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FOREWORD

The purpose of this draft NUREG is to discuss an approach, scope, and acceptance criteria that
could be used to develop a technology-neutral set of requirements for future plant licensing.  At the
present time, the material contained in the draft NUREG is preliminary and does not represent final
staff positions on the issues discussed.  As such, certain sections of this document are incomplete
and are planned to be completed following receipt of initial stakeholder feedback.

The work represented in this document is, however, considered sufficiently developed to illustrate
one possible way to establish a technology-neutral approach to future plant licensing and to identify
the key technical and policy issues to be addressed.  In this regard, it can serve as a useful vehicle
for engaging stakeholders and facilitating discussion.

Carl J. Paperiello, Director
Office of Nuclear Regulatory Research  
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1. INTRODUCTION

1.1 Background

The Commission, in its Policy Statement on Regulation of Advanced Nuclear Power Plants, stated
its intention to “improve the licensing environment for advanced nuclear power reactors to minimize
complexity and uncertainty in the regulatory process.” [Ref. 1-1]

The staff noted in its Advanced Reactor Research Plan [Ref. 1-2] to the Commission, that a risk-
informed regulatory structure applied to license and regulate advanced (new) reactors, regardless
of their technology, could enhance the effectiveness, efficiency, and predictability (i.e., stability) of
new plant licensing.  As such, this new process, if implemented, could be available for use later in
the decade.  The need  to develop a risk-informed regulatory structure for new reactors is based
on the following  considerations:

• While the NRC has over 30 years experience with licensing and regulating nuclear power
plants, this experience (as reflected in regulations, regulatory guidance, policies and
practices) has been focused on current light-water-cooled reactors (LWRs) and may have
limited applicability to new reactors.  The  design and operational issues associated with the
new reactors that may be distinctly different from current LWR issues.  The current set of
regulations do not necessarily address safety concerns that may be posed by new designs,
and the current set may contain specific requirements that do not pertain to new designs.

• The regulatory structure for current LWRs has evolved over five decades.  Most of this
evolution occurred without the benefit of insights from probabilistic risk assessments (PRAs)
and severe accident research.  It is expected that future applicants will rely on PRAs  as an
integral part of their license applications.   it is further expected that the regulations for
these new reactors will be risk-informed.  Both deterministic and probabilistic results and
insights will be used in the development of the regulations governing these reactors.
Consequently, a structured approach for a regulatory structure for new reactors that
provides guidance about how to use PRA results and insights will help ensure the safety of
these reactors by focusing the regulations on where the risk is most likely while maintaining
basic safety principles, such as defense-in-depth and safety margin.

The NRC’s past LWR experience, especially the recent efforts to risk-inform the regulations, has
shown the potential value of  a top-down approach to developing a regulatory structure for a new
generation of reactors.  Such an approach could facilitate the implementation of performance based
regulation,  as well as ensure a greater degree of coherence among the resulting regulations for
new reactors than found among current regulations.

In addition to utilizing the benefits of PRA, the development of a risk-informed technology-neutral
structure for new plant licensing has several advantages over continuing to use the 10 CFR  Part
50 licensing process for designs substantially different than current generation LWRs.  Specifically,
the use of a technology-neutral approach can provide more efficiency, stability and predictability
then continuing to use the 10 CFR  Part 50 process.   These points are further discussed  below.

• Efficiency:  When 10 CFR  Part  50  is  used to license a reactor design substantially
different than a current generation LWR, the regulations must be reviewed for applicability
to that design.  In the review, determinations must be made regarding which regulations
apply, which do not, and what additional requirements are needed to address the unique
aspects of the design under review.  Once these  determinations are made, exemptions
must be processed to formally document the rules that do not apply and the Commission
may need to approve any new requirements (as was done in the certification of the
ALWRs).  The results of this process are also subject to challenge through the intervention
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and hearing process.  This entire process must be done for each design reviewed using 10
CFR Part 50.  Repeating this process for each new design is inefficient.  A  technology-
neutral licensing process that applies regardless of reactor design will eliminate the case-
by-case review process.

• Stability: Putting each reactor design through the  licensing process  described above does
not lead to stability in licensing.  With case-by-case reviews and intervention,  similar issues
have different results.  This situation can occur due to different staff involvement, different
Commission involvement, or different public involvement.  This  licensing process has  large
uncertainties  in both outcome and duration.   A  technology-neutral licensing process that
has acceptance criteria applicable to different reactor designs will  reduce the uncertainties
in the outcome and duration of the licensing process because acceptance criteria would be
stable.

• Predictability: Having a set of technology-neutral requirements will promote predictability by
stabilizing  the licensing process, making the outcome and duration more predictable.
Predictability is an important factor in any decision to pursue the licensing of a nuclear
power plant.

The development of a technology-neutral regulatory structure will help  ensure that a systematic
approach is used during the development of the regulations that the design, construction, and
operation of new reactors.  This will ensure uniformity, consistency, and defensibility in the
development of the regulations, particularly when addressing the unique design and operational
aspects of new reactors. 

1.2 Objectives

1.2.1 Program Objective

The objective of this program is to develop and implement a risk-informed regulatory structure for
licensing  new reactors that demonstrates that the NRC mission of protecting the public health and
safety is met.  This regulatory structure will provide the technical basis for the development of a new
set of regulations for licensing new reactors.  This regulatory structure has  four parts :

(1) development of a technology-neutral framework for the regulatory structure,
(2) development of proposed content of technology-neutral requirements,
(3) development of guidance for applying the framework on a technology-specific basis (i.e.,

technology-specific framework), and
(4) development of technology-specific regulatory guides.

The relationship between the four parts of the regulatory structure is shown figure below:
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Figure 1-1 Framework for a Regulatory Structure for New Plant Licensing

Part 1 is the development of a technology-neutral framework  to anchor the regulatory structure to
high-level safety goals.  This is a process aligned effort providing guidance for the NRC staff in
developing the requirements Part II..

Part II involves the production of a set of high-level, technology-neutral requirements applicable to
all reactor designs.  These  requirements will be based on the framework developed in Part I and
will serve as the technical basis for developing technology-neutral regulations for a possible
rulemaking.

Part III will develop guidance for the NRC staff on using the technology-neutral framework in
conjunction with the technology-neutral requirements on a technology-specific basis.  This effort
will, therefore, involve development of a technology-specific framework providing technology-
specific guidance and criteria.

Part IV is the preparation of technology-specific regulatory guides for specific reactor technologies.
This effort will be accomplished by translating the high-level, technology-neutral regulations into
technology-specific guidance using the process of Part III.

1.2.2 Technology-Neutral Framework Objective

The objective of the technology-neutral framework is to provide the necessary guidance and criteria
for a risk-informed regulatory structure for  licensing  new reactors.  To meet this objective, the
guidance and criteria need to address the following:

• safety philosophy
• safety fundamentals
• risk objectives
• design, construction, and operation objectives
• treatment of uncertainties
• process for the identification of requirements
A safety philosophy is defined that establishes the Commission’s expectations for new reactors.
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Safety fundamentals are defined in terms of protective strategies that are needed to ensure safe
nuclear power plant design, construction, and operation.
Quantitative Risk objectives are defined to provide  criteria for assessing the risk associated with
the design, construction and operation of the plant.

Design, construction, and operation objectives are established to provide criteria for ensuring safe
nuclear power plant design, construction, and operation.

The treatment of uncertainties provide the process for ensuring that safety limits are met and the
design, construction and operation have enough safety margin to withstand  unanticipated events.

1.2.3 Technology-Neutral Requirements Objective

The objective of the technology-neutral requirements is to develop the necessary technical and
administrative requirements to ensure safe nuclear power plant design, construction and operation.
The requirements should be applicable to any reactor design.   These requirements should have
the desired characteristics described  in Section 1.4 below.

These requirements are to be documented in Part II (Vol. 2) of this NUREG report.

1.2.4 Technology-Specific Framework Objective

The objective of the technology-specific framework is to provide the necessary guidance and
criteria for applying the technology-neutral requirements on a technology-specific basis.

1.2.5 Technology-Specific Regulatory Guides Objective

The objective of the technology-specific regulatory guides is to provide the necessary guidance and
criteria for meeting the technology-neutral requirements for the specified technology.   A
technology-specific regulatory guide will be developed to give  explicit guidance and criteria for
meeting the requirements for that technology.

1.3 Scope

The risk-informed regulatory structure to be developed in this program applies to all new plants.
It is expected that the regulations that derive from this structure will be applicable to all types of
reactor designs, including gas-cooled, liquid metal, and  heavy and light-water-moderated reactors.
This applicability will be accomplished by having the regulatory requirements specified at a high
(technology-neutral) level, supplemented with reactor- technology-specific regulatory guides.

The regulatory structure will address risks from reactor full-power, low-power and shut-down
operation, and spent fuel storage and handling and  the risks from both internal and external
events.  Therefore, it includes seismic, fire and (internal and external) flood risks, and risk from high
winds and tornados; also included are fuel storage and handling.  Issues related to security will also
be considered.

The regulatory structure will cover design, construction, and  operation.   Operation includes both
normal operation as well as off-normal events, ranging from anticipated occurrences to rare but
credible events, for which accident management as well as emergency response capabilities may
be needed.
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The framework is intended to provide guidance on the structure and key elements which will be
used to develop the risk-informed, technology-neutral regulations.  In effect, the framework provides
guidance on key technical issues and the scope of the technology-neutral regulations.  Many of the
details will only be developed as part of the regulation development.

The structure of the regulations is to be a top down, hierarchal approach that addresses reactor
safety, safeguards and security.  As discussed in Chapter 4, proper attention to these factors also
provides protection to the environment.

The staff  intends  ultimately to codify  the regulatory structure for new plant licensing  in a new
stand-alone part in 10 CFR.  This new part will provide a technology-neutral alternative to the
current 10 CFR Part 50.  The current 10 CFR Part 50   will also interface with the other parts of 10
CFR (e.g., Parts 20, 51, 52, 54, 100).

The regulatory structure will be written to allow either a two-step licensing process (i.e., construction
permit/operating license) or a one-step (combined operating license) licensing process, similar to
the current 10 CFR Part 50.  It will also include a provision for exemptions in case an applicant
wishes to propose an alternative approach to one or more requirements.

1.4 Desired Characteristics of the Overall Regulatory Structure

As the regulatory structure is developed and implemented, it should have certain characteristics.
These characteristics, essentially define the acceptance criteria of the technology-neutral
framework, the technology-neutral requirements, and the technology-specific framework:

• Reproducible, traceable, and understandable.  The technical bases for the criteria and
guidance developed as part of this approach are clearly articulated, and therefore, each
step of the process is identified and clearly described.

• Defensible.  The technical bases developed are derived from known technology where the
assumptions and approximations and their impacts are known and understood.  In
particular, the technical bases are consistent with the Commission’s Safety Goal Policy.

• Flexible.  The technology-neutral and technology-specific frameworks are developed in
such manner that they allow, in an efficient and effective manner, for changes and
modifications to occur that are based on new information, knowledge, etc., and can be
adapted to any technology-specific reactor design.

• Risk-informed.  Risk information and risk insights are integrated into the decision making
process such that there is a blended approach using both probabilistic and deterministic
information.

• Performance-based.  When implemented the guidance and criteria will produce, a set of
safety requirements that will not contain prescriptive means for achieving its goals, and
therefore be performance oriented to the extent practical.

• Completeness.  The guidance and criteria will identify the topics for a set of safety
requirements are needed to meet the mission of protecting the public health and safety,
considering that design, construction and operation and that address the public, worker and
environment.
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• Uncertainty.  The guidance and criteria have to address the uncertainties, identification of
key uncertainties, the impact of the uncertainties, and their treatment in the development
of the requirements.

• Defense-in-depth.  Defense-in-depth is maintained and is an integral part of the framework.

• Consistency.  The guidance and criteria need to address and implement the policy issues
approved by the Commission in its June 26, 2003 SRM.  In addition, the guidance and
criteria need to be compatible with other applicable parts of 10 CFR (e.g., Part 100, Part 20,
etc.).

1.5 Report Organization

This report has three major parts, as shown in Figure 1-2

Figure 1-2 Report Organization

Part 1 — Framework for a Technology-Neutral Regulatory Structure

This part of the report is divided into six chapters, glossary and six appendices:

• Chapter 1 provides the objectives of the program and the objectives of each part of the
program, the scope, desired characteristics, and report organization.

• Chapter 2 provides the framework roadmap, in the form of an hierarchal structure, for how
the technology-specific requirements  are derived, starting with the Commission’s mission
of protecting the public health and safety.  This discussion includes a description of what
level of safety is envisioned for new reactors.

• Chapter 3 describes the safety fundamentals that are needed for safe nuclear power plant
design, construction and operation.

• Chapter 4 provides the guidelines and criteria for risk, design, construction and operation
objectives.  The risk guidelines and criteria, in the form of both high level objectives and
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surrogates, are developed that meet the Commission’s Safety Goals.  Further, criteria and
guidelines for design basis accidents, safety classification, are also provided.

• Chapter 5 provides a discussion on the treatment of uncertainties via defense-in-depth.
This discussion also provides a “working” definition for defense-in-depth.

• Chapter 6 describes the process and identifies the content for proposed technology-neutral
requirements using the guidance and criteria established for safety fundamentals, risk
guidelines, design, construction and operational objectives, and treatment of uncertainties.

Appendices, Glossary, References 

• Appendix A: provides guidance and criteria for the formulation of performance-based
requirements.

• Appendix B: describes how the surrogates of core damage frequency (1E-4) and large early
release frequency (1E-5) are acceptable surrogates for the QHOs for LWRs.

• Appendix C: provides a discussion on the safety characteristics unique to the Generation
IV advanced reactors.

• Appendix D: provides a discussion on the PRA quality needs and what “standards” are
needed beyond the current PRA standards (e.g., ASME) for new reactors.

• Appendix E: provides a discussion on the assessment of Part 50, which requirements are
technology-neutral and which are LWR specific.

• Appendix F: provides a list of requirements against which to check completeness.  For
example, the IAEA is developing a set of technology-neutral requirements.  This reference
will serve as one source in checking the requirements developed in Part 2 for
completeness.

• Glossary: provides terms and definitions to aid the reader in understanding the specific
meaning of each term as used in the report, and to provide a consistent and common
understanding to facilitate communication.

• References: provides the references for the sources used in development of the framework.

Part 2 — Proposed Technology-Neutral Requirements

To be written.

Part 3 — Framework for a Technology-Specific Regulatory Structure

To be written

Part 4 — Technology-Specific Regulatory Guides

To be written
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Atomic Energy Act*

Sec. 3. Purpose.

It is the purpose of this Act to...[provide] for–
a. a program of conducting, assisting, and fostering
research and development in order to encourage
maximum scientific and industrial progress;
b. a program for the dissemination of unclassified
scientific and technical information and for the control,
dissemination, and declassification of Restricted Data,
subject to appropriate safeguards, so as to encourage
scientific and industrial progress;
c. a program for Government control of the
possession, use, and production of atomic energy and
special nuclear material, whether owned by the
Government or others, so directed as to make the
maximum contribution to the common defense and
security and the national welfare, and to provide
continued assurance of the Government’s ability to
enter into and enforce agreements with nations or
groups of nations for the control of special nuclear
materials and atomic weapons.
d. a program to encourage widespread
participation in the development and utilization of
atomic energy for peaceful purposes to the
maximum extent consistent with the common
defense and security and with the health and
safety of the public;
e. a program of international cooperation to promote
the common defense and security and to make
available to cooperating nations the benefits of
peaceful applications of atomic energy as widely as
expanding technology and considerations of the
common defense and security will permit; and
f. a program of administration which will be consistent
with the foregoing policies and programs, with
international arrangements, and with agreements for
cooperation, which will enable the Congress to be
currently informed so as to take further legislative
action as may be appropriate.

* Emphasis added.

2. TECHNOLOGY-NEUTRAL FRAMEWORK ROADMAP

2.1 Safety Overview

This chapter provides a high level discussion of the overall technology-neutral framework.  It
provides a brief description of the approach, how the technology-neutral requirements will be
derived from the Commission Safety
Goals, and  summarizes the different
elements of the framework.

The basis for NRC regulation of
reactors originates with the Atomic
Energy Act of 1954 and the statutes
that amended it, which indicate that the
mission of the NRC is to ensure that
commercial nuclear power plants
(NPPs) are operated in a manner that
provides adequate protection of public
health and safety and is consistent with
the common defense and security (i.e.,
protects against radiological sabotage
and the theft or diversion of special
nuclear materials).  The Atomic Energy
Act satisfied the overall NRC safety
mission to protect public health and
safety. The amending statutes and the
broad body of NRC regulations
implement an underlying safety
philosophy for controlling the risk to
workers, offsite populations, and
su r round ing  a reas ( i . e . ,  t he
environment). This safety philosophy
has always included the following
elements:

• Preventing
• Mitigating
• Limiting
• Containing
• Responding

To summarize the safety philosophy,
regulations  address design,
construction, and operating practices to
prevent accidents, but if a sequence of
events that  may be to an accident
begin, the regulations seek to mitigate
the accident,  and l imi t  i ts
consequences  by containing any
release of radioactive material and
responding to control the effects of any
material  remaining from the release.

Two complementary approaches are
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combined in the framework for a technology-neutral regulatory structure to ensure that safety is
maintained: (1) protective strategies and (2) risk objectives and design/construction/operation
objectives.  The two approaches continue to provide risk-informed, performance-based approach
to the regulation of new reactors.  Additional desired characteristics of the overall regulatory
structure (listed in Section 1.4)  are essential to its proper implementation.
  
The protective strategies approach is based on a regulatory philosophy that multiple strategies are
needed to ensure that gaps in our knowledge have little chance of endangering public health and
safety.  It is a top-down, hierarchical approach.  It starts with a desired outcome, identifies
protective strategies (functional requirements) to ensure this outcome is achieved even if some
strategies should fail, and then provides a decision model to balance the extent of each strategy
that is required to have high confidence of meeting the goal. The protective strategies provide
defense-in-depth to protect against uncertainties.  

The risk objectives and design/construction/operation objectives approach sets frequency limits on
the possible consequences of accidents to ensure that the NRC’s safety goals are met.  It also
provides  criteria for accident mitigation (including environmental protection), probabilistic criteria
for the selection of events which must be considered in the design and which constitute "design
basis accidents," and probabilistic criteria for the safety classification of systems, structures, and
components.

Thus the framework  uses the reactor quantitative health objectives (QHOs) set forth in the
Commission’s Reactor Safety Goal Policy to ensure that design, construction, and operations are
consistent with the performance goals.  The framework  is fully     a defense-in-depth philosophy
to ensure that uncertainties cannot undermine the intended level of safety.

Figure 2-1 gives a high-level view of the technology-neutral framework.

The framework leads to the establishment of  technology-neutral technical regulations  as shown
in Figure 2-2.   Administrative regulations1 are developed to ensure that the bases for the technical
regulations (risk calculations, plant conditions, and other  assumptions) are sound and do not
become invalid.
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Figure 2-1 Technology-Neutral Regulatory Structure Framework.
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important in new technologies where the full range of operating conditions has not been experienced.
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Figure 2-2 Expanded Framework

The “protective strategies and risk & design construction, and operation objectives” are expanded
in Figure 2.2.  Protective strategies are the safety fundamentals for safe nuclear power plant
design, construction, and operation.  They are  the fundamental building blocks for the developing
technology-neutral requirements and regulations.  Acceptable performance in these protective
strategies provides reasonable assurance that the overall mission of adequate protection of public
health and safety is met, as described in Chapter 5.  Moreover, the protective strategies go further,
implicitly requiring a defense-in-depth approach that will ensure uncertainties in performance do
not compromise achieving overall plant safety objectives.2  “Risk & Design, Construction, and
Operation Objectives” develop overall plant risk and deterministic criteria, including criteria for
selecting DBAs and SSC classification as described in Chapter 4. 
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2.2 Safety Philosophy

The NRC’s safety goals are based on the idea of minimizing additional risk burden to the population
for the benefits of nuclear power. These underlying ideas are as appropriate for new reactors (or
any new technology) as they are for existing LWRs.

As the Commission notes in the Policy Statement on Regulation of Advanced Nuclear Power
Plants: 

(1)  Advanced reactors will make larger safety margins.

(2) Advanced reactor designs will comply with the Commission’s Safety Goal Policy  
Statement.

The conceptual sketch in Figure 2-3 shows the interrelationships of the safety goals in plant
licensing.   To address the Commission’s expectations, a three-region approach to risk acceptance
i s
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Figure 2-3 Three Region Approach to Risk Tolerability/Acceptance

A three-region approach has been discussed and employed in a number of forums  [Ref. 1-3], [Ref.
1-4].  In considering this figure, understand that there is substantial uncertainty (see the following
section and Chapter 5 for a discussion of uncertainty) in a plant’s risk performance.  The lower
region represents the value of the risk metric that corresponds to the desired ultimate safety goal
and/or objective.; that is, it defines what is “safe enough”, i.e., one in which no further regulatory



2. Framework Roadmap
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implement this idea on a quantitative basis are discussed in Chapter 4.

4Note that the purpose of barriers, protective systems and accident management is to mitigate the accident
sequences by reducing their frequency or their impact.  Historically engineers have spoken of preventing core melt
and mitigating core damage.  These terms are not especially helpful with some future reactor designs and
prevention/mitigation definitions change as the object under discussion changes - core damage, release from the
primary system, release off-site, etc. 
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attention is needed.3  

Some currently operating reactors may fall in the middle region of tolerable risk, a region where
regulatory cost-benefit or similar analyses can be carried out for proposed safety enhancements
to reduce risks, and risk is reduced as far as reasonably practical.  Currently operating reactors
have only  a small chance of reaching the upper, unacceptable region.

The goal of this framework is to develop requirements for future reactors consistent with the lower,
desired region where there is only a small chance that the risk will reach the tolerable region and
essentially zero chance that it will reache the upper, unacceptable region. 

Accordingly, the technology-neutral regulatory requirements for future reactors are expected
to keep the risk down in the desirable region.  Thus the regulations will be written to achieve
the safety goal level of safety.  This achievement will provide margin for adequate protection to
account for uncertainties associated with new designs and technologies as well as help implement
the Commission’s expectations for safety as expressed in the Advanced  Reactor Policy Statement.

In addition, if new plants that meet this level of safety are  added to sites with an existing reactor(s)
will be little incremental risk to the site.  Finally, such an approach is consistent with industry
initiatives which are directed at developing designs with enhanced safety over currently operating
plants.

It is understood that the consequences from events that may occur one or more times during the
lifetime of the plant are no greater than that allowed for normal plant operation under current
regulations (i.e., 10 CFR Part 20).

2.3 Protective Strategies

There are five protective strategies: physical protection, barrier integrity, limit initiating event
frequencies, protective systems, and accident Management.  The five protective strategies
introduced here set the design, construction, and operating conditions that will ensure protection
of public health and safety, workers, and the environment. 

• The physical protection objective is to ensure that adequate measures are in place to
protect workers and the public against intentional acts that could compromise the safety of
the plant and lead to radiological releases.

• The barrier integrity4 objective is to ensure that there are adequate barriers to protect the
public from accidental radionuclide releases.  Adequate functional barriers must be
maintained to protect the public and workers from radiation associated with normal
operation and shutdown modes and to limit the consequences of reactor accidents if they
occur.  Barriers  include only physical barriers but physico-chemical  materials that can
inhibit the transport of radiation if physical barriers are breeched.
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• The limit initiating event frequency objective is to limit the frequency of events that can
upset plant stability and challenge critical safety functions during all plant operating states
(i.e., full-power, shutdown, and transitional states).  Initiating events must be considered that
can affect any source of radioactive material on site in any chemical and physical form.

• The protective system objective is to ensure that the systems that mitigate5 initiating
events are adequately designed, and perform adequately, with respect to reliability and
capability, to satisfy the design assumptions regarding accident prevention and mitigation
during all states of reactor operation.  The protective systems include  human actions to
assist the systems protect the barriers.

• The accident management objective is to ensure that the public health and safety can be
adequately protected.  Accident management  measures can include emergency evacuation
plans, drills, and training.

How  these protective strategies are implemented is discussed in Chapter 3.  Note that the physical
protection protective strategy is somewhat unique.  Security considerations affect all aspects of
design (including the other strategies), construction, and operation.  Changes to any other
protective strategy must consider the impact on physical protection.  This is not to say that there
are no interactions with the other protective strategies.  A top-down analysis of each protective
strategy  confirms the validity of the set of strategies and leads directly to a categorization of the
kinds of regulations needed to ensure that the protective strategies are carried out.   It is important
to identify the failures and human actions that can defeat the barriers and their protective systems.

Protective strategies and administrative requirements are protective, rather than  analytical.  
They directly address the questions:  What if the models are wrong, at least in particular
situations, or are incomplete?  What if the assumptions are wrong or degrade with time? 
Requiring multiple Protective Strategies, regardless of the results of PRA analyses, provides
protection against uncertainty in models and completeness.  Even if our first layer of defense
fails, additional layers are present to provide backup.  Implementation of the Protective
Strategies relies on the goal of independence to avoid vulnerability to the same source of
uncertainty.  In effect, they provide a deterministic defense-in-depth structure.

Within each protective strategy an approach can be taken that specifies certain deterministic
requirements to help account for completeness uncertainties and probabilistic requirements to
help guide the treatment of quantified uncertainties.  Likewise the Administrative Requirements
provide extrinsic control over the system: establishing rules for analysis; inspection
requirements to identify degradation before failures occur; and tests to ensure that the as-built,
operating facility is true to the designers’ expectations.  Results of the PRA and the sensitivity
studies help in the evaluation of the necessary defense-in-depth in a risk-informed structure.

2.4 Risk Objectives and Design, Construction, and Operational
Objectives

Returning to the framework of Figure 2-1, the risk objectives and the design, construction, and
operational objectives complement  the protective strategies.  The risk and design objectives lay
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out a parallel safety approach for meeting  safety and risk goals for all facilities.  This approach
keeps worker risk and land contamination to acceptable levels, and sets specific design
expectations that amount to defense-in-depth requirements at the design level.  The safety  and risk
objectives are derived from the quantitative health objectives (QHOs) of the NRC’s safety goals.
Chapter 4 explains how risk goals and design expectations are to be used to ensure that the safety
goal QHOs are met.

In SECY-03-0047 the staff proposed and  in a June 26, 2003 SRM the Commission endorsed a
process for future non-LWR plant licensing similar process  used in the certification of the two
evolutionary and one advanced LWRs (i.e., ABWR, System 80+, and AP-600).  The evolutionary
and ALWR design certification process used CDF and CCFP to measure overall plant risk and
compared them to the CDF and CCFP surrogates described above.  In addition, uncertainties
related to evolutionary and ALWR plant performance, particularly with respect to the prevention or
mitigation of severe accidents, were addressed on a case-by-case basis with any additional
proposed requirements being subject to Commission review and approval.  The development of this
framework and a risk-informed licensing approach is based upon implementing the process
employed in the ALWR reviews in a more structured fashion.  This would include better defining the
level of safety desired in new plant designs and the process to be used to address uncertainties
(i.e., defense-in-depth).  The level of safety desired is that associated with the Commission’s
Reactor Safety Goals and has been used as the basis for the risk objectives.  This approach is
considered consistent with the Commission’s expectation (as expressed in the Advanced Reactor
Policy Statement) that advanced reactor designs are “expected to comply with the Commission’s
Safety Goal Policy Statement” and “provide enhanced margins of safety.”  By having the framework
identify the criteria consistent with this expectation, the need for case-by-case determinations is
reduced.  However, the process still allows for case-by-case determinations on additional features,
subject to Commissions review and approval, if such a need arises.

From the conceptual structure of Figure 2-3, frequency-consequence curves are developed in
Chapter 4 that are consistent with the overall safety goal objective and are applicable to all reactor
concepts.  The approach combines probabilistic risk criteria and “design-basis” criteria.  The risk
criteria include accident prevention and accident mitigation criteria.  Probabilistic criteria are used
for the selection of design basis accidents and safety classification of systems, structures and
components.  Design basis criteria set fixed acceptance criteria for events that are used for
comparison to siting requirements.

Returning to the framework of Figure 2-1, following development of the two complementary
approaches, defense-in-depth decisions based on the PRA and judgment lead to the development
of specific regulations.  In particular,  the PRA provides a means for risk-informing the selection of
any specific implementation of the protective strategies.  The PRA identifies the most important
elements in protective strategy.  PRA calculates the risk and compares it with the frequency-
consequence limit curves.

Reactor (and other facility) safety is achieved by considering the combination of initiating events,
performance of barriers, performance of protective systems and accident management with respect
to an appropriate set of reactor-specific safety functions, human actions, and integrated system
response.6 

2.5 Defense-in-Depth: Treatment of Uncertainty
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Working DRAFT Regulatory Structure for New plant Licensing,
NUREG-xxxx, Revision a, December 2004 Part 1: Technology-Neutral Framework2-9

Future reactor designs may use passive systems and inherent physical characteristics (confirmed
by sensitive nonlinear dynamical calculations)  to ensure safety, rather than relying on the  active
electrical and mechanical systems.  For such plants  with many passive systems, fault trees may
be very simple when events proceed as expected and event sequences may appear to have very
low frequency.  The real work of PRA for these designs may lie in searching for unexpected
scenarios.  Innovative ways to structure the search for unexpected conditions that can challenge
design assumptions and passive system performance will need to be developed or identified and
applied to these facilities.  The risk may arise from unexpected ways the facility can end up
operating outside the design assumptions.  For example, a HAZOP-related search scheme for
scenarios that deviate from designers' expectations and a structured search for construction errors
and aging problems may be the appropriate tools. A facility can operate outside its design
assumptions in other scenarios:

•  The operators and maintenance personnel place the facility in unexpected conditions. 

• Gradual degradation has led to unobserved corrosion or fatigue or some other physical
condition not considered in the design.

• Passive system behavior (e.g., physical, chemical, and material properties) is incorrectly
modeled.

Much of the work of PRA for future reactors will be to identify and evaluate initially unexpected
scenarios.7  In applying PRA to future reactor designs, analysts must start with a clean page, i.e.,
not be biased by expectations from the conclusions of PRAs on old designs.  Part of the
examination of the unexpected is identification, evaluation, and management of uncertainties, as
discussed in Chapter 5.  

In general, uncertainties associated with new plants will tend to be larger than uncertainties
associated with existing plants due to new technologies being used, the lack of operating
experience or, in the case of some proposed LWRs, new design features (e.g., increased use of
passive systems).  Any licensing approach for new plants must account for the treatment of these
uncertainties. The aim is to develop an approach for future reactors which can be reconciled with
past practices used for operating reactors, but which improves on past practices by being more
consistent and by making use of quantitative information where possible.  

A range of uncertainties in future reactor performance should be considered including:

• Parameter uncertainty associated with the basic data; while there are random effects from
the data, the most significant uncertainty is epistemic - is this the appropriate parameter
data for the situation being modeled

• Model uncertainty associated with analytical physical models and success criteria in the
PRA can appear because of modeling choices, but will be driven by the state-of-knowledge
about the new designs and the interactions of human operators and maintenance personnel
with these systems

• Completeness uncertainty associated with factors not accounted for in the PRA by choice
or limitations in knowledge, such as unknown or unanticipated failure mechanisms,
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unanticipated physical and chemical interactions among system materials, and, for PRAs
performed during the design and construction stages, and all those factors affecting
operations (e.g., safety culture, safety and operations management, training and
procedures, use of new I&C systems)

All identified and quantified uncertainties (aleatory and epistemic) can be included in PRA that
supports development of regulation (evaluation of design, construction and operation risks;
comparison with risk objectives; evaluation of the effectiveness of Protective Strategies).  The PRA
directly uses the results of parameter estimation in the data uncertainty distributions for its basic
events.  It also uses many results of sensitivity studies to address uncertainty in success criteria,
plant conditions and other models - sometimes incorporating model uncertainty, sometimes
bounding it. Finally, it will be important to qualitatively describe and catalog all aspects of
uncertainty, even those difficult to quantify, for consideration in balancing structuralist and rationalist
aspects of regulation.

2.6 Process for Development of Technology-Neutral Requirements

The risk information and safety goals should be linked to the protective strategies to develop
technology-neutral requirements for new reactor concepts.  This is carried out in Chapter 6.  These
regulations, being technology-neutral, should be compatible with acceptable safety performance
for existing LWRs.  Technical (intrinsic) regulations and administrative (extrinsic) regulations,
organized by design, construction, and operation, will be developed in order to anticipate and
neutralize potential challenges that could prevent the risk objective from being achieved.  Of course,
the concern during design and construction is to control those aspects of each that could have
positive or negative impacts on the risk during operations.  Traditionally, NRC regulations and
practices have ensured public health and safety is not compromised by commercial nuclear power
plant operation by requiring the use of good design, construction and operational practices.

NRC’s role has been to specify requirements associated with each of these three elements of “good
practice,” and through review, approval, and oversight, to monitor and judge a licensee’s
compliance with these requirements.  Regulations for new plant licensing would also  embody these
good practices.  In addition, they would enjoy the simplifying advantage of having the process
structured to use risk insights throughout the process.  The emphasis given to each aspect will be
developed according to how they address the threats that challenge one or more of the protective
strategies and how they ensure meeting the safety/risk objectives and
design/construction/operation expectations.  

Chapters 3, 4, and 5 feed naturally into the identification of technology-neutral technical and
administrative requirements in Chapter 6.  The protective strategies of Chapter 3 establish the
systems and functions to be protected by the requirements.  The most important functionality during
design, construction and operation can be established at this level.   Chapter 4 identifies the
objectives that must be met. Chapter 5 identifies the uncertainty issues that must be recognized
and addressed, as well as the tools that can be used to ensure that uncertainty in performance and
operating conditions are addressed in a way to promote proper balance between protective
strategies and risk, between technical requirements and administrative requirements. Together
these lead to a set of questions to ask about the design to ensure all goals are met.  Chapter 6 then
seeks performance-based measures to satisfactorily answer all the questions.

The process for developing technical and administrative requirements from the protective strategies
is outlined in Figure 2-4 and explained fully in Chapter 6. It begins with the protective strategies
themselves, described in Chapter 3. Then a deductive analysis of the logic of events that can defeat
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each protective strategy is performed as discussed in Chapter 3 and elaborated in Chapter 6.
These logic trees lead directly to the questions staff must ask to ensure each protective strategy
is accomplished. The answers to these questions must be balanced among the strategies based
on information from the risk and design criteria and considerations of defense in depth. As a final
check, the questions and answers are benchmarked against criteria for LWRs in 10 CFR Part 50,

IAEA Standards, and
o t h e r  a v a i l a b l e
historical information
as a check on
completeness. (Note
that some of these
LWR requirements
may not be applicable
to the new reactor
design and that these
LWR standards cannot
be assumed complete
for new reactors.)
Finally, the answers to
the questions are
f o r m u l a t e d  a s
performance-based
requirements.
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Figure 2-4 Process for Identifying Topics to Be Included in the Requirements.



8Note that the ROP safety cornerstones  – Initiating Events, Mitigating Systems, Integrity of Barriers to
Release of Radioactivity, Emergency Preparedness, Occupational Radiation Safety, Public Radiation Safety, and
Physical Protection –  were developed to address operational risk, while the focus of the current document is on
licensing a design to provide protection during operations from causes that arise during design, construction, or
operation. The ROP performance indicators were selected  to support an inspection process; the framework for
technology-neutral regulation lays out a process to develop technical and administrative requirements and associated
performance indicators to support licensing. The protective strategies ensure that defense in depth will provide
protection, even if state of knowledge uncertainties mean that the plant may respond in unexpected ways. Note also,
that the two radiation safety cornerstones do not translate to protective strategies. As explained in conjunction with
Figure 3-2, they affect doses that can occur in case of an accident and factor into the PRA consequences
calculations.
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      Figure 3-1 Summary View: Framework for
Technology-Neutral Regulation

3. SAFETY FUNDAMENTALS: PROTECTIVE STRATEGIES

3.1 Introduction

This chapter describes how the
safety/risk objectives, (generalized in
Chapter 4 from the QHOs described in
the Commission’s Reactor Safety Goal
Policy) are complementary with the
protective strategies discussed in
Chapter 2 (Figure 3-1). The five
protective strategies (Physical Protection,
Barrier Integrity, Limit Initiating Event
Frequency, Protective Systems, and
Accident Management) introduced in
Chapter 2 establish the high level
structure that, if followed, can
systematically result in requirements for
safe nuclear power plant design,
construction, and operation.  This chapter
explains why the set is sufficient and how
regulations can flow from the process. 

These five protective strategies form an
adequate set for two reasons–they meet
a set of minimal needs from an
engineering perspective and they map to
all elements modeled in a nuclear power
plant PRA (i.e., if they succeed, no PRA
accident sequence can lead to a release
of radionuclides dangerous to the
population surrounding the site).  As
described in Chapter 2, the protective
strategies were selected based on
engineering judgment, as a minimal set
to provide a layer of protection with
respect to all key safety functions. The relevance of this set is supported by its similarity to the
seven8 “cornerstones” of the Reactor Oversight Process [Ref. 1-5], a process that has the benefit
of several years of operational experience. However, the viewpoint taken in this framework is that
of design and construction, as well as operation.  
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Figure 3-2 The Relationship between the Protective strategies
and Elements of the PRA

The second case for these protective strategies is based on the alignment of the protective
strategies with the analysis elements of PRA, as outlined in Figure 3-2.  The first element of PRA
is the identification and modeling of the possible initiating events.  The response of plant systems
that can terminate the event sequence before barrier damage occurs is then modeled.  Success
criteria are based on the functional performance required to limit damage or control radionuclide
release.  Human actions that can control or exacerbate protective systems and barrier performance
are modeled next.  Finally, given the calculated performance of protective systems, the physical
response of the plant is calculated.  For event sequences leading to radionuclide release, doses
to surrounding populations (in light of accident management and protective measures) and land
contamination are calculated.9  The five protective strategies directly affect the PRA’s initiating
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inhibit radioactive material transport should physical barriers be breeched.
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Are There Better Protective Strategies?

A number of additional/alternative protective strategies
have been suggested in discussions with staff,
licenses, vendors and other interested parties; these
have included “inherent design features,” radiation
protection, and others. Because the protective
strategies are intended as structuralist requirements,
they must be limited to those functional issues that
provide and protect barriers to release. 

In evaluating the effectiveness and reliability of the
protective strategies, designers and regulators must
consider all factors affecting each strategy. Inherent
design features are part of every design; they may
directly provide some of the protective strategy
functions and, when they do, this should be included in
the risk analysis. Likewise, radiation protection

events, human performance, protective systems, barrier performance, and physical protection, as
shown in Figure 3-2.  Because these are the driving factors in determining the risk, the five
protective strategies form a complementary and diverse (defense-in-depth) set of defenses for
controlling the risk.

For every source of radioactive hazard on site, all initiating event are considered in the PRA.  Thus
the PRA examines the ways in which multiple barriers10 can be breeched; it models:

• initiating events

• successes and failures in the protection systems that are designed to protect barriers

• human actions that can offset or defeat the protective systems or barriers themselves

• the physical response of the integrated plant to event sequences,  including radiological
dispersion pathways

• the emergency response system developed to protect the public and workers in case
barriers fail

• dose response (calculating the probable frequency of human health effects and land
contamination)

Each protective strategy interacts with
one or more elements of the PRA
model.  PRA models of the protective
strategies are based on evolving
design and implementation, which are
guided by the technical and
administrative regulations that apply to
design, construction and operation.  If
the results of the PRA compare
favorably with the safety/risk
objectives, the protective strategies are
adequate for the new technology
system.  Note that the protective
strategies add a layer of protection
beyond that implied by the PRA.
Because they are all required, they
provide a high level defense-in-depth
structure for identifying safety
requirements, as described in Chapter
6.  Furthermore, this layer of defense-
in-depth provides a measure of
protection against uncertainties, even those that are due to technical knowledge gaps that are not
known and not modeled in the PRA.
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The link between the protective strategies and actual regulation is established by examining the
necessary elements of each strategy.  The protective strategies are discussed below.

3.2 Protective Strategies

3.2.1 Physical Protection

The physical protection strategy  ensures that adequate measures are in place to protect workers
and the public against intentional acts (e.g., sabotage, theft) that could compromise the safety of
the plant or lead to radiological release. Physical protection is provided by design and by extrinsic
measures (“guns, guards, and gates”) to provide defense-in-depth against attack.  This requires
that design makes it unlikely that outsiders (or, even single insiders) can reach sufficient sensitive
areas of the plant to accomplish their goals. Further, the extrinsic features provide delay and
opposing force.   Adequate physical protection requires a integrated view of the plant and the
opposing forces.

3.2.2 Barrier Integrity

Functional barriers to radionuclide release must be provided to maintain isolation of hazardous
nuclear material within the system.  Barriers can be both physical barriers and barriers to
mobilization and transport of radioactive material, e.g. the physical-chemical form that retards the
dispersion of the material.  Again, the plant PRA can play a critical part in the determination of the
number and type of these barriers, as well as their required reliability and capability.  The PRAs will
be used to demonstrate that the frequency of radionuclide release is within the desirable range, with
adequate consideration of uncertainty.  Uncertainties associated with barrier degradation, e.g.,
corrosion, erosion, aging, and other materials issues, will need to be considered.  For some
systems, chemical interactions will be important.

Additional barriers, beside those identified from the risk analysis, may be needed to address
credible scenarios not amenable to risk analysis and covered by  design basis accidents (DBAs),
(Chapter 4).  They may be needed to provide assurance against uncertainties in modeling
completeness as well.

3.2.3 Limit the Frequency of Initiating Events

To ensure adequate limitation of accident initiators, a thorough examination of potential initiating
events should be conducted as part of the risk analysis of the design.  The initiators should be
identified, along with their mean frequency of occurrence.  Uncertainty in their frequency should
also be considered and quantified as a probability of frequency distribution.  Initiators should include
events from both plant internal and external causes, as well as events during all operating states,
since these are all in the scope of the risk analyses. Events that could affect any sources of
radioactivity should be considered.
 
Initiating events have different potential impact.  For example, an initiator that simply trips an
operating reactor is fairly benign, while common cause initiating events (those that directly 
challenge barriers or disable or degrade protective systems) require fewer additional failures before
radionuclide release.  Thus it will be helpful to group initiators by their risk significance. 

It may also be advantageous to group the initiators into certain classes depending on their
frequency of occurrence, as frequent, infrequent or rare.  Such a grouping allows the protective
features (considered in the next protective strategy) to have  reliability and performance that is
commensurate with the frequency of the initiator group, so as to limit the frequency of fuel damage
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accidents to acceptable levels.

For the future reactor technologies, initiating event consideration may be substantially different from
those for current US LWRs.  Examples are events associated with on-line refueling, recriticality due
to more highly enriched fuels and fuels with higher burnup, and chemical interactions with some
reactor coolants or structures.  In particular, initiators that can confuse operators and lead them to
take actions that could defeat important safety features in advanced plants, e.g., passive cooling
and events that cause conditions outside the designers’ expectations, could be important.

3.2.4 Protective Systems

Plant features should be provided to mitigate the consequences of initiating events by protecting
the barriers identified in the first protective strategy.  A critical part of the determination of these
features is a qualitative review of the reactor-specific design philosophy, which includes a review
of the design and performance features of the barriers, the reactor-specific safety functions that
protect these barriers, the specific inherent and engineered safety features of the reactor concept
in light of their capability to protect the barriers.  Another critical part of the determination is the full
scope (internal and external events, all operating modes) PRAs that must be carried out for the
future designs.  These PRAs are expected not only to determine the needed features, but also their
required reliability and capability.  The PRAs will be used to demonstrate that the safety/risk
objectives are within the desirable range, with adequate consideration of uncertainty.

For some scenarios which appear credible but have very broad uncertainty (due to insufficient data,
not well understood phenomena, etc.),  additional protective features  may need to be incorporated.
If DBAs are needed to address such scenarios, as described in Chapter 4, then the protective
features necessary to cope with the DBAs need to be identified and incorporated.  

For the future reactor technologies, some mitigative considerations will be substantially different
from those for current US LWRs.  Examples are performance and monitoring of passive safety
systems (including passive decay heat removal), the performance and testing as well as the PRA
modeling of digital systems, qualification and testing of new materials including fuel, non-traditional
emergency core heat removal systems, limited operator intervention, and, for LMRs, potential
energetic interactions of the working fluid when exposed to the environment.

3.2.5 Accident Management

Accident management includes management of all accident scenarios, whether release has
occurred or not. Therefore, plant abnormal and emergency procedures are part of accident
management, as well as severe accident management guidelines and on-site and off-site
emergency plans. If functional barriers fail to adequately limit the radionuclide release, accident
management must be provided to control the accident progression and ultimately to limit the public
health effects of accidents.  The  plant PRA will help to determine the measures that are effective
in limiting the public health effects from radionuclide release accidents so that the risk remains
below the QHOs.

3.3 Analysis to Identify Requirements

The five protective strategies are analyzed deductively in Chapter 6. The approach is to develop
a fault tree for each strategy, asking, how can this strategy (e.g., the set of barriers) fail to provide
its function. This is a top-down analysis that often begins by partitioning the functional failure into
two or more classes of failure. It usually proceeds by identifying specific causes of failure.
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Next, these failures causes are examined for their relevance during design, construction, and
operations. Questions are developed for regulators that, when answered, will identify the topics that
must be addressed by the design, the facility, and the practices if the protective strategies are to
remain functional. Finally performance requirements are developed to provide continuing
confidence that the topics are addressed.

In developing the requirements themselves, a performance-based approach should be used
wherever practical.  The use of such an approach is consistent with Commission direction as
expressed in a 1999 White Paper on risk-informed and performance based regulation.  In that white
paper a performance-based approach was defined as one that establishes performance and results
as the primary basis for regulatory decision-making, and incorporates the following attributes: (1)
measurable (or calculable) parameters (i.e., direct measurement of the physical parameter of
interest or of related parameters that can be used to calculate the parameter of interest) exist to
monitor system, including facility and licensee, performance, (2) objective criteria to assess
performance are established based on risk insights, deterministic analyses and/or performance
history, (3) licensees have flexibility to determine how to meet the established performance criteria
in ways that will encourage and reward improved outcomes; and (4) a framework exists in which
the failure to meet a performance criterion, while undesirable, will not in and of itself constitute or
result in an immediate safety concern.

Further, the White Paper also defines a risk-informed and performance-based approach as one in
which risk insights, engineering analysis and judgement, and performance history are used to: (1)
focus attention on the most important activities; (2) establish objective criteria based upon risk
insights for evaluating performance; (3) develop measurable or calculable parameters for
monitoring system and licensee performance; and (4) focus on the results as the primary basis of
regulatory decision-making.

The features included in the integrated risk-informed and performance-based approach as
compared with just the performance-based approach are noteworthy.  Taken together, the
Commission’s views a performance-based approach as bringing about a focus on results as the
primary basis for regulatory decision making, whether PRA information is available or not.

The performance-based approach is characterized and recognized by the occurrence of the
following four attributes and sub-attributes:

• A framework exists or can be developed to show that performance by identified elements
will serve to accomplish desired goals and objectives. Margins of performance exist such
that if performance criteria are not met, an immediate safety concern will not result.

- An adequate safety margin exists.
- Time is available for taking corrective action to avoid safety concerns.
- The licensee is capable of detecting and correcting performance degradation. 

• Measurable, calculable, or constructable parameters to monitor acceptable plant and
licensee performance exist or can be developed.

- Directly measured parameters related to the safety objective are preferred and will
typically satisfy this guideline.

- Calculated or constructed parameters may also be acceptable if there is a clear
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relationship to the safety objective. 

- Parameters that licensees can readily access, or are currently accessing, in real
time are preferred and will typically satisfy this guideline. Parameters monitored
periodically to address postulated, design basis, or other conditions of regulatory
significance may also be acceptable.

- Acceptable parameters will be consistent with defense-in-depth and uncertainty
considerations.

• Objective criteria to assess performance exist or can be developed.

- Objective criteria consistent with the desired outcome are established based on risk
insights, deterministic analyses, and/or performance history.

• Licensee flexibility in meeting the established performance criteria exists or can be
developed.

- Programs and processes used to achieve the established performance criteria will
be at the licensee’s discretion.

- A consideration in incorporating flexibility to meet established performance criteria
will be to encourage and reward improved outcomes, provided inappropriate
incentives can be avoided.

Appendix A provides additional guidance on the application of these attributes in developing
performance-based requirements.
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4. RISK AND DESIGN, CONSTRUCTION, AND OPERATIONAL
OBJECTIVES

4.1 Introduction

This chapter provides guidance and criteria for developing  the overall risk objectives for new
plants, and establishes the safety objectives for their design, construction and operation.  The
overall risk objectives, in terms of both high level objectives and surrogates, are developed for the
public and the worker, but also address the environment.  The focus of Chapter 4 is on those
objectives, criteria and elements necessary for a risk-informed licensing approach.

Design objectives are provided which involve both probabilistic and deterministic criteria. 
Probabilistic criteria are developed to categorize  events to be considered in the design.
Deterministic acceptance criteria are established for  events   expected to occur one or more times
in the life of the plant and for  probabilistically selected “design basis accidents” that must be
considered for siting purposes.  A risk-informed approach to determine the safety classification of
structures, systems, and components is also discussed.

Construction objectives issues regarding modular fabrication in factories, fabrication outside the
U.S. and issues of fuel quality are discussed.

Operational objectives for staffing, accident management, protection of operating staff during
accidents, and offsite emergency preparedness, all of which may differ for new plants, are provided.

Uncertainties are addressed in Chapter 5. 

4.2 Risk Objectives

4.2.1 High Level Risk Objectives

This section  discusses   the risk objectives for the public, the workers, and the environment.  The
public risk objective is defined by the Safety Goal Policy Statement of the U.S. NRC in terms of the
two quantitative health objectives (QHOs): 

• “The risk to an average individual in the vicinity of a nuclear power plant of prompt fatalities
that might result from reactor accidents should not exceed one-tenth of one percent (0.1
percent) of the sum of prompt fatality risks resulting from other accidents to which members
of the U.S. population are generally exposed”.  The Commission defined “vicinity” in this
case as the area within one mile of the plant site boundary, and the average individual risk
is determined by the mean of the frequency-weighted early fatality distribution summed over
all accidents and divided by the total population within 1 mile.

• “The risk to the population in the area near a nuclear power plant of cancer fatalities that
might result from nuclear power plant operation should not exceed one-tenth of one percent
(0.1 percent) of the sum of cancer fatality risks resulting from all other causes.”  The
Commission defined the “area near a nuclear power plant” for this objective to be the area
within 10 miles of the site boundary and the risk to the population was again stated in terms
of average individual risk of latent cancer determined by the mean of the frequency-
weighted latent cancer fatality distribution summed over all accidents and divided by the
total population within 10 miles.
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Based on the rates of accidental death and cancer fatality in the U.S., the prompt (or early) fatality
QHO has a value of # 5E-7 per year and the latent cancer fatality QHO has a value of # 2E-6 per
year.  

On an individual plant basis, a site-specific Level 3 PRA (which incorporates a probabilistic
treatment of site weather along with other factors such as population) has to be performed to
evaluate whether the plants meets the QHOs defined above.  For operating plants, surrogate (or
subsidiary) risk objectives have been defined in terms of large early release frequency (LERF)  and
core damage frequency (CDF).  The risk objectives are consistent with the level of risk (or safety)
implied by the prompt fatality and latent cancer fatality QHOs ,respectively.  Surrogate risk
objectives for new plants are discussed below in Section 4.3. 

An approximate visualization of the level of safety needed for advanced plants on a technology-
neutral basis can be provided by a frequency-consequence curve (shown in Figure 4-1 and
described in Section 4.2.1.1 below) that is based upon ensuring the overall risk to the public from
plant operation is no greater than that defined by the Commission’s Reactor Safety Goal Policy
Statement.  This curve spans a range of frequencies from events that may occur during the life of
a plant to rare events (less than 1E-6 per year).  It is understood that the consequences from
events which may occur one or more times during the life of the plant are no greater than that
allowed for normal plant operation under current regulations (i.e., 10 CFR Part 20). 

The worker risk objective is based on current regulations (10 CFR Parts 50 and 20) and the
environmental risk objective is also developed from the current regulation in 10 CFR Part 140.
Surrogate risk objectives are developed in a manner similar to the way the subsidiary risk objectives
(core damage frequency and large early release frequency) for operating reactors are derived from
the quantitative health objectives of the reactor safety goal policy Statement.

4.2.1.1 Public Risk Objectives

Radiation protection of the public from normal operation of nuclear facilities, including power
reactors, is provided by the dose limits in 10 CFR Part 20.  Under normal operation of a licensed
nuclear facility, the total effective dose equivalent to individual members of the public is limited to
100 mrem per year above background.  This limit is supplemented by the requirement that the
doses be “as low as reasonably achievable” (ALARA).  This limit is consistent with the
recommendations of the International Commission on Radiation Protection (in ICRP-60) that
effective dose for the public should be limited to 1 mSv per year (100 mrem per year) averaged over
any 5 consecutive years.  The National Commission on Radiological Protection (NCRP-116) also
recommended that the public dose limit should be 100 mrem per year; in addition, NCRP
recommended a limit of 5 mSv per year (500 mrem per year) for “infrequent” exposures.  Part 20
allows a licensed facility to operate for specified periods of time with a public dose limit of 500 mrem
per year provided justification is given and authorization is received.

Dose limits to the public apply to routine exposure during normal operation of licensed facilities, i.e.,
doses received with essentially unit probability.  Doses due to accidents (called “potential
exposures” by the IRCP) were addressed qualitatively in ICRP- 60 as follows: “Dose limits do not
apply directly to potential exposures.  Ideally, they should be supplemented by risk limits, which
take account of both the probability of incurring a dose and the detriment associated with that dose
if it were  received.”
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ICRP-64 developed a conceptual approach for limiting the risks of doses from accidents, i.e.,
potential exposures.  This approach can be summarized as a range of recommended annual
probabilities of accident sequences (from which constraints may be selected) leading to different
severities of radiation exposure.  The ICRP recommendations for limits on frequency of accidental
doses are as follows:

Dose ranges Frequency ranges

• Doses treated as part of normal exposures 1E-1 to 1E-2 per year
• Stochastic effects only but above dose limits: 1E-2 to 1E-5 per year
• Doses where some radiation effects are deterministic: 1E-5 to 1E-6 per year
• Doses where death is the likely result: < 1E-6 per year

The recommendations of ICRP 64 are consistent with the generally accepted principle that the
larger the potential consequence of an accident the smaller its frequency of occurrence.  The
following considerations are relevant to translating the ICRP recommended dose categories into
numerical estimates that apply to an individual member of the public (assumed to be located at or
in the immediate vicinity of the exclusion area  boundary).

Doses in the range of 1 mrem to 100 mrem fall in the first category of doses that can be treated as
normal exposures (i.e., within dose limits).  The second category, doses that are above limits but
only involve stochastic effects, ranges from 100 mrem to about 20-25 rem.  (NCRP 64 [Ref. 1-6],
for example,  change  the latent cancer fatality risk coefficient from 5E-4 per rem to 1E-3 per rem
for doses above 20 rem).  Doses above 50 rem fall in the third category where some radiation
effects are deterministic (ICRP 41 [2] gives a threshold of 0.5 Sv, 50 rem, based on 1% of the
exposed population showing the effect, for depression of the blood forming process in the bone
marrow, from whole body exposure).  Doses where death, i.e., early fatality, is the likely result are
characterized by a threshold (e.g., lethal dose to 1% of the population) and an LD50 value (median
lethal dose).  For bone marrow syndrome from whole body exposure, the threshold dose is 1 Sv,
(100 rem), for a population receiving no medical care [3] and 2-3 Sv [4] for a population receiving
good medical care.  In the NRC-sponsored MACCS probabilistic consequence analysis code, the
threshold and LD50 parameters for early fatality due to bone marrow syndrome are set at 150 rem
and 380 rem respectively for a mixed population consisting of 50% receiving supportive medical
care and 50% receiving no medical care [5] based on the early health effects models developed
in NUREG/CR-4214 [4]. 
 
Based on the above considerations, a table of values of accident frequency versus dose is
proposed as shown in Table 4-1. 

Table 4-1 Proposed dose/frequency ranges for public accidental
exposures

Dose Range Frequency
(per year)

Comment

1 mrem - 100 mrem 1E-2 Doses treated as normal exposures

100 mrem - 1 rem (1) 1E-3 1 rem off site triggers EPA PAGs

1 rem - 25 rem (1) 1E-4 25 rem triggers AO reporting
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25 rem - 100 rem 1E-5 50 rem is a trigger for deterministic effects (i.e., some
early health effects are possible)

 100 rem - 300 rem 1E-6 In this range the threshold for early fatality is
exceeded

> 300 rem 5E-7 Above 300 - 400 rem, early fatality is quite likely

(1) Doses that are stochastic and  in the range of 100 mrem to 25 rem are subdivided into two
ranges: those below the EPA protective action guideline of 1 rem off site are assigned a
frequency of 1E-3/year.  Doses in the next higher range of 1 rem to 25 rem are assigned
a frequency of 1E-4 per year.  25 rem is the DBA offsite dose guideline in 10 CFR 50.34
and 10 CFR 100; it is also the dose that defines an abnormal occurrence (AO) as described
in the Commission’s April 17, 1997, policy statement on AOs, (62 FR 18820) which defines
substantial radiation levels to imply a whole body dose of 25 rem to one or more persons.

        Figure 4-1 Frequency/consequence curve for public health and
safety

Based on Table 4-1, Figure 4-1 gives a representation of a frequency-consequence plot (annual
frequency vs. dose in rem) for doses incurred in accidents. The breakpoints for the dose ranges
in Figure 4-1 are described in Table 4-1. The curve as a whole is meant to provide guidance on the
frequency and consequence of accidents and to be reasonably consistent with the quantitative
health objectives (QHOs) of the Commission’s Safety Goal Policy Statement.  The QHOs limit the
total risk of all accidents to the “average” individual within specified distances of the exclusion area
boundary.
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Figure 4-1, the ordinate represents the frequency of accidents leading to a particular dose at/near
the site boundary.   Since each airborne accidental release, by virtue of inherent plume transport
characteristics, is expected to affect only a small fraction of the offsite population around the plant,
the average individual risk of early fatality (averaged over the population within 1 mile of the site
boundary) or the average individual risk of latent cancer (averaged over the population within 10
miles of the site boundary) should be conservatively met by the curve shown in Figure 4.1. Of
course, the line shown in Figure 4.1 should not be treated as a strict acceptance criterion; it is only
an indicative guide to the event frequencies and consequences that meet the criteria for public risk
embodied in the QHOs.

Figure 4-1 can also be utilized for the deterministic event frequency - consequence accidents under
the AOOs and DBAs discussed in Section 4.3.1.3 below.  In this case, a curve such as shown in
Figure 4-1 could be used as part of an acceptance criterion by selecting the event with the highest
possible consequence from the frequency  categories (as discussed in detail in Section 4.4.2.3
shown in Table 4-2) and then demonstrating that the curve is met at a 95% confidence level.

4.2.1.2 Protection of Operating Staff and Environment

In developing the framework the NRC staff considered protection of the operating staff and the
environment.  The staff considered separate risk goals for  protecting the operating staff  but judged
unnecessary at this time, as explained below.

Protection of Operating Staff

Protection of individual members of the public and the workers during normal operation is provided
by the system of dose limits contained in 10 CFR Part 20.  Subpart B of Part 20 establishes
radiation protection program, including the ALARA requirement, for each licensee. Subpart C of
Part 20 provides occupational dose limits for adult workers, including limits for planned special
exposures, occupational dose limits for minors, and dose limits for the embryo/fetus due to
occupational exposure of a declared pregnant woman worker.

Operating personnel are  vital to plant safety and are called on to perform safety related actions
during design basis and beyond-design-basis events (e.g., accident management actions).
Accordingly, protection of the operating staff during accidents should be considered in the design
and operation of future reactors.

General Design Criteria (GDC) 19 of 10 CFR Part 50  Appendix A  currently requires main control
rooms to be designed to ensure habitability under a variety of conditions, including design basis
accident conditions.  The conditions which must be considered include a postulated source term
representative of a core melt accident (or an alternate source term) and chemical releases.  As a
result, LWR main control rooms are provided with shielding and habitability systems that ensure
the safety of the operators during the postulated conditions.  However, no corresponding
requirements exist in 10 CFR 50 for protection of operating staff outside the main control room, who
may be called upon to perform accident management actions and communicate with other staff
during accident situations.

In the development of accident management programs for existing LWRs (which were developed
on the basis of a voluntary industry initiative), it was recognized that access by the operating staff
to certain portions of the plant was essential to carry out the planned actions.  Accordingly, NEI, in
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its “Severe Accident Issue Closure Guidelines” document (NEI-91-04, Rev. 1, dated December
1994) on the development of accident management programs, identified operational and
phenomenological conditions as factors which must be assessed in planning and implementing
operator accident management actions.

For new plants the NRC staff proposed  similarly  require that the main control room be designed
to protect the operating staff during all events which must be considered in the design and  that the
procedures and accident management programs consider the environment (e.g., temperature,
radiation) in which  local operator actions take place and ensure that the design and procedures
sufficiently protect all the operators so that the actions can be safely accomplished without serious
injury.  For radiation exposure the limits in 10 CFR Part 20.1206, “Planned Special Exposures”
should be used as the measure to prevent serious injury for personnel outside the control room.
For personnel inside the control room, limits similar to those in GDC-19 could be used.  Scenario
specific source terms may be used in the assessment, consistent with those used in other accident
analyses.   Other accepted limits should be applied for other hazards (temperature, chemicals,
etc.). 

Utilizing the above approach, new risk goals are not necessary at this time for protection of the
operating staff during accidents.

Protection of the Environment

Protection of the environment during normal operation is required by 10 CFR Part 50.34a, which
sets forth design objectives for equipment to control releases of radioactive material in effluents to
the environment and by 10 CFR Part 50.36a, which  provides technical specifications for effluents
during operation.  10 CFR Part 50.34a specifies that the design objectives for keeping releases
contained in effluents during normal operation and expected operational occurrences should be
ALARA (as low as reasonably achievable considering  technology, cost-benefit to society and other
related socio-economic considerations).  10 CFR Part 50.36a provides technical specifications for
releases of liquid and gaseous effluents to unrestricted areas that, in addition to meeting the
requirements of Part 20, should be as low as reasonably achievable.  Numerical guidance on
design objectives and limiting conditions of operation for releases to meet the ALARA criterion is
provided in Part 50, Appendix I.  This guidance states :

(1) “The calculated annual total quantity of all radioactive material above background to be
released from each light-water-cooled nuclear power reactor to unrestricted areas will not
result in an estimated annual dose or dose commitment from liquid effluents for any
individual in an unrestricted area from all pathways of exposure in excess of 3 millirems to
the total body or 10 millirems to any organ.”

(2) “The calculated annual total quantity of all radioactive material above background to be
released from each light-water-cooled nuclear power reactor to the atmosphere will not
result in an estimated annual air dose from gaseous effluents at any location near ground
level which could be occupied by individuals in unrestricted areas in excess of 10 millirads
for gamma radiation or 20 millirads for beta radiation.”

(3) “The Commission may specify, as guidance on design objectives, a lower quantity of
radioactive material above background to be released to the atmosphere if it appears that
the use of the design objectives in paragraph (2) is likely to result in an estimated annual
external dose from gaseous effluents to any individual in an unrestricted area in excess of
5 millirems to the total body; and
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(4) Design objectives based upon a higher quantity of radioactive material above background
to be released to the atmosphere than the quantity specified in paragraph (2) will be
deemed to meet the requirements for keeping levels of radioactive material in gaseous
effluents as low as is reasonably achievable if the applicant provides reasonable assurance
that the proposed higher quantity will not result in an estimated annual external dose from
gaseous effluents to any individual in unrestricted areas in excess of 5 millirems to the total
body or 15 millirems to the skin.”

(5) “The calculated annual total quantity of all radioactive iodine and radioactive material in
particulate form above background to be released from each light-water-cooled nuclear
power reactor in effluents to the atmosphere will not result in an estimated annual dose or
dose commitment from such radioactive iodine and radioactive material in particulate form
for any individual in an unrestricted area from all pathways of exposure in excess of 15
millirems to any organ.”

Protection of the environment is also provided by 10 CFR Part 51 which contains the environmental
protection regulations applicable to NRC’s domestic licensing and related regulatory functions.  Part
51 implements the relevant portions of the provisions of the National Environmental Policy Act
(NEPA) of 1969, as amended, in a manner consistent with the NRC’s domestic licensing and
related regulatory authority under the Atomic Energy Act of 1954, as amended.  Section 51.20
specifies the criteria for and identification of licensing and regulatory actions requiring
environmental impact statements (EIS) ; for example, a permit to construct or operate a nuclear
power reactor, and Section 51.29 provides the scope of the EIS.  Section 51.45 specifies the
requirements of the environmental report, Sections 51.50, 51.51, and 51.52 specify the data
required to comply with requirements to obtain a construction permit, and Section 51.53 provides
requirements for the postconstruction environmental reports, including the reports on the operating
license stage, the license renewal stage, and postoperating license (i.e., decommissioning) stage.

Currently, there are no requirements for protection of the environment from accidents at NPPs.  It
has been generally accepted that the current low risk to members of the public also provide for low
risk to the environment.  Many new plant designs will have long response times under accident
conditions,  allowing licensees to meet the Commission’s safety goals by greater reliance on
evacuation of the public, a situation where the public can be protected, even though the land may
be contaminated, could be the result.  

In consideration of the above, the need for a separate goal related to protection of the environment
was evaluated.  This evaluation consisted of assessing how well the frequency-consequence curve
(discussed in Section 4.2.1) and the accident mitigation risk criteria of 10-6/ry large release
frequency (discussed in Section 4.3 below) provides protection for the environment.  The adequacy
of the environmental protection provided by the frequency-consequence curve (Figure 4-1) and  10-

6/ry large release frequency (LRF) was assessed using the criteria for an extraordinary nuclear
occurrence (ENO) contained in 10 CFR Part 140.  The ENO criteria represent levels of individual
dose and land contamination or offsite cleanup costs resulting from an accident below which there
should be minimal societal impact since the cost of any remedy would be born by the licensee.
Accordingly, both the ENO dose, land contamination criteria and cleanup cost criteria were used
in this assessment as discussed below.  In both cases the objective is to show that the environment
is being protected at least as well as the public. 
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Dose/Land Contamination Assessment

This assessment is based upon showing that the frequency-consequence curve discussed in
Section 4.1 is sufficient to ensure an individual risk to the public is approximately equal to that
expressed by the Commission safety goal QHOs.  Therefore, using Equation 1, the individual risk
to a member of the public is estimated using the frequency-consequence curve.

RI = D*F*C Equation 1

where:

D = Equivalent dose in rem

Section 140.84 Equivalent Criterion I provides two criteria for determining whether there has
been a substantial discharge of radioactive material or substantial radiation levels offsite to
cause contamination.

The first criterion is stated in terms of actual or projected doses to one or more persons
offsite as a result of the release.  A whole body dose of 20 rem, a bone marrow dose of 20
rem, a thyroid dose of 30 rem, a skin dose of 60 rem, and another organ dose of 30 rem
provide the basis for making the determination there has been sufficient doses to cause
contamination.

The second criterion is stated in terms of surface contamination levels of at least a total of
100 square meters of any offsite property.  These levels are presented two ways: the first
is for property that is contiguous to the licensee’s site and is owned or leased by a person
with whom an indemnity agreement has been executed and the second is for any offsite
property.  The second set of levels are as follows:

Contamination Source Contamination Level

Alpha emission from transuranic: 0.35 microcuries per square meter
Alpha emission from non-transuranic: 3.5 microcuries per square meter
Beta/gamma emissions: 4 millirads per hour

These levels result in an equivalent dose of 20 rem [reference x].

F = Frequency (per year)

To anchor a frequency to these contamination levels, consider that the projected dose and
the surface contamination levels of Criterion I in Section 140.84 are essentially equivalent,
i.e., contamination levels of 0.35 microcuries per square meter of alpha emitting non-
transuranic of and beta gamma emitters of 4 millirads per hour, are both equivalent to a
dose level of 20 rem per year.
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Using the frequency vs.  consequence levels of contamination shown above it can be seen
that a dose level of 25 rem is associated with a frequency of 10-5/yr.  Accordingly, the levels
of contamination stated above in 10 CFR §140.84 are approximately related to this
frequency.

C = Risk Coefficient

The standard risk coefficient for members of the public, where an individual exposed to 1
rem/yr has a 5*10-4 likelihood of contracting a fatal cancer over their lifetime.

This results in an individual risk to a member of the public of (10-5/yr) (20rem) (5x10-4/rem) =10-7/yr.
10-7 per year.
This value is below the latent fatality QHO value of 2*10-6/yr.  Thus, it can be concluded that a plant
meeting the frequency-consequence curve shown in Section 4.2.1 would protect the environment
as well as the public.

This same analysis approach can also be applied to the effluent limit that corresponds to an
abnormal occurrence as defined in NUREG-0090.  These limits are used to define the desired
outcome of the Commission’s strategic goal for safety in the FY2004-FY2009 Strategic Plan as it
pertains to releases of radioactive materials that cause significant adverse environmental impacts.

Cleanup Cost Assessment

This assessment is based upon showing that the 10-6/ry large release frequency (LRF) criterion
provides  protection of the environment equivalent to protection of the public on a value-impact
basis, using dollars as the common figure of merit.  The rationale as to why a 10-6/ry LRF provides
for at least equivalent protection of the environment  using the ENO criteria related to cleanup costs
is as follows.

First, it is assumed that a large release must occur to result in substantial offsite contamination.
Therefore, LRF is chosen as the design parameter for the assessment.  Second, it is assumed that
the ENO criteria represent the measure of environmental protection desired and, therefore, a goal
of future designs  ensure that offsite cleanup costs do not exceed the criteria in 10 CFR Section
140.85:

• $2,500,000 to an individual or
• $5,000,000 cumulative

Using a LRF of 10-6/ry, the cleanup cost criteria equate to annualized values of:

• $2.50/ry (individual risk)
• $5.00/ry (cumulative risk)

These values corresponds to a range of 1-10 dollars/reactor year.

 annualized value = cleanup cost * LRF
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Using the frequencies for early and latent fatalities associated with the reactor safety goal QHOs:

early fatality frequency = 5*10-7/ry
latent fatality frequency = 2*10-6/ry

Using the values of a life assumed in regulatory analysis (NUREG/CR-6212):

value for early fatality = $2.1*106 per life saved
value for latent fatality = $2000/person-rem

Early and latent fatality, based on dollars, can be estimated:

Fatality = (cost per life saved)*(fatality frequency) Equation 2

early fatality = (2.1*106 dollars) (5*10-7/ry)
= 1 dollar/ry

latent fatality = [(2000 dollars/person-rem)/(5*10-4/person-rem)]*(2*10-6/ry)
= 8 dollars/ry

These comparisons, using dollars, show an equivalent level (1-10 dollars/reactor year range) of
value-impact for the environment and the public when a 10-6/ry LRF is used.  Thus an approach has
been taken to define a frequency-consequence curve and a risk goal for accident mitigation
(independent of the timing of the release) that ensure protection of the environment at least
equivalent to that provided to the public.  Therefore, no separate goals on environmental protection
are proposed.

4.2.2 Risk Objective Surrogates

Although a designer could propose to use the frequency-consequence curve directly (using Level
3 PRA), implementation of the frequency-consequence curve described in Section 4.2 can also be
accomplished through establishment of a series of surrogate risk criteria.  These surrogate risk
criteria would more directly focus on plant design and avoid the additional complexity and
uncertainty introduced by the use of Level 3 PRA.  These surrogates are described in this section.

The Commission’s overall expectation for protection of public health and safety from accidents
resulting from NPP operation is expressed in its 1986 Safety Goal Policy Statement.  The goal of
the framework for new plant licensing is to ensure that new plants (LWR and non-LWR) achieve
a level of safety at least equivalent to that expressed by the Safety Goal Policy Statement.
Accordingly, the overall safety objective (i.e., frequency-consequence curve) is based upon meeting
the Commission’s Safety Goal Policy Statement. For currently operating LWRs, subsidiary
objectives related to accident prevention and mitigation, (i.e.) core damage frequency (CDF) and
large early release frequency (LERF) or conditional containment failure probability (CCFP), have
been developed and used as surrogates for the quantitative health objectives (QHOs) expressed
in the Safety Goal Policy Statement.

The Commission’s overall expectation for protection of public health and safety from accidents
resulting from NPP operation is expressed in its 1986 Safety Goal Policy Statement.  However,
there is an expectation that new plants will be substantially safer than current plants and the
conceptual discussion above makes that expectation more explicit.  For currently operating plants,
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subsidiary objectives related to accident prevention and mitigation i.e. CDF and LERF  or CCFP
have been developed and used as surrogates for the QHOs expressed in the Safety Goal Policy.
The QHOs specify goals for individual risk to members of the public corresponding to 2 x 10-6/yr for
latent fatalities and 5 x 10-7/yr for early fatalities.  The surrogates were developed so as to be
consistent with the level of safety specified in the Safety Goal Policy and not impose a more
stringent level of safety.  They have been used as the basis for various risk-informed activities for
currently operating plants.  The numerical values used for these surrogates (10-4/ry for CDF, 10-5/ry
for LERF, and 0.1 for CCFP) are based upon the characteristics and risk analysis associated with
currently operating light-water reactor plants (e.g., plant size, performance, source term, emergency
preparedness).  In effect the 10-4/ry CDF serves as a surrogate for the latent fatality QHO as well
as a measure of accident prevention, and the 10-5/ry LERF or 0.1 CCFP serves as a surrogate for
the early fatality QHO for currently operating reactors.  (See Appendix A for detailed discussion on
derivation of surrogates.)

These subsidiary objectives and surrogates developed for current LWRs were summarized in
Chapter 2 and are based upon specific LWR characteristics.  However, for new plants, power level
(i.e., megawatt thermal size of reactor), performance, source terms, emergency preparedness) 
may be different than for current generation plants.  The question then becomes are there generic
surrogate risk criteria that could be applied that address accident prevention and mitigation while
remaining consistent with the level of safety implied by the Commissions Safety Goal Policy
Statement.

To develop such generic surrogates, one must eliminate any dependency on power level,
performance, source term characteristics, emergency preparedness, etc., and consider only the
effects of  atmospheric dispersion.  Atmospheric dispersion generally limits exposure to
approximately a 30 degree sector radiating out from the plant in the direction of the prevailing wind
at the time of the accident.  Accordingly, only about one-tenth of the population around the plant
would be exposed to the release, thus allowing the surrogates for the early and latent fatality QHOs
to be a factor of 10 higher than the QHOs themselves.  With only this consideration, reasonable
generic surrogates for  accident prevention and accident mitigation become 105/ry (surrogate for
latent fatality QHO) and 106/ry  (surrogate for early fatality QHO).   In general, accident prevention
will involve avoiding a major fission product release from the core, such as  could occur from loss
of coolable geometry and resulting significant fuel damage.  However, the specific definition of
accident prevention will be technology dependent and will need to be defined in the technology-
specific regulatory guides, considering factors such as:

• the type of fuel,
• the type of coolant, and
• reactor core design.

For LWRs it is expected that core damage frequency will continue to be used.  For other
technologies, appropriate definitions for accident prevention will need to be developed.  LERF is
considered a reasonable accident mitigation metric and has been substituted for LERF (which is
used for current LWRs) so as not to distinguish between early and late period releases.  LERF   is
a technology-neutral surrogate for the early fatality QHO.  The magnitude of a large release may
be technology-specific, but can generically be the magnitude which has the potential to cause one
or more early fatalities offsite.
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It should be noted that these generic criteria are approximately an order of magnitude more
conservative than the values used for current LWRs.  In a June 15, 1990, SRM the Commission
approved the use of a 10-4/ry CDF guideline.  It is recognized that recommending the use of a
10-5/ry accident prevention guideline goes beyond the June 15, 1990, SRM; however, the 10-4/ry
CDF value was developed in consideration of LWR technology and characteristics (including EP)
and needs to be reassessed for non-LWRs.  Accordingly, for designs where traditional offsite EP
may not be proposed, a 10-5/RY value for accident prevention is proposed to ensure the latent
fatality QHO is met.  In addition, the Commission recognized that some conservatism may be
necessary in the use of surrogate values and, in its June 15, 1990, SRM, accepted an order of
magnitude conservatism when requesting the staff to evaluate the 10-6/RY general plant
performance guideline for a large release of radioactive material to the environment.  The staff, in
SECY-93-138, provided its evaluation and recommended against defining a large release.
However, this evaluation was based upon the characteristics associated with current LWRs.  Given
the generic nature of the framework, a 10-6/ry large release frequency is necessary to ensure the
early fatality QHO is met, is consistent with the Commission’s Safety Goal Policy Statement and
is proposed for use.  It should also be noted that a new plant designer who wants to take credit for
EP and/or certain plant-specific characteristics, he would be free to propose alternatives to the
generic values.  Specifically, an applicant could propose an accident prevention risk criterion
applicable to this design using the following guidelines.

The definition of accident prevention should be based upon limiting fission product release from the
fuel to a value less than or equal to that calculated for design basis accidents.  The frequency for
the accident prevention criteria should be consistent with the frequency of design basis accidents.
Specific success criteria that can be used in a risk assessment will be technology specific and
should also be propose.
 

The above risk criteria are intended to be compared to the mean value of risk information from the
PRA. They are also intended for application on an individual reactor basis, except for modular
reactor 11designs, where a number of small reactors are used to equal the power output from one
large reactor.  For modular reactors, the integrated risk from multiple reactors needs to account for
the situation when the use of multiple reactors is equal the output of one large reactor.

In accounting for the integrated risk from modular reactors, both accident prevention and accident
mitigation risk need to be considered.

It is recognized that accident prevention is important, regardless of reactor power level, whereas,
in many cases accident mitigation has a relation to reactor power level (i.e., the lower the reactor
power the fewer fission products available for release to the environment and thus the more difficult
it is to have a large release).  Given the non-linear response of early fatality health effects to dose,
accounting for reactor power level, can make a large difference in the early fatality results.
Accordingly, the integrate risk associated with accident mitigation risk criteria should take into
consideration reactor module size.  The goal of considering the integrated risk from modular
reactors is to ensure that the integrated risk from multiple reactor modules is at least as low as the
risk from an equivalent large rector design.  Therefore, the following guidelines should be applied:
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• taking into consideration the integrated effect of risk when assessing accident prevention
for modular reactor designs, independent of reactor power level, and

• taking into consideration the integrated effect of risk when assessing accident mitigation for
modular reactor designs in a fashion that allows for consideration of the effect of reactor
power level.

A parallel issue is whether or not the Commission intended the safety goals to apply t the risk from
the entire site or from an individual reactor on a site.  This issue remains “to be determined” at this
time.

4.3 Design Objectives

The overall risk-informed approach to specifying design expectations consists of defining a set of
probabilistic and deterministic criteria that, if met, will ensure the overall risk profile of the plant
meets or exceeds the goal defined by the frequency-consequence curve for risk to the public,
described in Section 4.1.  This approach will also eliminate the need for performing a Level 3 PRA
(thus eliminating uncertainties and site assumptions associated with Level 3 PRA analysis),
although an applicant would be free to  propose an alternative approach using a Level 3 PRA and
the frequency-consequence curve described above.  As a complement to the probabilistic criteria,
described in Section 4.2, a set of anticipated operational occurrences and design basis accidents
will also be defined (using the results of the plant specific PRA) and analyzed against a set of
deterministic acceptance criteria.  These anticipated operational occurrences and design basis
accidents are the deterministic element of a risk-informed approach and will also serve as reference
points for interfacing with other parts of the regulations (e.g., 10 CFR 100) and for evaluating the
effectiveness of certain plant engineered safety features (ESFs).  In addition, the anticipated
operational occurrences will help ensure that for high probability events, the consequences are low.
Design basis accidents will not be defined for low probability events that traditionally would be
considered only for EP or overall plant risk.

Implementation of the risk-informed approach will require a living PRA over the plant lifetime.  As
operating experience and reliability information is collected and fed back into the PRA, the plant risk
profile and important sequences may change.  This may affect the anticipated operational
occurrences and design basis accidents initially selected as well as how the plant compares to the
acceptance criteria.   In addition, it could affect the safety classification of SSCs as described in
Section 4.3.2.  Accordingly, a process will need to be developed that recognizes this potential for
change and defines a way to accommodate it without undue burden or delay (e.g., 50.59 type
process), while ensuring changes with high safety significance receive NRC review and approval.
In addition, such a change process will need to be integrated with the design certification process
(10 CFR §52) which certifies designs by rule making.  This is discussed further in Section 6.3.1.5.
Discussed below are various elements of the risk-informed approach to specifying design
expectations.
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4.3.1 Design Basis Event Criteria

4.3.1.1 Event Categorization

It is not proposed that the events which must be considered be pre-defined for future reactors.  To
do so would presume that these events would provide the acceptable design basis for any future
reactor concept, which would limit innovative and unique concepts, and could also result in the
selection of events that do not provide the necessary safety.  Therefore, it is proposed to develop
technology-neutral, risk-informed criteria for the selection of events that could be applied to any
future reactor design, on a plant specific basis.  Guidance regarding the development, uses and
implementation of these criteria are given below.  This guidance can be used to support
development of generic requirements or can be applied on a plant specific basis.

The use of a probabilistic approach in selecting events begins with categorizing initiating events and
event sequences by the frequency of their expected occurrence, based upon the initiating events
and event sequences considered in the plant specific PRA.  In performing this categorization,
initiating events and event sequences shall be grouped by type.  The event categories were chosen
to correspond to anticipated operational occurrences (frequent), design basis accidents (infrequent)
and beyond design basis accidents (rare).  Generic, technology-neutral criteria for the
categorization of event sequences (which include the initiating event) are given below:

Event Category Frequency of Initiating Event/Event Sequences

Frequent events $10-2/ry (mean value)

Infrequent events <10-2/ry to $10-5/ry (mean value)

Rare events <10-5/ry to $10-7/ry (mean value)

The above criteria for categorizing event sequences would apply to all internal events and external
events for the purposes of risk assessment.  Event sequences with a probability <10-7/ry (mean
value) are considered extremely rare and do not have to be considered in the design for licensing
purposes. The frequency ranges associated with the above event categories were chosen to
ensure that, when the frequencies for event sequences are summed, cumulative frequencies
associated with the event categories meet the following:

• capture all event sequences expected to occur one or more times during the life of an
individual reactor (frequent category).  These sequences have traditionally been called
anticipated operational occurrences (AOOs).  Assuming a plant lifetime of 60 years, this
equates to a frequency of approximately 10-2/year.

• capture all events and event sequences that could occur in the population of reactors of that
design over their lifetime (infrequent category).  These sequences have traditionally been
called design basis accidents (DBAs).  Assuming a population of 1000 reactors, this
equates to a frequency of approximately 10-5/year.

• capture all events and event sequences necessary to ensure the assessment covers low
frequency events, and event sequences needed to assess the Commission’s safety goals
(rare category).  Since the early fatality QHO is 5x10-2/year, a frequency of 10-7/year is
chosen as the cutoff.
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4.3.1.2 Design Basis Event Selection

Once event sequences are categorized by frequency, the event sequences associated with the
frequent and infrequent event categories in the plant PRA are examined.  This examination is for
the purpose of selection of AOOs and design basis accidents.

For each of the frequent and infrequent event sequence categories the worst event scenarios from
each accident type (e.g., reactivity insertion, fuel handling, shutdown, loss of coolant, etc.) are
identified and used for AOOs and DBAs.  Since it is desired that none of the event scenarios in the
frequent or infrequent categories exceed the accident prevention criteria, the worst event scenarios
shall be those that cause the largest release of radioactive material internal to the plant and/or to
the environment.

All event sequences with a frequency of 10-2/year or greater (for AOOs) and those between
10-2/year and 10-5/year (for DBAs) shall be examined and, as mentioned above, those that lead to
the largest release of radioactive material (for each accident type) shall be identified as AOOs and
DBAs.  These AOOs and DBAs should then be assessed against the deterministic criteria
discussed in Section 4.3.1.3.

Engineering judgement may also be used to supplement the selection of DBAs where uncertainties
may not be adequately addressed in the PRA.  It should be noted that the use of probabilistic
selection criteria, such as these described above, will likely result in AOOs, and DBAs different than
those traditionally used in safety analysis. [Initiating events related to security to be addressed.]

4.3.1.3 Event Acceptance Criteria

The event sequences selected as AOOs and DBAs shall then be compared to the following
deterministic acceptance criteria summarized below in Table 4-2.

Table 4-2 Event acceptance criteria

Event Category Acceptance Criteria

Frequent Event
sequences (AOOs)

• 100 mrem TEDE (At the EAB) for exposure to the public 
• no loss of core cooling* or fuel damage
• at least 2 barriers to the uncontrolled release of radioactive

material remain intact

Infrequent Event
Sequences (DBAs)

• Doses from Figure 4-1 corresponding to event frequency (At
the EAB-worst 2 hr dose) (at the LPZ duration of the
accident) for exposure to the public 

• no sustained loss of core cooling or fuel melting*

• at least one barrier to the uncontrolled release of radioactive
material remains intact.

Deterministic analysis of the AOOs and DBAs would be by best estimate methods, including an
uncertainty analysis.  Further discussion on best-estimate analysis is provided in Chapter 6.  The
results of the best estimate analysis would then be compared to the deterministic acceptance
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criteria and shown to meet it with a 95% confidence.  In performing the best estimate analysis the
number of failures of SSCs and human errors that should be assumed would be the same as that
contained in the PRA sequence from which the DBA was derived.  In other words, the single failure
criterion would be replaced by a probabilistic approach based upon the PRA.  This approach would
apply to assumptions in the analysis as well be reflected in the plant design.  Other guidelines for
performing the deterministic analysis (e.g., atmospheric dispersion) will also be developed.

Other surrogate acceptance criteria may also be established for AOOs and DBAs.  These may be
in the form of deterministic engineering parameters (e.g., temperature) or related to equipment
performance.  Performance-based acceptance criteria are preferred and guidance on how to
establish such criteria is provided in Appendix A.  In either case the acceptance criteria should be
set conservatively.  Usually this means that the acceptable value of an important temperature,
pressure, stress, etc. is set below the best-estimate of the critical value of such an important
parameter (where critical refers to a value where unacceptable changes or phenomena begin)

For future reactors, establishing adequate acceptance criteria involves two immediate questions.
What are the important parameters, direct or surrogate, that need to be used to adequately capture
the safety performance of the plant, and at what values should these important parameters be set
to ensure safe operation of the plant under normal and accident conditions.  The answer to the first
question is design dependent.  As to how to set the acceptable values of the important parameters,
the optimum solution would be one where the best-estimate of the critical value of the important
parameter, along with the uncertainty surrounding the critical value has been established.  Then
the uncertainty in the critical value can be used to quantify the degree of conservatism.  This would
allow using a uniform level of confidence for the critical values for which sufficient information (best-
estimate value and uncertainty) is established.  If the best-estimate and associated uncertainty of
the critical value(s) cannot be established, then the setting of acceptable criteria for the important
parameter(s) will have to be done using less quantified methods, relying on engineering judgement
and other more qualitative considerations, and the methods applied will have to be established on
a case by case basis.

Rare events do not have associated deterministic acceptance criteria since they are beyond
traditional design basis accidents.  Rather they shall be used in the assessment of overall plant risk
(i.e., comparison to the accident prevention and accident mitigation risk criteria) and to assess the
extent of EP required as described in Chapter 5.  In general, when evaluating whether or not the
risk criteria are met, the mean value of the risk information shall be used to compare to the risk
criteria.  External initiating events that fall in the rare category shall be treated in the PRA in a
realistic fashion.

4.3.1.4 Scenario Specific Source Term

Scenario specific source terms may be used for licensing purposes (e.g., siting) providing the
following are met:

• the scenarios to be used for the source term evaluation should be selected from a design
specific probabilistic risk assessment, with due consideration of uncertainties.

• the source term calculation, using the selected scenarios, should be based upon analytical



4. Risk and Design/Construction/
Operation Guidance

Working DRAFT Regulatory Structure for New plant Licensing,
NUREG-xxxx, Revision a, December 2004 Part 1: Technology-Neutral Framework4-17

tools that have been verified with sufficient experimental data to cover the range of
conditions expected and to determine uncertainties.

• the source terms used for licensing decisions should reflect the scenario specific timing,
form and magnitude of radioactive material released from the fuel and coolant.   Credit may
be taken for natural and/or engineered attenuation mechanisms in estimating the release
to the environment, provided there is adequate technical basis to support their use.

• The source terms used for assessing compliance with dose related siting requirements
should be 95% confidence level values based upon best estimate calculations with
quantified uncertainties.  Where uncertainties cannot be quantified, engineering judgement
shall be used.

• the source terms used in assessing emergency preparedness should be mean values
based upon best estimate calculations with quantified uncertainties.

The above guidance is intended to provide a flexible, performance-based approach for establishing
scenario specific licensing source terms.  However, it puts the burden on the applicant to develop
the technical bases (including experimental data) to support their proposed source terms.
Applicants could, however, propose to use a conservative source term for licensing purposes (in
order to reduce research and development costs and schedule), provided the use of such a source
term does not result in design features or operational limits that could detract from safety.  Finally,
it should be noted that the use of scenario specific source terms may result in smaller source terms
being used for siting purposes then traditionally used for LWR siting.

In developing technology-specific regulatory guides, the staff may propose acceptable conservative
source terms(s), if it is feasible to do so.

4.3.2 Physical Protection Event Criteria

In general, protection against sabotage and external threats will follow current requirements (e.g.,
10CFR 73).  Applicable current requirements will be determined, as appropriate.

Since risk assessments do not model events caused by sabotage, armed intruders or acts of
terrorism, design bases threats may be selected by other means.  The selection of design basis
threats will follow Commission guidance for new plants.

The role of risk assessment in assessing physical protection or vulnerabilities to security related
events is currently under development.  If a role of risk information in the physical protection area
is developed, it will be incorporated into the technology-neutral regulatory structure.

4.3.3 Risk-Informed Safety Classification

The use of a risk-informed approach to the classification of systems, structures and components
(SSCs) as safety related was approved by the Commission in its June 26, 2003, SRM.

The risk-informed approach consists of two steps: (1) a screening evaluation at the system level
and, if desired, (2) a more detailed evaluation at the component/structure level of those systems
which pass the initial screen.  The basic approach used in each step is essentially the same, as
described below and is to be applied to all plant SSCs, regardless of the initiating event or event
sequence category they are associated with.
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4.3.3.1 Approach

The approach consists of a systematic assessment of the safety significance of the system being
assessed using risk measures based upon the plant PRA and a complementary deterministic
assessment based upon defense-in-depth considerations (thus ensuring a risk-informed, not a risk-
based approach).  The risk information to be used will be mean values from the full scope, PRA for
each mode of operation.  The risk measure to be used will take into consideration the importance
of the system, structures or component with respect to its availability, reliability, common cause
failure contribution and initiating event contribution.  For LWRs, the approach, risk metrics and
lessons learned in the development of a risk-informed process for special treatment for application
to existing LWRs (i.e., 10 CFR 50.69) will be considered in developing a risk-informed approach
to future LWRs.  For other technologies, different risk metrics may apply.  The specific risk metrics
may be technology specific and, accordingly, be addressed in the technology-specific regulatory
guides.

All systems will also be assessed with respect to their defense-in-depth role.  If the system being
assessed has been included in the design to fulfill a defense-in-depth role (i.e., is necessary to
meet one or more of the DID principles), then it will also be considered as safety significant.  The
risk-informed safety classification assessment will be applied to all systems  in the plant, regardless
of whether or not they are necessary to respond to frequent, infrequent or rare events, as defined
in Section 4.3.1.1.

4.3.3.2 Implementation

As mentioned above, the safety classification approach will be applied in two steps.  The first step
is a screening step to be applied at the system level.  If an entire system can be shown to be not
safety significant, then it can be removed from further consideration.  If, however, a system is
shown to be safety significant, then an applicant can choose to do a more detailed assessment at
the component/structure level to further screen out sub-system components/structures.  Finally,
after all systems/components/structures are classified as either safety significant or not safety
significant, a check on the cumulative effect of not taking credit for all non-safety significant SSCs
to will be made.  An acceptance criteria will be developed for this final check.

All SSCs not screened out are candidates for special treatment requirements that could involve one
or more of the following:

• QA
• seismic qualification
• environmental qualification
• reliability assurance

The scope and nature of the special treatment requirements should be applied in a graded fashion

in consideration of the safety functions performed by the SSCs and the environment and reliability

with which they must function to be consistent with the PRA.



4. Risk and Design/Construction/
Operation Guidance

Working DRAFT Regulatory Structure for New plant Licensing,
NUREG-xxxx, Revision a, December 2004 Part 1: Technology-Neutral Framework4-19

4.3.4 Spent Fuel Storage (On-Site)

The protective strategies, risk goals, design-construction-operation objectives, and defense-in-
depth principles are intended for application to SSCs related to the safe on-sight storage of spent
fuel, as well as to the reactor itself.  Accordingly, in designing, construction and operating on-site
spent fuel storage, SSCs, it should be shown that those SSCs meet the same acceptance criteria
as the reactor as described in Chapters 4, 5 and 6 of this framework.  In doing this assessment,
accident scenarios, source term, etc. specific to the on-site fuel storage SSCs should be used.

4.4 Construction Objectives

Regulatory requirements related to the construction of new plants are expected to be similar in
many ways to those employed in the past (e.g., QA, inspection).  Where existing requirements are
applicable, they will be incorporated into the new licensing structure.

The construction of new plants, however, is expected to differ in several ways from the construction
approach and issues associated with currently operating plants.  Specifically, it is expected that the
construction of new plants will:

• rely more on factory fabrication to produce modules that can be installed in the field, thus
reducing the amount of field fabrication,

• utilize components fabricated outside the U.S. and possibly to non-U.S. codes and
standards, and

• in the case of HTGRs, have safety highly dependent upon the quality of the fuel fabrication
and inspection process

Field fabrication will also be important and need to conform with accepted practice and building
codes and standards.  It is expected that NRC’s role in field construction will be similar to that
employed previously involving QA and on-site inspections.  A framework regarding such inspections
is contained in NUREG-1789, “10 CFR Part 52 Construction Inspection Program Framework
Document” and will be used as guidance in preparing construction inspection requirements.
However, regarding the expected differences mentioned above, the requirements that will need to
be considered are briefly discussed below.

Factory Fabrication

NRC’s role in the scope of vendor inspection and transportation needs to be addressed, focusing
on those aspects of fabrication and transportation that can affect safety.  In particular, insights from
the PRA can be used to identify key features that are important to safety and should be inspected.

Fabrication Outside the U.S.

The role of NRC in inspecting and regulating components fabricated outside the U.S. needs to be
established.  The preferred approach would be to establish requirements on the applicant to provide
controls and inspections on non-U.S. vendors that ensure quality, thus putting the burden on the
applicant, not NRC.  NRC would then specify what documentation is to be submitted by the
applicant to confirm the appropriate quality has been achieved.  In addition, the use of non-U.S.
codes and standards for design and fabrication will require staff review and acceptance.  As
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directed by the Commission in its SRM of June 26, 2003, staff review of international codes and
standards is to be done on a case-by-case basis, in the review of applications or pre-application
submittals.

Fuel Quality

How to ensure fuel quality over the life of the plant is an issue of concern (this is particularly
applicable to HTGRs, whose fuel quality is key to plant safety and needs to be controlled at the fuel
fabrication facility).  To address fuel quality over the life of the plant, the requirements need to cover
what documentation, controls and testing a licensee must provide to ensure the fuel that is put into
the reactor is satisfactory (this approach would put the burden on the licensee versus NRC to
ensure fuel quality).

4.5 Operational Objectives

The operation of a NPP can have a large impact on safety and risk.  Accordingly, it is important that
the requirements for future NPPs address the key aspects of operation that are important to safety.
Many issues associated with operation are expected to be similar to those for currently operating
plants.  For these areas, requirements for new plants can build upon and utilize much of the existing
regulatory infrastructure.  These areas would include:

• operating staff training
• use of procedures
• radiation protection from routine operation (e.g., ALARA)
• maintenance
• human factors considerations
• work control
• configuration control

Other areas may be different and are discussed below.

Staffing

The size, composition and role of the operating staff may be different for new plants.  Factors that
could affect staffing are:

• the modular nature of some designs,
• the use of passive safety features,
• longer plant response times, and
• the use of non-LWR technologies.

This issue was discussed in SECY-02-0180, “Legal and Financial Policy Issues Associated with
Licensing New Nuclear Power Plants.”  In that paper it was acknowledged that staffing for new
plants need to be addressed.

Therefore, the requirements will need to include criteria for the review and acceptance of proposed
staffing for new plants.
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Accident Management

Each reactor design should develop and maintain an accident management program which
provides plans and procedures for managing accident sequences, as defined in Section 4.3.1.

Protection of Operating Staff During Accidents

Plant procedures, including those for accident management, shall be developed to ensure the
operating staff do not receive exposures in excess of 10 CFR 20.1201 for accidents in the frequent
and infrequent range, and comply with 10 CFR 20.1206 for accidents in the rare category.  Also,
the control room shall be designed to protect the operating staff and remain habitable during
accidents external to the control room.

Offsite Emergency Preparedness

Offsite emergency preparedness is a key element of defense-in-depth and is discussed in
Chapter 5.
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5. TREATMENT OF UNCERTAINTIES: DEFENSE-IN-DEPTH

In licensing future reactors, the treatment of uncertainties will play a key role in ensuring safety
limits are met and the design is robust with respect to unanticipated factors.  Uncertainties have
always been a factor to contend with in any safety assessment and have traditionally been dealt
with through research, the application of safety margins, the application of defense-in-depth,
periodic surveillance, inspection and testing.  As operating experience has been gained,
uncertainties have tended to be reduced.

In general uncertainties associated with new plants will tend to be larger than uncertainties
associated with existing plants due to new technologies being used, the lack of operating
experience or, in the case of some proposed LWRs, new design features (e.g., increased use of
passive systems).  Any licensing approach for new plants must account for the treatment of these
uncertainties.  The aim is to develop an approach for future reactors which can be reconciled with
past practices used for operating reactors, but which improves on past practices by being more
consistent and by making use of quantitative information where possible.

5.1 Approach to Treatment of Uncertainty

The approach recommended for dealing with uncertainties when ensuring the safety of new plants
is the concept of multiple successive layers of barriers and lines of defense against undesirable
consequences.  This approach is usually referred to as defense-in-depth.  The concept of defense-
in-depth is fundamental to the treatment of uncertainties.

As stated in Regulatory Guide 1.174, “The defense in depth philosophy ......has been and continues
to be an effective way to account for uncertainties in equipment and human performance.”

The March 1999 Commission White Paper on risk-informed and performance-based regulation
states that, “Defense-in-depth is an element of the NRC’s Safety Philosophy that employs
successive compensatory measures to prevent accidents or mitigate damage if a malfunction,
accident or naturally caused event occurs at a nuclear facility.”  In its discussion on risk-informed
approach and defense-in-depth the White Paper further states, “Although uncertainties associated
with the importance of some elements of defense may be substantial, the fact that these elements
and uncertainties have been quantified can aid in determining how much defense makes regulatory
sense.”

As in the Strategic Plan quoted above, discussion of defense-in-depth has almost always referred
to successive measures taken to prevent or mitigate the consequences of malfunctions or
accidents.  In more recent discussions of defense-in-depth the reason for the malfunctions and
accidents, i.e., uncertainty in equipment and human performance, are also directly mentioned.
Involving uncertainty directly in the discussion is made practical by the development of the ability
to quantify risk and estimate uncertainty using PRA techniques.  Quantifying uncertainty, where
possible, and taking credit for defense-in-depth measures in risk analyses also allows a better
answer to the question of how much defense-in-depth is enough.

As an example of the significance of uncertainty, one can consider the common question: Will the
capacity of a structure, system, or component (SSC) be exceeded during an accident?  If there is
no uncertainty in the imposed challenge and no uncertainty in the capability of the SSC, there is
no uncertainty in the answer.  If a particular SSC had a capacity that exceeded the challenge by
a very small margin, there would be no benefit, in probabilistic terms, of replacing the SSC with one
twice as strong.  In both cases the failure probability would be zero.  Generally, of course, there is
uncertainty in the imposed challenge, the capacity, or both, and the greater the uncertainties, the
greater the need for added levels of defense, such as adequate safety margin (where adequate
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means the margin is sufficient to assure a predefined high probability that the capacity will be
sufficient to meet the challenge, taking the uncertainties into account).  

5.2 Types of Uncertainty

Uncertainties have generally been categorized into aleatory, i.e., random, or stochastic uncertainty
and epistemic, or state-of-knowledge, uncertainty (Ref. 1 and 2).  Aleatory uncertainty arises from
the fact that events or phenomena occur in a random or stochastic manner, such as a pump failing
to start due to a random failure.  Aleatory uncertainty is sometimes called irreducible uncertainty
because, in principle, it cannot be further reduced by additional empirical studies.  However,
additional study may lead to a better characterization, for example in terms of its magnitude, of the
aleatory uncertainty.  Aleatory uncertainty is well suited to analysis via probability theory and this
type of uncertainty is usually addressed in PRAs because it is embedded within the structure of the
probabilistic models used to describe the occurrences of these events.  

Epistemic uncertainty arises from a lack of knowledge or lack of scientific understanding that may
be due to a variety of factors, such as the inability to make observations, measurement uncertainty,
the prohibitive cost of investigating a phenomena, etc.   Epistemic uncertainty can be reduced, at
least in principle, by additional study ( theoretical research, experiments) or improved study
techniques.  Aleatory and epistemic uncertainties are often intertwined and may be difficult to
distinguish: measurement uncertainty usually has an aleatory component; some apparent
randomness may prove to be epistemic after closer examination.  The epistemic uncertainties that
need to be accounted for in a PRA fall into three basic categories:

• Parameter uncertainty is the uncertainty associated with basic data used in safety analysis
such as failure rates, ultimate strength, etc.  Part of parameter uncertainty is already
included within random uncertainty, such as the beta or error factor, however, another part
such as the limitations in data affecting the choice of failure distribution may be
characterized as state-of-knowledge uncertainty.  Parameter uncertainties are those
associated with the values of parameters of the PRA models.  (Note that the fact that a
pump may or may not start is a random process, while determining the values to assign to
the probability model for that failure event is a state-of-knowledge uncertainty.)  Parameter
uncertainties are typically characterized by establishing probability distributions on the
parameter values.  These distributions can be interpreted as expressing a degree of belief
in the values these parameters could take, based on current knowledge and conditional on
the underlying model being correct.

• Model uncertainty is the uncertainty associated with the data limitations, analytical physical
models and acceptance criteria used in the safety analysis.  PRA models, as well as those
used in traditional deterministic engineering analyses, are composed of models for specific
events or phenomena.  Often the state of knowledge regarding these events and
phenomena is incomplete and there are varying expert opinions on how particular models
should be formulated.  Such uncertainties arise, for example, in modeling human
performance; common cause failures; mechanistic failures of structures, systems and
components; high temperature fuel phenomena; and large radionuclide releases.  Model
uncertainties are maximized where phenomena are poorly understood or not well
characterized.  It is important to understand the model uncertainties inherent in a particular
PRA prediction for any future reactor design and how they are treated in terms of the
available defense-in-depth elements.

• Completeness uncertainty is the uncertainty associated with factors not accounted for in
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the safety analysis such as safety culture, unknown or unanticipated failure mechanisms,
etc.  Completeness uncertainty can be regarded as one aspect of modeling uncertainty, but
because of its importance is usually discussed separately.  In one sense, it can be
considered a scope limitation.  Because completeness uncertainty reflects the unanalyzed
contribution to risk it is difficult to estimate its magnitude, and this can translate to difficulties
estimating the true magnitude of the overall risk.  Completeness uncertainty refers to things
that are not modeled either because of deliberate limitations of scope or because of lack
of knowledge.  This includes: (1) risk contributors (e.g., initiators and accident scenarios)
that have not been conceived, (2) considerations for which adequate methods of analysis
have not been developed, for example, heroic acts and influences of organizational
performance, and, finally, (3) risk contributors that can be modeled but are often excluded,
such as external events and accidents at low power and shutdown. 

5.3 Defense-in-Depth Approach

Defense-in-depth is the philosophy and process that will be used to deal with uncertainties and it
is described below.  The defense-in-depth philosophy and process will be embedded in the
regulations so as to provide for multiple lines of defense, and additional confidence where
necessary (via increased safety margins for example), to address the treatment of uncertainties.

The term defense-in-depth has evolved historically from a narrow application of the multiple barrier
concept to the application of an overall safety strategy [3].  Currently the term is used in two
different but related senses.  It is used to characterize a safety philosophy of high level protective
strategies, as alluded to in Chapter 2, such as providing physical protection, preventing accident
initiators from occurring, terminating or mitigating accidents adequately, preventing degradation or
failure of barriers designed to contain radionuclides, and accident management plans to protect the
offsite public in case radionuclides penetrate the barriers.  The term is also used to denote the
multiple physical barrier approach, exemplified in current reactors by the fuel elements and
cladding, primary system pressure boundary and containment structure (Implicitly included in the
term are the redundant and diverse active and passive systems which protect the integrity of these
barriers).  In both cases the term conveys the concept of successive barriers or levels, either in
terms of physical barriers or in terms of high level protective strategies. 

Defense-in-depth measures can be embodied in systems, structures, and components (SSCs), in
procedures (including accident management plans to protect the offsite public), or in the chemical
and physical properties used during the fission process and the transfer of its energy (for example
the volatility of the chemical form of the radionuclides produced). The Commission has stated that
the concept of defense-in-depth has always been and will continue to be a fundamental tenet of
regulatory practice in the nuclear field.  Risk insights can make the value of elements of defense-in-
depth more clear by quantifying their impact on risk to the extent practicable.   Decisions on the
adequacy of or the necessity for elements of defense should reflect risk insights gained through
identification of the individual performance of each defense system in relation to overall
performance. 

Defense-in-depth can be applied in  various ways.  Inherent reactor features can be selected to
minimize the potential for radionuclide release and eliminate barrier failure modes.  Redundant or
diverse means may be used to accomplish key safety functions, such as safe shutdown or removal
of decay heat. The classic example is the use of multiple, independent and diverse barriers (fuel
cladding, reactor coolant pressure boundary, and containment) to prevent the release of significant
quantities of radionuclides to the environment.  In some advanced designs safety functions may be
achieved by inherent natural processes such as shutdown due to negative reactivity feedback, or
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decay heat removal through conduction and radiation to surrounding structures.  Redundancy
enhances the reliability of independent means; diversity provides protection against dependent
(common cause) failures of multiple means, and therefore some assurance that safety functions
can be met successfully despite the uncertainty in the mechanism of dependent failures.

Past discussions of defense-in-depth at least implicitly, focused primarily on the application of
defense-in-depth to compensate for potential human errors, and component failures arising from
‘inadvertent’ causes such as aging, corrosive processes, poor design, etc.  However, with the
increased need to consider security issues, embodied in the protective strategy of physical
protection, defense-in-depth considerations must also include protection against intentional acts
directed at nuclear plants that would threaten public health and safety.
 
5.3.1 Defense-in-Depth Principles

A summary of the objectives of defense-in-depth can be stated as the ability to:

• compensate for potential adverse human actions (this includes commission as well as
omission) and component failures,

• maintain the effectiveness of barriers by averting damage to the plant and the barriers
themselves, and

• protect the public and environment from harm in the event that these barriers are not fully
effective.

To achieve these objectives, and therefore assure public safety despite uncertainties in our
knowledge or rigor, the first principle of defense-in-depth is that 

(1) Measures against intentional as well as inadvertent events should be should be
provided.

The protective strategies discussed in Chapter 3 comprise these measures at a high level.
The use of these multiple strategies ensures that there are successive measures in place
to protect public health and safety even if some of the strategies fail.

Intentional acts against nuclear power plants that could threaten the plant personnel and/or
the public are mainly countered by the strategy of physical protection.  As mentioned in
Chapter 3, this strategy is still being developed in other programs and will be discussed
more fully in the next draft of the framework.  Physical protection will involve both design
and operational aspects that will be a part of, and affect,  the other four protective
strategies, as indicated in Chapter 2.  In addition, physical protection will include
administrative types of requirements that will address the size, nature and training of
protective forces that may be used at the plant site.

From this first principle of defense-in-depth, four additional defense-in-depth principles have
evolved, and are defined as follows:

(2) The design should provide accident prevention and mitigation capability.
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Accident prevention and mitigation capability should be provided such that there is no
undue emphasis on either accident prevention measures or mitigation measures (at the
expense of the other) for maintaining the plant in a safe condition given various challenges.
However, accident prevention and mitigation can, in general, be defined at various levels
in terms of events or event sequences.  Reducing the frequency of initiating events is
generally viewed as a preventive measure; if the initiator occurs, then helping to cope with
its consequences is seen as a mitigative measure.  But a given system, structure or
component may, in fact, serve to prevent one challenge and mitigate another challenge
depending on where it occurs in an event sequence.  Specific measures are sometimes
seen as either preventive or mitigative depending on the point in the event sequence and
the point of view of the observer.  Often prevention is emphasized relative to mitigation for
a variety of reasons.  Preventive measures are usually more economical, prevention avoids
having to deal with the phenomenological uncertainties that arise once an accident
progresses, etc.  From a defense-in-depth standpoint such an emphasis is acceptable as
long as it does not result in an exclusive reliance on prevention with a total neglect of
mitigative features.

The principle that both accident prevention and mitigation features should be provided is
embodied in the protective strategies of Chapter 3.  By requiring that all of the strategies
have to be incorporated into plant design and operation, the presence and availability of
both preventive and mitigative features is assured.  The strategies do not have to be ‘equal’
in terms of their quantitative risk reduction, for example, but none should be completely
absent from the design and operation of the plant. 

For both commercial and safety reasons, there is likely to be a great deal of emphasis on
the first protective strategy of limiting initiating events.  Such an approach tries to  prevent
deviations from normal operation, and to prevent system failures.  Clearly, in the case of
intentional events,  the physical protection strategy will also have as its dominant focus the
limitation of initiating events resulting from such acts, either by preventing the acts in the
first place, or by prevent the intentional acts from progressing to the point where plant safety
is impaired.

The next protective strategy, ensuring that protective systems are available, recognizes that
some initiating events are likely to occur over the service lifetime of a nuclear power plant,
despite the care taken to prevent them.  This strategy has a preventive component in that
some of these systems are concerned with detecting and intercepting deviations from
normal operation in order to prevent anticipated operational occurrences from escalating
to accident conditions.  However, protective systems also include systems that play a dual
role of prevention and mitigation or a strictly mitigative role.  In practice, safety systems will
likely be used for both aspects of defense.  This aspect of the protective system strategy
recognizes that, although very unlikely, the escalation of certain anticipated operational
occurrences or other initiating events may not be arrested and a more serious event may
develop. These unlikely events are anticipated in the design basis for the plant, and inherent
safety features, as well as additional equipment and procedures are likely to be provided
to control their consequences and to achieve stable and acceptable plant states following
such events. This leads to the need that engineered safety features are provided that are
capable of leading the plant first to a controlled state, and subsequently to a safe shutdown
state. 

The strategy of barrier integrity can also be thought of as playing both a preventive and
mitigative role, with the barrier associated with the fuel seen as a preventive feature whose
integrity prevents an off-normal event from escalating, while successive barriers mitigate
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the consequences of the failure of the fuel barrier.   The latter barriers often include the
protection offered by a containment or confinement, but may also be achieved by
complementary measures and procedures to prevent accident progression, and by
mitigation of the consequences of selected severe accidents. Adequate safety margins in
the equipment, structure and procedures used here are an important part of the strategy.
 The physical protection strategy may also introduce barriers against external missiles that
could compromise plant safety systems.

The increased use of inherent safety features could strengthen accident prevention as well
as mitigation in innovative designs.

The protective strategy of accident management is purely mitigative in nature.  This includes
accident management procedures within the plant (for which margins in barrier strength and
in the time needed to achieve successful accident management are essential), as well as
emergency response.  The emergency response part of the accident management strategy
is aimed at mitigation of the radiological consequences of potential releases of radioactive
materials that may result from accident conditions. This requires the provision of an
adequately equipped emergency control center, and plans for the on-site and off-site
emergency response.  Temporal margins are key here.  Physical protection aspects may
introduce additional considerations into both on-site and off-site accident management.

(3) Accomplishment of key safety functions should not be dependent upon a single
element of design, construction, maintenance or operation.

Redundancy, diversity, and independence in structures, systems, and components (SSCs)
and actions will ensure that no key safety functions will be dependent on a single element
(i.e., SSC or action) of design, construction, maintenance or operation.  The key safety
functions include: control of reactivity,  removal of decay heat, and the functionality of
physical barriers to contain the release of radioactive materials**.  In addition, hazards such
as fire, flooding, and seismic events which have the potential to defeat redundancy,
diversity, and independence, need to be considered.

Although no universal quantitative targets can be expressed for the individual reliability
requirements for each protective strategy, the greatest emphasis is likely be placed on the
preventive aspects of the strategies, i.e., limiting initiating events, whether inadvertent or
intentional,  and using the protective systems in a preventive mode.  This would be also
consistent with the licensee’s objective of high availability of the plant for commercial
reasons.  In some cases maximum unavailability limits for certain safety systems may be
established in the regulations to ensure the necessary reliability for the performance of
safety functions.

An important aspect of ensuring that key safety functions do not depend on a single element
of design, construction, or operation is guarding against common cause failures.  Failure
of a number of devices or components to perform their functions may occur as a result of
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a single specific event or cause. Such failures may affect a number of different items
important to safety simultaneously. The event or cause may be a design deficiency, a
manufacturing deficiency, an operating or maintenance error, a natural phenomenon, a
human induced event or an unintended cascading effect from any other operation or failure
within the plant.   Common cause failures may also occur when a number of the same type
of components fail at the same time. This may be due to reasons such as a change in
ambient conditions, saturation of signals, repeated maintenance error or design deficiency.
Measures to minimize the effects of common cause failures, such as the application of
redundancy, diversity and independence, are an essential aspect of defense in depth.  

Redundancy, the use of more than a minimum number of sets of equipment to fulfill a given
safety function, is an important design principle for achieving high reliability in systems
important to safety. Redundancy enables failure or unavailability of at least one set of
equipment to be tolerated without loss of the function. For example, three or four pumps
might be provided for a particular function when any two would be capable of carrying it out.
For the purposes of redundancy, identical or diverse components may be used. 

The reliability of some systems can be further improved by using the principle of diversity
to reduce the potential for certain common cause failures.  Diversity is applied to redundant
systems or components that perform the same safety function by incorporating different
attributes into the systems or components.  Such attributes could be different principles of
operation, different physical variables, different conditions of operation or production by
different manufacturers, for example.

To ensure diversity is actually achieved, the designer should examine some of the more
subtle aspects of the equipment employed.  For example, to reduce the potential for
common cause failures the designer should examine the application of diversity for any
similarity in materials, components and manufacturing processes, or subtle similarities in
operating principles or common support features.  In addition, if diverse components or
systems are used, there should be a reasonable assurance that such additions are of
overall benefit, i.e., reliability is actually improved, taking into account the disadvantages
such as the extra complication in operation, maintenance and testing, or the consequent
use of equipment of lower reliability.

Another important aspect of this defense in depth principle is the use of functional isolation
and physical separation to achieve independence among plant systems.  The reliability of
plant systems can be improved by maintaining the following features for independence in
design:

• independence among redundant system components;

• independence between system components and the effects of certain initiating
events such that, for example, an initiating event does not cause the failure or loss
of a safety system or safety function that is necessary to mitigate the consequences
of that event;

• appropriate independence between or among systems or components of different
safety classes; and

• independence between items important to safety and those not important to safety.
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Functional isolation can be used to reduce the likelihood of adverse interaction between
equipment and components of redundant or connected systems resulting from normal or
abnormal operation or failure of any component in the systems.

Physical separation in system layout and design can be used as far as practicable to
increase assurance that independence will be achieved, particularly in relation to certain
common cause failures.

Physical separation includes:
• separation by geometry (such as distance or orientation);
• separation by barriers; or
• separation by a combination of these.

The means of separation will depend on the challenges considered in the design basis,
such as effects of fire, chemical explosion, aircraft crash, missile impact, flooding, extreme
temperature or humidity, etc.  Certain areas of the plant naturally tend to be centers where
equipment or wiring of various levels of importance to safety will converge.  Examples of
such locations may be containment penetrations, motor control centers, cable spreading
rooms, equipment rooms, the control room and the plant process computers.  These
locations should be particularly scrutinized and appropriate measures should be taken to
avoid common cause failures, as far as practicable.

Functional isolation and physical separation are also likely to be important considerations
for achieving adequate physical protection measures.  ‘Pinch points’ in terms of functional
performance as well as physical location can lead to vulnerabilities resulting from either
accidental or intentional events.

Finally, this principle also requires that measures are included in the design and operation
so that catastrophic events, such as an initiating event that prevents all safety features from
operating, for example, are of low enough frequency that they do not have to be considered
in the analysis, i.e. they would fall into the rare events category discussed in Chapter 4.
Examples of such events are pressurized thermal shock in current reactors, or a graphite
fire in a graphite moderated reactor design.

(4) Uncertainties in SSCs and human performance should be accounted for such that
reliability and risk goals can be met.

The designer should allocate goals that meet the overall risk criteria including uncertainty.
An important tool for achieving risk goals for design, construction and operation of the plant
is the use of risk assessments that include estimates of uncertainty.  The setting of success
criteria for the achievement of safety functions should be set, and the calculations that show
they have been met should be performed in such a way that uncertainties are accounted
for with a high level of confidence.  Note that, at least initially, this needs to be done for
future reactors without the benefit of reviewing past performance.  The role of safety
margins is important here in achieving a robust design.   Both physical and temporal
margins should be incorporated in the plant equipment and procedures.   Physical margins
ensure that capacities of hydraulic, electrical and structural components are well in excess
of minimum requirements, so unanticipated increases in demand can easily be met.
Temporal margins ensure preventive systems can correct deviations even after some initial
lapses.  Therefore, careful attention is paid to the selection of appropriate design codes and
materials, and to the control of fabrication of components and of plant construction.  In
addition, performance monitoring and feedback should be employed over the life of the
plant to assure reliability and risk goals continue to be met, or if not, corrective actions are
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to be taken.

Some future reactor designs may focus on the use of passive systems and inherent
physical characteristics (confirmed by sensitive non-linear dynamical calculations)  to
ensure safety, rather than relying on the performance of active electrical and mechanical
systems.  For such plants, with many passive systems, fault trees may be very simple when
events proceed as expected and event sequences may have very low frequency and little
apparent uncertainty.  The real work of PRA for these designs may lie in searching for
unexpected scenarios and their .  Innovative ways to structure the search for unexpected
conditions that can challenge design assumptions and passive system performance will
need to be developed or identified and applied to these facilities.  The risk may arise from
unexpected ways the facility can end up operating outside the design assumptions.  For
example, a HAZOP-related search scheme for scenarios that deviate from designers'
expectations and a structured search for construction errors and aging problems may be
the appropriate tools.  Other ways that the facility can operate outside its design
assumptions could include scenarios:

• where the human operators and maintenance personnel place the facility in
unexpected conditions, 

• where gradual degradation has led to unobserved corrosion or fatigue or other
physical condition far from that envisioned in the design, or

• where passive system behavior (e.g., physical, chemical, and material properties)
is incorrectly modeled.

(5) Plants should be sited in areas that meet the intent of Part 100 and are consistent
with the principles for siting established in Reg Guide 4.7.

The location of regulated facilities should be chosen so as to serve the protection of public
health and safety.  Consideration of population densities and the proximity of natural and
man-made hazards in the siting of plants can provide further assurance that hazards to the
public are minimized.  Physical protection aspects associated with security concerns are
obvious additional considerations in the siting selection.  

For reactors, this principle is also intended to ensure that accident management including
emergency preparedness remains a fundamental element of defense-in-depth.  However,
to ensure a level of protection of the public commensurate with the Commission’s safety
goals, it is recognized that the scope and nature of offsite emergency preparedness
activities could be different for future reactors.  These differences could arise from factors
such as reactor size (i.e., power level), location, level of safety (i.e., likelihood of release),
magnitude and chemical form of the radionuclide release, and timing of releases (i.e., long
term response).

Accordingly, criteria for determining the scope and nature of required offsite emergency
preparedness measures are needed that consider the above factors.

Current requirements associated with emergency preparedness (i.e.,10 CFR 50.47, and 10
CFR 50, Appendix E) have been developed primarily in consideration of the risks from
currently operating LWRs.  However, 10 CFR 50.47 does recognize that for gas-cooled
nuclear reactors and for reactors with an authorized power level less than 250 Mwt, the size
of the emergency planning zones (EPZs) may be determined on a case-by-case  basis.
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This situation was the case for the Fort Saint Vrain reactor, which had a 5-mile EPZ, instead
of the 10-mile EPZ that is applied to currently operating LWRs.

In the past, there have been proposals to modify current emergency preparedness
requirements to give credit for reactor designs with enhanced safety characteristics.  Staff
reviews and response to these proposals were provided.  In general, these responses
indicated that for new reactor designs, it is too early to identify specific conditions that would
allow a reduction in the 10-mile plume exposure pathway EPZ.  Until sufficient experience
is gained on any prototype reactor, a case-by-case basis should be used to evaluate
whether a requested reduction in the size of the 10-mile EPZ can be allowed.  This criteria
would also apply to the 50-mile ingestion control pathway EPZ.  Some conditions that would
have particular importance would include, but not be limited to, the following:

(1) consideration of the full range of accidents
(2) use of the defense-in-depth philosophy
(3) prototype operating experience is gained
(4) acceptance by federal, state, and local agencies
(5) acceptance by the public

Finally, all sixteen Planning Standards and Evaluation Criteria (A through P) in NUREG-
0654/FEMA-REP-1, Rev. 1, should be addressed for any size EPZ.  The specific
requirements under each applicable standard could be scaled down, as appropriate, in
order to account for any reduction in EPZ size.  Modification of the rules or guidance
documents should not occur until sufficient experience is gained in dealing with reduced
EPZs.

In its SRM of June 26, 2003, the Commission approved the staff recommendation in SECY-
03-0047,  "Policy Issues Related to Licensing Non-Light-Water Reactor Designs," dated
March 28, 2003, related to offsite emergency preparedness.  Specifically, the staff
recommended that, in the near term, no changes to current emergency preparedness
requirements be made.   In the longer term, the role of emergency preparedness in
defense-in-depth would be addressed as part of the staff’s work to develop a policy or
description of defense-in-depth, which is part of the framework development.

These defense-in-depth principles are based upon and consistent with the Commission’s Strategic
Plan, quoted earlier, that states defense-in-depth is: (1) an element of the NRC’s Safety Philosophy
that employs successive compensatory measures to prevent accidents or mitigate damage if a
malfunction or accident occurs at a nuclear facility and (2)  ensures that safety will not be wholly
dependent on any single element of the design, construction, maintenance, or operation of a
nuclear facility. The net effect of incorporating defense-in-depth into design, construction,
maintenance, and operation is that the facility or  system in question tends to be more tolerant of
failures and external challenges.  The principles are also consistent with Regulatory Guide 1.174
where it is stated that consistency with the defense-in-depth philosophy is maintained if:

• A reasonable balance is preserved among prevention of core damage, prevention of
containment failure, and consequence mitigation.

• Over-reliance on programmatic activities to compensate for weaknesses in plant design is
avoided.

• System redundancy, independence, and diversity are preserved commensurate with the
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expected frequency, consequences of challenges to the system (the consequences may
range from a minor or major degradation of a barrier all the way to the migration and
potential release of radioactive materials to the environment) and uncertainties (e.g., no risk
outliers).

• Defenses against potential common cause failures are preserved, and the potential for the
introduction of new common cause failure mechanisms is assessed.

• Independence of barriers is not degraded.

• Defenses against human errors are preserved.

These points in Regulatory Guide 1.174 line up well with the defense-in-depth principles stated
previously.

5.3.2 Coordination of Defense-in-Depth with Containment Functional Performance
Requirements and Criteria

For current plants a low leakage, pressure retaining containment building has always been an
essential part of defense-in-depth, and it is a vital part of the Barrier Integrity protective strategy,
as applied to current LWRs.  Analyses have shown that these containment buildings also provide
physical protection against natural as well as man made events such as airplane crashes.  

In considering the five defense-in-depth principles of the previous section, it is clear that
containment buildings, like the ones currently in use, can play a role with respect to at least four of
the five principles.  A containment provides: (1) a measure against some intentional as well as
inadvertent events, (2) accident mitigation capability, (3) assurance for some safety functions that
they are not dependent on a single element of design, construction , maintenance or operation, and
(4) some protection against uncertainties in SSC and human performance.

For new plants the proposed regulatory structure, discussed in this report, is being coordinated with
an effort to establish non-LWR containment functional performance requirements and criteria.  This
effort arose from SECY-03-0047 and the subsequent June 23, 2003 SRM.  The Commission asked
the staff to develop functional performance requirements and criteria working closely with industry
experts (e.g., designers, EPRI, etc.) and other stakeholders regarding options in this area, taking
into account such features as core, fuel, and cooling systems design. 

The staff evaluated the functional performance requirements and criteria for containment on a
technology-neutral basis utilizing applicable Commission technical policies, NRC and industry
documents, foreign and domestic technical information, and stakeholder input.   Since there was
no consensus among stakeholders on a single descriptive term such as “containment,”
“confinement,” “vented low pressure confinement,” “reactor building” or “containment structure,” the
term  “third-level barrier” or “TLB” was adopted and will be used here.  From its evaluation, the staff
has concluded that the function of TLB designs, includes a direct or support functional role for the
following accident prevention and mitigation safety functions: 

• Protection from Internal and External Events -The TLB must be adequate to protect risk-
significant SSCs from environmental events (e.g., tornado, flooding, seismic),  from external
events (e.g., design-basis air crashes, fires),  high energy breaks, and internal missiles such
that those that are relied upon to mitigate these events are not prevented from performing
their required safety functions.



5.  Treatment of Uncertainties: Defense-in-Depth

Working DRAFT Regulatory Structure for New plant Licensing,
NUREG-xxxx, Revision a, December 2004 Part 1: Technology-Neutral Framework5-12

• Physical Support of Risk-Significant SSCs -The TLB must be adequate to physically support
risk-significant SSCs such that those that are relied upon to mitigate the events in the event
categories do not exceed the established design and safety limits. 

• Protect Onsite Workers from Radiation - The TLB must be adequate to protect plant
personnel from onsite radiation sources during normal operation and accidents such that
10 CFR Parts 20 requirements are met.   

• Physical Protection - The staff will coordinate TLB physical protection requirements
consistent with Commission policy decisions associated with another SECY paper, currently
being prepared by the staff on security design requirements for new plant licensing.  

• Heat Removal to Protect Risk-Significant SSCs - The TLB must be adequate to allow
reactor fuel, core and TLB heat removal systems to perform their functions such that the
SSCs relied upon to mitigate the events in the event categories do not exceed the
established design and safety limits.

• Reduce Radionuclide Releases to the Environs (Including Limit Core Damage) - The TLB
must be adequate to reduce radionuclide releases to the environs to ensure that doses do
not exceed the dose criteria for the selected events in the event categories. 

While none of the above functions is exclusively a TLB function, the first four may be viewed as
preventive functions, while the latter two may be viewed as mitigative functions.  

These TLB functional performance requirement have been developed to be consistent with the
regulatory structure for new plant licensing as follows: 

• The TLB supports meeting the overall plant risk criteria, which includes accident prevention
criteria and accident mitigation criteria.

• A probabilistic approach may be used to identify events which must be considered in the
design.  Frequency-based categories are established for: normal operation and anticipated
operational occurrences; design-basis events; and events beyond the design-basis.
Design-specific PRA information, including consideration of uncertainty,   is used to
categorize the event sequences.  This approach requires that the probabilistic information
that supports event categorization is adequate and acceptable.  Additionally, in categorizing
events, deterministic engineering judgement may be used to ensure that uncertainties
associated with event probabilities are adequately treated.  A set of events from the design-
basis accident category is selected on a deterministic basis as scenarios that most severely
challenge the TLB to meet the dose criteria and are used for assessing site suitability.  The
actual events selected for the design-basis are determined at the time of the staff review of
a particular plant design. 

• An event frequency versus event dose consequence limit curve is used.  For the events
selected for the design-basis category, the dose consequence limit curve provides that the
offsite dose does not exceed the limits specified in 10 CFR100 and 10 CFR50.34 (a) (1).

• For each of the selected events in each of the event categories, the source terms used to
assess radionuclide releases into and out of the TLB may be calculated on a mechanistic
basis.  That is, the radionuclides released into TLB, and radionuclide release out of the TLB
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to the environs, takes credit for the reactor, fuel and core characteristics (i.e., accident
response), including radionuclide retention and attenuation characteristics of each of the
multiple mechanistic barriers and obstacles to radionuclide transport.  The use of a
mechanistic approach requires sufficient quantitative understanding and assurance of both
design-specific plant system performance (including radionuclide transport behavior) and
fuel system performance (including radionuclide transport behavior) to adequately model
all pathways, barriers and obstacles to the environs.  Adequate data is required to provide
the quantitative basis for the performance of each of the mechanistic barriers and obstacles
for the range of plant conditions associated with the selected events in each category.  This
quantitative basis must utilize either existing applicable data or a suitable technology
development program.   Deterministic engineering judgement is applied to ensure that the
(technology-specific) calculated source term for each event selected is bounded.

• Events selected for deterministic analysis from the TLB design-basis category are analyzed
using best estimate methods, including uncertainty analysis.  The results of the best
estimate analysis are compared with the dose acceptance criteria and must be shown to
meet it at the 95% confidence level.  Bounding calculations may also be performed.  Events
beyond the design-basis are analyzed in the PRA, including uncertainty analysis, and the
mean value is compared with the overall plant risk acceptance criteria.

• Defense-in-depth is applied to ensure that compensatory measures are in place to prevent
and mitigate accidents and to address both random (stochastic) uncertainties and state of
knowledge (i.e., completeness) uncertainties.  The application of defense-in-depth for
developing the performance requirement and criteria of the TLB for radioactive releases to
the environs is based on the following principles and model:

S The design should provide for the prevention and mitigation of accidents

S Safety functions (e.g., control of fission product release, control of chemical attack
on core components) should not depend on a single element of design, construction
or operation 

S Uncertainties in the performance of risk-significant structures, systems and
components and the performance of humans should be accounted for 

S Defense-on-depth should be a combination of : (1) a rationalist element to account
model and parameter uncertainties; (2) a structuralist element to account for
completeness uncertainties (unknowns).

All of the six safety functions listed above for the TLB can have an impact on defense-in-depth and
on the protective strategies.   However, the most direct impact will result from the requirements for
number 4, physical protection, and for number 6, reduce radionuclide releases to the environs.

With respect to physical protection the staff will coordinate TLB requirements with Commission
policy decisions associated with security design requirements for new plant licensing, the subject
of another SECY paper currently being prepared.  Clearly, security requirements can have a critical
influence on TLB design requirements.

With respect to Function 6, reduce radionuclide releases to the environs, the proposed TLB
technology-neutral performance requirement for reducing radionuclide releases to the environs
states that the TLB must:
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• adequately reduce radionuclide release to the environs to meet the onsite and offsite
radionuclide dose acceptance criteria for the events selected for the event categories,

• have the capability for low leakage and controlled release of the delayed accident source
term radionuclides, and,

• include within the design-basis category, selected low probability, but credible events, with
the potential for a large source term and a significant radionuclide release to the environs.

These requirements are consistent with the defense-in-depth principles enunciated in the previous
section, and with the protective strategies. 

5.3.3 Defense-in-Depth Model

To meet the above defense-in-depth principles, two basic approaches to dealing with uncertainty
have been defined, the structuralist approach and the rationalist approach [3].  According to the
structuralist model defense-in-depth is embodied in the structure of the regulations and in the
design of the facilities that are built in accordance with those regulations.  The requirements for
defense-in-depth result from repeatedly asking the question, “What if this barrier or safety feature
fails?”  This question is asked without a quantitative estimate of the likelihood of such a failure.
Therefore, a characteristic of this approach is that a balance among the high level lines of defense
must be maintained; accident prevention alone cannot be relied on to reach an acceptable level of
safety.  This is the approach to defense-in-depth that has been used in the past to achieve
adequate protection.  In summary, the elements of the structuralist approach are:

• specific qualitative requirements should be included in the regulations to ensure the
accomplishment of key safety functions are not dependent upon a single element of plant
design or operation, and

• structuralist elements address primarily completeness uncertainties.

In the rationalist model defense-in-depth is the aggregate of provisions made to compensate for
uncertainty and incompleteness in our knowledge of accident initiation and progression.  The
rationalist approach seeks to evaluate the uncertainties in the analysis and to determine what steps
should be taken to compensate for those uncertainties.  In the rationalist approach the probability
of accidents is kept acceptably low by providing appropriate defense-in-depth measures in the
design, construction, and operation of the plant.  The adequacy of the defense-in-depth measures
can be assessed in the rationalist approach via quantitative criteria that appear in safety goals or
more general frequency/consequence curves.  Therefore the essential elements of the rationalist
approach are:

• specific performance goals are included in the regulations to define the balance between
prevention and mitigation.  Examples include:
S large release goal
S equipment reliability goals

• specific requirements are included in the regulations to ensure uncertainties are properly
accounted for in meeting the goals.  Examples include:
S safety margins
S level of confidence
S monitoring and feedback
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odeling and parameter uncertainties and allow an estimate of how much defense-in-depth is
needed in these areas.

Figure 5-1 shows a defense-in-depth model that incorporates both the structuralist and rationalist
approaches.
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Figure 5-1 Defense-in-Depth Model
 
At the high level of the protective strategies the structuralist model is used.  The figure shows the
protective strategies not in the order of the safety philosophy (as described in Chapter 2), but in the
order of the operational sequence of events that would occur during an accident situation.  It also
indicates that physical protection supports all the other strategies.  By requiring the achievement
of each protective strategy with a certain confidence, the structuralist aim of assuring several layers
of defense, no matter how well any one layer may work, is preserved.  Within each protective
strategy a rationalist approach is used to determine how much defense-in-depth is needed to
achieve the desired quantitative goals on initiating event frequency and safety system reliability,
including uncertainty.  This is the model of defense-in-depth recommended for application to future
reactors.

Depending on the inherent characteristics of various innovative designs, the protective strategies
may be accomplished by means substantially different from those used in the current light water
reactors.  The discussion in Appendix B focuses on the safety characteristics of some of the new,
innovative reactor designs, and how these inherent characteristics promote the success of the
protective strategies, thereby contributing to defense in depth.

5.4 Application of Defense-in-Depth

The approach advocated here for application of defense-in-depth in the regulation of future reactors
is a combination of the structuralist and rationalist approach.  

As pointed out in Chapter 2, the protective strategies dealing with Physical Protection, Barrier
Integrity, Initiating Events, Mitigating Systems and Accident Management, are the fundamentals for
safe nuclear power plant design, construction, and operation.  If these protective strategies are
“successfully” met, the adequate protection of public health and safety is achieved.  Conversely,
the “success criteria” or the acceptable performance of these levels-of-defense can be defined as
performance which demonstrates that the design, construction, and operation meets the safety
goals.  This also requires assurance that uncertainties in performance are taken into account and
do not adversely impact the safety goals.  This means that each protective strategy requires
sufficient defense-in-depth measures to assure the aggregate performance of the protective
strategies, including uncertainties, is acceptable.

Before discussing the defense-in-depth needed to support each protective strategy, it is important
to point out that, taken together, the protective strategies already constitute a high level defense-in-
depth approach of a structuralist nature.  The barrier integrity objective is the embodiment of the
fundamental reactor safety function of confinement of radioactive material during normal operation
as well as during off-normal and accident events.  Ensuring that there are adequate barriers to
protect the public, the plant personnel and the environment from radioactive releases is the
designers primary and ultimate safety objective (Note that barriers here are the generalized barriers
specified in Chapter 2).  All other safety functions, such as reactivity control and core heat removal
in LWRs, for example, can be thought of as supporting this ultimate objective.  This confinement
of radioactive material is accomplished by providing rugged, well designed barriers and systems
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to maintain them, as well as by addressing potential challenges to the barriers.  The objective of
limiting the frequency of initiating events supports the barrier objective by limiting the possible
challenges to barrier integrity that potential accident initiators could give rise to.  Similarly, the
objective of ensuring the reliability of mitigating systems further supports the objective of
maintaining barrier integrity by providing systems which can meet the challenges and either
terminate or mitigate the challenge.   The protective strategy of accident management has as its
objective the mitigation of consequences should barrier integrity be compromised.  The physical
protection strategy supports all the other strategies since it ensures that initiating events from
intentional acts are prevented, and that intentional acts do not compromise the ability of mitigating
systems, or compromise barrier integrity, or compromise the ability to carry out accident
management actions.  It should also be reiterated here, that an important part of all the protective
strategies is the incorporation of both physical and temporal safety margins, as emphasized in the
discussion of the defense in depth principles.

Taken together the protective strategies are a classic example of the structuralist defense-in-depth
approach: What if initiating events cannot be avoided, from either intentional or inadvertent acts?
Mitigating systems will restore the plant to normal operation or limit the accident consequences.
What if mitigating systems fail?  Barriers will confine the radioactive material.  What if barriers are
degraded and allow fission products to escape?  Accident management will mitigate the
consequences.

Within each of the protective strategies, a rationalist defense-in-depth philosophy is applied to
ensure adequate performance in meeting the objective of the defense level.  The systems, barriers
and actions used in the performance of the safety functions associated with the protective strategy
are examined in terms of structuralist and rationalist principles of defense-in-depth.  The whole
process of applying defense-in-depth is outlined in Figure 5-2, which depicts the application as a
series of iterative steps.
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Figure 5-2  Defense-in-Depth Approach
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The iterative process described below, for the development of acceptable defense in depth for
innovative reactors, is expected to be used initially by the designer and ultimately by the designer
and regulator to develop the emerging design.  As the design evolves the PRA will also be able to
be developed to greater detail.

As the first box indicates, designers of a new plant are expected to arrive at an initial design which
incorporates the protective strategies discussed above and earlier in this report.  The objective of
these strategies are restated here:

• The Physical Protection objective is to ensure that adequate measures are in place to
protect workers and the public against intentional acts that could compromise the safety of
the plant and lead to radiological releases.

• The Barrier Integrity objective is to ensure that there are adequate barriers to protect the
public from accidental radionuclide releases.  Adequate functional barriers must be
maintained to limit the  effects of reactor accidents if they do occur.  Barriers can include
physical barriers as well as those based on physics and chemistry that can inhibit the
transport of material when physical barriers are breeched.

• The Limit Initiating Event Frequency objective is to limit the frequency of events that can
upset plant stability and challenge critical safety functions, during all plant operating states,
i.e., full power, shutdown, and transitional states.  Initiating events must be considered that
can affect any source of radioactive material on-site in any chemical and physical form.

• The Protective Systems objective is to ensure that the systems that mitigate initiating
events are adequately designed, and perform adequately, in terms of reliability and
capability, to satisfy the design assumptions regarding accident prevention and mitigation
during all states of reactor operation.

• The Accident Management objective is to ensure that adequate protection of the public
health and safety in the event of a radiological emergency can be achieved should
radionuclides penetrate the barriers designed to contain them.  Measures can include
emergency evacuation plans, drills, and training.

Incorporating these protective strategies implicitly incorporates a high-level structuralist defense-in-
depth philosophy into the design process and into the future operation of the plant.
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A risk assessment including estimated uncertainties is carried out as part of the design process as
shown in Box 2.***

The third box in the figure depicts the start of the process of applying rationalist defense-in-depth
elements within each of the protective strategies incorporated in the design.  This is accomplished
by examining the reliability, diversity, etc. of the systems, structures, components, procedures and
other risk management activities that are used to accomplish the safety functions which determine
the adequate performance of the protective strategy.

The first part of the examination is carried out by comparing against the risk assessment, as
depicted in Box 4, and determining if the plant equipment and operator actions are reliable enough
to achieve the safety function success probabilities needed to meet risk goals in terms of accident
frequencies and consequences.  The reliability assessment includes defenses against common
cause failure mechanisms and human errors.  This is the rationalist part of the application of
defense-in-depth.  A vital part of this step is inclusion of the uncertainties capable of being modeled
in the risk assessment, and ensuring that the risk goals are still met with uncertainties included.

If the risk goals are not met then the process proceeds to Box 5, which calls for an addition to, or
a revision of,  the equipment and actions used to accomplish the safety functions that ensure
adequate performance, thus adding to the defense-in-depth.  Another rationalist assessment is then
performed, with an appropriately revised risk assessment, as indicated in the figure.

When enough rationalist defense-in-depth to meet the risk goals, including uncertainty, has been
demonstrated, the process proceeds to Box 6, which depicts the structuralist check on the elements
of defense-in-depth implemented so far to ensure that the principles stated earlier are met.  Here
the equipment and actions are examined for aspects that are not directly related to quantitative
reliability measures.  For example the examination here ensures that the accomplishment of key
safety functions is not dependent on a single element of design or operation, that there is a
reasonable balance between preventive and mitigative strategies, that there is not an over-reliance
on programmatic activities to compensate for weakness in design, etc.  These considerations are
applied both to the equipment and actions used in the risk analysis, as well as the analysis of
design basis events.  Ideally the principles should be met for each of the protective strategies
individually, but exceptions may be permitted.  However, all the principles have to be met in the
aggregate for the protective strategies collectively.

If some of the principles are not met, the process again proceeds to Box 5 where equipment and
actions are added or revised, this time with the intent of satisfying the considerations mentioned
above.  Once changes have been made to the plant design, the process goes back to the risk
analysis and rationalist examination of Box 4, since, for example, equipment or procedures added
to satisfy the principles of Box 5 can replace some of the equipment or procedures previously
considered in the risk analysis.

When both Box 4 and Box 6 are satisfied the process proceeds to Box 7, where an overall
examination of the protective strategy being examined is carried out to see if the identified
uncertainties are adequately addressed, before proceeding to the examination of the next protective
strategy, i.e., returning to Box 3.  
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When all  protective strategies have been examined in this iterative manner, a final structuralist
check is performed on the now revised design (Box 8) to ensure no degradation across the
protective strategies can occur.   Such a degradation may result from the use of common support
systems, for example, to support mitigating systems as well as systems ensuring barrier integrity.
When this check is satisfied, the design is finalized (Box 9), and provisions for performance
monitoring and feedback, to be used during operation, are specified as part of the design
finalization.

Monitoring and feedback are essential aspects of this process, since the validity of initial design
assumptions, and of design changes made as part of the outlined steps, will be established by the
actual operation of the reactor.  Additional hardware or procedural changes may result from this
feedback.  This is especially important for the new and innovative designs for which there is no
operating experience.

The process outlined in Figure 5-2 will be reflected in a series of requirements on what constitutes
an acceptable application of defense-in-depth for new reactors.  Applicants will be responsible for
implementation of the process.

As indicated in the rationalist part of the defense-in-depth model depicted in Figure 5-1, the degree
of reliability of the equipment and actions used to accomplish the safety functions that ensure the
performance of the protective strategies depends on the  the risk level specified in the acceptance
criteria.  This risk level, in turn, depends to some degree on the frequency of the initiating events.

The acceptance criteria, in terms of frequency-consequence limit curves advocated for future
reactors, are presented in Chapter 4 of this report.  Also in the Chapter 4 discussion initiating
events were grouped by frequent, infrequent and rare, similar to the NEI approach [4]. 

For a well designed plant, the number and quality of defense-in-depth systems needed to achieve
the desired limits on consequences will be highest for normal operations and frequent events, and
decrease as the frequencies get smaller and consequences increase.  This is consistent with other
defense-in-depth approaches to issues in current reactors, such as the defense-in-depth matrix
advocated by NEI [5] in the SSC categorization process of Option 2, and the EPRI Guideline for
performing defense-in-depth for digital instrumentation and control upgrades [6].

5.5 How the Recommended Defense-in-depth Model Addresses
Various Uncertainties

Completeness uncertainty is a key reason for maintaining a risk-informed approach that includes
defense-in-depth as a key strategy, rather than a risk-based approach.  The structuralist elements
of the defense-in-depth model primarily address completeness uncertainties and the design needs
to ensure that all the protective strategies previously identified in Chapter 2 and above have been
adequately addressed by defense-in-depth measures.  The implementation of the protective
strategies, as indicated in Box 1 of Figure 5.2, and discussed throughout, i.e., providing physical
protection, ensuring barrier integrity, limiting initiating events, ensuring reliability of mitigating
systems, and availability of accident management are the fundamental means of addressing
completeness uncertainty.  Further measures are the qualitative defense-in-depth principles
discussed in Section 5.3.1 and applied in Boxes 6 and 8 of Figure 5.2, and additional margins that
can be added to the individuals strategy goals to set the total risk guidelines in Figure 5.1.  Testing
programs and careful tracking of operating experience can reduce completeness uncertainty.

Research and testing programs can reduce parameter uncertainties and the application of safety
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margins can accommodate parameter uncertainties.  Remaining parameter uncertainties can
typically be characterized by establishing probability distributions on the parameter values and
propagating them through the risk analysis.  The rationalist elements of the defense-in-depth model
applied in Box 4 of Figure 5.2 address parameter uncertainties.  Prototype testing and performance
monitoring and feedback are essential in determining, where possible, whether the values of the
parameter uncertainties that were used in establishing the design are, in fact, reasonably accurate
based on performance.  

Model uncertainties are those associated with incomplete knowledge regarding how models used
in traditional safety analyses and PRAs should be formulated.   Both the structuralist and the
rationalist elements of the defenses-in-depth model provide protection against state-of-knowledge
uncertainties.   A number of defense-in-depth elements are used depending on the nature and
extent of the uncertainties.  Sensitivity studies are an important tool for obtaining a qualitative and
quantitative understanding of the uncertainties introduced by modeling assumptions, simplifications,
and other limitations.

If uncertainty is driven by a lack of knowledge or understanding of the basic physical behavior or
processes, or of the failure mechanisms, then it may be possible to reduce the uncertainty by
additional research, which can be construed as part of a rationalist approach.  It is expected that
if a new future reactor is to operate in temperature and pressure regimes where experience is
limited or use new or previously untested materials in these regimes that the design would be
supported by an appropriate testing and analytical program.  The question is how extensive does
this program need to be.  It was noted above that specific performance goals have been
established in Chapter 4 against which designs can be compared.  These rationalist goals can be
used to help define the scope and data requirements of the research program needed to support
acceptable uncertainty ranges.   

Other rationalist elements such as the use of safety margins, level of confidence, and performance
monitoring and feedback are used to ensure that the proposed future reactor design will meet the
overall safety objectives.  This is also done by comparing the results of the PRA to the goals.  The
exact combination of rationalist elements that will be used to demonstrate that the goals are met
with the desired confidence levels is design specific.  Monitoring and feedback also help in
addressing model uncertainty with respect to such issues as human performance, common cause
failures, and mechanistic failures of structures, systems, or components that were not adequately
modeled in the PRA.

The work of PRA for future reactors will be to identify and evaluate initially unexpected scenarios.****

In applying PRA to future reactor designs, analysts must start with a clean page, i.e., not be biased
by expectations from the conclusions of PRAs on old designs.  Part of the examination of the
unexpected is identification, evaluation, and management of uncertainties, as discussed above.
The whole range of uncertainties facing future reactor performance need to be considered. Figure
5-3 summarizes the activities that deal with the types of uncertainty discussed in detail in the
previous sections.  

All identified and quantified uncertainties (aleatory and epistemic) can be included in PRA that
supports development of regulation (evaluation of design, construction and operation risks;
comparison with risk objectives; evaluation of the effectiveness of Protective Strategies).  The PRA
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directly uses the results of parameter estimation in the data uncertainty distributions for its basic
events.  It also uses many results of sensitivity studies to address uncertainty in success criteria,
plant conditions and other models - sometimes incorporating model uncertainty, sometimes
bounding it.

Protective Strategies and Administrative Regulations take a protective, rather than an analytical
approach.  They directly address the questions:  What if our models are wrong, at least in particular
situations, or are incomplete?  What if our assumptions are wrong or degrade with time?  Requiring
multiple Protective Strategies, regardless of the results of PRA analyses, provides protection
against uncertainty in models and completeness.  Even if our first layer of defense fails, additional
layers are present to provide backup.  Implementation of the Protective Strategies relies on the goal
of independence to avoid vulnerability to the same source of uncertainty.  Likewise the
Administrative Regulations provide extrinsic control over the system: establishing rules for analysis;
inspection requirements to identify degradation before failures occur; and tests to ensure that the
as-built, operating facility is true to the designers’ expectations.  Results of the PRA and the
sensitivity studies help in the evaluation of the necessary defense-in-depth in a risk-informed
structure.
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Figure 5-3 Uncertainties Affecting Future Reactor Regulation and Means to Address
Them
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6. TECHNOLOGY-NEUTRAL REQUIREMENTS PROCESS
DEVELOPMENT

The framework structure described in Chapters 2 through 5 define an overall set of safety
objectives and criteria for a technology-neutral, risk-informed approach to new plant licensing.  The
next step is to identify and define the scope and content of detailed technical and administrative
requirements that are necessary to ensure the safety objectives and criteria in Chapters 2 through
5 are met.  After the scope and content of the technical and administrative requirements are
identified, a check on their completeness also needs to be made.  Discussed below are:

• identification of the scope and content of the detailed technical requirements necessary to
ensure the overall safety objectives and criteria are met,

• identification of supporting administrative requirements, and

• verification of completeness.

6.1 Identification of the Scope and Content of Detailed Technical
Requirements

Chapter 3 discussed a structure involving protective strategies whereby each protective strategy
represents an important element of safety that, if accomplished, will ensure the design, construction
and operation of the NPP results in achieving the overall safety objective.  The protective strategies
discussed in Chapter 3 are:

• physical protections,
• maintaining barrier integrity,
• limiting initiating events,
• protective system reliability, and
• accident management.

The process for identification of the scope and content of the detailed technical requirements was
discussed in Chapter 3 and is shown in Figure 6-1.

Figure 6-1 Process for Identification of Topics to be Included in the Requirements
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For each protective strategy (as illustrated by Box 1), a logic diagram is developed that identifies
what would need to occur to threaten or challenge the Protective Strategy under construction.
These logic diagrams are developed in a deductive manner that leads to the potential root cause
of the failure, that is, identifying the different ways in which the strategy under consideration can
fail.  This process is then used to serve as a guide to identify what types of requirements need to
be developed to guard against the root cause of failure, consistent with the overall safety
philosophy and criteria discussed in Chapters 4 and 5.

Accordingly, the end point of each branch developed in the logic diagrams (i.e., “fault trees”)
translates into a set of questions corresponding to each of the potential root cause failures.  That
is, based on the causal events (or the basic events in the fault tree), a series of questions is
developed that form the basis for the requirements.

The answers to the questions for each Protective Strategy (Box 3) will lead to the identification of
specific topics that the requirements will need to address to ensure adequate implementation of the
protective strategies.  These specific topics will define the scope and content of the technology-
neutral requirements.

In developing the answers to each question, other issues will need to be considered (Boxes 4 and
5).  The answers will need to be consistent with the defense-in-depth model (described in Chapter
5), the risk criteria (described in Chapter 4) and the design, construction and operation criteria, as
applicable (described in Chapter 4).

Before finalizing the topics that need to be addressed by requirements, a final check for
completeness will be made (Box 6).  This check will be performed by comparing the developed list
of topics against other references.  One example is comparing against the requirements for
advanced reactors developed by IAEA [ref. ].

The last step of the process is the actual development of the technology-neutral requirements
(Box 7).  This step is performed under Part 2 of the regulatory structure.

6.1.1 Physical Protection

Physical protection is applied to all elements of plant design, including the other protective
strategies, and involves both extrinsic protective measures ("guns, guard, and gates") to block
access to attackers and intrinsic design features to minimize their possible success should they
gain access.

LOGIC DIAGRAM AND TOPIC TABLE UNDER DEVELOPMENT

6.1.2 Barrier Integrity

Barrier integrity depends on design, construction and operation and, in some cases, on the success
of protective systems. The logic diagram of Figure 6-x lays out the events that can lead to functional
failure of the barriers.  If at least one barrier remains, the public is protected and workers are given
a measure of protection.  Barrier integrity applies to those associated with the reactor as well as
spent fuel storage. The order of analysis depends on the organizational scheme of the analyst, but,
alternative approaches should yield the same results, i.e., the same cutsets (canonical sum of
products in the language Boolean logic). The approach in Figure 6-x begins by partitioning the
failure possibilities into three sets:
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• Failure due to exceeding structural limits
• Bypass due to hardware or operational failure
• Breech due to an existing flaw

If any one of these occur, a barrier or the set of barriers will fail.

Figure 6-x Barrier Integrity Logic Diagram

Failure can occur because the design is inadequate for the actual conditions that occur. The lower
level OR list is tagged by the letter "A" in the triangle. In other places in the logic of this or other
trees, use of the triangle "transfer" gate with an "A" inside means that the same OR list applies.
Failure can also occur by a failure of security, i.e., a loss of physical protection.

A bypass of the barrier can occur by operator error (e.g., leaving a purge valve open), external
attack by environmental forces (e.g., earthquake, corrosion) or by work activities (say a crane
failure), maintenance error or construction error.  All these are shown as an OR list.

Breech due to an existing flaw requires both a preexisting flaw AND some "trigger" event that
provides sufficient additional forces to breech the flaw (perhaps thermal or physical stress). The
preexisting flaw may occur as a result of construction errors, degradation, or bad design. Example
causes for each of these are provided in the given OR lists. Note that the trigger event must be
considered conditionally on the extent of the preexisting flaw. Combinations of the bottom level
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events form the cutsets of the tree and in this simple logic it is easy to describe them: any one of
the OR list events from the left half of the tree (failure or bypass) or any of the OR list events for
preexisting flaws combined with suitable trigger events. These simple one and two element cutsets
define the issues to be addressed by questions, the answers to which will identify the topics to be
addressed in the technology-neutral requirements.

Table 6-x shows examples of a set of questions and answers associated with the Barrier Integrity
protective strategy.  The questions are organized by the top level branches of the logic diagram
(i.e., failure, bypass, breech) and the answers (i.e., the topics which must be covered by the
requirements) are arranged by whether they apply to design, construction or operation.
Summarized below are the key considerations that went into developing the questions and their
answers.

Table 6-x Barrier Integrity

Protective Strategy
Questions

Topics to be Addressed in the Requirements

Design Construction Operation

Failure Prevention

What barriers should
be included in the
design?

• fission product
retention (in the fuel)

• coolant retention (in
the reactor and
spent fuel cooling
system)

• Defense-in-depth
independent
capability

To what conditions
should the barriers be
designed?

• Chapter 4 event
selection criteria

• Chapter 4
acceptance criteria
(probabilistic and
deterministic)

How should barrier
integrity and reliability
be assured?

• quality assurance
and control

• materials
qualification

• use of accepted
design codes

• quality assurance
and control

• testing
• inspection
• use of qualified

construction
methods

• maintenance
• inspections
• testing
• inservice inspection
• safety classification
• technical

specifications

How should barrier
performance be
confirmed?

• research and
development

• code validation

• testing • testing

What security related
measures should be
provided?
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Bypass Prevention

How can barrier bypass
be prevented?

• consider corrosion,
erosion, aging in
design

• quality assurance
and control to
ensure quality
construction (e.g.,
use of correct
materials)

• procedures
• training
• inservice inspection
• testing
• work control
• maintenance

Flaw Prevention

How can pre-existing
flaws be prevented?

• design with qualified
materials

• consider corrosion,
erosion, aging in
design

• quality assurance
and control

• testing
• inspection

• inspection
• testing
• inservice inspection
• maintenance
• corrective action

The questions range from what barriers need to be in the design to how should they be designed
and similarly for construction and operation.  Reliability, performance and risk are the key
considerations for design.  For normal operation, reliable barriers to retain the fission products in
the reactor and reactor coolant in the coolant system are necessary to meet the low level s of
radioactive material release specified for normal operation.  To ensure reliable barriers, the barriers
should be designed and built to accepted design codes using materials qualified for the intended
service and accepted quality assurance measures.

For off-normal conditions, the event selection criteria discussed in Chapter 4 can be used to define
the event scenarios which must be considered in designing the barriers.  These criteria categorize
event scenarios in to those that are expected to occur one or more times during the life of the plant
(anticipated operational occurrences - AOOs), those that need to be considered for siting purposes
(design basis accidents - DBAs) and those considered in assessing overall plant risk and
emergency preparedness (beyond design basis accidents - BDBAs).

Deterministic acceptance criteria for AOOs and DBAs have been developed in Chapter 4.  A
criterion on overall plant risk (large release frequency) has also been developed in Chapter 4.  To
ensure the barriers perform as intended, they need to be qualified for the service conditions
expected.  This may involve research and development to verify fuel performance and equipment
qualification (EQ) to verify the performance of mechanical items.  Also, the analysis of barrier
performance under normal and off-normal conditions will require safety analysis tools that also need
to be validated against experimental data.

Depending upon the importance of the barriers to meeting the acceptance criteria, they may be
assigned a safety classification (as described in Chapter 4) that will ensure their pedigree is
maintained over the life of the plant.

Finally, as described in Chapter 4, the deterministic acceptance criteria for AOOs and DBAs ensure
the barriers are designed such that two barriers to the release of radioactive material are always
maintained for normal operation and AOOs, and that for DBAs, at least one barrier remains intact.
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As a final defense-in-depth provision, Chapter 5 discusses providing the capability to establish a
controlled leakage barrier independent of the first two barriers in the event the first two barriers fail.
This capability should be able to be established rapidly for designs where accident scenarios can
progress rapidly.  For designs with long accident scenario response time, this capability need not
be established rapidly.  The degree of controlled leakage will be technology and design dependent.

Potential failures related to construction are addressed by including topics such as quality
assurance and quality control to ensure quality construction.

Potential failures related to operation are also addressed with topics such as human reliability,
condition monitoring and monitoring and control of plant aging.  The items shown in the table are
standard practices for ensuring reliable operation and control of the plant condition.

6.1.3 Limit Frequency of Initiating Events

Initiating events occur when the operating design is not robust for the actual conditions that can
occur or if the plant fails to continue steady-state operations as illustrated in Figure 6-x. The design
may not be robust if it is inadequate for the actual conditions seen by the plant or if there is a failure
of security.  

LOGIC DIAGRAM AND TOPIC TABLE UNDER DEVELOPMENT

6.1.4 Protective Systems

The functional failure of a set of protective systems is investigated in the logic of Figure 6-x.  In this
logic diagram, the possible failures are partitioned into system failures and support failure.  Support
systems are those systems that provide needed services to the actual protective systems (e.g., I&C,
electric power, and cooling).  Note that the actual definition of protective system sets that must fail
to lead to actual loss of protective function will depend on the details of final system design.  For
one system, actual system failure is further partitioned into fail-to-start and fail-to-run for equipment
that is in standby or already operating respectively.  Under either case there can be sudden failure
or failure when degraded conditions are combined with a sufficient trigger (challenging condition).

LOGIC DIAGRAM AND TOPIC TABLE UNDER DEVELOPMENT

6.1.5 Accident Management

Accident management can fail due to either on-site or off-site failures as shown in Figure 6-x.
On-site failures are associated with procedures, new hardware and software, training or design are
sufficient to interfere with the planned control of operations. Off-site failures can be in areas
monitored by NRC or those controlled by other agencies. For example, NRC is responsible for
setting the EPZ and ensuring the licensee has plans for working with local emergency
preparedness organizations and first responders.

LOGIC DIAGRAM AND TOPIC TABLE UNDER DEVELOPMENT

6.1.6 Summary
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As can been seen in examining Tables 6-x thru 6-xx, many topics are included on more than one
table.  This duplication is because they have general applicability in many areas (e.g., QA) and,
accordingly, are candidates to be written in general terms applicable across all the protective
strategies.  Accordingly, as a final step, the technical topics listed in Tables 6-x thru 6-xx have been
consolidated (to eliminate duplication), arranged according to design, construction and operation
and organized by key plant features and safety functions.  The results are shown in Table 6-z.

TABLE Z UNDER DEVELOPMENT

6.2 Administrative Requirements

As discussed earlier in this document, the framework is to define the scope and content, and
provide the overall technical basis for a new part to 10 CFR containing technology- neutral, risk-
informed and performance-based requirements for new plant licensing which can serve as an
alternative to 10 CFR 50.  Accordingly, as an alternative to 10 CFR 50, the new part should address
the administrative aspects of licensing using the new process, similar to the administrative aspects
of 10 CFR 50, where possible, existing administrative requirements will be used.  However, the
administrative aspects of this new part will have some differences from those in 10 CFR 50
because of the technology-neutral, risk-informed and performance-based nature of the new part.

6.2.1 Technology-Neutral, Risk-Informed and Performance-Based Administrative
Considerations

The administrative requirements associated with the technology-neutral, risk-informed and
performance-based aspects of the new part must address the:

• analysis methods and qualification of those methods

• monitoring and feedback necessary to confirm key aspects of plant performance consistent with
the safety analysis and compliance with performance-based requirements

• PRA scope and quality

• format and content of applications

• change control methods, including a requirement to maintain a living PRA and reflect updated
PRA insights into the plant licensing basis

• reporting and record keeping

Each of these areas is discussed briefly below.

6.2.1.1 Analysis Methods and Qualification

To help ensure consistency in application of the technical requirements, a uniform approach for
analysis is envisioned.  Accordingly, in the development of administrative requirements associated
with analysis methods, an approach that utilizes best estimate analysis methods with quantified
uncertainties shall be used, as described below.

In the past, confidence in the analysis and safety margins was achieved by requiring conservative
calculations to model plant performance during normal operation, as well as during postulated
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design basis accidents and other off-normal conditions, and by defining the acceptance criteria
these calculations have to meet in a conservative manner.  While this approach of conservative
calculations and conservative acceptance criteria assures some confidence and margins in
capability, it has drawbacks.  From this way of proceeding it is not always clear what level of
confidence or how large the resulting margins actually are.  Also, the margins achieved in this
manner can sometimes be larger than needed, thus imposing unnecessary burden on designers,
operators, licensees, etc.  

It is desirable to allocate the margins implemented in some reasonable fashion so that they are in
proportion to the uncertainties being addressed.  Therefore, establishing an estimate of the
uncertainties is essential to determining the level of confidence and margins.  A necessary first step
in trying to estimate uncertainties is to have a baseline***** that represents the best estimate of the
values of the important parameters of interest, and to investigate the impact of the distributions of
these important parameters.  Such a baseline is also valuable because it is an attempt to obtain
a realistic estimate of the physical conditions and processes that one is designing for.

Some guidance on best-estimate calculations can be found in Regulatory Guide 1.157, entitled
“Best-Estimate Calculations of Emergency Core Cooling Calculations.”  As the title indicates, the
main focus of this Reg Guide is on the features of acceptable thermal hydraulic best-estimate codes
that can be used to calculate ECCS performance in accordance with paragraph 50.46(a)(i) of Title
10 of the Code of Federal Regulations.  However, the Reg Guide also has some useful discussion
on the regulatory position regarding best-estimate calculations in general.  

A best-estimate calculation uses modeling that attempts to realistically describe the physical
processes that can occur.  A best-estimate model should provide a realistic calculation of the
important parameters associated with a particular phenomenon to the degree practical with the
currently available data and knowledge of the phenomenon.  A key part of a best-estimate
calculation is the quantification of the uncertainty associated with the calculation.  The effects of all
important variables should be considered.  The model should be compared with applicable
experimental data.  It should strive to predict the mean of the data, rather than a bound or some
other conservative estimate of the data.

Included in the uncertainties that need to be considered are both the stochastic, or aleatory,
uncertainty as well as the so called state-of-knowledge, or epistemic, uncertainties.  The stochastic
uncertainty results from the inherent variability in measurable quantities of physical processes.  The
state-of-knowledge uncertainty includes parameter uncertainty, resulting from imperfect knowledge
as to the correct inputs to the models used, model uncertainty, since perfect models cannot be
created in practice, and completeness uncertainty, which involves uncertainty as to whether all
important phenomena and relationships have been identified.  This latter uncertainty is obviously
most difficult to include in the overall uncertainty estimate.   While reasonably sound technical
estimates can often be made of the stochastic, parameter and model uncertainty, based on analysis
and data from experience and tests, the completeness uncertainty usually cannot be quantified.
One way the completeness uncertainty can be indirectly addressed is by additional conservatism
in setting margins.  Fifty years of experience with the current generation of light water reactors
provides some assurance that by now completeness uncertainty should not be a large component
of the overall uncertainty involved in calculations for current reactors.  The same cannot be said for
the future reactors which involve designs for which little or no experience exists.

In carrying out the best-estimate calculations, it must also be demonstrated that the model used
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is applicable to the facility being modeled over the possible range of the parameters being
calculated including accounting for plant lifetime.  When comparing the model used in the best-
estimate calculation to data, it should be ascertained what the applicability of the data is to the
actual situation in the reactor being modeled.  Correlations should not be extrapolated beyond the
range over which they were developed or assessed.  If a model has to be extrapolated beyond the
conditions for which valid data comparisons exist, judgements should be made as to the effect of
this extrapolation and the effect should be included in the uncertainty calculation.  The uncertainty
that results from extrapolation should be estimated using sensitivity calculations, as well as the
fundamental laws of physics and any applicable well established data bases.  

The above discussion applies to all safety analysis, whether done for the PRA or for analysis of
anticipated operational occurrences and design basis accidents.  In addition, the use of scenario
specific source terms for siting determinations has been approved by the Commission for non-
LWRs.  As discussed in Section 4.3.1.4, these source terms should be based upon best estimate
analysis (based upon experimental data) of the accident scenario and fission product/radioactive
material release, with an uncertainty estimate.  The results shall then be compared to the
acceptance criteria for DBAs as described in Chapter 4.

6.2.1.2 Monitoring and Feedback

A program of monitoring and feedback should be required that will support the concept of a living
PRA (discussed in Chapter 4 and Section 6.3.1.5) and will ensure performance-based requirements
are properly implemented.  The monitoring and feedback should be applied to key parameters and
assumptions used in the safety analysis (including those related to defense-in-depth as well as all
performance-based requirements, and address issues such as:
• how often to monitor
• documentation and reporting of the results
• corrective actions

6.2.1.3 PRA Scope and Quality

All applicants are responsible to meet the reporting, record keeping, and administrative controls
requirements.  Administrative controls are the provisions relating to organization and management,
procedures, record keeping, review and audit, and reporting as necessary to assure operation of
the facility in a safe manner.  As an alternative to 10 CFR Part 50, the new part should address the
administrative aspects of licensing using the new process similar to the record keeping of 10 CFR
Part 50, where possible, existing requirements will be used.  However, administrative part will be
different from those in 10 CFR Part 50 because, the new part will be based on technology-neutral
and risk-informed.

6.2.1.4 Format and Content of Applications

The requirements will need to specify what information should be supplied by an applicant.  Issues
that need to be addressed include:

• Will the entire PRA need to be submitted?  If not, what information from the PRA should be part
of the application?

• What level of design, construction and operational detail needs to be submitted?

• What supporting research and development information needs to be submitted?

6.2.1.5 Change Control
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The requirements will need to address criteria for when licenses can make changes to the plant
configuration or operation without NRC approval (e.g., 50.59 type process) and when NRC approval
is required.  Also, requirements for when changes in equipment performance and reliability need
to be fed back into the PRA (i.e., living PRA) and when changes in PRA results require a change
in the safety analysis, and possibly safety classification, plant configuration or operation, need to
be developed.  These need to be developed in consideration of 10 CFR Part 52 which certifies
design via rulemaking and requires changes to the design to be made through rulemaking.

6.2.1.6 Reporting and Record Keeping

UNDER DEVELOPMENT

6.2.2 Research and Development

Applicants are responsible for performing sufficient research and development to validate analytical
assumptions and tools.  Such research and development may consist of separate effects and/or
integral system tests and may be conducted in full scale or partial scale facilities.  In general,
research and development would be expected on key plant safety features when these features are
new (i.e., not previously licensed) or are to be used under conditions which go beyond previous use
or experience.  The scope of research and development should be sufficient to verify performance
of the features over the range of conditions for which they are expected to function, including the
effects of fuel burnup and plant aging.  Examples of the types of research and development which
might be expected are:

• fuel performance testing
• passive decay heat removal system testing
• reactor shutdown system testing

New plants may propose the use of a license-by-test approach, in lieu of conducting extensive
research and development.  The use of a license by test approach results primarily from the new
technologies and reactor designs that could be proposed in the future (e.g., HTGRs, modular
reactor designs), whereby one module could be built and used to demonstrate the safety of the
design in lieu of a series of separate research and development efforts.  If a licence-by-test
approach is to be accepted requirements need to be developed that address:

• What would be the objective of the test program:
S Which aspects of plant safety can be addressed by demonstration plant testing?
S which types of analytical tools could be validated?
S what phenomena could be addressed?

• What would be the scope of the test program:
S How would the test program be selected?
S Would it be conducted during initial startup only?
S How will plant aging, irradiation, burnup effects be tested?
S Will tests cover the full range of the accidents or only partial ranges, with the remainder

done by analysis?
S What instrumentation will be required?

• Are any special provisions needed in case the tests do not go as planned (e.g., containment, EP,
has to be on a remote site, DOE site, etc.)?
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• How would equipment reliability assumptions be verified?

• What acceptance criteria would be necessary (e.g., scope, treatment of uncertainties)?

• Would there be any limitations on future design changes?

• If the initial demonstration plant is to be licensed, how would this be accomplished?

Also, documentation that would be necessary to apply for a license-by-test and the documentation
for the test program results needs to be specified.

6.2.3 Other Areas

Other administrative areas that need to be addressed, not related to a specific technology or a risk-
informed approach, will be similar to those in 10 CFR 50 and include:

• document control
• exemptions
• license amendments
• environmental conditions
• backfitting
• enforcement

Table 6-zz provides examples of  topics that should be addressed by the administrative
requirements.

Table 6-zz Administrative Topics

Format and Content of Applications
     Design information
     Risk information

PRA Scope and Quality
     Standards
     Living PRA

Analysis Methods/Criteria
     Best estimate/realistic
     Use of mean values
     Level of confidence
     Source term
     Acceptance criteria

Change Control
     How often risk info should be updated
     What to do with updated information
     What changes need NRC approval
     Relation of changes to design certification

Monitoring and Feedback

Reporting and Record Keeping

Research and Development
     Design confirmation
     License-by-test

License Amendments

Exemptions

Environmental Monitoring

Backfitting

Enforcement

6.3 Framework Verification and Completeness
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Although the framework was developed in a top down, systematic fashion a check was made to see
if the desired characteristics listed in Section 1.4 were achieved and if the document is complete
and practical.

6.3.1 Desired Characteristics

The characteristics desired of the framework are:

• Reproducible, traceable, and understandable.  The technical bases for the criteria and
guidance developed as part of this approach are clearly articulated, and therefore, each step of
the process is identified and clearly described.

• Defensible.  The technical bases developed are derived from known technology where the
assumptions and approximations and their impacts are known and understood.  In particular, the
technical bases are consistent with the Commission’s Safety Goal Policy.

• Flexible.  The guidance and criteria will be technology-neutral such that they allow, in an efficient
and effective manner, for changes and modifications to occur that are based on new information,
knowledge, etc., and can be adapted to any technology-specific reactor design.

• Risk-informed.  Risk information and risk insights are integrated into the decision making
process such that there is a blended approach using both probabilistic and deterministic
information.

• Performance-based.  The guidance and criteria will produce, when implemented, a set of safety
requirements that will not contain prescriptive means for achieving its goals, and therefore, be
performance oriented to the extent practical.

• Completeness.  The guidance and criteria will produce the topics for which a set of safety
requirements are needed to meet the mission of protecting the public health and safety, and that
will cover design, construction and operation and that address the public, worker and
environment.

• Uncertainty.  The guidance and criteria have to address the uncertainties.

• Defense-in-depth.  Defense-in-depth is maintained and is an integral part of the framework.

• Consistency.  The guidance and criteria need to address and implement the policy issues
approved by the Commission in its June 26, 2003 SRM.  In addition, the guidance and criteria
need to be compatible with other applicable parts of 10 CFR (e.g., Part 100, Part 20, etc.).

6.3.2 Verification of Completeness

A systematic approach was applied to identify the subject matter that the technical requirements
would need to address to assure the overall safety objective is met.  To check the completeness
of the output of the systematic approach, several checks against other documents were made.

As a check on the completeness of the framework, the list of topics identified in Section 6.1 and 6.2
are to be compared to the following documents:

• 10 CFR Part 50 and its Standard Review Plan



6.  Technology-Neutral Requirements

Working DRAFT Regulatory Structure for New plant Licensing,
NUREG-xxxx, Revision a, December 2004 Part 1: Technology-Neutral Framework6-13

• IAEA Safety Standard Series NS-R-1 “Safety of Nuclear Power Plants: Design”
• INSAG-12

This comparison will identify what items in the above documents are included in the framework,
which ones are not (and why) and where the framework included potential requirements not in any
of the above documents (and why).

The results of the comparison of the framework against the requirements in these documents is
discussed in Appendix F.

6.3.3 Practicality

Application of the framework to an actual future reactor design will be tested to see if the criteria
proposed can be practically applied and if they are reasonable with respect to the safety attributes
of the future designs.  The reactor design to be used in this test is the Very High Temperature
Reactor (VHTR) being developed by the Department of Energy at the Idaho National Engineering
and Environmental Laboratory.

The VHTR comparison will be conducted jointly with DOE (and its contractor INEEL).

As a final test of practicality, a comparison against existing LWR designs will be conducted.  This
comparison will have two purposes.  The first will be to see how well existing LWRs meet the
proposed criteria.  The second will be to see how well the framework addresses and prevents
previously identified LWR issues such as: 

• MK-I containment melt thru 
• containment strength
• direct containment heating
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A. Guidance for the Formulation of Performance-Based Requirements

The following guidance provides a step-by-step approach to formulate a regulatory requirement that
is focused on accomplishing a defined objective which corresponds to the result expected from
performance-based regulation (see Chapter 3).  An example of a typical performance objective is
maintaining cladding integrity.  In the conventional regulatory approach this objective is considered
to be accomplished through a prescriptive approach of limiting cladding temperature and oxidation
conditions to 2200 F and 17% respectively.  In a performance-based approach, a different set of
criteria, perhaps using a combination of qualitative and quantitative may be found to better fulfill the
high-level guidelines.

Step 1 – Identifying the Performance Objective and its Context

Purpose – To define a performance objective for the SSC in such a way that one or more
performance measures and criteria can be proposed for consideration.

Step 1a: What is the topic area with which the performance objective is associated?

This question is likely addressed during the review under Chapter 4, where the risk objectives are
classified as falling under design, construction and operation.  Additionally, from a regulatory
standpoint, the objectives may fall under the categories public risk, worker risk and environmental
risk.  There could be significant differences in the information gathering and stakeholder
identification depending on what is being addressed.  A well defined performance objective is a pre-
requisite for an effective performance measure.  If a single performance objective will not be
effective for establishing the requirements for the SSC, an Objectives Hierarchy (see NUREG/BR-
0303) may need to be prepared.

Step 1b: Which of the NRC’s performance goals does the performance objective address?

Clarifying the performance goal also improves the clarity with which NRC decision preferences may
be incorporated in the consideration of performance measures or criteria.  From the NRC’s
Strategic Plan (NUREG-1614, Vol. 3, August 2004) the two performance goals likely to be involved
are “Ensure protection of public health and safety and the environment” and “Ensure that NRC
actions are effective, efficient, realistic, and timely”. 

Step 1c: What are the expected outcomes and results from successful performance relative
to the objective?

In general, the expected outcome is that the SSC performs its intended safety function adequately,
and that the performance can be appropriately verified through regulatory oversight.  In addition,
this question addresses which part of the regulatory framework is appropriate for implementing the
objective.  In general, a regulation in the Code of Federal Regulations is likely to address higher
level goals or objectives.  Guidance documents are more likely to be directed at detailed or
component level objectives. 

Step 2 – Identifying the Safety Functions

Purpose – To identify the safety functions and systems that affect the performance objective
(directly or indirectly).
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Step 2a: What are the safety functions or concepts that can impact the performance
objective?

The objective of this inquiry is to identify the most important functions.  The PRA should be of help
in this effort.  However, some aspects of system performance may not be modeled in the PRA.
Such aspects are generally those that cannot be easily quantified and must be considered
qualitatively.  It is key that the identification of important functions focus on successful outcomes
rather than make assumptions because of inadequacies of the PRA model.  In addition,
consideration should be given to other aspects of the context which may include expected
outcomes being fulfilled by other SSCs. 

Step 2b: What equipment/systems/procedures are necessary to satisfy the safety function?

This addresses the technical evaluation that establishes the range of particular SSCs or support
systems to be considered; for example, instrumentation, siting, safety conscious work environment,
etc.  Again, the evaluation can take advantage of the PRA where the modeling is adequate.  Often,
qualitative factors coupled with expert judgement can be as or more reliable than quantitative
models that are not supported by sufficient data.  This is especially the case when data from
operating experience exists, even if the data is from a related but different industry.

Step 2c: What level of safety (based on appropriate metrics) is required to meet the
performance objective?

This addresses the required level of safety that should have been addressed in the Chapter 4
evaluation.  For example, the required level of safety for an accident within containment might be
one that meets the objective of reducing, to an acceptable level, the risk of early containment
failure. Hence, the metric in this case is the conditional containment failure probability.  Another
example might be that the required level of safety is to maintain at an acceptable level the core
damage risk associated with certain configurations typical of specific modes of operations.  Again,
qualitative evaluations supported by expert judgement or operational data may be required.

Step 3 – Identifying Safety Margins

Purpose – To evaluate margins and identify performance measures (if any) that satisfy the
performance objectives.

Step 3a: How much safety margin is available, and how robust is it, for performance
monitoring to provide a basis for granting licensee flexibility?

The generic definition of a “margin” is that it is an expression of a difference between two system
states.  When the two states are associated with different levels of safety as reflected in the above
evaluations related to outcomes, the “margin” becomes a safety margin.  For regulatory purposes,
the margin that is sought to be maintained is expressed by the first of these being the expected
state and the other is one where a regulatory concern exists.  The state of regulatory concern can
be drawn from the frequency-consequence curve dealt with in Chapter 4.
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“Robustness” of a safety margin means that the margin between two performance levels is
significantly greater than uncertainty and normal variability in performance. If this condition is met,
a very low probability exists of the performance parameter crossing a set limit, unless performance
changes in a very significant way. In any case, wherever there is substantial uncertainty, achieving
robustness requires that nominal performance levels be set more conservatively than when there
is less uncertainty. Depending on the situation, uncertainty can be assessed using explicit models
(e.g., PRAs), expert judgment, or actuarial methods based on operating experience.

The identification of performance measures (natural, constructed or combination) begins as a
search process within the overall context of the performance objective.  It is likely to involve iteration
through the steps in this guidance as well as consideration of the factors that were involved in the
application of the viability guidelines.  The flexibility aspects should include operational flexibility as
well as the means to fulfill regulatory responsibilities.

Step3b: What observable characteristics, quantitative and qualitative, exist within the safety
functions identified in Step 2?

For example, observable characteristics may come from the results of periodic servicing, testing,
and calibration of certain instruments. The operating margin would be based on a comparison
between these results and the target values established under a maintenance program.  Another
example would be observations based on verification (through testing) of design margins of
structures. 

Step 3c: Can the contemplated constructed measures provide qualitative expressions
capable of observation with reasonable objectivity?

As explained in NUREG/BR-0303, natural measures are preferred, but appropriate constructed
measures may also prove adequate with proper consideration given to verification and validation.
In some cases, a binary constructed measure might well suffice where the measure reflects a
positive or negative response to a question such as , “Does a particular attribute exist?”

Step 4 – Selecting Performance Measures and Criteria

Purpose – To select a complement of performance measures and objective criteria (if possible) that
both satisfy the viability guidelines and accomplish the performance objective.

Step 4a: Can the identified observable characteristics, together with objective criteria, provide
measures of safety performance and the opportunity to take corrective action if
performance is lacking?

This step is a part of the search process.  Many technically significant performance objectives will
require engineering judgement for exploring qualitative and/or quantitative measures while keeping
in mind operational (or other) constraints.  Measures of safety performance considered as
candidates should be associated with the desired outcomes as directly as possible.  Sometimes,
it may prove quite effective to use proxy measures.  For example, if the accomplishment of a
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performance objective calls for an analysis, the cost of the analysis may be one of the measures
considered as a proxy for efficiency of obtaining the outcome.

Another of the highly desirable features of a good performance measure is that it should be
identified at as high a level as practicable.  If this feature is not sought, all systems and sub-systems
involved in, say, risk-significant configurations might have been targeted for monitoring. The
management of risk when various configurations are being considered may include monitoring
strategies that target all systems and sub-systems, or a higher-level measure that may prove to be
simpler, but as effective. The process of searching for parameters at a high level directs the
analyst’s attention to more cost-effective possibilities.

Step 4b: Can objective criteria be developed that are indicative of performance and that
permit corrective action?

The search for threshold criteria that rely as little as possible on subjectivity is the next step in the
search process.  Parametric sensitivity analyses may help establish that the selected threshold is
not in a region of highly unstable or non-linear behavior (so-called “cliff effects”).  Some
performance objectives are likely to be more difficult in the establishment of objective criteria that
are indicative of performance than others.  Also, selecting performance measures that permit
sufficient time for corrective action may require probabilistic considerations (as considered in
Chapter 4) and expert elicitation.

Step 4c: Is flexibility (for NRC and licensees) available consistent with level of margin?

The approach of setting criteria at as high a level as practicable can allow more flexibility.  The
benefits of flexibility must be balanced against assurance of opportunity to take appropriate
corrective action and practicality of regulatory oversight.  The basic principle involved is that more
flexibility can be justified by higher levels and robustness of safety margin.  Again, an iterative
approach may be most suitable for optimum results.  This is because questions of margin,
corrective action, and flexibility strongly interact with one another. Strong linkages can exist
between observable characteristics chosen as the performance measures to be used in a
performance-based approach and the assessment of margin based on criteria applied to these
parameters. For example, in the area of quality assurance, the quality of emergency backup power
provided by a diesel generator would not necessarily be well-reflected just by the criteria that are
applied to each component part of the diesel generator. Even if very strict quality criteria are applied
to each of the component parts, the overall diesel generator performance may not meet regulatory
standards. On the other hand, a diesel generator could adequately meet performance standards
even if the component parts are only commercial grade.

Step 5 – Formulating a Performance-Based Requirement

Purpose – To determine the appropriate implementation of a performance-based approach within
the regulatory framework.

Step 5a: Does the performance-based regulatory requirement provide necessary and
sufficient coverage for the performance objective?
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One of the important elements of coverage is consideration of defense-in-depth. As described in
Chapters 3, 4, 5, and 6, NRC’s defense-in-depth philosophy includes consideration of “prevention”
and “mitigation” strategies which should operate in proper balance.  Such considerations may
require the use of more complex approaches based on decision theoretic concepts (also described
in NUREG/BR-0303).

Step 5b: Of the performance parameters selected in Step 4, which of them requires that a
prescriptive approach be used to meet regulatory needs? Can a combination of
performance-based and prescriptive measures be implemented such that the
resolution of the regulatory issue is as performance-based as possible?

The search process for performance measures and criteria may reveal various permutations and
combinations of prescriptive, less-prescriptive and performance-based strategies for individual
components or sub-systems, .  In some cases, specific prescriptive elements can be incorporated
into a less prescriptive regulatory approach. The regulatory framework permits inclusion of
prescriptive elements through Technical Specification or License Condition provisions. 

Step 5c: Has the regulatory alternative been considered for implementation within each of the
levels of the regulatory framework so that an optimum level is proposed?

For example, a prescribed parameter can be included in a Technical Specification or other license
condition. It may be possible to provide flexibility in operation for parameters that do not have to be
strictly controlled.  Also, consideration should be given to incentives for licensees to increase the
likelihood of improved safety outcomes.

Step 5d: Are licensees’ incentives appropriately aligned, considering the overall complement
of performance measures, criteria, the implementation, and the regulatory
framework as a whole?

Licensees’ flexibility can be coupled with positive and negative incentives. Examples of positive
incentives occur when licensees may be able to reduce costs of operation if they meet specified
levels of safety or trends in safety of operation. Examples of negative incentives occur when the
enforcement policy may cause undesired consequences for the licensee when levels of safety or
trends in safety are unfavorable.

Regulation that is based on sampling licensee performance needs to be designed with care, in
order to avoid incentivizing performance in one important area at the expense of another, with a net
adverse outcome. As a hypothetical example, regulation that sought only to minimize the
unavailability of components might create an incentive to reduce maintenance to a level at which
unreliability performance would be adversely affected. The regulatory framework itself should be
subjected to critical scrutiny for inappropriate incentives.

Step 5e: Is it worth modifying the regulatory framework in the manner proposed, considering
the particulars of the regulatory issue?
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Among the high-level performance-based guidelines, the assessment guidelines are best suited
to make this evaluation.  A feedback process involving a wide range of stakeholders may be the
most effective way to develop the required information.  Such a process may explicitly consider the
cost impacts of incorporating requirements in one or other part of the regulatory framework.
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1The Safety Goal Policy further states that the average individual in the vicinity of the plant is defined as the average
individual biologically (in terms of age and other risk factors) and who resides within a mile from the plant site boundary.  This means
the dose conversion factors (DCFs) that translate exposure to dose (and hence risk) are for an average adult person ( i.e., infant
DCFs, etc. are not evaluated). In addition the average individual risk is found by accumulating the estimated individual risks and
dividing by the number of individuals residing in the vicinity of the plant.  (The statement also states that if there are no individuals
residing within a mile of the plant boundary, an individual should, for evaluation purposes, be assumed to reside 1 mile from the site
boundary). 

2An accident that results in the release of a large quantity of radionuclides to the environment can result in acute doses to
specific organs (e.g., red blood marrow, lungs, lower large intestine, etc.) in individuals  in the vicinity of the plant.  These acute
doses can result in prompt (or early) health effects, fatalities and injuries.   Doses that accumulate during the first week after the
accidental release are usually considered when calculating these early health effects.  The possible pathways for acute doses are:
inhalation, cloudshine, groundshine, resuspension inhalation, and skin deposition.  Cloudshine and inhalation are calculated for the
time the individual is exposed to the cloud.  Groundshine and resuspension inhalation doses for early exposure are usually limited to
one week after the release.  The doses accumulated during this early phase can be significantly influenced by by emergency
countermeasures such as evacuation and sheltering of the affected population.  Early fatality is generally calculated using a 2-
parameter hazard function.  A organ dose threshold is incorporated into the hazard function such that below the threshold the
hazard is zero.   (For example, the default value of the threshold for acute dose to red marrow is 150 rem in (Ref. B.1 ).  An early
fatality is defined as one that results in death within 1 year of exposure. 
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B. Current Quantitative Guidelines for LWRs

B.1 Introduction

Two numerical objectives have currently been adopted as surrogates for the two QHOs:  

• A core damage frequency (CDF) of <10-4 per year as a surrogate for the  latent cancer QHO

• A large early release frequency (LERF)of <10-5 per year as a surrogate for the early fatality
QHO.

The objective of this appendix is to demonstrate how the above two numerical objectives were
derived from the QHOs.

B.2 Quantitative Health Objectives

The following are definitions of the QHOs taken directly from the Safety Goal Policy Statement:

• “The risk to an average individual1 in the vicinity of a nuclear power plant of prompt
fatalities2 that might result from reactor accidents should not exceed one-tenth of one
percent (0.1%) of the sum of prompt fatality risks resulting from other accident to which
members of the U.S. population are generally exposed.”
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3Lifetime 50-year committed doses can result in latent cancer fatalities.  These doses occur during the early exposure
phase (within one week of the release) from the early pathways, i.e. cloudshine, groundshine, inhalation, and resuspension
inhalation, and the long-term phase from the long-term pathways that include groundshine, resuspension inhalation, and ingestion
(from contaminated food and water).  Just as early exposure can be limited by protective actions such as evacuation during the early
phase, chronic exposure during the long-term phase can also be limited by actions such as population relocation, interdiction of
contaminated land for habitation if it cannot be decontaminated in a cost-effective manner (within a 30-year period), food and crop
disposal, and interdiction of farmland.  A piecewise linear dose-response model is generally used to estimate cancer fatalities.  A
dose and dose rate reduction factor is used at low dose rates (<0.1 Gy per hour) and for low doses (< 0.2 Gy) to estimate cancer
fatalities based on the recommendations of the International Commission on Radiation Protection in their ICRP 60 report.  Up to 20
organs are included for estimation of latent cancers (e.g., lungs, red bone marrow, small intestine, lower large intestine, stomach,
bladder wall, thyroid, bone surface, breast, gonads, etc.)
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• “The risk to the population in the area of nuclear power plant of cancer fatalities3 that might
result  from nuclear power plant operation should not exceed one-tenth of one percent
(0.1%) of the sum of cancer fatality risks resulting from all other causes.”

These QHOs have been translated into two numerical objectives, as follows:

Early Fatality —

The individual risk of a prompt fatality from all “other accidents to which members of the U.S.
population are generally exposed,” such as fatal automobile accident, etc., is about 5x10-4 per year.
One-tenth of one percent of this figure implies that the individual risk of prompt fatality from a
reactor accident should be less than 5x10-7 per reactor year (ry).  The “vicinity” of a nuclear power
plant is understood to be a distance extending to 1 mile from the plant site boundary.  The individual
risk (IER) is determined by dividing the number of prompt or early fatalities (societal risk) to 1 mile
due to all accidents, weighted by the frequency of each accident, by the total population to 1 mile
and summing over all accidents.  For example:

The conditional probability of an  individual becoming a prompt (or early) fatality (CPEF) for an
accident sequence “n” can be expressed by the following:

Equation 1CPEFn EFn
TP(1)

=

Where: EFn = number of early fatalities within 1 mile conditional on the occurrence of accident sequence
“n”

TP(1) = total population to 1 mile 

It follows that the individual early risk (IER) is the sum of the CPEF (weighted by the frequency/ry)
for all accidents (N) that result in a large early release of sufficient magnitude to cause early
fatalities:

Equation 2IER (CPEFn*LERFn)1
N= ∑

Where: LERFn = frequency/ry of a large early release capable of causing early fatalities for accident sequence
“n”
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Latent Fatality —

“The sum of cancer fatality risks resulting from all other causes” is taken to be the cancer fatality
rate in the U.S. which is about 1 in 500 or 2x10-3 per year.  One-tenth of one percent of this implies
that the risk of cancer to the population in the area near a nuclear power plant due to its operation
should be limited to 2x10-6/ry.  The “area” is understood to be an annulus of 10-mile radius from the
plant site boundary.  The cancer risk is also determined on the basis of an individual, i.e., by
evaluating the number of latent cancers (societal risk) due to all accidents to a distance of 10 miles
from the plant site boundary, weighted by the frequency of the accident, dividing the total population
to 10 miles, and summing over all accidents.  For example:

The conditional probability of an individual becoming a latent, cancer, fatality (CPLF) for an accident
sequence “m” can be expressed in a similar manner to that shown above:

Equation 3CPLF
LF

TP
m

m
=

( )10

Where: LFm = number of latent, cancer, fatalities within 10 miles conditional on the occurrence of accident
sequence “m”

TP(10) = total population to 10 miles

It follows that the individual latent risk (ILR) is the sum of the CPLF (weighted by the frequency/ry)
for all accidents (M) that result in a release of sufficient magnitude to cause latent cancer fatalities:

Equation 4ILR (CPLFm * LRFm)1
M= ∑

Where: LRFm = frequency/ry of a large release capable of causing latent cancer fatalities for accident
sequence “m”

B.3 Surrogate for Latent Fatality QHO 

Even at a densely populated U.S. site, if a plant's core damage frequency is 10-4 per year or less,
the latent cancer fatality QHO is generally met with no credit taken for containment.  This can be
demonstrated numerically by assuming that one accident sequence “x” dominates the latent cancer
fatality risk and the LRF, which is defined as:

Equation 5 LRFx CDFx * CLLRPx=

Where: CDFx = core damage frequency for accident sequence “x”
CLLRPX = conditional large late release probability for accident sequence “x”
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Assuming a worst case scenario:

• an open containment
• an unscrubbed release, and
• a large opening in containment.

Given an open containment and all of the conditions necessary for a large release, CLLRPX = 1.0.
Therefore LRFX = CDF X and equation 4 becomes:

Equation 6ILRx CPLFx * CDFx=

CPLF values were reported for a range of NPPs in the supporting documentation for NUREG-1150
(Ref. B.2).  For the purposes of this example the Surry (Ref. B.3) results will be utilized.   The
largest CPLF (within 10 miles) for internal initiators is reported in Table 4.3-1 of reference Z to be
4*10-3.  This CPLF value corresponds to a large opening in containment and a very large release.
It is therefore consistent with the worst case assumptions for accident scenario “x”.  Using this value
of CPLF and assuming a CDF goal of 10-4 per year an estimate of the individual latent risk can be
made using Equation 6:

ILRX = (4*10-3) * (10-4) = 4*10-7/year

The ILR corresponding to a CDF = 10-4 per year is less than the latent cancer QHO of 2*10-6 per
year by a factor of five.  Therefore using a CDF goal of 10-4 per year will ensure that the latent
cancer QHO is generally met with reasonable margin.

B.4 Surrogate for Early Fatality QHO

The early fatality QHO is more restrictive than the latent cancer QHO.  If a plant’s large early
release frequency (LERF) is 10-5 per year or less, the early fatality QHO is generally met.  This can
again be demonstrate numerically by assuming that one accident sequence “y”  dominates the early
fatality risk and the LERF, which is defined as:

Equation 7LERFy CDFy * CLERPy=

Where: CDFy = core damage frequency for accident sequence “y”
CLERPy = conditional large early release probability for accident sequence “y

Again assuming a worst case scenario:

• an open containment which occurs early in the accident sequence
• an unscrubbed release that also occurs early before effective evacuation of the surrounding

population, and
• a large opening in containment.
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Given an open containment and all of the conditions necessary for a large early  release, CLERPy
= 1.0.  Therefore LERFy = CDFy and equation 2 becomes:

Equation 8IERy CPEFy * CDFy=

CPEF values were again taken from the Surry (Ref. Z) results.  The largest CPEF (within 1 mile)
for internal initiators is reported in Table 4.3-1 of reference Z to be 3*10-2.  This conditional risk
value corresponds to a large opening in containment and a very large release that is assumed to
occur early before effective evacuation of the surrounding population.  It is therefore consistent with
the worst case assumptions for accident scenario “y”.  Using this value of CPEF and assuming a
LERF goal of 10-5 per year an estimate of the individual early risk can be made using Equation 8:

IERy = (3*10-2) * (10-5) = 3*10-7/year

The IER corresponding to a LERF = 10-5 per year is less than the early fatality QHO of 5*10-7 per
year by a factor of about two.  Using a LERF goal of 10-5 per year will generally ensure that the
early fatality QHO is met.

Therefore a LERF of 10-5/year is an acceptable surrogate for the QHOs.

B.5 References

B.1 A discussion of the dose conversion factor databases embedded in MACCS and
their use for various types and purposes of calculations performed in the code is
contained in the MACCS2 code manual [Chanin and Young, “Code Manual for
MACCS2: User’s Guide, NUREG/CR-6613, Vol. 1: SAND97-0594, Sandia National
Laboratories, May 1998.]

B.2 USNRC, “Severe Accident Risks: An Assessment for Five U.S. Nuclear Power
Plants,” NUREG-1150, December 1990.

B.3 USNRC, “Evaluation of Severe Accident Risks:  Surry, Unit 1,” NUREG/CR-4551,
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