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Background

• Software controls are ubiquitous 
and have reached safety-critical 
systems

• Code size & complexity is rapidly 
growing (often exponentially fast)

• Software test and verification 
methods have not kept pace
– meaning: virtually all software will 

have latent defects
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Systems
• Software is a system component

– no one system component should be 
assumed to be perfect

• Building reliable systems from 
unreliable components requires 
special precautions
– for software this includes self-

checking code, strict partitioning, 
design diversity (defense-in-depth), 
and independent, non-software 
backup
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Failures : common causes

• Software failures often follow a 
common pattern
– many of these common causes can 

be prevented with the use of risk-
based coding standards and strong 
compliance checkers
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Failures : unintended coupling

• Software failures in complex 
systems are often caused by 
unintended coupling between 
(assumed to be) independent 
system components
– many of these causes can be 

prevented with the use of model-
based design verification techniques
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Failures : race conditions

• Software failures are often 
caused by concurrency (race 
conditions)
– many of these failures can be 

prevented with the use of model-
based design verification techniques
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Evidence for safety

• Safety claims must include strong 
evidence with all relevant 
assumptions made explicit
– this includes evidence of standards

used, compliance verification and 
design verification techniques used, 
use of source code analysis, and 
formal design and code verification 
methods
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