Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:Advisory Committee on Nuclear Waste178th Meeting

- Docket Number: (not applicable)
- Location: Rockville, Maryland
- Date: Wednesday, April 11, 2007

Work Order No.: NRC-1520

Pages 1-142

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

		1
1	UNITED STATES OF AMERICA	
2	NUCLEAR REGULATORY COMMISSION	
3	+ + + + +	
4	ADVISORY COMMITTEE ON NUCLEAR WASTE (ACNW)	
5	178 th MEETING	
6	+ + + + +	
7	WEDNESDAY,	
8	APRIL 11, 2007	
9	+ + + + +	
10	The meeting was convened in Room T-2B3	
11	of Two White Flint North, 11545 Rockville Pike,	
12	Rockville, Maryland, at 9:00 a.m., Dr. Michael T.	
13	Ryan, Chairman, presiding.	
14	MEMBERS PRESENT:	
15	MICHAEL T. RYAN Chair	
16	ALLEN G. CROFF Vice Chair	
17	JAMES H. CLARKE Member	
18	WILLIAM J. HINZE Member	
19	RUTH F. WEINER Member	
20		
21		
22		
23		
24		
25		
ļ	I	

1	NRC STAFF PRESENT:
2	BILL von TILL
3	MIKE FLIEGEL
4	KEITH McCONNELL
5	DEREK WIDMAYER
6	ANTONIO DIAS
7	ROBERT MECK
8	JOHN FLACK
9	
10	ALSO PRESENT:
11	KATHRYN SNEAD (via telephone)
12	RAM BHAT (via telephone)
13	CARL GOGOLAK (via telephone)
14	JOSEPH COOK
15	DAN FEEHAN
16	(via telephone)
17	CHRIS KUNITZ
18	
19	
20	
21	
22	
23	
24	
25	
I	1

	4
1	AGENDA
2	OPENING REMARKS BY THE ACNW CHAIRMAN 4
3	PATH FORWARD ON AN IN-SITU LEACH (ISL) RULEMAKING-
4	SUMMARY OF MEETINGS WITH EPA AND NMA - NEXT STEPS 5
5	BREAK
6	BRIEFING ON MARSAME MANUAL
7	LUNCH
8	SCOPE AND METHODOLOGY OF THE GOVERNMENT
9	ACCOUNTABILITY OFFICE (GAO)'S ONGOING REVIEW
10	OF THE GLOBAL NUCLEAR ENERGY PARTNERSHIP
11	(GNEP) EFFORT
12	ADJOURN
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

	5
1	PROCEEDINGS
2	(9:02:02 a.m.)
3	VICE CHAIRMAN CROFF: If we could come to
4	order, please. This is the second day of the 178 $^{ m th}$
5	Meeting of the Advisory Committee on Nuclear Waste.
6	During today's meeting, the committee will consider
7	the following, the Path Forward On An In-situ leach
8	rule making, a Summary of Meetings with EPA and NMA,
9	a briefing on the MARSAME manual, the Scope and
10	Methodology of the Government Accountability Office
11	Ongoing Review of the Global Nuclear Energy
12	Partnership, Discussion of Draft ACNW Letter Reports.
13	The meeting is being conducted in
14	accordance with the provisions of the Federal Advisory
15	Committee Act. Latif Hamdan is the Designated Federal
16	Official for today's session. We have received no
17	written comments or requests for time to make oral
18	statements from members of the public regarding
19	today's sessions. Should anyone wish to address the
20	committee, please make your wishes known to one of the
21	committee staff. It is requested that speakers use
22	one of the microphones, identify themselves, and speak
23	with sufficient clarity and volume so that they can be
24	readily heard. It is also requested that if you have
25	cell phone, or pagers, kindly turn them off, or place
ļ	

(202) 234-4433

	6
1	on mute.
2	Thank you. Chairman Ryan will be joining
3	us shortly. He's otherwise occupied, so we're going
4	to proceed. We have the first session on In-situ
5	Leach Rulemaking. Dr. Weiner is the cognizant member.
6	Take it away, Ruth.
7	MEMBER WEINER: Thank you. And this
8	morning we have Bill von Till and Mike Fliegel from
9	the Staff, and Keith McConnell, who is with us, all of
10	them experts in this area, so we're looking forward to
11	what you have to say. And this is, I understand,
12	background information for the proposed technical
13	support for the proposed rule making. Have I got that
14	right? So without further ado, Bill, I believe you're
15	the first speaker.
16	MR. von TILL: Thank you, Ruth. Good
17	morning. My name is Bill von Till. Again, I'm the
18	Branch Chief for the Uranium Recovery Licensing
19	Branch. I'm also a hydrologist, and I'm well versed
20	in this subject matter.
21	We're here today to give the committee a
22	status of the ISL rule making effort. Sitting next to
23	me here is Dr. Myron Fliegel, the Project Manager for
24	the technical part of this effort. Also in the room
25	is Keith McConnell, the Deputy Director for

(202) 234-4433

(202) 234-4433

	7
1	Decommissioning and Uranium Relicensing, and Kevin
2	Bouchet, who is the Branch Chief on the rule making
3	side of this effort. The Project Manager, Kevin is
4	back there. Thanks, Kevin.
5	MEMBER WEINER: Kevin, why don't you come
б	up and sit with the rest of the staff?
7	MR. von TILL: Kevin just started with
8	this group not too long ago. The Project Manager on
9	the rule making side of this effort is Gary Comfort,
10	who's on travel this week and couldn't join us today.
11	This is a very dynamic time in the Uranium
12	recovery arena. The price of Uranium continues to
13	climb, and is nearing \$100 a pound, due to the
14	worldwide demand for nuclear fuel. We've been
15	contacted by nine companies who are planning to submit
16	12 new applications for new Uranium mills over the
17	next few years, aged in-situ leach facilities, and for
18	conventional facilities. That number is very fluid,
19	and may decrease or increase over time.
20	It's fair to say that the method of choice
21	at this point forward is in-situ leach mining and
22	milling, where the milling and mining occur all in one
23	shot, so most of the applications, and most of the
24	worldwide production of Uranium mining and milling is
25	in-situ leach at this point. Some formations are not
ļ	I

(202) 234-4433

Í	8
1	amenable to in-situ leaching, and they still use
2	conventional mining and milling. The NRC only
3	regulates the milling part of conventional aspect.
4	The mines for conventional, the NRC does not regulate.
5	The Commission has directed the staff to
б	draft a rule on the groundwater protection aspects of
7	this unique approach to Uranium mining and milling,
8	and we look forward to working with the committee on
9	this effort. With that, I'll turn it over to Mike
10	Fliegel, who will present the briefing this morning.
11	MR. FLIEGEL: Yes. I'm Mike Fliegel. I'm
12	Senior Project Manager. I work for Bill. If we can
13	have the next slide.
14	The purpose of our briefing is to provide
15	a basis for the rule making, provide some background
16	and history to the ACNW, background and history that
17	led to the rule making effort, and we'll discuss some
18	recent events, and next steps, including interactions
19	with ACNW.
20	Atomic Energy Section 84, and that was
21	added to the Atomic Energy Act by the Uranium Mill
22	Tailings Radiation Control Act, UMTRCA, of 1978, and
23	that requires that NRC ensure that 11e.(2) byproduct
24	material is managed in such a manner that it conforms
25	with standards promulgated by EPA. And 11e.(2)
	I

(202) 234-4433

byproduct material, to refresh people's memory, 2 basically tailings and waste from the processing of 3 any, or for its Uranium or Thorium content, source 4 material content.

5 The standards that EPA was required to write in conformance with UMTRCA appear in 40 CFR 192. 6 7 The NRC regulations that conform to the EPA's 8 regulations appear in 10 CFR Part 40 Appendix A. And both sets of regulations focus on conventional mills, 9 because at the time that the regulations were written, 10 most Uranium milling was done in a conventional mill. 11 12 ISLs were new, they were experimental, and we really didn't -- there just weren't enough. 13 We were 14 concerned with conventional mills.

15 As a result, now that we have primarily ISLs, we regulate ground water protection at ISLs 16 17 primarily through license conditions. We have quidance that appears in NUREG-1569. We had initiated 18 19 a rule making covering all of Uranium recovery in 1999, the so-called Part 41, and that was discontinued 20 21 in 2001 due to the cost to the industry. At the time, 22 the price of Uranium was very low, and a few industry 23 participants, licensees who would have to pay -- we 24 would have to adjust their annual fees to pay for 25 And, instead, we updated the guidance and that.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

	10
1	updated 1569.
2	In addition to getting a license from NRC,
3	an ISL operator has to get a permit from EPA, or an
4	EPA authorized state, and that's a permit under the
5	Underground Injection Control program that appears in
6	EPA's standards, and that comes out of the Safe
7	Drinking Water Act.
8	I apologize for this slide, but there's a
9	lot of information. The industry has complained about
10	the dual regulation for a number of years, the fact
11	that they have to get an NRC license, and also have to
12	get a permit from state, or from EPA under the
13	Underground Injection Control program, and the
14	Commission has directed the Staff to try and find a
15	way to eliminate some of that dual regulation by
16	deferring regulation of groundwater at ISLs to EPA, or
17	the EPA authorized state.
18	The Staff tried to develop MOUs with both
19	Wyoming and Nebraska, the two states that we have
20	active ISLs at to defer regulation to those states,
21	and the Staff met with the regulatory staff in both of
22	those states. The staff found, however, that there
23	was major difference between the way NRC is regulating
24	groundwater protection, and the way the states were
25	doing it.
ļ	I

(202) 234-4433

1 NRC has, as а primary standard for 2 restoration of the groundwater in the mining zone 3 after the mining has been completed. Our standard is 4 restoration of that mining zone to background. By 5 "background", we mean what it is was before mining If that's unachievable, we have a 6 commenced. 7 secondary standard that looks to the state's class of 8 use standard. 9 Both of those states have regulations that define various classes of use, and what standards for 10 constituents in those classes of use would be. 11 The 12 states, however, both Nebraska and Wyoming qo initially to restoration to class of use. 13 14 The NRC - our methodology is in NUREG-And, actually, when we first initiated this 15 1569. 16 effort, Wyoming was regulating groundwater protection 17 in its state essentially the same way that NRC was, but they have been challenged by the industry, and 18 19 their controlling legislation pointed to class of use, 20 it didn't point to restoration to background, so 21 Wyoming had to change its regulations. And so, we 22 determined that when we went out and met with them, 23 and that's when we came to the conclusion that we 24 weren't compatible, that we could not defer to a state 25 that didn't have the same primary standard.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

When this occurred, we wrote to the Commission, and SECY 05-0123, and we discussed the problems that we had, the fact that our regulations, or our requirements, because they weren't in our regulations, were more stringent than Wyoming and Nebraska's, and we proposed preparing essentially an Options Paper for the Commission.

The Commission, instead, went to OGC and 8 basically asked OGC to look in more detail about the 9 basis for Staff in its guidance, essentially looking 10 to restoring to background as the primary standard. 11 12 OGC traced that through UMTRCA and EPA's 40 CFR 192. OGC also concluded that there may be a basis to look 13 14 the underground injection control standards, to 15 because in the preamble to EPA's standards in 40 CFR they pointed to the UIC standards 16 192, in the discussion on ISLs. And those standards are less 17 restrictive. 18

Now the EPA standards, themselves, for the underground injection control program appear in 40 CFR 144 and 146, 145 has to do with their dealing with states on these standards. And, basically, what it does is it exempts the actual mining zone. The basic standard is protection of groundwater outside the mining zone, and that is protecting the capability of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	13
1	the water outside the mining zone to provide drinking
2	water. And there's really no requirement for
3	restoration inside the mining zone, other than that
4	water outside the mining zone has to be protected.
5	As an aside, both Wyoming and Nebraska are
6	EPA authorized states, and their regulations are more
7	restrictive in terms of the Underground Injection
8	Control program than EPA's, in that they require some
9	restoration in the mining zone, and that restoration
10	is class of use.
11	With that, and with the advice of OGC that
12	the Underground Injection Control program standards
13	may be the standards that we could use for groundwater
14	protection, the Commission directed the Staff to
15	proceed with the rule making. And it was to focus on
16	the elimination of groundwater protection at the
17	elimination of dual regulation of groundwater
18	protection at ISLs, and to do that by deferring
19	regulation to EPA or the states through their
20	Underground Injection Control programs, to actively
21	engage the stakeholders, and to have the proposed rule
22	to the Commission by January of 2007. And the rule
23	was specifically limited to groundwater protection at
24	ISLs. The staff had inquired about expanding the rule
25	making, and the Commission was clear that it was just
I	I

(202) 234-4433

	14
1	groundwater protection at ISLs.
2	With that, the Staff proceeded to work on
3	an expedited schedule to prepare the rule making. We
4	had a public meeting in Denver last June, and we
5	worked on the rule, and we actually - we looked at
6	various strategies, and we concluded that what we
7	would do is we would create a new criterion in
8	Appendix A that addressed groundwater protection at
9	ISLs.
10	We have considered adding it to Criterion
11	5, which talks about groundwater protection in the
12	context of conventional mills, but felt that that
13	would just add too much to that criterion, and be too
14	confusing, so our strategy was to create a new
15	criterion in Appendix A. For lack of anything else,
16	we were calling it Criterion 14, but we may actually
17	fit it in someplace else. And the criterion will
18	address all aspects of groundwater protection. And we
19	had actually laid out what we were going to look at,
20	and we've got a list in this slide of the various
21	aspects that we were going to put in the actual rule.
22	And we actually drafted rule language, and that was -
23	the first draft was completed last September. It was
24	not made public, though, due to an issue raised by
25	EPA, which I'll get to in the next slide.
Į	1

(202) 234-4433

(202) 234-4433

1 Now in basing the rule on EPA's 2 underground injection control permit standards, one of 3 the things we realized was we had to get EPA on board 4 relatively quickly, because if you recall, one of the 5 requirements in the Atomic Energy Act, Section 84, was must 6 that our regulations comport with EPA's 7 standards, and we have to be sure that EPA agrees, 8 because there is language in there that essentially 9 says that EPA has to agree that we've done it 10 properly. So we wrote to EPA last June, basically requesting a confirmation that the UIC regulations are 11 12 the appropriate standards to conform our regulations 13 to. 14 Well, in August, EPA wrote back to us, and 15 basically said that they were concerned with our proposal, and they suggested that we hold discussions 16 with EPA before proceeding with the rule making 17 Because of the tight schedule, we continued 18 effort. 19 and actually prepared a first draft in September, but 20 we met with EPA. We met with EPA twice last August, 21 and out of those meetings, two major concerns emerged. 22 One was that EPA considered that the UIC standards for 23 groundwater protection at ISLs are in addition to the groundwater standards published in 40 CFR 192 that 24 25 also apply to groundwater protection at ISLs. So that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

was a disconnect from the direction we were going.

And just to refresh people's memory, the standards in 40 CFR 192 for groundwater clean-up, and they're written primarily in the context of cleaning up groundwater in a conventional mill site where you have leakage from a disposal cell, but they look to background, to drinking water standards, and to alternate concentration limits.

The other EPA concern was that in those 9 10 states where they were primary; that is, where there was not an EPA authorized state implementing the 11 12 Underground Injection Control program, and we don't have any ISLs at such states now. There was a 13 14 potential for one in South Dakota, which is not an EPA 15 authorized state, but in those states, EPA expressed concern about their ability to do a detailed review 16 for an Underground Injection Control permit request, 17 and they had said when they had thought about it, they 18 19 thought that they were going to look to NRC's review, 20 and use that to help them, because they were limited in their staff resources, so they weren't looking to 21 22 have NRC defer its regulation to them. It's just a 23 resource problem.

24 With that, there were further meetings and 25 discussions between NRC and EPA in late 2006, and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

	17
1	those meetings were primarily attorneys, because it
2	really was a the basic issue, what's the
3	appropriate EPA regulations and standards to use in
4	our rule making? That's primarily a legal issue, and
5	out of that came it was clear that EPA was firm in
6	their conclusion that you can't we can't just use
7	the UIC standards, it's UIC plus UMTRCA. But EPA
8	expressed willingness and desire, actually, to work
9	closely with NRC in the rule making process, and
10	they've been very helpful.
11	We had a Commission Technical Assistance
12	Briefing at the end of last November, where we
13	discussed the situation. And, basically, we were in
14	a position where we were supposed to have a proposed
15	rule to the Commission in January, and here we were,
16	and we couldn't do what the Commission told us to do,
17	because EPA said they essentially would challenge it.
18	And at that meeting, the technical assistance
19	suggested that we prepare a Commission memorandum
20	basically describing what had happened, and proposing
21	options. And we were in the process of preparing that
22	when and these things, they were informal
23	discussions up and down the line, and the Commission
24	decided that rather than wait to get a paper with
25	options, and then vote on it, and send us an SRM, we
	I

(202) 234-4433

(202) 234-4433

were directed in January basically to do what would have been the preferred option in the Commission memorandum; that is, to work with EPA and NMA, and try and come up with a way to move forward. And that was what the direction was, to meet with EPA and NMA, National Mining Association, which is the industry representative, and to report back to the Commission on the path forward by April 30th.

Now the Staff met with EPA, and we had 9 four meetings in February and March. February 21st we 10 went down to EPA, and we had four EPA offices 11 involved, and a lot of staff, we had several of their 12 attorneys, and a couple of our attorneys involved. 13 We 14 had later meetings that were more focused on technical issues, on February 26th and March 12th, and we had a 15 more recent meeting, March 28th, after we met with 16 And we discussed both the flexibility that EPA 17 NMA. thought there may be in the standards in 40 CFR 192, 18 and that was trying to satisfy both the EPA conclusion 19 20 that we had to use as the underlying standard for 21 restoration, the 40 CFR 192 standard as background 22 drinking water standards and ACLs, and the industry 23 needs. So we were looking if there was some 24 flexibility in how that would be applied, and looking 25 for -- and we discussed EPA's collaboration in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

rule making effort.

1

On March 15th, we met with the National 2 Mining Association, and that meeting was a public 3 4 meeting, and EPA participated. We asked EPA to and EPA showed up 5 participate, in force. NMA expressed its basic concerns, and the basic desire was 6 7 the right to use an alternate concentration limit at And there was some discussion back and forth 8 ACLs. 9 because we had thought that we -- that was part of our guidance, so we told them well, we thought you had 10 11 that already, and their concern was that it's not 12 really codified, it's not really in the regulations. It is in Criterion 5, but Criterion 5 is written in 13 14 the context of conventional mills, so what they really 15 would like is to have the of alternate use concentration limits codified in a rule that applies 16 to groundwater protection at ISLs. 17

They also discussed the Class of Use 18 19 standard that the states were using, and they said 20 they'd like to be able to have that considered in an 21 ACL review. I guess a little background, when looking 22 at an alternate concentration limit and a proposal, 23 there are basically two aspects that the staff has to 24 consider, that the licensee has to address, and that 25 is a protective aspect; that is, you have to show that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

1 if you have the proposed standard that you'll still be 2 protecting public health, safety, and the environment, 3 and you also have to show that it's as low as 4 reasonably achievable, which is different. If you 5 propose a drinking water standard, you don't have to show that -- I can get it lower than the standard. 6 7 You only have to show that I meet the drinking water 8 standard. But if you propose an alternate 9 concentration limit, you have to show that reasonable 10 measures can't reduce that limit. And, basically, what industry would like is that the states' Class of 11 12 Use standard for a particular constituent and class of use of that mining zone be used in the protective 13 14 argument, that one of their arguments in terms of 15 protection is that look, the state says this is what the class of use is, and this is what the standard is. 16 17 And we're proposing something lower than that, that's protective. And we said yes, we would accept that. 18 19 That's certainly an argument, and our guidance will 20 probably discuss how that would be used, so that's a 21 reasonable request on their part. 22 Now in terms of deferral to states, dual 23 regulation, we discussed that. NMA understood that we

if the state's standards were not as stringent as

couldn't write an MOU with a state to defer regulation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

(202) 234-4433

	21
1	our's. However, NMA proposed the situation that could
2	work; and that is, if a licensee in getting a permit
3	from a state had in its state permit the more
4	stringent requirements that our regulations after
5	they're codified would require, then they asked could
6	we consider writing an MOU with the state for that
7	particular facility, and we said yes, we could look to
8	writing an MOU if the permit actually identifies the
9	more stringent standards that we would codify. So
10	that was the outcome of the meeting with NMA.
11	So with that, we're now writing back to
12	the Commission with a path forward, and we really
13	can't discuss of what we're writing to the Commission
14	in the public forum. And the Commission, presumably,
15	will then, based on that memorandum, give direction to
16	the Staff in the Staff Requirements Memorandum.
17	Interactions with ACNW - well, we're
18	certainly, once we're back into the actual rule making
19	and writing rule language, we will share the proposed
20	rule with ACNW for review, and look for ACNW comments,
21	and a letter from ACNW on the proposed rule. And we
22	will also we are prepared to hold briefings with
23	ACNW on the technical basis, as needed. Are there any
24	questions?
25	MEMBER WEINER: Dr. Hinze.
ļ	I

(202) 234-4433

22
MEMBER HINZE: Well, if I understand
correctly, you cannot discuss the technical basis for
your decisions until you have proposed a rule for
review. Is that right? What is the technical basis?
The last point here, briefings on technical basis, as
needed. Now that will occur when?
MR. FLIEGEL: Well, once we're into the
process, once we have the Staff Requirements
Memorandum, and it becomes public how we're going
about the rule making, if there's a need for it's
basically just telling ACNW if there is a need to have
a briefing, we're certainly receptive to briefing
ACNW.
MEMBER HINZE: And that will cover the
topics that we see on the slide where you have the new
criterion we'll address from site characterization to
corrective actions?
MR. FLIEGEL: That, or anything else you'd
like to hear about the rule.
MEMBER HINZE: Well, I guess we'd like to
hear that, or at least see it, and then be prepared to
diaguag it I don't know what further that I need to

I don't know what further that I need to

ask at this time. I, for one, having gone over this

material, and out to one of the sites, all of these

segments of the criteria are very important, and will

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

discuss it.

need to have a strong technical basis. And I'm sure you will have that, but that's something that we would like to look at.

4 MR. von TILL: One thing to add, excuse 5 me. If you look at that slide, the criteria - look at one in particular, and that is the post-operational 6 7 groundwater quality monitoring. This is an issue that EPA, in particular, is very concerned with. 8 As we get down to close to license termination at one of these 9 facilities, keep in mind that these in-situ leach 10 11 facilities, when the license is terminated, they're 12 opened up for unrestricted release. It's not like a regular conventional facility where the Department of 13 14 Energy or the state takes it for long-term care in 15 perpetuity. So the EPA is concerned that once we terminate a license, they're not going to be left with 16 a problem of groundwater contamination migrating into 17 the United States drinking water area, and that 18 19 adequate monitoring and modeling, perhaps, is 20 implemented in that aspect.

This particular subject matter is something where the Committee may have an interest in also helping us to explore ways to handle this. I should add that once the Commission hands down the schedule for rule making, we may not have a whole lot

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

(202) 234-4433

1 of time, depending on the schedule, but this 2 particular issue, the EPA -- we work with four different offices from EPA, Office of General Counsel, 3 4 Office of Water, Office of Radiation and Air, and 5 Office of Solid Waste. And the Office of Solid Waste and Water, in particular, are concerned with this 6 7 issue of when we terminate the license, we're sure that we're not going to be left with a legacy site 8 9 where the United States government will have to come in and make it a superfund site, or something like 10 that, to clean up contamination that may not have been 11 12 addressed during the licensing process. And so, the monitoring necessary for 13 amount of that post-14 restoration, any types of modeling also necessary in 15 our review of alternate concentration limits, and the post-restoration monitoring may be of interest to the 16 Committee, as well, the technical aspects of this. 17 MEMBER HINZE: Bill, your comment on the 18 19 monitoring with time, I don't know how far we should get into the technical basis of this, but one of the 20 21 concerns that I raised I think in a meeting that a few 22 of us had with you, is the temporal variation in these 23 mining zones. I mean, one of the characteristics of 24 these roll front deposits is the fact that they tend 25 to change with time. And I'm just wondering, if one

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

has another deposit up gradient that may not be ore grade, well, what if that moves down into the site of the previous mining and alters the contamination of that site? There are a number of variables in here that I think you're going to really have to wrestle with.

7 There's the other question that Mike mentioned, the background. I don't know whether this 8 9 is background to the aquifer surrounding the area, or whether this is in the mining zone itself, because in 10 the mining zone itself, the quality of the water there 11 12 may have been very poor to begin with, before the mining took place. And it may have been different 13 14 from the surrounding aquifer. Which is it, is it the background on the margins, or is it the background in 15 16 the mining zone itself?

17 MR. von TILL: Yes, I can address that. That's the background in the mining areas, itself. 18 Α 19 typical aquifer with these roll front deposits is more 20 of a squiggly line situation where some of the areas 21 have high concentrations of Uranium naturally from the 22 That's why they're there to mine, but other ore body. 23 areas around it may be pristine drinking water 24 quality, so we have guidance in our NUREG-1569 on 25 collecting background groundwater quality information.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

And it's really a combination of some of the higher concentrations in the ore zone, and some of the ones outside, and then they average it, so it is in the ore 3 4 zone.

5 The one figure to turn your attention to is this one in blue here, where it kind of shows the 6 7 mining area in the lighter blue, and the boundary there is where you get into USDWs, the United States 8 9 Drinking Water area, protected under the Safe Drinking Water Act, so for background, we're talking about in 10 the mining area. And that'll be, you'll have some 11 12 concentrations, you know, two parts per million Uranium, other concentrations .02 milligrams 13 per 14 liter, so it really varies.

15 MEMBER HINZE: Do you have any difference in that aspect with the EPA, or with the states? 16 17 Really, you're not talking about the background as being the adjacent aguifer, but you're really talking 18 19 about the mining zone? Are we all on the same page?

20 We're all on the same page. MR. von TILL: 21 The EPA and the states all require sampling, post-22 operational sampling to determine what the groundwater 23 quality was prior to mining. And that's in the --24 now, the EPA's main concern, though, is the 25 protection of the USDW, the drinking water area in the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

	27
1	darker blue.
2	MEMBER HINZE: Yes. And that may change
3	with time, too. There may be migration.
4	MR. von TILL: Yes.
5	MEMBER HINZE: And so the how do you
6	handle that? How is it handled now?
7	MR. von TILL: Well, we don't have really
8	any examples where we have terminated a license from
9	the NRC standpoint of one of these facilities yet, but
10	we have approved a number of restoration in well
11	fields. Now you were talking before about the natural
12	ore bodies and the potential for migration of
13	contamination from those natural ore bodies. A
14	licensee is only required to take care of their own
15	problem, and not what nature
16	MEMBER HINZE: But it may migrate into
17	their problem.
18	MR. von TILL: It might. And the key
19	thing, though, the way these situations are right now,
20	they're kind of an equilibrium where you have some
21	higher concentrations around the ore body, and lower
22	concentrations outside the ore body. But when you
23	inject oxidant chemicals to loosen up, it changes the
24	whole dynamics of geochemistry. We're looking at a
25	number of applications of using mod flow, MT3D, FREAK-
I	I

(202) 234-4433

28 1 C, different modeling packages to analyze the 2 geochemical nature of the situation so that we can assure that in the future the drinking water aquifers 3 4 are protected. 5 MEMBER WEINER: Allen. VICE CHAIRMAN CROFF: First, thanks for 6 7 the presentation. It was very helpful in putting, I 8 quess, the rule making and the legalities in 9 perspective. fairly fundamental 10 Ι quess Ι have a question, and that is, what are the hazards we're 11 12 trying to protect people from in these in-situ leach I'm assuming it's mostly chemicals? 13 sites? 14 MR. TILL: Yes, it's -- the von 15 groundwater aspects. We're trying to protect them from chemicals, like Uranium, Arsenic, Molybdenum, 16 Selenium, and all the metals that are freed up in the 17 process. The main ones we're typically looking at are 18 19 Uranium, Radium, things like that, but in the UMTRCA 20 space, this is one of the only programs in NRC where 21 we're tasked to not only look at the radiological 22 non-radiological hazards, but also the hazards 23 presented in this milling, and for the most part, from 24 a groundwater contamination perspective, the driving 25 factor is metal toxicity. The Uranium, for example,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	it's renal toxicity, and that's why EPA came up with
2	their new MCO .03 milligrams per liter, so that the
3	risks really are for groundwater ingestion, and even
4	livestock-type risks from the contaminants that get in
5	groundwater, for just the groundwater part. Now the
6	surface facility, there's other risks, as well, but
7	we're just talking about groundwater.
8	VICE CHAIRMAN CROFF: So the injected
9	chemicals aren't really an issue here. It's what's
10	freed up by the
11	MR. von TILL: It's what's freed out, yes.
12	VICE CHAIRMAN CROFF: Okay. Second, in
13	talking to this, you mentioned a number of standards,
14	I mean, drinking water. There were some others, and
15	then alternative concentration limits. To what extent
16	are the existing standards risk-based or risk-
17	informed?
18	MR. von TILL: UMTRCA is a regulation
19	that's very flexible, and I believe it has a lot of
20	risk-informed and risk-based aspects to it. In the
21	groundwater arena, you've had your primary standards
22	being background or MCLs, whichever is higher, in the
23	case we were talking about earlier. Background is
24	higher than MCLs, then it would be background. If
25	MCLs are higher, it's MCLs. Then we have the concept

(202) 234-4433

concentration 1 of alternate limits. Alternate concentration limits, by its own nature, is really a 2 risk-based, and risk-informed standard where you use 3 4 Fate and Transport modeling, and performance of 5 corrective action to come up with a more risk-based We've approved a number of ACL applications 6 standard. 7 on the conventional side for a lot of our mills, Western Nuclear, Ute Medico, Real Algrem, and Brogia 8 9 Lake, Lisbon; whereas, a licensee has to demonstrate that they tried to pump and treat as much as they 10 They couldn't get it down any further, and 11 could. through the use of Fate and Transport modeling and 12 monitoring, they demonstrated that this was safe 13 14 enough in an ACL-type situation. So we think that ACLs is a risk-based and risk-informed standard within 15 the regulations under UMTRCA. 16 VICE CHAIRMAN CROFF: What kind of risks 17 are typically posed by these sites after you finish 18 19 cleaning them up, and this kind of thing. Does 20 anybody ever calculate that? 21 MR. von TILL: Not from a, I quess, a 22 standpoint, but quantitative moving from а 23 conventional facility to an ISL facility, ISLs, you 24 don't have the mining, you don't have the exposure to 25 Radon in the mines. A lot of the risks that you have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	31
1	at a conventional mining and milling are not there
2	with an in-situ leach facility. However, the biggest
3	potential environmental impact and risk from an ISL
4	facility is groundwater, because everything happens in
5	the groundwater. And most of our facilities, all of
6	our facilities are out west where groundwater is gold
7	out there. And so the community is very sensitive to
8	groundwater contamination, and so that's the biggest
9	risk, is degradation of the resource for drinking
10	water, inhalation, I mean, ingestion of groundwater
11	from wells around the area. From the groundwater
12	aspect, that's the biggest risk. From the surface
13	facility, we still do have risk from the Yellow Cake
14	Dryer and the processing itself.
15	VICE CHAIRMAN CROFF: Okay. You mentioned
16	early in the presentation that the focus of this whole
17	thing was on groundwater protection. Are there other
18	technical issues associated with in-situ leach mining,
19	other than the groundwater protection?
20	MR. von TILL: There's a number of aspects
21	that could be improved upon even from the surface
22	facility, but the Commission is very clear that they
23	just wanted us to narrowly look at the groundwater
24	aspects. But yes, there are other aspects that we
25	could improve upon. And even with the conventional
ļ	I

(202) 234-4433

(202) 234-4433

	32
1	facilities, as Mike mentioned earlier, at one point,
2	the Staff wanted to do a Part 41, which was a large
3	rule making effort, to get UMTRCA up with the modern
4	times, and then the industry didn't support that with
5	the low price of Uranium. Now our effort is just the
6	narrow aspect of groundwater protection at this
7	facility; but yes, there are other aspects.
8	VICE CHAIRMAN CROFF: But no current plans
9	to include that in the rule making scope.
10	MR. von TILL: No. We were getting ready
11	to send a paper up, and the Commission sent a clear
12	message to us that they wanted us to just, at this
13	point in time, to focus on the groundwater aspects at
14	ISLs.
15	VICE CHAIRMAN CROFF: Okay. Thanks.
16	MEMBER WEINER: Mike.
17	CHAIRMAN RYAN: Thanks. I apologize being
18	late. I've been getting a little help in my vocal
19	chords here. And, again, I have read all the
20	material, so I'm sorry I missed the opening part of
21	your briefing. It seems to me that you guys have a
22	good handle on what the dance card has to be to get it
23	done, and the trick is really how do you integrate
24	MCLs, ACLs, issues of ALARA, and issues of when
25	monitoring and modeling are done. Are those the four
ļ	I

(202) 234-4433

	33
1	big questions that you're trying to integrate between
2	EPA and NRC guidance?
3	MR. von TILL: Yes, the main ones, and
4	what the restoration standards will be was one of the
5	big ones. I think we have a consensus on the path
6	forward on that, and now it's a matter of coming up
7	with a rule and revising the guidance that we have on
8	the issues you just spoke about.
9	CHAIRMAN RYAN: I mean, it sounded like
10	the Mining Association comment was that they'd really
11	like that to be explicit, rather than not?
12	MR. von TILL: Yes, they want ACLs to be
13	codified so that
14	CHAIRMAN RYAN: Tell us what you want.
15	MR. von TILL: One of the things that Mike
16	didn't mention is, they want consistency and
17	predictability as we move forward with this resurgence
18	in the market. They want know where they are, what
19	are the standards, what do we have to look at?
20	CHAIRMAN RYAN: Sure.
21	MR. von TILL: We don't want a change in
22	field all the time, and that's a big thing we hear
23	from our licensees, we want some consistency.
24	CHAIRMAN RYAN: Sure. I think just
25	clarity of exactly what's required is good. That's
I	I

(202) 234-4433

	34
1	great. All that being said, as we all move forward
2	here, where do you think the ACNW can best give you
3	additional insights and review?
4	MR. von TILL: I think several ways. As
5	we move if the Commission approves going forward
6	with the rule, during the rule making process itself,
7	we want to work with the committee and listen to the
8	committee's comments on the technical basis parts of
9	the rule. In addition, what I mentioned earlier, this
10	issue of post-restoration monitoring, in particular,
11	is an interest that we have that is a very technical
12	nature that the committee could help the Staff with.
13	And whatever else the committee is interested in in
14	this aspect.
15	CHAIRMAN RYAN: I thought that was kind
16	of, maybe even the toughest one of them all, because
17	that questions tends to vary quite a bit based on
18	where you are.
19	MR. von TILL: It is a tough question.
20	CHAIRMAN RYAN: So it could be real
21	simple, if you have a simple groundwater system, and
22	the monitoring is very predictive of what you'd
23	expect, or if it's layered and fractured, and whatever
24	all else Professor Hinze can tell us about the geology
25	and so forth, that it would be tough to do. So that's
	I

(202) 234-4433

	35
1	the kind of thinking, where you've got to offer
2	guidance, but it's across such a broad range, some
3	thought needs to go into that.
4	MR. von TILL: I should also mention, on
5	a separate note, we're going to be looking at a number
6	of Reg Guides that we have, and revising those Reg
7	Guides. And the ACNW would also be able to comment
8	and help us with that, too.
9	CHAIRMAN RYAN: Great.
10	MR. von TILL: I just wanted to mention
11	that.
12	MR. FLIEGEL: Yes. In terms of the ACNW's
13	guidance, I think it's going to be more on the
14	regulatory guides, because the standards, the
15	regulations itself doesn't isn't really going to
16	get into the details. For example, if there's a
17	regulation that looks towards ensuring that in the
18	long-term, the USDWs are not impacted, the regulation
19	may not say very much more than that. It's the
20	guidance that's going to explain well, what kind of
21	monitoring needs to be done, and how, and what's
22	sufficient.
23	CHAIRMAN RYAN: How many, what location,
24	how long, all that stuff.
25	MR. FLIEGEL: Yes, and so that's probably

(202) 234-4433

	36
1	
2	CHAIRMAN RYAN: No, that's I mean, the
3	devil is in the details there.
4	MR. FLIEGEL: Yes.
5	CHAIRMAN RYAN: So we appreciate that.
6	MR. FLIEGEL: Yes.
7	CHAIRMAN RYAN: Before we go on, let me
8	just thank you guys for involving us very early in
9	your process and having us meet at industry,
10	stakeholder meetings, and other activities with you.
11	Whenever the ACNW can get involved in those earlier
12	stages and learn as you're learning, it really helps
13	us be better prepared and we do a better job, so
14	you've been really proactive in getting us involved in
15	this, and I just want to recognize how important and
16	helpful that is to our activities, as well.
17	MR. von TILL: We appreciate that, and we
18	appreciate your members attending the National Mining
19	Association meeting, and also going to one of the
20	sites.
21	CHAIRMAN RYAN: Good. That's all.
22	Thanks.
23	MEMBER WEINER: Jim.
24	MEMBER CLARKE: I'm starting to gain an
25	appreciation for the complexity of this, not only the
ļ	1

(202) 234-4433

37 1 physical, you've got surface facilities above ground, 2 injection wells, production wells, mining zone, 3 outside mining zone, and then all these different 4 regulatory pieces. 5 Just out of curiosity, I think my first encounter with an ACL was in a RICRA corrective 6 7 action. Is the concept of an ACL in the Safe Drinking 8 Water Act regulations, as well? It's really more of 9 a remediation concept. 10 MR. von TILL: It comes from RICRA. You're exactly right. When the NRC codified its 11 12 groundwater standards for UMTRCA for Uranium mill sites, they took a lot of the language verbatim from 13 14 RICRA, so a lot of the groundwater standards and the 15 ACL criteria that we have is almost identical to The one key difference is the ALARA part. 16 RICRA. 17 MEMBER CLARKE: All right. 18 MR. von TILL: But other than that, it's 19 pretty much identical. 20 MEMBER CLARKE: Is ACL referenced in the UMTRCA regulations? 21 22 MR. von TILL: It is. It's our Criteria 23 5.B.6, Appendix A, Part 40. 24 MEMBER CLARKE: The other question I had 25 is, the committee has also been following closely the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	revised guidance for decommissioning complex material
2	sites, and decommissioning under the LTR. And you
3	have a memorandum of understanding with the EPA on
4	that, that was, as I recall triggered by well, the
5	dispute between 15 and 25, but also concentrations, in
6	this case, I think radionuclides in soils and
7	groundwater. How does that fit with where you're
8	going with this?
9	MR. von TILL: That particular MOU is not
10	for Uranium recovery facilities.
11	MEMBER CLARKE: I understand. There was
12	a reasoning behind that, I guess.
13	MR. von TILL: I'm not as familiar. I'll
14	have to turn to Keith on that.
15	MEMBER WEINER: Could you say who you are
16	for the
17	MR. McCONNELL: Keith McConnell, Deputy
18	Director of the Division of Waste Management and
19	Environmental Protection. When the license
20	termination rule was promulgated, it was clearly
21	defined that it would not apply to Uranium recovery
22	facilities. And so, the MOU that we've developed with
23	the Environmental Protection Agency to address those
24	complex material sites where the thresholds would be
25	exceeded, which are, in most cases, the MCLs, really
I	I

(202) 234-4433

	39
1	doesn't apply in this particular instance, and so we
2	don't coordinate with EPA through the MOU on ISLs. I
3	think, Bill, you have separate arrangements with EPA.
4	MR. von TILL: We do. I should point out
5	that we have two sites in New Mexico, these are
6	conventional sites. The Homestake site, and the UNC
7	Church Rock site in New Mexico, where they are also
8	EPA superfund sites, and we have an MOU with EPA
9	specific to those two sites in which anything that's
10	groundwater-related, we have to consult with EPA. And
11	for both of those sites, for Homestake, which I'll be
12	out at in a couple of weeks, actually, we coordinate
13	with the State of New Mexico, and the EPA Region VI,
14	I believe. On the UNC Church Rock site, we coordinate
15	with the EPA, the state, and the Navajo nation, Navajo
16	EPA, so those two sites we do have EPA MOUs. And from
17	time to time, EPA becomes interested in some aspects
18	of what we do. Sometimes our ACL reviews, EPA will
19	get in there and communicate with us on some concerns
20	they have of a particular site-specific nature, but
21	that's we don't have an MOU.
22	MEMBER CLARKE: I think you just answered
23	my next question. One of the reasons I brought it up
24	is, as I recall, I think Keith confirmed that, the MOU
25	on the material sites has an MCLs, is triggered by
I	I

(202) 234-4433

	40
1	MCLs. ACLs are not part of that Memorandum of
2	Understanding, that you're really working towards ACLS
3	in this case. Is that right, or is that wrong?
4	MR. von TILL: Well, the standards are
5	background MCLs or ACLs, but we don't have any trigger
б	for Uranium sites like the MOU for decommissioning
7	sites with EPA. But we work with EPA quite a bit, and
8	this
9	MEMBER CLARKE: You can have a site-by-
10	site
11	MR. von TILL: Site-by-site. And I should
12	just emphasize, this rule making effort is really a
13	collaborative process, too, with EPA. I think we've
14	strengthened our relationship with EPA through all
15	these meetings that you saw, four different offices of
16	EPA.
17	MEMBER CLARKE: That was a nice
18	presentation. Thank you.
19	MR. von TILL: Thank you.
20	MR. WIDMAYER: Hey, Jim, as far as the
21	complex decommissioning MOU, the MCL is the trigger,
22	but then, like they were just talking about, the
23	applicant can move to an alternate concentration limit
24	as far as how they're actually going to clean up the
25	groundwater. But the process in the MOU would be

(202) 234-4433

	41
1	triggered, because it's
2	MEMBER CLARKE: Basic considerations are
3	really consistent. It's just that you're dealing with
4	non-radionuclides on these sites. That's probably
5	more of a problem.
6	MR. von TILL: I should also mention that
7	the difference, too, between the decommissioning site
8	and the Uranium mill tailing sites, decommissioning,
9	the NRC is mainly looking at dose assessments of
10	radiological risk, hazard from these materials in
11	groundwater; whereas, UMTRCA staff are looking at the
12	radiological and the chemical risks, so there's a
13	little bit of a difference in the programs.
14	MEMBER CLARKE: I appreciate that. I'm
15	familiar with the issues. Thank you.
16	MEMBER WEINER: Dr. Ryan has another
17	question before I go.
18	CHAIRMAN RYAN: Just one follow-up, Bill
19	and Mike. Whenever I hear kind of this complex system
20	of state, federal agencies all getting together, I
21	usually can pick my way through the road map, just
22	because I know it a little bit better. Do you have
23	any plans to think ahead to how you're going to
24	explain all this to the public? This is kind of a
25	complex situation.
I	

(202) 234-4433

	42
1	And, by the way, I think pretty well done,
2	the way you've explained it, and the way you're
3	heading forward, so at some point, though, there's
4	going to be a lot of moving regulatory parts here, and
5	somebody is going to ask you how do all these
6	pinwheels fit together?
7	MR. von TILL: You're exactly right. Part
8	of the rule making process, we plan to have a number
9	of workshops, like we had in Denver, perhaps in
10	Albuquerque, get some of the other stakeholders, maybe
11	even in Texas, maybe Denver again, wherever we need to
12	do that, to get the public and the stakeholder
13	industry comments, and try to explain this complicated
14	process. We did that before at Denver, but we had a
15	paradigm shift in our approach. Back then we were
16	assuming that the Underground Injection Control
17	standard was the appropriate standard. We need to get
1.0	

back out there, we need to change the technical basis 19 and get back out there in the public and explain what 20 we're doing.

CHAIRMAN RYAN: This is kind of an off-21 22 the-top-of-my-head thought, but I'd be thinking ahead 23 to not only that stakeholder group, but also how 24 you're going to help folks who are in the groundwater 25 protection program in a state or tribal organization

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

18

communicate to their constituents. Are you going to 1 2 have materials that will help them explain all that, 3 and that kind of thing, because it is a very intricate 4 arrangement, one that you looped everything together, 5 least have plants to loop it together in a at successful way, but it's still pretty complicated, so 6 7 helping everybody communicate that to the residents and constituents would be probably something that's 8 9 worthy of thought at this earlier stage. 10 MR. von TILL: Sure. I appreciate that. Thank you. 11 12 CHAIRMAN RYAN: Thank you. Just to follow-up on that, 13 MEMBER WEINER: 14 as I recall, when the public meeting was held in 15 Denver last year, almost no members of the public In fact, you want to comment on that? 16 attended. Do 17 you have any -- that was just my understanding. We didn't stay for the public meeting. 18 19 MR. von TILL: At the time, we were also 20 planning on having - back on that paradigm, additional 21 workshops after the meeting. Now this time, and we'll 22 have to get Commission approval, but we would like to 23 have additional workshops in places like Albuquerque, 24 New Mexico, for example, to get the public's feedback. 25 Be happy to attend, and I MEMBER WEINER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

43

44 1 suggest you have one, if you can, in Gallop. It's a 2 great place to be. 3 To move to the questions I had, and I want 4 to thank Allen for asking my question about what are 5 you protecting? You talked about class of use, going 6 back to class of use as a standard. Have you thought 7 of what happens when the state changes the class of 8 use to make it more -- to make the standard more 9 restrictive, which is actually what happened in New 10 Mexico. They changed the class of use standard around the proposed ISL site. 11 That's a good point, and 12 MR. von TILL: EPA has voiced that concern of a change in standard, 13 14 And I should be clear, we're not going to have too. 15 four standards where we have background, MCLs, ACLS, and class of use. What the industry is interested in 16 17 now is in looking at an ACL as part of the criteria to look at class of use. We do have one of the 19 18 19 criterias in 5.B.6 is to look at the current and 20 future use of groundwater use, so it kind of fits into 21 that, so it wouldn't be really a de facto standard, 22 but only a part of a criteria looked at under a full 23 ACL review. 24 MEMBER WEINER: I see. 25 MR. von TILL: And I note your concern

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

45 1 that a class of use designation can change over time. 2 EPA's Office of Water has the same concern. 3 MEMBER WEINER: Thank you. That's very What's been the track record in groundwater 4 helpful. 5 contamination, or non-contamination? I mean, there are ISL sites that are operating, have been operating in 6 7 a number of states. Can you give us some idea of what 8 they have met? Have they mostly gone to ACLs? What's 9 been their track record in meeting some criterion that 10 protects health? MR. von TILL: Sure. And what I'm 11 12 speaking to is in the United States under the NRC Headquarters purview. Keep in mind that Texas also 13 14 has a number of ISL operating facilities, and I'm not 15 aware of those aspects, but in Wyoming and as Nebraska, the NRC has approved a number of well-field 16 And the way we do this is, the licensee 17 restorations. will request a restoration approval well field by well 18 19 field, or mine unit by mine unit, some of these 20 facilities have 18 mine units, and so as they go 21 along, they'll produce out of one mine unit and 22 restore it, and move to the next one. The track 23 record has been pretty good, so far. The ones we've 24 reviewed in Nebraska and Wyoming, the licensees have 25 been able to get a lot of the constituents down to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 primary standards. Some of the constituents they have 2 not been able to get down to primary standards, we had to fall back on secondary standards. And the licensee 3 4 was able to demonstrate that they tried to get down to 5 primary standards, and leaving it in the secondary standard was protective of human health and the 6 7 environment. Some of the licensees, one of the licensees 8 in Wyoming is using some innovative 9 techniques of kind of bio-remediation-type techniques 10 to try to get groundwater contamination down even lower, so the track record so far in the licenses that 11 we manage at NRC has been pretty good. 12 Do you know anything about 13 MEMBER WEINER: 14 -- let me ask it a different way. Do you have any 15 cases where the ISL - where the facility was unable to 16 remediate to a satisfactory level? 17 MR. von TILL: I don't have anything like that, so far. We do have a lot of excursions that may 18 19 occur from a faulty injection well, that gets into a 20 separate aquifer. We may have excursions where some 21 of the contamination comes out a little too far. Thev 22 bring it back in. Our experience has been that the 23 licensees have done a good job at correcting any 24 contamination that they had, and we haven't seen 25 situations where contamination has migrated off 20

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

46

ĺ	47
1	miles, or anything like that. Worldwide, some of the
2	other countries use Sulfuric Acid, as opposed to
3	Oxygen and Bicarbonate, and that could be a different
4	situation. But in the United States, these licensees
5	have demonstrated a pretty good track record.
6	MEMBER WEINER: Just out of interest, what
7	fraction of the ISLs add Bicarbonate?
8	MR. von TILL: Most of the ones we have.
9	MEMBER WEINER: Most of the ones that you
10	have.
11	MR. von TILL: Yes.
12	MEMBER WEINER: In other words, there are
13	relatively few that use just ozonated water.
14	MR. von TILL: And it might vary, too,
15	based on the different ore bodies they have. What
16	we've seen in our main producing facilities is
17	Bicarbonate and Oxygen. The two main ones we work
18	with right now are the Krogue Unit facility in
19	Nebraska, and the PRI Smith Ranch facility in Wyoming.
20	The PRI Smith Ranch facility, we have a number of
21	amendments, and we try to ramp that production out to
22	different satellite facilities. And the ore bodies
23	may be different 20 miles away at a satellite
24	operation, than close by, but leaching them is
25	Bicarbonate and Oxygen.
	I

(202) 234-4433

1 MEMBER WEINER: Finally, I notice in your 2 introduction that basically a third of the new 3 applications are for conventional mining facilities. 4 Is addressing the groundwater adequate for only 5 addressing the groundwater, focusing on groundwater, is that adequate for the conventional 6 7 facilities? Are you looking at further regulation? 8 I mean, recognizing that those are now regulated under 9 Part 40. 10 MR. von TILL: There are some lessons 11 learned we're looking at, but for the most part, the 12 criteria that we have in the Criterion 5 of Appendix A, adequately covers things like mining of these 13 14 tailings impoundments, and detection monitoring, and 15 corrective action for contamination that occurs at these facilities. Some of the things we're looking 16 17 at, for example, we've seen groundwater contaminate plumes occur from the facilities themselves, the 18 19 actual mill and the ore pads, and we hope to, for new 20 facilities, we hope to remedy that situation, but we 21 do have an adequate regulatory structure for that. 22 And most of the -- as I said before, some of the 23 formations that have Uranium, especially in New 24 Mexico, and some in Wyoming, are not amenable to in-25 situ leach mining, and so some conventional facilities

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

48

	49
1	we see as being out there.
2	We have one facility on standby, the
3	Sweetwater facility in Wyoming. There's a producing
4	facility in Utah, the White Mason mill, and there's a
5	producing facility that's on hold right now in
6	Colorado, the Kotter mill. But we had a lot of
7	interest, in particular, in New Mexico in the grants
8	renewal region of some conventional facilities.
9	MEMBER WEINER: How are you handling the
10	interaction with the Navajo?
11	MR. von TILL: With the Navajo nation, we
12	mainly deal with them on the UNC Church Rock site, and
13	our HRI in-site leach facility, which we had a long
14	history of litigation under the ASLD, I think we've
15	really strengthened our communication with the Navajo
16	nation. As you know, the Navajo nation has a ban on
17	Uranium mining and milling. They feel that it poisons
18	the waters, and they don't like the Uranium mining and
19	milling, and so they're pretty much against that. But
20	on the sites that we have, we meet with them often.
21	We meet with them in Gallop, in Window Rock, in
22	Albuquerque, Santa Fe. I've personally dealt with
23	them quite a bit. I gave a presentation a couple of
24	years ago in Flagstaff, Arizona to a number of Hopi
25	and Navajo nation folks on abandoning Uranium mines
I	

(202) 234-4433

(202) 234-4433

	50
1	and mills, and listened to their concerns.
2	MEMBER WEINER: I would say that's a very
3	fruitful area for public communication. Thank you.
4	Staff? Latif, I know you have some questions.
5	MR. DIAS: Could I ask one question,
6	because we're going to have to leave very soon. It's
7	one question.
8	MEMBER WEINER: Yes.
9	MR. DIAS: I'm trying to understand,
10	basically. This is Antonio Dias from the ACNW Staff.
11	I'm trying to understand basically the background of
12	this. And on Slide 3 that you described the
13	legislative and regulatory background, there's one
14	bullet that says, "EPA and EPA authorized states
15	regulate groundwater protection at ISLs through the
16	UIC program." That's fine. And then when I go to
17	Slide 6, which are the EPA interactions, and that's
18	based on EPA meetings you had in late 2006, there is
19	one bullet that says, "EPA does not agree to use the
20	UIC standards as basis for ISL groundwater
21	protection."
22	What exactly is the difference between one
23	and the other? One says that that's how they use it,
24	and the other one says that EPA does not agree to use
25	it.
	1

(202) 234-4433

	51
1	MR. FLIEGEL: The for an ISL, an ISL
2	must get essentially two licenses. It gets a license
3	from the Nuclear Regulatory Commission or one of our
4	agreement states, it gets a permit from EPA or one of
5	the EPA authorized states under the Underground
6	Injection Control program, so the Slide 3 points to
7	the latter, that a facility must get a permit from EPA
8	under the Underground Injection Control program, which
9	is a safe drinking water requirement. And that's
10	looking to protect the underground sources of drinking
11	water around the mining zone.
12	The license they get from us is under the
13	Uranium Mill Tailings Radiation Control Act, and that
14	says that when that was promulgated, it required
15	EPA to write regulations that would be applicable to
16	Uranium mills, Uranium mill tailings, and controlling
17	11e(2) byproduct material, and it directed EPA to look
18	to the Solid Waste Disposal Act in writing those
19	regulations. So EPA wrote those regulations, and part
20	of those regulations look to what happens in
21	groundwater, and how do you protect groundwater? And
22	so those standards look to background, drinking water
23	standards, and ACLs.
24	When we looked at but those standards
25	were written in terms of conventional mills, and
ļ	I

(202) 234-4433

1 groundwater contamination that essentially leaked from 2 impoundments. We've been regulating ISLs and 3 restoration of mine fields, which are typically much 4 deeper than groundwater contamination at а 5 conventional mill. We've been regulating them basically with the same kind of standards, and so when 6 7 the thought was to try and look at eliminating dual regulation and deferring, one thought was well, EPA 8 9 already regulates these facilities under the 10 Underground Injection Control program, the Atomic Energy Act says we have to conform our regulations to 11 12 EPA's regulation. Rather than looking to the groundwater standards in the EPA UMTRCA regulations, 13 14 can we look to the groundwater standards in the 15 Underground Injection Control program? And that's what we started to do, but EPA said no, for NRC's 16 regulation of ISLs, you still have to look to the 17 UMTRCA standards, even though we, EPA, in addition to 18 19 that, impose the UIC standards on that. 20 Can I help with this? MR. HAMDAN: 21 MR. DIAS: We're going to have to go. 22 MR. GILLESPIE: No, no, not you guys. 23 MEMBER WEINER: That's fine. I think 24 Latif was next. 25 MR. HAMDAN: Antonio, I just want to help

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

52

	53
1	you with this. On the latter slide you mentioned,
2	which is EPA does not agree to use UIC standards, what
3	they are really saying, EPA doesn't agree to use UIC
4	only. They need to use that in addition to the
5	standards. That helps?
6	MR. DIAS: Okay.
7	MR. HAMDAN: And, Ruth, just your question
8	the conventional; the Staff, the NRC already has
9	comprehensive standards for conventional mining, so
10	that's not
11	MEMBER WEINER: Yes, that's what
12	MR. HAMDAN: Can I ask a couple of
13	questions?
14	MEMBER WEINER: Please, it's your turn.
15	MR. HAMDAN: Yes. Mike, first of all, I
16	want to thank you very much for responding so quickly
17	on short notice to our request for this briefing. We
18	didn't ask you until what, 20 days, and here we are,
19	and I really want to convey to you that we appreciate
20	it very much. Echo what Mike Ryan has said already.
21	I have two clarifying questions about the
22	scope of the rule making. On this new criterion,
23	Criterion 14, is this going to be an all-inclusive
24	criterion, or are you going to make cross-reference to
25	the other criteria in the in other words, when it
I	

(202) 234-4433

	54
1	comes to one thing, are you going to have section in
2	this Criterion 14 on monitoring, and financial
3	assurety, or are you going to just cross-reference to
4	Criterion 7, 7A, or Criterion 9, and so on and so
5	forth?
6	MR. FLIEGEL: The simple answer is yes.
7	(Laughter.)
8	MR. FLIEGEL: We've got to get into the
9	details, and whether, in some instances, we point to
10	a different part of Appendix A, and in other instances
11	because and those details we'll have to work out in
12	actually writing the rule.
13	MR. HAMDAN: Okay. That's good.
14	MR. FLIEGEL: I don't know that we
15	haven't got that pre-set.
16	MR. HAMDAN: Very good.
17	MEMBER WEINER: I would say that when you
18	make the presentation on the technical bases, please
19	expand on what is meant. We are not all as
20	knowledgeable as Latif is.
21	MR. HAMDAN: Yes. The other clarifying
22	question also is, how about the on-site disposal of
23	effluents, whether it's in evaporation pond, surface
24	facility, or deep injection? Are you going to address
25	that, because clearly, that's groundwater protection,
I	I

(202) 234-4433

	55
1	too.
2	MR. FLIEGEL: As for deep injection, that
3	a licensee gets a specific permit from EPA.
4	MR. HAMDAN: Okay.
5	MR. FLIEGEL: And in the past, I don't
6	think we've ever tried to get that. We're going to
7	look at that now.
8	MR. HAMDAN: So the rule making will not
9	address either the deep well injection, or effluent
10	disposal on-site? And if not, why not?
11	MR. FLIEGEL: Effluent - well, the
12	MR. von TILL: Evaporation ponds?
13	MR. HAMDAN: Yes. Because ultimately, it
14	goes to groundwater.
15	MR. von TILL: The evaporation ponds is
16	possible. The deep well injections, EPA - we only
17	look at the radiological aspects in the actual
18	building where the deep well injection head is. We
19	don't have any aspect of that. EPA handles that under
20	a separate permit, and that particular deep well
21	injection has no part of really the extraction of
22	Uranium, so we don't have that, but that's a good
23	question.
24	MR. HAMDAN: Yes. The question there, the
25	reason why I bring, especially the evaporation pond,
I	1

(202) 234-4433

	56
1	as you know, in the conventional mill tailings,
2	there's almost always an evaporation pond on top of th
3	tailings, and that's a source of contamination. And
4	then you may want to make sure you address at least
5	that, if not the deep well injection.
6	MR. FLIEGEL: One of the things that we're
7	going to have to look at in detail is, obviously, a
8	licensee has to address potential for contaminating
9	groundwater from an evaporation pond. The question
10	is, do the requirements in Criterion 5 already cover
11	it, or do we have to add anything in the rule making?
12	Because the fact that you have an evaporation pond at
13	an ISL, that part may not be any different than an
14	evaporation pond at a conventional mill that's already
15	got so we're going to have to look in detail at
16	whether we need to add something to that.
17	MR. HAMDAN: Yes. My question, not so
18	much that you write something new, that's why I talk
19	about the cross-reference. I think you can cover a
20	lot of ground, you can have a very brief section in
21	the new criterion that makes reference to aspects of
22	groundwater protection that are already in regulation,
23	and you do not need to rewrite them. And this is one
24	example.
25	MR. FLIEGEL: Yes, and that may be as
I	I

(202) 234-4433

simple as in the new criterion having a sentence or 2 two that focused on an ISL, that basically says if you 3 have an evaporation pond, all the requirements in 4 Criterion 5 apply.

5 MR. HAMDAN: Exactly. Thank you. I think that's an example 6 CHAIRMAN RYAN: 7 of the road mapping I was talking about, to make it a 8 little bit more transparent. If you can get as many 9 of those done as Latif is suggesting, either in 10 guidance, and that's probably the right place for it, that's going to eliminate a lot of well, how does this 11 12 fit together for me, or how about this circumstance? That would be a great table, for example, to put 13 14 together.

15 Before I recognize, Derek, MEMBER WEINER: 16 who does have a question, there's a comment I wanted to make, that you touched very briefly on it, but 17 there is a huge difference in occupational exposures 18 19 between conventional mining and ISL. And I don't know 20 where the appropriate place is to put that, but I 21 think it's something that you definitely should pay 22 attention to, particularly in your public information 23 And for that matter, in the general section. 24 environment impact of ___ the general surface 25 environmental impact of an ISL is very different, and

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

(202) 234-4433

57

	58
1	much less destructive, than a conventional mine. I
2	just think that's something that people tend to
3	forget.
4	Derek, you had a question?
5	MR. WIDMAYER: Yes. Earlier in response
б	to a question by Dr. Croff, you mentioned that there
7	were some aspects of ISL mining that were not being
8	improved in the regulatory framework. And you
9	mentioned that there had been this Part 41 that the
10	Staff had worked on in the past, and it got cancelled.
11	Are you going to address any of those in regulatory
12	guidance, or has your job from the Commission really
13	limited you to just changing the Reg Guides for
14	groundwater protection, or can you address some of
15	those other things?
16	MR. von TILL: The main effort that the
17	Commission has directed us to do at this point is only
18	the narrow rule making of the groundwater protection
19	aspects at an ISL facility, and the revision of the
20	guidance, the main guidance that we have, which is
21	NUREG-1569, the groundwater aspects of that. We don't
22	have any direction from the Commission to go beyond
23	that at this point.
24	MR. WIDMAYER: Okay. So none of these
25	other weaknesses, if you will, are going to be
I	

(202) 234-4433

	59
1	improved at this point.
2	MR. von TILL: Well, I should say that the
3	Reg Guides, though, separate from NUREG-1569, we had
4	a number of those, anywhere from environmental reports
5	for new applications, to bio-assay issues, that we're
6	looking we with the Office of Research right now,
7	towards trying to have an expedited schedule to revise
8	some of those Reg Guides. That's a separate effort
9	from this effort.
10	MR. WIDMAYER: Okay. Thank you.
11	MEMBER WEINER: Keith, you had a comment?
12	MR. McCONNELL: Well, it's just - Bill
13	said, I think, what I was going to say, but just to
14	elaborate a little bit - we're doing this other effort
15	to revise some of the NUREGs in the context of getting
16	prepared for the, what we expect to be a surge of new
17	applications for in-situ leach facilities, so there's
18	really two efforts going on in parallel. There's the
19	rule making effort, but then an effort to be prepared
20	for the new applications.
21	MEMBER WEINER: Further questions, anyone?
22	Hearing none, I also want to add my thanks to a very
23	excellent presentation, and the fact that you put it
24	together on really short notice. And I just wanted to
25	thank the Staff for all the help that they have been
I	I

(202) 234-4433

	60
1	to the ACNW, and ACNW staff, in keeping us informed
2	with meetings, assisting us when we went to visit the
3	Crow Ute site. This has all really helped us develop
4	a very good background, so thanks again, and I'll turn
5	it back to the Chair.
6	CHAIRMAN RYAN: Thank you. With that,
7	we're scheduled for a break. We'll take a break now
8	until 10:45. Thank you.
9	(Whereupon, the proceedings went off the
10	record at 10:25 a.m., and went back on the record at
11	10:45 a.m.)
12	CHAIRMAN RYAN: I would like to ask the
13	meeting go come back to order please.
14	Speaking for this section on the MARSAME
15	Manual it's the Multi-Agency Radiation Survey and
16	Assessment of Materials and Equipment Manul is Dr.
17	Robert Meck, Senior Health Physicist in the Health
18	Effects Branch, Division of Fuel Engineering and
19	Radiological Research in the Office of Nuclear
20	Regulatory Research.
21	Dr. Meck is a cofounder and leader of the
22	inter-agency working group that developed the MARSAME
23	Manual.
24	There are several individuals on the
25	telephone who are on the working group who were

(202) 234-4433

	61
1	involved in the development of MARSAME. And I'd like
2	to ask each of you to introduce yourselves now please.
3	Do we have any folks on the bridge line?
4	MS. SNEAD: This is Kathryn Snead. I'm
5	the EPA point of contact for the MARSAME work group.
6	MR. BHAT: Good morning. This Ram Bhat
7	speaking from U.S. Task Force. I'm one of the MARSAME
8	Committee members.
9	DR. GOGOLAK: This is Carl Gogolak.
10	Before I was a member of the MARSSIM, the MARLAP, and
11	the MARSAME work groups.
12	CHAIRMAN RYAN: Hey Carl, how are you?
13	It's Mike Ryan.
14	DR. GOGOLAK: Hi, Mike. How are you
15	doing?
16	CHAIRMAN RYAN: Good.
17	Anybody else?
18	(No response.)
19	CHAIRMAN RYAN: So we have three
20	participants on the bridge line. And if I could ask
21	you folks to put your phones on mute, that will help
22	us. And we can certainly open them back up for
23	comments or questions and discussion.
24	Without further ado, let me turn the
25	microphone over to Dr. Meck. Welcome.
ļ	1

```
(202) 234-4433
```

	62
1	DR. MECK: Thank you and good morning.
2	I'm Bob Meck and I'm here this morning to give you an
3	overview of the MARSAME Manual, its processes,
4	methods, and status.
5	The MARSSIM website is full of
6	information, including MARSAME. I invite you to visit
7	it if you haven't already. I think that you would
8	enjoy it.
9	The MARSSIM and MARSAME have the same
10	author agencies: EPA, NRC, DOE, and DoD. And we've
11	had support services from Cabrera in contracting.
12	The names of the leads if I name
13	someone and you've just come on the line, please say
14	here to indicate that you are on the line after I call
15	your name. Our Chairman is Captain Colleen Petullo.
16	Kathryn Snead is on the line we've heard. Nidal Azzam
17	and Vicki Lloyd, George Powers from the NRC is here in
18	the room, Dr. Alexander Williams is the DOE lead. And
19	from DoD, the lead is Dr. Steve Doremus from the Navy,
20	David Albert from the Army, Dr. Ram Bhat from the Air
21	Force
22	MR. BHAT: I'm here.
23	DR. MECK: Okay, thank you, Ram.
24	Lieutenant Colonel Craig Bias is also from the Air
25	Force and has participated.
I	I

(202) 234-4433

	63
1	In addition, the contractors are Scott
2	Hay, Carl Gogolak, and Nick Berliner.
3	To give you some are there any others
4	on the phone?
5	(No response.)
6	DR. MECK: Okay. I would prefer to answer
7	questions at the end of this presentation and it will
8	take about 30 minutes. The level of this presentation
9	assumes some familiarity with MARSSIM AND MARLAP and
10	the statistics of hypothesis testing.
11	To give you some background, the MARSSIM
12	is concerned with the measurement of radioactivity on
13	lands and structures and came out in 1997. It was
14	followed by MARLAP which is the measurement of
15	radioactivity in the laboratory and laboratory
16	protocols.
17	MARSSIM has a different scope. It is the
18	measurement of radioactivity associated with materials
19	and equipment. And its need was stimulated by the
20	feedback from the use of MARSSIM and the statistical
21	approaches that were developed in MARLAP.
22	Overall this suite of documents are aimed
23	at providing technically defensible and efficient
24	measure methods for radioactivity.
25	The purpose of MARSAME is to provide
	I

(202) 234-4433

	64
1	technically defensible processes and methods and the
2	strength of MARSAME is that it is multi-agency
3	endorsed. Each of the authoring agencies endorse
4	these methods as technically defensible. It
5	quantifies uncertainties of measurements and serves as
6	a supplement to MARSSIM.
7	The scope is non-real property. The real
8	is in the sense of real estate here. And the
9	materials and equipment may be with or without
10	radioactivity. Examples of the kinds of materials or
11	equipment that are in the scope of MARSAME are listed
12	on this slide.
13	MARSSIM has similarities with MARSAME or
14	MARSAME has similarities with MARSSIM in that their
15	flexible approach is a graded approach. The surveys
16	use the data quality objectives process.
17	Classification of the materials or equipment to be
18	measured determines the intensity level of the survey.
19	And after the results are obtained, they are evaluated
20	using the data quality assessment processes. And a
21	separate decision is made for each survey unit.
22	There are also differences between MARSSIM
23	and MARSAME. Certainly the scope we've talked about.
24	The disposition options include not only release, as
25	MARSSIM includes, but it also includes interdiction.
	I

(202) 234-4433

	65
1	If, for example, you are not expecting radiation or
2	radioactivity from materials and equipment and you
3	want to detect it, it is the other side of the coin.
4	And an example of refusal to user accept
5	would be the cobalt-60-contaminated steel that arrived
6	at the gate of Los Alamos National Laboratory some
7	years ago. They refused to accept that because they
8	expected nothing there.
9	Difficult to measure radioactivity areas
10	are included as are sentinel measurements. Sentinel
11	measurements are most often wipes or smears. And they
12	can indicate the presence of radioactivity but they
13	are not taken to represent the absence of
14	radioactivity. So that is a one-way sentinel
15	measurement.
16	Scan-only surveys is a method that is
17	applicable for MARSAME but not MARSSIM.
18	I've prepared a handout taken from the
19	MARSAME document that has the similarities and
20	differences. It is information intense and doesn't
21	present well as a slide. I'll skip over that but we
22	can come back to it in the questions and answers as
23	needed. But the first page is the similarities and
24	then the next two pages are the differences between
25	MARSSIM and MARSAME.
Į	I

(202) 234-4433

	66
1	MARSAME processes follow a logic flow that
2	is similar to that of MARSSIM. The chapters are
3	ordered in the order of the logic. And they are
4	listed here as initial assessment and development of
5	the decision rule, how you design the survey, what do
6	you do to implement it, and what are the results.
7	The case studies are actually examples of
8	how to implement this logic flow. And serve to
9	illustrate the processes.
10	We will be going into each of these main
11	chapter topics in the rest of this presentation.
12	There is a flow diagram in your packet that describes
13	the MARSAME process. On the left-hand side, you see
14	there are four major processes the plan, implement,
15	assess, and decide. And that's very similar to
16	MARSSIM. And so this is the logic flow in a flow
17	diagram format.
18	Going into this logic flow, the first step
19	which is a different one from MARSSIM, is to
20	categorize the M&E. It is different in terms but we
21	do characterize in MARSSIM in that we make a
22	determination is what to be measured impacted by
23	radioactivity or not.
24	And if there is no reasonable potential
25	for radioactivity to be associated with the materials
	I

(202) 234-4433

	67
1	and equipment, then it is considered not impacted or
2	non-impacted. And the way that those decisions are
3	arrived at are using visual inspections, historical
4	records, process knowledge, or sentinel measurements.
5	The disposition option can take several
6	forms. It can be a release, a different level of
7	control, or interdiction, as we mentioned earlier.
8	Moving on in the logic flow, the decision
9	rule development includes selecting the radionuclides
10	of concern, identifying the action levels, and the
11	action levels are the quantitative values that upon
12	which a decision hinges. It can be, for example,
13	5,000 dpm for 100 square centimeters would be an
14	action level.
15	Parameters of interest, an example of that
16	would be gross counts. This is what we are interested
17	in measuring.
18	The survey units are identified and the
19	inputs for measurement method selection are also part
20	of the decision rule development. The development of
21	the theoretical decision rule is an if-then statement.
22	For example, if the mean count is greater than the
23	action level, then the survey unit will be
24	dispositioned to Option A.
25	Designing the survey, the first step is to
l	1

(202) 234-4433

1 evaluate existing survey designs. And here there is an emphasis on standard operating procedures. 2 Ιf there is a standard operating procedure that meets the 3 4 quality objectives and the materials and equipment 5 meet the conditions of that standard operating procedure, then it may be used. One does not have to 6 7 develop a survey design each time materials and 8 equipment are made. But rather we try to orient the users towards the development of qualified standard 9 10 operating procedures.

If one does not exist, one develops the 11 12 survey statistics and the operational decision rule, classifies the materials and equipment. Classes 1 13 means that some counts are expected to be above 14 15 whatever the action level are. But statistically they may not be enough to drive the mean above that action 16 level. 17

For Class 2, no measurement is expected to 18 19 exceed the action level. And Class 3 means that 20 radioactivity is not thought to be associated with the 21 materials and equipment, however, there is not enough 22 confidence to classify the materials and equipment as 23 non-impacted. And so this is the graded approach to the measurements based on the classification. 24 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

Select and optimize the survey types,

(202) 234-4433

(202) 234-4433

68

	69
1	scan-only surveys can be made or in situ spectrometry
2	or a MARSAME-type survey which involves sampling and
3	scanning for the elevated measurements test. And
4	finally the survey design should be documented.
5	The survey design includes choosing the
б	null hypothesis and the decision error rates. In a
7	sense, the scan-only surveys are different from
8	MARSSIM. We'll focus on them for this presentation.
9	And here is where your familiarity with
10	the approaches of MARSSIM and MARLAP will come into
11	play. And that is for a given width of the gray
12	region, the relative shift can only controlled by
13	controlling sigma, or the standard deviation.
14	And that may have a measurement component
15	and a sampling component. For example, the sampling
16	component variation, sigma _s , would be differing
17	amounts of concentration of the radioactivity on the
18	materials and equipment; whereas the measurement
19	component is a compounding source of uncertainty.
20	Segregation and classification may help in controlling
21	the sampling component of the uncertainty.
22	For scan-only surveys, if it is a Class 1
23	materials and equipment, 100 percent of the materials
24	and equipment needs to be measured. For Class 2, the
25	percentage can range from 10 percent to 100 percent.
I	I

(202) 234-4433

	70
1	And for Class 3 scan-only surveys, the scan percentage
2	could be ten percent or less.
3	The uncertainty of measurement denotes the
4	values that could be reasonably attributed to the
5	measurand. Now this statement derives from the guide
6	for expression of uncertainty known as the GUM. And
7	ISO and NIST documents use this approach.
8	And the overall uncertainty is well known
9	as the propagation of uncertainty. And this is an
10	abbreviated form of that equation. The full form
11	would have an added term that would take into accounts
12	the contributions of covariances to the overall
13	uncertainty. In typical situations that are
14	considered for a measurement of radioactivity, those
15	covariance uncertainties are negligibly small compared
16	to the uncertainties of other components of the
17	measurement.
18	In this equation, this portion is the
19	sensitivity factors. And the function would be the
20	theoretical model of how you convert the measurements
21	to an activity. A common one would be the number of
22	sample counts divided by the sample time, minus the
23	number of background counts, divided by the background
24	time for counting. And that difference divided by the
25	efficiency.
ļ	1

(202) 234-4433

71 1 And so each of those five variables that 2 I just mentioned would be one of these Xs. And then 3 there's the uncertainty of each of those multiplied by 4 the sensitivity factor and summed. And then giving 5 you the combined standard variance. There's a graphic that follows this slide 6 7 to illustrate the concept. So it is information intense. But the minimal detectable concentration is 8 9 concentration at which the probability of the detection is one minus beta. And when the detection 10 criteria is such that the probability of a false 11 12 detection in a sample with zero concentration is at most alpha. 13 14 This illustrates what that statement said. 15 And it is an adaptation of Curry's illustration. The adaptation part of it is that we have unequal beta and 16 alpha to illustrate that those do not have to be the 17 And it is important to note that on the 18 same. 19 ordinate is the frequency of the measurement at the 20 And the net counts means that it is the net counts. 21 count of the sample minus the background. 22 And so naturally if you measure background 23 and you subtract background, you would expect a mean of zero net counts. And what this illustrates is that 24 25 with a choice, this is something that the designer of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	the survey makes is they choose alpha and beta. And
2	at alpha, if there is a true but unknown background
3	count that results in this level, as illustrated here,
4	then it would be counted as a sample count. That
5	would be a Type 1 error.
6	Beta is chosen as its small the sample,
7	true but unknown could provide a count in this area
8	the darker shaded area and that would be a Type 2
9	error.
10	Beta determines where the critical level
11	is. And we're going to follow on to that. The mean
12	of this is also known as the minimal detectable
13	concentration.
14	MEMBER HINZE: Well, excuse me, but S _c ,
15	this is just a sample count
16	DR. MECK: It's called a critical level.
17	And it corresponds with the setting of data or the
18	Type 2 error. So if one let me go back so when
19	one sets up the survey design, then a true but unknown
20	quantity of radioactivity would be right on the cusp
21	of or right in the center of whether it was
22	detected as a sample count or it was considered a
23	background count. I hope that helps.
24	What MARSAME offers here is and it was
25	discussed by Stapleton and Strong also that if the
I	I

(202) 234-4433

	73
1	total background count is about 100, the Poisson
2	distribution assumption works pretty well. And for
3	these special conditions that are illustrated up
4	there, you see the familiar 2.71 plus 4.66 times the
5	square root of the background count.
6	However, if the total counts of
7	background are less than 100, the Stapleton
8	approximation works better. And for these same
9	conditions, the significant difference of those two
10	forms is that this constant term for determining what
11	is called the minimum detectable concentration is
12	about double that of the Poisson assumption.
13	The Stapleton approximation can be
14	generalized. It is more complicated, as illustrated
15	here. And we can move on from that to approaching the
16	question is radiation or radioactivity detected? And
17	this is intended to show you the relationship again
18	we have net counts on this scale and up here is the
19	MDC.
20	The net counts would have a mean of zero
21	for background. For true but unknown amounts of
22	radioactivity that correspond to this critical level,
23	the mean would be at that critical level. And the
24	relationship to the MDC is at a greater true but
25	unknown amount of radioactivity.
I	I

(202) 234-4433

1 Now the minimum detectable value or the 2 MDC should be used only as a measurement quality objective for the measurement method. This is a tool 3 4 to determine is a method appropriate for the action 5 level that you are matching it to. To make a detection decision, a measurement should be compared 6 7 to the critical value and never to the MDC. 8 If the action level is a quantitative 9 opposed to a detection criterion, the amount as minimal quantifiable concentration, MQC, is defined as 10 the concentration at which the measurement process 11 gives a result of the specified relative standard 12 deviation. 13 14 Now what does that mean in a little bit 15 more lay terms? And that is for a given instrument and measurement method, a true but unknown amount of 16 17 radioactivity equal to the MQC will give a distribution of net counts with a mean equal to the 18 19 MQC and a standard deviation equal to ten percent of 20 That's when we -- in MARSAME we talk about the MQC. 21 ten percent. And we'll come to that and discuss that 22 a little bit more. 23 This show the relationship of the concepts 24 that we've talked about and are explained in MARSAME. 25 This is a power curve drawn through here. The

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

74

	75
1	critical value is here. And here is the minimal
2	detectable concentration at the upper bound of the
3	gray region.
4	The MQC is considerably greater than the
5	minimum detectable concentration. If fact, it is in
6	the order of ten times the multiple of the uncertainty
7	of the measurement.
8	The action level, the important thing is
9	the action level for a quantitative action level such
10	as 5,000 dpm for 100 square centimeters will be even
11	further out here because this is the amount that you
12	can quantify. And so the action level, if it is a
13	quantity of a concentration or activity, it should be
14	greater than the minimum amount that you can quantify
15	with a certain amount of confidence.
16	Well, this is the equation for the MQC.
17	And the eta here is the efficiency of the detector.
18	And the distribution this ten percent of the MQC
19	that I just mentioned is really driven by the value of
20	K _Q .
21	There is a reason that it is chosen as ten
22	in MARSAME and that is to provide comparability to
23	other studies of MQC and it also is a reasonable
24	distribution to quantify with you know, you are
25	controlling the uncertainty. It can be changed to
I	

(202) 234-4433

	76
1	some other percentage by changing this $K_{\scriptscriptstyle Q}$ in this
2	equation.
3	This is another way of saying that the MQC
4	needs to be greater than or less than rather the
5	action level. It is a complicated thing to read but
6	in lay terms, that is what this means. We can come
7	back to this if you want to.
8	Once the survey is designed, segregate the
9	materials and methods as necessary, set the
10	measurement quality objectives, determine the
11	uncertainty, detectability, and quantifiability. And
12	select the instrumentation and the quality control
13	that are needed.
14	Once the data are obtained, the survey
15	results are assessed. And you conduct this data
16	quality assessment and compare the survey results as
17	appropriate with the upper bound of the gray region,
18	the upper confidence level, the sign test, the
19	Wilcoxson Rank Sum test, the Quantile test.
20	Those survey results are then evaluated
21	and you select the disposition where are the
22	materials and equipment going to go depending on the
23	options that you set out in the plan. And document
24	the results for disposition.
25	This is the final slide. The MARSAME
I	I

(202) 234-4433

	77
1	Manual status, the manual went out for public review
2	and comment on January 16th. It was scheduled for a
3	90-day review. Events in the last two weeks indicate
4	that we are going to extend that review period one
5	more month until May 16th.
6	In the summer of this year, the EPA
7	Science Advisory Board and Radiation Advisory
8	Committee, which is a subcommittee of the Science
9	Advisory Board, will conduct a formal peer review of
10	the document. And once we get your comments, the
11	public's comments, and the SAB's comments resolved,
12	then we'll publish the final MARSAME.
13	Thank you very much.
14	CHAIRMAN RYAN: Bob, thanks.
15	Ruth?
16	MEMBER WEINER: Thanks very much for a
17	very enlightening presentation. I really didn't know
18	
19	CHAIRMAN RYAN: There's going to be a test
20	on the statistics. You'd better be careful what you
21	say.
22	MEMBER WEINER: Yes, there's going to be
23	a five-minute quiz at the end of this.
24	CHAIRMAN RYAN: Oh, no, it's a full hour
25	exam.
I	I

```
(202) 234-4433
```

	78
1	(Laughter.)
2	MEMBER WEINER: I just have a question.
3	You've given a very clear explanation of counting
4	statistics. Could you also apply that this refers
5	to counts could you also apply that to any
6	measurement technique? In other words, would you
7	suggest applying this generally to techniques where
8	you measure any sort of radioactive emission, direct
9	dosimetry, anything like that?
10	DR. MECK: I believe so. The statistics
11	here are derived without the requirement that it be
12	radioactivity or even radioactivity on materials and
13	equipment. I believe that this math is generally
14	applicable.
15	MEMBER WEINER: The reason I asked the
16	question is we very commonly cite some kind of dose
17	standard. And the question is and you've answered
18	it are these statistics do these statistics
19	support that dose standard and to what extent to they?
20	I'm not asking you to answer
21	CHAIRMAN RYAN: That's apples and oranges.
22	MEMBER WEINER: Well, that's my question.
23	Is it apples and oranges?
24	DR. MECK: Is it?
25	CHAIRMAN RYAN: My comment, Bob, was it is
I	I

(202) 234-4433

	79
1	apples and oranges. This is to make disposition of
2	materials decisions.
3	MEMBER WEINER: Yes.
4	CHAIRMAN RYAN: Everybody involved is
5	wearing a badge or some kind of dosimetry. And that
6	is a separate issue.
7	MEMBER WEINER: Well, I was thinking more
8	of not so much of dosimetry. Perhaps I used the
9	wrong word. But we have a number of dose standards
10	that we apply. And I am fairly certain that they are
11	not backed up by any statistical analysis.
12	And I just am generally asking and
13	you've answered the question when you have a
14	standard like that where there is uncertainty in the
15	measurement that you're making, that you're basing
16	that standard on
17	CHAIRMAN RYAN: Let me offer you a
18	thought.
19	MEMBER WEINER: if this kind of
20	statistics applies?
21	CHAIRMAN RYAN: Every dosimetry program
22	out there is backed up by an inter-calibration program
23	either under DOE lab or, you know, some version of the
24	laboratory accreditation program for dosimetry. So
25	there are a lot of statistics in dosimetry.
	I

(202) 234-4433

80 1 DR. MECK: Yes. I can give you a 2 generalization that applies across mathematics. And that is if you comply with the assumptions that you 3 4 start out with, then the rest of it should follow and 5 applicable. And so without, you know, seeing if there is a good fit for the assumptions that are behind 6 7 these statistics, then it is hard to answer very 8 broadly. 9 But, you know, in general, given the 10 assumptions that the statistics are based on --CHAIRMAN RYAN: The real advantage to me, 11 12 Bob, is along those lines. But it boils down to the same advantage of MARSSIM. And that is that if two 13 14 analysts go into two different rooms with the same 15 sample results, they are going to come out with the same answer or the same disposition decision. 16 I really believe that the power 17 DR. MECK: of MARSSIM and MARLAP are that the multi-agencies 18 19 agree that if you do it this way, it is technically 20 defensible. 21 That's the key. CHAIRMAN RYAN: 22 And it's not just --DR. MECK: 23 CHAIRMAN RYAN: And reproducible. 24 DR. MECK: And reproducible. It's not to 25 say that there aren't other ways of doing it. But we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

81 1 can at least use this as a landmark of processes and 2 methods. Thank you. 3 MEMBER WEINER: 4 CHAIRMAN RYAN: Let me follow up with one 5 other question if I may. This gets the stuff in the box ready to go. And it could be low-level waste. 6 It 7 could be solid material that has nothing detectable. 8 Or it could be in that gray area where the steel 9 recycler is going reject it at the gate. 10 I guess you don't get into that I'm guessing. I just want to make it clear for the 11 record, you're stopping at putting it into its final 12 characterization for sending it somewhere. 13 14 DR. MECK: This is a way to measure the 15 radioactivity associated with the materials and equipment. Or the absence of radioactivity associated 16 with materials. 17 CHAIRMAN RYAN: But what you do with it 18 19 after that analysis is a whole new question? 20 DR. MECK: Exactly. 21 CHAIRMAN RYAN: I just want it to be 22 You are stopping at that point. clear. 23 DR. MECK: Yes, yes, yes. 24 CHAIRMAN RYAN: Okay. 25 DR. MECK: This is a technical manual and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	only a technical manual.
2	CHAIRMAN RYAN: And, you know, if it is
3	half as good as MARSSIM, in my view it is pretty good.
4	So, John?
5	MEMBER CLARKE: Thanks. I have some
6	familiarity with this from looking at non-
7	radionuclides in environmental media. And as you
8	noted, the statistics are the statistics. But I did
9	have a couple questions.
10	For example, if you are trying to quantify
11	the concentration of arsenic in soil, what we would
12	call the gray area would be between the minimum
13	detectable concentration and what the EPA calls the
14	practical quantitation limit, which is your MQC. And
15	that would depend on the matrix. That would depend on
16	if they were in water or air or a nasty oil sludge or
17	whatever because of the degree of difficulty in getter
18	there.
19	So the practice in that arena would be
20	that you really shouldn't quantify in that range. You
21	should be above that MQC. Although labs routinely
22	extrapolate calibration curves into that range.
23	The question I had is is there an effect
24	of sample size or the number of measurements? Because
25	it would seem that some of the constants in your
I	1

(202) 234-4433

	83
1	equations would come from that. Is that correct?
2	DR. MECK: Certainly if in the survey
3	design there is what we would call a MARSSIM-type of
4	survey, there is a calculation that you would do to
5	see what is the sample size that you would need to get
6	the power in the statistics that you require. And, in
7	fact, in MARSSIM we say make it a little bit bigger
8	because invariably, some of the data that you take
9	will be disqualified when the quality assurance or
10	assessment comes along or something will go wrong.
11	MEMBER CLARKE: Life, for example, if you
12	were using small sample sizes, you'd be into t-
13	statistics and not, you know, normal distributions.
14	DR. MECK: Well, you may not end up with
15	the power that is required to make the decision.
16	MEMBER CLARKE: Thanks.
17	CHAIRMAN RYAN: Allen?
18	VICE CHAIRMAN CROFF: No, thanks.
19	CHAIRMAN RYAN: Bill?
20	MEMBER HINZE: Well, following up on Dr.
21	Clarke's question, it seems to me it is not only the
22	sample size but it is the sample distribution. And
23	that comes into play in the survey design. And what
24	kind of guides do you provide within this report in
25	terms of survey design?
	1

(202) 234-4433

	84
1	I notice that you have 100 percent scan
2	for this Class 3-type of material. What is
3	DR. MECK: That's Class 1.
4	MEMBER HINZE: Class 1, okay. Well, what
5	is 100 percent scan mean? And how is that involved in
б	the survey design?
7	DR. MECK: All right, 100 percent scan
8	means that if you are looking at or measuring
9	radioactivity associated with surfaces, that you look
10	or you measure all of the surfaces. You may have to
11	if you've got flat pieces, you may have to turn
12	them over.
13	MEMBER HINZE: Is that one measurement?
14	Or do you move the detector? I mean
15	DR. MECK: The detector can move. In the
16	scan-only survey design, the detector or the material
17	say on a conveyor belt could move past the detector.
18	The one is moving relative to the other. Yes, that's
19	possible. But the 100 percent means that all of it is
20	measured, whether it is volume or surface.
21	MEMBER HINZE: Sometimes these materials
22	that you describe here are not regular in their
23	geometry.
24	DR. MECK: Correct.
25	MEMBER HINZE: And therefore, a single
I	

(202) 234-4433

	85
1	measurement or even a few measurements may be totally
2	misleading. So in the survey design, is there a
3	built-in for this, your guidance?
4	DR. MECK: Yes, yes. The key would be
5	let me for illustrative purposes say that suppose that
6	there is a situation where you've got pieces of scrap
7	metal and you've got concrete rubble. While the
8	guidance says segregate those out because your
9	uncertainty is going to be so great if you try to mix
10	those together that you will have to have a very
11	action level to make a decision on that.
12	But if you segregate it out, you can start
13	narrowing down the uncertainties or the standard
14	deviation of the measurements so that it will be a
15	smaller standard deviation. Another way of doing that
16	is process knowledge. And this is part of the visual
17	part that we were talking about.
18	If you know that, you know, some subset of
19	all the materials and the equipment were exposed to a
20	certain part of the process, then and they are
21	likely to have about the same associated amounts of
22	radioactivity on them, then it is reasonable to expect
23	that that may decrease the standard deviation so that
24	you would have a lot more success in terms of making
25	a decision about your action level.
I	1

(202) 234-4433

MEMBER HINZE: Dr. Ryan pointed out that an objective of MARSAME is if you have a set of data and you put it into the hopper of DoD or DOE or whatever, that you would come out with essentially the same decision.

But I guess what I'm getting at is you 6 7 really start before the data is collected. And you've 8 explained that. And so what I'm trying to investigate 9 is how certain are we that DoD, DOE, EPA is going to 10 end up with the same data after evaluating rubble or containers or waste? And are the protocols for the 11 12 survey design, the instrumentation, et cetera, are these specific enough so that we would end up with the 13 14 same decision out here?

15 DR. MARSAME stops short of MECK: 16 developing standard operating procedures. But they tell 17 you how to develop a standard operating And it is, you know, conceivable that 18 procedure. 19 other agencies may have slightly different operating 20 procedures.

21 But the underlying statistics and the 22 decision about whether something exceeds or does not 23 exceed an action level should come out to be the same. 24 MEMBER HINZE: You also mentioned that you 25 had some case histories. Can you give us some idea of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	87
1	what case histories you've used? And what you have
2	found from them? And what are the lessons learned?
3	And what are the lessons learned for the reader of
4	MARSAME?
5	DR. MECK: Well, it was an interesting and
6	difficult exercise to do a front-end loader with
7	uranium and
8	CHAIRMAN RYAN: Start with an easy one,
9	Bob.
10	DR. MECK: There are easy ones in there
11	but I don't think you want to hear about the trivial
12	cases.
13	MEMBER HINZE: No.
14	DR. MECK: And so the first cases in our
15	hypothetical facility, a front-end loader is rented
16	from a rental agency. And you say well, do we accept
17	it on the site? And this is an interdiction design.
18	In a sense, we don't want any extra radioactivity come
19	in our site due to this front-end loader that may have
20	been used at another site. And so there is an
21	interdiction survey there.
22	And then after its use on site, then it
23	has to be cleared to be returned to the rental
24	company. And so this was a challenging one. The
25	lesson learned is that you can subdivide something
I	1

(202) 234-4433

	88
1	like a front-end loader. And you can take the front-
2	end bucket off and use that as a separate survey unit.
3	And make a decision on that as opposed to trying to
4	take the elephant all in one bite so to speak.
5	MEMBER HINZE: So the moral of the story
6	is that you have to break these into measurable units?
7	Physical units?
8	DR. MECK: It is to one's advantage to
9	it is analogous to the segregation that I talked about
10	earlier. It is to one's advantage to keep that
11	standard deviation of your measurements small. And in
12	so doing, it may be easier to make the decision.
13	The other part of it is there may be
14	different decisions for different parts of the same
15	piece of equipment.
16	MEMBER HINZE: I'm taking too much time
17	but let me ask you a last question if I might and that
18	is these are MARSSIMs are very useful documents and
19	all and I use them. And one of my concerns is what
20	about their updating? Are there protocols? Your
21	Committee? Do you evaporate into thin air once it is
22	published and you have a website? You know what about
23	the user in terms of keeping things up to date?
24	DR. MECK: I'm glad you asked that.
25	MARSSIM, from the outset, was designed to be a living
	I

(202) 234-4433

	89
1	document. And, in fact, it has undergone a couple of
2	revisions since it was first published. And the last
3	time we published it, we published it as a looseleaf
4	so that we could do individual page changes as opposed
5	to having to reproduce the whole document.
6	The development of MARSSIM and the
7	statistics, especially the Stapleton approximation,
8	should find its way back into MARSSIM. It's not in
9	there. And it would be an improvement in an updating
10	to MARSSIM.
11	The MARSSIM work group is, in a sense, a
12	grassroots work group. There were technical staff
13	that said, amongst themselves, that we can provide
14	technical information and provide technically-
15	defensible ways to measure radioactivity in various
16	arena. And so we have a charter. Is there a steady
17	budget item on any of the author agencies? I think
18	the answer to that is no.
19	And so in terms of long-term measurement
20	and upkeep and update, that is a concern. And we have
21	to, year by year, appeal to our managers to say this
22	is our project. This is what we need. We would like
23	a hunk of the budget.
24	MEMBER HINZE: Thank you, Dr. Meck.
25	CHAIRMAN RYAN: Bob, thank you very much.
I	I

(202) 234-4433

	90
1	And thank you, participants, on the phone.
2	With that, we are finished with our
3	morning session. And we will take our lunch break and
4	reconvene at 1:30. Thank you all very much.
5	(Whereupon, the foregoing
6	matter went off the record at
7	11:37 a.m. to be reconvened in
8	the afternoon.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	

	91
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:29 p.m.
3	CHAIRMAN RYAN: Let's see. This
4	afternoon's session we're going to hear about the
5	scope and methodology of the Government Accountability
6	Office, GAO's, ongoing review of the Global Nuclear
7	Energy Partnership (GNEP) effort.
8	Cognizant member is Allen Croff. Allen,
9	take it away.
10	VICE CHAIRMAN CROFF: Thanks, Mike.
11	10) SCOPE AND METHODOLOGY OF THE GOVERNMENT
12	ACCOUNTABILITY OFFICE (GAO)'S ONGOING REVIEW OF THE
13	GLOBAL NUCLEAR ENERGY PARTNERSHIP (GNEP) EFFORT
14	VICE CHAIRMAN CROFF: Our speaker today is
15	Joe Cook. He's a senior analyst at the GAO. And,
16	with that, I'll let you take it away and introduce the
17	rest of your team members and then go for it.
18	MR. COOK: Well, I thank you for having us
19	here today. In addition to myself, there is Chris
20	Kunitz over here and Dan Feehan in Denver. And we're
21	all working on this review of GNEP.
22	When I was thinking about how I opened
23	this today, I recalled a meeting that we had at DOE a
24	little while ago. And someone compared a GAO review
25	to a root canal. I have had a root canal. So I
ļ	I

(202) 234-4433

	92
1	thought that was a pretty good analogy.
2	The reason I bring it up now is because
3	it's sort of communicates why I think that we're here
4	today. We're at the beginning of our review. And we
5	have had a patient referred to us who might need a
6	root canal. And we have taken some X-rays. We don't
7	really know what to do or, actually, we do have a good
8	idea, but it's an important tooth and we don't want to
9	screw up.
10	And you all are our experts on this
11	particular tooth. So we want to share our X-rays with
12	you and get your ideas before we move ahead. So
13	hopefully my presentation will sort of generate
14	questions and comments.
15	And I am going to drop that analogy now
16	because it brings back a lot of bad memories. So,
17	anyway, I will say
18	MEMBER HINZE: Not if you're a dentist.
19	Not if you're a dentist.
20	MR. COOK: My dentist had a very good
21	experience out of it. Yes, that's true.
22	I have attended two of your previous
23	meetings, where you talked about reprocessing. And I
24	think Dan listened in on one as well. And we have
25	reviewed some of the previous transcripts from last

(202) 234-4433

	93
1	summer. And it's all been very informative for us.
2	This is really a complex area. And it's been really
3	helpful to be back there and just listen and learn
4	about the complexities of reprocessing.
5	So it is really an honor to be here today.
6	I have prepared a presentation. I think it will last
7	about 20 or 30 minutes, which hopefully will allow for
8	comments and questions. I should emphasize it is
9	preliminary. We don't have any findings or anything
10	of the sort to share it. It really is a scope and
11	objectives of the review. So, with that, I will get
12	started.
13	The source of the review is the Senate
14	Homeland Security Permanent Subcommittee on
15	Investigations. This is who we are working for. A
16	request came in I would say about a year ago.
17	Obviously we get a lot of other inquiries from the
18	Hill, but right now this is basically our client.
19	Let's see. As far as the time frame for
20	our review, we're in what we call the design phase.
21	Typically a review lasts, I would say, about a year.
22	So that means that since we started approximately last
23	November, that we would have something finished by the
24	end of this year.
25	We have assembled a team, an immediate
ļ	

(202) 234-4433

team, which includes Dan in Denver, myself, Chris, and another person. And among all of us, we have quite a bit of experience reviewing DOE programs, whether they be nonproliferation, nuclear energy, Yucca Mountain, a wide range of stuff; and then previous work experience, for example, dealing with low-level radioactive waste.

So we are not technical experts, but I 8 think in the immediate team, we definitely have a head 9 start on doing the review of this complexity. 10 Then we also have an extended team. For example, we have 11 12 GAO's chief technologist, who we're very lucky to He actually previously worked at Lawrence 13 have. 14 Livermore and knows guite a lot about reactors. So 15 that's good. And we also work, for example, with an economist. And obviously GNEP raises a lot of issues 16 related to economics. 17

The original request from the Committee 18 19 was really broad. And I've listed just a few of the 20 I mean, of course, there are always concerns things. 21 about costs and technical challenges of any sort of 22 program involving R&D. And in this one, of course, 23 there are proliferation issues. And with GNEP, there 24 is а domestic component and an international 25 component.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

94

And when we looked at that, we pretty quickly determined that for purposes of our review we would have to scope it down and make it manageable, possibly leaving whatever we don't address right away for a follow-on review.

And the key decision that we have made so 6 7 far is to say, "Okay. You can roughly divide GNEP into a domestic technology development component and 8 9 international component." And it made sense to us to look first at the domestic technology development 10 component, in part because, you know, that's what's 11 12 really on, you know, the plate right now in terms of DOE going forward. And also to a large degree, the 13 14 way GNEP appears to be structured, the international 15 would depend developing domestic component on capability to reprocess and burn transmutation fuel in 16 17 a non-fast reactor.

Obviously when you scope something down, 18 So, for 19 there are potential limitations to that. 20 instance, something that might make sense when you are looking at the whole broad program, if you just look 21 22 at one part of it that touches on maybe just a subset 23 of the objectives, you might be able to draw some 24 conclusions. But then you step back and you say, 25 "Well, there's another important component to this as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	96
1	DOE has put this together." And we want to keep that
2	in mind.
3	So that's the case here, at least in terms
4	of how I look at it. So, with that, so far we have
5	developed three objectives. And I have slides on each
6	of these in more detail. Before I get into that,
7	there's in my mind a logic to the order of these
8	objectives.
9	And the logic is basically a time line.
10	For the first one you can think about "Okay. GNEP was
11	announced in February 2006. Before that, there was
12	AFCI. And that, in turn, evolved from some other DOE
13	programs." And under AFCI, DOE was evaluating a
14	number of different options as alternatives to the
15	status quo, advanced nuclear fuel cycles.
16	So then you get to February 2006. What's
17	the basis for narrowing down from all of those options
18	and choosing GNEP, which, you know, is a real very
19	specific strategy with specific technologies that
20	they're proposing or at least focusing on referenced
21	technologies, for instance, with regard to
22	reprocessing and having decided to focus on a
23	sodium-cooled fast reactor.
24	So that is the first objective. The
25	second objective is saying okay. Right now what can
ļ	I

(202) 234-4433

1 we say about the technology maturity and then the 2 third objective looking forward, how is DOE planning 3 to advance that technology maturity nd in general 4 advance GNEP?

5 Okay. So the first objective, this idea 6 of evaluating alternatives, to me at least, if you 7 look at the Energy Policy Act, which authorized the 8 advanced fuel cycle initiative, what it says to me is, 9 you know, it's pretty clear, evaluate different 10 strategies as an alternative to the once-through fuel 11 cycle.

12 if And then you look at various congressional direction and committee reports and 13 14 whatnot over the last several years, there are 15 variations of that and one including, I think, directed DOE to actually select an alternative. 16 And I think it was by 2007, but I could be wrong. 17

that's really the basis for 18 this So 19 objective asking what is the basis for a genome. And 20 how I see we could go about getting an answer to that 21 question is there are a number of ways. You know, is 22 there a systems analysis that DOE did looking at the 23 different alternatives in terms of their long-term implications for the fuel cycle. 24

Obviously there are policy decisions in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

the one that comes to mind, I think we have probably all heard quite a bit, is no separated plutonium. And that's one example and then an analysis of trade-offs and risks because obviously with this program having multiple objectives, just from a logical standpoint, you would think that it would be hard to maximize achieving all of those objectives.

So the idea here is to look at whether DOE 8 had a reasonable basis for selecting GNEP from among 9 all of these alternatives. 10 And to me reasonable, that's a real potentially dangerous term. But I just 11 12 contrast it with optimal, that you're not necessarily looking for something that is the best because that 13 14 would be hard to define but reasonable, sort of like 15 you know it when you see it.

Okay. On technology maturity, this is actually a report that Dan has worked on and came out last month. What we did is we looked at 12 DOE projects, major projects or projects that were close to being major projects and looking at the schedules and the costs and found that nine of them had exceeded their original cost or scheduled estimates.

23 So, in addition to ineffective project 24 oversight and poor contractor management, which comes 25 up a lot when you hear about DOE, one of the findings

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

(202) 234-4433

98

	99
1	of the report was that and you'll have to excuse me
2	because I didn't write this report. So I'm not
3	familiar with it. But the DOE does not consistently
4	assess technology readiness to ensure critical
5	technologies will work as intended before construction
6	begins. And that lack of technology readiness can
7	result in cost overruns and schedule delays.
8	So the report recommended that DOE
9	consider using some type of system to assess
10	technology maturity similar to a nine-point scale that
11	is used by NASA and DOD, one being the least mature
12	and nine being the most mature.
13	So I don't know if you all are familiar
14	with that, but, as it turns out, AFCI, the advanced
15	fuel cycle initiative, even before this report had
16	started using these technology readiness levels. They
17	had adapted it from NASA and DOD with modifications to
18	fit AFCI.
19	For example, one thing that I think might
20	be unique to AFCI is that they divided it in threes,
21	so one to three, four to six, seven to nine as a more
22	general approach, with one to three being concept
23	development, four to six proof of principle, and seven
24	to nine proof of performance.
25	And then if you look at some of their
ļ	

(202) 234-4433

	100
1	public reports, they have gone one step further. And
2	you'll see how they'll talk about it in terms of fuel
3	development, for example.
4	So our objective here is to get more
5	detail about exactly how is DOE planning to use
6	technology readiness levels under GNEP. And you can
7	imagine there are a lot of details when you start
8	scratching a little bit beneath the surface.
9	For example, to what extent has DOE
10	applied TRLs to the full range of technology that
11	would need to be developed under GNEP is one question.
12	And then there could also be a question of
13	consistency, both within the program and also
14	consistency with DOD and NASA because you could
15	imagine where if everyone is using a nine-point scale
16	and a seven at DOE means something different than a
17	seven at NASA or DOD, that would create confusion for
18	people like us on Capitol Hill who might want to use
19	this type of metric for evaluating a program.
20	So in talking about this with DOE so far,
21	I mean, it's clear that there are limitations to TRLs.
22	One that has come up is that assigning a TRL doesn't
23	necessarily, for example, tell you how much effort or
24	time is required to get from, let's say, five to seven
25	or whatever the case may be.
l	I

(202) 234-4433

	101
1	Another case that has come up is you could
2	have an artificially high TRL, an example being the
3	sodium-cooled fast reactor, which has been built in
4	the United States, but it has been along time. So you
5	have to then look at the infrastructure, both in terms
6	of people and just industrial infrastructure.
7	Okay. Our third objective deals with the
8	plan for advancing GNEP. I have listed just in this
9	first bullet here a few of the things that fall under
10	planning. This is really sort of bread and butter for
11	GAO.
12	You look at budget and R&D plans, in this
13	case leading up to the June 2008 decision. This is a
14	date that has come up a lot. I think you all have
15	probably heard it as being the next major milestone in
16	GNEP.
17	There is also the schedule for designing
18	construction of facilities and ultimately for
19	achieving the objectives of GNEP. We can also think
20	in terms of planning for NRC licensing. And we have
21	heard that there is a lot that goes into that as well
22	in terms of regulatory development rulemaking.
23	In terms of what we look for in a plan,
24	there are certain criteria. A really important one is
25	DOE order 413.3. This is the project management order

(202) 234-4433

	102
1	that all DOE projects, as far as I know, certainly
2	major projects, are managed under. And it's pretty
3	detailed. They have five milestones ranging from
4	basic initiation to start of construction. And it's
5	really geared towards, obviously, design and
6	construction of facilities.
7	And then there are other things, like what
8	I have listed here, the OMB R&D criteria, which is on
9	their Web site. In looking at these, what we have to
10	do is say, "Okay. Well, where is GNEP in this
11	process?" because that really will determine what
12	criteria apply. In this case, GNEP has passed the
13	first of five milestones, what they call CD-0,
14	critical decision zero, approval of mission need. And
15	they are heading toward CD-1.
16	Well, when you think about planning, they
17	are not required to have a detailed schedule and cost
18	estimate until the third milestone, which is CD-2,
19	critical decision 2. So that's not something that
20	when we're looking at this and looking specifically at
21	planning, that we necessarily expect to see.
22	That said, you know, we have seen sort of
23	notional time lines showing the R&D and schedule
24	leading up to the start-up of facilities. So that's
25	something we're clearly interested in because that
ļ	I

(202) 234-4433

	103
1	makes a difference when you think about GNEP, is how
2	do all of these facilities come online, how is it
3	phased, you know, the reprocessing plant, the advanced
4	burner reactor, and the advanced fuel cycle facility.
5	So I thought since you all are the
6	Advisory Committee on Nuclear Waste that you might be
7	interested in, well, what does all of this mean for
8	radioactive waste.
9	For objective one, one of the things that
10	you might think that DOE had analyzed looking at all
11	of the alternatives is the volume of waste, the
12	treatment and disposal options. We have heard a lot
13	about cesium and strontium and a lot of other things.
14	So that's the type of thing that we're
15	looking at here, not to necessarily get answers to
16	what is GNEP going to produce but how did DOE compare
17	all of this, specifically with regard to the waste
18	streams for reprocessing?
19	CHAIRMAN RYAN: Do you mind if I ask a
20	question here?
21	MR. COOK: Go right ahead.
22	CHAIRMAN RYAN: That is where the rubber
23	meets the road because if you don't know what is going
24	into what waste, you don't know if the system makes
25	any sense.
ļ	I

(202) 234-4433

	104
1	MR. COOK: I agree.
2	CHAIRMAN RYAN: Okay. We'll get them all
3	later, I guess.
4	MR. COOK: Okay.
5	CHAIRMAN RYAN: The patient is now
6	anesthetized, and we're ready to drill.
7	(Laughter.)
8	MR. COOK: Yes. We hope they have some
9	anesthesia.
10	(Laughter.)
11	MR. COOK: So technology maturity, this is
12	another example. You know, waste forms, you can think
13	of this technology bringing a system being applied to
14	waste forms and think about, "Okay. Iodine or
15	technetium." I'm just throwing out things that I've
16	heard about that what is the maturity of the
17	technology that you would need for that, not that,
18	again, we're necessarily going to determine that, but
19	how is this factoring in to DOE's planning? And that
20	leads very much into objective three. So okay. Now,
21	if this is the maturity of this waste form, what is
22	the plan for conducting R&D? What are the plans for
23	waste storage?
24	You know, again, cesium and strontium, we
25	have heard about that being stored for something like
I	1

(202) 234-4433

105 1 300 years. Where would that take place? 2 This is a fourth objective that we have 3 only recently started thinking about, but I should say 4 thinking about in terms of including in this review. 5 We have all heard a lot, I think, probably about the economics of reprocessing. And there has 6 7 been at least one hearing on the Hill looking at 8 exactly this issue. And so it's a really complex 9 area. A lot has been written about it. 10 And initially it seemed like something, okay. This might 11 12 be a little too much to take on in an initial review. But then getting into it a little bit more, we have 13 14 been considering, okay. Well, may be there is a way 15 we could include this in this review to at least find out, well, how is DOE using economic modeling in its 16 decision-making on GNEP and what are the assumptions 17 that they are using as part of their modeling. 18 And 19 that would seem to me to be pretty illuminating. 20 So, you know, I don't think it would 21 answer necessarily the question of, you know, what are 22 the economics in terms of does it cost more than the 23 once-through cycle definitively. That would be, I 24 think, a little bit beyond the scope of what we're 25 talking about here.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	So that pretty much sums up my
2	presentation. I would say that the scope of our
3	review is intended to focus on areas of immediate
4	significance, the technology development. The
5	specific objectives are intended to provide
б	information about the rationale behind GNEP, the
7	technology maturity, and DOE's plan going forward.
8	And, with that, if you have any questions,
9	I would be happy to answer them. And Dan is also here
10	by phone. And Chris is here as well.
11	VICE CHAIRMAN CROFF: Okay. Thank you.
12	Dr. Hinze?
13	MEMBER HINZE: Well, my question is pretty
14	well focused on nuclear waste. So let me focus on
15	that for a bit. We have had presentations in which a
16	considerable driver in the whole GNEP process is the
17	minimization of nuclear waste. Yet, we also hear and
18	perhaps only hear anecdotally that the volumes of
19	waste may not be decreased as a result of GNEP. So
20	the question that I have is, where is the waste
21	concerns in terms of the priorities in the objectives
22	of GNEP?
23	And let me put a corollary on that. If
24	waste is not important in terms of minimizing waste
25	through GNEP, what does that do to GNEP as a whole and
ļ	I

(202) 234-4433

	107
1	to the schedule for the GNEP?
2	MR. COOK: Well, I would say that from our
3	perspective, that the waste is very high priority in
4	terms of what we want to look at. There is a limit to
5	what we can do. We're not experts on that. And we've
6	even considered doing a separate review potentially as
7	a follow-on review, depending on how all of this
8	progresses, specifically on waste, from GNEP or
9	whatever other strategy DOE decides to adopt because
10	that seems like it could be a review in and of itself.
11	And maybe that's what you're looking at in your white
12	paper. I think those issues are really important.
13	And, if nothing else, it should be clear what we're
14	getting out of the bargain, so to speak.
15	To me, I don't see it as a silver bullet.
16	What I have learned about it and just common sense
17	says that you can't make waste disappear. There is a
18	price to be paid.
19	And I think we need to recognize that and
20	will recognize that in our review. Nevertheless, it
21	seems to me to be worthwhile looking at and saying,
22	especially when you are looking at alternatives, to
23	UREX-1A and recycling in fast reactors, to say, well,
24	what are the waste streams that are coming out of
25	this?
I	1

(202) 234-4433

	108
1	And what are the waste streams that are
2	coming out of the alternatives, whether it be I
3	mean, one thing that we have heard about is the
4	potential for thermal recycle. And perhaps that goes
5	against what GNEP is all about. But it still seems to
б	me that you would want to look at all of the
7	alternatives from every standpoint, including waste.
8	I don't know if that answers your
9	question, though.
10	MEMBER HINZE: It starts to approach it.
11	Certainly I think that anything that you could do to
12	focus on this problem and focus DOE on this problem
13	will be helpful to this nation. And speaking about
14	nation, let's discuss this a bit from the
15	international standpoint, which I also understand you
16	are thinking.
17	Obviously right at the first word, it's
18	global.
19	MR. COOK: Right.
20	MEMBER HINZE: And my understanding is
21	that one of the reasons for this is that we would be
22	a reprocessor of fuel that is used by other nations.
23	If I were a congressman sitting here, I would ask you
24	the question, does that mean that we're going to be
25	collecting other people's waste and having to store
ļ	I

(202) 234-4433

	109
1	that on our SUS? Is that a problem?
2	MR. COOK: I completely agree, not that
3	that is an issue. In fact, we went to one of the
4	public scoping meetings for GNEP that have been held
5	around the country. And that is one of the things
6	that people are very concerned about in those
7	communities. It's not the maturity of the technology
8	or the economics of it. It's we don't want our
9	this is something that you'll hear. This is just a
10	personal observation based on one meeting. We don't
11	want to become a nuclear waste site.
12	And, you know, that's for our own domestic
13	spent fuel. So then
14	MEMBER HINZE: Yes. Thank you very much,
15	Joe.
16	MR. COOK: Yes.
17	MEMBER HINZE: I appreciate it.
18	VICE CHAIRMAN CROFF: Jim?
19	MEMBER CLARKE: Yes. I was going to
20	follow up on that, too, and ask you more about the
21	international piece. I was going to approach it from
22	the technology readiness standpoint. There's a fair
23	amount of history out there with some of these
24	approaches that are being considered, fast reactors
25	and their use in other countries.
ļ	I

(202) 234-4433

	110
1	I was wondering when that would feature in
2	to your analysis. That will be part of your analysis?
3	MR. COOK: I'm not sure I was completely
4	clear. I mean, in terms of scoping this down, at
5	least for now and this could change. I mean, this
6	is a preliminary scoping methodology, but we're
7	looking at the domestic part. And that's just for
8	practical purposes.
9	But clearly in assuming that GNEP goes
10	forward and I'm not saying this because I know
11	anything in particular, but that could change. I
12	mean, there could be a new administration that says,
13	"No. We don't want to do this."
14	But at that point, I would imagine that a
15	review of the international component would be almost
16	the next logical thing that we would want to do.
17	That's not a decision that I would make on my own but
18	it seems to me just logical.
19	And you mentioned technology readiness.
20	I think you could apply some of that same methodology
21	there as well because one of the things that they're
22	talking about developing is this new type of
23	grid-appropriate reactor, which, from what I can tell,
24	doesn't exist right now. And conceptually some of the
25	objectives they have for that sound to me to be pretty
	I

(202) 234-4433

	111
1	ambitious.
2	I have heard like, for example, you know,
3	refueling may be sort of in a battery approach, where
4	it's just very, very infrequent. So I don't know a
5	lot about reactors, but I imagine that can be
6	difficult.
7	MEMBER CLARKE: The other question I have
8	heard and I think the Committee may have heard,
9	although I'm not clear on that I suspect I heard it
10	somewhere else that Russia is pursuing a similar
11	kind of a venture. Is that correct? It may be a
12	different scale.
13	MR. COOK: I have read about that.
14	Really, I don't have a lot of information, but I think
15	there is something called well, it's almost the
16	same acronym, GNPI I want to say.
17	Well, you mentioned Russia. There's
18	another issue there
19	scoping that reminds me that, even for the domestic
20	part, the technology development from everything we
21	have heard really depends on international
22	collaboration.
23	The example that we have heard more often
24	than anything else is that the United States doesn't
25	have access to fast neutrons. And we're going abroad
I	

(202) 234-4433

	112
1	for that, now into France and then maybe later
2	someplace else, because the reactor in France is due
3	to shut down in 2009.
4	So. even as we scope this review, looking
5	just at the domestic technology development component,
б	there is an international aspect to that. And it's
7	very important.
8	MEMBER CLARKE: That really gets at my
9	first question. I think there's a fair amount of
10	history and a fair amount of information with using
11	these technologies in other countries and what worked
12	and what didn't work. I'm just wondering how that
13	would fit into your analysis.
14	Your slide does say "domestic and
15	international components," but it seems like what
16	you're saying is that might be in the next phase.
17	MR. COOK: Well, at least for the fuel
18	leasing past of it, I would say. But in the
19	technology development part in terms of developing
20	fuels for an advanced burner reactor, clearly there is
21	cooperation and collaboration required based on what
22	we have heard from DOE with France and Japan and
23	others.
24	And how that factors into our review, I
25	don't know that that is a criticism of DOE. It's just
I	I

(202) 234-4433

	113
1	a fact. It's something that we need to recognize and
2	take into account.
3	MEMBER CLARKE: Thank you.
4	VICE CHAIRMAN CROFF: Ruth?
5	MEMBER WEINER: I have a number of
б	questions. The first is that you're looking at
7	technological maturity. And I'm sure you and GAO are
8	aware that the United States had a perfectly good
9	operating fast flux sodium-cooled reactor and it would
10	shut down.
11	You may not be able to answer this now,
12	but many of us have always wondered why.
13	MR. COOK: Why it was shut down?
14	MEMBER WEINER: Why it was shut down,
15	dismantled, is in the process of being dismantled and
16	is basically gone, yes. Why?
17	MR. COOK: I don't know. I was ignorant
18	of all of this at that time. But my understanding is
19	that and I could be wrong that it was intended
20	as part of the development for the Clinch River
21	breeder reactor. Maybe I'm wrong. So I'm not going
22	to go any further.
23	I will say what I do know. DOE has gone
24	through a round this is public information, I
25	believe the public scoping studies. They have

(202) 234-4433

	114
1	funded different groups. One of them is in Washington
2	state. And I believe that they have proposed
3	restarting the fast flux test facility.
4	How realistic that is I really don't know.
5	MEMBER WEINER: Go ahead. My suggestion
6	would be that in looking at the technological
7	maturity, this is just one example. A number of these
8	techniques have been or are being used as part of the
9	weapons complex. And I would suggest, you know, that
10	that is a place to start.
11	We have had a number of experimental
12	reactors at INL.
13	MR. COOK: Right.
14	MEMBER WEINER: And the fast flux test
15	facility just comes to mind immediately.
16	The second question is, these are
17	technical problems, really, the problem of making GNEP
18	a reality. What is the technical depth of your review
19	capability?
20	I mean, you mentioned you had some
21	connections with Lawrence Livermore. Well, how broad
22	a technical base do you intend to use for you reviews?
23	MR. COOK: We don't have backgrounds in
24	nuclear engineering or on the immediate team nuclear
25	physics. We come from diverse backgrounds. They are
I	

(202) 234-4433

	115
1	certainly relevant. And we recognize that this is not
2	a technical review.
3	I would say to me this raises a lot of
4	policy issues and planning issues and management
5	issues where we can bring expertise. We need to
6	understand these technical complexities. And that's
7	partly why we have made a point to come to previous
8	meetings, because that helps us get up to speed.
9	But we're not in a position to review the
10	intricacies of it. I think that's better left to you
11	all and the National Academies and other groups like
12	that. That's my opinion.
13	MEMBER WEINER: Well, then, do you have
14	any and this may be an unfair question idea to
15	what extent you are going to make use of technical
16	groups like ours, like the NRC itself, like the
17	National Academies, and so on? Are they going to be
18	heavily involved in this, slightly involved? Do you
19	have any sense of how much such groups would be
20	utilized in your review?
21	MR. COOK: Well, certainly to some extent.
22	I wouldn't say to a great extent, although I wouldn't
23	rule that out either. Sometimes what we'll try to do
24	in GAO is convene expert panels. And that is
25	something that I had considered. And maybe that is
I	1

(202) 234-4433

	116
1	something that we could do in the future.
2	And so, you know, I don't know if that is
3	what you're getting at. If it is, that's part of the
4	purpose of this discussion, for us to take back ideas
5	and say, "Okay. Is this something that we might want
6	to do?"
7	But certainly, for example, if the white
8	paper that you all are working on comes out in a time
9	frame that can help us, that would be sort of a
10	minimum, where we would review that and incorporate
11	any of the findings or recommendations if that is what
12	it will have into our review and reference that.
13	Another good example is DOE has a nuclear
14	energy research advisory committee. And they put
15	their reports on the internet. And we have reviewed
16	those. These are people with technical backgrounds.
17	And we can review those and maybe even meet with them.
18	So I guess the answer is not definitive
19	but
20	MEMBER WEINER: I would encourage you to
21	make use of expert panels,
22	MR. COOK: Absolutely.
23	MEMBER WEINER: particularly in this
24	area.
25	MR. COOK: Okay. Expert panels.
ļ	I

(202) 234-4433

	117
1	MEMBER WEINER: Yes. And I think this
2	would be a fruitful area.
3	My final question deals with
4	nonproliferation, which has been used as a rationale
5	for one or another GNEP directions. It seems to me
6	that it's a little late in the proliferation game to
7	use nonproliferation as a rationale for developing
8	GNEP, not that it couldn't help but that there's a
9	difference between that and rationale.
10	And, in particular, as I understand it,
11	part of GNEP is to say that the United States is going
12	to recycle the fuel and sell or give or somehow trade
13	back the fuel to other countries that have nuclear
14	power. Do you honestly think that any country that
15	has a nuclear establishment is going to go for that?
16	MR. COOK: Well, I have my personal
17	opinion. And, actually, I don't rule it out
18	personally. Clearly it's ambitious. In terms of our
19	review, at least initially I don't know that we can
20	address that.
21	I think it's a really interesting
22	question. And it would be interesting, too, for us,
23	if we could, to go to other countries or meet with
24	them in some forum, maybe if there was a conference at
25	IAEA or something like that, and talk with them.
l	I

(202) 234-4433

118 I would love to do that. I don't know if 1 2 we will be able to. 3 MEMBER WEINER: Thanks. 4 VICE CHAIRMAN CROFF: Mike? 5 CHAIRMAN RYAN: Joe, I am going to give you an award for the most colorful introductory 6 7 comments that got everybody's attention we've heard in 8 a long time. 9 (Laughter.) 10 CHAIRMAN RYAN: Thank you for a great presentation. It really was great. 11 12 MR. COOK: Well, thank you. CHAIRMAN RYAN: Having had a root canal, 13 14 I was a little sympathetic there at the beginning. 15 I'm going to try and give you some ideas, instead of asking you a lot of questions. 16 17 MR. COOK: Okay. CHAIRMAN RYAN: I go back and refresh on 18 19 1979 and the stopping of the reprocessing at Barnwell, 20 the commercial plant that was going to operate that 21 Carter stopped operating, and then look at what the 22 landscape was at that time. 23 There were 18 months of storage tank 24 capacity at Barnwell with no outlet defined for the 25 liquid waste that was going to be in those tanks. All

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

119 1 the reprocessing waste in the United States, defense, 2 now in tanks, what are we going to do with all of that? 3 4 So the waste to me is the driver of the 5 bus. We had a presentation from someone at DOE where they talked about "Well, these would be the wastes. 6 7 And uranium oxide will be class C waste." And uranium 8 oxide is class A waste. 9 Why is it class C waste? Well, there is 10 TrU in it. How much? We don't know. Well, that means it can be class A, class C, TrU, or spent 11 12 fuel nuclear based how much of what on TrU radionuclide is in there. 13 14 So without а definition of what. 15 radioactive material is in what waste reaction, you don't know what is going to land where in the existing 16 17 regulatory scheme. Now, I am not absolutely positive of this, 18 19 but I think I am right. Every country that deals with 20 reprocessing now -- I know it's true in France and 21 Japan -- has an intermediate waste category. We do 22 We have a low-level waste and a high-level not. 23 waste. 24 I'm not saying that's necessarily not 25 overcome-able, but that is a big difference in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	regulatory framework for how to manage a reprocessed
2	system. So I would think a little bit about that and
3	try and capture some of that, which leads me to kind
4	of maybe a different category.
5	How about regulatory challenges in your
6	list there in the first bullet on slide 3? You've got
7	subcommittees requiring cover a broad range of issues.
8	I think you need to think about the regulatory
9	structure and is it there.
10	The other thing that wasn't around in 1979
11	so much was mixed waste. That's much more mature 30
12	years down the line. When you take chemicals and mix
13	radioactive material, you've got mixed waste. What's
14	the outlet and process for all of that? What is going
15	to happen in plutonium oxide? Is that fuel or is that
16	waste?
17	Is France using all the MOx they're
18	producing? You know, I have not seen a balance sheet
19	that tells me all the numbers are going to work, even
20	at a gross level. And I always get a little nervous
21	when I see a GANT chart that has milestones down to
22	the month and it's 40 years long.
23	So I would urge you as best you can to use
24	panels, as Dr. Weiner said, or other technical
25	resources to maybe bore into some of these technical
I	I

(202) 234-4433

	121
1	areas, particularly on tell me the constituents of the
2	waste, where they're going to be, what's going to be
3	in them, and where are they going to go.
4	You could end up with waste that have no
5	home at the moment and would have to go into a tank.
6	I don't think that would be a popular thing so much.
7	So that's one thing I would think about.
8	The fast reactor that Dr. Weiner mentioned
9	is a test reactor. It was not a production reactor.
10	France is the only one that's really and Russia, I
11	guess, but they're shutting them down.
12	Big material science questions we need the
13	fast reactors. So have they been solved? At every
14	step along the way, I leave at least a placeholder in
15	your thinking process and in the structure of your
16	analysis. What are the technical challenges at every
17	box along the way so you can at least, you know, have
18	a place to bin these questions as you go through?
19	And I really appreciate the fact that
20	you're looking at a giant apple, you know, and you're
21	trying to take a bite at what is an absolute flat
22	surface at this point to you. It's just a huge
23	complex kind of process over many decades.
24	So I'm very sympathetic to the challenge,
25	but I would dial out your structure a little bit and
ļ	

(202) 234-4433

	122
1	leave some placeholders, particularly on the questions
2	of waste, where it's going to go, how is it going to
3	be treated, how is it going to be disposed, and then
4	what are the flows through the system.
5	You know, if something doesn't come on
6	line for 20 years, 10 years, is that a big deal or is
7	that a showstopper or, you know, if we can't build a
8	fast reactor that meets everybody needs and
9	specifications, is that a problem or where are the
10	pitfalls?
11	Again, this is sort of hearsay. I heard
12	it as a comment that there was one proposal to skip
13	the detailed engineering step for a reprocessing
14	plant, the largest one ever made on the planet. And
15	we're going to skip the detailed engineering step?
16	Wow. That's special, I think. That's just me.
17	You know, when I'm going to do a little
18	carpentry at home, I mark it five times before I cut
19	it. I just don't see that as being a way to go
20	forward. So that would be a placeholder for me. No
21	detailed engineering? Big question.
22	So can you capture all of those things as
23	you go along? I think if you do, you're doing a
24	really good, honest job of raising issues that to
25	policy-makers as well as technical people would be
I	I

(202) 234-4433

	123
1	helpful.
2	MR. COOK: Yes. I agree with pretty much
3	everything you were saying. In this slide number 8,
4	where I used the examples as
5	CHAIRMAN RYAN: Could you flip to it so
6	everybody could see it, please?
7	MR. COOK: Sure.
8	CHAIRMAN RYAN: Thank you.
9	MR. COOK: Okay. So this is how these
10	issues relate, our objectives relate, to waste. This
11	was not just something that I thought up because I am
12	coming to meet with the Advisory Committee on Nuclear
13	Waste. These are things that we have really thought
14	about and would really like to know. I mean, I think
15	this gets at what you were saying.
16	CHAIRMAN RYAN: That's a big piece of it,
17	but add the regulatory structure piece. That's a
18	separate question.
19	MR. COOK: Yes.
20	CHAIRMAN RYAN: You don't know the answer
21	to that until you know the answer to objective 1. I
22	mean, they're interrelated.
23	MR. COOK: Yes. So the regulatory
24	structure is something that we have to think about.
25	CHAIRMAN RYAN: Again, the key difference
	I

(202) 234-4433

	124
1	is mixed waste is under the EPA side.
2	MR. COOK: Right.
3	CHAIRMAN RYAN: NRC has high and low-level
4	waste.
5	MR. COOK: Yes.
6	CHAIRMAN RYAN: Agreement states basically
7	take care of low. There is no intermediate category.
8	MR. COOK: I will say that we are very
9	lucky to have on our team someone who worked with the
10	low-level radioactive waste forum for something like
11	13 years.
12	So, from that standpoint alone, we're not
13	ignorant of this. Dan Feehan in Denver has done a lot
14	
15	CHAIRMAN RYAN: Yes.
16	MR. COOK: on reactive low-level
17	radioactive waste. I realize that there is this,
18	actually, from coming here that I think that has been
19	raised before this issue of not having an intermediate
20	level and
21	CHAIRMAN RYAN: I'm not saying it's
22	necessarily a problem. I just think that without
23	thinking it through carefully, are you leaving
24	anything on the table that doesn't have a home?
25	MR. COOK: Right.
ļ	I

(202) 234-4433

	125
1	CHAIRMAN RYAN: And my problem is I don't
2	know enough about what radionuclides are going where
3	to know. Maybe it's all doable as low-level waste.
4	I don't think so, but do you then have to expand the
5	category for high or does it really make sense to make
6	it intermediate? I don't know.
7	MR. COOK: Okay. Well
8	CHAIRMAN RYAN: The experience in the
9	world tells you that if they've got reprocessing,
10	they've got an intermediate category. Again, I'm not
11	saying that's the answer. I'm just saying that
12	without the detailed information, you don't know.
13	You're kind of without a rudder.
14	MR. COOK: Well, that sounds like another
15	good idea for us to take back and mull over, the
16	expert panels. Thank you.
17	CHAIRMAN RYAN: You're welcome. Thank
18	you.
19	Have at it.
20	VICE CHAIRMAN CROFF: Okay. I would like
21	to pick up on a few things I've heard around the
22	table. And, like Mike, I'm maybe going to stick more
23	to commentary than questions at this point.
24	First, to put a finer point on something
25	that Ruth said this is in response to one of your

(202) 234-4433

1 questions, Bill, and comes from my reading of all of 2 the GNEP literature and working on the white paper --3 the stated intention of GNEP in terms of its 4 international structure is that countries like the 5 United States, so-called fuel cycle states, will make low enriched reactor fuel, presumably LWR fuel for a 6 7 while but maybe others in the future. And that will be leased to other countries for their reactors. 8 When 9 it's burned, it will be taken back to the United States and reprocessed, which means at the bottom line 10 that the wastes are going to end up here. 11 That's sort of part and parcel of it 12 because for the waste to end up there, you've got to 13 14 either reprocess it there or leave it there. I mean, 15 there are not too many ways out of that box. 16 You know, the debates ensue about who is 17 a fuel cycle state, who is not. And there is the Russian IAEA thing and then the U.S. thing. And I'm 18 19 told there's a lot of dialogue there, but I don't know 20 what is happening. But the waste take-back or spent 21 fuel take-back I think is an integral part of it to 22 achieve their proliferation objectives. 23 Secondly, on the minimization of waste, 24 that is a quick or shorthand phrase for something that 25 can be interpreted more than one way. Most people

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

126

	127
1	when they hear it think of minimizing waste volume,
2	but in the context of GNEP, that's not where DOE is
3	going.
4	What they basically want to do is minimize
5	the amount of troublesome radionuclides going to the
б	repository. And troublesome can either be
7	long-lived/toxic or heat emitters or a combination of
8	the two. And that's what causes them to want to go
9	after cesium and strontium and more of the actinides
10	for one or both of those reasons.
11	CHAIRMAN RYAN: And mobility.
12	VICE CHAIRMAN CROFF: Mobility has
13	something to do with it, too, yes. That's why they
14	want neptunium and technetium.
15	So what they are trying to minimize is a
16	set of impacts but not necessarily volume because for
17	the most part, volume isn't a problem for them. In a
18	repository, the heat is a problem. The heat causes
19	volume if I may call it that. I know that sounds sort
20	of crazy.
21	I'm glad the slide came back up. I wanted
22	to make a couple of points along the lines of what
23	Mike did, but I think I am going to come at it from a
24	slightly different vantage point. Looking at
25	objective 2 on technology maturity and using
	I

(202) 234-4433

	128
1	technology readiness levels, in order to assess
2	technology readiness, you have to maybe have a
3	technology, but you have to understand what it's
4	required to achieve, the goal, if you will.
5	And in a lot of cases, a number of cases,
6	concerning reprocessing and recycle, we don't have the
7	goals. Let me give you an example: iodine removal
8	from an off-gas stream. Are we going to have to
9	remove is the decontamination a factor of 50, a
10	factor of 100, a factor of 300?
11	Depending on what that goal is, maybe your
12	technology is in hand from previous experience three
13	decades ago or you've got to go your way back down the
14	food chain and you've got to do a lot of development
15	work.
16	And, coming back to what Mike was talking
17	about, until you have a regulatory structure, which
18	means standards, EPA standards and/or NRC regulations,
19	you don't know what those limits are. And those were
20	not fully developed at the time. So you have got this
21	problem.
22	And, similarly, with respect to the waste
23	types, if you and there is sort of a chicken and
24	egg problem here. You know, one, you sort of know
25	things that might come out of the plant, but you can
I	I

(202) 234-4433

affect that by combining things or processing things, 2 separating things, different waste forms depending on 3 where it is going to go, the disposal technologies you 4 have.

5 And right now, as Mike was saying, we don't have a complete set of disposal technologies for 6 7 the so-called intermediate or greater than class C is 8 probably what a lot of it would be called in NRC 9 There is an EIS ongoing, but I don't think space. 10 they're thinking about these kinds of wastes right They're thinking more about what currently 11 now. 12 exists.

And, again, the disposal technologies and 13 14 acceptance criteria or waste classifications affect 15 the waste that the plant could produce and might go back and a plant designer look at that and say, "Well, 16 gee, if this is my disposal options, you know, I'm 17 going to combine this with this and separate that and 18 19 these apart" because that works keep out verv 20 efficiently for me. So there's a circularity to it. 21 And, again, the waste disposal technologies really 22 aren't set up in anticipation of this.

23 Now, more specifically, on your sub-bullet 24 on objective 1, how did DOE analyze, Mike referred to 25 that one-page PowerPoint slide that's been shown many

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

	130
1	times about the showing uranium is class C and some
2	other things that sort of raised my eyebrows at least.
3	In a briefing last week, a representative
4	of GNEP, I guess, came in. And he was asked
5	specifically to address what they were doing about
6	waste. This is GNEP now. And I was expecting the
7	same slide that we have all seen but got something
8	very different. It was a half-hour long, but the
9	bottom line of it is that the GNEP program is now in
10	the initial stages of developing an integrated waste
11	management strategy for GNEP.
12	In other words, I think that what we have
13	seen before was a placeholder. And they have heard a
14	lot of discussion of it and a lot of questions about
15	it.
16	And they have recognized the need to do
17	something systematic on the waste. So they have gone
18	back almost to square one and said, "Okay. What are
19	the wastes coming out of this? And how are we going
20	to manage them?"
21	And in response to question and answers,
22	what I heard was almost all options were on the table
23	in terms of what waste to combine with the forms of
24	the waste and this kind of thing. So it wasn't nearly
25	as specific as even that one viewgraph we have been
ļ	I

(202) 234-4433

	131
1	seeing.
2	From what I heard, it sounded like they
3	want to have that analysis finished around the end of
4	this calendar year, which might be particularly
5	inconvenient for you, I would guess. That is where
6	they were going.
7	So at the end of the presentation, there
8	was a plan to prepare a strategy but no specifics
9	whatsoever on what would be in it or any of the
10	answers. So that is where they left us on it, which
11	is a very recent slice of input.
12	I think, finally, concerning schedules, I
13	suspect you may be hearing from the Academy sometimes
14	over the summer, let's say, on their ongoing study.
15	And we are targeting our white paper to be complete
16	around the end of the fiscal year. And I'm certainly
17	going to strive to do that because going into the next
18	fiscal year gives us some problems.
19	So that is where we are headed. And, you
20	know, stay tuned. I think someplace in the summer, we
21	will probably have another session on GNEP to hear
22	comments on the draft white paper. And, of course, a
23	lot of the same old gang will be here, if you will.
24	And we will see what they have to say about it. So I
25	am sure that will be of interest to you.

(202) 234-4433

	132
1	I don't think I have anything else. John,
2	do you have a question?
3	MR. FLACK: Yes. I have got two
4	questions.
5	VICE CHAIRMAN CROFF: Identify.
б	MR. FLACK: Yes. John Flack, ACNW staff.
7	Yes. Getting back, I guess, to the
8	discussion, probably one of the objectives on this
9	list would be regulatory maturity. Of course, that
10	could drive the technical maturity. So you will be
11	looking at that as part of this study.
12	That was my one question. And I think you
13	said you were going to that to some extent. The
14	second question I have is, is there a relationship
15	between GNEP or how you look at GNEP with respect to
16	other initiatives that DOE, like Gen-4, like NGNP?
17	I mean, we are developing a technology,
18	sodium technology. And there's gas-cooled technology
19	being can this country afford to develop these two
20	separately.
21	Maybe one of the things would be to stay
22	with one technology and then sort of be on the
23	coattails of that technology. And do you take credit
24	for that when you rank it so that you're getting
25	synergism between some other program?
I	I

(202) 234-4433

	133
1	Although the technology still needs to be
2	developed, it can essentially capitalize on that
3	development. Is that part of your program as well, to
4	look at that?
5	MR. COOK: To compare with NGNP and
6	MR. FLACK: Right, exactly. Fast gas, for
7	example, technology that keeps gas cooled.
8	MR. COOK: To me, it fits in this way.
9	And I'll go back to this slide here, objective 1. If
10	you look at and this is public. I'm not revealing
11	anything that any of you all can find out AFCI
12	documents, they have done for the past couple of years
13	something called a comparison report.
14	And one of the items, one of the
15	strategies compared on that report is the very high
16	temperature reactor, which is what they are planning
17	for the next generation nuclear plant.
18	So I look at it not so much as because
19	that is beyond the scope of our review to say, can DOE
20	support two development efforts? That's not what
21	we're looking at.
22	Maybe that's what the National Academies
23	are looking at in their review of the Office of
24	Nuclear Energy. But certainly the very high
25	temperature reactor is one of the options that AFCI,

(202) 234-4433

	134
1	from what I can tell, at least at one point was
2	considering.
3	MR. FLACK: It's out of the scope of your
4	study at this point, I mean, with respect to taking
5	credit for other things going on and in your study
6	that you may rank things higher because of that,
7	rather than doing them independently.
8	MR. COOK: Yes. That's an interesting
9	question. Right now it's out of the scope, but,
10	again, these comments were maybe that will change.
11	Maybe that is something that we need to look at.
12	CHAIRMAN RYAN: Joe, it might be useful in
13	your report to have a section or appendix or something
14	that says, "Things we didn't consider and why," at
15	least "Things we didn't consider."
16	MR. COOK: Absolutely. We won't have
17	CHAIRMAN RYAN: You probably ought a
18	little bit more formal and thorough view of that so
19	that people won't say, "Well, they didn't think of
20	this" and you can give them why and tell them why
21	things were included. That would probably enhance the
22	report, I think.
23	VICE CHAIRMAN CROFF: Latif?
24	MR. HAMDAN: Yes. Thank you very much.
25	That was good.
I	I

(202) 234-4433

	135
1	At the risk of repeating some of what has
2	been said, I, too, think that objective number two has
3	more to it. The technology maturity has to do with
4	technology that works.
5	You have recycling. But it also has to
6	look at the implementation and applications of the
7	fuel, transferring the fuel, to a frame concept,
8	teaching people how to do it there, at not just
9	economics but maybe cost as, you know, because maybe
10	economics will not do it.
11	You want to be in touch with a course and,
12	of course, they think about the waste, be it volume of
13	the waste or the waste the way Dr. Hinze and Dr. Croff
14	mentioned. So there is more to it, to mature
15	technology, than just reprocessing and creating the
16	fuel.
17	There is the application part of the
18	technology transfer and so on and so forth that you
19	will want to consider also. This is what it's for.
20	In other words, I didn't see it. You cannot really
21	completely evaluate the maturity of the technology
22	without considering the goals or the end products that
23	you really want to accomplish.
24	And that is in foreign countries, and that
25	involves transferring of fuel one way, transferring

(202) 234-4433

	136
1	the waste back. There is cost involved. There is
2	impact of the waste, be it volume or impact. All of
3	these things need to be considered, it seems to me.
4	MR. COOK: Okay.
5	VICE CHAIRMAN CROFF: Ruth?
6	MEMBER WEINER: I just wanted to expand a
7	little bit on several comments that have been made.
8	And I would hope that your report would include or
9	your study would include a comprehensive look at the
10	pieces of this that DOE and others have done in the
11	past.
12	I mean, we have had high temperature
13	gas-cooled reactors. The EBR-2, the processing of the
14	waste from EBR-2, is a very unique and interesting
15	process. And I would think that you have at your
16	fingertips a whole area of technology that has already
17	been investigated. And I would encourage you to look
18	at that as part of your technological maturity review.
19	I have to agree with what Latif said.
20	There's a whole lot that goes into it besides just
21	developing the technique. There is, what do you do
22	then?
23	VICE CHAIRMAN CROFF: Okay. Anybody else?
24	CHAIRMAN RYAN: One last thought.
25	Somewhere along the line, somebody is going to ask
	I

(202) 234-4433

	137
1	about, what does this all cost?
2	MEMBER WEINER: Yes.
3	CHAIRMAN RYAN: And so far I've heard a
4	big, huge number, probably more money than is on the
5	planet. I don't know, but, like I said, 40-year GANT
6	charts are usually pretty expensive.
7	So somewhere along the line, somebody has
8	got to scratch a pencil on a paper and say, "Does this
9	make any economic sense?" I'll just leave you with
10	that thought. That's one of those things that you're
11	going to leave in that list of stuff you didn't report
12	on perhaps. Maybe you are.
13	MR. COOK: Okay.
14	CHAIRMAN RYAN: Fair enough.
15	VICE CHAIRMAN CROFF: Anybody else?
16	MR. FEEHAN: I had a question from Denver.
17	VICE CHAIRMAN CROFF: Go ahead, Dan.
18	MR. FEEHAN: If you guys can hear me? I
19	guess a question that I anticipated but I didn't hear
20	was something that sort of stuck in my mind. If you
21	look at the schedule for GNEP, mostly what they talk
22	about is fulfilling the mission.
23	They talk about when they would bring an
24	advanced burner reactor online, for example. But they
25	sort of leave it at that. And they don't talk about

(202) 234-4433

	138
1	they need 18 advanced burner reactors. And they
2	probably wouldn't start transmuting any fuel until
3	2050, something along those lines.
4	So there are a lot of out years that are
5	not on that time line. It already goes out 40 years,
6	but it doesn't go out far enough. So I guess the
7	question that I anticipated was if you look what they
8	have in mind for Yucca Mountain in terms of dragging
9	spent fuel out to the repository and then they start
10	putting it into a repository, how did that match with
11	now you've got to drag it all back out of the
12	repository because I'm going to start transmitting the
13	actinides from the spent fuel, which now resides
14	inside the repository?
15	CHAIRMAN RYAN: Good question, Dan. We
16	wish you luck trying to answer it.
17	(Laughter.)
18	MR. DIAS: What Ward Sproat mentioned here
19	yesterday is that if you think of the fleet of
20	reactors they probably plan to have and I think DOE
21	is talking about maybe three reactors to burn he
22	doesn't see, you know, the capability of actually
23	going back and retrieving this stuff out of the
24	mountain.
25	You're probably going to be busy enough
I	I

(202) 234-4433

	139
1	just with what is currently being produced or what
2	will be then produced. That's what he mentioned
3	yesterday.
4	CHAIRMAN RYAN: The concept, all that's
5	doable. In principle
6	MR. FEEHAN: The question is that one of
7	the objectives with GNEP is to minimize the burden on
8	the repository.
9	CHAIRMAN RYAN: And you're asking when
10	they're going to do that.
11	MR. FEEHAN: That's the repository filling
12	up before you start burning oxidizers. You know,
13	there just doesn't seem to be a connection between the
14	two programs.
15	VICE CHAIRMAN CROFF: Dan, let me
16	elaborate just a bit. We did have Ward Sproat in.
17	And he was very forthcoming. I asked a question about
18	the connection between GNEP and the repository. I
19	mean, basically at this point they're incredibly
20	focused on the license application next year. I mean,
21	they know GNEP is out there potentially, but they're
22	just not thinking in that direction.
23	MR. FEEHAN: Right.
24	VICE CHAIRMAN CROFF: And my sense is if
25	it comes to that, you know, that's such a radical
ļ	I

(202) 234-4433

	140
1	departure from the present course. It's going to be
2	sort of a whole new set of documents and ball game and
3	that kind of thing.
4	But they're just not focusing on it.
5	They've got this other thing. And it's pedal to the
6	metal to try to make it for them. So that is it.
7	They're very focused.
8	MR. FEEHAN: Well, it seems like this is
9	getting into our technical background and our lack of
10	our technical background. I think one thing that the
11	committees that we talk to on the Hill would probably
12	be interested in from our perspective is just a
13	scheduling question because if the people who are
14	trying to license the repository aren't really paying
15	much attention to a new plan to start transmuting the
16	actinides, then that's probably something that we
17	could contribute to without having a technical
18	background.
19	CHAIRMAN RYAN: Well, a couple of points
20	we have touched on that are relevant and one skipping
21	detailed engineering design for the largest
22	reprocessing plant that has ever been built, so maybe
23	not a first choice for me.
24	MR. FEEHAN: Yes.
25	CHAIRMAN RYAN: Second, I think the allure
ļ	I

(202) 234-4433

1 of GNEP is every bit of it. Every piece, 2 transmutation, fast reactors, reprocessing, has been 3 done somewhere in the Earth to one degree or another, 4 generally with a pretty good research record, 5 pilot-scale record, and even some production-level record. But now we're going to take all of these 6 7 parts and pieces and stitch them together into a suit. 8 You know, that's a whole big other question. 9 So I wonder if we've got to be just 10 starting to think about it now as a system. How is this going to work as a system? And that's your 11 12 question, Dan. MR. FEEHAN: 13 Yes. 14 CHAIRMAN RYAN: What is the systematic 15 behavior of lightwater reactors, reprocessing, fast reactors, burner reactors, more reprocessing, fuel 16 manufacturing with actinides in it? 17 That's not a trivial matter. 18 Ts it 19 doable? Sure. Have we done tests? Sure. But how 20 much? Where? 21 MEMBER WEINER: If I could add a small 22 footnote. The schedule that we heard about for the 23 repository, which is, admittedly, already an 24 optimistic one, doesn't have the repository even 25 accepting fuel until 2017.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

141

	142
1	And as long as the repository is open and
2	at least until a fair amount has been filled up, the
3	material is retrievable. In fact, that's part of the
4	regulation is retrievability. So I think we're not
5	looking at suddenly on one day this stuff is put into
6	the ground never to be seen or heard from again.
7	I would encourage, as Dr. Ryan says, a
8	systematic approach that takes into account what
9	exists, including the plans for the repository.
10	MR. COOK: We haven't gotten into this a
11	whole lot with DOE, but my understanding is they have
12	a national technical director for systems analysis,
13	which, not having met with this person, I don't know
14	what it is. But I would imagine that this is exactly
15	what that person would want to be looking at, how many
16	fast reactors do you need, when do they need to come
17	online, how long is it going to take to transmute the
18	transuranic
19	CHAIRMAN RYAN: What's the efficiency of
20	transmutation?
21	MR. COOK: Yes, exactly.
22	CHAIRMAN RYAN: What are the wastes that
23	come out of it, all that sort of stuff? So, you know,
24	all the questions about waste, all the questions about
25	efficiencies, all the questions about cost are every
	I

(202) 234-4433

	143
1	single piece of this.
2	I mean, again, don't take my views as
3	negative. I'm trying to challenge it because somebody
4	somewhere along the line is going to ask for all of
5	these details.
6	VICE CHAIRMAN CROFF: I think at this
7	point we have run 15 minutes beyond our allotted time.
8	So I would like to thank you and your colleagues for
9	attending or listening in, as the case may be. And we
10	look forward to seeing you in a future meeting.
11	MR. COOK: Likewise.
12	VICE CHAIRMAN CROFF: Thanks.
13	CHAIRMAN RYAN: Thank you, Joe. It's a
14	really interesting session.
15	VICE CHAIRMAN CROFF: Thanks, Dan.
16	MR. FEEHAN: All right. Thanks.
17	VICE CHAIRMAN CROFF: Back to you, Mike.
18	CHAIRMAN RYAN: We are going to take a
19	short break, come back at 3:00 o'clock. And the
20	Committee will consider its letter writing and other
21	activities. So we will see you at 3:00 o'clock. And
22	we will close the record for the day here. Thank you
23	very much.
24	(Whereupon, the foregoing matter was
25	concluded at 2:45 p.m.)
I	I

(202) 234-4433