
•i~ii~ii• ... , iiii= !!iil~i
.......Ql

S.............

~~~. .... .. ...............  
i~ii i•!•~i~i i~i!!i~~i~i!• i% =.=.'=,.... , ..-..  

.. .. ....=•.. .. ....  

•!!i!... ...... ...  
.,.. .......



~~~~~~~~~. ......................... • ll 

S........... i~::;iii~..........." ii i li~ ~ ~ ~ ~ ~~......iiiil il•• i •iiii• . ,
~~~~~~~~..... .............. iiii):.:i~iii• i i .... '••i ii~iiiii~iiiii~ i ii ii i~~ii~ iiiiiiiii i ii~ iii~iiiiiiiii...... ...... iii '' ... '! ii, 
......... .....

... ..........................  
........ 

.  

........ .  ........  ..............  ............  ..........  .............  
............  ................ .. ....  ..... . . ....... ....  .........................  .......... ............

.. ...............  

.. .. .. .. ....... .. ......  

!!iiii!!ii!!!iiiiiiiiiiii~i~i~i~iiiiiiii .... ..........iiiii

iiiiiiliiii ~... .......:•!:~

• , .......... , i! ! ! ... i ......... i 

C5 U) 
of), 

! ii::>•:':.... . oI• • !



ABSTRACT

This document offers guidance to both NRC organiza
tions and NRC contractors in the development and main
tenance of software for use by the NRC staff.  

This document is based on various industry standards,

shown under references, and therefore meets the current 
industry standards for the operational levels of software 
described herein. This document may provide guidance 
but does not address the complex issue of software quality 
for software used in nuclear plants.

iii



CONTENTS 

Page 

Abstract ..Abtrc.... •....... ...... •..... °........".................•ooo.......,.... o~.o.......1 

Acknowledgements ............................................................... ix Intodcton.............o~....,o.°..•............ .,.... ,.....o,......,°....o..o.. .. 1 I Introduction 1 

1.1 Purpose.......... .................................................... 1 
1.2 Scope and Applicability ........................................................ 1 
1.3 The NRC Software Development/Sustaining Engineering 

Environm ent ................................................................. 1 
1.4 Use of This Document .................................................... 2 
1.5 Organization of This Document ................................................. 2 
1.6 Maintenance of This Document ................................................. 2 
1.7 Style Used in This Document ................................................... 2 

2 The Software Life Cycle ............................................................... 5 
2.1 Concepts and Definitions ..................................................... 5 
2.2 Requirements Definition ................................................... 5 
2.3 Design.........................................................  
2.4 Implementation ............................................................. 5 
2.5 Qualification Testing .......................................................... 5 
2.6 Installation and Acceptance .................................................... 6 
2.7 Operations and Sustaining Engineering .......................................... 6 
2.8 Retirement and Archiving.................................................. 6 

3 Verification and Validation ............................................................ 7 
3.1 Concepts and Definitions ...................................................... 7 
3.2 Verification and Validation Activities ............................................ 7 

3.2.1 Verification and Validation Planning Activities ............................... 7 
3.2.2 Formal Life Cycle Reviews and Audits ...................................... 8 
3.2.3 Formal Peer Inspections .................................................. 10 
3.2.4 Testing ......................................................... 10 

3.3 Techniques and Tools ......................................................... 11 
4 Documentation and Deliverables ....................................................... 13 

4.1 Concepts and Definitions ...................................................... 13 
4.2 Software Project Plan ......................................................... 13 
4.3 Software Requirements Documentation ............................ .............. 13 
4.4 Software Design Documentation ................................................ 13 
4.5 Software Implementation Documentation ........................................ 13 
4.6 Software Verification and Validation Documentation ............................... 13 
4.7 User Documentation .......................................................... 14 
4.8 Other Documentation ......................................................... 14 
4.9 Deliverables .......................................................... 14 

4.9.1 Documentation Deliverables .............................................. 14 
4.9.2 Software Deliverables .................................................... 14 

4.10 Techniques and Tools ......................................................... 15

v



Page

5 Project M anagem ent .................................................................. 17 

5.1 Concepts and Definitions ...................................................... 17 

5.2 Project Planning and Organizing ................................................ 17 

5.2.1 Required Inputs to the Contract ........................................... 17 

5.2.2 Estim ating ............................................................. 18 

5.2.3 Methodology, Standards, and Procedures .................................... 18 

5.2.4 The Software Project Plan ................................................ 18 

5.3 Project Tracking and Oversight ................................................. 19 

5.4 Supplier Control ............................................................. 20 

5.5 M etrics ..................................................................... 20 

5.6 Security ..................................................................... 20 

5.7 Training ...................................................................... 20 

5.8 Risk M anagem ent ............................................................ 20 

5.9 Techniques and Tools ........................................................ 21 

6 Configuration M anagement ............................................................ 23 

6.1 Concepts and Definitions .......................... ........................... 23 

6.2 Baselines .................................................................... 23 

6.3 Change Control .............................................................. 24 

6.4 Status of Baselines and Changes ................................................ 24 

6.5 Software Development Library ................................................. 24 

6.6 Software, Access, and Media Control ............................................ 24 

6.7 Configuration Audits .......................................................... 24 

6.8 Techniques and Tools ......................................................... 25 

7 Nonconformance Reporting and Corrective Action ........................................ 27 

7.1 Concepts and Definitions ...................................................... 27 

7.2 A ctivities .................................................................... 27 
7.2.1 Nonconformance Detection and Reporting .................................. 27 

7.2.2 Impact Assessment and Corrective Action ................................... 28 

7.2.3 Tracking and Management Reports ........................................ 28 
7.3 Interrelationships ............................................................. 28 

7.4 Techniques and Tools ......................................................... 28 

8 Quality Assessment and Improvement ................................................... 29 

8.1 Concepts and Definitions ...................................................... 29 

8.2 Responsibility for Quality Assessment and Improvement ............................ 29 

8.3 Documentation for Quality Assessment and Improvement .......................... 29 

8.4 Quality Assessments .......................................................... 29 
8.5 Quality Records Collection, Maintenance, and Retention ........................... 29 

8.6 Quality Improvement .......................................................... 29 

8.7 Techniques and Tools ......................................................... 29 

9 Software Developed Before Issuance of This Document .................................... 33 

Appendix A Sample Software Project Management Plan ................................ 35 

Appendix B Glossary .............................................................. 55 

Appendix C Reference Documents .................................................. 57

vi



TABLES 

Page 

1-1 Summary of Typical Life Cycle Activities and Documents ................................... 3 
3-1 Verification and Validation Activities by Major Life Cycle Activity ........................... 8 
3-2 Formal Life Cycle Reviews and Audits .................................................. 9 
8-1 Assessments of Products and Processes Used in Software Development ....................... 30 

FIGURE 
5-1 Table of Contents for a Software Project Plan ............................................. 19

vii



ACKNOWLEDGEMENTS

The Office of Information Resources Management 
wishes to acknowledge the contributions of NRC staff and 
contractors in developing this document. The final tex
tual content was organized and written by Frank J.  
Douglas, SOFTRAN, Inc. NRC staff who participated in 
reviews and discussion briefings during the development

process were: Emily Robinson, Wil Madison and John 
Voglewede, IRM; Frank Coffman and Leo Beltracchi, 
RES; Jack Spraul and John Buckley, NMSS; Jim Stewart, 
Ralph Caruso, and Tony Mendiola, NRR; Steve Arndt, 
AEOD; and Mark Stella, ACRS.

ix



I INTRODUCTION

1.1 Purpose 

It is the purpose and intent of this document to offer guid
ance to both NRC organizations and NRC contractors in 
the development and maintenance of software for use by 
the NRC staff.  

1.2 Scope and Applicability 

Software quality assurance is the planned and systematic 
pattern of all actions necessary to provide adequate confi
dence that a software product conforms to established 
technical requirements. Thus, the scope of software qual
ity assurance includes both management and technical as
pects of software development and maintenance. There
fore, this document provides guidelines for: the software 
life cycle; verification and validation activities; documen
tation and deliverables; project management; configura
tion management, nonconformance reporting and cor
rective action; and quality assessment and improvement.  

Three levels of software are defined to make clear the 
wide variety of software used by the NRC. The three lev
els are: 

1. Level 1 Software-Technical application software 
used in a safety decision by the NRC (an example 
would be RELAP5) 

2. Level 2 Software-Technical or non-technical ap
plication software not used in a safety decision by the 
NRC (an example would be an agency financial soft
ware system) 

3. Level 3 Software-Technical or non-technical ap
plication software not used in a safety decision and 
having local or limited use by the NRC (examples 
would include a macro for Lotus 1-2-3) 

The guidelines in this document apply to Level 1 and 
Level 2 software only; they do not apply to Level 3 soft
ware or any other software.  

The degree of applicability of these guidelines will de
pend on the level of software being developed, its pur
pose and use, and a managerial judgment of the cost
effectiveness of each software quality activity. Most 
projects should incorporate verification and validation, 
configuration management, and documentation control 
activities.

1.3 The NRC Software Development/ 
Sustaining Engineering 
Environment 

There are three types of organizations involved with NRC 
software: the regulated industry, NRC contractors, and 
NRC staff. These guidelines do not apply to the regulated 
industry. NRC contractors develop and maintain two gen
eral types of application software: 1) technical/scientific 
and 2) administrative/management information systems 
(MIS). Minimal software development and maintenance 
are done directly by the NRC staff.  

The roles of NRC staff and NRC contractors in software 
development and maintenance can be divided into three 
categories: sponsors, developers, and users. A sponsor is 
the NRC organization that sponsors and manages the 
software development/maintenance effort. The sponsor 
acts as the acquirer or buyer for the user. A developer is 
the organization, usually a contractor, that develops or 
maintains the software. A user is the organization who 
utilizes the software product produced by the developer.  
The user is involved in defining requirements and should 
be made a partner during the development effort to help 
ensure that the product being built will meet the user's 
needs.  

The authority for categorizing the software to be devel
oped (either Level 1, Level 2, or Level 3) resides with the 
sponsor. The user's concurrence with the categorization 
should be sought. The Information Resources Manage
ment (IRM) organization is available for consultation 
during the categorization process.  

The development and maintenance of software is a 
project, i.e., it has definitive start and end dates and a 
product(s) is delivered upon completion. Both the spon
sor and the developer assign responsibility for the suc
cessful completion of the project to a project manager.  

The IRM Office is responsible for the coordination of the 
NRC software quality assurance (SQA) initiative embod
ied in this document. IRM is responsible for maintaining 
this document.  

The IRM organization is also responsible for the estab
lishment and coordination of the NRC SQA Working 
Group. The objectives of this working group are to: 

1. Facilitate communications (e.g., successes, lessons 
learned) about software development and mainte
nance among the NRC organizations involved with 
acquiring and using software

1



2. Facilitate technology transfer of the best practices in 
the management and technical aspects of software 
development and maintenance 

3. Provide a focal point for improvements to the guide
lines in this document 

1.4 Use of This Document 

The SQA Working Group is chaired by IRM/DISS and 
has members from each major office involved with soft
ware development and maintenance: ACRS, AEOD, 
IRM, NRR, NMSS, and RES.  

This document will be used by sponsor project managers 
as a guide in developing inputs (e.g., the statement of 
work) to the request for proposal for software to be devel
oped, and by developer project managers as-a planning 
tool. It can also be used as a software quality assurance 
reference by sponsors and developers.  

The guidelines in this document are not intended to be 
applied rigidly. They should be used within the context of 
NRC policy and Federal standards, as applicable to the 
project at hand, as well as with coft-effective manage
ment and engineering judgment based on past experi
ence.  

This document applies to all software currently in use, be
ing developed, or planned for future development. Own
ers of software developed prior to the publication of this 
document should read Section 9 in particular. Future 
software plans should implement all major elements of 
this document, but the extent of implementation must be 
decided as part of the planning process by the sponsor and 
developer.  

1.5 Organization of This Document 

In addition to this introductory section, 

* Section 2 defines the software life cycle.  

* Section 3 discusses verification and validation activi
ties.  

* Section 4 identifies deliverables, including required 
documentation.  

0 Section 5 addresses project management.  

"* Section 6 addresses configuration management.  

" Section 7 discusses nonconformance reporting and 
corrective action.

" Section 8 addresses quality assessment and improve
ment 

" Section 9 discusses application of the guidelines in 
this document to software developed before issu
ance of the document 

Table 1-1 shows an overview of a typical software life cy
cle. It is meant as a quick-look reference. It contains only 
major activities performed and documentation produced.  
It is not meant to be complete listing of all activities per
formed or documents produced.  

1.6 Maintenance of This Document 

The maintenance of this document is the responsibility of 
the IRM organization. Changes to the document will be 
issued as change pages as required. When the number of 
change pages is deemed to be excessive, a new version of 
the document will be published.  

Suggestions for improvement are solicited from the en
tire NRC software community: sponsors, developers, and 
users.  

1.7 Style Used in This Document 

Most of this document is written using verbs in the indica
tive mood. The indicative mood is the standard mood of 
verbs, for example: 

The software life cycle defined in this section provides the 
basis for planning and implementing a software develop
ment or maintenance project.  

The life cycle consists of the following major activities: 
requirements definition, design, implementation, qualifi
cation testing, installation and acceptance, operations 
and sustaining engineering, and retirement and archiving.  

When the intent is to communicate explicitly a suggestion 
or guideline to the sponsor or developer, we have chosen 
to use the imperative mood of the verb. Three examples 
follow: 

Define the requirements so that they are correct, 
complete, verifiable, consistent, and technically fea
sible.  

Perform planning activities for verification and vali
dation in parallel with requirements definition ac
tivities.  

Require the developer's approach to quality assess
ment and improvement to be documented.

2



Table 1-1. Summary of Typical Life-Cycle Activities and Documents

Requirements Design Implementation Qualification Installation and Operations and 
Definition Testing Acceptance Sustaining 

Engineering 

Principal 0 Analyze 0 Develop e Develop unit 0 conduct * install the sfiwore 0 Performll the 
Technical requiremens iwyc design designs and unit qualceaton on the target SMivOtlG of 
Activities Develop detailed code tI"ng In computer development, as design accordance with 0 Conduct appropriate 
Pelormed * Develop th quaifcation accWp"W * Perfom sustaining 

prefmtry uses? test plM and testing in enghnfeaf activities 
documentaton qualification test accordance with to nsure that the 

procedures te acceptnce original capaep tles 
"eplanand and design remain 
acptan Instact 

, procedures 
Verification o Conduct canu design 9 Develop tit and Wta Witnafs 0 Peronn aln vorfaon 
and Validation umente Inspections Integration test quai"caon fte accepance tests and valdstion 
Activities * 0 Plan qualification planed actlvfltes, a Actioites * Cond software and ccptance procedur appropriate 
Performed Requirement* ts 0 Conduct unit and 

Review e Conduct Inegradton testing 
Pre•lhky Design e Devlop 
Review qudekacm and 

0 Conduct Critical acceptance lest 
Design Review procedures 

Documentation e softwere e Software design a Qualification test e Qualification teat 9 Acceptaneast 9 Update an 
and req enients docurnntation procedures rPort repor documentation, as 
Dellverables doeuntentionf * Qualification test a Acceptance 9es 9 Nonconfonance Nononformanc required 
Deovelped verall ver. ication pan procedures reports based on ro based on * Develop new Developed and vaian plan e Acceptancs test a Unit and test results lest results dcumenttion, as 

0 Softwar Project plan Integration toe e Finad users pprop•at 
Plan * Prellminaty uses results documentatlon 

documentation 

Project e Develop software • Conduct tracing • Conduct tracing * conduct trcka Conduct tracking a conduct traking and 
Management project Plan and overnight and oversight and oversight end oversight oversight activties 

Activities * Ensure users activities acttes activit activities a Refln a required 
participate in 0 Roepan a Ro-plan ss 8 Ro-planse * Ro-plan s 

Perfomed requirerments required required required requIred 
definition 

0 Cnduct tracking 
and oversght 

______ activites _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



Table 1-1. Summary of Typical Life-Cycle Activities and Documents 
(continued)

Requirements Design Implementation Qualification Installation and Operations and 

Definition Testing Acceptance Sustaining 
Engineering 

Configuration • Develop orupdat Plaoesoitw, * phc todand Place Isle -• Place WOWted . Mslin tanhw 

Management configuration design qua,•lficon test 9ottwor end moled OWb a sewnd 

Actiitis m nge"!n documfentton docurnentaio associated sscse e& n 
*cike procedures underkInternl under Internal documnentatlon documentmtioti develoMena 

Performed * allwere developer developer under under configurstion 

requirements configuration onflgurstion configuraon configuration • Establish new 

documentation contol onol control (., control (Le, product beseline 

unwder esblbh e** ish tw aita to end new 

Winrol 0o product baselin) opertonlo operaton 

Nonconformancea Develop or upd. Document design Document desn * Docum-ent code 5 Docu'men code -Documentael 

Re igadnoncctdormence end requiremn~ts end requirements and qualilcstion end acceptonce nonconfonnences, 
Reporting andreporting end docurmfeta documentation lest , , ot a, applicable 

Corrective Action c no oonornW" nofootm cee n documentien 

Activltles proedulres 0 Docunmentdesign nonoonloman•,e 

Performed Doument end requiremnt Documentodesign 
- domttatonmm . end reqremen 

domoiatoln nononlonnemef nonoa on 

Quality * Assemsotweom e Asses. sotwe Assessut • Ases a At eaccepens e * Asse" Ol 

Assessment and qun design designs unit code, qusifcon tet teting actve product$ end 

vdocme on d a Assm te unit ettpes, reslts * Assess; amclpnce p ooeeeee 
Improvement soltwere pre qualfficaton led integrtion test • Asse s process 9 It product 
Actflae pIn i n .,m irsmqfal quliflon ls t t ooltisd1 product and proem 

Performed Assess accpn et Integration process end proces knprovement 

requirements pen procedures e Inki.tat product knprvem activitimse 

definition proces • Assess design e Assets edremss activities, a requld 

a Initlal product and proceed hnpinutlon Imptovent required 
procem InitiMe product proems activities, 0s 
Improvement end proces Assem 
activits a Improvemrent qualification lest 
required actilvte, se proaesures end 

required aeepace teIt 
procedures 

mNd process 
Improvement 
acttivtles, as 
required



2 THE SOFTWARE LIFE CYCLE

2.1 Concepts and Definitions 
The software life cycle defined in this section provides the 
basis for planning and implementing a software develop
ment or maintenance project. The life cycle consists of 
the following major activities: 

1. Requirements definition 

2. Design 

3. Implementation 

4. Qualification testing 

5. Installation and acceptance 

6. Operations and sustaining engineering 

7. Retirement and archiving 

Each major activity leads to specific products that can be 
measured, evaluated, approved, and controlled. No strict 
chronological constraints exist between major activities.  
The major activities may overlap in time and may be ap
plied iteratively or recursively.  

Each major activity is accompanied by verification actions 
that ensure that the products and processes of the major 
activity meet the requirements for those products and 
processes. Verification actions are discussed in Section 3, 
and the documentation and software deliverables of the 
software life cycle are discussed in Section 4.  

The software life cycle presented here must be: 

1. Tailored to fit the scope of each development/main
tenance effort 

2. Used within the context of NRC policy and Federal 
standards, as applicable to the project at hand, as 
well as with cost-effective management and engi
neering judgment based on past experience 

Some projects will not encounter all major activities.  

2.2 Requirements Definition 

The requirements definition process is the set of activities 
that results in the specification, documentation, and re
view of the requirements that the software product must 
satisfy, including functionality, performance, design con-

straints, attributes, and external interfaces. The require
ments form the basis for the software plans, products, and 
activities.  

Ensure that the documented requirements define the re
sponse of the software to anticipated classes of input data 
(including erroneous data) and provide the information 
and detail necessary to design the software (e.g., mathe
matical models, equations, data requirements).  

Define the requirements so that they are correct, com
plete, verifiable, consistent, and technically feasible. Per
form planning activities for verification and validation in 
parallel with requirements definition activities.  

Because requirements inevitably change as a project 
evolves, manage the requirements throughout the devel
opment and maintenance efforts in accordance with well
defined change control procedures (See Section 6).  

2.3 Design 
The design process is the set of activities that results in 
the development, documentation, and review of a soft
ware design that meets the requirements defined in the 
software requirements documentation.  

As the design evolves, events (e.g., additional insight into 
problem areas) may necessitate the modification of the 
requirements documentation. Manage changes to re
quirements documentation in accordance with well
defined change control procedures.  

2.4 Implementation 
The implementation process is the set of activities that re
sults in software that has: 

1. Been constructed in accordance with the design 
documentation and coding standards 

2. Undergone informal unit and integration testing 

As the software is implemented, events (e.g., additional 
insight into data flow patterns) may necessitate the modi
fication of the design, requirements, and/or verification 
and validation documentation. Manage changes to docu
mentation in accordance with well-defined change con
trol procedures.  

2.5 Qualification Testing 

The qualification testing process is the set of activities as
sociated with:

5



1. Formally testing the implemented software, using 
test cases defined in the verification and validation 
documentation, against the baselined requirements 
defined in the software requirements documenta
tion 

2. Reviewing and analyzing the test results to ensure 
that the implemented software meets requirements 
and that the software produces correct results for all 
test cases executed 

To evaluate technical adequacy, the software test results 
can be compared to results from alternative methods, 
such as: 

1. Analysis without computer assistance 

2. Other validated computer programs 

3. Experiments and tests 

4. Standard problems with known solutions 

5. Confirmed published data and correlations 

2.6 Installation and Acceptance 

Section 3.2.4 discusses qualification testing in more de
tail.  

Installation activities include one or more of the follow
ing: 

1. Installing hardware 

2. Installing the developed/maintained software 

3. Integrating the developed/maintained software with 
other components (e.g., other software components, 
hardware, data) 

4. Reformatting or creating data bases 

5. Verifying that all components have been included 

Acceptance activities include: 

1. Execution of acceptance tests (which typically con
sist of some of the qualification test cases plus addi
tional test cases) 

2. Documentation of the acceptance of the software by 
the sponsor

This stage of the life cycle usually concludes with the user 
accepting the software for operational use. The responsi
bility for the sustaining engineering and maintenance of 
the software may be assigned to an organization different 
from the sponsor and/or the developer of the software.  

2.7 Operations and Sustaining 
Engineering 

Operation of the software is conducted by the user in ac
cordance with the operation and usage instructions in the 
user's documentation. Sustaining engineering is set of 
software engineering and software maintenance activities 
needed to 

1. Retain the software's initial functionality and design 
integrity (software engineering) 

2. Remove latent errors (corrective maintenance) 

3. Respond to new or revised requirements (perfective 
maintenance) 

4. Adapt the software to changes in the operating envi
ronment (adaptive maintenance) 

Perform sustaining engineering activities in a traceable, 
planned, and orderly manner based on: 

1. The major life-cycle activities described in Sections 
2.1 through 2.6 

2. The verification and validation activities described 
in Section 3 

3. Updating the required documentation and software 
deliverables as described in Section 4 

4. The project management activities described in Sec
tion 5 

5. The configuration management activities described 
in Section 6 

6. The nonconformance reporting and corrective ac
tion activities described in Section 7 

7. The software quality assessment and improvement 
activities described in Section 8 

2.8 Retirement and Archiving 
Retirement means the support for a software product is 
terminated, and the routine use of the software is 
prevented. The software and its documentation are ar
chived.

6



3 VERIFICATION AND VALIDATION

3.1 Concepts and Definitions 

Verification is the process of ensuring that the products 
and processes of each major activity of the life cycle meet 
the standards for the products and the objectives of that 
major activity. Validation is the process of demonstrating 
that the as-built software meets its requirements. Testing 
is the process of detecting errors and verifying perform
ance. Testing typically includes unit, integration, qualifi
cation, and acceptance testing.  

Independent verification and validation (IV&V) is verifi
cation and validation by an organization that is both tech
nically and managerially separate from the organization 
responsible for developing the software. Sponsors and us
ers of Level I software should together decide if the ex
pense of a separate IV&V contractor is warranted for 
their project.  

Examples of verification activities include: 

1. Formal major life cycle reviews and audits (e.g., Pre
liminary Design Review) 

2. Formal peer inspections (e.g., code inspections, 
documentation reviews) 

3. Informal tests (e.g., unit and integration testing) 

Testing is the primary method of software validation.  
Qualification and acceptance testing, which are formal 
tests, are validation activities. Validation is accomplished 
by review and demonstration in a live or simulated envi
ronment. The objectives of validation activities are to en
sure that: 

1. The as-built software correctly and adequately per
forms all intended functions 

2. The software does not perform any unintended 
function that either by itself or in combination with 
other functions can degrade the entire system 

3. All non-functional requirements (e.g., perform
ance, design constraints, attributes, and external in
terfaces) are met 

Software validation activities include the development of 
test plans, test procedures, and test reports.

Subject the validation of modifications to previously vali
dated software to selective regression testing. The objec
tives of regression testing are to: 

1. Detect possible errors introduced during the modifi
cation process 

2. Ensure that the modifications have not caused unin
tended adverse effects 

3. Validate that the modified software still meets 
specified requirements 

3.2 Verification and Validation Activi
ties 

This section discusses verification and validation planning 
activities (Section 3.2.1); formal life cycle reviews and 
audits (Section 3.2.2); peer inspections (Section 3.2.3); 
and testing (Section 3.2.4). Table 3-1 shows verification 
and validation activities by major life-cycle activity. This 
table is intended to show the approximate time in the life 
cycle that these activities are performed. It is not in
tended to be applied rigidly. Like all of the guidelines in 
this document, management and engineering judgment, 
in conjunction with cost-effectiveness decisions, must be 
used in the application of these guidelines to the project 
at hand.  

3.2.1 Verification and Validation Planning 
Activities 

Planning for verification and validation takes place during 
the sponsor's initial planning for the project (e.g., the pro
posal stage) as well as during the requirements definition, 
design, and implementation major activities of the life cy
cle. Planning activities include: 

1. Development or tailoring of procedures for con
ducting formal life cycle reviews 

2. Development or tailoring of procedures for review
ing documentation and other deliverables 

3. Development or tailoring of procedures for con
ducting inspections

7



Table 3-1. Verification and Validation Activities by Major Life Cycle Activity

Major Life Cycle Activity

4. Definition of a detailed test methodology, including 
standards for test documentation, specifically for 
test plans, test procedures, and test reports for both 
qualification and acceptance testing 

5. Preparation of a validation matrix showing the rela
tionship of software requirements to the software 
architecture down to the unit level and to the tests 
used to verify the requirements 

6. Identifying the need for development and test tools, 
equipment, and data

Verification and Validation Activities

3.2.2 Formal Life Cycle Reviews and Audits 

A formal review, with sponsor and developer manage
ment and technical personnel participating, is held at or 
near the end of a major activity of the life cycle. The ob
jective of the formal reviews is to evaluate the deliverable 
products, the progress, and to a lesser degree, the 
processes of the most recent life-cycle phase. Table 3-2 
summarizes the formal major life cycle reviews and audits 
by major life-cycle activities.

8

Requirements Definition * Inspect requirements 
* Develop overall verification and validation plan 
* Conduct the Software Requirements Review 

Design 0 Inspect design 
* Develop qualification test plan 
* Develop acceptance test plan 
a Conduct the Preliminary Design Review 
• Conduct the Critical Design Review 

Implementation 0 Develop unit test plans 
0 Inspect unit designs, unit code, and unit test plans 
* Perform unit testing 
* Inspect unit test results 
* Develop integration test plans 
0 Inspect integration test plans 
* Perform integration testing 
0 Inspect integration test results 
* Develop qualification test procedures 

Qualification Testing 0 Perform qualification testing 
0 Write qualification test report 
* Develop acceptance test procedures 

Installation and Acceptance * Perform acceptance testing 
* Write acceptance test report 

Sustaining Engineering and 0 Perform, as appropriate, the verification and 
Operations validation activities defined above for requirements 

definition, design, implementation, qualification 
testing, and installation and acceptance 

0 Perform regression testing as well as new tests for all 
levels of testing, as appropriate



Table 3-2. Formal Life Cycle Reviews and Audits.

The products associated with each formal review are: 

1. The documents to be reviewed (e.g., the software 
requirements documentation for the Software 
Requirements Review) 

2. The agenda for the review 

3. The hardcopy presentation materials 

4. The minutes that document the activities and results 
of the review 

5. The updated documents that were reviewed 

Allow sufficient time for sponsor review participants to 
review the documents prior to the review (2 to 3 weeks, 
say). Identify in the agenda the review participants and 
their specific responsibilities during the review. Assign a 
person to capture key discussion items and actions items, 
especially those related to specific assignments for updat
ing the documentation that is the object of the review.  
Document in the review minutes all proposed revisions to 
the reviewed documents and all actual changes to the re
viewed documents, and place the updated documents un
der configuration control after approval by the sponsor.  

The paragraphs below discuss each formal life cycle re
view and audit.

3.2.2.1 Software Requirements Review 

Conduct the Software Requirements Review at the end 
of requirements definition. The primary objective of this 
review is to assure that the sponsor and the developer un
derstand and agree on the intent, completeness, verifi
ability (through testing or other means), consistency, and 
technical feasibility of the requirements. Secondary ob
jectives are to review other documentation products 
available at this time, including, for example, the Soft
ware Project Plan and the overall verification and valida
tion plan.  

3.2.2.2 Preliminary Design Review 

Conduct the Preliminary Design Review when the pre
liminary design (software architecture) has been de
signed. The primary objective of this review is to assure 
that the preliminary design is complete (meets all the 
requirements), verifiable (through testing or other 
means), consistent, and technically feasible.  

3.2.2.3 Critical Design Review 

Conduct the Critical Design Review when the design is 
complete. Design completion criteria should be defined 
clearly in the Software Project Plan. Suggested design 
completion criteria are: 

1. All software units have been identified and all inter
faces between and among the units have defined 

2. All elements of the database have been defined 
down to the data item level.

9

Major Life Cycle Activity Formal Reviews and Audits 

Requirements Definition e Software Requirements Review 

Design • Preliminary Design Review 
& Critical Design Review 

Implementation * Qualification Test Readiness 
Review 

Qualification Testing 0 Software Configuration Audit 

Installation and Acceptance • Software Configuration Audit 
• Post Mortem Review 

Operations and Sustaining 0 The formal reviews and audits 
Engineering above, as applicable



The primary objective of this review is to assure that the 
design is complete (meets all the requirements and meets 
design completion criteria), verifiable (through testing or 
other means), consistent, and technically feasible.  

3.2.2.4 Qualification Test Readiness Review 

Conduct the Qualification Test Readiness Review when 
integration testing and the qualification test procedures 
are complete. The primary objective of this review is to 
assure that the as-built software; the software documen
tation; and qualification test data, test tools, test configu
ration, and test team are ready for formal qualification 
testing.  

3.2.2.5 Software Configuration Audit 

Conduct the Software Configuration Audit twice, first at 
the completion of qualification testing and second at the 
completion of acceptance testing. The primary objective 
of this audit is to ensure that the as-built software: 

1. Meets its requirements as documented in the soft
ware requirements documentation 

2. Conforms to its technical documentation 

3. Does not contain any unauthorized changes 

3.2.2.6 Post Mortem Review 

Conduct the Post Mortem Review after the software has 
been accepted. The objective of this audit is to capture 
the lessons learned from the project for use by future 
projects.  

3.2.3 Formal Peer Inspections 

A formal peer inspection is a detailed examination of a 
product on a step-by-step or line-by-line basis. The pur
pose of conducting formal peer inspections is to find er
rors. The group that performs a peer inspection is com
posed of peers of the person who developed the product 
to be inspected. Peer inspections are objective 
approaches that have been proved very effective in verify
ing that products meet requirements.  

For Level 1 software, require the developer to 

1. Subject each intermediate product and final product 
of development and maintenance (i.e., all documen
tation, all code) to an internal peer inspection 

2. Make available to the sponsor the written procedure 
and the product standards that govern peer inspec
tions

3. Make available, if requested by the sponsor, records 
that document the results of all peer inspections 

For Level 2 software, encourage the developer to work 
toward subjecting each intermediate product and final 
product of development and maintenance to an internal 
peer inspection.  

See Section 3.3 for more discussion of formal peer inspec
tions.  

3.2.4 Testing 
Testing is the process of exercising or evaluating a soft
ware product or part of a software product by manual or 
automated means to verify that it satisfies specified 
requirements or to identify differences between expected 
and actual results. Testing approaches depend on the 
number of levels of testing. For most cases, four levels of 
testing are sufficient: 

1. Unit testing 

2. Integration testing 

3. Qualification testing 

4. Acceptance testing 

A unit of software is an element of the software design 
that can be compiled or assembled and is relatively small 
(e.g., 100 lines of high-order language code). Require that 
each software unit be separately tested.  

Integration testing focuses on a collection of related units 
that performs an identifiable functional requirement. Re
quire that integration testing be carried out. Both unit 
testing and integration testing are classified as informal 
testing because a formal test plan is not required.  

Qualification testing is the process that allows the spon
sor to determine whether a software product complies 
with its requirements. Acceptance testing is the process 
that allows the sponsor to determine whether a software 
product complies with its requirements after it has been 
installed in its operational environment.  

In many cases, acceptance tests will, to a large degree, co
incide with qualification tests. In some cases, qualification 
tests and acceptance tests are the same in all respects, in 
which case the test hierarchy telescopes down to three 
levels of testing. Both qualification testing and 
acceptance testing are classified as formal testing because 
a formal test plan is required.  

Testing may be either requirements-driven or design
driven. Informal testing may be either requirements
driven or design-driven.

10



3.2.4.1 Design-Driven and Requirements-Driven 
Testing 

Design-driven or white-box testing is the process where 
the tester examines the internal workings of the code.  
Design-driven testing is accomplished by selecting input 
data and other parameters based on the internal logic 
paths to be checked. The goals of design-driven testing in
clude ascertaining correctness of: 

1. All paths through the code. For most software prod
ucts, this can be feasibly done only at the unit test 
level 

2. Interfaces between units 

3. Size and timing of critical elements of code 

Requirements-driven or black-box testing is done by se
lecting input data and other parameters based on the soft
ware requirements and observing the outputs and reac
tion of the software. In addition to testing for satisfaction 
of requirements, some of the objectives of requirements
driven testing are to ascertain: 

1. Computational correctness 

2. Proper handling of boundary conditions, including 
extreme inputs and conditions that cause extreme 
outputs 

3. State transitioning as expected 

4. Proper behavior under stress or high load 

5. Adequate error detection, handling, and recovery 

Sometimes the term "operational testing" is used. Opera
tional testing is either the random or statistically
controlled application of the software in its actual envi
ronment or in a simulated version of the operational 
environment. An example of such testing is the so-called 
beta test use of an applications software package by indi
viduals typical of the intended user population. In the 
terminology used above, such operational testing and 
beta testing would be qualification testing and are 
requirements-driven.  

3.2.42. Informal Testing 

Require the developer to perform informal tests to: 

1. Ensure software units and combinations of software 
units are correct

2. Measure progress 

"Informal" in this case does not mean the tests are con
ducted in a casual manner, just that no deliverable test 
plan is required, the sponsor is not formally involved, the 
witnessing of the testing is not required, and that the 
prime purpose of the test is to find errors.  

3.2.4.3 Formal Testing 

For Level 1 and Level 2 software defined in this docu
ment, formal testing is always requirements-driven and 
its purpose is to demonstrate that the software meets its 
requirements. The reader is cautioned not to confuse for
mal testing with formal proof-of-correctness methods, 
which are formal techniques used to prove mathemati
cally that a computer program satisfies its specifications.  

Require that formal tests include: 

1. A sponsor-approved test plan and procedures 

2. Test witnesses 

3. A record of all nonconformance 

4. A test report 

If the software is to be developed and delivered in incre
ments or builds, there may be incremental qualification 
and acceptance tests. As a practical matter, any contrac
tually required test is usually considered a formal test; 
others are "informal." 

After acceptance of a software product, all changes to the 
product should be accepted only as a result of a formal 
test. Include regression testing in all post-acceptance 
testing. Regression testing involves rerunning previously 
used acceptance test cases to ensure that the change did 
not introduce error into previously accepted software.  

3.3 Techniques and Tools 
Perhaps more tools have been developed to aid verifica
tion and validation of software (especially testing) than 
any other software activity. The tools available include 
code tracers, special-purpose memory dumpers and for
matters, data generators, simulations, and emulations.  
Some tools are essential for testing any significant set of 
software, and, if they have to be developed, may turn out 
to be a significant cost and schedule driver. Ensure that 
the need for test tools is examined during software design.  

An especially useful technique for finding errors is the 
formal peer inspection. The formal peer inspection is

11



performed by a team, each member of which has a 
well-defined role. The team is led by a moderator, who is 
formally trained in the inspection process. The team in
cludes a reader, who leads the team through the item to 
be inspected; one or more reviewers, who look for errors 
in the product; a recorder, who notes the faults; and the 
author, who helps explain the product.

This formal, highly structured inspection process has 
been extremely effective in finding and eliminating er
rors. It can be applied to any product of the software de
velopment process, including documents, design, and 
code. One of its important side benefits is the direct feed
back to the developer/author, often resulting in signifi
cant improvement in product quality.

12



4 DOCUMENTATION AND DELIVERABLES

4.1 Concepts and Definitions 

This section identifies the documentation and software 
deliverables essential to a successful software develop
ment project. This section should be used as a starting 
point to help determine a realistic set of documentation 
requirements and deliverables for the project at hand. A 
realistic set of documentation requirements will result 
from tailoring the information in this section in light of 
past experience with similar projects, the size of the soft
ware, and sponsor requirements. Small and short
duration projects will normally produce fewer documents 
or combine related documents.  

4.2 Software Project Plan 

A result of the developer's planning process, a Software 
Project Plan is written by the developer and details how 
the developer will manage the software project. The Soft
ware Project Plan is discussed in detail in Section 5.2.4.  

4.3 Software Requirements 
Documentation 

Software requirements documentation specifies the 
requirements that the software to be developed/main
tained must meet. Include in this documentation the fol
lowing, as applicable: 

1. Functionality-the functions that the software is to 
perform 

2. Performance-the time-related requirements of 
software operation such as speed, response time, 
etc.  

3. Design constraints imposed on implementation ac
tivities-any elements that will restrict design op
tions (e.g., specifying the hardware platform or the 
programming language) 

4. Attributes-characteristics of the software, its ac
ceptance, or use (e.g., portability, acceptance crite
ria, access control, availability, maintainability, etc.) 

5. External interfaces--interactions with people, hard
ware, and other software 

An item can be called a software requirement only if its 
achievement can be verified and validated. It is important 
that each software requirement be traceable throughout 
the stages of the software life cycle.

4.4 Software Design Documentation 
In software design documentation, specify the overall 
structure of the software so that it can be translated into 
code. Include in this documentation: 

1. A description of the major elements of the software 
as they relate to the requirements 

2. A description of the theoretical basis, physical 
model, mathematical model, control flow, data flow, 
control logic, and data structure 

3. An identification and detailed definition of the soft
ware units and data elements of the software archi
tecture.  

4.5 Software Implementation 
Documentation 

Software implementation documentation includes unit 
designs (usually presented as a commentary prologue to 
the unit's source code) and the unit code itself.  

4.6 Software Verification and Valida
tion Documentation 

Software verification and validation documentation in
cludes: 

1. An overall verification and validation plan that in
cludes a description of: 

a. The objectives and processes for each review 
and inspection 

b The test methodology including the objectives 
of each level of testing (e.g., unit, integration, 
qualification, acceptance) 

c. Contents of each level of formal test documen
tation (test plans, procedures, reports) 

d. How verification and validation documentation 
will be organized so that traceability of reviews, 
inspections, and tests to requirements and de
sign will be apparent 

2. Agenda, presentation materials, and minutes for 
formal life-cycle reviews and audits 

3. Results of formal peer inspections 

4. Informal test plans for unit and integration testing

13



5. Informal test procedures for unit and integration 
testing 

6. Informal test reports for unit and integration testing 

7. Formal test plans for qualification and acceptance 
testing 

8. Formal test procedures for qualification and accep
tance testing 

9. Formal test reports for qualification and acceptance 
testing 

4.7 User Documentation 

In user documentation, include: 

1. A description of the user's interaction with the soft
ware, and a description of any required training nec
essary to use the software 

2. Input and output specifications and formats, includ
ing sample cases 

3. A description of the limitations of the software 

4. A description of anticipated errors and how the user 
can respond 

5. For each error message, provide the message, an ex
planation of the message, how the message may 
have come about, and actions that may or should be 
taken 

6. Information about obtaining user and sustaining en
gineering support 

4.8 Other Documentation 
Other documentation may include the following: 

1. Software Operations Concept 

2. Standards and Procedures Manual 

3. Software Maintenance Manual 

4. Software Engineering Notebooks

4.9 Deliverables 
Documentation deliverables are discussed in Section 
4.9.1, and software deliverables are discussed in Sec
tion 4.9.2.  

4.9.1 Documentation Deliverables 

The sponsor must decide what the contract deliverables 
should be. For large projects, the following documenta
tion deliverables are suggested: 

1. Software Project Plan 

2. Requirements documentation 

3. Overall verificationand validation plan 

4. Design documentation (delivered three times: in
itially at the Preliminary Design Review; updated at 
the Critical Design Review; and updated after ac
ceptance testing) 

5. Qualification test plan 

6. Qualification test procedures 

7. Qualification test report 

8. Acceptance test plan 

9. Acceptance test procedures 

10. Acceptance report 

11. User documentation 

For smaller projects, documents can be combined. For 
example: 

1. The requirements documentation can be combined 
with the design documentation 

2. The overall verification and validation plan can be 
combined with the Software Project Plan 

3. Test plans and test procedure documents can be 
combined 

4.9.2 Software Deliverables 

The decision about what software deliverables to require 
depends on numerous considerations, including

14



1. Whether the software will be implemented and de
livered in segments or builds (for large software 
products, builds have been proved to be a very effec
tive risk-reduction technique) 

2. What organization will perform maintenance and 
the environment needed to perform maintenance.  

If the maintainer is different from the developer, a maxi
mal subset of the following list of possible software 
deliverables should be chosen:

6. Software and job control language necessary to es
tablish and maintain the software development li
brary 

7. Software engineering environment 

8. Software test environment 

9. Non-developmental software

1. Source code 4.10 Techniques and Tools

2. Object code 

3. Executable code

4. Test cases for formal testing, including machine
readable test procedures 

5. Required job control language, e.g., to compile, link, 
load, and execute the software

Numerous tools exist for generating documentation: 
word processing programs, desktop publishing programs, 
graphics programs, spelling checkers, grammar checkers, 
etc.  

There are numerous standards for documentation that 
should be consulted before deciding on the documenta
tion requirements to be levied on the developer.  

Consult an experienced project manager for his/her expe
riences when deciding what deliverables to choose.

15



5 PROJECT MANAGEMENT

5.1 Concepts and Definitions 
Assign the responsibility for each software development 
or maintenance effort within an NRC sponsor organiza
tion to a project manager. This sponsor project manager 
should be an experienced NRC employee trained in man
aging the technical and personnel aspects of the project.  
He or she is assigned by sponsor management the respon
sibility for the successful completion of the project, i.e., 
for meeting technical objectives within cost and schedule 
constraints. Delegate to the sponsor project manager the 
authority to negotiate, via the Government's Contracting 
Officer, commitments with the developer.  

Similarly, the developer is expected to assign a project 
manager who will be responsible for meeting the devel
oper's contractual commitments.  

The two basic project management activities, discussed in 
Sections 5.2 and 5.3, respectively, are: 1) project planning 
and organizing and 2) project tracking and oversight.  

5.2 Project Planning and Organizing 

Project planning and organizing involves: 

1. Development, by the sponsor project manager, of 
required inputs to the contract, e.g., the statement 
of work, schedule, list of deliverables, identification 
of applicable standards, and software specification 

2. The definition, by the sponsor project manager, of 
work elements necessary to develop or maintain the 
required software. The work elements are defined in 
a statement of work that will be a part of the contract 
with the developer 

3. The establishment, by the developer and approval 
by the sponsor, of budgets and schedules for each 
defined work element 

4. The establishment, by the developer, of a project or
ganization for implementing the project; and assign
ment of work elements, budgets, and schedules to 
each organizational entity 

5. Documentation of the overall plan for approval by 
the sponsor project manager 

Consider requiring that the developer's organization as
signed to plan for and perform formal testing be different 
from and independent of the organization(s) that de
signed and implemented the software.

5.2.1 Required Inputs to the Contract 

Hold the sponsor project manager responsible for devel
oping the following inputs to the contract: the statement 
of work, top-level schedule, list of deliverables, 
identification of applicable standards, and software speci
fication.  

The statement of work defines the activities required of 
the developer. The statement of work should: 

1. Define what the developer must do, not what the 
software must do (the software specification defines 
what the software must do) 

2. Contain explicit tasks modeled after the life cycle ac
tivities defined in Section 2 and the verification and 
validation activities defined in Section 3 

3. Identify the deliverable documentation and soft
ware required of the developer (See Section 4) 

4. Require the developer to perform project planning 
and organization activities resulting in the Software 
Project Plan (See Section 5.2.4) 

5. Require the developer to perform project tracking 
and oversight activities and deliver periodic progress 
reports as indicated in Section 5.3 

6. Require the developer to perform configuration 
management activities as indicated in Section 6 

7. Require the developer to establish and maintain a 
nonconformance reporting and corrective action 
system as indicated in Section 7 

8. Require the developer to establish and maintain a 
quality assessment and improvement program as in
dicated in Section 8 

Develop the top-level schedule around the: 

1. Formal life-cycle reviews and audits discussed in 
Section 3.2.2 (e.g., Software Requirements Review, 
Preliminary Design Review, etc.) 

2. Deliverables 

The list of deliverables should contain: 

1. The software end products

17



5.2.4 The Software Project Plan

3. Agenda, presentation materials, and minutes for 
formal reviews 

4. Progress reports 

The identification of applicable standards may include: 

1. Programming language standards (e.g., FORTRAN 
77) 

2. Coding standards 

3. Documentation standards 

4. De facto standards embedded in software and docu
mentation to be maintained 

The software specification documents the requirements 
the software is to satisfy. The software specification is 
often preliminary and subject to analysis and expansion by 
the developer during the requirements definition proc
ess. The software specification should contain: 

1. Technical goals and objectives 

2. Identification of users and their interaction with, 
and use of the software 

3. The characteristics presented in Section 4.3 

5.2.2 Estimating 

Both the sponsor and developer should derive estimates 
for the size of the software products and documentation, 
software development resources and costs, and critical 
target computer resources. These estimates should be de
rived from in-house experience-based data using docu
mented procedures. Discuss overall projected software 
size (estimated combined with actuals) at each formal re
view.  

5.2.3 Methodology, Standards, and 
Procedures 

Developers should work toward basing software planning 
(and monitoring) activities on documented methodolo
gies, standards, and procedures.

Require the developer to submit, for sponsor project 
manager approval, a Software Project Plan that appropri
ately and realistically documents the required software 
activities and contractual commitments. When approved 
by the sponsor project manager, the Software Project 
Plan becomes the baseline management plan. Figure 5-1 
shows a suggested table'of contents for the Software 
Project Plan.  

Section 1 of the Software Project Plan should be kept 
brief. Because the plan should be kept up to date, con
sider requiring the developer to submit any changes to the 
plan with the monthly progress reports.  

Section 2 documents the developer's management ap
proach. The following paragraphs provide guidance to 
the developer for the contents of each subsection: 

1. 2.1-Planning Approach. Briefly describe the ap
proach used to plan the project.  

2. 2.2-Tracking and Oversight Approach. Briefly 
describe the approach used to track: technical 
progress, conformance to the planned schedule, and 
costs as related to actual work performed. Include 
approach to: supplier control; metrics; security; 
training; and risk management 

3. 2.3--Organization, Tasks, and Responsibilities.  
Describe the project organization. Show how the 
tasks of the statement of work are assigned to re
sponsible elements of the project organization.  

4. 2.4-Scheduling. Provide the initial, top-level 
project schedule and the rationale for arriving at this 
schedule.  

5. 2.5-Resources. Identify project resources, 
including staffing, software engineering facilities 
and environment, and support tools. Identify Gov
ernment Furnished Equipment (GFE) and Govern
ment Furnished Information (GFI) required by the 
developer.  

6. 2.6--Configuration Management. Identify and 
define project baselines. Include or reference 
procedures for: change control; determining status 
of baselines, proposed changes, and implemented 
changes; release control; the software development 
library; and code, access, and media control.

18

2. Required documentation



Figure 5-1 
Table of Contents for a Software Project Plan 

Section 3 documents the developer's technical approach.  
The following paragraphs provide guidance to the devel
oper for the contents of each subsection: 

1. 3.1--Implementing the Life Cycle Tasks of the 
Statement of Work. Describe briefly how each ma
jor life-cycle task of the statement of work will be im
plemented.  

2. 3.2-Verification and Validation Approach. De
scribe the verification and validation approach. In
clude the elements addressed in Section 3.

SECTION 1 -- INTRODUCTION 

1.1 Project Background and Objectives 

1.2 Plan Scope and Organization 

1.3 Plan Maintenance 

SECTION 2 -- MANAGEMENT 
APPROACH 

2.1 Planning Approach 

2.2 Tracking and Oversight Approach 

2.3 Organization, Tasks, and Responsibilities 

2A Scheduling 

2.5 Resources 

2.6 Configuration Management 

SECTION 3 - TECHNICAL APPROACH 
3.1 Implementing the Life Cycle Tasks of the 

Statement of Work 

3.2 Verification And Validation Approach 

3.3 Nonconformance Reporting and 
Corrective Action 

3.4 Quality Assessment and Improvement 

Approach 

3.5 Deliverables

19

3. 3.3--Nonconformance Reporting and Corrective 
Action Approach. Describe the nonconformance re
porting and corrective action process, including 
nonconformance detection and reporting, impact 
assessment and corrective action, and tracking and 
management reports. Identify the interrelation
ships, if applicable, with the status accounting func
tion of configuration management. Identify any 
techniques and tools used (e.g., use of a data base 
management system).  

4. 3.4-Quality Assessment and Improvement 
Approach. Describe the quality assessment and 
improvement approach. Include the elements ad
dressed in Section 8.  

5. 3.3-Deliverables. Identify all deliverables and the 
dates they are due.  

6. 3.4-Standards, Procedures, Conventions, and 
Metrics. Identify all standards, procedures, conven
tions, and metrics to be used. Identify both product 
standards (e.g., documentation standards, coding 
standards) and process procedures (e.g., inspection 
and review procedures).  

5.3 Project Tracking and Oversight 

Project tracking and oversight involves: 

1. Monitoring, assessing, and reporting technical 
progress 

2. Determining and reporting schedule and cost status 

3. Developing and implementing corrective action 
plans as required 

Monitoring, assessing, and reporting technical progress 
requires tracking actual results and performance of the 
software project against the Software Project Plan. Im
plementation of planned verification and validation, con
figuration management, and quality assessment and im
provement activities are part of the ordinary tracking and 
oversight functions. The key to monitoring progress on an 
ongoing basis is to maintain communications at all levels 
of the developer and sponsor organizations. Use formal 
mechanisms such as reviews and reports and informal 
mechanisms such as meetings and brainstorming sessions 
to keep project members and the project manager in
formed. Track technical progress, costs, critical target 
computer resources, the schedule, estimates for lines of 
code, and risks in as quantitative way as possible.  

Hold the developer project manager responsible for de
termining and reporting schedule and cost status in terms



of variances from the baseline plan. Require the devel
oper to report the reasons for schedule and cost vari
ances, e.g., unexpected problem complexity and changes 
in requirements.  

Take corrective actions when the actual results and per
formance of the software project deviate significantly 
from the Software Project Plan and current schedule. Ba
sic corrective actions may include adding staff, extending 
the work week, and/or upgrading (or downgrading) the 
skill mix.  

5.4 Supplier Control 

If the developer plans to use subcontractors or vendors, 
the sponsor and developer project managers should en
sure that: 

1. The developer selects qualified subcontractors and 
vendors 

2. The software standards, procedures, and product 
requirements for the subcontract comply with the 
prime contractor's contractual commitments 

3. A Software Project Plan as outlined in Section 5.2.4 
is required of the major subcontractors 

3. Commitments between the prime contractor and 
subcontractor are understood and agreed to by both 
parties 

4. The prime contractor tracks the subcontractor's ac
tual results and performance against the commit
ments 

5. Potential technical and business risks are identified 
and managed 

5.5 Metrics 

Plan to measure both the products being. developed (the 
software and its documentation) and the processes being 
used. Process-related metrics (e.g., number of errors 
found in the requirements or design) are often useful in 
evaluating the programmatic risks involved in software 
development.  

Establish a technical performance measurement pro
gram, using the following steps: 

1. Develop a comprehensive list of key technical per
formance parameters, associated with both products 
and processes, that can be predicted and estimated

(e.g., accuracy, data access times, response time, 
number of errors found in requirements).  

2. For each parameter, specify the requirement and 
develop a time-phased profile with tolerance bands 
that depict the acceptable range of performance as 
the project progresses.  

3. Plan for periodic analysis and predictions of these 
parameters, especially in conjunction with formal 
life-cycle reviews 

4. Keep the sponsor project manager informed of all 
unfavorable trends and the corrective action plans 
being initiated to resolve them 

5.6 Security 
The Computer Security Act of 1987 requires Federal 
agencies to identify each computer system 'that contains 
sensitive information and to prepare and implement a 
plan for the security and privacy of these systems. OMB 
Bulletin No. 90-08 provides guidance for preparing such 
plans, but does not address the unique security require
ments of local area networks. NUREG/BR-0166, In
structions for Preparing Security Plans for Local Area Net
works in Compliance With OMB Bulletin No 90-08, 
provides guidelines for preparing security plans for local 
area networks and contains OMB Bulletin No. 90-08 as 
an appendix. If the proposed project will be a sensitive ap
plication, IRM/DISS should be notified on the sensitive 
system survey form.  

5.7 Training 
The right people properly trained are necessary for a suc
cessful project. Required training includes both manage
ment and technical training in the knowledge and skills of 
a variety-of disciplines. Sponsor and developer project 
managers need to evaluate training needs for: 

1. Sponsor management and technical personnel 

2. Developer management and technical personnel 

3. Maintainer management and technical personnel 

4. Operations management and technical personnel 

When the evaluation is complete, invest in the required 
training.  

5.8 Risk Management 
Initiate the risk management program while the techni
cal, schedule, and budget planning efforts are under way.

20



The following activities are typical of a risk management 
program: 

1. Identify, assess, document, and rank technical, cost, 
resource, and schedule risks 

2. Develop a risk mitigation plan 

3. Formalize the risk management program 

4. Review the risk management program regularly

5.9 Techniques and Tools 
Numerous commercially available tools exist for: 

1. Project management support 

2. Estimating software costs and schedules 

3. Earned-value reporting 

Many organizations have made the commitment to pro
vide in-depth training to software project managers.

21



6 CONFIGURATION MANAGEMENT

6.1 Concepts and Definitions 

For a project to be successful, the developer and sponsor 
must establish and maintain integrity of the software and 
its documentation as they evolve throughout the life cy
cle. Because requirements, the design, the code, and the 
test environment can change significantly and often, it is 
essential that change be managed successfully. Briefly 
stated, configuration management is change manage
ment.  

Fundamental to configuration management are the con
cepts of a baseline and change control. A baseline is a 
document or software that has been formally reviewed 
and agreed upon by the developer and sponsor, that 
thereafter serves as the basis for further development 
and that can be changed only through formal change con
trol procedures. Change control is the process by which a 
change to a baseline is proposed, evaluated, approved or 
rejected, scheduled, and tracked.  

There are four major functions of configuration manage
ment: 

1. The identification and establishment of baselines 

2. Controlling both changes to baselines and the re
lease of baselines 

3. Recording and reporting the status of baselines, 
change requests, and implemented changes 

4. Verifying, through auditing, the correctness and 
completeness of base~lines prior to release 

For a software configuration management program to be 
successful, experience has shown that most of the follow
ing conditions exist: 

1. The content and status of the software and docu
mentation baselines are known at all times 

2. The developer follows a written configuration man
agement policy that has the following characteris
tics: 

a. Responsibility for configuration management 
for each project is explicitly assigned 

b. Configuration management is implemented on 
products throughout the product's life cycle

c. Configuration management is implemented 
for externally-deliverable products and for ap
propriate products used inside the organization 

d. All projects have a repository for storing key 
software engineering elements and associated 
configuration management records 

e. The software baselines and configuration man
agement activities are audited on a regular 
basis 

3. A group that is responsible for coordinating and im
plementing configuration management for the 
project exists or is established 

4. Adequate resources and budget for performing con
figuration management activities are provided 

5. Members of the configuration management group 
are trained in the objectives, procedures, and meth
ods for performing their assigned activities 

6. The configuration management activities are re
viewed with the project manager on a regular basis 

6.2 Baselines 
Establish controlled and stable baselines for planning, 
managing, and building the system. Explicitly identify as 
project baselines software products (e.g., source code, ob
ject code, test cases) and software process specifications 
(e.g., standards and procedures) that are needed to estab
lish and maintain stability of the software activities.  

Establish a naming or labeling system that: 

1. Uniquely identifies all project entities (e.g., docu
ments, software elements, test cases) 

2. Identifies changes by revision or version 

3. Uniquely identifies each configuration/version of 
revised software for use 

Establish the following baselines that will be controlled 
by the sponsor's configuration control board (CCB) (See 
Section 6.3): 

1. The project management baseline consisting of the 
Software Project Plan, documented standards and 
procedures, and up-to-date budgets and schedules

23



2. The requirements baseline consisting of the soft
ware requirements documentation plus approved 
changes 

3. The product baseline consisting of software and 
documentation resulting from the qualification test
ing activity 

4. The operational baseline consisting of software and 
documentation resulting from the installation and 
acceptance activity that is placed into operation 

The developmental configuration is the developer's soft
ware and associated technical documentation that defines 
the evolving software products during development. It 
contains the software design and implementation prod
ucts (software design documentation, code, test cases, 
and related information). Require the developer to apply 
internal configuration control procedures to the develop
mental cQnfiguration as it evolves. See Sections 6.3 and 
6.6.  

6.3 Change Control 

Once a baseline has been established, changes to the 
baseline can be made only in accordance with formal 
change control procedures. To manage changes to 
baselines: 

1. Establish a board (i.e., a configuration control board 
(CCB)) controlled by the sponsor project manager 
that has the authority for managing the software 
baselines and approving or rejecting proposed 
changes to them 

2. Establish and follow a documented procedure for in
itiating, recording, reviewing, approving or reject
ing, and tracking change requests for baselines 

3. Establish and follow a documented procedure for 
ensuring that all changes, especially those to the 
requirements and design, are appropriately re
viewed for "ripple" effects and incorporated into all 
related activities 

4. Establish and follow a documented procedure to 
create and control the release of software baseline 
products 

6.4 Status of Baselines and Changes 
Track accurately the current status of baselines and 
changes throughout development and maintenance. To 
track status accurately:

1. Establish and follow a documented procedure to re
cord the status of baselines and change requests 

2. Create and distribute to affected groups and indi
viduals standard reports documenting the configura
tion management activities 

6.5 Software Development Library 
Require the developer to establish and maintain a soft
ware development library (SDL). An SDL is a controlled 
collection of software, documentation, and associated 
tools and procedures used to facilitate the orderly devel
opment and subsequent maintenance of software. The 
SDL contains the developmental configuration as part of 
its contents. An SDL provides storage of and controlled 
access to software and documentation in human-readable 
form, machine readable form, or both. The SDL may also 
contain management data pertinent to the software de
velopment project. The SDL becomes the repository for 
the software baselines when the product baseline and the 
operational baseline are established.  

6.6 Software, Access, and Media 
Control 

Require the developer to establish and maintain the fa
cilities and procedures used to 

1. Maintain, store, secure, and document controlled 
versions of the software throughout the life cycle.  
This may be implemented with the SDL (See Sec
tion 6.5) 

2. Permit authorized and prevent unauthorized access 
to the software and documentation 

3. Identify the media for each software product and the 
documentation required to store the media, includ
ing the copy and restore process 

4. Protect software physical media from unauthorized 
access on inadvertent damage or degradation 
throughout the life cycle.  

6.7 Configuration Audits 
Require the developer to plan and execute documenta
tion audits, software configuration audits, and in-process 
audits. Require the developer to establish and follow a 
documented procedure to prepare for, conduct, report 
results from, and track action from configuration audits.  

A documentation audit is a line-by-line comparison of re
vised documentation against the previous version of the 
documentation to ensure that only approved changes

24



have been incorporated. A documentation audit is typi
cally performed after a formal life-cycle review (e.g., after 
the Critical Design Review to ensure only CCB-approved 
changes to the software requirements documentation and 
software design documentation have been incorporated).  

As indicated in Section 3.2.2.6, the Software Configura
tion Audit is executed twice, first at the completion of 
qualification testing and second at the completion of ac
ceptance testing.  

Periodic in-process audits are performed to assess how 
well the configuration management standards and pro-

cedures are being followed and how effective they are in 
managing the software baselines.  

6.8 Techniques and Tools 
Use a data base management system as a tool in tracking 
and reporting on proposed and actual changes to 
baselines. Often the data base of proposed and actual 
changes is integrated with the data base used to track and 
report on nonconformances and associated corrective ac
tion (see Section 8).  

In addition, choose a software tool, often a part of the op
erating system utilities, to help manage the SDL.

25



7 NONCONFORMANCE REPORTING AND CORRECTIVE ACTION

7.1 Concepts and Definitions 

A nonconformance, often called a problem, discrepancy, 
fault, or error, is any failure of any document, code, data 
structure, or process to meet its requirements or stan
dards. Corrective action is a general name for the process 
by which nonconformances are corrected, verified, and 
controlled.  

Require the developer to establish and maintain a 
nonconformance reporting and corrective action system 
and associated procedures. The purpose of a noncon
formance reporting and corrective action system is to re
port, analyze, correct, and verify nonconformances and 
collect information from which reports on the overall 
status of nonconformances can be made.  

The need for a nonconformance reporting and corrective 
action system arises early in the software life cycle, as 
soon as the first documents and other products are devel
oped. A nonconformance reporting and corrective action 
system should: 

1. Define a nonconformance report form 

2. Identify the organization(s) and procedures for: 

a. Analyzing the nonconformance 

b. Assigning priorities 

c. Communicating with the person who reported 
the nonconformance 

d. Correcting the nonconformance 

e. Verifying the correction and/or the corrective 
action 

3. Track the status of the nonconformance and correc
tive action 

4. Produce management reports 

7.2 Activities 

There are three basic activities associated with a noncon
formance and corrective action system: 

1. Nonconformance detection and reporting (Section 
7.2.1)

2. Impact assessment and corrective action (Section 
7.2.2) 

3. Tracking and management reports (Section 7.2.3) 

7.2.1 Nonconformance Detection and 
Reporting 

Allow nonconformance reports to be filed against any 
product in any part of the software life cycle by anyone 
associated with the project. Normally a nonconformance 
reporting and corrective action system is used after a 
product is first approved or baselined by its developer and 
released for wider use. For example, while a developer is 
unit testing and integration testing the code, errors found 
may be tracked only locally and not in the noncon
formance reporting and corrective action system. After 
the code is declared correct and released for qualification 
testing by the implementation group, the noncon
formance reporting and corrective action system is used 
to inform the users of the code and the designer/program
mer about nonconformances and to assure that the non
conformances are corrected, verified, and not over
looked.  

Examples of the information that a nonconformance re
port form might contain are: 

1. Date and time of the detection of the noncon
formance 

2. Nonconformance identification (report number) 

3. Reporting individual and organization 

4. Reporting individual's determination of the critical
ity of the nonconformance 

5. Statement of the nonconformance 

6. Organization responsible for analysis of the 

nonconformance 

7. Result of the analysis of the nonconformance 

8. The project's determination of the criticality of the 
nonconformance 

9. Organization(s) responsible for designing, imple
menting, and verifying the corrective action or "fix"

27



10. Identification of the unit(s) of code, data, or docu
mentation in which corrective action must be taken 

11. Summary of the test case results (or other verifica
tion activity) indicating that the corrective action was 
successfully implemented 

12. Identification of the date or version of the product(s) 
or baseline in which the correction will be included 

13. Date on which the nonconformance is closed 

7.2.2 Impact Assessment and Corrective 
Action 

Evaluate all nonconformances for criticality and level of 
importance. Consider the following factors: 

1. The impact of not correcting the nonconformance 

2. The resources required for correcting the noncon
formance 

3. The impact on other baselined items if the noncon
formance is corrected 

Ensure that a written procedure exists to control the cor
rective action process. Include in this procedure a follow
up activity to ensure the nonconformance has been docu
mented and corrected in the appropriate version of 
software and to assure that adequate testing, including re
gression testing, has been done.  

7.2.3 Tracking and Management Reports 

After the nonconformance report is prepared by the indi
vidual who found the nonconformance, enter the report 
data into a controlling system. Data base management 
systems are often used to increase productivity in the

tracking of nonconformances and providing management 
reports. Entering the nonconformance report electroni
cally can increase productivity further.  

Provide in the nonconformance tracking and reporting 
system management reports containing such information 
as nonconformance and correction status, the number of 
nonconformance found per product, and the criticality of 
open problems. The data enable the impact of the 
nonconformance to be evaluated so that the use of re
sources may be prioritized.  

7.3 Interrelationships 

The nonconformance reporting and corrective action sys
tem is a basic and fundamental tool for project manage
ment and for assuring quality products. As such it impacts 
and interacts with many software management, verifica
tion and validation, and quality assessment and improve
ment activities. For example, it interacts with: 

1. Configuration management activities that deal with 
product changes and Versions that result from cor
recting nonconformances 

2. Requirements management activities because some 
nonconformance reports will contain requirements 
changes disguised as nonconformances. These re
ports should result in the opening of a change re
quest 

3. Quality improvement activities that study trends in 
nonconformances in specific products or processes 

7.4 Techniques and Tools 

Consider using an automated tracking system for 
nonconformance reports and an automatic capability to 
identify and record changes that occur as a result of the 
resolution of the nonconformances.

28



8 QUALITY ASSESSMENT AND IMPROVEMENT

8.1 Concepts and Definitions 
Require the developer to institute a quality assessment 
and improvement program. The objective of this program 
is assess and improve the quality of: 

1. Deliverable software and documentation 

2. The processes used to produce deliverable software 

3. Non-deliverable software (software not required to 
be delivered by the contract) 

8.2 Responsibility For Quality Assess
ment and Improvement 

Allow the developer the freedom in assigning responsibil
ity for meeting the objectives of the quality 'assessment 
and improvement program. However, for Level 1 soft
ware development and maintenance efforts, require that 
the persons responsible for the assessments of a product 
or activity be independent of the persons who developed 
the product, performed the activity, or are responsible for 
the product or activity. This restriction does not preclude 
members of the development team from participating in 
these assessments.  

8.3 Documentation For Quality 
Assessment and Improvement 

The developer's approach to quality assessment and im
provement will be documented in the Software Project 
Plan. This approach will be implemented throughout the 
development or maintenance effort. Developers should 
work toward defining in detail their methodology for 
quality assessment and improvement in written proce
dures.  

8.4 Quality Assessments 
Require the developer to assess: 

1. Software 

2. Software documentation 

3. Processes used in software development 

A prerequisite to any assessment is a yardstick or standard 
against which a product or process can be measured or as
sessed. A key yardstick is the developer's "software

plans". This is a collective term used to describe the de
veloper's plans, methodologies, standards, and proce
dures for software management, software engineering, 
software verification and validation, software documenta
tion, software product evaluation, and software configu
ration management.  

Table 8-1 identifies the products and processes to be as
sessed and the objectives of the assessments.  

8.5 Quality Records Collection, 
Maintenance, and Retention 

Require the developer to prepare and maintain records 
of the quality assessment and improvement activities.  

Require the developer to prepare a software quality as
sessment record for each assessment required by the con
tract. Require these records to contain as a minimum: 

1. Assessment date 

2. Assessment participants 

3. Assessment criteria 

4. Assessment results including detected problems, 
with reference to the appropriate nonconformance 
reports, as applicable 

5. Recommended corrective action 

Include in these required records the nonconformance 
reports that are the basis of the nonconformance report
ing and corrective action system outlined in Section 7. Re
quire the developer to make quality records available for 
sponsor review and to maintain them for the life of the 
contract.  

8.6 Quality Improvement 

Encourage the developer to integrate quality assessment 
activities with quality improvement activities (which may 
be part of the developer's approach to total quality man
agement).  

8.7 Techniques and Tools 
Checklists for quality audits and inspections and auto
mated code standards analyzers are examples of tools 
used in quality assessment activities.

29



Table 8.1 
Assessments of Products and Processes Used in Software Development 

Product or Process 
To Be Assessed Assurance Objectives 

Software Compliance with the contract and adherence to the 
software plans 

Software plans 0 All software plans required by the contract have been 
documented 

0 The software plans comply with the contract 

* Each software plan is consistent with other software plans 

Deliverable software 0 Each document adheres to the required format 
documentation 

* Each document complies to the contract 

Software management Compliance with the contract and adherence to the software 
plans 

Software engineering Compliance with the contract and adherence to the software 
plans 

Software qualification * The qualification plans and procedures include provisions 
for all requirements 

"* Software qualification is conducted as required by the 
contract and as specified in the software plans 

"• The version number of each item being qualified and each 
item used in qualification is documented 

"* The results of required qualifications are accurately 
recorded and analyzed to determine whether the software 
meets its specified requirements 

"* All required facilities for qualification are available 

Software configuration Compliance with the contract and adherence to the software 
plans management 

Software corrective actions Compliance with the contract and adherence to the software 
plans and: 

" All nonconformances detected in processes and in products 
that are under developer or sponsor control are promptly 
reported and entered into the software corrective action 
process 

"• Each nonconformance is classified, as required by the 
contract, and analysis is performed to identify trends in the 
nonconformances reported 

"• Action is initiated on the nonconformances and adverse 
trends, resolution is achieved, status is tracked and reported, 
and records are maintained for the life of the contract 

" Corrective actions are evaluated to: 1) verify that problems 
have been resolved, 2) verify that adverse trends have been 
reversed, 3) verify that changes have been correctly 
implemented in the appropriate processes and products, and 
4) determine whether additional problems have been 
introduced

30



Table 8.1 (continued)

Product or Process 
To Be Assessed Assurance Objectives 

Documentation and media 0 Compliance with the contract and adherence to the 
distribution software plans 

* Evaluation of the controls exercised on the internal 
distribution of deliverable media and documentation 

Storage, handling, and 0 Compliance with the contract and adherence to the 
delivery software plans 

* Evaluation of the storage, handling, packaging, shipping, and 
external distribution of deliverable software and associated 
documentation 

Software development 0 The library and its operation comply with the 
library contract and adhere to the software plans 

0 The most recent authorized version of the materials 
under configuration control are clearly identified 
and are the ones routinely available from the library 

& Previous versions of materials under configuration 
control are clearly identified and controlled to 
provide an audit trail that permits reconstruction of 
all changes made to each baseline 

Non-developmental Evaluate each item of non-developmental software to 
software be incorporated into deliverable software to assure that: 

"* Objective evidence exists, prior to its incorporation, 
that it performs required functions 

"* It was placed under configuration control prior to 
its incorporation 

"* The data rights provisions are consistent with the contract 

Non-deliverable software Evaluate each item of non-deliverable software used in the 
qualification or acceptance of deliverable software to assure 
that: 

"• Objective evidence exists, prior to its intended use, 
that it performs required functions 

"• It was placed under configuration control prior to its use 

Deliverable elements of the Evaluate each deliverable element of the software 
software engineering and test engineering and test environments to assure that: 
environments 

"* It complies with the contract and adheres to the 
software plans 

"* Objective evidence exists, prior to its use, that it 
performs required functions 

"* It was placed under configuration control prior to its use 

"* The data rights provisions are consistent with the contract

31



Table 8.1 (continued)

Product or Process 

To Be Assessed Assurance Objectives 

Subcontractor management Evaluate all subcontractor activity to assure that: 

* All subcontractor-developed software and related 
documentation deliverable to the sponsor satisfies the 
requirements of the prime contract 

* A set of baselined requirements is established and 
maintained for the software to be developed by the 
subcontractor 

0 Applicable software quality assessment and improvement 
requirements are included or referenced in the subcontract 
or purchase documents 

* Access is available for developer reviews at subcontractor and 
vendor facilities 

* The sponsor has the right to review all software products and 
activities required by the subcontract, at subcontractor 
facilities, to determine compliance with the contract. Sponsor 
review does not constitute acceptance, nor does it in any way 
replace assessment by the developer or otherwise relieve the 
developer of his responsibility to furnish acceptable software 
and associated documentation 

Acceptance inspection and 9 Compliance with the contract and adherence to the software 
preparation for delivery plans 

& Evaluation of the controls exercised on the internal 
distribution of deliverable media and documentation 

Participation in formal reviews e Prior to each formal review and audit, assure that 1) all 
and audits required products will be available and ready in sufficient 

time for sponsor review before the review meeting and 2) all 
required preparations have been made 

0 At each formal review and audit, require the developer to 
present an assessment of the status and quality of each of the 
development products reviewed 

0 Following each formal review and audit, require the 
developer to assure that all software-related action items 
assigned to the developer have been performed

32



9 SOFTWARE DEVELOPED BEFORE ISSUANCE OF THIS DOCUMENT

All the detailed guidelines in this document obviously 
cannot be applied in a cost-effective manner to software 
developed before this document was issued.  

However, Level 1 software developed before this docu
ment was issued should receive as-is verification and vali
dation or certification based on its length of service and 
error profile. In addition, the software should be placed 
under configuration control in accordance with the guid
ance in ASME Standard NQA 2, Part 2.7, Section 10.2.  

Level 1 and Level 2 software developed before this docu
ment was issued can benefit from selected application of 
the software quality assurance principles presented in 
this document. The following list provides, in relative pri
ority order, suggested actions that can be taken on a step
by-step basis to enhance existing software cost
effectively:

1. Establish and maintain a software development 
library 

2. Institute a nonconformance and corrective action 
system 

3. Develop a set of acceptance test cases 

4. Institute a clearly defined test program 

5. Institute a well-defined configuration management 
system, especially a software release system 

6. Begin code inspections 

Ultimately, however, the extent to which new techniques 
can or should be introduced into ongoing maintenance ef
forts is a matter of managerial and engineering judgment.

33



APPENDIX A 

Sample Software Project Plan 

Appendix A consists of a sample Software Project Plan. 5. Task 5-Installation and Acceptance 
Although the project and the sample plan are fictitious, 
the sample plan is provided to indicate an acceptable 6. Task 6-Verification and Validation 
level of detail.  

The statement of work for the project is divided into ten 7. Task 7-Project Management 

tasks as follows: 
8. Task 8-Configuration Management 

1. Task 1-Requirements Definition 
9. Task 9--Nonconformance Reporting and Correc

2. Task 2-Design tive Action 

3. Task 3 -Implementation 10. Task 10-Quality Assessment and Improvement 

4. Task 4-Qualification Testing The sample software project plan follows.

35



SAMPLE SOFTWARE PROJECT PLAN 

SECTION 1 -- INTRODUCTION

1.1 Project Objectives 
The ABC Corporation has been developing, enhancing, 
and maintaining the XYZ analysis tool for NRC in-house 
use for the past 8 years. The current contract requires the 
ABC Corporation to update Version 3.4 of XYZ by: 

1. Adding two new major capabilities, C1 and C2 

2. Analyzing and implementing corrective action for 30 
known nonconformances in Version 3.4 of XYZ 

3. Analyzing and implementing a corrective action for 
as many as 20 yet-to-be-determined nonconfor
mances in Version 3.4 of XYZ.  

The contract period of performance is 2 years from the 

contract start date.  

1.2 Plan Scope and Organization 

This software project plan defines ABC's management 
and technical approach to meet the requirements of the 
contract. It also identifies the standards, procedures, con
ventions, and metrics that will be applied throughout the 
project.

Section 2, Management Approach, summarizes ABC's 
planning approach (Section 2.1); tracking and oversight 
approach (Section 2.2); project organization, including 
tasks and responsibilities (Section 2.3); the top-level 
schedule (Section 2.4); the resources required (Section 
2.5); and configuration management approach (Sec
tion 2.6).  

Section 3, Technical Approach, summarizes ABC's ap
proach to implementing the life-cycle tasks of the state
ment of work (Section 3.1); verification and validation ap
proach (Section 3.2); nonconformance reporting and 
corrective action approach (Section 3.3); quality assess
ment and improvement approach (Section 3.4). The con
tractually required deliverables are listed in Section 3.5.  

Section 4 lists all the standards, procedures, conventions, 
and metrics that will be applied on the contract.  

1.3 Plan Maintenance 

This document is intended to be an up-to-date statement 
of ABC's plan for managing the contract. Therefore, 
changes to the document will be issued as change pages as 
required. In accordance with the contract, change pages 
will be submitted to the NRC sponsor monthly as an at
tachment to the monthly progress report.

37



SECTION 2--MANAGEMENT APPROACH

ABC's management approach responds to Task 7, 
Project Management, and Task 8, Configuration Man
agement, of the statement of work.  

2.1 Planning Approach 

ABC's planning approach, which was used to generate 
this plan, consists of the following steps performed in an 
iterative process: 

1. Defining the work 

2. Estimating the schedule and staffing 

3. Planning for technical performance measurement 

4. Planning risk management 

5. Performing detailed planning 

The work elements were derived from an analysis of the 
statement of work. Then, based on the analysis results 
and ABC's past experience, the work elements were 
structured into a work breakdown structure. In develop
ing the master schedule, ABC took into consideration the 
technical complexities, the NRC's required milestones, 
task interdependencies, the estimated number of lines of 
source code, and t he expected staff skill mix.  

Analysis of the C1 and C2 capabilities resulted in the 
identification of the following three key technical per
formance measures: (1) the estimated source lines of 
code; (2) the time needed to perform the Monte Carlo 
analysis for the C1 capability; and (3) the rate of conver
gence of the new eigenvalue algorithm in the C2 capabil
ity.  

Two major risks have been identified: (1) meeting the re
quirement to incorporate an undetermined number of 
new nonconformances into the new release, Version 4.0, 
within schedule and cost constraints and (2) the ability to 
meet the required rate of convergence of the new eigen
value algorithm in the C2 capability.  

Cost accounts were planned in detail to create a sound ba
sis for setting the project budget and for controlling pro
ject work activities. A detailed outline for each deliver
able document, in conjunction with ABC's past 
experience providing high-quality documentation, was 
used to determine the cost and schedule for each deliver
able.

The above-discussed planning activities will be repeated 
if re-planning becomes necessary during the life of the 
project.  

2.2 Tracking and Oversight Approach 
Project tracking and oversight involves: 

1. Monitoring, assessing, and reporting technical 
progress 

2. Determining and reporting schedule and cost 
progress 

3. Developing and implementing corrective action 
plans, as required 

ABC will track actual technical results and performance 
against this baseline project plan. Implementation of 
planned verification and validation, configuration man
agement, and quality assessment and improvement activi
ties will be part of the day-to-day tracking and oversight 
responsibilities of the ABC management team.  

Each ABC manager will be a hands-on manager, i.e., he/ 
she will monitor technical, schedule, and cost status 
progress on an ongoing basis through: daily person-to
person and telephone contact with their assigned people, 
weekly staff meetings, the monthly progress meeting with 
their sponsor counterparts, and internal ABC informa
tion systems.  

The ABC Project Manager will keep in close contact with 
the NRC Project Manager by telephone. The ABC 
Project Manager will plan for and lead the monthly pro
gress meeting where 

1. Technical, schedule, and cost status 

2. Work performed during the reporting period 

3. Work planned for the next month 

4. Risks, problems, and concerns and recommended 
solutions will be discussed.  

Within ABC, weekly progress reports from ABC manag
ers and lead technical personnel and informal mecha
nisms, such as meetings and brainstorming sessions, will 
keep the Project Manager and the project members in
formed. ABC's earned-value cost and schedule reporting 
system will provide a quantitative relationship between 
technical, schedule, and cost progress. The two major

39



risks identified above will be reviewed at a minimum 
monthly and more frequently if required.  

If tracking and oversight activities uncover variances from 
the baseline plan, the ABC management team will take 
appropriate corrective action. Corrective actions may in
clude one or more of the following: 

1. Add staff or extend work week 

2. Upgrade or downgrade skill mix 

3. Implement specific workarounds 

4. Offset an unfavorable variance in one area with fa
vorable variances in other areas 

5. Improve productivity through training, process im
provement, new tools or techniques, etc.  

6. Combine previously separated activities or products 

2.2.1 Supplier Control 

ABC does not plan to have subcontractors on the con
tract.  

2.2.2 Metrics 

ABC will track four key metrics and keep the NRC spon
sor apprised of any major changes from anticipated val
ues. The three metrics are: 

1. Estimated source lines of code 

2. The time needed to perform the Monte Carlo analy
sis for the C1 capability 

3. The rate of convergence of the new eigenvalue 
algorithm in the C2 capability 

4. The number and types of errors uncovered by formal 
peer inspections 

2.2.3 Security 

There are no security requirements or implications on the 
contract.

2.2.4 Training 

Prior to the start of the contract: 

1. The ABC Project Manager will participate in the 
1-week, case-study-oriented project manager's 
workshop instituted at ABC in 1991 

2. All project members, both technical and manage
ment, will attend the 24-hour ABC-sponsored 
course on continuous improvement 

2.3 Organization, Tasks, and 
Responsibilities 

The ABC XYZ System Upgrade Project consists of the 
following organizational elements: 

1. Project Management Office 

2. Analysis and User Support Group 

3. Design and Implementation Group 

4. Qualification Test and Configuration Management 
Group 

Each of the three groups reports to the Project Manager 
and are led by senior technical personnel who have an av
erage of 5 years experience in the design and implementa
tion of the XYZ software. All members of the Qualifica
tion Test and Configuration Management Group are and 
will be independent of the software design and imple
mentation efforts to ensure their freedom of action.  

In addition, the Quality Evaluation and Improvement 
Group, which is a non-project group reporting to the 
ABC Vice President for Quality Evaluation and Improve
ment, will work in partnership with the ABC XYZ Sys
tem Upgrade Project management to meet the require
ments of Task 9, Quality Assessment and Improvement, 
of the statement of work. Table 2-1 shows how the major 
tasks of the statement of work are assigned to the project 
organizational elements. The letter "P" implies that the 
group or Project Manager has primary responsibility and 
the letter "S" implies that the group or Project Manager 
has secondary responsibility. Note that for verification 
and validation activities all organizations are marked with 
a "P" to indicate that each organizational element is re
sponsible for verifying its own products.

40



Table 2.1 
Responsibilities for the Tasks of the Statement of Work 

Responsibilities Qualification 
Test and 

Project Analysis and Design and Configuration 
Management User Support Implementation Management 

Tasks Office Group Group Group 

Planning and Organizing P S S S 

Tracking and Monitoring P P P P 

Requirements Analysis 
and Definition P 

Design S P 

Implementation S P 

Qualification Testing S S P 

Installation and Acceptance S S P 

User Support P S S 

Verification and Validation P P P P 

Configuration Management S S S P 

Nonconformance Reporting 
and Corrective Action S S S P 

Quality Assessment and 
Improvement P S S S

2.4 Scheduling 
The project master schedule is presented in Figure 2-1.  
This schedule was arrived by analyzing the work to be 
done in light of ABC's past experience and historical data 
on previous XYZ projects.and other projects of similar 
size and scope. The analysis showed that NRC's mile
stones are realistic and can be met if the risks are man
aged properly. Each group of the project organization will 
be responsible for developing detailed schedules for their 
assigned products and activities.  

2.5 Resources 
The project staffing profile for the 24-month period of 
performance of the contract is shown in Figure 2-2. This

staffing profile was developed after detailed analysis of 
the work to be accomplished and of the requirements of 
the master schedule. The software engineering environ
ment, which has been successfully used for XYZ mainte
nance for the past 2 years and includes the local area net
work of 14 QRS Series 7000 Workstations supported by 
the Super Groupware CASE tool set, is under control of 
the ABC Project Manager. Thus ABC is confident that 
this hardware and software suite will be adequate for all 
tasks through qualification testing. ABC will require 8 
hours per day, 6 days a week, of exclusive use of the NRC
furnished DED computer at NRC's Rockville, Maryland, 
headquarters to support acceptance testing. ABC will re
view these requirements with the NRC at each formal 
review.

41



ZIP



Full lime Personnel 
0 1%).I 0 O 0I0 

Jon '93 

Feb '93 

Mar '93 

Apr '93 

May '93 

Jun '93 

z Jul '93 

Aug'93 

l Sep'93 

Oct '93 

"o= Nov '93 

Dec '93 

"Jon '94 

Feb '94 

Mar '94 

Apr '94 

"." May '94 

Jun '94 

Jul '94 

Aug'94 

Sep'94 

Oct '94 

Nov '94 

Dec '94



2.6 Configuration Management 

2.6.1 Overview 

ABC will support the NRC in the four major functions of 
configuration management: 

1. T'he identification and establishment of baselines 

2. Controlling both changes to baselines and the re
lease of baselines 

3. Recording and reporting the status of baselines, 
change requests, and implemented changes 

4. Verifying, through auditing, the correctness and 

completeness of baselines prior their release 

ABC will ensure that: 

1. The content and status of the software and docu
mentation baselines are known at all times 

2. Configuration management is implemented for 
externally-deliverable products and for appropriate 
products used inside the ABC Project 

3. There will be a repository for storing key software 
engineering elements and associated configuration 
management records 

4. The software baselines and configuration manage
ment activities are audited on a regular basis 

5. The Qualification Testing and Configuration Man
agement Group will be responsible for coordinating 
configuration management for the project 

6. Adequate resources and budget for performing con
figuration management activities have been allo
cated 

7. Staff members responsible for coordination of con
figuration management activities have been trained 
in the objectives, procedures, and methods of per
forming their duties 

2.6.2 Baselines 

ABC will establish controlled and stable baselines for 
planning, managing, and building Version 4.0 of XYZ.  

ABC will establish a naming or labeling system that:

1. Uniquely identifies all project entities (e.g., docu
ments, software elements, test cases) 

2. Identifies changes by revision or version 

3. Uniquely identifies each configuration/version of 
revised software for use 

We will support NRC in the establishment of the follow
ing baselines that will be controlled by the NRC XYZ 
configuration control board (CCB): 

1. The project management baseline consisting of the 
Software Project Plan, documented standards and 
procedures, and up-to-date budgets and schedules 

2. The requirements baseline consisting of the soft
ware requirements documentation plus approved 
changes 

3. The product baseline consisting of software and 
documentation resulting from the qualification test
ing major activity 

4. The operational baseline consisting of software and 
documentation, resulting from the installation and 
acceptance activity, that is placed into operation 

The XYZ CCB is controlled by the NRC.  

ABC will establish and control the developmental con
figuration, which will contain the software design and im
plementation products (software design documentation, 
code, test cases, and related information) of the evolving 
Version 4.0 of XYZ. We will apply proven ABC internal 
configuration control procedures and automated tools, 
used in previous XYZ work, to the developmental con
figuration as it evolves.  

2.6.3 Change Control 

ABC will support the NRC in the implementation of con
figuration control procedures established on previous 
XYZ upgrade projects. Specifically we will support the 
NRC in the management of changes to baselines as fol
lows: 

1. Implement the directives of the NRC XYZ CCB 
(XYZ Procedure CM-03) 

2. Follow XYZ Procedure CM-02 for initiating, re
cording, reviewing, approving or rejecting, and 
tracking requests for changes to baselines 

3. Follow XYZ Procedure CM-04 for ensuring that all 
changes, especially those to the requirements and

44



the top-level design, are appropriately reviewed for 
"ripple" effects and incorporated into all related ac
tivities 

4. Update, gain approval, and follow XYZ Procedure 
CM-05, to create and control the release of software 
baseline products 

2.6.4 Status of Baselines and Changes 

ABC will track the current status of baselines and 
changes throughout development and maintenance by: 

1. Following XYZ Procedure CM-06 to record and re
port the status of baselines and change requests 

2. Creating and distributing to affected groups and in
dividuals standard reports, in accordance with XYZ 
Procedure CM-06, documenting the configuration 
management activities 

2.6.5 Software Development Library 

ABC will continue to maintain the XYZ software devel
opment library (SDL) in accordance with XYZ Procedure 
CM-01. This procedure will be updated if required.  

2.6.6 Software, Media, and Access Control 

ABC will maintain the facilities and the associated XYZ 
Procedure CM-01 used to maintain, store, secure, and 
document controlled versions of the software throughout 
the life cycle.  

ABC will establish and maintain the facilities and proce
dures used to

1. Identify the media for each software product and the 
documentation required to store the media 

2. Protect software physical media from unauthorized 
access and inadvertent damage or degradation 
throughout the life cycle.  

2.6.7 Configuration Audits 

ABC will follow existing XYZ configuration manage
ment procedures to prepare for, conduct, report results 
from, and track action items based on results of documen
tation audits, software configuration audits, and in
process audits.  

ABC will conduct documentation audits on updates to all 
documents in accordance with XYZ Procedure CM-07.  

Software configuration audits will be performed at the 
conclusion of both qualification testing and acceptance 
testing in accordance with XYZ Procedure CM-08.  

ABC will conduct in-process audits at least once a year to 
assess how well the configuration management standards 
and procedures are being followed and how effective they 
are in managing the software baselines. In-process audits 
will be conducted in accordance with XYZ Procedure 
CM-09.  

2.6.8 Techniques and Tools 

ABC will continue to use the dBASE III XYZ Noncon
formance and Corrective Action System on an industry
standard Personal Computer workstation to track non
conformances, action items, and their resolutions. In 
addition, the commercially available DDD software tool 
will be used in the management of the software develop
ment library.

45



SECTION 3 -- TECHNICAL APPROACH

Section 3 responds to the following eight technical tasks 
of the statement of work: 

Task 1-Requirements Definition (Section 3.1.1) 

Task 2-Design (Section 3.1.2) 

Task 3--Implementation (Section 3.1.3) 

Task 4-Qualification Testing (Section 3.1.4) 

Task 5-Installation and Acceptance (Section 3.1.5) 

Task 6-Verification and Validation (Section 3.2) 

Task 9--Nonconformance Reporting And Corrective Ac
tion (Section 3.3) 

Task 10-Quality Assessment and Improvement Pro
gram (Section 3.4) 

Section 3.5 identifies the deliverables, their due dates, 
and the standards that they will follow, and Section 3.6 
identifies the standards and procedures that will be used..  

3.1 Implementing the Life-Cycle Tasks 
of the Statement of Work 

The statement of work calls for the Contractor to perform 
the following life-cycle major activities: 

1. Requirements Definition 

2. Design 

3. Implementation 

4. Qualification Testing 

5. Installation and Acceptance 

3.1.1 Task 1- Requirements Definition 

ABC will analyze the CI and C2 Requirements Docu
ment provided by NRC. We will use ABC's structured 
analysis approach (use of data flow diagrams, data, dic
tionaries, and mini-specifications) to perform the 
requirements analyses as documented in ABC Standards 
SA-01, SA-02, and SA-03. ABC will provide suggested 
changes to the CI and C2 Requirements Document and 
will ensure that the requirements are correct, complete, 
verifiable, consistent with XYZ Version 3.4 require
ments, and technically feasible.

When NRC approves the requirements after the Soft
ware Requirements Review, the approved requirements 
will form the basis for the software plans, products, and 
activities.  

ABC will ensure that the documented requirements de
fine the response of the software to anticipated classes of 
input data (including erroneous data) and provide the in
formation and detail necessary to design the software 
(e.g., mathematical models, equations, data require
ments).  

ABC will perform verification and validation planning ac
tivities in parallel with requirements analysis and defini
tion activities.  

Requirements changes will be controlled throughout the 
development and maintenance efforts in accordance with 
the proven configuration management procedures cited 
in Section 2.6 of this plan.  

3.1.2 Task 2-Design 

ABC will use structured design techniques as docu
mented in ABC Standard SD- 01 to analyze, both indi
vidually and collectively: 

1. The baselined requirements for the C1 and C2 capa
bilities 

2. The requirements of Version 3.4 of XYZ 

3. The requirements associated with nonconformances 
to Version 3.4 of XYZ 

This analysis will be conducted to determine the optimal 
software design for Version 4.0 of XYZ such that: 

1. Changes to the existing XYZ software architecture 
are minimized 

2. Existing XYZ capability remains operable 

3. Changes to the design meet the requirements asso
ciated with 

a. The Cl and C2 capabilities 

b. Corrective actions to all nonconformances 

As the design evolves, events (e.g., identification of 
additional nonconformances) will necessitate the modifi
cation of the requirements and design documentation.  
ABC will manage changes to formally baselined

47



(requirements) documentation and internally baselined 
(design) documentation in accordance with the proced
ures cited in Section 2.6 of this plan.  

3.1.3 Task 3--Implementation 

ABC will design and code all new software units and 
make changes to existing software units in accordance 
with XYZ Standard IM--0, which defines XYZ Project 
coding standards. All new and modified units will un
dergo three inspections: 

1. An inspection of the unit design and unit test plan in 
accordance with ABC Procedure INS-01 

2. An inspection of the unit code in accordance with 
ABC Procedure INS-02 

3. An inspection of the unit test results in accordance 
with ABC Procedure INS-03 

ABC will conduct integration tests to ensure that all in
terfaces among the new and changed units perform cor
rectly. ABC will inspect all integration test plans and 
procedures in accordance with ABC Procedure INS-04 
and integration test reports in accordance with ABC Pro
cedure INS-05.  

As the software is implemented, events (e.g., additional 
insight into data flow patterns) may necessitate the modi
fication of the design, requirements, and/or verification 
and validation documentation. ABC will manage changes 
to documentation in accordance with well-defined change 
control procedures.  

3.1.4 Task 4-Qualification Testing 

ABC will perform formal qualification testing at ABC's 
Windy Canyon site using a set of test cases based on: 

1. The existing baseline qualification test cases for 
Version 3.4 of XYZ 

2. New test cases that will qualify the new capabilities, 
C1 and C2

3. New or modified test cases that will qualify the cor
rective actions to the major nonconformances that 
will be incorporated into Version 4.0 

Qualification tests will be witnessed by a member of the 
Quality Evaluation and Improvement Group. ABC will 
review and analyze the qualification test results to assure 
NRC that the implemented software meets requirements 
and that the software produces correct results for all ap
proved test cases.  

3.1.5 Task 5--Installation And Acceptance 

After qualification testing has been successfully con
cluded, ABC will install Version 4.0 of XYZ at NRC's 
Rockville, Maryland, headquarters. Then, with an NRC 
sponsor representative present, ABC will conduct the ac
ceptance tests, which will be a subset of the qualification 
tests.  

3.2 Verification and Validation 
Approach 

This section: 

1. Summarizes the verification and validation activities 
that ABC plans to perform (Section 3.2.1) 

2, Discusses the formal life cycle reviews and audits 
that ABC will conduct (Section 3.2.2) 

3. Discusses the formal peer inspections that ABC will 
use (Section 3.2.3) 

4. Identifies the levels of testing that ABC will conduct 
(Section 3.2.4).  

3.2.1 Summary of Verification and 
Validation Activities 

Table 3-1 summarizes the verification and validation ac
tivities that ABC plans to perform on the XYZ System 
Upgrade Project.

48



Table 3.1 
Verification and Validation Activities by Major Life Cycle Activity 

Major Life Cycle Activity Verification and Validation Activities 

Requirements Definition 0 Inspect requirements 
* Conduct the Software Requirements Review 

Design 0 Inspect design 
* Develop qualification test plan 
* Develop acceptance test plan 
* Conduct the Design Review 

Implementation 0 Develop unit test plans 
* Inspect unit designs, unit code, and unit test plans 
* Perform unit testing 
0 Inspect unit test results 
* Develop integration test plans 
0 Inspect integration test plans and procedures 
* Perform integration testing 
0 Inspect integration test results 
* Develop qualification test procedures 

Qualification Testing * Perform qualification testing 
* Witness qualification testing (by independent group) 
* Write qualification test report 
* Develop acceptance test procedures 

Installation and Acceptance 0 Perform acceptance testing 
* Witness acceptance testing (by NRC sponsor) 
* Write acceptance test report 
* Participate in the Post Mortem Review

3.2.2 Formal Life Cycle Reviews and Audits 

A formal review, with NRC and ABC management and 
technical personnel participating, will be held at or near 
the end of each major activity of the life cycle. The objec
tive of the formal reviews is to evaluate the deliverable 
products, the progress, and to a lesser degree, the proc
esses of the most recent life-cycle phase. Table 3-2 sum
marizes the formal major life cycle reviews and audits that 
will performed on the contract.  

ABC will deliver five classes of deliverables associated 
with each formal review:

1. The documents to be reviewed 

2. The agenda for the review 

3. The hardcopy presentation materials used at the re
view 

4. The minutes that document the activities and results 
of the review 

5. The updated documents that were reviewed

49



Table 3.2 
Formal Life Cycle Reviews and Audits

For each formal review, ABC will: 

1. Deliver documents for NRC review 2 weeks prior to 
the start date of the formal review 

2. Identify in each review agenda the ABC review par
ticipants and their specific responsibilities during 
the review 

3. Assign a person to capture key discussion items and 
actions items, especially those related to specific as
signments for updating the documentation that is 
the object of the review.  

4. Document in the review minutes all proposed revi
sions to the reviewed documents and all actual 
changes to the reviewed documents, and place the 
updated documents under configuration control af
ter approval by the NRC 

The paragraphs below discuss each formal life cycle re
view and audit.  

3.2.2.1 Software Requirements Review 

ABC will conduct the Software Requirements Review at 
the end of requirements definition activity. The objec
tives of this review are to: 

1. Review the requirements associated with the new 
capabilities Cl and C2 and the known nonconfor
mances 

2. Review ABC's suggested changes to the draft 
requirements specification supplied by NRC

3. Assure NRC that ABC understands and agrees on 
the intent, completeness, verifiability (through test
ing or other means), consistency, and technical feasi
bility of the requirements 

4. Review the Software Project Plan 

3.2.2.2 Design Review 

Because the architecture for XYZ is well understood by 
both NRC and ABC, there will be only one design review.  
The objectives of the Design Review are to ensure that: 

1. The proposed design is complete (meets all the 
requirements and design completion criteria), verifi
able (through testing or other means), consistent, 
and technically feasible 

2. All new and modified software units have been iden
tified and all interfaces between and among the 
units have defined 

3. All elements of the database have been defined 
down to the data item level 

4. Qualification and acceptance test plans are re
viewed and the test environment is ready to meet 
project needs 

3.2.2.3 Qualification Test Readiness Review 

ABC will conduct the Qualification Test Readiness 
Review when integration testing has been successfully 
completed and the qualification test procedures are ready 
for NRC review. The objective of this review is to assure 
that the as-built software; the software documentation; 
and qualification test environment is ready for formal

50

Major Life Cycle Activity Formal Reviews and Audits 

Requirements Definition * Software Requirements Review 

Design * Design Review 

Implementation 0 Qualification Test Readiness Review 

Qualification Testing 0 Software Configuration Audit 

Installation and Acceptance 0 Software Configuration Audit 
0 Post Mortem Review



qualification testing. In particular, the thoroughness of 
informal (unit and integration) testing will be reviewed.  

3.2.2.4 Software Configuration Audits 

ABC will conduct two Software Configuration Audits: 
the first at the completion of qualification testing and sec
ond at the completion of acceptance testing. The objec
tive of this audit is to ensure that the as-built software: 

1. Meets its requirements as baselined in the software 
requirements documentation 

2. Conforms to its technical documentation 

3. Does not contain any unauthorized changes 

3.2.2.5 Post Mortem Review 

ABC will support the NRC in the Post Mortem Review 
after the software is accepted. This review will- capture 
the lessons learned from the ABC XYZ System' Upgrade 
Project for use by future XYZ and' other si'milar projects.  

3.2.3 Formal Peer Inspections 

Because XYZ is Level 1 software, ABC will: 

1. Subject each intermediate product and final product 
of development and maintenance (i.e., all docu
mentation, all code) to an internal peer inspection 

2. Make available to the NRC the written procedure 
and the product standards that govern peer inspec
tions 

3. Make available, if requested by the NRC, records 
that document the results of all peer inspections 

3.2.4 Testing 

ABC will use four levels of testing: 

1. Unit testing 

2. Integration testing

3. Qualification testing

4. Acceptance testing 

Each new and modified software unit will be separately 
unit-tested. In unit testing, all paths through the code will 
be tested. Software components that contain one or more 
new or modified software units will be integration
tested. Timing of critical elements of code will be tested 
at the unit or integration level, as appropriate.  

Qualification testing and acceptance testing were dis
cussed in Sections 3.1.4 and 3.1.5, respectively.  

3.2.5 Software Test Environment 

The XYZ software test environment that was baselined 
in July 1992 will be used on the project.  

3.3 Nonconformance Reporting and 
Corrective Action Approach 

ABC will use the in-place XYZ Project nonconformance 
reporting and corrective action system, baselined by the 
XYZ CCB on April 12, 1992, and documented in XYZ 
Procedure NRCA-01.  

3.4 Quality Assessment and Improve
ment Approach 

ABC will use the quality assessment and improvement 
approach documented in the ABC report Continuous 
Improvement at the ABC Corporation, March 1991.  

3.5 Deliverables 
Contract deliverables are listed in Table 3-2. All docu
mentation will be inspected in accordance with ABC Pro
cedure INS-12 

3.6 Standards and Procedures 
Table 3-3 summarizes the standards and procedures that 
will be used on the contract. Documentation standards 
for the principal software documents are not listed; the de 
facto documentation format standards of the existing 
software documentation will be used.

51



Table 3.3 
Contract Deliverables

Due Date 
(Weeks after 

ID Deliverable Contract Award)

1.1 

1.2 

1.3 

1.4 

1.5 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.1 

3.2 
3.2 

3.3 

3.4 

3.5 

3.6 

4.1 

4.2 

5.1 

5.2 

7.1 

9.1

Draft Suggested Changes to the XYZ Requirements 

Agenda for the Software Requirements Review 

Hardcopy Presentation Materials for the Software Requirements Review 

Minutes for the Software Requirements Review 

Final Suggested Changes to the XYZ Requirements Specification 

Draft Suggested Changes to the XYZ Design Document 

Draft Qualification Test Plan 

Draft Acceptance Test Plan 

Agenda for the Design Review 

Hardcopy Presentation Materials for the Design Review 

Minutes for the Design Review 

Final Suggested Changes to the XYZ Design Document 

Final Qualification Test Plan 

Final Acceptance Test Plan 

Draft Qualification Test Procedures 

Draft Acceptance Test Procedures 

Agenda for the Qualification Test Readiness Review 

Hardcopy Presentation Materials for the Qualification Test 
Readiness Review 

Minutes for the Qualification Test Readiness Review 

Final Qualification Test Procedures 

Final Acceptance Test Procedures 

Qualification Test Report 

Software Configuration Audit Report 1 

Acceptance Test Report 

Software Configuration Audit Report 2 

Monthly Progress Reports 

Nonconformance Reporting And Corrective Action System Reports

52

12 weeks 

12 weeks 

12 weeks 

15 weeks 

16 weeks 

46 weeks 

46 weeks 

46 weeks 

46 weeks 

46 weeks 

49 weeks 

50 weeks 

50 weeks 

50 weeks 

87 weeks 

87 weeks 

87 weeks 

87 weeks 

89 weeks 

90 weeks 

90 weeks 

98 weeks 

99 weeks 

101 weeks 

102 weeks 

Monthly 

As generated



Table 3.4 
Standards and Procedures

53

Identification Title 

XYZ Procedure CM-01 XYZ Software Development Library Procedures 

XYZ Procedure CM-02 XYZ Change Request Procedure 

XYZ Procedure CM-03 XYZ Configuration Control Board Procedures 

XYZ Procedure CM-04 XYZ Change Request Ripple Effects Procedures 

XYZ Procedure CM-05 XYZ Baseline Release Procedure 

XYZ Procedure CM-06 XYZ Status Reporting Procedures 

XYZ Procedure CM-07 XYZ Documentation Auditing Procedure 

XYZ Procedure CM-08 XYZ Software Configuration Audit Procedure 

XYZ Procedure CM-09 XYZ In-Process Configuration Management Auditing 
Procedure 

XYZ Standard IM-01 XYZ Coding Standard 

XYZ Procedure NRCA-01 XYZ Nonconformance Reporting and Corrective Action 
Procedures 

ABC Standard SA-01 ABC Data Flow Diagram Standard 

ABC Standard SA-02 ABC Data Dictionary Standard 

ABC Standard SA-03 ABC Minispecification Standard 

ABC Standard SD-01 ABC Structured Design Standard 

ABC Procedure INS-01 ABC Unit Design and Unit Test Plan Inspection Procedure 

ABC Procedure INS-02 ABC Unit Code Inspection Procedure 

ABC Procedure INS-03 ABC Unit Test Results Inspection Procedure 

ABC Procedure INS-04 ABC Integration Test Plan and Test Procedure Inspection 
Procedure 

ABC Procedure INS-05 ABC Integration Test Results Inspection Procedure 

ABC Procedure INS-12 ABC Documentation Inspection Procedure



APPENDIX B 

Glossary

adaptive maintenance. Maintenance performed to make a 
software product usable in a changed environment.  

baseline. A product (software or documentation or both) 
that has been formally reviewed and agreed upon by 
the developer and sponsor, that thereafter serves as 
the basis for further development, and that can be 
changed only through formal change control proce
dures.  

requirements baseline. The baselined documentation 
that specifies the requirements that a software 
product must meet.  

product baseline. The software and documentation 
that are baselined at the successful completion 
of qualification testing.  

operational baseline. The software and documentation 
that are 1) baselined at the successful completion 
of installation and acceptance testing and 2) are 
placed into an operational status as a production 
product.  

change control. The process of evaluating, approving or 
disapproving, and coordinating changes to baselines.  
Also called configuration control.  

code. One or more computer programs or part of a com

puter program.  

configuration control. See change control.  

configuration management. The process of 1) identifying 
and defining the baselines associated with a software 
product; 2) controlling the changes to baselines and 
release of baselines throughout the life cycle; 3) re
cording and reporting the status of baselines and the 
proposed and actual changes to the baselines; and 4) 
verifying the correctness and completeness of 
baselines.  

corrective action. General name for the process by which 
nonconformances are corrected, verified, and con
trolled.  

corrective maintenance. Maintenance performed specifi
cally to overcome existing faults.  

developer. The organization, usually a contractor, that de
velops or maintains the software.

developmental configuration. The developer's software and 
associated technical documentation that defines the 
evolving software products during development. The 
developmental configuration is under the develop
er's internal configuration control and contains the 
software design and implementation products (soft
ware design documentation, code, test cases, and re
lated information).  

error. A discrepancy between a computed, observed, or 
measured value or condition and the true, specified, 
or theoretically correct value or condition.  

formal testing. The process of conducting testing activities 
and reporting results in accordance with an approved 
test plan.  

independent verification and validation (IV&P). Verifica
tion and validation by an organization that is both 
technically and managerially separate from the or
ganization responsible for developing the software.  
See verification. See validation.  

informal testing. The process of conducting testing activi
ties without an approved test plan.  

Level I software. Technical application software used in a 
safety decision by the NRC.  

Level 2 software. Technical or non-technical application 
software not used in a safety decision by the NRC.  

Level 3 software. Technical or non-technical application 
software not used in a safety decision by the NRC and 
having local or limited use by the NRC.  

nonconformance. Any failure of any software document, 
code, data structure, or process, to meet its require
ments or standards. Often called a problem, discrep
ancy, fault, or error.  

non-developmental software. Deliverable software that is 
not developed under the contract but is provided by 
the developer, the Government, or a third party.  
Non-developmental software may be referred to as 
reusable software, Government-furnished software, 
or commercially available software depending on its 
source.

55



qualification testing. A process that allows the sponsor to 
determine whether a software product complies with 
its requirements. quality assurance. A planned and 
systematic pattern of all actions necessary to provide 
adequate confidence that a software product con
forms to established technical requirements.  

release. A configuration management action whereby a 
particular version of software is made available for a 
specific purpose (e.g., released for test, released to 
operations) 

reusable software. Software developed in response to the 
requirements for one application that can be used, in 
whole or in part, to satisfy the requirements of an
other application.  

software engineering environment. The set of automated 
tools, firmware devices, and hardware necessary to 
perform the software engineering effort, including 
establishing and maintaining the software develop
ment library. The automated tools may include but 
are not limited to computer-aided software engineer
ing (CASE) tools, compilers, assemblers, linkers, 
loaders, operating system, debuggers, simulators, 
emulators, test tools, documentation tools, and data 
base management systems.  

software development library. A controlled collection of 
software, documentation, and associated tools and 
procedures used to facilitate the orderly develop
ment and subsequent maintenance of software. The 
software development library contains the develop
mental configuration as part of its contents. A soft
ware development library provides storage of and 
controlled access to software and documentation in 
human-readable form, machine readable form, or 
both. The software development library may also 
contain management data pertinent to the software 
development project.  

software life cycle. The period of time that starts when a 
software product is conceived and ends when the 
product is retired from use.  

software maintenance. Modification of a software product 
after delivery to correct faults, to improve perform
ance or other attributes, or to adapt the product to a 
changed environment.  

software plans. A collective term used to describe the de
veloper's plans, methodologies+ standards, and pro
cedures for software management, software engi
neering, verification and validation, documentation, 
product evaluation, and configuration management.  
software test environment. The set of automated

tools, firmware devices, and hardware necessary to 
test software. The automated tools may include but 
are not limited to test tools such as simulation soft
ware, code analyzers, etc. and may also include those 
tools used in the software engineering environment.  

software unit. An element of the software design that can 
be compiled or assembled and is relatively small (e.g., 
100 lines of high-order language code).  

sponsor. The NRC organization that sponsors and man
ages the software development/maintenance effort.  
The sponsor acts as the acquirer or buyer for the user.  

sustaining engineering. The process that includes software 
maintenance and the software engineering activities 
that ensure that the integrity of the software's origi
nal requirements set and design are retained.  

testing. The process of exercising or evaluating a software 
product or part of a software product by manual or 
automated means to verify that it satisfies specified 
requirements or to identify differences between ex
pected and actual results.  

test case. A specific set of test data and associfted proce
dures developed for a particular objective, such as to 
exercise a particular program path or to verify com
pliance with a specific requirement.  

test plan. A document prescribing the approach to be 
taken for intended testing activities. The plan typi
cally identifies the items to be tested, the require
ments being tested, the testing to be performed, test 
schedules, personnel requirements, reporting re
quirements, evaluation criteria, any risks requiring 
contingency planning.  

test procedure. Detailed instructions for the setup, opera
tion, and evaluation of results for a given test. A set of 
associated procedures is often combined to form a 
test procedures document.  

test report. A document describing the conduct and results 
of the testing of a software product or a component of 
a software product.  

user. The organization or persons who will use the soft
ware product being developed.  

verification. The process of determining whether or not 
the products of a given activity or phase of the soft
ware development life cycle meets its requirements.  

validation. The process of evaluating a software product at 
the end of the software development process to en
sure compliance with software requirements.

56



APPENDIX C 

Reference Documents

1. ANSI/ASME NQA-1-1983, Quality Assurance 
Program Requirements for Nuclear Facilities 

2. ANSI/ASME NQA-2a-1990 Addenda (Part 2.7) to 
ASME NQA-2a- 1989 Edition Quality Assurance 
Requirements for Nuclear Facility Applications 

3. ANSI/IEEE Std 730-1989, IEEE Standard for Soft
ware Quality Assurance Plans 

4. ANSI/IEEE Std 983-1986, IEEE Guide for Soft
ware Quality Assurance Planning 

5. ANSI/IEEE Std 729-1983, IEEE Standard Glossary 
of Software Engineering Terminology 

6. ANSI/IEEE Std 828-1983, IEEE Standard for Soft
ware Configuration Management Plans

7. ANSI/IEEE Std 829-1983, IEEE Standard for Soft
ware Test Documentation 

8. ANSI/IEEE Std 1012-1986, IEEE Standard for 
Software Verification and Validation Plans 

9. DOD-STD-2167A, Military Standard, Defense 
System Software Development, 29 February 1988 

10. DOD-STD-2168, Military Standard, Defense 
System Software Quality Program, 29 April 1992.  

11. DOD-STD-1521B, Military Standard, Technical 
Reviews and Audits for Systems, Equipments, and 
Computer Software, 4 June 1985.  

12. Capability Maturity Model for Software, CMU/ 
SEI-91-TR-24, Software Engineering Institute, 
Carnegie Mellon University, August 1991

57



Federal Recycling Program



UNITED STATES 
NUCLEAR REGULATORY COMMISSION 

WASHINGTON, D.C. 20555-0001

FIRST CLASS MAIL 
POSTAGE AND FEES PAID 

USNRC 
PERMIT NO. G-67

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE, $300


	ABSTRACT
	CONTENTS
	TABLES
	FIGURE
	ACKNOWLEDGEMENTS
	1. INTRODUCTION
	1.1 Purpose
	1.2 Scope and Applicability
	1.3 The NRC Software Development/Sustaining Engineering Environment
	1.4 Use of This Document
	1.5 Organization of This Document
	1.6 Maintenance of This Document
	1.7 Style Used in This Document

	2. THE SOFTWARE LIFE CYCLE
	2.1 Concepts and Definitions
	2.2 Requirements Definition
	2.3 Design
	2.4 Implementation
	2.5 Qualification Testing
	2.6 Installation and Acceptance
	2.7 Operations and Sustaining Engineering
	2.8 Retirement and Archiving

	3. VERIFICATION AND VALIDATION
	3.1 Concepts and Definitions
	3.2 Verification and Validation Activities
	3.3 Techniques and Tools

	4. DOCUMENTATION AND DELIVERABLES
	4.1 Concepts and Definitions
	4.2 Software Project Plan
	4.3 Software Requirements Documentation
	4.4 Software Design Documentation
	4.5 Software Implementation Documentation
	4.6 Software Verification and Validation Documentation
	4.7 User Documentation
	4.8 Other Documentation
	4.9 Deliverables
	4.10 Techniques and Tools

	5. PROJECT MANAGEMENT
	5.1 Concepts and Definitions
	5.2 Project Planning and Organizing
	5.3 Project Tracking and Oversight
	5.4 Supplier Control
	5.5 Metrics
	5.6 Security
	5.7 Training
	5.8 Risk Management
	5.9 Techniques and Tools

	6. CONFIGURATION MANAGEMENT
	6.1 Concepts and Definitions
	6.2 Baselines
	6.3 Change Control
	6.4 Status of Baselines and Changes
	6.5 Software Development Library
	6.6 Software, Access, and Media Control
	6.7 Configuration Audits
	6.8 Techniques and Tools

	7. NONCONFORMANCE REPORTING AND CORRECTIVE ACTION
	7.1 Concepts and Definitions
	7.1 Concepts and Definitions
	7.2 Activities
	7.3 Interrelationships
	7.4 Techniques and Tools

	8. QUALITY ASSESSMENT AND IMPROVEMENT
	8.1 Concepts and Definitions
	8.2 Responsibility For Quality Assessment and Improvement
	8.3 Documentation For Quality Assessment and Improvement
	8.4 Quality Assessments
	8.5 Quality Records Collection, Maintenance, and Retention
	8.6 Quality Improvement
	8.7 Techniques and Tools

	9. SOFTWARE DEVELOPED BEFORE ISSUANCE OF THIS DOCUMENT
	APPENDIX A
	APPENDIX B
	APPENDIX C

