
Digital I&C
Software Reliability

February 1, 2011

Gerard J. Holzmann
Laboratory for Reliable Software

Jet Propulsion Laboratory / 
California Institute of Technology



Background

• Software controls are ubiquitous 
and have reached safety-critical 
systems

• Code size & complexity is rapidly 
growing (often exponentially fast)

• Software test and verification 
methods have not kept pace
– meaning: virtually all software will 

have latent defects
2



Systems
• Software is a system component

– no one system component should be 
assumed to be perfect

• Building reliable systems from 
unreliable components requires 
special precautions
– for software this includes self-

checking code, strict partitioning, 
design diversity (defense-in-depth), 
and independent, non-software 
backup

3



Failures : common causes

• Software failures often follow a 
common pattern
– many of these common causes can 

be prevented with the use of risk-
based coding standards and strong 
compliance checkers

4



Failures : unintended coupling

• Software failures in complex 
systems are often caused by 
unintended coupling between 
(assumed to be) independent 
system components
– many of these causes can be 

prevented with the use of model-
based design verification techniques

5



Failures : race conditions

• Software failures are often 
caused by concurrency (race 
conditions)
– many of these failures can be 

prevented with the use of model-
based design verification techniques

6



Evidence for safety

• Safety claims must include strong 
evidence with all relevant 
assumptions made explicit
– this includes evidence of standards

used, compliance verification and 
design verification techniques used, 
use of source code analysis, and 
formal design and code verification 
methods

7


	Digital I&C�Software Reliability
	Background
	Systems
	Failures : common causes
	Failures : unintended coupling
	Failures : race conditions
	Evidence for safety

