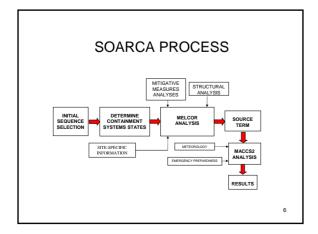


Regulatory Information Conference March 11, 2008

Agenda

- Opening Remarks and Overview
- Sequence Selection
- Accident Mitigation
- Accident Analysis
- Emergency Preparedness
- Comments


OPENING REMARKS

Dr. Farouk Eltawila, Director Division of System Analysis Office of Nuclear Regulatory Research 1

Overview
 State-of-the-art more realistic evaluation of severe accident progression, radiological releases and offsite consequences
 Integrated and consistent analysis of pilot plants (Peach Bottom, Surry) for important sequences (e.g., SBO, ISLOCA) subject to probabilistic considerations
 Account for plant design and operational improvements, credit existing and newly developed mitigative measures and site specific emergency plans

	Mot	ivation		
	Plant Design and Operations	Severe Accident Phenomenology	Emergency Planning	
1982 Sandia Siting Study	Total CDF: 1x10-4yr to 1x10-5/yr	Alpha Mode Failure Direct Containment Heating Conservative Accident Progression - Large and fast radiological release	Generic (including bounding) EP modeling	
2008 SOARCA	Improved Plant Performance Total CDF: 1x10%/yr to 1x10%/yr Additional Mitigative Measures	Alpha Mode Failure is remote & speculative DCH resolved Realistic accident progression analysis	Improved Site Specific EP Modeling	
			5	

SEQUENCE SELECTION

Richard Sherry, Senior Risk Analyst Division of Risk Analysis Office of Nuclear Regulatory Research

Sequence Selection Process

- Full Power Operation
- Internal Initiated Events
 - SPAR model results
 - Comparison with licensee PRA
 Discussions with licensee staff
- External Initiated Events
 - Review of prior analyses
 - IPEEE • NUREG-1150
 - Discussions with licensee staff

Sequence Groups

- · Group core damage sequences that have similar initiating events, Sequence timing and equipment unavailability
- · Initial Screening
 - CDF Initiating Events CDF > 1E-7
- Sequences Evolution Identify and evaluate dominant cutsets (~90% of CDF)
- · Scenario grouping
- · Sequences refined by external events and mitigative measures

9

Final Sequence Groups

- Containment bypass sequence groups with group CDF <u>></u> 10-7/RY

10

Containment Systems Availability

- Availability of engineered systems that can impact post-core damage containment accident progression, containment failure and radionuclide release and <u>not</u> considered in Level 1 core damage SPAR model
- Surry and Peach Bottom
 - Availability of containment systems based on support system status
- · Sequoyah
 - Availability of containment systems determined using extended Level 1 SPAR model

11

Sequence Groups Peach Bottom Atomic Power Station

- Peach Bottom Internal Events

 None (Dominant below the screening threshold was SBO)
- Peach Bottom External Events (Seismic)

 Long Term SBO (RCIC available early) (1x10⁻⁶ to 5x10⁻⁶/yr)

Sequence Groups Surry Power Station

- Surry Internal Events
 - ISLOCA (7x10-7/yr)
 - SGTR (5x10-7/yr)
- Surry External Events (Seismic)
 - Long-term SBO (TD-AFW available early) (1x10⁻⁵ to 2x10⁻⁵/yr)
 Short-term SBO (TD-AFW failed) (1x10⁻⁶ to 2x10⁻⁶/yr)

13

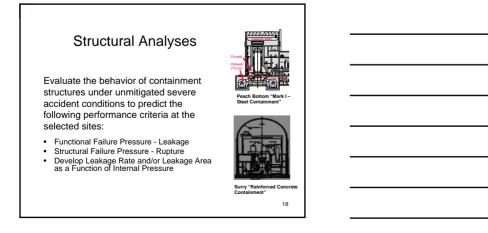
MITIGATIVE MEASURES

Robert Prato, Senior Program Manager Division of System Analysis Office of Nuclear Regulatory Research

14

Mitigative Measures Analysis

- Qualitative, sequence-specific systems and operational analyses
 - Licensee identified mitigative measures from EOPs, SAMGs
 - Other applicable severe accident guidelines
- · Input into the MELCOR analyses


Mitigative Measures Analysis Process

- · Consider all mitigative measures
- Conduct sensitivity analyses to assess the effectiveness of different mitigative measures

16

Mitigative Measures Analysis Process

- For each sequence grouping, identify the potential failure mechanisms and determine available mitigative measures
- Perform a system and an operational analysis based on the initial conditions and anticipated subsequent failures
- Determine the anticipated availability, capability and the time to implementation (e.g., TSC activation)
- MELCOR used to determine the effectiveness of the mitigative measures based on capability and estimated time of implementation

Peach Bottom LTSBO

- Effectiveness of Mitigative Measures
 - Batteries were available for ~ 4 hours
 - RCIC automatically started and prevented loss of RCS inventory
 - Operator, by procedure, depressurizes at ~ 1 hr
 - Portable power supply ensures long-term DC to hold SRV open and provide level indication (allow management of RCIC)

19

Surry LTSBO

- Dominant containment dominant failure mode is leakage from cracking around the Equipment and/or Personnel Hatches
- · Effectiveness of Mitigative Measures
 - Batteries were available for ~ 8 hours
 - TDAFW Pump automatically starts to makeup to the SGs
 - SG PORVs operable on DC power for 100 F/hr RCS cooldown
 - Portable power supply ensures long-term DC to provide level indication (allow management of TDAFW)
 - Portable pump provided make up for RCP seal cooling

20

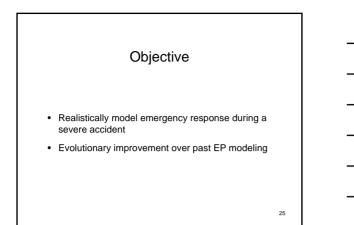
Surry STSBO

- Dominant containment dominant failure mode is leakage from cracking (9 in²) around the Equipment and/or Personnel Hatches
- Effectiveness of Mitigative Measures
 - AC and DC power are unavailable
 - Mechanical failure of TDAFW Pump, fails to start
 - No instrumentation or RCS makeup
 - Portable pump provided containment spray within 8 hours (spray operation terminated @ 15 hours)

Surry SGTR

- Effectiveness of Mitigative Measures
 - All ac and dc power supplies were available
 - All instrumentation was available
 - Plant response
 - HPI, AFW initiate
 - Turbine stop valves close
 - Steam dump valves throttle and close

22

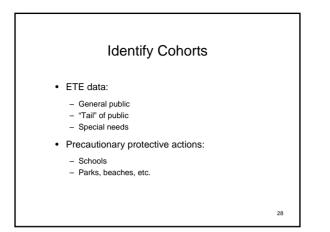

SEQUENCE ANALYSIS

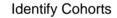
Randall Gauntt, Project Manager Sandia National Laboratories

23

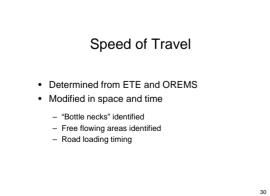
EMERGENCY PREPAREDNESS

Randolph Sullivan, CHP Office of Nuclear Security and Incident Response

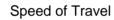

Assumptions


- · Emergency plans will be implemented
- The public will largely obey direction from officials
- · Emergency workers will implement plans

26


Technical Basis

- Site, State and local emergency plans
- Site emergency classification procedures
 Aligned with accident progression from MELCOR
- State/local protective action procedures
 - Precautionary protective actions modeled
- Evacuation Time Estimate (ETE)
- Oak Ridge Evacuation Modeling System for evacuation beyond EPZ (if necessary)



- Non-evacuating (0.5%)
- Shadow evacuation (10%)

	Exa	ample	ETE		
Region	Population	Non- Evacuating	Evacuated	Number of Vehicles	
0-10	71,400	400	71,000	41,000]
		vacuation hours (fro		;	
					31

- MACCS2 does not allow input of road loading function
- Median speed of cohort assumed
- Speeds adjusted for areas of free flow or congestion
- Distance travelled assumed 50% more than radial
- Median speed equals dist/time to clear

32

Example Accident

- Long Term Station Blackout scenario
- General Emergency is declared about 2 hours after loss of all A/C power
 - Evacuation starts at General Emergency
 - No precautionary evacuation of schools (Site specific decision)

Comments and Questions