1	
2	
3	PUBLIC MEETING
4	BETWEEN U.S. NUCLEAR REGULATORY COMMISSION 0350 PANEL AND FIRST ENERGY NUCLEAR OPERATING COMPANY
5	OAK HARBOR, OHIO
6	
7	Meeting held on Tuesday, February 11, 2003, at 2:00 p.m. at the Camp Perry Clubhouse, Oak Harbor, Ohio, taken by me, Marie B. Fresch, Registered Merit Reporter,
8	and Notary Public in and for the State of Ohio.
9	
10	PANEL MEMBERS PRESENT:
11	U. S. NUCLEAR REGULATORY COMMISSION
12	John "Jack" Grobe, Chairman, MC 0350 Oversight Panel Christine Lipa, Projects Branch Chief
13	Douglas Simpkins, NRC Resident Inspector Jon Hopkins, Project Manager Davis-Besse
14	Anthony Mendiola, Section Chief PDIII-2. NRR
15	Dave Passehl, Project Engineer Davis-Besse
16	FIRST ENERGY NUCLEAR OPERATING COMPANY
17	Lew Myers, FENOC Chief Operating Officer Robert W. Schrauder.
18	Director - Support Services
19	J. Randel Fast, Plant Manager James J. Powers, III
20	Director - Nuclear Engineering Michael J. Stevens,
21	Director - Work Management Steve Loehlein,
22	Manager - Quality Assurance
23	
24	
25	

1	MS. LIPA: Okay. Good
2	afternoon. Can you hear me in the back? Good.
3	Okay. Well, welcome to FirstEnergy and to members
4	of the public. I'm Christine Lipa and I'm in Region III of
5	the NRC's Region III Office, and I have responsibility for
6	the NRC's inspection program at Davis-Besse.
7	And, we'll go through introductions in a moment
8	here, but let me just go to the next slide.
9	This is one of we've been having monthly public
10	0350 Meetings with FirstEnergy since last May. And, the
11	purpose of this meeting is to inform the public of the
12	NRC's Oversight Panel activities; and that's what we are up
13	here, the NRC's Oversight Panel; and, then also allow the
14	Licensee to present their status on their progress in
15	implementing their Return to Service Plan. And then, we'll
16	be discussing various parts of that plan.
17	We'll go through the rest of the you can go to
18	the next slide, which has the agenda. We'll go through the
19	rest of the introductions in a minute here.
20	Jon Hopkins is on my far left. He is the Project
21	Manager in Headquarters for the Davis-Besse facility.
22	Next to Jon is Tony Mendiola, and he is the Section
23	Chief at NRR.
24	Next to Tony is Jack Grobe. Jack is the Senior

Manager in the Region III Office in Lisle, Illinois; and

- 1 he's the Chairman of the Oversight Panel.
- 2 Next to me is Dave Passehl, and he's the Project
- 3 Engineer for the Davis-Besse Project in Region III.
- 4 And, next to Dave is Doug Simpkins, and Doug is the
- 5 Resident Inspector at the Davis-Besse facility.
- 6 Also, in the audience today from NRC we have Ivy
- 7 Netsell. She's is Resident Inspector at Cook, and she can
- 8 also get you a handout if you didn't get one when you came
- 9 in. Raise your hand, and Ivy will hand you one.
- 10 Also, we have Viktoria Mitlyng. She's our Public
- 11 Affairs Officer in Region III.
- 12 Nancy Keller is the Office Assistant for the
- 13 Resident Inspector Office at Davis-Besse, and she was in
- 14 foyer with the handouts.
- We have Jay Collins, who is a General Engineer on
- 16 rotation from Headquarters.
- 17 I also saw Rolland Lickus. He's our State Liaison
- 18 Representative. There he is.
- 19 And then our transcriber today is Marie Fresch.
- 20 And I'll turn it over to you, Lew, if you want to
- 21 introduce your panel, then I have more to say.
- 22 MR. MYERS: Fine. At the
- 23 end of table, Steve Loehlein. Steve is our Manager of
- 24 Quality Assurance. And last time we discussed that we
- 25 would like to have him here at the next public meeting, so

- 1 he's prepared to speak today on what quality assurance is
- 2 seeing at our plant.
- 3 Bob Schrauder is our Director of Support Services.
- 4 As you know, he's working in the Systems Area Building
- 5 Block now.
- 6 To my right, is Randy Fast. Randy Fast is our Plant
- 7 Manager.
- 8 Jim Powers next to him is the Director of
- 9 Engineering.
- 10 And then Mike Stevens at the end is the Director of
- 11 Maintenance; and as you know, he's also the Outage Director
- 12 at the present time.
- 13 MS. LIPA: Okay, thank you
- 14 Lew.
- Also, before we get started, are there any public
- 16 officials or representatives of public officials in the
- 17 room?
- 18 MR. ARNDT: Steve Arndt,
- 19 Ottawa County Commissioner.
- 20 MS. LIPA: Hi, Steve.
- 21 MR. PAPCIN: John Papcin,
- 22 Ottawa County Commissioner.
- 23 MS. LIPA: Hello.
- 24 MR. WITT: Jere Witt, County
- 25 Administrator.

1	MS. LIPA: Okay. Anybody
2	else?
3	Okay, good, thank you.
4	Okay, next on the agenda is a summary of the last
5	monthly public meeting we had here on January 14th. I'll
6	turn it over to Tony Mendiola for that.
7	MR. MENDIOLA: Can you all see
8	that slide back there?
9	Basically, to summarize the meeting on January 14th,
10	that we had here, the discussion centered on two main
11	areas; basically, the restart preparations on both the
12	Licensee's part and actions that we have as a panel have
13	performed to date; and, then basically, we broke further
14	down to the bottom of that topics discussed area, Safety
15	Conscious Work Environment.
16	Let me recap for a moment the discussion. The NRC
17	Restart Checklist, which is basically the action matrix
18	that we're working from, we provided the update on that,
19	and then discussed the status of various inspections, most
20	of which are ongoing or will be ongoing soon; and, various
21	meetings that we were going to have in the month of January
22	and early part of February associated with the Safety
23	Culture, and other meetings that we had or supported,
24	commission meetings, and congressional briefings and things
25	like that.

1	The FirstEnergy presentation focused primarily on
2	restart. They discussed the status of the physical
3	plant; basically, the construction work and modification
4	work that was ongoing on the site. And the, their working
5	off of their condition reports and corrective actions.
6	Basically, they use very similar to the charts you see
7	there on the, I guess on your righthand side of the room
8	there, discussing the various aspects of, of their programs
9	to complete these corrective actions.
10	There is a discussion of the, the Reactor Coolant
11	System Integrity Management Program, which you can see
12	about halfway down from the top was discussed there; and,
13	basically, a continued discussion on their readiness to
14	reload the fuel and other issues associated with the fuel
15	and fuel reliability.
16	In the interest of time, we did speed up the agenda
17	and moved right into the topic of the day, which was the
18	Safety Culture, Safety Conscious Work Environment topic.
19	At this meeting, the Licensee introduced Doctor Haber, who
20	is their consultant to help them implement the new safety
21	methodology at FirstEnergy at Davis-Besse, excuse me.
22	There was a discussion, detailed discussion of the
23	FirstEnergy model for Safety Culture. And, I don't see a
24	version of it here, but the Licensee provided a
25	four-pillared graphic, which discussed basic principles of

- 1 Safety Conscious Work Environment, and four pillars that
- 2 they are focusing on to improve the Safety Conscious Work
- 3 Environment at the site.
- 4 Upon completion of that conversation, which lasted I
- 5 would say about half the meeting, we then moved on to
- 6 closure.
- 7 For everybody's interest, the transcripts from that
- 8 meeting are available on the website. And, if there is any
- 9 other topic areas you would like to, need more information
- 10 on, you can see me during one of the breaks or at the
- 11 conclusion of this meeting. That's all I have.
- 12 MS. LIPA: Okay, thanks
- 13 Tony.
- 14 Then, the next slide was the next meeting we had,
- which was on January 30th. And we had a pretty lengthy
- 16 public meeting in the Region III Office, where we discussed
- 17 with FirstEnergy their plans for assessing the status of
- 18 Safety Culture and Safety Conscious Work Environment at the
- 19 facility; and the various methods of surveys, interviews,
- 20 and attributes that will be evaluated. This included
- 21 activities that have already taken place at the facility;
- 22 those that are continuing, and those that are planned over
- 23 the coming weeks.
- 24 And the slides for that January 30th meeting are
- 25 available on our website and the transcript will come out

- 1 after we finish processing it.
- 2 I did want to mention, I skipped over a few of my
- 3 introduction remarks at the beginning, that this meeting is
- 4 open to the public, and the public will have an opportunity
- 5 before the end of the meeting to ask questions of the NRC.
- 6 And this is what we consider to be a Category One Meeting
- 7 in accordance with the NRC policy in conducting public
- 8 meetings.
- 9 We're also having this meeting transcribed today to
- 10 maintain a record of the meeting. And the transcription
- 11 will be available on our web page. We usually have it
- 12 available in about 3 to 4 weeks.
- The agenda and the handouts are available in the
- 14 foyer and on the NRC's Web site. We also have the February
- 15 edition of the NRC monthly newsletter. This is a summary
- 16 we put together that has background information as well as
- 17 current activities.
- We also have a public meeting feedback form. And,
- 19 this is a really good tool for us to get feedback from
- 20 people that are here, to let us know aspects of the meeting
- 21 that we can improve on. And we've been doing that since
- 22 these started back in May. And we have actually changed a
- 23 few things, and I think we've made it a better meeting.
- And then, also our handouts for today and the
- 25 Licensee's handouts.

- 1 So, let me go on with the next slide then, which is
- 2 the Restart Checklist. What I want to do here was give you
- 3 an update on where we stand on the parts of the Restart
- 4 Checklist.
- 5 The first items are the technical and nontechnical
- 6 aspects of the Root Cause, and those are still under review
- 7 by the inspectors and technical review of NRR.
- 8 The next area is the Adequacy of Safety Significant
- 9 Structures, Systems and Components. And what we've done
- 10 here is, we had several inspections that have been out, so
- 11 let me go through a couple of highlights with you.
- For Item 2A, the main item that is still outstanding
- 13 for that is the Normal Operating Pressure Test that's
- 14 scheduled after the first Mode 4. So, we'll be covering
- 15 that with a special inspection.
- 16 For Item 2B, which is Containment Vessel
- 17 Restoration, the remaining activity there is the ILRT,
- 18 Integrated Leak Rate Test of containment.
- 19 For Item 2C, we have several unresolved items that
- 20 came out of the inspection that was done, and exited in
- 21 November.
- 22 For Item 2C-1, which is on the emergency sump, that
- 23 inspection will be performed once the utility has completed
- their mod package, and we'll also be inspecting the actual
- 25 sump that has been modified.

- 1 For Item 2D, the item that's remaining here is
- 2 inspectors to follow the Licensee's resolution of problems
- 3 that they've identified on boric acid containing systems
- 4 that are on-site containment.
- 5 The next area that we have is the Programs area.
- 6 And these are all programs that the Licensee is reviewing
- 7 in detail, and coming up with plans to address deficiencies
- 8 that they discovered. So, right now the inspectors are
- 9 planning to come out when the Licensee's reviews have
- 10 progressed sufficiently that there is something, a
- 11 completed product that we can inspect.
- 12 The next area is Section 4, which is the Adequacy
- 13 Organizational Effectiveness and Human Performance. And we
- 14 actually have three phases to this inspection. Phase one
- 15 has already been completed, and Jack will go through that
- in a few minutes and then we'll be continuing inspections
- 17 to address those checklist items.
- 18 Section 5, which is Readiness for Restart, these
- 19 areas are not really ready for inspection yet.
- 20 And then Section 6, which are several licensing
- 21 actions. And for all of you, licensing actions, which is
- 22 the first bullet there, the NRC has received the
- 23 information that they were waiting for from the Licensee,
- 24 and it's under NRC review, but there is no outstanding
- 25 questions. We do plan to document closure of these many

- 1 systems in Inspection Report 0302.
- 2 And then the final item on the Restart Checklist is
- 3 a meeting at the end of Confirmatory Action Letter Items
- 4 Resolution to discuss restart when the utility is ready for
- 5 that part of the process.
- 6 Okay. The next slide is, I'll turn it over to Jack,
- 7 and he'll discuss some recent inspection activity and some
- 8 upcoming inspection activity.
- 9 MR. GROBE: Thank you
- 10 Christine.
- 11 Can you hear me okay? Excellent.
- 12 We've issued one Routine Resident Report and one
- 13 Special Inspection Report since the last time we met. The
- 14 Routine Resident Report covered a broad spectrum of areas
- 15 as is characteristic of all of our Resident Reports. The
- 16 Residents are on site every day and they inspect ongoing
- 17 activities at the plant in the areas of maintenance and
- 18 operations and testing.
- 19 The Special Report that was issued concerned the
- 20 checklist items dealing with the adequacy of the Root
- 21 Causes in the Human Performance area, as well as the
- 22 adequacy of the Licensee's Improvement Initiatives. That's
- 23 Checklist Item 1 and Checklist Item 4.
- 24 The report documented the results of inspections
- 25 that covered the first two Root Causes. The very

- 1 substantive Root Cause that the Licensee submitted last
- 2 August, that addressed what is commonly referred to as a
- 3 barrier analysis. It was looking at barriers to failure in
- 4 all aspects of operation of the plant.
- 5 And in addition to that, there was an additional
- 6 analysis that was performed of the Quality Assurance
- 7 aspects of the plant operations. It was specifically
- 8 targeted in the QA Program and the implementation of that
- 9 program.
- 10 The inspection team found that both those analysis--
- 11 analyses were comprehensive and the identified corrective
- 12 actions to address the issues identified in the analysis
- 13 appeared to be adequate, if they're properly implemented.
- 14 In addition, the inspectors identified a number of
- 15 questions regarding the scope of the two remaining analyses
- 16 that the company was planning, particularly questions
- 17 regarding the impact of engineering on the problems that
- 18 were discovered last February, and the impact of corporate
- 19 support.
- 20 So, the Licensee has since that inspection completed
- 21 its analyses in the area of Plant Operations, as well as
- 22 the Safety Committee's function, and added to that analyses
- 23 in the area of engineering and corporate support. Those
- 24 four remaining analyses are now complete and we'll have
- 25 inspectors that will be coming back to the facility this

- 1 month to continue that inspection.
- 2 As Christine mentioned, this inspection is being
- 3 done in three phases. The first is ensuring that the root
- 4 causes are sufficient. The second is to make sure that the
- 5 corrective actions that the company has identified appear
- 6 appropriate to address those problems that FirstEnergy
- 7 identified. And third, looking at the implementation of
- 8 those corrective actions and their effectiveness prior to
- 9 restart.
- 10 So the, a portion of the first phase has been
- 11 completed, and we'll be continuing with the rest of phase
- 12 one of that inspection and moving into the second phase.
- 13 In addition on this slide, you'll see the second
- 14 bullet concerns the System Health Reviews. I believe, I
- 15 looked ahead in FirstEnergy's presentation and they're
- 16 planning on having Bob Schrauder address some of those
- 17 engineering areas in the System Health Reviews.
- 18 We have ongoing inspections, particularly focusing
- 19 in the engineering areas, and the company has worked
- 20 continuously in that area, so our inspections are tracking
- 21 as they complete work activities, we send folks out to
- 22 inspect those activities.
- 23 In the Program Effectiveness area, we had two
- 24 programs that we need to complete our review of on the
- 25 short run, and those are the Boric Acid Corrosion

- 1 Management Program, and the Reactor Coolant System Leakage
- 2 Program. Then there is a number of other programs that our
- 3 inspectors are tracking Licensee progress, and we'll be out
- 4 to inspect when they're ready for inspection.
- 5 There are, as Christine mentioned, a couple of other
- inspections that are scheduled in the near term. Those
- 7 include the Integrated Leak Rate Test and the Pressure Test
- 8 of the Reactor Coolant System.
- 9 We expect to see those occurring in the next several
- 10 weeks, as well as, hopefully, a specific targeted
- 11 inspection in the radiation protection area. As you may
- 12 recall at the last monthly meeting, we publicly discussed
- 13 the results of resent inspections in the area with
- 14 protection of workers on site as well as controlled
- 15 materials that, radioactive materials that could
- 16 potentially get off site. Identified a number of findings
- in those areas. And shortly our inspectors, our radiation
- 18 safety inspectors will be back out to look at the
- 19 corrective actions the company has implemented in the
- 20 Radiation Protection Program.
- 21 I think that summarizes continuing inspections,
- 22 Christine.
- 23 MS. LIPA: Okay. Thank you.
- Then, if you could go back to slide 3.
- 25 This is just the agenda. And next on the item is

- 1 the fourth bullet, which is the Licensee's presentation,
- 2 and then following that, we'll take a break, and then we'll
- 3 have the public comments and questions period.
- 4 So, I'll turn it over to you, Lew.
- 5 MR. MYERS: Thank you.
- 6 We have four Desired Outcomes today. First, we
- 7 thought we would take some time and update the NRC and the
- 8 public on our efforts that we made toward restart in the
- 9 past month. Specifically, Randy Fast will provide you
- 10 some, a review of where we're at from a fuel load
- 11 standpoint right now.
- 12 And then, Jim Powers is going to talk to you about
- 13 the Integrated Containment Leak Test that's coming up,
- 14 probably before our next meeting. And that test was
- 15 designed, since we installed the reactor vessel head, we're
- 16 going to go back and pressurize the containment and prove
- 17 it's leak tight, designed pressure. So, Jim will talk to
- 18 you about that.
- 19 From a System Health standpoint, Safety Function
- 20 Validation Project is a project we took on after we did the
- 21 initial reviews of our systems. We always said, after we
- 22 did those, that we would increase our scope based on what
- 23 we found. So, we took on another set of systems that we
- 24 wanted to go look at. We call that program the Safety
- 25 Functional Validation Project. Bob Schrauder will talk

- 1 about that.
- 2 Then from a Restart Readiness standpoint and Safety
- 3 Culture, we had a meeting January the 30th, and spent six
- 4 hours there. I'm going to try to recap that meeting in
- 5 about six minutes. And then provide a review of what we've
- 6 done as a Restart Readiness Review at the plant for fuel
- 7 load.
- 8 So, we had Restart Readiness Review meetings, and
- 9 finally at the end of those meetings graded our own Safety
- 10 Culture, where we think we're at using our model. So, I
- 11 thought I would spend some time on that today.
- 12 Then, Quality Assurance, Steve Loehlein, we talked
- 13 about having him here the next time, this time, to discuss
- 14 what the Quality Assurance Oversight Group is seeing at our
- 15 station. They were brought up through Bill Pearce, our VP
- 16 of Quality Oversight, and provide us an independent
- 17 assessment.
- 18 Then, finally, Mike Stevens will spend some time to
- 19 talk to you about our schedule, where we're at. We thought
- 20 right now that we'd have fuel load, at the last meeting at
- 21 this time. We haven't got there yet. Just spend some time
- 22 on that, where we're going in the next few months, and few
- 23 weeks, okay.
- 24 That's it.
- 25 With that, I'll turn it over to Randy.

1	Next slide.
2	MR. FAST: Thank you, Lew.
3	Good afternoon. Today, I would like to update us on
4	our Restart Readiness. I'll provide discussion and focus
5	in four key areas; those are fuel readiness, our plant
6	status, our processes and finally an update on observations
7	and the observation program.
8	Next slide.
9	First on the fuel. We worked with our fuel supplier
10	in identifying why we had indications on fuel assemblies,
11	damage on grid straps. I'll kind of show you right here is
12	what we call a grid strap.
13	That area provides support for the fuel rods
14	themselves. The fuel rods are the array that you see here,
15	the vertical rods. What we found in the movement of fuel
16	on some new assemblies in the spent fuel pool, we had
17	damage on, specifically on the corners of those grid
18	straps.
19	What we identified were three key areas; one of
20	which was the design and material selection. These are a
21	fairly soft metal, and prior to being irradiated, are
22	actually fairly malleable. And that design is one that the
23	industry is well aware of and there are actions being taken
24	by Framatone to improve that grid strap design.
25	Secondly, we looked at our equipment to see, was it

- 1 operating the way we would expect it to. And we did find
- 2 in the spent fuel pool the equipment had some alignment.
- 3 We require vertical indexing over each assembly; and as
- 4 well the indexing, that's the grid location were off a
- 5 little bit. So, we did take the action to go back and
- 6 reindex the spent fuel pool.
- 7 Lastly, we identified some of our handling
- 8 techniques. We weren't using industry experience as well
- 9 as we could, and we went back and evaluated that; got some
- 10 help from the industry, and best practices for moving
- 11 fuel. We believe that those corrective actions are
- 12 effective and they will ensure that we can reliably move
- 13 the fuel.
- 14 One of the things I want to point out is, these grid
- 15 straps are really a structural mechanism and it's not a
- 16 contributor to fuel failure. Although, we were concerned,
- 17 and we want to make certain that we're handling the fuel
- 18 properly, it did not result in the root cause analysis in
- 19 actual fuel failure.
- 20 This assembly right here is actually an assembly
- 21 that had grid strap damage and was sent back to the fuel
- 22 supplier and remanufactured. This is one of our reactor
- 23 engineers here performing an inspection of that assembly as
- 24 it was returned to the site.
- 25 Additionally, as part of this outage, we've taken on

- 1 an opportunity to improve our main fuel handling
- 2 equipment. And we have put in a state of the art fuel
- 3 bridge modification, which includes improved controls and
- 4 it will improve our reliability.
- 5 Now, part of this whole process of moving fuel takes
- 6 a dedicated team of individuals. And we've partnered with
- 7 our fuel supplier, Framatone, to move the fuel. And we
- 8 actually have four senior advisors that are working with
- 9 our Operations staff as part of that fuel movement. That
- 10 compares with normally you will have one at a station in
- 11 that senior advisory capacity. We have four. So, we can
- 12 ensure that we have round-the-clock coverage and we have
- 13 the best industry experience to help us in moving that
- 14 fuel.
- Lastly, we have completed all the training. So,
- 16 each position associated with the movement of fuel have
- 17 gone through an exhaustive training program and we've
- 18 recertified all of our folks to ensure we can have safe and
- 19 reliable transfer of fuel.
- 20 MS. LIPA: Randy, I have a
- 21 couple of questions for you about the fuel. First of all,
- 22 did you assess the design issue with the grid straps under
- 23 part 21; and then second, what was the root cause of the
- 24 fuel failures?
- 25 MR. FAST: Okay. Christine,

- 1 the first question on the part 21, we have not submitted
- 2 that as a part 21. And, again, what I'll do is take an
- 3 action to assess that, and see whether or not -- I believe
- 4 from a reportability standpoint it wouldn't be, but it
- 5 might be advisable to provide some, a report just to make
- 6 sure you're on board with what we found.
- 7 This particular root cause was not in the fuel
- 8 failures themselves. This was in the grid strap. So, we
- 9 have another root cause. And I would have to think back,
- 10 because that's really quite a few months ago that we had
- 11 completed that review, and actually had a space there --
- 12 excuse me, grid rod threading, which is high frequency
- 13 vibration of the fuel rod. And the threading is the actual
- 14 rubbing of the spacer grid components against the fuel rod
- 15 and actually wears a hole in the fuel rod.
- And that's where the root cause was completed
- 17 earlier. It was not part of this root cause and
- 18 preparation. And all the corrective actions from that had
- 19 been completed as well. Some of those are corrective
- 20 actions where we provided some solid stainless steel rods
- 21 in place of the actual fuel pelleted rods in locations
- 22 where we saw that the grid-to-rod threading was more
- 23 pronounced and that is actually adjacent to LOCA holes
- 24 inside the core.
- Those are areas where you have increased flow comes

- 1 in contact with the fuel rod, sets up a high frequency
- 2 vibration, allows the fretting to occur. So, we stabilize
- 3 that by providing some stainless steel rods in those
- 4 locations.
- 5 MS. LIPA: Okay. Thank
- 6 you.
- 7 MR. GROBE: Randy, before you
- 8 go on, I understand one of the activities you need to
- 9 complete prior to commencing fuel reload has to do with
- 10 reactor vessel cleanliness, and I heard that some of the
- 11 materials that were identified in the vessel were grid
- 12 strap materials. Could you go into a little bit on the
- 13 issue of reactor cleanliness and what you're doing about
- 14 that?
- 15 MR. FAST: Certainly. As
- 16 part of fuel load preparations, we do a thorough inspection
- 17 of the reactor vessel and the area underneath the vessel.
- 18 The fuel sits on a, what's called a core barrel. It's
- 19 really an assembly in the bottom of the core that provides
- 20 support for the 177 fuel assemblies.
- 21 During this period of time where the fuel has been
- 22 offloaded in the spent fuel pool, we want to do a complete
- 23 and thorough inspection of the reactor internals and of the
- 24 core barrel and the lower portion of the vessel to ensure
- 25 there was no foreign material or any debris.

- 1 What we found through that was a number of
- 2 indistinguishable piece parts, I'll call it; some of which
- 3 are most probably pieces of grid strap. We did, I think
- 4 today, identified a ball bearing. Don't know exactly, it
- 5 may have come from one of the tools that is used for fuel,
- 6 but that's something we're going to have to evaluate.
- 7 As well, saw some foreign material, light debris,
- 8 some of which was probably some paint, paint chips and the
- 9 like. And we've gone through and vacuumed that. We
- 10 redistributed it. We do a video. That's kind of, I'll use
- 11 the word, Lew likes this, a cursive process. We actually
- 12 go in, we clean, we go back inspect. We have to meet Class
- 13 B Cleanliness Requirements for the Reactor Coolant System
- 14 for stainless steel systems.
- So, we'll continue to clean the vessel until we meet
- 16 the Class B Requirements.
- 17 MR. GROBE: Okay, thank you.
- 18 MR. MENDIOLA: Randy, if I could
- 19 ask a question. You mentioned there was an alignment
- 20 problem in your spent fuel pool. Could you tell us a
- 21 little more about that?
- 22 MR. FAST: Tony, what you
- 23 have is a series of what I'll call X Y axes for each fuel
- 24 location. And we had gone through in 2001, and then into
- 25 2002, a rerack project. What that is effectively, is we

- 1 needed to provide more storage location in our spent fuel
- 2 pool for expended fuel.
- 3 As part of that rerack project, we had some of the
- 4 locations off by as much as about a half an inch. When you
- 5 look at the very close tolerances of the storage locations
- 6 and the fuel and the mast, we found that we had an
- 7 opportunity to set up, an opportunity to have grid strap
- 8 the corners that come in contact with those storage
- 9 locations.
- 10 So, we went through and reindexed the pool. And I
- 11 know now we're within about an eighth of an inch, .125
- 12 inches, that's well within the design requirements for fuel
- 13 identification.
- 14 Additionally, we had some compensatory measures
- 15 where we used a camera to verify that we're on index.
- 16 There was one other issue that is called out in the report,
- and that was the potential that the fuel mast itself was
- 18 out of vertical. What we found is that it was in vertical;
- 19 however, there are some spacer, spacer plates in there that
- 20 provide very, very close tolerances. What we've asked
- 21 Framatone to do is review that design and see whether we
- 22 can open some of those tolerances that will provide a
- 23 little more flexibility in handling fuel in the spent fuel
- 24 pool.
- 25 MR. MENDIOLA: Okay. Basically,

1 it had to do with the position of the rack within the pool;

- 2 meaning, if you will, in an appropriately indexed
- 3 position.
- 4 MR. FAST: Yes, sir.
- 5 MR. MENDIOLA: Not the fuel in
- 6 each of the locations, but the rack itself.
- 7 MR. FAST: Yes, and actually
- 8 I asked that question. The fuel in the assembly could be
- 9 at any one of the, it may be pushed over to any one of the
- 10 north, south, east, west walls, and you should still be on
- 11 index it at that point. That's where some of those
- 12 tolerances, those stackup tolerances come from. That's
- 13 well within the design, but the index in itself was off by
- 14 as much as a half an inch.
- 15 MR. MENDIOLA: Thank you.
- 16 MR. FAST: Next slide,
- 17 please.
- We talked last time about reactor coolant pumps.
- 19 Just to refresh, we did complete refurbishment on the 1-1
- 20 and 1-2 reactor coolant pump and reactor coolant pump
- 21 motor. This is one of the reactor coolant pump motors
- 22 that's being lowered down into the D ring inside of
- 23 containment.
- A guestion came up about, we did two out of the four
- 25 reactor coolant pumps. You would say, why did you do two

- 1 and not do the other two. This was what I'll call elective
- 2 maintenance. We were well within the normal preventative
- 3 maintenance periodicity. However, we took this as an
- 4 opportunity to open up and do inspections on the pump and
- 5 motor.
- 6 And part of the issue here was, as well, going back
- 7 to the extended condition, boric acid. We had some legacy
- 8 issues in boric acid leaking from the flanges for the
- 9 reactor coolant pumps themselves. That was an industry
- 10 understood situation.
- 11 Framatone had come up or Byron Jackson, the supplier
- 12 of the pump, has a new generation seal that provides better
- 13 sealing and leak prevention; and it's much like a reactor
- 14 vessel, it's a dual O-ring seal design. We went with new
- 15 generation on these two.
- The other two are well within their periodicity.
- 17 The other two pumps that we did not go after, and motors,
- 18 are well within their design for preventative maintenance.
- 19 We didn't see any extended condition items from the
- 20 analyses of these two pumps and motors that would drive us
- 21 to go after the other two.
- We will continue to monitor those and we'll
- 23 implement corrective actions in accordance with our
- 24 Preventative Maintenance Program.
- 25 Next slide, please.

- 1 This is about the best picture I can provide to-date
- 2 on the upper portion of the containment emergency sump.
- 3 And as we talked last meeting, I had one of the top hats
- 4 here, which is the cylindrical filter assemblage that
- 5 allows the 3/16 inch holes that are drilled, water during a
- 6 design basis accident floods the containment and comes up.
- 7 And these, I'm going to use a term here that we kind
- 8 of affectionately call, trash racks. This is a large
- 9 filter on the outside. You'll see some of the top portions
- 10 of those racks, which fit around the top of this. That
- 11 provides a first barrier for the straining of any foreign
- 12 material.
- And then, inside this upper portion, about 400
- 14 square feet, about 15 square feet each of 27 top
- 15 hats, provide that top level of the strainer.
- 16 This is now functional, the upper section. And we,
- 17 after fuel load and recovery of the reactor coolant system
- 18 fuel and vent we'll complete the lower portion of the
- 19 containment emergency sump.
- 20 It's a pretty good picture of the area. It's at the
- 21 565 elevation of containment against the south wall.
- 22 MR. HOPKINS: I have a couple
- 23 questions on that. In the Licensee event report that you
- 24 submitted to us, especially Revision One dealing with the
- sump, you talked about part of the reason for the new sump

- 1 is the old sump had a gap that was too large, and that
- 2 could potentially affect containment spray systems.
- 3 You also stated that besides that potential affect
- 4 on containment spray systems from the too large gap which
- 5 you had to fix one way or another, and your fix is with the
- 6 new sump; that the new sump would also provide you extra
- 7 margin with regards to amount of debris that might get on
- 8 the screens.
- 9 Have you made any finding with regard to the amount
- 10 of debris on the old screens, would have been too much?
- 11 MR. POWERS: Let me answer that
- 12 one, Jon. On the old screens, they're about 50 square feet
- 13 of screen material on the old sump. And, we have been
- 14 preparing what we call a transport analysis that takes an
- 15 assessment of the debris that can be generated during an
- 16 accident in containment.
- 17 (Microphone problem)
- 18 Thank you, Mike. Let me start again.
- 19 The old sump had about 50 square feet of screen,
- 20 screenage on it to allow water flow-through, and the new
- 21 sump has about 12, 13 hundred square feet. So, we've
- 22 improved that substantially.
- Now, what we have done since we've been comparing
- 24 this new design is doing a transport analysis, looking at
- 25 debris sources within containment, and we're following some

- 1 of the latest industry guidance on that. The industry has
- 2 learned quite a bit over the years from the original
- 3 licensing and design basis of the containment emergency
- 4 sumps up until today.
- 5 Originally, the sumps were designed back in the late
- 6 60's and through the mid 70's, to consider a 50 percent
- 7 blockage. And that was relatively nonmechanistic, if you
- 8 will. Assume it's 50 percent plugged and determine there's
- 9 adequate MPSH to the pumps with that blockage.
- 10 As we gone on with time and incidents have occurred
- 11 relative to sumps, we've assessed more accurately what
- 12 kinds of debris can cause problems with the sump, how would
- 13 debris get down to the sump. And the industry, as well as
- 14 your organization, has done studies on that, modeling what
- 15 we call transport debris generation and transport down to
- 16 the sumps.
- 17 And we completed that ourselves. We determined that
- 18 given what we refer to as a design basis condition, we get
- 19 a large break of a reactor coolant pipe, a lot of steam,
- 20 and pressure released; there can be, there can be a
- 21 substantial amount of debris that is transported down to
- 22 the sump area.
- 23 Of course, there is smaller type breaks, you would
- 24 have a condition where not as much debris would get down
- 25 there, and the sump generally is, is more functional when

- 1 you have smaller types of breaks.
- 2 So, what we said in our Licensee Event Report that
- 3 you were referencing is related to design basis accidents,
- 4 how much debris can get down there. What we determined is
- 5 with our new sump, and new screenage, that we would have
- 6 margin available, even under that condition, extreme
- 7 conditions to our pumps.
- 8 MR. HOPKINS: All right. I'll
- 9 just mention that the NRC is going to issue a draft generic
- 10 letter on this issue, I think within the month. So, you
- 11 want to read that, see what it says.
- 12 MR. POWERS: Okay, thanks.
- 13 We'll be watching for that.
- 14 MR. GROBE: Jim, could you go
- 15 into a little more detail on the transport analysis? Are
- 16 you analyzing the as-found conditions in February of 2002?
- 17 MR. POWERS: No, what we really
- 18 looked at, Jack, was design basis conditions; worst case,
- 19 large break, LOCA accident conditions. And we're looking
- 20 at it from the perspective of what was found to give a
- 21 safety significant assessment. And, we've begun preparing
- 22 that now.
- 23 Because, what was found in February with the
- 24 degradation on the head would constitute a relatively
- 25 smaller type of break in the reactor coolant pressure

- 1 boundary, and relatively contained within the service
- 2 structure on top of the head. So, we wouldn't expect from
- 3 that type of as-found condition to have a lot of debris
- 4 generated that would transport down to the sump. It's a
- 5 very tortuous path to get down to the sump from that
- 6 location.
- 7 So, what we've been analyzing for a design basis and
- 8 reporting in our LER, is large break design basis. We will
- 9 provide however a safety significant assessment on what was
- 10 found in February.
- 11 MR. GROBE: What are the
- 12 major contributors to the debris that you're talking about?
- 13 MR. POWERS: Major contributors
- 14 are insulation, and it can be either metallic, reflective
- 15 metallic insulation or fibrous insulation that's wrapped
- 16 around pipes and components; coatings, if they're not fully
- 17 qualified, the temperature, pressure and radiation within
- 18 containment that can exist after an accident.
- 19 Also, when you consider a large break, design basis
- 20 break, we're talking about very violent discharge of jet,
- 21 of reactor coolant, that can strip concrete and paint and
- 22 insulation off adjacent structures; and that's what
- 23 constitutes the debris. That's what the industry guidance
- 24 in recent years has defined what the, what's the
- 25 constituents of the debris. So, that's the type of thing

1	that we look for.
2	MR. GROBE: So, the design
3	basis worse case design break is what you're analyzing.
4	Are you looking at the as-found coatings with that
5	analysis?
6	MR. POWERS: We, yes. And, as
7	we've described over the, some of the last meetings, we've
8	been looking very carefully at our coatings within
9	containment; and as we go through some of the progressive
10	slides here in Randy's presentation, you'll see the
11	recoating project we're doing on the top of the containment
12	dome. Where you can stand up on the refueling floor and
13	look upwards. It's quite a height up there that we're up
14	working with painters, stripping and recoating to assure we
15	maintain a qualified coating system up there.
16	We've also recoated our core flood tanks. We're
17	working on recoating service water piping. We found on a
18	very thorough containment walkdown and assessment of
19	coatings, that our conduit that some of our cable and
20	wiring runs through has a coating system on it that's not
21	fully qualified for the post-accident conditions.
22	So, we're very carefully looking at that to see to

what extent that coating needs to be removed and replaced.

determination to what extent that needs to be removed and

And we're using our transport analysis to make a

23

24

1	what extent it can be allowed to stay, and very clearly
2	defining in our inventory of unqualified coatings in
3	containment, you know, what the as-left condition will be.
4	MR. GROBE: In the analysis
5	that you performed, how significant a role did the
6	unqualified coatings play?
7	MR. POWERS: The unqualified
8	coatings is pretty significant overall. If you look at the
9	square feet of coating within the large containment
10	structure, there is quite a bit of coatings. So, to us,
11	that was a significant part of the, the walkdown of
12	containment under Containment Health, looking for coating
13	qualification information, inspecting the condition of the
14	coatings, and looking for repairs on the coatings, because
15	there is a large amount of coatings; a significant
16	contributor to potential debris for the sump.
17	MR. GROBE: Okay. If you
18	could just summarize for me in a few words the conclusions
19	of your analyses to-date with respect to whether or not the
20	sump would have functioned given a design basis accident?
21	MR. POWERS: Given a design
22	basis accident, there is a, there is a concern with the
23	amount of debris that can be generated under design basis
24	conditions, because of what I described as a very large

break, a large amount of debris being transported. And, we

- 1 think the original sump, which was designed in accordance
- 2 with the design regulation and criteria at that time, could
- 3 have been blocked to a large extent by debris.
- 4 When I look though at the conditions that were found
- 5 in February, with the head degradation, it's really, it's
- 6 not in the same regime, I guess you would say, as a design
- 7 basis large break. It's a smaller potential, potential for
- 8 a smaller break there. So, we think under that case, the
- 9 sump likely would remain functional.
- 10 But, the reason we reported our conditions under the
- 11 LER, was for design basis condition, we did not feel that,
- 12 that the original sump would have been satisfactory.
- 13 MR. GROBE: Thank you.
- 14 MR. FAST: Next slide,
- 15 please.
- 16 I wanted to point out, what we have here, what we
- 17 call the decay heat pit. We've actually renamed this.
- 18 This is a decay heat tank. This is legacy issue that two
- 19 decay heat valves that are in a vault in containment which
- 20 are required to operate post accident any time from
- 21 immediately following the accident up to about a week after
- 22 the accident. And, those valves have been sealed
- 23 traditionally with sealing RTV material.
- We wanted to take a proactive approach at resolving
- 25 that legacy issue by providing in this case the stainless

- 1 steel vault or tank. And this photograph is probably
- 2 difficult for you to see, but what you see is a curved
- 3 section right here, which actually is installed to allow
- 4 for thermal expansion of that tank.
- 5 So, this design will ensure that integrity is
- 6 maintained for these two important valves in containment.
- 7 It will be completely sealed prior to our going to Mode 4,
- 8 and that work is proceeding well, but I thought of interest
- 9 would be this design feature that includes for thermal
- 10 expansion within that tank.
- 11 Next, please.
- Here we have the containment air coolers. We've
- 13 talked about that quite a bit. There are three in a row.
- 14 Again, it may be difficult for you to see, but there is the
- 15 third one back here; the one most pronounced in the middle
- here; and then there is one in the foreground.
- 17 What I wanted to be able to point out is we're
- 18 making excellent progress in returning these. These are
- 19 completely refurbished. New cooling coils; as well, all
- 20 the structural steel has been blasted and recoated. What
- 21 you see right here is a foreign material exclusion cover on
- 22 a service waterline. This is the line, the blue line
- 23 that's coming in. You have an inlet pipe and an outlet
- 24 pipe. Those distribute water into and then out of these
- 25 heat exchangers.

1	What we have is a brand new design that again allows
2	for thermal expansion under design basis accident
3	conditions. It's actually conduit and stainless steel
4	bellows assembly, and that will allow for some thermal
5	growth. So, these are not installed yet. That's one of
6	the last things that we have yet to do. And those are in
7	fabrication.
8	So, that supply and return header will be attached
9	to, in this case, the, there are three heat exchangers
10	here, and three heat exchangers here. On the opposite
11	corner you have as well the other, so there is a total of
12	twelve heat exchangers, you have the other inlets and
13	outlets. So, you can see that these have been completely
14	refurbished.
15	The fan motors inside are all new and completely
16	refurbished. We have brand new what's called dropdown
17	dampers. The air flow comes from the area here in the
18	general vicinity is pulled through the heat exchanger,
19	comes down through a fan, and is exhausted through a
20	plenum, which is our next picture. But under design basis
21	accident, there is a drop down register. I'll point it out
22	in the next photograph, but those actually open up to short
23	cycle the redistribution of air within containment.
24	Here is, what's really like a boxcar or

tractor/trailer. It's about 40 feet wide, and this is just

- 1 about completed. The drop down damper, difficult to see,
- 2 but it's a damper that's right in this area here. And that
- 3 damper would close, and there is an upper portion that
- 4 opens. It's got fusible lengths that under heated
- 5 conditions allows the damper to open and short cycle the
- 6 air under design basis accident.
- 7 On the far side, on either end of this plenum, this
- 8 is a common plenum for all three containment air coolers,
- 9 you have some turning veins. It's a 90 degree turning vein
- 10 comes exhausted out, has two separate sections of 90 degree
- 11 turning vein; and then brings the air under normal
- 12 recirculation back into the D ring.
- So, that's a stainless steel, half inch stainless
- 14 steel plate floor; stainless steel walls that have been
- 15 bolted together; and we're working on the overhead in
- 16 connecting everything together. So, making very good
- 17 progress on our containment air coolers that will greatly
- 18 improve environmental conditions and ensure reliability for
- 19 basis design accident.
- 20 Next slide.
- 21 MR. GROBE: Randy, before you
- 22 go on, could you or Jim or Bob, discuss a little bit of
- 23 your analysis of the as-found condition of the containment
- 24 air coolers and the, as far as whether or not they would
- 25 have functioned as designed?

1	MR. POWERS: Yeah, we've been
2	analyzing the containment air coolers. And, for those of
3	you who haven't attended previous meetings, a description
4	of those air coolers Randy described the air being drawn
5	through them. Well, the air in the containment had boron
6	mist in it, and those cooling coils were fouled somewhat
7	with that boron precipitating out.
8	So, we needed to do an assessment on how that would
9	affect our heat transfer capability. And we've also
10	disassembled the cooling coils as we completely rebuilt
11	them, and inspected them as part of that process; and found
12	when we opened them up, there was some, inside some
13	deposits from the water system that had built up over
14	time. So, we took into consideration all of those factors
15	in the performance of the containment air coolers.
16	Now, we did a thermal performance calculation, and
17	from the design basis, licensing basis conditions of the
18	plant, the containment air coolers work in conjunction with
19	containment spray system to control the containment
20	pressure and temperature conditions in a post accident
21	environment. And, what we found is that working in
22	conjunction with containment spray, the containment air
23	coolers would be operable and perform their function to
24	control containment conditions.
25	What we're going through now in the details is

- 1 assessing the functionality of the sump, which I just
- 2 described; and on an integrated basis, if we had a, an
- 3 accident in the containment, the function of containment
- 4 spray, which takes suction on the sump, and the containment
- 5 air coolers; and what the likelihood is, that the, you
- 6 know, the performance and functionality of the sump would
- 7 be affected.
- 8 And so what we're doing, what I refer to safety
- 9 significance assessment, that's taking into consideration
- 10 the total picture. Debris being generated during an
- 11 accident. What's the likelihood that it would get down to
- 12 the sump and block it, you know, from a design basis
- 13 perspective. We consider by design rules that it might,
- 14 practicality of it getting down there; functionality is
- 15 probable.
- And so, looking at containment spray, and the
- 17 performance of the containment air coolers on an integrated
- 18 basis is what we're working through now, Jack. I know
- 19 there is still work to be done to answer your question
- 20 completely, but our intention is to provide a report of
- 21 that assessment to you for review.
- 22 MR. GROBE: Do you have an
- 23 idea what the schedule will be for completing that?
- 24 MR. POWERS: We've just
- 25 completed the assessment of the containment air coolers, so

1	now we're	beginning	the process	of doing an	integrated I	ook
---	-----------	-----------	-------------	-------------	--------------	-----

- 2 at the plant response. And I would expect it's going to be
- 3 in the range of two to four weeks to put that together.
- 4 MR. GROBE: And again, each
- 5 of these analysis is looking at -- analyses are looking at
- 6 a design basis worst case accident; is that right?
- 7 MR. POWERS: Well, in the case
- 8 of the -- that's right. Containment air coolers, the
- 9 answer is yes. We're also looking at it from the
- 10 perspective of what is the more likely condition, both from
- 11 a design basis condition, and then from a safety
- 12 significance perspective.
- 13 MR. MYERS: I think there is
- 14 a couple of interesting points. You know, one of the
- 15 things is we went back, if you look at this thing as a
- 16 whole. We think we'll be able to demonstrate
- 17 functionality. For the first 30 minutes or so of an event,
- 18 you really don't need the containment sump, because we're
- 19 ejecting water from the boric acid tank, you know.
- And then, the other thing that I think you mentioned
- 21 is important, the technology has changed over the years.
- 22 And we've talked about that in here a lot, in the analysis,
- 23 like transport analysis. When we originally designed the
- 24 plant, the design basis of the plant that was approved by
- 25 the NRC and us, you know, that we assumed, we just

- 1 automatically assumed 50 percent of it got plugged up.
- 2 We met that design basis. We always have. Coming
- 3 out where it is now, with some of the new models, we can
- 4 theorize things that we haven't in the past, you know. We
- 5 can keep theorizing, you know. But some of these theories,
- 6 on the paint being blown off and things like that; we'll
- 7 probably see something like that.
- 8 But we met the design basis of the plant initially.
- 9 And functionality of the plant, we believe, right now we
- 10 believe would still be intact based on that design basis.
- 11 And, and then we're going back to this transport analysis,
- 12 and looking at some other assumptions. Those assumptions
- 13 weren't in the original design.
- 14 MR. GROBE: Okay, thanks
- 15 Lew.
- 16 You brought a question up and I think you answered
- 17 it already, Jim, but let me make sure I clearly
- 18 understand. You're doing both a design basis analysis, but
- 19 also probabilistic analysis; is that correct?
- 20 MR. POWERS: That's right,
- 21 Jack. The design basis analysis would be reported in a
- 22 Licensee event report related to the containment air cooler
- 23 conditions, and capabilities. And then the safety
- 24 significance assessment will be a separate assessment based
- 25 on as-found conditions and significance.

1	MR. GROBE: Okay.
2	MR. FAST: Okay. Moving
3	along. What we see here is the containment dome. Just to
4	get a vantage point of where we are, we're at the 603
5	elevation looking straight up into the containment dome.
6	And this is the polar crane, which has provided very good
7	reliability after we have gone through our modification
8	there. That rests on an outside ring, support ring here.
9	And I'll point out a couple of things. One is the
0	spray headers. So, you see a circular header here. That's
1	in the uppermost portion of the containment dome. And then
2	a lower containment spray header, the circle that I'm
3	identifying here.
4	What we've done, we've completed, as you can see, a
5	significant amount of the containment dome in the
6	refurbishment. You see the gray areas here where we
7	actually removed the paint.
8	That's a pretty arduous process. Used what's called
9	a rotopine; we also use needle guns. This is an air
20	operated and vacuum drag the debris back into the
21	containment system. And, that's where the paint's been
22	removed. You can see then the line where the old paint
23	here's the new paint, the white fresh paint. You can see
24	the gray where the paint has been removed. And then on the
25	outer ring, the paint that has yet to be removed here.

1	So, you can see the actual rigs, the spider rigs
2	that the paint crews are working out of. You can see how
3	they will actually rotate around to remove that paint, and
4	then another crew will come back and reapply coatings to
5	that surface area.
6	So, that's quite an effort, and continues to go
7	pretty well. The surface area associated with that dome is
8	about an acre, and all of that paint is hand removed. And
9	so, you want to get an update of where we are, we're making
10	good progress. We expect from a coating standpoint kind
11	of back to this sump. This paint needs to be recovered in
12	this area. Anyways, we do not have to remove the rest of
13	the paint on the walls.
14	Now you see here below that support. That's a
15	different style of paint. That's both a carboline, but a
16	different type of paint and that paint is good. It meets
17	design requirements.
18	MR. GROBE: Randy, there
19	could be folks in the audience that, for those of us that
20	stood there that actually makes sense; could you give
21	dimensions?
22	MR. FAST: The building
23	itself is about 2.8 million cubic feet and overall almost

operating deck of containment, as we've talked about some

300 feet tall. So, from the 603 elevation, which is the

24

- 1 of these other areas; the sump, the top portion of the sump
- 2 is at 565 feet. That's also where the plenum is. I showed
- 3 the pictures of the containment air coolers. So, that's
- 4 the lowest elevation of containment, 565 foot elevation.
- 5 The next is 585 feet. That's where the containment
- 6 air coolers with the actual heat exchangers are located.
- 7 The operating deck is at 603. The top of the D rings is
- 8 653 feet. That's 50 feet above that. It's about another
- 9 30 or so feet until you get to the support ring for the
- 10 polar crane. And then it's about another 50 or 60 feet to
- 11 get to the crown of the dome. So, overall, 300 feet from
- 12 top to bottom.
- 13 MR. GROBE: So, from where
- 14 that photograph is taken to the top of the dome, it sounds
- 15 like it's about 130 feet up?
- 16 MR. FAST: Yes, sir. That's
- 17 approximate. I would have to figure out the math. Don't
- 18 hold me to the 130. It's pretty close though.
- 19 MR. POWERS: It's pretty
- 20 special people that go up there and do that painting, I can
- 21 tell you that. Randy, did you go up and experience that?
- 22 MR. FAST: It's kind of an
- 23 interesting story. I really wanted to understand what was
- 24 going on in the containment dome. A lot of hype and I
- 25 wanted to see it up close and personal. We have a

- 1 qualification process that qualifies, just like a window
- 2 washer on a building. These rigs have some specialized
- 3 safety features for running the rigs up and down. I went
- 4 through that training program; was qualified as a rig
- 5 operator. Went up to the dome, and I actually removed
- 6 paint for about an hour up in the top of the dome. It was
- 7 quite exciting. I'll tell you.
- 8 MR. MYERS: Plus, it's an
- 9 area we spend a lot of hours of inspection time, from that
- 10 standpoint.
- 11 MR. FAST: So, really, my
- 12 hat's off to the paint crew. It sounds kind of like, well,
- 13 paint is not a big deal. I can tell you, these are
- 14 engineered coatings. This is a very dedicated crew that
- 15 are working this at heights.
- And in fact, just an item, from an interest
- 17 standpoint, you can say, well is that safe. Actually
- 18 brought in a specialist in the industry, a Professional
- 19 Registered Engineering to look at the design of these rigs
- and the application, and we got a good bill of health.
- 21 And, we continue to work safely in this area.
- 22 MR. MYERS: But to go into
- 23 the containment, to go up there; what's it take, like 30
- 24 minutes?
- 25 MR. FAST: It takes about 30

1 minutes, by the time you brief, you get in the basket.	1	minutes, l	by the	time v	vou k	orief, '	vou	get in	the	basket.	ı
--	---	------------	--------	--------	-------	----------	-----	--------	-----	---------	---

- 2 went up with three other people. By the time you get up
- 3 there, you have a series, actually had three tie-off
- 4 lanyards to ensure that you're safe. You're tied off by
- 5 double point at any one time. Then, you transition one
- 6 lanyard to your next position, and go through a series to
- 7 go from the basket to -- then we had, while we were doing
- 8 that uppermost portion, we had two 35-foot sections that
- 9 were in the very top and they were suspended by a central
- 10 pivot point at the very top of the containment dome.
- 11 Interesting project and really quite a tribute to
- 12 the folks that are doing this work.
- 13 MR. FAST: Next slide,
- 14 please.
- Next area I wanted to talk to you about is some of
- 16 the processes we went through. Certainly, we looked at the
- 17 plant and the plant's readiness to move fuel. But, one of
- 18 the things that is very difficult to assess, but we
- 19 actually use a business practice, this is much like a
- 20 procedure, was developed at our other stations.
- 21 We went through and refined it specifically for our
- 22 recovery here at Davis-Besse; and that involves a collegial
- 23 review by about 40 key organizational folks, including
- 24 supervisors, superintendents, managers, directors, and our
- 25 more senior people. Lew was personally involved with

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

- 1 this. We brought over our Vice President from the Beaver
- 2 Valley Station, and as well our Executive Vice President of
- 3 Engineering attended the majority of these discussions.
- 4 This went through a very detailed review of our
- 5 readiness. And we got started probably a little early, but
- 6 we invested between 50 and 60 hours of discussion in going
- 7 through this very detailed review.
- 8 It included the seven Building Blocks, and then as
- 9 well, we went through each organization and looked at
- 10 things like, do we have the proper staffing; are our folks
- 11 qualified; have we completed corrective actions associated
- 12 with problems in their areas; do we understand what their
- 13 back logs and procedures were.
- So, that review was a very intrusive review. And it
- 15 added a significant amount of value, I would say, in our
- 16 ability to assess our readiness to move forward.
- 17 One of the specific actions that came from this were
- 18 the Refuel Director roles and responsibility here. The
- 19 Refuel Director is a Senior Reactor Operator licensed
- 20 individual that is overseeing the actual movement of the
- 21 fuel to ensure that it's reliable and done safely.
- What we found out, as we queried. This is really a
- 23 tribute to having some new folks, use to maybe doing things
- 24 a little differently. Being intrusive, asking questions
- 25 about how do we do that. What we found out is the Senior

- 1 Reactor Operator was a little bit different than what we
- 2 would say the traditional role of the Refuel Director was.
- We had what was called a tag board which keeps track
- 4 of the fuel itself, involved with some of the
- 5 administrative processes. They did not meet our
- 6 expectations. We subsequently changed that role and
- 7 responsibility to provide direct oversight, no
- 8 administrative duties, to ensure that we can safely move
- 9 fuel. That was a direct output from this Readiness
- 10 Review.
- Another one, we put in place the Management
- 12 Oversight. When I talk about Management Oversight,
- 13 certainly myself and other senior managers have been
- 14 involved in looking at our readiness and the support. I've
- 15 made tours. I know Lew and myself and others made tours of
- 16 containment most recently within the last few days in
- 17 seeing how ready we are.
- But we did put in place, a seven-day-a-week,
- 19 24-hour-a-day Oversight Management Team, which includes
- 20 folks that were previously licensed and have refueling
- 21 experience. And, they're sitting there with the sole
- 22 purpose of overseeing the process of moving fuel.
- 23 Lastly, I want to talk about and we've had a lot of
- 24 discussions about our Observation Program. And we've
- 25 already gotten some good feedback on the observations that

- 1 have been conducted as part of our fuel readiness. One I
- 2 would mention is foreign material exclusion. We put in
- 3 place a housekeeping zone in the containment for the
- 4 movement of fuel, and we have a single point of access to
- 5 those areas to establish housekeeping boundaries.
- 6 We saw that we had some opportunities for
- 7 improvement there. Those were documented on a Condition
- 8 Report as well as an observation, so we have corrective
- 9 actions to ensure that the role and responsibility of that
- 10 foreign material exclusion monitor is, will meet our
- 11 expectations.
- 12 Just a recap, and not to bore you with a lot of
- 13 facts, but we did our totalization of management
- 14 observation for the month of January. We did a total of
- 15 468; 364 included fuel observations, 46 a training. I
- 16 think it's important, because training continues. We still
- 17 have a lot of training that's going on, particularly in the
- 18 operations area. And, then 58 that were specific to
- 19 operations processes. 21 Condition Reports were generated
- 20 based on those observations.
- We had 90 percent schedule adherence, I'll call it.
- 22 You know, Lew has talked to us about, it's not just a
- 23 matter of just run out there when the time is right, we
- 24 want to preschedule those important evolutions and make
- 25 sure the people are scheduled to monitor it.

MARIE B. FRESCH & ASSOCIATES 1-800-669-DEPO

I was scheduled this last week to look at personal

2	protective equipment. Part of the reason I was scheduled
3	to do that is that was one of the shortfalls we saw as we
4	pulled together the information from the January
5	observations. We saw that there were opportunities in
6	areas for room for improvement.
7	I made an observation. I actually took some
8	specific action to get some additional safety equipment
9	that was identified from my observation about personal
10	protective equipment.
11	We feel like we've made some pretty good progress.
12	We benchmarked and compared ourselves against our other
13	FirstEnergy Nuclear Operating Company Stations and we are
14	doing more observations. And, although, sometimes our
15	staff say, we don't see our managers enough; we have
16	assembled a pretty impressive amount of observations.
17	About 72 percent of the field observations focused
18	on some element of safety, whether it be radiological,
19	nuclear or industrial safety; and 28 percent of those field
20	observations focused on improvements and standards and
21	being able to coach our folks to new standards of
22	excellence.
23	As part of the observation program, we have specific
24	attributes that we look at. We had a total of 656 checks
25	on procedures. That's verifications of procedures that are

- 1 in use, that they're being followed, that they're being
- 2 place marked; and so we have 650 total checks on
- 3 procedures. No alarming or no trends that we saw that
- 4 would require us to take any immediate action in that
- 5 area.
- 6 I thought it was interesting, got a couple of facts
- 7 here. The least observed focused area were observations,
- 8 field observations of office safety. I think that's, that
- 9 tells you that we're going where the action is. We're
- 10 going out to the plant and seeing the activities that are
- 11 actually ongoing. I think that's good, because sometimes
- 12 in an observation program, we'll allow observations of
- 13 something like office safety. While certainly that's
- 14 important, it's not our focus area. And, when you do the
- 15 rack up of information, it substantiated that.
- So, that's really all I had to identify. Well, we
- 17 did have some strengths, I just identified. We saw some
- 18 good teamwork. That's good. As we're building this team,
- 19 we want to be able to look at teamwork; we want to look at
- 20 communications, some of our human performance tools, like a
- 21 questioning attitude and peer checks were identified as
- 22 commonly seen strengths as part of observation.
- But as I mentioned, areas that we need to focus on,
- 24 personal protective equipment; that's why I was personally
- 25 scheduled and other managers last week to do those; tool