properties
relative to lower burnup fuel. The hoop stress at higher burnups may cause
radial hydrides that degrade the mechanical properties of the cladding and
possibly lead to fuel rod disruption during transportation and storage. At the
current time, the critical stress for hydride reorientation is not well defined.
The increased fluence and time-in-reactor change the cladding
characteristics. New and unidentified modes of breach have been appeared
in-reactor that might change the initial condition of the fuel being stored;
hence affect its overall performance. To meet the performance needs in-
reactor, the vendors have developed a number of new alloys. A comparative
data base on the creep behavior, fracture toughness, and other mechanical
properties must be established by the applicant to determine if these new
alloys fall under the same guidelines for storage and transportation as the
Zircaloy alloys.

Expansion of the current data bases by the applicants is expected to address
the effects of these changes on the safe transportation and storage of spent
fuel,. The NRC only sponsors confirmatory research to allow the staff to
evaluate the adequacy of the applicant data. This paper will discuss data that
are needed to evaluate the storage and transportation of high burnup spent
nuclear fuel, and the NRC confirmatory programs to obtain data.
Furthermore, the implications of the uncertainties on changes for Interim
Staff Guidance 1SG-11 Revision 3 will also be discussed.

l. Introduction

The storage and transportation of low to medium burnup spent nuclear fuel
(<45 GWd/MTU) are mature, ongoing operations with a strong safety record. In order to
improve nuclear reactor utilization, utilities are operating plants with fuel that is licensed
for extended burnup. Fuel with burnups up to 62 GWd/MTU and possibly beyond will
need to be stored and transported. The Nuclear Regulatory Commission (NRC) has been
recently focusing on the storage and transportation of the higher burnup fuel because its
cladding may have degraded mechanical properties relative to lower burnup fuel.

The increased fluence and time-in-reactor have resulted in larger hydride contents that, if
reoriented to a radial direction, may degrade the cladding’s fracture properties. In
addition, newer cladding alloys are in use that have been developed to meet in-reactor
performance standards but not necessarily storage and transport requirements. A
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comparative data base on the creep behavior, fracture toughness, and other mechanical
properties must be established by the licensee to determine if these alloys fall under the
same guidelines for storage and transportation as the Zircaloy alloys. Currently, some
reactors are experiencing an increased failure rate of the fuel cladding, some of which are
due to unidentified mechanisms. These mechanisms may affect both the condition of the
fuel as it enters storage and the predicted in-storage behavior of the SNF.

To address the effects of these changes on the safe transportation and storage of spent
fuel, expansion of the current data bases by the vendors and utilities is expected. The
NRC continues to seek data and analysis methods from the nuclear industry to support
the safe storage and transportation of high burnup fuel. This paper will discuss data that
are needed to evaluate the storage and transportation of high burnup spent nuclear fuel,
and the NRC confirmatory programs to obtain data. Furthermore, the implications of the
uncertainties on pending changes for Interim Staff Guidance, ISG-11 Revision 3, will
also be discussed.

A. Regulations

Dry storage of spent nuclear fuel (SNF) is regulated by 10CFR 72. The regulations
require that the dose levels to the public must be controlled, the system must remain
subcritical, and the spent fuel has to be confined. Any change in the spent fuel condition
that will compromise these functions is unacceptable. As a result, the regulation [10CFR
72.122(h)(1)] specifies that the fuel cladding must either be protected against gross
degradation or be double confined during storage if already damaged. This is not per say
to maintain the cladding integrity but rather to assure adequate confinement and sub-
criticallity under normal storage conditions, and to minimize release of radioactive
material to the storage environment within the sealed cask. An operational benefit is that
the fuel will remain in a retrievable physical condition as intact assemblies.

Transportation of SNF is governed by 10CFR71. The only criterion on the fuel is that it
remains in a sub-critical configuration. Currently, this is interpreted to mean that even in
the worst configuration with the cask fully moderated, the fuel will remain sub-critical.
The system must remain sub-critical even after an accident event such as the regulatory
nine meter drop, impact on a blunt steel puncture pin, and fire. There is nothing specified
in this regulation that requires the fuel to remain in a substantially intact configuration.

B. Current Situation

In order to assure that the fuel stays in a configuration that will meet the goals indicated
above, the NRC staff has issued guidance (ISG-11 Rev.3) with regard to suggested
maximum storage temperatures, internal rod pressures and cask atmospheres. These
guidelines are based on the expected initial condition of the fuel as it is taken out of the
reactor water pool, and degradation mechanisms thought to be potentially active during
dry storage, namely creep rupture of the cladding, hydride embrittlement due to hydride
reorientation, and fuel pellet oxidation.
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Fuel with cladding that has pinhole leaks or narrow cracks is currently considered to be
intact since it maintains it structural integrity under normal storage. This is only true if
the fuel is in a non-oxygenated atmosphere as the expected maximum temperature of the
fuel will be substantially higher than the temperature where rapid oxidation of UO,
occurs. During one of the revisions of ISG-11, the need for an inert storage atmosphere
was inadvertently omitted.

The current temperature and stress guidelines are shown in Figure 1. These are only
guidelines and applicants can propose other limits if the are backed by an adequate data
base in the safety analysis report (SAR). The 400°C maximum temperature was based on
limiting the creep stain to 1%. Creep strain correlations for low burnup Zircaloy were
used for the determination. This temperature limit also insures a maximum concentration
of ~220 wppm hydrogen in solution in the cladding. Currently this limit is acceptable for
any burnup or fuel type. In addition, low burnup fuel (<45 GWd/MTU) could have a
short term excursion to higher temperatures, such as in vacuum drying, if the cladding
hoop stress is maintained below 90 MPa. The stress limit, based on the current best
estimate of the critical stress, was imposed so that no excessive hydride reorientation
would occur. During an accident the temperature of the cladding was restricted to 570°C,
a temperature where Zircaloy-4 cladding of moderate burnup has been experimentally
shown not to fail in six weeks although excessive creep did occur. Currently, the NRC
staff has not imposed an upper cladding stress limit, for normal operation, on either high
or low burnup fuel, or an upper temperature limit for short term excursions of low burnup
fuel.

There are a number of reasons that there are currently no similar guidelines during the
transportation of spent fuel:

e The duration is short and similar mechanisms may not be active.

e There are no mechanical and impact properties available in the open
literature to enable the staff to predict the cladding behavior during
transportation.

The performance of the fuel in relation to the requirement to maintain subcriticality
during both normal and accident transport is currently evaluated on a case-by-case basis.

C. High Burnup fuel Characteristics

The dividing point between high and low burnup fuel is 45 GWd/MTU. This was
initially set because it was the upper limit of fuel performance data in conditions typical
of dry storage. It also happened to be approximately the lower burnup limit where a
number of changes in fuel characteristics occur that may significantly affect the
performance of the fuel in dry storage.

The extent of cladding oxidation at higher burnups will depend on the composition of the
zirconium alloy. Zircaloy corrosion increases rapidly after 45 GWd/MTU and becomes
appreciable at higher burnups. High burnup PWR rods with Zircaloy-4 cladding can have
oxide thicknesses in the range of 80 to 100 um [SABO0O]. Consequently, as the cladding
thins, the stress can increase by up to 10%. The newer cladding compositions such as,
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M5, and Zirlo, etc., were developed to resist corrosion during the extended irradiation
[ISHOO, MEYO00]. The corrosion of these alloys is considerably less than Zircaloy at
equivalent burnups. Even ZIRLO has attained oxide thicknesses above 80 um in recent
years [KNOO3, KAIOO] as the plants are experiencing higher duties than ever before.
The trend is increasing due to the utility’s desire to reduce fuel costs.

|

- ______lowBU,shortterm, __;
o70 normal |
T I
e |
m <«— AllBU, |off norm, accident —
P, !
C 400 F-————-———————————- b -

All burnup, normal storage,

a0
Stress, MPa

Figure 1 - Current ISG-11 Rev 3 Limits for Dry Storage. Limits are applicable to all
cladding types.

As the oxide thickness increases the cladding loses ductility due to the absorption of 10-
20% of the resultant hydrogen that forms hydrides in the outer layer of the cladding. The
average hydrogen content in the cladding at ~30 GWd/MTU is ~100-200 wppm and it
increases to the range of 600 wppm at 65 GWd/MTU. As the cladding cools, the excess
hydrogen in solution precipitates as zirconium hydrides. Due to the texture in Zircaloy-4,
these tend to be long, circumferential platelets. In Zircaloy-2 they take the form of
shorter randomly orientated platelets due to the lack of texture in this alloy. As a result of
the high hydride content, the high burnup cladding has a loss of ductility when there is a
large amount of corrosion [ITA00, GAR96]

The newer zirconium cladding alloys were developed to reduce the corrosion potential
and consequently the hydrogen content of the cladding. There are no publications that
indicate that these alloys were developed to improve or even maintain the mechanical
properties of the cladding. The data base of the mechanical properties for these alloys is
too sparse to determine how they will behave in dry storage and transportation.
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In PWR fuel and the newer pressurized BWR fuel, the fission gas release is 1-2% at
burnups below 35 GWd/MTU. As the irradiation continues to higher burnup, the average
release, from a batch of high burnup (50-62 GWd/MTU) discharged fuel rods, is between
3 and 7%. The fractional release continues to increase to about 28% at 100 GWd/MTU
[MANOO]. The normal hoop stress on the cladding during storage and transportation is
directly proportional to the internal pressure and hence increases with increased fission
gas release. The significance of the increased stress is discussed later.

D. Areas of Concern

There are three major areas of concern that are the basis for revision of ISG-11 Rev 3.
These are hydride reorientation, initial starting condition of rods put into storage, and the
mechanical properties of the newer cladding alloys.

As the burnup of the fuel increases, the hydrogen content of the cladding increases. After
a portion of this hydrogen is taken back into solution during a temperature excursion such
as vacuum drying or a fire accident, it will eventually reprecipitate as zirconium hydrides
as the fuel cools. If the hydrides form in a radial direction due to the hoop stress in the
cladding, the mechanical properties of the cladding and its ability to resist fracture when
subjected to normal and accident loads during storage and transportation comes into
question.

The limits on the conditions of storage (temperature, time, stress, and atmosphere) are
recommended to reduce the number of unlikely fuel disturbances. The ability of the
cladding to withstand impacts during storage and transportation will depend on its initial
flaw structure as the fuel is removed from the reactor. There are several indications that
in some fuel this condition may be significantly different than currently expected. This
may be due to unknown mechanisms associated with in-reactor breaches, which occur
due to a combination of plant uprates, challenging water chemistry, longer fuel cycles,
etc. A significant change in the cladding flaw size distribution would result in a change
in the recommended storage and transportation limits.

The current recommended storage guidance is based on the properties of low burnup
Zircaloy cladding and indications of the expected high burnup performance of this alloy.
ISG-11 Rev 3 allows fuel with advanced cladding to be stored. In order to evaluate the
performance of these fuels under regulatory transport accidents and road vibration, data
on pertinent properties is needed. Current data is insufficient to determine cladding
performance, thus transport applications are considered on a case-by-case basis.
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Il. Technical Uncertainties

A. Hydride Reorientation

When the cladding corrodes in-reactor, 10-20% of the hydrogen generated by corrosion
diffuses through the oxide layer into the cladding. Depending on the metallurgical
processing of the Zircaloy, hydrogen in excess of the solubility limit at the precipitous
will precipitate either as circumferential hydride platelets on the outer cladding surface
(PWR) or as randomly oriented platelets (BWR). Additional hydrides form as the fuel
cools in the reactor pool'.

When the fuel cladding temperature is raised during short-term operations, either as part
of the drying process when the fuel is put in dry storage, or in storage itself, in particular
with high burn-up fuel, hydrogen will go back into solution at the level of the solvus for
the temperature in question. At 400°C this is approximately 220 wppm. Upon cooling,
after drying or in storage, the cladding is in a tensile hoop stress state. If this stress level
is above a critical stress, as the precipitous is exceeded, the hydrides will precipitate in
the radial direction. Figure 2 shows hydride reorientation as an effect of stress on the
cladding. These radial hydrides, if in sufficient amounts, may degrade the mechanical
properties of the cladding and possibly make the cladding susceptible to breach during
normal and/or accident transportation events.

However, there is considerable uncertainty on the critical stress for hydride reorientation,
the amount of radial hydrides required to degrade the mechanical properties, the effects
of this degradation, and whether fuel rods can even attain hoop stresses above the critical
level in storage or transportation.

1. Critical Stress

The data base for the reorientation of hydrides in Zircaloy as a function of the applied
stress and temperature is given in Fig 3 from Chung [CHUO4]. The data are rather sparse
for rods where reorientation has not been observed, and there is considerable scatter in
the data where reorientation has been observed. There are good reasons for these
conclusions. The stress in most low burnup rods is in the 60 MPa or lower range, the
hydrogen content is rather low (<100 wppm), and the cladding usually operates in a
temperature range below 350°C. Consequently, hydrides in general are not a problem for
low burnup fuel in storage or performance of fuel rods in reactor. As a result, they are
rarely looked for. The scatter at the higher stresses in Figure 3 is great because there are
so many parameters that influence the reorientation.

' Normally, these hydride precipitates are generally circumferentially oriented in PWR cladding, and
randomly oriented in BWR cladding, unless the stress developed in-reactor was sufficient to allow radial
formation.
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f(Temp, H conc, etc.)

Low Hoop Stress » High Hoop Stress

Circumferential Mixed Hydrides Radial Hydrides

Hydrides in In Irradiated Zircaloy In Irradiated
Irradiated Zircaloy Claddi zircalov Claddi
Cladding =" adding ~ <slrcaloy Liadding

Photographs from Nuclear Technology, v. 67 (Oct. 1982) p. 107.

Figure 2 — Hydride Reorientation as a Function of stress Level. HB Robinson,
~30 GWd/MTU

Most of the data was obtained on unirradiated Zircaloy, most was for Zircaloy-4, and
almost all the data was taken at rather fast cooling rates (>>4°C/h), essentially a quench
(see [CHUO4] for references to data). Likewise, most of the data is at stresses far above
the stress expected even in high burnup fuel or fuel operated in-reactor under limiting
conditions. While the threshold line shows a slight temperature dependence, the data is
too scant to rigorously support this.

It is questionable how relevant this data is to spent fuel in storage. Spent fuel has been
irradiated, cooled at a much slower rate, in many cases has a higher hydrogen content
then the tested samples, and uses both Zircaloy-4, and -2 that have different metallurgical
textures. There is no data for the newer advanced alloys. In spite of these deficiencies, it
appears from Figure 3 that there is a stress level somewhere in the range of 90 MPa that
is critical for hydride reorientation. This is in the expected range of stress for high
burnup fuel. Therefore data are needed to establish a reasonable level of confidence in
the critical stress for reorientation, especially for the higher burnup fuels.

There are many parameters that influence the critical hoop stress. These include: alloy
composition and metallurgical condition, cladding physical damage, burnup, maximum
temperature, cooling rate, source of stress, and initial hydride content. Ito [ITO04]
studied the reorientation of hydrides in mid-burnup (46-54 GWd/MTU) Zircaloy-2 and
Zircaloy-4 cladding. While in the temperature range of interest (420 to 360°C), the
stresses where much higher than expected for SNF in dry storage. Likewise, the
hydrogen content was lower than expected (~ 100 ppm for Zirc-2 and 100 to 300 ppm for
Zirc-4) in today’s SNF. Nevertheless, Ito observed that reorientation occurred in the
Zircaloy-2 at lower stresses while it did not occur in Zircaloy-4. This is in agreement
with Marshall [MAR67] who found that the degree of reorientation was highly dependent
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on the fabrication methodology of unirradiated Zircaloy. Zircaloy-4 is manufactured
with a texture to discourage the formation radial hydrides while the Zircaloy-2 grains are
randomly oriented.
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Fi_gure 3- Hydride reorientation as a function of temperature and stress. References to
the original data can be found in Chung [CHU04]

Chan [CHA96] indicates that as the cooling rate increases, the fraction of radial hydrides
decrease at any given stress. He also stated that a slower cooling rate could possibly
lower the threshold stress by relaxing the internal residual stresses. In addition as the
cooling rate drops, the radial hydrides have longer available time for coalescence to
become larger and more continuous. Larger hydrides, formed at a lower cooling rate,
have been observed in unirradiated Zircaloy-2 [ELL68]. As a result, at a lower cooling
rate, the ductility will decrease sharply and less radial hydrides are necessary to cause this
decrease [CHA96]. Although Chan makes his conclusions based on a model, it does
indicate that a slower cooling rate, as expected in vacuum drying, dry storage, or the
repository, may lower the critical stress considerably and must be considered in any
testing to determine the threshold for formation of radial hydrides.

73



The reorientation data from irradiated fuel is shown in Fig 4. It indicates that the critical
stress for irradiated material might be about 40 MPa higher than that for unirradiated
Zircaloy. Based on calculations of terminal solubility, Ito [ITO04] projected that the
critical stress for irradiated Zircaloy-4 might be higher than unirradiated Zircaloy-4. This
would be beneficial but needs to be supported with data in the range of 80 to 150 MPa.
Ito also predicted that the critical stress for irradiated Zircaloy-2 would be less than that
for unirradiated cladding. Thus, both the effect of irradiation and cladding type must be
considered in a testing program.
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2. Stresses in Spent Fuel

Modern fuel rods are prepressurised with He to increase the rate of heat transfer. During
reactor operation, some of the fission gas, generated in the pellets, is released to the
plenum In addition the free volume in the rod decreases due to the creep down of the
cladding caused by external pressure of the coolant. Earlier operating procedures ensured
that the pressure inside the fuel rods was limited to the coolant pressure (~2200 psi) so as
to preclude outward creep of the cladding. Recently, the pressure in the rods has been
allowed to exceed the system pressure, up to the cladding lift off pressure (~3000 psi).
Rods that operate close to the system or liftoff pressures in reactor have a cladding stress
at 400°C of ~130 and 180 MPa, respectively. The stress at 570°C will be higher.

When the rod is placed in dry storage, the cask pressure is only 2 to 5 atmospheres. This
in turn puts the cladding under a tensile hoop stress governed by the pressure in the rods.
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The stress, for thin walled cylinders, is given by the formula: ¢ = P D/2t, where P is the
internal rod pressure, D is the diameter of the rod, and t is the thickness of the cladding.
The changes in cladding diameter will have little direct effect on the stress but will affect
the internal rod pressure due to an increase of the rod internal volume. The stress can be
increased by any in-reactor mechanism, such as larger fission gas release (fgr) or other
sources of gas generation that increases the rod pressure or decreases the cladding
thickness. A study by Brown et al [BROO04] indicated that due to either larger fgr as the
burnup increases or generation of gas from integral boron absorbers, there are a number
of rod designs that could have in excess of 90 MPa hoop stress at a temperature of
400° C. The rods were assumed to have normal gas release and cladding thinning due to
corrosion for the burnup of interest.

Rods have incipient cracks on the inside cladding surface caused by interaction of the
fuel and the cladding during reactor operation. These act as stress risers and effectively
reduces the local thickness of the cladding. Although a number of attempts have been
made to theoretically determine this distribution [SAN92], it has never been measured,
and will be ignored for the time being. Due to corrosion, the cladding forms a hydride-
rich layer on the external surface. This layer can be expected to have little strength and
should be considered as cladding wastage as required in ISG-11 Rev 3. Any in-reactor
mechanisms that thin the cladding wall also need to be considered. For example,
excessive CRUD buildup (see next section) can thin the walls of selected rods up to 30%
with a subsequent increase in stress during storage and transportation.

While the majority of fuel rods will have stress in storage and transportation that are in
the 60-70 MPa range, more rods will approach or exceed a cladding stress of 90 MPa as
burnup is increased. The cladding stress can be considerably higher than 90 MPa if: 1)
the rod pressures approach system or lift-off pressures, or 2) there are unexpected events
in the reactor. The applicant will have to evaluate the range of rod stresses expected in-
storage to determine if hydride reorientation is applicable to a particular fuel loading in a
cask.

3. Degradation of Mechanical Properties

There are no publicly available mechanical properties, specifically fracture toughness
properties on irradiated Zircaloy with radial hydrides, or any of the newer alloys. As a
result, there is considerable uncertainty on the amount and morphology of the hydrides
that are necessary to degrade the fracture toughness. Attempts have been made to model
the precipitation phenomena and show that too few radial hydrides are formed to be of
concern. These models have depended upon the difference between the solvus and
precipitous of hydrogen for unirradiated Zircaloy [KAM96]. If the precipitous measured
by Vizcaino [VIZ02] for irradiated Zircaloy-4 were used instead, even less radial
hydrides would be expected. Until the amount or fraction of radial hydrides that are
necessary to degrade the mechanical properties have been established, for the
temperatures of interest, these calculations will be irrelevant.
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Marshall and Louthan [MARS3] found that the ductility of unirradiated Zircaloy-2
became nil if it contained as little as 40 wppm of radial hydride. Yagnik [YAGO04] found
that at room temperature unirradiated Zircaloy-4 lost about half its ductility with 30 ppm
radial hydrides and 70% with 70 ppm radial hydrides. No loss of ductility was measured
at 300°C, which points out the importance of data for temperatures of interest to specific
applications.

Rashid [RASO1] reviewed and compiled fracture toughness data on zirconium alloys.
Data obtained on hydrided and irradiated samples were included, but were very limited.
Little of the data was prototypical of SNF. There were a number of reasons for this: 1)
the alloy composition, 2) hydrogen charging method, or 3) fluence or test temperature
was outside the applicable range. The limited data that were applicable indicated a
reduction in fracture toughness by about a factor of two, at 250 ppm hydrogen. In this
review, there was no indication of the orientation of the hydrides with respect to the
stress.

B. Initial Fuel Condition

The performance of the fuel assembly and fuel rods during storage and transportation,
and the end condition of the fuel rods is estimated using a number of steps:

e Identify the degradation mechanisms active during storage and
transportation.

e Determine the initial condition of the rods and assembly as they are placed
in storage.

e Apply the degradation mechanisms to the initial fuel condition to
determine the performance and end condition.

Other than the effects of annealing and hydride reorientation that are currently under
investigation, no active degradation mechanisms have been identified. The range of the
initial condition of the fuel is based on post-irradiation at-pool and hot-cell examinations.
As a result, the current ISG-11 Rev 3 limits were recommended. If fuel breaches in-
reactor with larger than a pinhole or tight crack, either the rod has to be identified and
removed from the assembly, or the assembly must be canned in a secondary container.
The expected condition of the fuel rods as they come out of the reactor is the starting
point for estimating degradation during storage and transport. If the condition of the fuel
rods falls outside the expected range of initial conditions then application of the
degradation mechanisms may result in unacceptable performance during storage and
transportation.

Recently, the rate of cladding breaches in the reactors has increased [YANO4] and
unexpected behavior, such as the build up of excessive CRUD have occurred. These have
been attributed to a combination of rod manufacturing process, in-reactor irradiation
conditions, and water chemistry of the reactor coolant [MUTO04, SCHO04]. In some cases,
the cause of rod breach has not been identified. As a result fuel characteristics are falling
outside the accepted data-base for post-irradiation fuel characteristics. The breached rod
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doesn’t pose a problem as it will be handled in the appropriate manner depending on the
characteristics of the breach, but as illustrated in Figure 5, it is unknown how many
additional rods may also have degraded properties due to the same active mechanism.
Additional rods may have degraded characteristics (wall thinning, high internal pressure
etc.), but not to the point of breach, due to the same active mechanism. The range of
degraded rods needs to be determined, in order to decide the appropriate conditions for
storage and transportation.

Possible ranges of
Characterstics of
Damaged Rods Related to
Failed Rod

Data Base for
MNormal
Operation

Failed Rod Characteritics

Figure 5 — The characteristics of a breached rod fall outside the range of expected fuel
rod characteristics.

Some examples of fuel rod characteristics that fall outside the normally accepted range

follow:

CRUD buildup — Excessive CRUD buildup has led to breach in some rods due to
localized overheating and corrosion of the cladding. Some of the adjacent rods
have been found to have thinned cladding walls and other rods with the buildup
have no thinning. Currently, the procedure is to examine every rod with the
excessive CRUD buildup. The cause has not been definitively identified
[KEY04, TRO04].

Breaches with unknown causes have occurred primarily in optimized fuel designs
with thinner cladding [YANO4].

Higher FGR and hydrogen pickup than predicted by the codes [YANO4].

Pellet Cladding Interaction (PCI) — This mechanism, thought to have been
eliminated is making a comeback as fuel is being driven harder (longer reactor
cycles). It has been observed in at least six plants even though the codes indicated
the stress was within acceptable range [YANO04, SCH04].
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e [Initial radial hydrides — Foster [FOS02] and Seibold [SEIO4] have found that
radial hydrides can form in BWR cladding, while in-reactor, due to a stress
caused by an expanding oxide layer on the outer surface, or by pellets with
missing surfaces causing a stress from the cladding inside. This has resulted in
long splits at low burnup.

The staff is undecided, at this point, how to deal with damaged but unbreached fuel:

e It could be incorporated into the definition of damaged fuel and be subject to
assembly canning.

e Redefine undamaged fuel to include cladding with breaches larger than a
pinhole.

e Require a pre-storage inspection of fuel from cores where unexplained breaches
or abnormal fuel behavior has been observed, or

e Require calculations of the consequences of additional breaches in storage and
transportation, if a maximum degradation is assumed to have occurred in
additional rods.

No specific timetable has been set to reconcile this situation.
C. New Cladding Types

The newer vintages of cladding are starting to approach the high burnup range. These
claddings were developed to reduce the cladding corrosion, and hence the hydrogen
content, below that of Zircaloy at equal burnups. They do an excellent job in this respect.
In order to reduce the corrosion, slight changes in the alloy composition were made. As a
result the cladding mechanical properties may be different then those of the Zircaloy
alloys. For example, data are available indicating that these alloys creep more than
Zircaloy [JULO4].

No data exists on the mechanical properties of the newer cladding alloys, at any burnup,
especially in a hydrided state expected at high burnup. As a result, it is very difficult to
predict the behavior of these alloys under hypothetical accident conditions during
transportation or even under normal conditions of transport (e.g. fatigue from cyclic
vibration stress). A limited set of mechanical properties of hydrided irradiated Zircaloy,
particularly hydride reorientation threshold, and fracture thoughness is being obtained
[VIRO4]. If the properties of high burnup irradiated Zircaloy indicate the safe
configuration of the fuel during transport, then only a data base that shows that Zircaloy
bounds the newer alloys would be necessary. If the properties are inferior to Zircaloy
then the applicant would have to provide a data base that would be sufficient to support
calculations of acceptable fuel performance.
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I11. Acquisition of Data

A. Research Needs

The staff has identified data needed to evaluate the safety and retrievability of SNF
during storage and transportation. The current temperature limit for storage of 400°C is
based on limiting the creep deformation to 1%. Low burnup creep correlations for
Zircaloy are used for this determination. High burnup creep correlations for both
Zircaloy and other cladding alloys are needed to confirm this temperature or to establish
new limits for other alloys.

A number of situations can be postulated where the cladding stress in a high burnup rod
will exceed 100 MPa. As this fuel cools, excess hydrogen will precipitate if the stress is
above the critical value. Based on current data, the critical stress is thought to be in the
range of 90 MPa. This value can depend on a number of parameters including irradiation
level and cooling rate. Values and uncertainty in the critical stress, obtained at
sufficiently slow cooling rates, are needed for all PWR and BWR high burnup cladding
alloys.

If the critical stress is in the range where hydride reorientation is plausible during storage,
then the number of radial hydrides needed to degrade either the fracture toughness or
axial elongation must be determined. This data is needed for all high burnup cladding.
The fracture toughness and axial elongation are also necessary for evaluation of spent
fuel behavior under normal and accident conditions.

To meet these needs the Spent Fuel Program Office (SFPO) staff issued a user need
memo to Research in 2004 [VIR04] that addresses the need for mechanical properties of
cladding and an understanding of the hydride reorientation phenomena in irradiated fuel.
This user need memo also requests data to understand the cladding response in a transport
accident. Argonne National Laboratory (ANL) is currently conducting confirmatory
research co-sponsored by Electric Power Research Institute (EPRI), NRC, and
Department of Energy (DOE) to address questions on cladding annealing, critical stress
for hydride reorientation and cladding creep of Zircaloy-4 high burnup cladding. Even
with this program, the responsibility for obtaining sufficient data to support an
applicant’s position lies with the applicant.

B. Confirmatory Research

The Structural and Materials Section in SFPO reviews the materials aspects of licensing
applications for storage and transportation casks. One aspect of that review is the
expected behavior of the fuel and cladding under the conditions proposed by the licensee.
The NRC sponsors confirmatory research on fuels and cladding materials with two
principal objectives:

e To provide independent information to support NRC’s decision making process.
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e To identify and characterize technical questions that may become important safety
issues in the future.

This confirmatory research is designed to improve the agency’s knowledge and

capabilities in areas where uncertainty in the knowledge exists, where safety margins are

not well characterized, and where regulatory decisions need or will need to be confirmed.

The primary data base must be supplied by the applicant. It needs to be sufficiently
complete to support their positions and/or uncertainties claimed in the application, and
using benchmarked codes. This includes positions taken by risk assessment, bounding
calculations, or empirical extrapolation. An insufficient data base could result in either a
return of the application, a delay in the review, or a rejection of the application.

IV. Changes to the ISG-I1 Rev 3

As a result of the data needs and uncertainties discussed above, a number of changes are
being considered for ISG-11 Rev 3. The major ones shown in Figure 6 are a 90 MPa
stress limit for normal storage at all burnup levels, and a maximum temperature of 570°C
for all short term operations with low burnup fuel. In addition two conditions
inadvertently removed from Rev 3 requiring a reflood analysis and an inert atmosphere
(for the temperature limits to be applicable) will be reinstated. This guidance will
continue to apply at burnup levels licensed by Nuclear Reactor Regulatory (NRR) branch
of NRC. The staff will continue to be receptive to any other temperature and stress limits
proposed by applicants for proposals that are adequately supported by relevant data.

As in the current case, transportation of high burnup Zircaloy clad fuel and any burnup
level fuel clad with other zirconium alloys will continue to be handled on a case by case
basis.

V. Conclusions

The SFPO materials staff have reviewed ISG-11 Rev 3 and identified a number of data
needs. These needs have been evaluated based on the uncertainty they introduce when
providing guidance for acceptable conditions for the storage and transportation of high
burnup fuel. In particular:

e Hydride reorientation continues to be the major uncertainty, with the variables of
cooling rate, cladding composition, and stress being of principal concern. At
what stress does it occur? How much reorientation is required to degrade the
cladding mechanical properties? What will be the effect of the degraded
properties on the ability of the cladding to meet the requirements of 10CFR Part
71 and part 72?

e A data base on the properties of the newer cladding alloys at high burnup is
needed. Are the properties bounded by Zircaloy properties?

e The rising breach rate of fuel cladding in-reactor coupled with breaches by
unidentified mechanisms raises the question of the number of damaged rods in the
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same cores. How much additional damage is there in unbreached rods? How
extensive is it in the SNF population. Methods for dealing with these rods have
not been determined.

e While the NRC does sponsor some confirmatory research, the responsibility of
providing a suitable data in support their arguments lies with the applicant.

Until these data needs are met, a number of changes to ISG-11 Rev 3 for storage are
being contemplated. Transportation of high burnup Zircaloy clad fuel and fuel, of any
burnup, clad in the newer alloys will continue to be treated on a case by case basis.

Proposed ISG-11 Limits

570 Low BU, short term,
normal

«— All BU,off norm, accident—»

400 [Tt '

0= 3@ -

All burnup, normal storage,

Stress, MPa
Figure 6 — Proposed changes to ISG-11 Rev 3
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Perspective on requirements for spent fuel storage and transportation

Albert Machiels
Electric Power Research Institute, Inc.

A significant regulatory milestone was achieved when the Spent Fuel Project Office published Interim
Staff Guidance (ISG) 11, Revision 2 entitled: Cladding Considerations for the Transportation and
Storage of Spent Fuel. The acceptance criteria specified in Rev. 2 were supplemented by an additional set
of acceptance criteria for low burnup fuel in Rev. 3 published in November 2003.

In both revisions, the acceptance criteria address dry storage only, but not transportation. This can be
considered unusual for the following two reasons:

1. Most systems to be used for high-burnup spent fuel are intended to be dual-purpose. Clearly, the
acceptance criteria for loading spent fuel in such dual-purpose systems should envelop both
storage and transportation applications.

2. The most limiting considerations that led to the acceptance criteria for dry storage were actually
based on transportation, i.e., on limiting the potential formation of radial hydrides in the spent-
fuel cladding during dry storage in order to minimize potential degradation of the cladding
mechanical properties used in analyzing transportation accidents.

Presently, the U.S. regulations (Part 71) do not have specific criteria with regard to performance of
cladding under hypothetical accident conditions.! However, the configuration of the spent fuel in the
transportation package after an accident is an input to the shielding and criticality evaluation, as well as
possibly to the confinement evaluation. Clearly, if it can de demonstrated that no significant damage
occurs either to the spent-fuel itself (no re-configuration), or to the package (no potential for moderator
ingress), the criticality analysis, generally considered as a key driver from a regulatory perspective, would
be greatly simplified.

Confirmatory and new experimental work is being conducted at ANL with the participation and funding
of several organizations, including the US NRC, US DOE, EPRI, and the fuel vendors. This work is
expected to demonstrate the conservative, but appropriately realistic, technical basis, which resulted in the
acceptance criteria for storage contained in Rev. 2/3 of ISG-11, and its applicability to transportation
applications. Concurrently, modeling of spent-fuel performance under impact loading conditions is a
necessary activity for both guiding the experimental work and getting the most value from its results.

These activities are, or will be, supplemented by other generic efforts:

1. Risk assessment of criticality event during transportation
2. Implementation of full-burnup credit

This three-prong approach (risk assessment, fuel cladding performance, and burnup credit) is expected to
support the contention that transportation risk minimization is a direct function of the reduction in the

' However, Part 71 contains cladding performance criteria for normal conditions of transport.
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number of shipments. If this is indeed the case, the use of high-capacity packages should generally be the
preferred implementation path for dual-purpose systems.
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LOCA Integral Test Results for High-Burnup BWR Fuel

Yong Yan, Tatiana A. Burtseva, and Michael C. Billone
Argonne National Laboratory (ANL), Argonne, IL 60439

LOCA integral tests with high-burnup BWR fuel have been conducted at ANL to provide NRC
and industry with data for assessing the applicability of the LOCA embrittlement criteria in 10 CFR50.46
to high-burnup fuel rods. Similar tests are planned for high-burnup PWR fuel. These criteria limit peak
cladding temperature to 2200°F (1204°C) and maximum oxidation (equivalent cladding reacted, ECR) to
17% during high temperature steam oxidation to ensure residual ductility during ECCS quench (T >
135°C) and during possible post-LOCA seismic events (T = 100°C). Appendix K specifies the use of the
Baker-Just (BJ) correlation for calculating reaction rate and ECR. NRC Regulatory Guide 1.157 (1989)
allows for the use of best-estimate correlations (e.g. Cathcart-Pawel [CP]) for calculating reaction rate and
ECR. At 1204°C, 17% BJ-ECR = 13% CP-ECR. In anticipation of the degrading effects of high-burnup
operation on the cladding, NRC Information Notice 98-29 (1998) specifies that ECR should be based on
total oxidation (corrosion plus transient steam oxidation). For PWR Zircaloy-4 (Zry-4) cladding, high-
burnup operation results in peak corrosion layers of =100 um, corresponding to 8-10% ECR, and peak
hydrogen concentrations of 600-800 wppm. The ANL LOCA integral tests, which are conducted with
fueled specimens, are designed to improve our understanding of the behavior of high-burnup fuel exposed
to a LOCA transient, as well as to provide data for the assessment of the LOCA embrittlement criteria.

LOCA integral test results are reported for fueled high-burnup BWR specimens. These results
are compared to baseline data for zirconia-pellet-filled, nonirradiated Zry-2 cladding specimens exposed
to the same tests. Four LOCA integral tests have been conducted with specimens from Limerick BWR
fuel rods at 56 GWd/MTU. In the as-discharged condition, the Limerick cladding (Zr-lined Zry-2 GE-11
9x9 design) has a corrosion layer of ~10 um and a hydrogen content of 70 wppm. The specimens were
internally pressurized with helium to a gauge pressure of =8.3 MPa at 300°C. During heating in steam at
5°C/s, the internal pressure rose to <9 MPa prior to burst at <750°C. The full LOCA sequence (Fig. 1)
calls for heating in steam at 5°C/s to 1204°C, holding for <5 minutes at 1204°C (<20% CP-ECR), slow-
cooling at 3°C/s to 800°C and bottom-flooding to quench the cladding from 800 to 100°C.

The ICL#1 test specimen was ramped to burst in argon and slow cooled. The ICL#2 specimen
was exposed to the LOCA test sequence with the exception of quench. The nondestructive results from
these tests indicated more similarities than differences between high-burnup specimens and non-irradiated
specimens. The ICL#3 specimen achieved partial quench (800°C to 470°C) before failure of the quartz
chamber that surrounded the specimen. The full LOCA sequence with quench was demonstrated in the
ICL#4 test (see Fig. 1). Nondestructive examinations included photography and profilometry for all 4
specimens and gamma scanning for the ICL#3 and #4 specimens. Destructive examinations were
performed on ICL#2 and #3 specimens to determine oxide layer thickness, fuel morphology, and axial
profiles of hydrogen and oxygen concentration. Oxide-layer thickness and oxygen-content results
indicate two-sided oxidation in the ballooned-and-burst region of both high-burnup and nonirradiated
specimens. The axial profile of hydrogen pickup for ICL#2 and #3 specimens is shown in Fig. 2 and
compared to the data for nonirradiated Zry-2 cladding.  For nonirradiated specimens, the hydrogen
pickup was low in the burst region and very high at 70-90 mm above and below the burst mid-plane. For
high-burnup-fueled cladding, the hydrogen peak was towards the burst mid-plane. Because of the large
secondary hydriding from the cladding inner surface, significant degradation of post-quench ductility
(PQD) is expected for the ICL#4 ballooned region, even at 100-135°C. A 5™ hot-cell integral test, with a
2-minute hold time at 1204°C, is in progress to determine if the 17% BJ-ECR criterion is sufficient to
protect the ballooned region from embrittlement due to steam oxidation and hydrogen pickup at 1204°C.
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In the uniform burnup region (within grid spans 2-5), the high-burnup PWR cladding for the next
set of LOCA tests differs from BWR cladding in terms of corrosion layer thickness (=40 to 100 um) and
hydrogen content (=400 to 800 wppm). For test planning purposes, the separate effects of hydrogen on
diametral-compression PQD have been investigated with prehydrided, nonirradiated 15x15 Zry-4
cladding rings after oxidation at 1204°C and quench. For as-received (=10 wppm H) cladding that was
oxidized at 1204°C, the ductile-to-brittle-transition CP-ECR was 8% at room-temperature, 12% at 100°C,
and 14% at 135°C. In contrast, cladding with 400-t0-800 wppm hydrogen exhibited significant
embrittlement, even after moderate oxidation at 1204°C. Samples prehydrided to 400-800 wppm and
oxidized at 1204°C to 8% CP-ECR exhibited no ductility. With anticipated secondary hydrogen update
from the cladding inner surface, the embrittlement ECR is expected to be <<17% for high-burnup PWR
specimens subjected to LOCA integral tests at 1204°C, even if the ECR is determined by the sum of the
corrosion layer and the BJ-calculated transient ECR. The baseline data from prehydrided cladding are
being used to plan the PWR hold-times at 1204°C such that the embrittlement ECR can be determined
effectively in the ballooned and non-ballooned regions of the PWR LOCA integral test specimens.

In-cell LOCA Test ICL#4 with Limerick Fuel Sample, 3/4/04
1600

= -Pressure (psig)
——TEQ: Control TC {°C)
—— TEI1: Monitor TC {°C)

..................

1200 » / .
800 . Conirel TC: 793°C = /s

! i

400 - i

Temperature/Pressure (°C/psig)

X Lol T S n 4 YJ' Lol / 'I
‘/‘( d ;
o i Ry
' ~
0 T T T T
0 400 800 1200 1600
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Fig 1. Temperature and pressure histories for LOCA integral test (ICL#4) with high-burnup BWR fuel.
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Fig 2. Axial profile of hydrogen pickup in high-burnup BWR cladding used in LOCA integral tests
ICL#2 and ICL#3 (5 minutes at 1204°C); OCL#11 results are for nonirradiated Zry-2 cladding.
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LOCA Integral Test Results for High-Burnup BWR Fuel

Yong Yan, Michael C. Billone, Tatiana A. Burtseva, and Hee M. Chung
Argonne National Laboratory (ANL), Argonne, IL 60439

Abstract

Results from loss-of-coolant-accident (LOCA) integral tests are reported for high-burnup
fuel-rod specimens from a boiling water reactor (BWR) at Limerick. These results are
compared to baseline data for nonirradiated Zry-2 cladding specimens filled with zirconia
pellets and exposed to the same tests. Four LOCA integral tests have been conducted
with specimens from Limerick BWR fuel rods at burnup of 56 GWd/MTU. The ICL#1
test specimen was heated to bursting in argon and slowly cooled. The ICL#2 specimen
was exposed to the LOCA test sequence with the exception of quench. The ICL#3
specimen achieved partial quench (800°C to 470°C) before failure of the quartz chamber
that surrounded the specimen. The full LOCA sequence in ICL#4 calls for heating in
steam at 5°C/s to 1204°C, holding for 5 minutes at 1204°C (< 20% CP best-estimate
ECR), slow cooling at 3°C/s to 800°C, and bottom-flooding to quench the cladding from
800 to 100°C. Destructive examinations showed two-sided oxidation in the ballooned-
and-burst region of both high-burnup and nonirradiated specimens. For nonirradiated
specimens, the hydrogen pickup was low in the burst region and very high at 70-90 mm
above and below the burst mid-plane. For high-burnup-fuel cladding, the hydrogen peak
was toward the burst mid-plane. In addition, the effects of hydrogen on diametral-
compression post-quench ductility (PQD) have been investigated with prehydrided (300-
to-800 wppm hydrogen), nonirradiated 15x15 Zry-4 cladding rings after oxidation at
1204°C and quench. The baseline data from prehydrided cladding are being used to plan
the LOCA test times for specimens from a pressurized water reactor (PWR) such that the
embrittlement equivalent cladding reacted (ECR) can be determined effectively in the

ballooned and non-ballooned regions.
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Introduction

The LOCA licensing criteria (10 CFR 50.46) limit peak cladding temperature to 2200°F (1204°C)
and maximum oxidation (expressed as equivalent cladding reacted, ECR) to 17% to ensure cladding
ductility during quenching from the emergency core cooling system and during possible post-LOCA
events (e.g., seismic). In formulating these criteria, it was assumed that knowledge of the detailed loading
modes and magnitudes experienced by the cladding, beyond the thermal stresses induced by rapid
cooling, are not well defined. Cladding that retains some plastic ductility has more margin for surviving
quench and post-quench loads without fragmenting compared with brittle cladding. Based on Appendix
K of this regulation, the Baker-Just (BJ) correlation is to be used to calculate the metal-water (i.e., steam)
reaction. Regulatory Guide 1.157 (1989) allows the use of a best-estimate correlation, such as the
Cathcart-Pawel (CP) model, to calculate the oxidation rate in steam for T > 1900°F (1038°C). At 1204°C,
the ratio of the BJ-to-CP prediction is =1.3. To compensate for the possible effects of high burnup
operation (e.g., hydrogen pickup), NRC Information Notice 98-29 (1998) defines total oxidation to

include in-reactor corrosion (ECRy;), as well as transient steam oxidation (ECRy).

The LOCA integral tests at ANL, using high burnup fuel-rod segments from boiling and
pressurized water reactors, are designed to address the adequacy of the embrittlement criteria, of the
correlations (CP vs. BJ) used to calculate oxidation, and of the decrease in allowable transient oxidation
(ECR; < 17% - ECR) to compensate for the embrittling effects of hydrogen. In addition to this
confirmatory aspect of the research, the fundamental behavior of high-burnup fuel and cladding, exposed

to a LOCA transient, is investigated and characterized.

The LOCA-relevant research at Argonne National Laboratory (ANL) includes high-temperature
steam oxidation studies of cladding [1], LOCA integral testing of fueled segments [2], post-quench
ductility testing of LOCA integral specimens, and post-quench ductility testing of nonirradiated
zirconium-based cladding alloys [3]. Four LOCA integral tests with high-burnup BWR samples (from
Limerick fuel rods at 56 GWd/MTU) have been completed. The ICL#1 test specimen was heated to
bursting in argon and slowly cooled. The ICL#2 specimen was exposed to the LOCA test sequence with
the exception of quench. The ICL#3 specimen achieved partial quench (800°C to 470°C) before failure of
the quartz chamber that surrounded the specimen. A full LOCA sequence in ICL#4 was completed in
March 2004.
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This paper presents the results of the post-test examinations of the ICL#1-4 samples: fuel
morphology; cladding inner- and outer-surface oxidation within the ballooned region; post-test gamma
scanning; fractography; and hydrogen pickup in the neck and ballooned regions. After completion of the
high-burnup BWR test matrix, high-burnup PWR rods (from the H. B. Robinson reactor) will be
subjected to the LOCA test sequence indicated in Fig. 1. Post-quench ductility (PQD) baseline data with
prehydrided 15x15 Zry-4 cladding are also presented for the planning of the H.B. Robinson LOCA

integral tests.

Experimental Procedure

LOCA integral tests consist of rapidly heating (5 °C/s) a 300-mm-long fuel segment under internal
pressure in a steam environment, holding it at 1200°C for <5 minutes, cooling it (3 °C/s) to 800°C, and
then quenching it with room-temperature water. A schematic illustration of the LOCA sequence is given
in Fig. 1. The LOCA integral apparatus, as shown schematically in Fig. 2, contains the following features:
radiant furnace, argon purge system, high-pressure system to internally pressurize the 300-mm-long test

sample, steam supply system, and quench system.
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Fig. 1. Temperature and pressure histories for full LOCA integral test sequence, including

quench from 800°C to 100°C.
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A series of out-of-cell LOCA integral tests was conducted with unirradiated Zry-2 cladding at
1204°C in steam. The out-of-cell LOCA samples are used to benchmark the testing methods and to obtain
data for post-quench ductility, as well as properties data for weight gain, oxide-alpha-beta layer
thicknesses, and hydrogen and oxygen distributions. This data set serves as a baseline for in-cell LOCA

tests with high-burnup-fuel samples.

Results for the OCL#11 (an out-of cell LOCA test with unirradiated 9x9 Zr-2 for 5 minutes at
1204°C), companion test to ICL#2, are briefly discussed here. The concentrations of oxygen and
hydrogen were measured by the LECO method after the OCL#11 test. These concentrations are
referenced to the weight of the oxidized samples. The data need to be converted to concentrations
referenced to the pre-oxidized sample weight in order to determine pickup values during the transient.
The algorithms for calculating oxygen and hydrogen pickup from the LECO data were given in our
previous work [3]. In addition, quantitative metallography (see Fig. 3), along with the CP models for
interface oxygen concentrations and diffusion within the oxide, alpha, and beta layers, was used to

determine the weight gain per unit surface area and the corresponding ECR.
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Fig. 2. Schematic illustration of LOCA system.
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17 mm above the
burst mid-plane

Fig. 3. Cladding metallographic results for OCL#11 specimen.
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Fig. 4. Axial distributions of hydrogen pickup and ECR for out-of-cell test OCL#11 with nonirradiated
Zry-2 cladding. The average values do not give information regarding the local concentrations
of oxygen and hydrogen across the wall of the cladding. Oxygen concentrations in the oxide and
alpha layers are much higher than the average value, while hydrogen concentration in the prior-
beta layer is much higher than the average concentration.
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The axial distributions of ECR and hydrogen pickup of the OCL#11 sample are shown in Fig. 4.
As expected, the oxygen pickup and ECR peak at the center of the burst region where the cladding is
thinnest and the oxidation is fully two-sided. The ECR decreases away from the burst center as the
cladding wall thickness increases and the degree of inner-surface oxidation decreases. Also, as expected,
the hydrogen pickup, due to secondary hydriding, peaks near the balloon neck regions. The magnitude of
these hydrogen peaks, however, is larger than previously reported [4] and may depend on ballooning
strain profile, burst opening, diameter of pellets (zirconia) inside the cladding, heating method (internal
vs. external vs. direct-electrical), and cladding type (lined Zry-2 vs. Zry-4). As these hydrogen peaks, as
well as the hydrogen within the balloon region, are potentially embrittling, it is important to determine the
magnitude of such effects for high-burnup cladding. Additional nondestructive examination results and

some destructive results for the OCL#11 sample were reported in Ref. 3.

LOCA In-cell Integral Test Results

Limerick Rod J4 was selected for the in-cell LOCA tests ICL#3 and ICL#4. Based on our gamma
scan data (see Fig. 5), there appear to be no unusual features in the pre-test specimens. Figure 6 shows the
temperature and pressure histories for the ICL#4 test at an average hold temperature of =1204°C for 5
minutes in steam. Two thermocouples (180° apart) were strapped at 2-inches above the mid-plane, and

the temperature difference between them was less than 14°C.
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Fig.5. Gamma scan profile of Limerick fuel rod J4.
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In-cell LOCA Test ICL#4 with Limerick Fuel Sample, 3/4/04
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Fig.6. Temperature and pressure histories of in-cell LOCA test I[CL#4.

High-Burnup BWR Zry-2 ICL#1 (RAMP-to-Burst)

Fig. 7. High magnification micrographs of the burst opening for ramp-to-burst tests.
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HCL#‘I: Rampz o-Burst test conducted in

argon

Fig. 8. Micrographs showing the balloon and burst regions for ICL#1 — #4 specimens.

Nondestructive Characterizations

Nondestructive characterizations for the ICL#1 - #4 samples were completed shortly after the tests.
The results are summarized in Table 1. Unlike the dog-bone burst shape of the unirradiated OCL#11
sample (see Fig. 7), an oval burst shape was observed for all LOCA in-cell samples (see Fig. 8). The burst
temperatures for the LOCA in-cell tests range from 730 to 790°C, and their burst lengths are in the range
of 11-15 mm. In addition, the balloon lengths (defined by OD strains ~2%) of the LOCA in-cell samples
are shorter than that of the LOCA out-of-cell sample. No significant difference was found for the

maximum OD strain between the unirradiated samples and the high-burnup samples.

Axial Locations of Specimens for Destructive Evaluation

Figure 9 shows the axial locations at which sample ICL#3 was broken (locations A, B, and C)
during the sample handling, before the sectioning was performed at location D. Metallographic
examinations were conducted at location B, and scanning electron microscopy (SEM) examinations were
conducted at locations A and C. The hydrogen and oxygen analysis samples were further sectioned from

the specimens A-B and C-D.
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Table 1. Summary of in-cell LOCA integral tests (ICL) with high-burnup fueled cladding specimens

from Limerick BWR. Also shown are the results of out-of-cell test OCL#11 with non-irradiated Zry-2
cladding.

Parameter ICL#1 | ICL#2 | ICL#3 | ICL#4 | OCL#11
Hold Time, minutes 0 5 5 5 5
Max. Pressure, MPa 8.96 8.87 9.0 8.86 8.61
Burst Pressure, MPa <8.61 <8.01 8.6 8.0 <7.93
Burst Temperature, °C =755 =750 =730 =790 =750
Burst Shape Oval Oval Oval Oval | Dog Bone
Burst Length, mm 13 14 11 15 11
Max. Burst Width, mm 3 3.5 4.6 5.1 1
Length of Balloon, mm =~ 70 =~ 90 ~ 100 ~ 80 ~ 140
(AD/D,)max, % 3819 | 39£10 | 4349 36+9 43+10
Max. Calculated ECR, % 0 =20 ~21 ~20 ~21
Max. AH, wppm >220 | >2900 | TBD 3900

OD Strain of In-cell LOCA salnple ICL#3, 12/12/03
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Fig. 9 Post-test characterization for ICL#3 sample. The [CL#3 sample was broken at axial positions A,
B, and C during the sample handling.
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Fig. 10. Gamma scan profiles for [CL#3 and ICL#4 specimens.

(@)

Fig. 11. Low-magnification images of the post-LOCA test ICL#2 fuel samples at ~12 mm above the
burst center (a); =50 mm above the burst center (b); ~130 mm below the burst center (c); and the
Limerick fuel prior to LOCA testing (180 mm from the LOCA sample) (d). Cladding diametral
strains are 2-4% for the Fig. 11b cross section and 15-25% for the Fig. 11a cross-section.
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Fuel Relocation

There is considerable interest in the behavior of high-burnup fuel during a LOCA transient. Prior to
the transient, the fuel is tightly bonded to the cladding. During ballooning, the cladding pulls away from
the fuel. This allows space for fuel particles (macro-cracked, micro-cracked, and very small particles
from the rim layer) to fall into the balloon region. If such movement were to result in a local increase in
fuel per unit length, then the higher decay heat per unit length would increase cladding oxidation
temperature and maximum ECR in the burst region. Also, if the fuel-cladding bond material moves with
the cladding, such a layer could slow down the initial steam oxidation rate and could protect the cladding
from the large hydrogen absorption observed in tests with bare-wall, nonirradiated cladding (see Fig. 4).
As methods that could be used to freeze the fuel particles in place (e.g., epoxy) conflict with cladding
characterization, the ANL program is more focused on the details of cladding oxidation, hydriding, and
ductility than on fuel behavior. This focus was certainly the case for the ICL#2 sample, as no attempt was
made to prevent fuel fallout during handling. For the ICL#3 and ICL#4 samples, the burst areas were
taped following the test to minimize fuel fallout and the samples were gamma-scanned — prior to other
nondestructive characterizations — to determine the axial distribution of fuel in and beyond the balloon
region. Figure 10 shows the gamma scan profiles for the ICL#3 and ICL#4 specimens. For the axial
locations with little-to-no permanent strain, gamma counts received from the fuel most likely represent
the condition of the fuel at the end of the LOCA test. For the ICL#3 and ICL#4 balloon regions, some
redistribution of fuel particles likely took place between the end of the LOCA test and the gamma scan

due to the sample handling and transfer.

Figure 11 shows low-magnification images of the fuel structure of the ICL#2 sample at axial
locations: (a) =12 mm above the burst center, (b) =50 mm above the burst, and (¢) =130 mm below the
burst center (45 mm above the bottom end-cap). Also shown is (d) the fuel structure of the as-received
Limerick fuel. The structures of Figs. 11c and d are similar, except that the post-LOCA fuel shows a ring
of circumferential tearing about mid-radius. This tearing may have occurred as the cladding tried to move
a small distance (0.1 mm) away from the fuel and/or because the fission-product gases affected the fuel
(see dark ring near mid-radius for the pre-LOCA fuel in Fig. 11d). At =50 mm above the burst, the
circumferential tearing is enhanced as compared to the ~130-mm location, most likely due to the larger
cladding strain. Some fuel fallout may have occurred during cutting, although this region of the fuel

column was embedded in a soft epoxy prior to cutting. Smaller fuel particles are also observed. In Fig.
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11a, a wide range of fuel particles is observed, although these particles and fuel chunks are not co-planar.
The particles and chunks are held in place by soft epoxy. Because this photograph was taken after
extensive handling of the sample, resulting in axial redistribution of particles and fuel fallout through the
burst opening, it does not represent the fuel condition near the burst center during the LOCA test or after
the quench. The most that one can glean from such a picture is that the wide range of fuel-particle sizes

would allow some fuel to fall from <50 mm above the burst center to the burst region.

Cladding Metallography

Low-magnification photographs were taken at 16 circumferential locations of the burst midplane of
the ICL#3 sample and pieced together (see Fig. 12a) to obtain an image of the metal (oxygen-stabilized
alpha and prior-beta) thickness vs. circumferential location, as compared to the cladding structure of the
unirradiated material (see Fig. 12b). The inner and outer oxide layers are not visible in Fig. 12a. Also,

the burst tips, which are very thin and heavily oxidized, are likely lost in the cutting process.

Fig. 12. Composites of the cladding cross section at the burst midplane of the in-cell LOCA sample
ICL#3 (a) and the out-of-cell LOCA sample OCL#11 (b). The tips of samples were lost during the post-
test sample handling.
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Fig. 13. Metallographic images of the ICL#3 specimen at the burst midplane. Micrograph (a) shows well-
defined alpha layers that formed at 1200°C and large prior-beta grains surrounded by oxygen-
stabilized alpha layers formed during slow cooling to 800°C; and micrographs(b) and (c) show
good definition of the outer- and inner-surface oxide layers.

High-magnification micrographs were obtained of the inner and outer cladding regions away from
the burst tips. These are shown in Figs. 13b (outer surface) and 13¢ (inner surface). The thickness of the
outer-surface oxide layer is consistent with the CP-calculated oxide thickness and with the results from
oxidation tests conducted on undeformed cladding samples [2]. The results demonstrate that the ~10-um-
thick corrosion layer is not protective with regard to steam oxidation. The inner-surface oxide layer is
wavy in appearance, which is likely due to the high hydrogen-to-steam ratio within the burst region. It is
comparable in thickness to the outer-surface layer, which suggests that the fuel-cladding bond layer is
also not protective with regard to steam oxidation. Alpha incursions into the prior-beta layer are observed
at this location, just as they were observed in the oxidation tests. These most likely formed during the
3°C/s cooling from 1200°C to 800°C. They represent regions with higher oxygen content than the
remaining prior-beta material and lower oxygen content than the alpha layer that was formed at 1200°C.

Adherent fuel was observed on the inner surface of the ICL#3 burst region, as shown in Fig. 13c.
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More detailed metallography was obtained for the ICL#2 specimen at the axial position 12 mm
above the burst midplane. Double-sided oxidation is evident at this location, with the thickness of the
inner-surface oxide layer greater than that of the outer-surface. Quantitative metallography was performed
to determine the distribution of cladding thickness and outer-surface oxide-layer thickness (inner and
outer) with respect to circumferential orientation. These results are compared to the baseline results
obtained for the nonirradiated Zry-2 sample used in the OCL#11 test. To focus on the transient oxidation
of the high-burnup LOCA sample (ICL#2), 10 pm was subtracted from the total outer-surface oxide-layer
thickness to generate the transient oxidation data. For the OCL#11 sample, the weight gain and ECR at
this location were determined to be 11.4 mg/cm® and 15.7%, respectively, while the prior-beta-layer
thickness was measured to be 398 pym. The high-burnup sample differs somewhat in that there is more
circumferential variation in the inner-surface oxide-layer thickness. The weight gain and ECR were
determined to be 10.5 mg/cm?” and 14.9%, respectively, while the prior-beta-layer thickness was measured
to be 435 um for the ICL#2 sample at this location. Although the axial locations with respect to the burst
center are slightly different (18 mm above for OCL#11 and 12 mm above for ICL#2), the values for
oxide-layer thickness, weight gain, ECR, and prior-beta-layer thickness are remarkably close. These
results indicate that close to the burst region the steam oxidation of both nonirradiated and high-burnup

Zry-2 samples is essentially the same. No significant high-burnup effects were observed.

i P 3 5 - ~ .. . . —_ : - -

Fig. 14. Fractography of ICL#3 sample at the location of 20 mm above the burst midplane.
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Fig. 15. Axial distributions of hydrogen and ECR for in-cell LOCA tests ICL#2 and ICL#3 with high-
burnup fueled BWR samples.

During the post-test sample handling, the ICL#3 sample was broken three times. Cross-sectional
SEM examinations were conducted for fractographic analysis at locations A and C of Fig. 9. Figure 14
shows typical fractographs of the oxide, the alpha phase, and the prior-beta-phase layers for the sample at
location A. The failure region appears to be nearly brittle even in the prior-beta-phase area. No significant

differences are observed between locations A and C.

Secondary Hydriding

Hydrogen is released during inner-surface oxidation within the balloon region, particularly near the
burst region. Because of the resistance to flow through the small burst opening, a relatively high fraction
of this hydrogen remains within the sample and migrates up and down the sample toward the burst neck-
and-beyond regions. For the unirradiated samples, there is little resistance to this migration, and the bare
cladding inner surface absorbs a large amount of hydrogen (see Fig. 4). Qualitatively, the same behavior
would be expected for fresh and low-burnup fuel cladding. For high-burnup fuel, the axial extent of

hydrogen that could come in contact with the cladding would be limited by the presence of the fuel, and
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the local hydrogen absorption would be limited by the fuel-cladding bond layer. This layer has been
shown to not be protective with regard to steam oxidation within the ballooned region. It is of great
interest to determine whether or not the layer is protective with respect to hydrogen diffusion into the
cladding. Hydrogen and oxygen concentrations were measured for ICL#2 and ICL#3 samples sectioned
from different axial positions below and above the burst center. The raw data give oxygen and hydrogen
concentrations. The hydrogen pickup and ECR can be determined by applying Eqgs. 1 and 2 given in
reference 3, the results of which are shown in Fig. 15. These results are compared to the peak hydrogen-
content locations and values for OCL#11. This shows a significant difference in the post-LOCA behavior
between the axial distribution of hydrogen in high-burnup cladding vs. nonirradiated cladding. The peaks
of the hydrogen pickup in the high-burnup specimens are shifted toward the burst center, compared with
the unirradiated samples. However, the maximum hydrogen pickups are nearly at the same level for both
high burnup (=3000 wppm) and unirradiated (3500 — 4000 wppm) specimens. More data are to be
provided to map out the axial distribution of hydrogen pickup in high-burnup cladding subjected to the
LOCA transient.

Effects of Hydrogen on Post-quench-ductility for Prehydrided 15x15 Zry-4

While extensive literature data are available for unirradiated Zry-4, relatively little data have been
published for high-burnup PWR samples, which have a higher hydrogen content than BWR during
normal operation in the reactor. The high-temperature steam oxidation tests and PQD tests with
prehydrided Zry-4 provide some guidance for planning high-burnup PWR LOCA integral tests. In this
program, all non-irradiated samples (as-received 15x15 Zry-4 and prehydrided 15x15 Zry-4) are oxidized
at the same heatup rates, hold times, and cooling rates (slowly cooled to 800°C and water-quenched). The
25-mm-long samples are exposed to two-sided steam oxidation prior to cooling. Also, the samples are
compressed in the same Instron machine, and the load-displacement data are analyzed by a common

method to determine ductility.

The 15x15 Zry-4 materials provided by Framatome ANP have an outer diameter of 10.75 mm and a
wall thickness of 0.76 mm. Following steam oxidation and quench, 8-mm rings are cut from the 25-mm-
long samples. Ring compression tests are performed at a cross-head displacement rate of 2 mm/min and
room temperature, 100°C, and 135°C. The load-displacement curves are analyzed by the traditional

offset-displacement method. The offset displacement, which is a measure of permanent displacement, is
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normalized to the outer diameter (10.75 mm) to give a nominal plastic hoop strain. Samples that exhibit
offset strains >3% are considered to be ductile. However, for samples with <3% offset strain, another
method is used to better determine permanent deformation and ductility. For this second method, the
sample is unloaded after the first significant load drop, indicating through-wall failure along the length of
the sample. The post-test diameter along the loading direction is measured directly and compared to the
pre-test diameter to give a direct measure of permanent strain. For these low-offset-strain samples, the
permanent diameter change in the loading direction provides a direct measure of ductility. Rings that

exhibit >1% permanent diameter change are considered to be ductile.

Oxidation and quench have been completed for as-received and prehydrided Zry-4 samples
oxidized at 1204°C. Weight gains were recorded for each sample, normalized to the oxidation surface
area, and compared to CP predictions for weight gain (in mg/cm?). For prehydrided samples hydrogen-
content analyses have been performed before and after the steam oxidation tests. This characterization is
performed to allow correlation between the ductility observed in the ring compression test and the
microstructure (e.g., prior-beta-layer thickness, extent of alpha incursions into this layer, and the

hydrogen content).

16

* As-received: about 10 wppm
o Prehydrided: 300-800 wppm

Measured WG, mglcrr?
o N
| 1
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CP-Predicted WG, mgfem?

Fig. 16. Measured vs. predicted weight gain comparison of as-received and pre-hydrided samples for
15x15 Zry-4 after steam oxidation at ~1204°C.
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Weight Gain Kinetics

The weight gain data for both as-received and prehydrided 15x15 Zry-4, oxidized at 1204°C, were
in excellent agreement with the CP-predicted weight gain values (see Fig. 16). At the longest test time,
measured values were 11.45 mg/cm’, as compared to the predicted value of 11.67 mg/cm®. Using the
measured wall thickness for each alloy, these weight-gain values convert to the “measured” ECR values

of 13.2% in our tests. No significant hydrogen influence was found on the oxidation kinetics.

Post-quench-ductility Results

The load-displacement curves from the ring compression tests were analyzed by the offset method.
Tests were stopped very shortly after the first significant load drop (=30-50%), which indicated a
through-wall crack along the length of the ring. The offset displacement prior to the first through-wall
crack is determined mathematically by unloading the specimen at the elastic loading stiffness.

Normalizing this offset displacement to the as-fabricated outer diameter gives an offset strain.

- ART 15x15 Zry-4
60 - S S, R 71100°C 15x15 Zry-4

s A ® 135°C 15x15 Zry-4
50

40

30 A

Offset Strain, %

20 A

10

CP ECR, %

Fig. 17. Offset strain vs. CP ECR for as-received 15x15 Zry-4 oxidized at 1204°C (H < 25 wppm)
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To evaluate the temperature influence on PQD, 25-mm-long samples were oxidized at 1204°C up to
13% ECR. Each sample was then cut into three 8-mm-long rings and tested at room temperature (RT),
100°C, and 135°C. It was found that the threshold of PQD shifts toward higher ECR values as the test
temperature increases. For oxidized, as-received 15x15 Zry-4 samples (H < 25 wppm), embrittlement
occurred at 8-9% ECR at RT; 11-12% ECR at 100°C; and 13-14% ECR at 135°C. Figure 17 shows the
offset strain vs. ECR for as-received 15x15 Zry-4 oxidized at 1204°C.

It is well known that the post-LOCA test samples can be very brittle due to hydriding effects (pre-
test H content and the H pickup during the steam oxidation). The pre-test hydrogen content during normal
operation in reactors for high-burnup PWR samples is quite high (400-800 wppm), compared to high-
burnup BWR samples. Thus, steam oxidation tests with prehydrided 15x15 Zry-4 were performed at
1204°C, followed by the ring compression tests, to study the effects of hydrogen on post-quench ductility.
The hydrogen charging was performed at 400°C in the flowing mixture gas 4% H,-Ar, and the range of
H-charging was carefully chosen to be close to the pre-test H content of the high-burnup PWR samples.

Hydrogen analyses were conducted with the LECO hydrogen determinator on pre- and post-test samples.

70
& 15x15 2Zry-4 at 5% ECR
60 - o 15x15 Zry-4 at 7.5% ECR
50 A
X
.g 40 -
i
B 30 4
7]
=
O 20
10 A GS#4
0 T \gl)-J B 4o
0 200 400 600 800 1000

H Content, wppm

Fig. 18 Effects of hydrogen on post-quench ductility at 135°C for prehydrided 15x15 Zry-4 oxidized at
1204°C.
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For samples oxidized at 1204°C for 5% CP-ECR, the samples remained ductile until the hydrogen
content increased > 550 wppm. For the 7.5% CP-ECR samples, the samples became brittle when the
hydrogen content reached 400 wppm. The plot in Fig. 18 shows the effects of hydrogen on PQD at 135°C
for prehydrided 15x15 Zry-4 oxidized at 1204°C.

Conclusions and Future Work

LOCA integral test results are reported for high-burnup BWR fuel specimens. These results are
compared to baseline data for nonirradiated Zry-2 cladding specimens filled with zirconia pellets and
exposed to the same tests. Four LOCA integral tests have been conducted with specimens from Limerick
BWR fuel rods at 56 GWd/MTU, among which the ICL#4 specimen was exposed to the full LOCA
sequence by heating in steam at 5°C/s to 1204°C, holding for 5 minutes at 1204°C (20% CP-ECR), slow-
cooling at 3°C/s to 800°C, and bottom-flooding to quench the cladding from 800 to 100°C. The
specimens were internally pressurized with helium to a gauge pressure of ~8.3 MPa at 300°C. During

heating in steam at 5°C/s, the internal pressure rose to <9 MPa prior to burst at ~750°C.

Nondestructive examinations included photography and profilometry for all four specimens and
post-test gamma scanning for the ICL#3 and #4 specimens. Destructive examinations were performed on
ICL#2 and #3 specimens to determine oxide layer thickness, fuel morphology, and axial profiles of
hydrogen and oxygen concentration. Based on measurements of cladding outer- and inner-surface oxide
thickness at several axial locations, it appears that the presence of =10 pum of corrosion does not inhibit or
slow down outer-surface oxidation and the presence of a fuel and fuel-cladding bond does not retard
inner-surface steam oxidation. Oxide-layer thickness and oxygen-content results indicate two-sided
oxidation in the ballooned-and-burst region of both high-burnup and nonirradiated specimens. With
regard to steam oxidation, high-burnup Zry-2 behaved very similarly to nonirradiated Zry-2 during the
LOCA transient. The major post-LOCA difference observed between high-burnup fuel cladding and
nonirradiated cladding was the degree of secondary hydriding in the balloon neck region. For
nonirradiated specimens, the hydrogen pickup was low in the burst region and very high (<3900 wppm) at
70-90 mm above and below the burst mid-plane. For high-burnup fuel cladding, the hydrogen peak
(=3000 wppm) was toward the burst mid-plane. Because of the large secondary hydriding from the
cladding inner surface, significant degradation of PQD is expected for the ICL#4 ballooned region, even

at 100-135°C.
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In the uniform burnup region (within grid spans 2-5), the high-burnup PWR cladding for the next
set of LOCA tests differs from BWR cladding in terms of corrosion layer thickness (=40 to 100 um) and
hydrogen content (=400 to 800 wppm). For test planning purposes, the separate effects of hydrogen on
diametral-compression PQD have been investigated with prehydrided, nonirradiated 15x15 Zry-4
cladding rings after oxidation at 1204°C and quench. For as-received (=10 wppm H) cladding that was
oxidized at 1204°C, the ductile-to-brittle-transition CP-ECR was 8-9% at room temperature, 11-12% at
100°C, and 13-14% at 135°C. In contrast, cladding with 400-to-800 wppm hydrogen exhibited significant
embrittlement, even after moderate oxidation at 1204°C. Samples prehydrided to 400-800 wppm and
oxidized at 1204°C to 8% CP-ECR exhibited no ductility. With anticipated secondary hydrogen uptake
from the cladding inner surface, the embrittlement ECR in the balloon region is expected to be <<17% for
high-burnup PWR specimens subjected to LOCA integral tests at 1204°C, even if the ECR is determined
by the sum of the corrosion layer and the BJ-calculated transient ECR. The baseline data from
prehydrided cladding are being used to plan the PWR hold times at 1204°C such that the embrittlement
ECR can be determined effectively in the ballooned and non-ballooned regions of the PWR specimens

from LOCA integral tests.

References

I. Y. Yan, R. V. Strain, T. S. Bray, and M. C. Billone, “High Temperature Oxidation of Irradiated
Limerick BWR Cladding,” Proceedings of the Nuclear Safety Research Conference (NSRC-2001),
Washington, DC, October 22-24, 2001, NUREG/CP-0176 (2002) 353-372.

2. Y. Yan, R. V. Strain, and M. C. Billone, “LOCA Research Results for High-Burnup BWR Fuel,”
Proc. Nuclear Safety Research Conference (NSRC-2002), Washington, DC, October 28-30, 2002,
NUREG/CP-0180 (2003) 127-155.

3. Y. Yan, T. Burtseva, and M. C. Billone, “LOCA Results for Advanced-alloy and High-burnup
Zircaloy Cladding,” Proc. Nuclear Safety Research Conference (NSRC-2003), Washington, DC,

October 25-27

4. G. Hache and H. M. Chung, “The History of LOCA Embrittlement Criteria,” Proc. 28" Water
Reactor Safety Meeting, Bethesda, MD, October 23-25, 2000, NUREG/CP-0172 (2001) 205-237

158



LOCA Testing at Halden

E. Kolstad, W. Wiesenack, V. Grismanovs
(OECD Halden Reactor Project)

The safety criteria for loss-of-coolant accidents are defined to ensure that the core will remain coolable.
Since the time of LOCA experiments in the ‘70s, which were largely conducted with fresh fuel,
changes in fuel design, the introduction of new cladding materials and in particular the move to high
burnup have generated a need to re-examine these criteria and to verify their continued validity. Hot
cell programmes concentrating on embrittlement and mechanical properties of high burnup cladding

have been initiated in some countries.

The Halden reactor is suited for integral in-pile tests on fuel behaviour under LOCA conditions. It is
intended to utilise fuel rods irradiated in commercial reactors to burnup levels >50 MWd/kg with a
thorough characterisation regarding the state of the cladding and the bonding with the fuel.
Participating organisations have supplied both PWR and BWR fuel with desired characteristics. It is
the intention to include medium burnup (40-45 MWd/kg) fuel in the test series in order to assess the

difference between medium burnup and very high burnup fuel (>60 MWd/kg.

The Halden experiments are single pin tests and will focus on effects that are different from those
studied in out-of-reactor tests. A prototypical bounding LOCA transient does not exist, and it was

recommended that the test conditions be selected to meet the following primary objectives:

- to maximise the balloon size to promote fuel relocation, and to evaluate its possible effect on

cladding temperature and oxidation

- to investigate the extent (if any) of - “secondary transient hydriding” - on the inner side of the

cladding around the burst region.

Target peak clad temperatures (PCT) for the pre-irradiated rods have been set at 800°C and 1100°C for

high and medium burnups.

The first LOCA trial runs were carried out in the Halden reactor in May 2003, using a fresh,
unpressurised PWR rod with Zr-4 cladding. The main objective was practicing, to determine how to
run the later experiments with pre-irradiated segments. PCTs in the range 800°C - 1100°C for the initial

six transients were successfully achieved.

The rig with the fuel rod was located in a high pressure flask connected to an ex-reactor high-pressure
loop incorporating a blow-down system. The cladding temperature transients can be controlled by rod
power and an annular heater surrounding the rod. A spray system at the top of the rig is used to supply
steam for the oxidation and hydriding processes. The extensive rig/rod instrumentation enables power
calibration and neutron flux monitoring, and includes a fuel centre thermocouple (first rod only), three
cladding thermocouples (at two elevations), rod pressure sensor, cladding extensometer, heater

thermocouples etc. The geometry of the test section is shown in Fig. 1.

The second trial LOCA test run was successfully carried out on 28 May this year. The test was

performed with a fresh, pressurised PWR rod and consisted of a blowdown phase, heat-up, hold at

159



target PCT and termination by reactor scram (Fig. 2). The main objective was to achieve ballooning

and cladding failure to find out how to run later experiments with pre-irradiated rodlets.

The target cladding temperature of 1050°C was achieved, and rod rupture occurred at 800°C, as
evidenced by rod pressure and elongation measurements (Fig. 3) as well as the gamma monitor on the
blowdown line to the dump tank. The hold time above 900°C was 390 s and the average temperature
increase rate between 600 and 800°C was ~7°C/s. The azimuthal temperature variation was small prior
to cladding failure, within + 2-3°C, and the tensile hoop stress ~55 MPa. The spray was applied
intermittently during the high temperature period and the test was terminated by a reactor scram. The
rod with its capsule will undergo gamma-scanning at Halden before it is shipped to Kjeller hotcells for
detailed PIE.

Pre-test calculations were carried out by VTT using the FRAPTRAN/GENFLO code. The code
predicted the maximum cladding temperature with good accuracy. Also the timing and temperature of
the rod failure was well predicted. Further calculations will be performed in preparation of the next test
(the first with a pre-irradiated PWR segment).
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Fig. 1. The geometry of the test section
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Fig. 2. Cladding, heater and loop inlet and outlet
temperatures during the LOCA test. Also fuel and heater
power is shown. Nomenclature: A = fuel power, Q =
heater power, I = inlet loop temperature, dashed 1-2 =
heater temperature
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LOCA testing at Halden,
Second in-pile test in IFA-650.2

E.Kolstad, V.GriSmanovs, W.Wiesenack
OECD Halden Reactor Project

ABSTRACT

The safety criteria for loss-of-coolant accidents (LOCA) are defined to ensure that the core will remain
coolable. Since the LOCA experiments that were performed in the 1970s largely with fresh fuel, changes
in fuel design, the introduction of new cladding materials and in particular the move to high burn up have
generated a need to re-examine these criteria and to verify their continued validity. The Halden reactor is
suitable for integral in-pile tests on fuel behaviour under LOCA conditions. It is aimed to utilize BWR
and PWR fuel rods irradiated in commercial reactors to burn up levels over 80 MWd/kg, with a thorough
characterization of the cladding and its bonding with the fuel. There is an intention to include medium
burnup fuel (40-45 MWd/kg) in the test series in order to bridge the gap between the low and high burn
up fuels.

The second trial experiment on LOCA was successfully carried out in May 2004. The test was performed
with a fresh pressurized PWR rod and consisted of a blow down phase, a heat-up, a hold at target peak
clad temperature (PCT) and termination by a reactor scram. The main objective was to achieve ballooning
and cladding failure to gain experience that will be used to run later experiments with pre-irradiated fuel
rods. The PCT of 1050 °C was achieved and rod rupture occurred at 800 °C as evidenced by rod pressure
and elongation measurements, as well as by gamma monitoring of the blow down line to the dump tank.
The rod with its capsule will undergo gamma scanning at Halden and then be shipped to Kjeller hot cells
for detailed post-irradiation examination (PIE).

Pre-test calculations were carried out by VTT using the FRAPTRAN/GENFLO code. The code predicted

the maximum cladding temperature with good accuracy. Also the timing and temperature of the rod
failure were well predicted.
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1. INTRODUCTION

The move to high burnup fuels, new fuel designs and introduction of new cladding materials have
generated a need to re-examine and verify the validity of the safety criteria for LOCA. The LOCA tests at
Halden are integral, single pin, in-pile tests using high burnup fuel rods irradiated in commercial reactors.
Participating organizations in the Halden Project have offered both PWR and BWR fuels with the desired
high burnup. It has also been proposed to include medium burnup (40-45 MWd/kg) fuel in the test series
in order to bridge the gap between the low and high burnup fuels. In future, tests with VVER-fuel are
being considered.

The test conditions are planned to meet the following primary objectives:

- to maximize the ballooning size to promote fuel relocation and to evaluate its possible effect on
cladding temperature and oxidation;

- to investigate the extent (if any) of “secondary transient hydriding” of the cladding around the burst
region.

Target peak clad temperatures for the pre-irradiated rods have been set at 800°C and 1100°C for high and
medium burnups, respectively. The lower temperature is used because high burnup fuel is not expected to
reach higher clad temperatures in a LOCA. The higher temperature is quite close to the current LOCA
temperature limit prescribed by regulations.

The first LOCA trial test runs were carried out in the Halden reactor in May 2003 using a fresh, tight-gap
and unpressurised PWR rod with Zry-4 cladding. The main objective was to gain experience in the
operation of the rig and to determine how to run the later experiments with pre-irradiated fuel rods. The
PCTs were successfully achieved and the test gave a good basis for further experiments.

This paper deals with the second trial experiment on LOCA performed with a fresh pressurized PWR rod.
The main objective was to achieve ballooning and cladding failure to gain experience on how to run
future experiments with pre-irradiated fuel rods.

2. EXPERIMENTAL

2.1 Fuel and rig

In IFA-650.2, the 50 cm long fuel rod was located in the center of a high-pressure flask connected to a
heavy water loop and a blow-down system. The latter is located outside the reactor; it has a level gauge
and is cooled and shielded. The test rod had a Zry-4 cladding with an outer diameter of 9.50 mm and a
wall thickness of 0.57 mm, and contained dished fuel pellets made of 2 wt% enriched UO,. The diametral
gap between the fuel and cladding was about 70 um. The fuel rod was pressurized with helium at 40 bar
(room temperature). A heated flow separator and the pressure flask surrounded the fuel rod. A schematic
of the rig is presented in Figure 1. Figure 2 shows the cross-section of the test channel. The heating is
provided from within the fuel rod and by the heater surrounding the fuel rod. The heater is used to
simulate the thermal boundary conditions. The cladding temperature can be controlled by adjustment of
the rod and heater powers.
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The test rig instrumentation consists of two heater thermocouples, two inlet and outlet coolant
thermocouples, a flow meter, three self-powered vanadium neutron detectors (NDs) and two fast response
cobalt NDs. The two embedded heater thermocouples are located above and below the axial mid height of
the fuel rod. The volume flow rate is measured in the external loop. The three vanadium NDs are placed
at three elevations to measure the axial power distribution. Rapid power changes are monitored using the
two cobalt NDs.

The rod instrumentation includes four cladding surface thermocouples, a cladding extensometer and a
pressure sensor. Three cladding thermocouples are circumferentially located at the middle of the upper
half of the fuel segment and one at the middle of the lower half of the fuel segment. The three
circumferentially located thermocouples enable study of the azimuthal temperature distribution of the
cladding. The cladding extensometer and the pressure sensor are located at the top of the rod.

2.2 Test execution and results

The second trial LOCA test in IFA-650.2 was carried out in May 2004. The irradiation history of the fuel
rod is shown in Figure 3. Before the LOCA test, two power ramps were performed to pre-crack the fuel
pellets. The fuel rod was irradiated for 1.5 days to accumulate fission products. The axial neutron flux
profile just before the start of the LOCA test is shown in Figure 4. It can be seen that the flux profile is
peaked at the center of the fuel rod, as desired.

The test consisted of a blow down phase, heat-up, hold at PCT and termination by a reactor scram. The
target for peak cladding temperature was 1050 °C. In order to achieve this target, the heat rates of the fuel
rod and heater were adjusted to 22 and 17 W/cm, respectively. These parameters were chosen on the basis
of earlier experience obtained during the first trial tests in [FA-650.1.

Some results from the LOCA test are graphically shown in Figure 5. The cladding thermocouples (TCC2,
TCC3 and TCC4) show that the target PCT of 1050 °C was successfully achieved. The peripheral
temperature variation was negligible, i.e. within £3 °C as measured by the upper three thermocouples.
The observed average increase rate of the cladding temperature was 7.8 °C/s up to the time of rod failure.
Failure of the fuel rod was detected at a cladding temperature of ~ 800 °C by means of cladding
elongation and rod pressure measurements (see Figure 6). The rod pressure rapidly dropped to 58 bar.
This is due to the pressure monitoring technique - the bellows expansion is stopped mechanically. In
reality the rod pressure will soon reach the rig pressure (2-3 bar) after ballooning and burst. The hoop
stress at failure was calculated to be ~ 55 MPa on the basis of measured rod pressure. The rod failure was
also detected, after some delay, by the gamma monitor mounted on the blow down line (see Figure 7).
Several activity peaks of released fission products were also observed shortly after the reactor scram and
use of the spray system.

The hold time above 900 °C was about 6.5 minutes. In order to provide conditions for oxidation of the
cladding, the water spay was intermittently applied during the hold at PCT. Spraying was started above
900 °C and the readings of the clad upper thermocouples (TCC2, TCC3 and TCC4) began to deviate from
that of thermocouple TCC1 at the lower end. The duration of each spraying pulse was about 1 second and
the intervals between the pulses varied from 20 to 40 seconds. When the spray was used, temperatures of
TCC2-4 started to decrease slightly. However, at the same time the heater power was reduced from about
18 W/cm to 7-8 W/cm in order to keep its temperature below 950 °C and hence this is the main
contributor to the decrease in cladding temperature as recorded by TCC2-4.

191



3. CODE ANALYSIS

Pre-test calculations were performed by outside laboratories using the codes FRAPTRAN/GENFLO
(VTT) and TRAC-BF1 (PSI). FRAPTRAN/GENFLO is a coupled code where FRAPTRAN calculates
fuel performance and GENFLO thermal-hydraulics. TRAC-BF1 is the LOCA code developed for BWR
simulations. The predicted thermal response was in good accordance with the measurements. The code
calculations will be continued and carried out also by other organisations after the test.

4. SUMMARY

The second LOCA trial test was successfully performed in the Halden reactor in May 2004 using a fresh
pressurized PWR rod with Zry-4 cladding. The outcome of the test is summarized below:

e Loop and rig, and rod instrumentation worked well;

e Target PCT ~1050 °C was achieved;

e Rod rupture was detected at 800 °C;

e Hoop stress at failure: ~55 MPa;

e Clad temperature increase rate up to the rod failure: 7.8 °C /s;

e Small peripheral temperature variation: +/- 3 °C;

e Hold time above 900 °C: 6.5 minutes;

e Termination by reactor scram.

Pre-test calculations were performed by outside laboratories using the codes FRAPTRAN/GENFLO
(VTT) and TRAC-BF1 (PSI). The predicted thermal response was in good agreement with the
measurements. The code calculations will be continued and carried out also by other organisations after
the test.

The following post-irradiation examination will be performed on the fuel rod:

¢ (Gamma scanning;

e Characterization of balloon (dimensions and shape);

e [Estimation of oxide thickness (axial distribution at inside/outside of ballooned region);

e Analysis of hydride content in ballooned area and its vicinity.
The latter three items will be carried out at Kjeller hot cells, while the gamma scanning will be performed
at Halden.

A meeting to discuss the outcome of the second test will be arranged before proceeding with testing of the
pre-irradiated rods. The test scheme for the pre-irradiated rods will be decided on the basis of the
inspection and PIE results as well as further code calculations.

REFERENCES

1. V.Lestinen, E.Kolstad, W.Wiesenack: “LOCA ftesting at Halden, Trial runs in IFA-650",
Proceedings of NSRC-2003, Washington DC, October 2003.
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RESULTS FROM STUDIES ON HIGH BURN-UP FUEL BEHAVIOR
UNDER LOCA CONDITIONS

Fumihisa NAGASE and Toyoshi FUKETA
Department of Reactor Safety Research
Japan Atomic Energy Research Institute

SUMMARY

To promote a better understanding of high burnup fuel behavior under loss-of-coolant accidents (LOCAs),
a research program is being conducted at the Japan Atomic Energy Research Institute (JAERI). The
program consists of integral thermal shock test and other separate tests for oxidation rate and mechanical
property of fuel claddings.

1. Integral thermal shock test

In the test, short rods are heated up, burst, oxidized in steam and quenched by flooding water in order to
evaluate fracture-bearing capability of oxidized fuel claddings under the simulated LOCA condition.

The Japanese LOCA criteria for cladding embrittlement are based on results from the integral thermal
shock tests. Tests were performed with non-irradiated cladding tubes, which were mechanically thinned
and pre-hydrided to evaluate the separate effects. Claddings fractured into two pieces during the quench,
depending primarily on the oxidation. The threshold of the fracture in terms of the oxidation decreases

with the higher concentration of initially-absorbed hydrogen and with the larger load in axial constraint.

Two PWR fuel rods, irradiated to 39 and 44GWd/t (rod average) at Takahama unit-3 reactor, are subjected
subsequently to the tests. The cladding material is low-Sn (1.3%Sn) Zircaloy-4 and thickness of oxide
layer formed in the reactor ranged 18 to 25 um.  Before the tests, fuel pellets were removed from
190mm-long segments, and alumina dummy pellets were loaded in the defueled claddings. Zircaloy
end-plugs were welded at the both ends of the claddings and the fabricated test rods were pressurized to
about SMPa with argon gas. Six test rods were quenched after rupture at about 800 deg C and
isothermal oxidation at 1030 to 1192 deg C. Two claddings which were oxidized to about 26 to
30%ECR* fractured during quench. The fracture of the irradiated claddings agrees with the failure
criteria for non-irradiated claddings containing similar hydrogen concentrations. Four claddings
oxidized to about 16 and 25%ECR survived the quench. These indicate that fracture/no-fracture
threshold is not reduced so significantly by irradiation to the examined burnup level.

2. Mechanical tests of oxidized and quenched cladding

Besides the integral thermal shock tests, mechanical tests are performed to develop methodology for

197



predicting cladding fracture on quenching as well as to examine mechanism of cladding embrittlement.
Ring-tensile and ring-compression tests were performed on non-irradiated Zircaloy-4 claddings which
were pre-hydrided to 400 and 800 ppm, oxidized at 1000 to 1250 deg C, and finally quenched.

—  Ductility reduction observed in the ring-tensile tests was not remarkable for the oxidation between
10 and 20%. Uniform tensile stress in the circumferential direction is applied to the cladding in
the ring tensile test, and this stress state is quite different from that is applied during quench.
This suggests that test methods should be carefully selected in order to estimate cladding
embrittlement under LOCA condition.

—  The ring-compression tests detected the sudden ductility drop above 15% oxidation for claddings
which were oxidized at 1200 deg C without hydriding. The significant ductility reduction
occurred at lower oxidation level in the pre-hydride claddings (400 and 800 ppm). This indicates
that pre-hydriding enhances cladding embrittlement of oxidized cladding and agrees with the
results of the integral thermal shock tests.

— It has been generally considered that slow cooling after high-temperature oxidation enhances
oxygen diffusion from oxide layer into metallic prior-p phase, and consequently microstructure
and ductility of metallic prior-p phase changes depending on the cooling rate. To confirm that,
ring compression tests were performed with claddings which were cooled at different rates after
oxidation at 1100 and 1200 deg C. It is shown that the influence of slow cooling differs
depending on oxidation temperature and oxidation amount. The influence becomes greater in the
cladding oxidized at 1200 deg C and at the lower oxidation level.

Acknowledgment
The integral thermal shock test with irradiated PWR fuel claddings has been performed as a corporative

research program between JAERI and Japanese PWR utilities.

* ECR is estimated by the Baker-Just equation, taking account of double sided oxidation and wall
thinning by ballooning. The ‘initial’ cladding thickness used in the estimation is metallic thickness

after corrosion during the reactor operation.
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Results from Studies on High Burn-up Fuel Behavior
under LOCA Conditions

Fumihisa NAGASE and Toyoshi FUKETA

Department of Reactor Safety Research
Japan Atomic Energy Research Institute

Tokai-mura, Ibaraki-ken, 319-1195, Japan

Abstract

The Japanese regulatory criterion for a loss-of-coolant-accident (LOCA) is based on a
threshold of fuel rod fracture during quenching, which was experimentally determined
under simulated LOCA conditions. In order to evaluate the fracture threshold of high
burn-up fuel rods, JAERI performs integral thermal shock tests simulating LOCA
conditions. The tests have been performed with pre-hydrided, unirradiated claddings and
high burn-up fuel claddings irradiated to 39 and 44 GWd/t at a PWR. It was shown that
fracture/no-fracture threshold primarily depends on the oxidation amount and that the
threshold decreases with increases in hydrogen concentration and axial restraint during
the quench. It was also shown that fracture conditions of the high burn-up fuel claddings
are consistent with the fracture threshold derived from unirradiated claddings with similar
hydrogen concentrations.

1. Introduction

Milestones for the Japanese LOCA criteria and key studies are shown in Fig. 1. The LOCA criterion on
fuel safety, 15% cladding oxidation (ECR"), was established in 1975 and based on the concept of zero
ductility of oxidized cladding, which was determined by ring compression tests, as in the U.S. After their
establishment, it was found that oxidation of the cladding after rod-burst is accompanied by significant
hydrogen absorption [1]. Since the absorbed hydrogen is generated by oxidation of cladding inner surface
with steam that invaded from the burst opening, this phenomenon is called “Inner surface oxidation”
including the hydrogen absorption. Ring compression tests were performed on specimens cut from the
cladding that experienced rod-burst and subsequent oxidation to examine cladding embrittlement due to
oxidation and hydrogen absorption. As a result, ductility of the ring specimens fell down to the
zero-ductility range when the cladding was oxidized to several percent ECR, indicating that the significant
hydrogen absorption caused by the inner surface oxidation enhances cladding embrittlement [2].
Accordingly, JAERI conducted "integral thermal shock tests" to evaluate thermal shock resistance of
oxidized cladding under simulated LOCA conditions [3]. In the test, a short test rod was heated up, burst,
oxidized in steam and quenched with flooding water. Obvious effect of the hydrogen absorption was seen
on fracture of the cladding during the quench. Therefore, it is necessary to simulate LOCA conditions in
order to evaluate fuel safety. At the same time, the results confirmed that the criterion of 15% ECR still

" ECR: Equivalent Cladding Reacted (Proportion of oxide layer thickness assuming that all of absorbed oxygen forms
stoichiometric ZrO,)
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had safety margin, and the LOCA criteria were revised in 1981 referring the results of the integral thermal
shock tests. Namely, the Japanese LOCA criterion for cladding oxidation is based on a threshold of fuel
rod fracture during the quench, which was experimentally determined under simulated LOCA conditions.
The basic concept is that coolabe geometry of the reactor core is ensured if fuel rods survive the quench
after a high-temperature oxidation phase.

The LOCA criteria are based mainly on experiments conducted with fresh Zircaloy fuel claddings.
Although burn-up effect was generally taken into account on the establishment, the level of fuel burn-up
was rather low at that time. The fuel burn-up would be extended further. Corrosion and hydrogen
absorption during the reactor operation would become more significant in the fuel cladding, resulting in
degradation of the cladding mechanical property. The high burn-up cladding would be subject to fracture
due to thermal shock during reflooding. Therefore, it is one of the most important issues to evaluate
fracture conditions of the high burn-up fuel rod, though peak clad temperature becomes lower with the
burn-up extension.

Under this circumstance, a systematic research program is being conducted at the Japan Atomic Energy
Research Institute (JAERI) for evaluating high burn-up fuel behavior under LOCA conditions. The
program consists of integral tests and separate effect tests such as oxidation tests and mechanical tests.
Both non-irradiated and irradiated claddings are used in the study. Non-irradiated claddings are artificially
oxidized or hydrided to simulate corrosion or hydrogen absorption during the reactor operation. Hydrogen
effect has been especially examined in detail, because hydrogen absorption has generally a great impact on
cladding mechanical property. The present paper summarizes results from the integral thermal shock tests
with pre-hydrided, unirradiated claddings and high burn-up fuel claddings irradiated to 39 and 44 GWd/t
ata PWR.

> Establishment of criteria ('75) > Revision of criteria* ('81)
(Limits for cladding oxidation, 1200°C and 15%)
Burnup extension

® Oxidation test of burst cladding
L L

Finding of “Inner surface oxidation”

accompanied by significant o Iptegral thermal shock test
eRin hydrogen absorption ('99-)

ormoression - Pre-hydrided
test gf ® Ring compression test of burst and » High burnup cladding

s oxidized cladding * Realistic restraint condition
oxidized
cladding . @

I Cladding embrlttlerr]ent enhanced by
Zero-ductility hydrogen absorption

criteria elIntegral thermal shock test

* Fresh cladding
* Ruptured, oxidized and quenched
» Considering axial restraint during

quench (Fully restrained)

Confirmed safety margin

* Consequently, limits for cladding oxidation remained unchanged.
Fig. 1 Milestones for the Japanese LOCA criteria and key studies
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2. Thermal shock resistance of wunirradiated and irradiated

claddings L] «— Welded
2.1 Experimental procedure
=

Figure 1 shows a schematic of a test rod. Length of the cladding is 5 E oh
600 mm for unirradiated cladding and 190 mm for irradiated cladding. 10’) % &
Alumina pellets are inserted into the cladding to simulate heat capacity S of |7 e
of UO, pellets. After welding the Zircaloy end caps to the claddings, the B8
rods were pressurized to about 5 MPa with Ar gas at room temperature. O~ |
Figure 2 shows a schematic of the test apparatus. The main components
are an Instron-type tensile testing machine, a quartz reaction tube, an

infrared image furnace with four tungsten-halogen lamps, a steam - | +— Welded
generator, and a water supply system for flooding. The tensile testing
machine is the main frame of the test apparatus. The other components
are equipped on the testing machine. The test rod was mounted
vertically in the center of the reaction tube for the test and the bottom
end is fixed to the testing machine. By fixing the top end of the Load cell
test rod, it can be axially restrained and the load change is e %
measured.

Figure 3 shows an example of temperature history during the
test. The rod is heated up at a rate of 10 K/s. Steam introduction
is started prior to the heat-up, and the steam flow is maintained at
a supply rate of about 36mg/s during the oxidation. The steam
supply rate is sufficiently high to oxidize cladding tubes without
steam starvation. With both an increase in rod internal
pressure and a decrease in cladding strength, the cladding tube

Fig. 1 Test rod

Restraint load
control system

.— Grabbing device

Steam

outlet
Quartz
tube

Infrared

balloons and ruptures at temperatures ranging 1050 to 1100 K
during the heat up. The rod is isothermally oxidized after the

furnace

. . . Equipped on
rupture. Isothermal oxidation temperature and time ranges from [tensne testing}
1430 to 1470 K and from 120 to 500s. Four Pt-Pt/13%Rh machine

thermocouples are spot-welded on the outer surface of the
cladding, as shown in Fig. 2, to control and measure the cladding Stez% ot
temperature. The rod is cooled in the steam flow to about 970 K
and is finally quenched with water flooding from the bottom. The
average cooling rate is about 20 K/s from the oxidation
temperature to 1170 K and about 5 K/s from 1170 to 970 K.
Raising rate of water surface during quenching is 30 to 40 mm/s.
The test rod is quenched under restrained conditions in the present study. Under the restrained condition,
both ends of the test rod are fixed to the tensile testing machine just before the cooling stage initiates. The
tensile load history during the cooling and quenching phase of a test is indicated in Fig. 4. The tensile load
increases as the rod is cooled and quenched. The tensile load was controlled and limited to three different
levels of 390+50, 540+50, and 735+50N to realize intermediate constraint conditions, in addition to the
fully restrained condition, for unirradiated claddings. The maximum load was limited to about 540 N (30
to 35 MPa for initial metal cross section) for irradiated claddings. The actual restraining conditions can be
altered by fuel bundle design, accident sequence, peak clad temperature, the extent of cladding
deformation and oxidation, etc. Then, maximum restraint load for irradiated claddings was conservatively
determined referring to previous reports that estimated restrained conditions in bundle geometry [4-6].
Equivalent Cladding Reacted (ECR) is used as an indication of oxidation amount. The Baker-Just

Flooding water inlet

Fig. 2 Test apparatus
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equation for the oxidation rate [7] was used to estimate the amount of oxygen absorbed during oxidation
from oxidation temperature and time. Decrease of cladding thickness due to ballooning is taken into
account in calculating ECR. Namely, ECR is calculated for reduced cladding thickness after ballooning.

2000
(3) Isothermal oxidation 1200 Full raint
< ——— (4) Furnace off 1 = 900} u ycor;ssgim
= 1500 ¢ (5) Axial restraint = 7
o initiated T 600 |- 540N
5 {1 8 390N
5 300 |
« 1000
2 1 |
. Quench 50 100 150
g (1)Heat up  (6) Reflooding start Time (s)
- 500 [ /(Temperature) 1
Fig. 4 Tensile load changes under
restraint conditions

0 1 L 1 1 L
0 100 200 300 400 500 600

Time (s)
Fig. 3 Temperature history during test

2.2 Hydride effect on fracture condition

Figures 5 shows fracture maps for two restraint load conditions (390 and 540 N) relevant to the ECR
value and the initial hydrogen concentration. These figures show that the fracture threshold decreases with
an increase in hydrogen concentration for the lower concentration range, while the fracture boundary is
nearly independent of hydrogen concentration for the higher concentration range, which suggests
embrittlement saturation in oxidized cladding despite an increase in the hydrogen concentration. Figure 6
shows fracture maps relevant to ECR values and axial restrained loads for the hydrogen concentration
ranging from 350 to 800 ppm. “Restraint load” used in the abscissas are those at fracture for the fractured
cladding. These are the maximum restrained load under intermediate restraint conditions and the
maximum generated load under the full restraint condition for the no-fracture cladding. The figure clearly
shows that the fracture threshold decreases with an increase in the restrained load. Consequently, the

40 o ®
L ‘\O ® ° (a).390 N i j (b) 540 N
30 % O \\\\b [ ] a i £~ °
< [ e (] [ o TS @ o °
< s O-& NONCX®) L o~y 9 o __
5 20 o OOOO 5
W0 | @ Fracture -
O No-Fracture
0 1 L 1 1 L L L L L L L L 1 1 L L L
0 500 1000 1500 O 500 1000 1500

Hydrogen concentration (ppm)

Hydrogen concentration (ppm)

Fig. 5 Fracture maps for two restraint load conditions (390 and 540 N) relevant to
the ECR value and the initial hydrogen concentration
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50

fracture threshold is higher than 20% ECR for the E Fracture/no-fracture boundary is
whole hydrogen concentration range under the 40 | 58% under non-restrained condition
restrained conditions of 390 and 535 N. The ECR =~ °
value of 20% is sufficiently higher than the limit in &S 30 k g
the Japanese ECCS acceptance criterion (15% ¢ -8 U% ] 350 - 800 ppm
ECR). S 20 %
N d
10l é % o

2.3 Fracture condition of high burnup fuel (Fully restrained)

l dd. 0 1 1 1 1

cladaing 0 500 1000 1500 2000 2500

Two PWR fuel rods, irradiated to 39 and :

44GWd/t (rod average) at Takahama unit-3 reactor, Restraint load (N)
Kansai Electric Power Co., Inc. are currently Fig. 6 Fracture maps relevant to ECR
subjected to the thermal shock tests. The cladding values and axial restraint load

material is Zircaloy-4 containing 1.3 wt% of Sn.

The initial outer diameter and thickness were 9.50

and 0.57/0.64 mm (Sample No. Ax-x/Bx-x), respectively. Segments of 190 mm-long were cut from the
rods and fuel pellets were mechanically removed. Accordingly, only the defueled claddings were subjected
to the tests. Six tests have been conducted and information of the cladding tubes used is summarized in
Table 1. Thickness of oxide layer formed during the reactor operation ranged 15 to 25 pm. Hydrogen
concentration is estimated to range from 120 to 210 ppm assuming that 15% of hydrogen generated by
corrosion was absorbed.

Table 1 Summary of integral thermal shock tests with irradiated PWR fuel claddings

Test No. 1 2 3 4 5 6
Sample No. A 3-1 Al-2 B L-3 B 1-3 B1-5 BL-7
Burn-up (GWd/t) 43.9 43.9 39.1 40.9 40.9 39.1
Estimated initial Oxide (um) " 20 25 18 18 15 15
Estimated initial hydrogen (ppm) 170 210 140 140 120 120
Rupture temperature (K) 1073 1024 1093 1058 1028 1077
Rupture strain (%) 14.1 27.7 24.3 tm."” tm."” tm.”
Oxidation temperature (K) 1449 1451 1427 1445 1303 1450
Oxidation time (s) 486 120 200 363 2195 543
ECR (%) 29.3 16.6 160 | 21.0° | 2207 | 2647
Fractured / Survived F S S S S F
Load at fracture (N) 498 - - - -—- 385
Maximum restraint load (N) - 529 529 529 529 -

*1. Estimated from data of sibling rod [8], *2. tm.: to be measured, *3.Assumed 20% reduction of cladding
thickness by ballooning
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Fig. 7 Post-test appearance of high burn-up [ ©)
PWR cladding oxidized to about 29% ECR 10 40N
and fractured during quench : o
o A A A A L A A A A '] A
Two cladding, oxidized to about 26 to 29% ECR, 0 500 1000 1500
fractured during the quench. The post-test appearance Initial hydrogen concentration (ppm)

?s.s.hown in Fig. 7. It is con;idered that cracking Fig. 8 Fracture maps for irradiated
1r}1t1ated at . the rup ture. opening and propagated and unirradiated claddings, relevant to
01rc-ulmferent1al!y. There 1S no dlfference. in fracture ECR values and initial hydrogen
position and direction of crack propagation between concentration

the irradiated and non-irradiated claddings.

Fracture/no-fracture conditions of irradiated claddings

are compared with those of unirradiated claddings in Fig. 8, relevant to the ECR value and the initial
hydrogen concentration. Since the failure boundary of the non-irradiated claddings lies at about 28% ECR
at about 200 ppm, the fracture of the irradiated claddings is consistent with the fracture criteria for
non-irradiated claddings with a similar hydrogen concentration. Therefore, fracture boundary appears not
to be reduced so significantly by irradiation to the examined burnup level. Four claddings oxidized to
about 16 to 22% ECR, respectively, survived the quench. The fracture boundary is between 22 and 26%
ECR for these high burn-up fuel claddings, and it is higher than the limit in the Japanese ECCS acceptance
criterion (15% ECR).

Axial profiles of hydrogen concentration in a fractured irradiation cladding (A3-1) and pre-hydrided,
unirradiated claddings are shown in Fig. 9. It is
known that significant amount of hydrogen is
absorbed locally apart from the rupture position
[2]. Steam invaded from the rupture opening
oxides the inner surface of the cladding, and
generated and stagnated hydrogen is absorbed
positions where hydrogen partial pressure is
very high. The figure indicates that the peak
position of the secondary hydriding may be
closer to the rupture position in the irradiated
cladding. The cladding always fractures at the
rupture position under the restrained condition.
If the peak position is generally close to the
rupture position, hydrogen concentration at the
fracture position is higher and it may affect the
fracture condition. Therefore, the secondary
hydriding in high burnup fuel claddings should Fig. 9 Axial profiles of hydrogen
be carefully investigated. concentration in unirradiated and irradiated

claddings after integral thermal shock tests

3000
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2500 [ 1469K 27%

1361K 28% 1449K 29%ECR
2000 \ ~ '

Irradiated

1500

1000 /'

500 b 1368K 23%ECR
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c'-80 -40 0 40 80

Distance from rupture position (mm)
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2.4 Future plan

The JAERI plans to perform LOCA-related studies with PWR and BWR claddings (MDA', NDA?,
ZIRLO™, M5, and Zircaloy-2) highly irradiated to about 70GWd/t. The influence of further burnup
extension and new alloys will be investigated in detail.

3.  Summary

In order to evaluate the fracture threshold of high burn-up fuel, JAERI performs integral thermal shock
tests, simulating LOCA conditions. The tests were performed with pre-hydrided, unirradiated claddings
and high burn-up fuel claddings irradiated to 39 and 44 GWd/t at a PWR. Two of irradiated claddings,
oxidized at about 1450 K up to 26 and 29% ECR, fractured during quenching. The conditions are
consistent with the fracture threshold derived from unirradiated claddings with a similar hydrogen
concentration. Claddings, oxidized to about 22% ECR, survived the quench. This indicates that failure
boundary is not reduced significantly by PWR irradiation in the examined burnup level. The transient
secondary hydriding is localized more towards the rupture opening in the irradiated cladding than in
unirradiated claddings. The influence of further burnup extension and application of new cladding
materials on fuel behavior under LOCA conditions will be investigated.
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Realistic Assessment of Fuel Rod Behavior Under Large-Break LOCA Conditions

M. E. Nissley, C. Frepoli, K. Ohkawa
Westinghouse Electric Company

Fuel clad swelling and rupture can occur during a loss of coolant accident (LOCA), depending on the core
heatup transient and the pressure differential across the cladding. Clad rupture will lead to release of
fission products from the fuel, and double-sided metal-water reaction (oxidation) within the ballooned
region. In order to simplify the radiological dose calculations, it is typically assumed that 100% of the
rods in the core fail. However, it is instructive to consider what a realistic failure fraction might be under
more representative conditions. The objective of this study will be to assess the extent of failure and the
consequences for the cladding oxidation for the large break LOCA scenario, with and without detailed
treatment of uncertainties.

The first assessment will use a deterministic calculation of a large break LOCA under normal operating
(baseload) conditions, using the realistic computer program WCOBRA/TRAC. In order to ensure some
cladding rupture, a full train of ECCS will be assumed lost (worst single failure) and bounding rod power
conditions in the lead fuel assembly will be used. Estimates of the extent of rupture throughout the core
will be made by considering peak cladding temperature dependence on rod power, rupture temperature as
a function of cladding pressure differential, burnup effects on rod internal pressure, and a core-wide
census of rod power and burnup. A comparison of the maximum local oxidation within and away from
the ballooned region will also be made.

The second assessment will use the results from a best-estimate plus uncertainties analysis of a large
break LOCA, performed using methods consistent with US design basis LOCA regulatory requirements.
Uncertainties in thermal-hydraulic models, plant operating conditions, and fuel rod models are accounted
for in this method by simultaneously sampling from the uncertainty distributions of each parameter for
each transient case. The plant operating conditions considered in the uncertainty analysis include
transient power distributions, such that more severe axial shapes and higher linear heat rates are
considered than in the first assessment. The extent of rupture within the uncertainty cases will be
examined, and conclusions drawn relative to the threshold for rupture. Maximum local oxidation within
and away from the ballooned region will be reviewed for the most limiting cases, and those results will be
assessed for their dependence on the related fuel rod uncertainty parameters (burst strain, degree of fuel
relocation, etc.).

The information presented in these assessments should be interpreted as illustrative and representative.
Extent of rupture and degree of oxidation are highly dependent on the transient conditions, which are
highly dependent on plant-specific parameters such as core power, nuclear peaking factors, ECCS
capacity and other factors.
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Realistic Assessment of Fuel Rod Behavior Under Large-Break LOCA Conditions

M. E. Nissley, C. Frepoli, K. Ohkawa
Westinghouse Electric Company

Abstract

Ballooning and rupture of nuclear fuel rod cladding during a postulated loss of coolant
accident is explicitly accounted for in most Evaluation Models used to perform design
basis analyses. Of particular interest are the combined effects of the resulting thinning of
the cladding and the double-sided metal-water reaction on the peak cladding temperature
and maximum local oxidation. Cladding rupture and oxidation predictions for a large
break LOCA scenario are examined in order to gain insights into typical PWR transient
and design basis analysis results. The first assessment investigates the extent of core-
wide fuel cladding rupture in a deterministic analysis of a transient initiated from normal
operating conditions. The peak cladding temperature, and the maximum local oxidation
within and away from the rupture location, are then compared with the results from a
design basis analysis performed for the same plant. Dramatic reductions are seen when
more realistic, yet conservative, assumptions are used. The second assessment examines
the extent of local oxidation within and away from the rupture location for the most
limiting cases from a design basis analysis performed using a non-parametric order
statistics method. The results are also reviewed to examine whether the limiting PCT
elevation and the rupture elevation were coincidental. For this analysis the maximum
local oxidation is generally at the rupture, while the PCT occurs away from the rupture.

Introduction

Ballooning and rupture of nuclear fuel rod cladding can occur during a loss of coolant accident (LOCA),
depending on the core heatup transient and the pressure differential across the cladding. Cladding rupture
will lead to release of fission products from the fuel, and double-sided metal-water reaction (oxidation)
within the ballooned region. In order to simplify the radiological dose calculations, it is typically
assumed that 100% of the rods in the core fail. However, it is instructive to consider what a realistic
failure fraction might be under more representative conditions. The objective of this study will be to
assess the extent of failure and the effect of rupture on the peak cladding temperature (PCT) and
maximum local oxidation for the large break LOCA scenario, with and without detailed treatment of
uncertainties.

Extent of Fuel Cladding Rupture

The first assessment used a deterministic calculation of a large break LOCA under normal operating
(baseload) conditions, with the goal of estimating the extent of fuel cladding rupture throughout the core.
The system response was analyzed using the realistic system thermal-hydraulic computer program
WCOBRA/TRAC [1]. WCOBRA/TRAC is an improved version of the COBRA/TRAC code, originally
developed at Pacific Northwest Laboratory [2] by combining the COBRA-TF code [3] and the TRAC-
PD2 code [4].

The extent of fuel cladding rupture during a large break LOCA is dependent on a number of factors.
Foremost is the number of rods in the core that achieve high cladding temperatures during the transient.
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This is a function of the rod power census and the ECCS design capability. Another important factor is
the cladding pressure differential for the various rods, which is affected by the initial backfill pressure, the
fission gas generation with burnup, the effects of integral poisons, and the break size. A larger number of
fuel rods experiencing rupture would typically be expected for large breaks than small breaks, due to the
lower system pressure at the time of elevated cladding temperatures.

This study considered a double-ended cold leg break in a 4-loop Westinghouse plant rated at 3600 MWt,
operating with 17x17 VANTAGE-5+ fuel. In order to ensure some cladding rupture, a full train of ECCS
was assumed to be lost (worst single failure) and bounding baseload rod power conditions in the lead fuel
assembly were used. Table 1 compares the peaking factors assumed in this study with the Technical
Specification limits, and the actual maximum values predicted to occur throughout the cycle. The
assumed peaking factors are on the order of 15% higher than the maximum expected values. Figure 1
shows the axial power shape assumed for this study.

Estimates of the extent of rupture throughout the core were made by considering peak cladding
temperature dependence on rod power, rupture temperature as a function of cladding pressure differential,
burnup effects on rod internal pressure, and a core-wide census of rod power and burnup. Figure 2
shows the peak cladding temperature response predicted by WCOBRA/TRAC for the hot assembly
average rod (relative power of 1.66), a core balance rod (relative power of 1.11), and a low power rod
(relative power of 0.62). The cladding temperature excursion during reflood (~ 100 seconds) is seen to
increase approximately linearly with rod power. Figure 3 shows the rod internal pressure response for the
hot assembly average rod, and indicates that cladding rupture occurs for high powered rods during the
refill period of this transient scenario. Figure 4 illustrates the general trend for the cladding rupture
temperature to decrease as the differential pressure across the cladding increases. The data supporting
Figure 4 are proprietary for the Westinghouse ZIRLO™ cladding, but the trend is similar to those
previously published for Zircaloy cladding [5]. The cladding rupture data supporting this trend, combined
with fuel performance code predictions of rod internal pressure throughout life, indicate that a threshold
of about 820°C (~ 1500°F) can be established as the minimum expected rupture temperature for fresh fuel
in its first cycle of irradiation. Similarly, a threshold of about 760°C (~ 1400°F) can be established as the
minimum expected rupture temperature for once- or twice-burned fuel.

A review of Figure 2 indicates that with these threshold cladding rupture temperatures, fresh fuel will not
rupture in this scenario unless the rod relative power exceeds about 1.45 (corresponding to 820°C). Fuel
in its second or third cycle of irradiation will not rupture unless the rod relative power exceeds about 1.35
(corresponding to 760°C). Figure 5 shows the predicted assembly-wise power distribution (quarter-core
symmetry) at the burnup at which this core has the maximum number of high power assemblies. This
loading pattern is representative of reload designs in use today. Only 12 fresh assemblies exceed a
relative power of 1.40 at this limiting burnup. None of the previously irradiated assemblies exceeds a
relative power of 1.30. With this information it can be estimated that less than 10% of the core (12 of 193
assemblies) would achieve sufficient cladding temperatures to have cladding rupture.

It is also instructive to compare the results from this deterministic assessment of a conservative baseload
power distribution (peaking factors ~ 15% above actual cycle maximums) with the design basis results.
The design basis results in this study used an NRC-approved uncertainty methodology [1] that is closely
patterned after the Code Scaling, Applicability and Uncertainty (CSAU) methodology developed under
the guidance of the NRC [6]. Uncertainties in thermal-hydraulic models, plant operating conditions, and
fuel rod models are accounted for in this method using a combination of response surface equations and
Monte Carlo sampling techniques [7]. Table 2 compares the peak cladding temperature, and the
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equivalent cladding reacted at, and away from, the cladding rupture location. (Equivalent cladding
reacted, or ECR, is the same as maximum local oxidation.) The design basis results include the effect of
uncertainties in the physical models and the plant operating conditions. They support the Technical
Specification peaking factors shown in Table 1, which are much higher than the actual predicted
maximums. They also support highly skewed power distributions which would not occur under normal
baseload operation, but could occur under extreme load following situations. Not only is the peak
cladding temperature reduced substantially with the conservative baseload power distribution, but the
equivalent cladding reacted is reduced to negligible amounts.

Review of Statistical Analysis Results

The second assessment used the results from a best-estimate plus uncertainties analysis of a large break
LOCA, performed using a non-parametric order statistics method that was recently approved by the NRC
[8, 9]. Uncertainties in thermal-hydraulic models, plant operating conditions, and fuel rod models are
accounted for in this method by simultaneously sampling from the uncertainty distributions of each
parameter for each transient case. The plant operating conditions considered in the uncertainty analysis
include transient power distributions, such that more severe axial shapes and higher linear heat rates are
considered than in the deterministic case used for the first assessment. The plant used in this study was a
4-loop Westinghouse plant rated at 3216 MWt, operating with 15x15 VANTAGE+ fuel. This study used
a sampling of 59 separate large break LOCA transients, each with its own combination of randomly
sampled uncertainty parameters. According to the statistical theory, the most limiting of the 59 cases will
bound at least 95 percent of the actual PCT distribution, with 95 percent confidence.

The goal of this assessment was to examine the extent of local oxidation within and away from the
ballooned region for the most limiting cases, and assess to what degree the limiting PCT elevation and the
cladding rupture elevation were coincidental. Table 3 shows the results for all of the cases above 925°C
(1700°F). Below this threshold, oxidation levels are very low. The most limiting PCT case (1037°C) is
seen to also correspond to the maximum local oxidation case (2.1%). The maximum local oxidation
occurred at the rupture elevation in this case, but the PCT did not.

Figure 6 shows the PCT and rod internal pressure response for the hot assembly average rod for the
limiting PCT case (Case 1). These results were calculated by WCOBRA/TRAC, and do not include the
effect of hot rod model uncertainties. Figure 7 shows the PCT and local oxidation throughout the
transient as a function of elevation along the hot rod. These results were calculated by HOTSPOT, which
is the fuel rod conduction code used by Westinghouse to account for hot rod model uncertainties. The
cladding rupture elevation differs only slightly from the limiting PCT elevation. Their close proximity is
due to the relatively short time duration at high temperatures after rupture. The oxidation “spike” at the
rupture elevation is due to the thinning of the cladding (40% burst strain), and the double-sided metal-
water reaction.

Case 3 in Table 3 is the only one that has the limiting ECR away from the rupture elevation. Figure 8
shows the PCT and rod internal pressure response for the hot assembly average rod for this case. Figure 9
shows the PCT and local oxidation throughout the transient as a function of elevation along the hot rod.
The approximate 100°C increase in PCT between Figures 8 and 9 is due primarily to the extremely low
reflood heat transfer multiplier sampled for this case. In contrast to Figure 7, the rupture elevation is seen
to be much lower than the limiting PCT elevation. This is due to the relatively longer time duration at
high temperatures after cladding rupture. The dips in the oxidation profile high in the core are due to grid
heat transfer enhancement reducing the local cladding temperature.
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Summary and Conclusions
These assessments of cladding fuel rupture and oxidation predictions lead to the following observations:

o The extent of core-wide fuel cladding rupture which would actually be expected in a large
break LOCA is far less than the 100% assumed by many US licensees in their radiological
dose calculations. Even assuming the worst single failure and a conservative normal
operating power shape with linear heat rates 15% higher than predicted, less than 10% of the
rods in the core were estimated to have cladding failures.

e Significant margins exist between realistic estimates of PCT and ECR, and those resulting
from design basis analyses. Even assuming the worst single failure and a conservative
normal operating power shape with linear heat rates 15% higher than predicted, the PCT was
reduced by ~ 200°C, and the ECR was reduced to negligible amounts compared to the design
basis analysis results.

o The rupture location tends to have the maximum ECR, due to thinning of the cladding and
double-sided oxidation.

e PCT frequently occurs away from the rupture location, for plants that have a LOCA transient
response similar to Figures 6 and 8 (e.g., 4-loop plants with large dry containment designs).

The information presented in these large break LOCA assessments should be interpreted as illustrative
and representative. Extent of rupture and degree of oxidation are highly dependent on the transient
conditions, which are highly dependent on plant-specific parameters such as core power, nuclear peaking
factors, ECCS capacity and other factors.
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Table 1. Nuclear Peaking Factors Considered in Deterministic Assessment of Extent of Rupture

Nuclear Peaking Technical Specification Actual Maximum This Study
Factor' Limit At Limiting Burnup
FQ 2.60 1.80 2.10
FdH 1.70 1.50 1.73
Pua N.A. 1.42 1.66

FQ = Total Peaking Factor = (Maximum Linear Heat Rate) / (Core Average Linear Heat Rate)

FdH = Enthalpy Rise Peaking Factor = (Maximum Rod Power) / (Average Rod Power)

Pya = Hot Assembly Relative Power = (Hot Assembly Power) / (Average Assembly Power)

Table 2. Conservative Baseload Operation Results Compared with Design Basis Results

Peak Cladding Equivalent Cladding Equivalent Cladding
Temperature Reacted (Burst) Reacted (Non-Burst)
Design Basis 1140°C 12% 6%
Conservative Baseload 944°C 1.4% 0.8%
Conditions
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Figure 1. Axial Power Shape Used in Deterministic Assessment of Extent of Rupture
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Figure 3. Hot Assembly Rod Burst for Deterministic Assessment of Extent of Rupture
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Figure 5. Assembly Power Distribution at Limiting Burnup
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Post-Quench Ductility of Advance Alloy Cladding
Michael C. Billone, Yong Yan, and Tatiana A. Burtseva

Argonne National Laboratory (ANL), Argonne, IL 60439

Diametral (ring)-compression screening tests have been conducted to assess the ductility of 17x17
Zry-4, ZIRLO and M5 samples oxidized to 0-20% ECR at 1000 C, 1100 C and 1200 C. The 25-mm-
long samples were exposed individually to two-sided steam oxidation in the same test apparatus for the
same test times, slow cooled to 800 C and water-quenched. Test times were calculated using the
Cathcart-Pawel weight-gain correlation and a reference wall thickness of 0.57-mm (Zry-4 and ZIRLO).
Based on sample weight increase (normalized to the surface area), weight gain was determined and
compared to Cathcart-Pawel (CP) predictions. As expected, good agreement was achieved among Zry-4,
ZIRLO and M5 and the CP predictions for the 1100 C- and 1200 C-oxidized samples, while differences
in weight gain vs. time were observed for the alloys oxidized at 1000 C. After =3400 s at 1000 C, the
weight gains of M5 and ZIRLO were =36% and ~20% less than Zry-4, respectively. For lower test times,
the M5 weight gain was consistently lower than Zry-4, while the ZIRLO and Zry-4 weight gains were
about the same. The experimental weight gains, along with the sample thickness (0.61 mm for M5), were
used to determine experimental ECR values.

Similar tests were performed with E110 tubing (0.71-mm) at 1000 C and 1100 C to characterize the
onset of breakaway oxidation, subsequent hydrogen pickup, and decrease of post-oxidation ductility.
Weight gain for as-received E110 could not be determined accurately because of the early (<300 s at
1000 C) breakaway oxidation resulting in oxide flaking and spalling. However, polished and/or
machined-and-polished (0.58-0.69 mm wall) E110 exhibited stable oxide growth for oxidation times up to
~300 s at 1000 C and >1000 s at 1100 C. For these samples, the E110 weight gains were similar to M5:
lower than Zry-4 at 1000 C and about the same as Zry-4 at 1100 C.

Ring-compression samples (8-mm-long) were cut from the oxidized samples and tested initially at
room temperature and 0.033 mm/s displacement rate (0.35%/s diametral strain rate). Load-displacement
curves were analyzed by the traditional offset-displacement method to determine plastic ductility. It was
found that this method over-predicts plastic displacement, determined directly from pre- and post-test
diameter measurements along the loading direction, by <0.2 mm (2% strain). For rings with offset strains
< 3%, direct measurement of post-test diameter after the first through-wall crack proved to be a more
reliable measure of ductility. Rings with permanent strains < 1% were classified as brittle.

Zry-4, ZIRLO and M5 exhibited ductile behavior (offset strains > 3% and/or permanent strains >
1%) after oxidation at 1000 C and 1100 C for CP-calculated ECR > 17%. The 1000 C results are
interesting in that the all three alloys exhibit =3% offset-strain ductility after oxidation for the same test
time (=3400 s) at 1000 C, even though the measured ECR values were 22.4%, 18.0% and 13.3% for Zry-
4, ZIRLO and M5, respectively. These results suggest that oxidation time at 1000 C and CP-calculated
ECR correlate better with ductility than ECR based on actual weight gain, especially for M5. For as-
received E110, embrittlement occurs after oxidation at 1000 C for =625 s, corresponding to an average
hydrogen pickup of =300 wppm. The hydrogen concentration in this oxidized sample was highly non-
uniform (25-560 wppm) in the circumferential and axial directions with the high hydrogen concentrations
occurring under local areas of breakaway oxidation. The results suggest that hydrogen entering E110
through cracks in the oxide layer is essentially “frozen” in position during the course of the test. For
polished and machined-and-polished E110 oxidized at 1100 C for <1011 s, the material was ductile up to
19% CP-ECR based on the machined-and-polished wall thickness of 0.58 mm. While surface polishing
was found to stabilize oxide growth on E110 surfaces, pre-etching with solutions containing HF tended to
de-stabilize oxide growth at earlier test times than observed for as-received E110 tubing.
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For Zry-4, ZIRLO, M5 and E110 (RRC-KI/RIAR data) samples oxidized at 1200 C, the room-
temperature offset strains decreased rather abruptly from 5 to 10% ECR. Based on interpolation of the
permanent strain data, the embrittlement ECR values at room-temperature were: ~10% for Zry-4 and
~12% for ZIRLO and M5. Based on the RRC-KI/RIAR offset strain data, the embrittlement ECR for
E110 oxidized at 1200 C was ~8%.

Zry-4, ZIRLO and M5 alloys oxidized at 1200 C were retested at 135 C and 0.35%/s, as well as
3.5%/s for Zry-4. The enhancement in post-quench ductility with test temperature was remarkable. As
shown in Figs. 1 and 2, ZIRLO and M5 (extrapolated) retained significant ductility for measured and CP-
calculated ECR values >17%. Zry-4 also maintained post-quench ductility for ECR > 17% under these
conditions. At the higher strain rate of 3.5%/s, Zry-4 was also ductile for ECR > 17%. The implication
of these results is that as-fabricated Zry-4, ZIRLO and M35 satisfy the LOCA embrittlement criteria during
and shortly after quench. Although testing of the 17x17 cladding alloys at 100 C has not yet been
conducted, the results from testing of 15x15 Zry-4 at RT, 100 C and 135 C (Y. Yan, this meeting)
suggest that these alloys will retain ductility at the longer-term post-quench temperatures of =100 C.

However, in-reactor corrosion results in hydrogen pickup. This hydrogen can enhance
embrittlement directly, as well as indirectly by increasing the oxygen solubility and embrittlement in the
prior-beta layer of the post-quench cladding alloy. Preliminary test results at 135 C with prehydrided
17x17 and 15x15 (Y. Yan, this meeting) Zry-4 samples oxidized at 1200 C indicate that ~5%-ECR Zry-4
embrittles at ~600 wppm H, that =8-9%-ECR Zry-4 embrittles at <350 wppm H and =11%-ECR Zry-4
embrittles at =300 wppm H. Future work will focus on the post-quench ductility at 100-135 C of
prehydrided-nonirradiated ZIRLO and M5 and high-burnup Zry-4, ZIRLO and MS5.
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Fig. 1. Post-quench ductility of ZIRLO oxidized at 1200 C and ring-compressed at RT and 135 C.
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Fig. 2. Post-quench ductility of M5 oxidized at 1200 C and ring-compressed at RT and 135 C.
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Overview of the CEA data on the influence of hydrogen on the metallurgical and thermal-
mechanical behavior of Zircaloy-4 and M5™ alloys under LOCA conditions.

J.C. Brachet(¥)V, L.. Portier’™, V. Maillot”, T. Forgeron”, J.P. Mardon ', P. Jacques'™, A. Lesbros™

(1) CEA-DEN, DMN/SRMA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
(2) CEA-DSNI-Comb., CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
(3) FRAMATOME ANP Nuclear Fuel, 10 rue Juliette Récamier, 69456 Lyon Cedex 06, France
(4) EDF, SEPTEN, 12-14 avenue Dutrievoz, 69628 Villeurbanne Cedex, France
(*) corresponding author : jean-christophe.brachet@cea.fr

Abstract :

A few years ago, within the framework of the CEA/EDF/Framatome-ANP R&D cooperative program, we
made the assumption that the burn-up influence on the thermal-mechanical behavior of the fuel cladding
tubes under LOCA conditions should be strongly linked to the hydrogen up-take due to the in-service
oxidation (see for example discussion pp. 276-277 in [1]). Thus, since that time, an extensive experimental
program has been conducted in CEA labs on as-received and pre-hydrided Zy-4 and M5™ advanced
alloys of Framatome-ANP to get a better insight into the influence of the hydrogen on the thermal-
mechanical cladding behavior during the first phase of the LOCA transient (ballooning and rupture) and
for post-quenched conditions (residual ductility/toughness...) [2] [3] [4].

On the one hand, one of the main assumptions here was that the microstructural defects, and the resultant
hardening produced under heavy neutron irradiation within the zirconium matrix, are annealed early upon
the first phase of the LOCA transient (i.e. first thermal ramp) and thus, that the main effects of high burn-
up should come from the hydrogen uptake. To assess this hypothesis, specific thermal-mechanical tests
have been performed on virgin, pre-hydrided and irradiated cladding tubes. This confirmed that the effect
of hydrogen uptake dominates over that of irradiation on the thermal-mechanical response of the
materials.

So, in a first part of the presentation, we will briefly summarize the main results obtained here and, from
the metallurgical point of view, we will illustrate the strong influence of hydrogen on the decrease of the
alpha-to-beta phase transformation temperatures of the zirconium alloys studied.

On the other hand, studies have been performed on the post-quench mechanical behavior of as-received
and pre-hydrided cladding tubes after single-face oxidation at 1000-1200°C and quenching. In parallel
with these mechanical tests, in-depth metallurgical investigations have been developed [5], to be able to
quantify the resultant phase thickness (that is, ZrO,, Alpha(O) and Ex-Beta phase layers) and their specific
chemical composition - especially their oxygen content which is known to influence strongly the residual
mechanical properties. Also, fractograph analysis has been applied on failed samples to get a better
knowledge of the failure mechanism as a function of the materials and of the hydrogen concentration, for
different oxidation conditions.

So, in the second and major part of the presentation, we will focus on LOCA post-quenched behavior of
as-received and prehydrided Zy-4 and M5™ cladding tubes for typical hydrogen contents ranging from
~200 up to ~600 wt-ppm depending on the alloy. Ring compression, impact, and bending tests at Room
Temperature have been performed for different oxidation conditions. The mechanical results will be
presented and briefly discussed, taking into account the metallurgical analysis (resultant phase
morphology and thickness, chemical composition — oxygen contents, failure mode,...).
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