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» Approaches to Hydrologic Design

« National Research Council Concern

« The Semantic Problem

» Climate community semantics
» Engineering community semantics

» Trends in Exceedances
 From an engineering point of view
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@ Approaches to Hydrologic Design

1 Generally too costly to avoid failure always
— Therefore accept chance of failure based on situation

» Flood Frequency Estimate: Peak discharge associated
with annual exceedance probability

 Precipitation Frequency Estimate: Precipitation depth
or intensity associated with annual exceedance
probability for a given duration

1 Sometimes we must avoid failure always
— Probable Maximum Precipitation: worst case “perfect
storm”

« Unknown probability
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“Management and mission-oriented agencies with
public-sector responsibilities have been provided with
marginally useful scientific information about the likely
manifestations of future climate change.”

“There are insufficient interactions and knowledge
exchange between climate scientists, water scientists,
and engineers and practitioners to solve these
challenges.”

“Global Change and Extreme Hydrology: Testing Conventional Wisdom”
National Research Council, Water Science and Technology Board, 2011



Climatology Semantics

“It is likely that the frequency of heavy precipitation events

... has increased over most areas.”
IPCC AR4, Climate Change 2007: Synthesis Report

“Groisman et al. (2005) found significant increases in the
frequency of heavy and very heavy (between the 95th and
99.7th percentile of daily precipitation events)”

IPCC AR4 Working Group |

These and similar statements in the literature define terms
such as

11 7 11

— “heavy’, “very heavy”, and “extreme” precipitation
— Sometimes differently!
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Groisman et al 2005
— “... we define a daily precipitation event as heavy when it falls
Into the upper 10% and/or 5% of all precipitation events;

as very heavy when it falls into the upper 1% and/or 0.3% of
precipitation events,

and extreme when it falls into the upper 0.1% of all
precipitation events.”

— “The return period for such events ... varies, for example,
from 3 to 5 yr for ... very heavy precipitation events.”

Generally consider just daily durations
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Civil Engineering Semantics

« Use precipitation frequency estimates
— annual exceedance probability (AEP) or
— average recurrence interval (ARI)

« Heavy, very heavy, and extreme rainfall:
— are subjective terms

« Use many durations; not just daily
— NOAA Atlas 14 provides 5 min through 60
days

EATY,
WERT Ay

~



s Trends in Exceedances
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Trends in Exceedances
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Average % Change in Number of Exceedances per Station per Century,
Semiarid Southwest
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» Generally statistically significant except for 6 hour durations
- .05 level, T-test & Mann Kendall
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@ Trends in Exceedances (continued)

Average % Change in Number of Exceedances per Station per Century,
Ohio Basin

NA14, 90% | | '
confidence
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Average Change (%)

-20 3

“very heavy”

1-year 2-year 5-year 10-year 25-year 50-year 100-year

« Generally not statistically significant except for daily durations above 2 yr ARI
- .05 level, T-test & Mann Kendall



’Spatial Coherence of Trends in AMS
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_Spatial Coherence of Trends in AMS
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Conclusions

Climate community statements on trends in rainfall
exceedances

- Do not address freguencies and durations required
for civil infrastructure

Climate community statements are being misinterpreted
- by Civil Engineers and probably the public

Historical trends in exceedances

- Are small compared to uncertainty of IFD values

We need better guidance on potential impact of climate
change on IFD curves

- In range relevant to civil infrastructure
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