Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards
Docket Number:	(n/a)
Location:	teleconference
Date:	Wednesday, April 3, 2024

Work Order No.: NRC-2761

Pages 1-295

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	714TH MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	+ + + +
8	OPEN SESSION
9	+ + + +
10	WEDNESDAY, APRIL 3, 2024
11	The Advisory Committee met via hybrid In-
12	person and Video-Teleconference, at 8:30 a.m. EDT,
13	Walter Kirchner, Chairman, presiding.
14	COMMITTEE MEMBERS:
15	WALTER L. KIRCHNER, Chair
16	GREGORY H. HALNON, Vice Chair
17	DAVID A. PETTI, Member-at-Large
18	RONALD BALLINGER, Member
19	CHARLES H. BROWN, JR., Member
20	VICKI M. BIER, Member
21	VESNA B. DIMITRIJEVIC, Member*
22	JOSE MARCH-LEUBA, Member
23	ROBERT P. MARTIN, Member
24	THOMAS E. ROBERTS, Member
25	MATTHEW SUNSERI, Member
	I

1	ACRS CONSULTANT:
2	DENNIS BLEY*
3	
4	DESIGNATED FEDERAL OFFICIAL:
5	HOSSEIN NOURBAKHSH
6	
7	ALSO PRESENT:
8	STEVE BAJOREK, RES
9	BRADLEY BEENY, Sandia National Lab*
10	LUIS BETANCOURT, RES
11	ANDREW BIELEN, RES*
12	SHAWN CAMPBELL, RES*
13	KEITH COMPTON, RES
14	JAMES CORSON, RES*
15	HOSSEIN ESMAILI, RES
16	LUCAS KYRIAZIDIS, RES
17	MIKE SNODDERLY, ACRS
18	JOHN TOMON, RES
19	CASEY WAGNER, Sandia National Lab*
20	KIM WEBBER, RES
21	* present via video-teleconference
22	
23	
24	
25	

	3
1	AGENDA
2	Opening Remarks by the ACRS Chairman 4
3	Research Topic - Non-Light Water Reactor
4	Code Development 6
5	NuScale Standard Design Approval
6	Application Topics
7	Adjourn
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR KIRCHNER: Good morning. The
4	meeting will now come to order. This is the first day
5	of the 714th meeting of the Advisory Committee on
6	Reactor Safeguards.
7	I'm Walt Kirchner, Chair of the ACRS.
8	Other members in attendance are Ron Ballinger, Vicki
9	Bier, we expect Charles Brown, Vesna Dimitrijevic,
10	Greg Halnon, Jose March-Leuba, Bob Martin, Dave Petti,
11	Thomas Roberts, and Matt Sunseri.
12	I will also note our consultant, Dennis
13	Bley, is with us remotely, and I also note that we
14	have a quorum. Today, the committee is meeting in
15	person and virtually. The ACRS was established by the
16	Atomic Energy Act and is governed by the Federal
17	Advisory Committee Act.
18	The ACRS section of the U.S. NRC public
19	website provides information about the history of this
20	committee and documents such as our charter, bylaws,
21	Federal Register notices for meetings, letter reports,
22	and transcripts of full and subcommittee meetings,
23	including all slides presented at those meetings.
24	The committee provides its advice on
25	safety matters to the commission through its publicly
ļ	I

(202) 234-4433

available letter reports. The Federal Register notice announcing this meeting was published on March, and I 2 I'm sorry. 3 don't have the date. This announcement 4 provided a meeting agenda as well as instructions for interested parties to submit written documents or request opportunities to address the committee. 6 The designated federal officer for today's meeting is Hossein Nourbakhsh. 8

9 The communications channel has been open 10 to allow members of the public to monitor the open portions of the meeting. The ACRS is inviting members 11 of the public to use the MS Teams link to view slides 12 and other discussion materials during these open 13 14 sessions. The MS Teams link information was placed in 15 the agenda on the ACRS public website.

16 Periodically, the meeting will be open to 17 accept comments from members of the public listening to our meetings. Written comments may be forwarded to 18 19 Hossein Nourbakhsh, today's designated federal officer. 20

A transcript of the presentation portions 21 of the meeting is being kept, and it is requested that 22 speakers identify themselves and speak with sufficient 23 24 clarity and volume so that they can be readily heard. Additionally, participants and members of the public 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

5

7

1 should mute themselves when not speaking. And let me 2 just amend my comments to say that the Federal 3 Register notice with the agenda was published on March 4 14, 2024.

5 With that, today we are going to consider a number of topics, starting with we'll continue our 6 7 review of the NRC research programs with а 8 presentation on non-LWR code development. This 9 afternoon, we will hear report outs from members on 10 the NuScale SDAA, and tomorrow in our planning and procedures meeting, we will continue our preparation 11 for our presentation to the commission scheduled for 12 13 June.

So, with that, I'd like to turn to other members and see if you have any further opening remarks. Hearing None, then I will turn to Dave Petti and Bob Martin to introduce today's topic. Is it Bob or Dave? Bob, okay, Bob Martin.

MEMBER MARTIN: I'm Bob Martin, and on behalf of the Safety Research Subcommittee, the, you know, kind of cherry today. As Walt noted, we'll be talking about non-light water reactor computer code development. And this is just one meeting in a series of NRC research topic meetings that the ACRS will be hosting over the next year, culminating early 2025 as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

7 1 part of our triannual review of NRC research 2 activities. The focus of today's meeting is the NRC 3 4 research report entitled NRC Non-Light Water Reactor 5 Vision and Strategy, Volumes 1 through 5, covering the following topics related to non-light water reactor 6 7 computer code development: plant systems analysis, 8 fuel performance analysis, severe accident 9 analysis, licensing progression, consequence and 10 siting dose assessment, and nuclear fuel cycle analysis. 11 In addition, included in the material 12 provided for this meeting is a supplement document 13 14 entitled Status Update on Computer Code and Model 15 Development for Non-LWRs. 16 It is my understanding that the NRC 17 research near present has asked our committee to prepare a letter expressing our perspectives related 18 19 to the completeness of the work and its future plans as it relates to NRC safety missions. 20 To this end, the committee will gather 21 analyze relevant 22 information, issues and facts, proposed 23 formulate decisions and actions as 24 appropriate, and we have scheduled time during our May full committee meeting to finalize the requested 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	8
1	letter.
2	And now at this time, well, I guess you've
3	already kind of opened it up for remarks from everyone
4	else. I guess with no further, say, member remarks,
5	we'll just proceed. And as I've noted, we'll hear on
6	several subjects related to non-light water reactor
7	code development.
8	The published agenda for today has us
9	going to mid-afternoon with a 60-minute recess for
10	lunch, and of course, appropriate breaks, you know,
11	based, of course, on how the flow of the conversation.
12	I'd like now to call on Kim Webber, Division Director
13	of Systems Analysis in the Office of Research, to make
14	introductory remarks and anything else.
15	MS. WEBBER: Yes, thank you for that nice
16	introduction, and good morning to all of you. Thanks
17	for taking the time to review our most recent report
18	that documents the progress of our code development
19	activities as it relates to supporting licensing for
20	non-light water reactors.
21	There are two reports that we submitted to
22	the committee for review. One is called Progress
23	Towards Code Development in Support of the NRC's
24	Regulatory Activities for Non-Light Water Reactors,
25	and the other is called Verification and Validation of
I	I

(202) 234-4433

	9
1	the Comprehensive Reactor Analysis Bundle, BlueCRAB
2	Report.
3	My name is Kim Webber. I'm the Director
4	of the Division of Systems Analysis in the NRC's
5	Office of Nuclear Regulatory Research. We're really
6	happy to be here today even though it's a rainy,
7	cloudy day. I'm very happy to be here to talk to you
8	about the significant progress that we've made over
9	the last several years to develop our staff expertise
10	and also the analytical capabilities to support
11	licensing of non-light water reactors.
12	Our meeting is the third of a series of
13	meetings being led by the Office of Reactors as part
14	of the triannual review of the NRC's safety research
15	program, and as with all ACRS reviews of the program,
16	you know, we would appreciate feedback and the final
17	letter that you mentioned, so that would be really
18	helpful to us.
19	In my overview presentation can we go
20	to the next slide, please I'll briefly introduce
21	the five branches that are in the Division of Systems
22	Analysis, provide a short history of the efforts that
23	we've been undertaking, and summarize some of the
24	major ACRS conclusions and recommendations, and then

my staff and branch chiefs will make presentations

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	10
1	describing the progress we've made over the last
2	several years, and I'll wrap-up with some conclusions
3	at the end of the meeting. Next slide, please?
4	So, with me today are the branch chiefs
5	and staff who have contributed substantially to the
6	successes that you'll hear about during the meeting.
7	Before I get started, I wanted to note that we have
8	five branches in my division as shown on this slide.
9	The technical breadth of the division
10	includes fuel performance, reactor systems analysis,
11	source term, accident progression, accident
12	consequences, radiation protection, and health
13	physics.
14	The names of my branch chiefs are noted
15	here below the name of the branch, and also identified
16	are the lead branches and branch chiefs for the
17	various volumes that are included in that orange-
18	colored row at the bottom.
19	I want to express my sincerest gratitude
20	to all of my staff and their contractors for planning
21	and doing the hard work to achieve the successes that
22	we've attained to date. Next slide, please?
23	So, to facilitate the agency's readiness,
24	the NRC's near-term implementation action plan you
25	can skip through the other there you go. The near-
ļ	I

(202) 234-4433

	11
1	term implementation action plan was completed in the
2	summer of 2017 by NRR.
3	The IAP is the vehicle to execute the
4	NRC's vision to safely achieve effective and efficient
5	non-light water reactor mission readiness. The IAP
6	includes six strategies, and strategy two on computer
7	codes and knowledge to perform regulatory reviews is
8	the focus of today's presentation. Next slide? You
9	can skip again. There we go.
10	In March 2021, we completed a set of six
11	reports, which you can see on the left side of the
12	screen, and those included an introduction and five
13	volumes that identify computer codes we plan to use
14	for our independent safety analysis. They contain
15	information about gaps, code development capabilities
16	and data, verification and validation needs, along
17	with specific code development tasks and methods.
18	Each of the volumes is focused on a
19	different type of safety analysis capability,
20	including reactor systems in volume one, fuel
21	performance in volume two, severe accident progression
22	source term and accident consequences in volume three,
23	licensing and siting dose assessment in volume four,
24	and front-end and back-end of the fuel cycle
25	considerations in volume five.
Į	I

(202) 234-4433

	12
1	I'd like to thank the ACRS for conducting
2	in-depth and thorough reviews of our plans and
3	progress over the last several years, which has
4	significantly contributed to our success, I believe.
5	During today's meeting, you'll hear about
6	our code development progress, which is documented in
7	a single report that you can see on the right side of
8	the screen. So, we'll no longer be updating the
9	individual documents as we go forward. We'll update
10	the document on the right side of the screen that you
11	see occasionally. Let's go to the next slide? This
12	is one of my favorite slides.
13	I thought I'd take a few moments to
14	summarize our interactions with the ACRS since 2018
15	and to highlight key conclusions and recommendations
16	as documented in several letters over the last few
17	years.
18	In 2018, there were two ACRS meetings, one
19	with DOE and the other primarily with industry, and
20	that was focused on information about the DOE Office
21	of Nuclear Energy-funded code development programs,
22	which at that time included The Hub or the Consortium
23	for Advanced Simulation of Light Water Reactors, or
24	CASL, and the Nuclear Energy Advanced Modeling and
25	Simulation or NEAMS programs.
I	I

(202) 234-4433

Following those meetings, we participated in eight ACRS meetings to describe our code development plans and progress at various stages. In the back-up slides to this deck, there's a really nice synopsis of the meetings and links to associated documents.

7 I've paraphrased many of the ACRS conclusions as documented in the letters, which also 8 9 dovetail nicely with, I think, our assessment of where 10 we're at today. In general, the approach we've taken has been to update NRC codes like SCALE, MELCOR, and 11 MACCS, and the licensing and siting dose assessment 12 codes, plus leverage DOE codes to fill computational 13 14 gaps in NRC's reactor systems analysis codes.

15 Since 2018 when we started in earnest to 16 build out these tools, we actively followed the 17 priorities of the non-light water reactor community and industry, DOE funding streams, and feedback from 18 19 prioritize budgeted resources NRR to for code development activities. 20

A key aspect of our success has been to 21 leverage NRC DOE memorandum of understanding to gain 22 access to the deep technical expertise and other 23 Laboratories. 24 resources at the National We're 25 extremely grateful for the opportunities to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

collaborate with our colleagues at DOE and the labs. We've been given access to the whole suite of the NEAMS codes, along with many training opportunities cost free. Additional collaborations with personnel in DOE's National Reactor Innovation Center have yielded the cost-free development of many reference plant models that complemented the NRC's existing libraries. In general, we feel that we've got the

10 capabilities to perform independent confirmatory 11 analysis when requested. Having design-specific 12 information and the time to update the codes will 13 ensure that they produce reasonable results, which 14 will support shorter schedules for non-light water 15 reactor reviews.

Later in the presentation, you'll hear about a recent success we've had in using our codes to support the Hermes construction permit application technical review. That work was presented at an ACRS meeting and I think you'll be familiar with it when you hear about it.

For many of the codes and code suites you'll hear today, we embarked on a plan to use publicly available plant design information to build what we call reference plant models. They have been

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

www.nealrgross.com

	15
1	used to test and verify the codes, identify
2	information and data gaps, and help train the staff,
3	which has been critically important.
4	The shift, I'm sorry, the siting and
5	licensing dose assessment area, we consolidated many
6	of our codes into a new code called SIERRA, which
7	you'll hear about later, and we also undertook an
8	effort to assess analytical capabilities in our SCALE
9	and MELCOR codes to support licensing the front and
10	back-end of the fuel cycle.
11	For many of the codes, we've completed a
12	significant amount of code validation, although there
13	is still more work to do. For some non-light water
14	reactor designs, there has been more experience and
15	data, such as for sodium fast reactor technologies,
16	although for other non-light water reactor designs,
17	there is much less experience and much less data
18	that's available to us.
19	We believe we could do a reasonable job
20	using our codes to assess the margins relative to
21	safety limits and key figures of merit, and also to
22	characterize uncertainties. An equally important
23	aspect of the work on our codes over the last few
24	years has been to build staff expertise, enhancing
25	knowledge related to the designs, operation, and

(202) 234-4433

accident sequences for non-light water reactors.

1

2

3

4

5

6

Many thanks go to Idaho, Argonne, and Sandia National Labs, as they've led many formal and informal sessions for the staff and public to train on the BlueCRAB suite of codes and also conduct public code demonstration workshops. Next slide?

7 Regarding ACRS recommendations, I note a few on this slide. Overall, I think we have a broad 8 9 range of analytical capability to support NRR's 10 request for less detailed safety studies, such as to demonstrate how a new reactor design may operator, or 11 requests for more detailed confirmatory analysis for 12 situations where there are small margins or large 13 14 uncertainties. As an example, I referenced the Hermes 15 construction permit application in which MELCOR was 16 used to help understand the progression of certain 17 accident sequences.

As I mentioned previously, we've used reference plant models with our codes to perform pilot studies and perform demonstration calculations, such as was done with SCALE, MELCOR, and MACCS. We are also performing pilot studies using reference plant models with the BlueCRAB suite of codes.

24 Regarding the last recommendation, which 25 was made several years ago, identification of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	17
1	level of effort of the licensing reviews is really not
2	the role of the Office of Research. NRR has
3	successfully demonstrated their use of core teams and
4	newly-developed guidance to appropriately size the
5	level of effort for their reviews. They also have
6	made many presentations to ACRS on a wide range of
7	topics, including the Kairos Hermes construction
8	permit review, Part 53, ARCAP, and microreactors.
9	And so, now let me introduce Steve
10	Bajorek. Steve is no stranger to the ACRS and has
11	presented many times. He's our senior level advisor
12	for thermal hydraulics and he'll lead the next part of
13	the presentation.
14	MEMBER MARTIN: Before you make that
15	transition
16	MS. WEBBER: Sure.
17	MEMBER MARTIN: Historical context, and
18	the executive summary mentions the 2016 commission has
19	a vision statement on
20	MS. WEBBER: Okay.
21	MEMBER MARTIN: So, it's eight years
22	MS. WEBBER: Yeah.
23	MEMBER MARTIN: since that has
24	happened.
25	MS. WEBBER: Okay.
I	

(202) 234-4433

	18
1	MEMBER MARTIN: I guess I'd be curious as,
2	you know, as the day goes on, any insights on whether,
3	you know, what extent maybe that vision statement
4	needs to be updated given all the water under the
5	bridge
6	MS. WEBBER: Yeah.
7	MEMBER MARTIN: at this point.
8	Certainly, you've done a lot, you've learned a lot,
9	and that synthesis of that experience should translate
10	into the next vision statement.
11	MS. WEBBER: Correct.
12	MEMBER MARTIN: But keep that in mind, and
13	it's kind of a question you could ask anytime, but
14	obviously at the end, maybe we'll be a little worn
15	out, so
16	MS. WEBBER: Yeah, the one thing I'll say
17	right now is that in large part, we're ready now. So,
18	over the last eight years, the focus has been on
19	getting ready, but now we have the capabilities, we
20	have the experience, so we're ready now.
21	And I think, you know, our counterparts in
22	NRR feel the same way. You know, with the regulatory
23	strategies, they feel like we're ready now. So,
24	there's probably an appropriate need to update that,
25	although that document was a point in time.
I	I

(202) 234-4433

	19
1	MEMBER MARTIN: Right.
2	MS. WEBBER: And it's not you know, it
3	took a lot of work and resources to update that
4	document or prepare that document, and with all of the
5	flurry of activity going on, I'm not sure that that's
6	a very high priority given everything else that NRR
7	needs to accomplish. So, anyway, I just put that out
8	there.
9	MEMBER MARTIN: I guess the side thought
10	I had to that, the timing of 4068. It was a little
11	bit before this middle switch towards more risk-
12	informed, performance-based approach to things, maybe
13	a little more emphasis on source term and dose
14	consequences than we've had historically, and so it's
15	a little bit of a different flavor of an emphasis on
16	how to use these codes. That's really what was in the
17	back of my mind when
18	MS. WEBBER: Yeah.
19	MEMBER MARTIN: when I mentioned that,
20	but I do appreciate everything that I've seen and the
21	work you've done that you've provided us. You know,
22	it seems very thorough and I can see where you've come
23	with this comment that we are ready now.
24	MS. WEBBER: Yeah, one last thing I would
25	like to mention, so the NRC is in what I would
ļ	I

(202) 234-4433

consider a very unique position to have to perform safety analysis for all the different kinds of nonlight water reactors that come in for review, whereas an individual vendor or applicant, they're focusing their codes and their capabilities on one particular design.

having to be ready to look at that wide range of technologies that we'll likely receive in applications over the next coming years, so thanks for the comments. Steve?

MR. BAJOREK: Thank you, Kim, and first let me share my screen. And the slideshow from the beginning, and I don't have to ask because I can see the slides right up there.

Anyway, well, good morning, everyone, and it's a real pleasure to be back and to be able to brief everyone on the progress we've made, which we call the volume one system analysis codes which we've been calling BlueCRAB.

There are four things that I'd really like to accomplish this morning. First, I want to go back through a little bit of background information on how we got to where we're at today. Why did we come up with BlueCRAB and why do we feel that we need to go in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

8

9

10

	21
1	this direction to look at the non-LWRs? In
2	particular, how do we see its use in the review and
3	whether it's going to be those intended applications?
4	I know we've had there are several new
5	members that may have not been for those original
6	meetings, and it's been a good five years since we've
7	talked about this, so I want to spend a few minutes on
8	that.
9	When we were starting off five, six years
10	ago, one of the questions was validation, how much
11	assessment's been done, and the answer at that point
12	was well, there's some out there. We didn't know
13	where it was at because in one case, rather than being
14	like in a vendor as Kim pointed out, it's spread
15	around. The labs are doing different codes. Some of
16	them are being assessed by the NEUP program, some by
17	the NRC. It's not all in one place.
18	So, what we started about a year ago is
19	let's put together a V&V report that would at least
20	put a wrapper around what has been done, and use that
21	as a way and a means to identify what else needs to be
22	done before we can move on. So, I'm going to talk a
23	little bit about the V&V report, what's in there, what
24	the status is, and I think it's interesting as you go
25	from technology to technology, you get a better feel
ļ	I

(202) 234-4433

www.nealrgross.com

22 1 for what's more mature than some of the others. And then I'm going to go into some of the 2 3 reference plant models that we've developed with 4 BlueCRAB. There are six of them that we're actively 5 working on. I can't go through all of those in a whole lot of detail. 6 7 I can take any one of these models and we 8 could spend at least two or three hours on it to look 9 at what we've done, how we model it, what the issues 10 are with each one of those, but I want to give a status on where we're at, what we've done, 11 and indicate where we need to go. So, I'm going to spend 12 some time on that, and then we'll wrap-up with a 13 14 summary and some next steps. 15 But before going on, I really got to put an acknowledgment out there to colleagues at Argonne 16 National Lab and Idaho National Lab. This has been a 17 coordinated effort over the past several years. 18 19 We really have to compliment Rui Hu and his coworkers at Argonne, principally in the area of 20 the thermal fluids' development that we're doing, 21 Javier Ortensi and his coworkers at Idaho with his 22 work on the Griffin Code and the neutronics. Putting 23 24 it together has been -- we've had to have the labs 25 work together and we've had to work together to come

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

to an understanding on how this all should come together.

3 As Kim mentioned, one of the biggest 4 benefits working with the labs has been the expertise 5 that we've been able to gain from them. When we develop a reference model, we bring it in-house, but 6 7 we have a hands-on workshop, multiple workshops, where 8 either remotely or people come here, we get the people 9 who are working on it at the NRC to take the codes, 10 run them, okay, understand the model, adopt those, ask questions on what's going on within the model and how 11 12 they're getting some of the results that we're 13 getting.

14 And over the last few years, I think I'm 15 very pleased to see that we're now starting to get a sizeable number of staff members here at the NRC that 16 17 understand the codes. They understand how they go They can independently take those things together. 18 19 and make some changes. We still need a lot of help on that. 20

And more importantly, when you take those 21 tools and you use them, you start to really understand 22 the technology. As we've gone from model to model, 23 24 that has been vital because as we pointed out five, 25 six water-centric years ago, we were а very

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

organization.

1

2

3

4

5

6

7

We understand light water reactors for the most part. There's still some questions on that, but except for the work that had been done in gas cooled reactors with NGNP, we were a little bit behind on there. So, I really have to point out the contributions that everyone has helped us with.

8 Now, volume one is about systems analysis. 9 We want to be able to analyze the entire system, the 10 various conditions that we might encounter. In volume 11 one, if we go back and look at it, we were at the 12 state of defining what codes we felt we needed to use 13 with the non-LWRs.

14 We started that off using our EMDAP 15 process, evaluation model development and assessment, 16 by first going through the available PIRTs at the 17 site, phenomena identification and ranking tables. What are those phenomena out there that are new and 18 19 different, things that would give us challenges, both with the NEAMS codes that we're using and with the NRC 20 codes? Should we have gone and tried to develop them 21 along those lines? And also use those PIRTs to help 22 identify where there are shortcomings either in the 23 24 experimental database or our knowledge base.

The intended applications for the BlueCRAB

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

codes are first obtain steady state conditions with a 2 fair amount of detail, power, both radial and axial, 3 temperature distributions, velocity, flow distributions within the core of the vessel, the entire system, primary, secondary, tertiary systems if we need to go in that direction. 6

7 That's your starting point, but then we would move onto accident analysis for scenarios that 8 9 don't result in core disruption, okay, but for these 10 types of designs with the margins that are being claimed and proposed, this would be unprotected loss 11 of flow, unprotected loss of heat sink. 12

LOCAs for the most part have been designed 13 14 out of the system, but we would look at those, 15 reactivity insertions, heat pipe failures, this whole 16 gamut of things that really help us understand how the 17 machine works if it operates based on the applicant's claims, and this is where the staff education really 18 19 comes into play because we want to make sure that we If there is an offset, a understand the system. 20 problem, a scenario, we understand what goes on and 21 how that system should mitigate it. 22 23 MEMBER MARTIN: Question. 24 MR. BAJOREK: Sure. So, Kim noted in her 25 MEMBER MARTIN:

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

4

5

1 overview the biggest challenge, of course, in 2 preparing for, you know, non-light water reactor 3 applications is the fact that you don't know exactly 4 what you're going to get.

5 Now, the nature of PIRT and EMDAP is that when you're doing the PIRT, you've kind of already 6 7 paired up a particular plant and even a particular 8 event, that you've already kind of embedded the I mean, don't you expect some gaps 9 scenarios. 10 inherently? And in the eight years, I guess, you've been looking at this, I mean, have you identified 11 those? 12

Oh, absolutely. MR. BAJOREK: 13 I think 14 EMDAP takes you through the whole process. The PIRT 15 kicks things off. It doesn't always solve things for 16 you, okay? It helps you get started. Assessment is 17 part of that, but as we go through this, we have to make sure that we have consistency in the assessment 18 19 and how it's being used in the plant model.

We think in the long run, we will probably 20 need to look at some uncertainty methodologies because 21 we have a lot of these phenomena that we haven't 22 investigated to the degree that we have in light water 23 24 reactors. We have some things out there like viscosity in a molten salt reactor that you don't know 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	27
1	within plus or minus 20 percent. How that does that
2	effect your analysis?
3	So, even though we have done the PIRTs,
4	we've done the assessment and things like this, we
5	need to make sure that we go back, and as we look at
6	a particular application, it all applies. Scaling has
7	to be brought into there. We have to look at the
8	uncertainties.
9	And at this point, we only can deal with
10	the known unknowns, okay? Things like solidification,
11	we didn't have that in the codes from the start. It's
12	in there now, okay? So, we can deal with those things
13	as we see it.
14	But if an applicant comes in with a
15	particular type of reactor cavity cooling system that
16	we haven't encountered before, a DRACS system that we
17	haven't really looked at, or a type of geometry that
18	is out there a lot of these plants now are going
19	away from a loop type design, pump things out of the
20	system through a heat exchanger, back to a pool type
21	design where it's all within the vessel.
22	That gets rid of LOCA, but it puts a
23	greater burden on you to understand natural
24	circulation and a complex geometry. We haven't faced
25	that yet, and when we see these new designs, those are
I	I

(202) 234-4433

28 1 some of the questions that we're going to have to look 2 at. you 3 MEMBER MARTIN: So, mentioned 4 uncertainty resonates because, of course, the points 5 you made there are inherent in this work. There are a lot of uncertainties. In the previous generation of 6 7 computer codes, obviously just like the current 8 generation, all of the emphasis was on development, 9 just trying to get the physics down, and then the 10 hooks to be able to actually do, say, a best or plus uncertainty, we'll put in afterwards. 11 Is that the same situation we have here 12 today, that maybe the codes that you all are working 13 14 with do not have the capability to really incorporate, 15 say, a plus or minus 20 percent on a core heat 16 transfer or something like that? I mean, where --17 MR. BAJOREK: It's sort of a mixed baq. There has been some work, but we're also going to be 18 19 dealing with a coupled multi-physics environment. 20 MEMBER MARTIN: It makes it even harder. MR. BAJOREK: And in some of these, it's 21 the reactor dynamics, the neutronics which is going to 22 maybe dominate the uncertainty along with things like 23 how well we can model the thermal fluid environment or 24 even the tensor mechanics in a fast reactor. 25 So,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	29
1	there's still work that's going to need to be done in
2	uncertainty analysis that I think is going to be more
3	complex than what we had to deal with
4	MEMBER MARTIN: Right.
5	MR. BAJOREK: on light water reactors.
6	MEMBER MARTIN: Well, I think, to throw in
7	my personal opinion, this is why the, you know, lower
8	fidelity, I hate to call system codes lower fidelity
9	because they were the high fidelity ones, but the
10	value, of course, to be able to be agile and to
11	incorporate uncertainties, of course, has been
12	tremendous for the industry, which, of course, we have
13	the best estimate methods for light water reactors.
14	They give you insights that you just can't get.
15	The tools that, you know, a lot of the
16	tools that DOE has, including the system codes, which
17	are higher fidelity, I would say, than, say, the
18	traditional on-a-volume approach that we've had,
19	there's significant complexity making it difficult to
20	incorporate uncertainties.
21	So, you need tiers of capability and, you
22	know, I'm going to be sensitive to maintenance of old
23	as well as, of course, bringing the new up to speed.
24	I mean, that's always the challenge, so.
25	MEMBER MARCH-LEUBA: Bob, Dennis raised
	I

(202) 234-4433

	30
1	his hand.
2	MEMBER MARTIN: Yeah, oh, okay, Dennis?
3	MR. BLEY: Yeah, I took it down, but I was
4	just trying to reconcile this discussion and Kim's
5	statement that we're now ready. We don't really need
6	a plan for going forward. I expect she was intending
7	that to be for the applications you expect maybe in
8	this year.
9	But I think from what I've understood, you
10	guys are really feeling competent with the codes as
11	they exist now, but some of the things like the
12	complex geometry for natural circulation, some of the
13	places where we were very sparse on data and probably
14	still are remain, and I don't know if you want to talk
15	to that, Steven, or if that will come up later for
16	somebody else.
17	MR. BAJOREK: I think we'll get to it
18	later. I think what we'll say
19	MR. BLEY: That's good.
20	MR. BAJOREK: I'm sorry, go ahead? Okay.
21	MR. BLEY: Go ahead. Yeah
22	MR. BAJOREK: Okay.
23	(Simultaneous speaking.)
24	MR. BAJOREK: We think the state of the
25	codes are good at this point, that we can do a, I'll
I	

(202) 234-4433

1 call it a singular analysis. If you asked me to do an unprotected loss of heat sink for a system, we can go 2 3 and do that, and we probably have enough assessment to 4 feel confident that we're on the right path, but 5 there's more work we can do because some of the uncertainties come in a couple of different ways. 6 7 One, we're dealing with a higher fidelity system of codes and they have meshing capability that 8 9 we haven't had to really deal with a whole lot for the 10 systems codes. That's a question mark. There's the scaling of that assessment data to the new design 11 that's out there, and the uncertainties in the models 12 and correlations, okay, we haven't really used that to 13 14 the extent we can at this point. 15 There's nothing in our regulations that

16 say you have to go that way, okay, so we think we can 17 do it without it. My recommendation is that we 18 absolutely incorporate that because I want to know how 19 much that eats into the margin.

And secondly, with these uncertainty methodologies, you can point to things that dominate your uncertainty, and hopefully that's where we focus our reviews in the future and not just open it up to everything that's interested to these plants.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

MEMBER MARCH-LEUBA: At this point -- this

(202) 234-4433

25

www.nealrgross.com

	32
1	is Jose I'd like to bring back the discussion two
2	or three years ago, the last time we talked, and if
3	you remember our recommendation. In my mind, if these
4	advanced reactors don't bring oodles and oodles of
5	safety margin, you don't have no business bringing
6	them in.
7	MR. BAJOREK: Yeah.
8	MEMBER MARCH-LEUBA: So, in a sense I
9	mean, we have some reactors that say we don't even
10	need control rods. You just let the reactor heat up
11	and it will shut down itself. So, I don't think the
12	problem is determining uncertainty or validity. And
13	I'm with you.
14	I mean, we've worked together, Steve, and
15	as a model, low fidelity and everything, but do we
16	need it? Do we need the complexity? If you can get
17	ahead with a back of the envelope calculation and
18	worst case scenario for heat depth, why spend ten man
19	years on a calculation?
20	MR. BAJOREK: Yeah, I mean, our approach
21	with the volume one is to try to keep it simple, but
22	not simplistic. Do we
23	MEMBER MARCH-LEUBA: Yeah, good.
24	MR. BAJOREK: Yeah, but we're also
25	exploring some other questions. We'll see it later
ļ	

(202) 234-4433

	33
1	on. Yes, we think we can probably do with a one-
2	dimensional model of the core. That's probably good
3	enough, but you can't answer that question unless you
4	try it three-dimensional and see if it makes a big
5	difference, so we're trying to
6	We'd like to sort some of those problems
7	out now and look at the complexity in the hopes that
8	we can throw it away eventually. So, it's you
9	know, we're not there yet, but hopefully when we get
10	into production mode, we wind up with models and
11	capabilities that are relatively simple and you can do
12	lots of calculations quickly, okay, without the burden
13	of the expensive overhead that you can build in.
14	MEMBER MARCH-LEUBA: I'm just being an old
15	wise guy, although I don't look or I don't act like
16	it.
17	MR. BAJOREK: Keep doing it.
18	(Laughter.)
19	MEMBER MARCH-LEUBA: There's a danger of
20	getting lost in the roots of the problem, but where
21	you need to go is see the line above the trees and see
22	the forest.
23	CHAIR KIRCHNER: One way to look at it is
24	what your role in support of the agency is, which is
25	confirmatory work. The kind of thing where we are in

(202) 234-4433

	34
1	the LWR business with best estimate, and uncertainty
2	is all about chasing margin and extracting a little
3	higher performance out of the existing systems and
4	still have an adequate assurance, whereas here, we're
5	dealing in many cases with first-of-a-kind, and it
6	seems to me that, just as you said it, Steve, you can
7	bound many ways the general physics of a problem.
8	If there are questions, it's more on the,
9	the onus is on the applicant to demonstrate the safe
10	performance of the machine, not necessarily the staff,
11	and so that allows, as Jose was saying, you know, to
12	step back and take the kind of approach that you're
13	suggesting
14	MR. BAJOREK: Yeah, we're
15	CHAIR KIRCHNER: You don't have to design
16	the machine for the applicant.
17	MR. BAJOREK: No, but the word flexibility
18	came in and I just want to put this slide on here.
19	MEMBER MARTIN: I just want to throw in.
20	MR. BAJOREK: Sure.
21	MEMBER MARTIN: The applicants, to Jose's
22	point, will more than likely have simpler models and
23	incorporate a lot of uncertainties. If you don't have
24	a tool they can incorporate uncertainties in the same
25	kind of way, you kind of get an apples and oranges
I	I

(202) 234-4433

```
www.nealrgross.com
```

	35
1	type of comparison, which, you know, more than likely,
2	your kind of more best estimate should actually show
3	more margin, but you're not really confirming the
4	uncertainties if you don't have the capability.
5	Now, I'm going to say that I think 90
6	percent of the uncertainties probably could be handled
7	somehow relatively easy. There's going to be just a
8	few very important ones that you'll want to be able to
9	pull out, like the heat transfer ones that are a bit
10	more challenging that really probably need emphasis
11	and explicit effort, you know, its own project to
12	cover.
13	MR. BAJOREK: I agree. I'm anxious that
14	we actually get into the review and do that work,
15	because I think as we see in some of the reference
16	models, there does appear to be a lot of margin in
17	these technologies.
18	If we get something that we think is
19	fairly close to where the applicant's going, it looks
20	like, yeah, there is going to be sufficient margin,
21	then that allows you a lot of benefits in your
22	analysis. I can use some conservatism to bound things
23	that I don't understand.
24	The only caveat on that is that if I'm a
25	utility and if I see there's lots and lots of margin,
I	1

(202) 234-4433

	36
1	I'm going to eventually try to find a way of using
2	that margin. So, we have to look at the future on
3	what happens when that margin does disappear, but
4	we're well off on that.
5	MEMBER MARCH-LEUBA: The utilities have
6	been having, knowing that two, three, five percent
7	margin, because it's a lot of money for them. These
8	reactors have two, three, 500 percent margin. They
9	will not have the electrical generation capability to
10	I'm changing the subject a little bit and I'm being
11	nice to you.
12	In my mind, when the staff, NRC, reviews
13	these advanced light water reactors, not light water,
14	advanced reactors, the problem is not going to be the
15	uncertainty of the calculation of your code. The
16	problem is going to be the unknown unknowns. What
17	have you not thought of?
18	And the only way the staff can do at least
19	an attempt to do the review is be very familiar with
20	the design, and you become very familiar with the
21	design by having all of these codes, running them, and
22	see what can possibly go wrong.
23	So, even though I mean, we've always
24	said yeah, this reactor has the types of fuel, there
25	is no way you can break it. Even if you take a
I	I

(202) 234-4433

	37
1	hammer, it cannot break it. So, it has a lot of
2	(Laughter.)
3	MEMBER MARCH-LEUBA: Wow, okay.
4	(Simultaneous speaking.)
5	MEMBER MARCH-LEUBA: But what else can go
6	wrong? Therefore, we need to have the confidence that
7	we understand the system, that you understand the
8	system.
9	MR. BAJOREK: Right, its flexibility at
10	being able to do lots of calculations, okay, and using
11	that to identify here's a problem or there's a
12	problem, and then if you need the detail, you go after
13	that.
14	MEMBER MARCH-LEUBA: In those reviews,
15	think outside of the box. It's important.
16	MR. BAJOREK: The reason I put this up
17	here is just so that hey, we do need a lot of
18	flexibility in our ability to model lots of different
19	systems. Our mission right now is to be ready for any
20	of them and all of them within the next two years, and
21	that was also one of the driving points. We don't
22	have that time to take our old NRC codes and develop
23	them to do all of this.
24	We needed to jumpstart this by adopting
25	some of the NEAMS codes, but this kind of gives you a
ļ	I

(202) 234-4433

	38
1	gamut of what we're faced with, which is an
2	interesting and kind of fun challenge in a way because
3	you have lots of different designs, lots of variations
4	in those designs, and some of those, there are going
5	to be those unknown unknowns because there's only a
6	handful of those that we have enough public or private
7	information to really see where they're going, and
8	that is going to be one of the things for the future.
9	VICE CHAIR HALNON: So, Steve, back on
10	that graph, I mean, these are all first-of-a-kind
11	reactors, no operating experience. What role do you
12	see or do you even see a role, a major role in these
13	code developments for Nth-of-a-kind licensing? I
14	mean, are we going to get to a point where we can just
15	plug in the site-specific parameters and say it's good
16	to go? I mean, that's obviously an extreme, but
17	MR. BAJOREK: It depends on whether that
18	Nth-of-a-kind is really like the first one or whether
19	there are deviations from that. I would see that the
20	use maybe I'm going back to my light water reactor
21	days. It's like okay, we have it operating. Can we
22	upgrade it? Okay, how can we
23	VICE CHAIR HALNON: Right.
24	MR. BAJOREK: use that margin to
25	improve the economics either by a power-up rating, or
ļ	1

(202) 234-4433

www.nealrgross.com

	39
1	at least in the light water reactor world, looking at
2	higher peaking factors, higher F delta H. I don't
3	know what the equivalent is for non-LWRs.
4	VICE CHAIR HALNON: But what I anticipate
5	is a future argument of what Nth-of-a-kind means
6	MR. BAJOREK: Yeah.
7	VICE CHAIR HALNON: and what is the
8	boundaries and definition of it? Because all of those
9	unknown unknowns that you're designing extra margin
10	for, you're going to reduce those as you get operating
11	experience, and so the second-of-a-kind, third-of-a-
12	kind, fourth-of-a-kind, when is Nth-of-a-kind? And
13	it's at some point.
14	So, my sense is that the codes will become
15	very, very important down the road, especially as the
16	staff tries to figure out what's the most efficient
17	way of licensing the Nth-of-a-kind? Now, somewhere in
18	there, you get away from this is different to exactly
19	or enough the same. So, anyway, just a thought as you
20	go through this because a lot of work here. Maybe at
21	some point, we'll get to plug and chug and
22	MR. BAJOREK: It may be. You know, this
23	also, I think if you go back and you look at like the
24	auto industry about 1900, there were like 200
25	different makers, and then after a few years, it went
ļ	

(202) 234-4433

	40
1	down to a handful.
2	VICE CHAIR HALNON: Right.
3	MR. BAJOREK: You sort of suspect that
4	might happen here, and once that consolidates to a
5	particular design or design type, that's when we can
6	maybe put maybe that's when we put more detail and
7	more emphasis on getting higher accuracy because you
8	see that one going forward.
9	CHAIR KIRCHNER: Well, Steve, I think,
10	just one person's opinion, you know, each and every
11	one of these proponents will come in with their first
12	design, and you already hinted and what typically
13	happens. They then look to take that margin and
14	extract more power because there's an economic overlay
15	to all of this, obviously. And the way I see it, I'm
16	surprised let me we shouldn't lead the
17	presenters, but I'll lead you back
18	(Laughter.)
19	CHAIR KIRCHNER: at the RIC, because I
20	think when you put the left-hand column aside where we
21	have fairly mature codes and so on, and we're dealing
22	with two-phase flow, as you were setting up your
23	presentation, you're saying well, we're looking at,
24	you know, design basis, no core disruption.
25	One of the things you said, I think it was
l	I

(202) 234-4433

	41
1	at the RIC, is that these are all single-phase flow,
2	and that indeed makes the computational modeling, at
3	least from the thermal hydraulics part, simpler, more
4	straightforward. You don't have the complications of
5	two-phase flow.
6	But I suspect what will happen in answer
7	to Greg's leading question is let's just assume
8	that each of these are successful in getting a
9	prototype first-of-a-kind plant out there. They will
10	then come back to you and say okay, we've got this
11	now, but we want to extract 50 percent more power or
12	whatever, and then the capability of the codes that
13	you need, we can pick on one, like LWRs.
14	They are going to be naturally limited in
15	size if they follow the basic design approach that's
16	used now where leakage is an important characteristic
17	in shutting down reactivity insertion kind of events
18	and such, and so they will be pushing against this
19	comes back to uncertainty now. Then more
20	sophisticated analyses that take into account things
21	like uncertainties become more important because
22	they'll push up on the envelope of their passive or
23	inherent safety characteristics as they start trying
24	to extract more power out of the machine.
25	MR. BAJOREK: I agree.
Į	I

(202) 234-4433

	42
1	MEMBER PETTI: But you can also
2	(Simultaneous speaking.)
3	CHAIR KIRCHNER: Their codes will be, not
4	more robust, but more mature, more refined.
5	MEMBER PETTI: But also I think beyond
6	just say power uprates, some of these concepts have
7	advanced fuels down the line, advanced materials, and
8	so it might not be they're going to change the total
9	power, but they want to have a higher burnup like we
10	see with the water reactor, or even higher linear heat
11	rates, and step that way before they change sort of
12	the fuel. So, there's multiple dimensions here in
13	terms of how they're going to evolve their
14	technologies, and that makes it really
15	MR. BAJOREK: That's a good point because
16	you've heard some applicants come and say well, we're
17	going to run the reactor, run this for five years, and
18	then we're going to truck it away. Well, if there's
19	a lot of economic value at the end of five years,
20	they're going to come and say how about year six, yeah
21	seven?
22	CHAIR KIRCHNER: Yeah, yeah, 12 years,
23	yeah.
24	MR. BAJOREK: So, it's you know, I wish
25	we had a crystal ball and could see some of that, but,
I	1

(202) 234-4433

yeah, we're going to see a lot of issues that grow with time as we do those Nth-of-a-kind, which I hope we see.

MEMBER MARTIN: Code development in this 4 5 area has been going on, not necessarily in light water, since before I was born, and the sustainability 6 7 of these efforts, I think, is self-evident. All of 8 the things that you're saying, you know, that we draw 9 from light water reactor experience, I think we'll see it with non-light water. We're building these things 10 with a lot of margin, almost deterministically. 11 Eventually, we'll eat into those margins just like we 12 have with light water. They'll be around for a while. 13

MR. BAJOREK: Okay, I want to move ahead, so I'm going to go through a couple of these slides pretty quickly here because I want to get to some other work.

When we were going through volume one, we identified a lot of phenomena that were, I wouldn't say they're really new. The phenomena has been around a long time, but they played a lesser role in the light water reactor world, but they were going to be very important for non-LWRs.

And this went everywhere from stratification, to striping that we saw on gas

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

44 reactors, chasing the placement of neutron precursors in the fuel salts, solidification, which we almost never worry about in the light water reactors, to, I phrase it as 3D conduction and radiation, but it's really heat transfer through a complex structure to the environment. I lose my heat sink. I lose my flow. I can get rid of that energy just from the grounding. So, those are things that, you know, our codes just weren't really equipped to do because you throw that away because we're conservative to ignore some of those, and that's how we wound up with the

12 some of those, and that's how we wound up with the 13 comprehensive reactor analysis bundle, BlueCRAB, blue 14 for federal.

15 It's built around the MOOSE framework. 16 MOOSE handles data transfers, numerical solutions. It 17 handles some engineering, physics, tensor mechanics, 18 and conduction, but it primarily handles the data 19 transfers, the types of things that as code developers 20 we don't want to spend a whole lot of time on because 21 we want to deal with the physics.

And that physics is embodied in, we use SAM for the loop thermal hydraulics. We can use PRONGHORN is we need more detail. We haven't explored that yet because we're trying to stay more simple at

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

first, but we're going to test that out, Griffin for the reactor dynamics.

And because we saw some systems that were 3 4 going to use Rankine cycles, water-cooled RCCS, and 5 we're real comfortable with our staff using TRACE for those types of designs, we said well, let's make TRACE 6 7 part of the NEAMS environment by making what they call 8 MOOSE wrapped. So, we can transfer information from 9 these codes to TRACE so that as we have to deal with 10 these other types of systems, we have a staff that already understands TRACE and we can model it that 11 12 way.

We have two fuel performance codes which 13 14 are part of the mix, BISON, which is part of the MOOSE 15 We have coupled of FAST code in on that. framework. 16 Now, what I'm going to show in the reference plants, 17 we don't really use the codes for fuel performance. We use BISON for thermal mechanical expansion, but not 18 19 fuel performance and how fission gas release occurs and thermal conductivity degradation. So, that's not 20 really in our non-LWR work right now. 21 However, I do want to point out that hey, 22

having FAST and BISON coupled through MOOSE to TRACE does give us some nice flexibilities as we're looking at situations in light water reactors where maybe we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

45

	46
1	do want the detail that goes on in one of those codes
2	and don't have to rely on relatively simplistic models
3	within TRACE.
4	We also have incorporated Sockeye into the
5	mix when we're looking at heat pipe performance. Five
6	years ago, we said no, we're keeping Sockeye over on
7	the side as a side thing, but it's come along enough
8	over the last year that we have confidence that we can
9	use it, although we have simplistic models built into
10	SAM to do the same thing for the heat pipes.
11	Nek5000 CFD code, or NekRS, the more
12	modern version, it's there. We're trying to avoid
13	using it. We want to stay simple, but if we got to go
14	to that, we'll do that.
15	You see SERPENT on there right now for
16	doing cross sections. Our goal here over the next
17	couple of years is to phase it out, incorporate SCALE
18	Shift by cross sections into Griffin, or make use of
19	the work that they're doing right now to build an MC-2
20	built into Griffin. So, SERPENT has been a convenient
21	thing in the workflow process, but that's eventually
22	going to go away.
23	MEMBER MARCH-LEUBA: And now for something
24	completely different.
25	(Laughter.)
ļ	I

	47
1	MEMBER MARCH-LEUBA: You're probably old
2	enough like me to remember when vendors could only run
3	their version of the code in a VACS system, or PDP, or
4	on a deck.
5	MR. BAJOREK: Yeah.
6	MEMBER MARCH-LEUBA: I assume
7	MR. BAJOREK: Cray.
8	MEMBER MARCH-LEUBA: I assume we have
9	moved all of these codes to a cold environment.
10	MR. BAJOREK: Cold, yeah. I mean, that's
11	a good point because one of the other questions, how
12	are you going to run this stuff? You know, if you
13	look at somebody running Nek5000 and they have a
14	billion cells and thousands of processors, are you
15	going to have to do that? The answer is no.
16	We typically run these references models
17	on a MacBook Pro, a dozen processors. You know, I can
18	go down to the mall here and buy one and start running
19	things that night, okay? You know, it chugs along and
20	it does fine. We can run it on our own RES GOV cloud
21	where we can compile the codes on there, we can run
22	those, and we've got hundreds of CPUs at our disposal.
23	Now, right now, a lot of our users like to
24	go and use the HPC on demand system on INL, and
25	they've been letting us use it, so we can go through
ļ	

(202) 234-4433

48 1 that portal. It has a very nice interface and we run 2 So, if we need the thousands of cores, it on there. 3 we can use that. 4 We can also get that from our own Gov 5 cloud, which is going to be important because we want to make sure proprietary information stays here. 6 We 7 don't want to ship that to the labs or anything. So, 8 we're run it that way, and we can also run most of 9 these problems right now on MacBooks. We haven't 10 encountered anywhere it has been unfeasible to do that. 11 MEMBER MARCH-LEUBA: Yeah, where I was 12 trying to go is obsolescence, specifically when you 13 14 have these complicated, dense communications in 15 different codes. When you have a single code and you 16 compile it, and you have a single memory block, you're 17 going to surely need it, but when you have things this complicated, are you designing the systems so that 18 19 five years from now, it will still run? I hope so. MR. BAJOREK: 20 MEMBER MARCH-LEUBA: Let's think about 21 it. 22 MR. BAJOREK: The MOOSE codes have at 23 24 least been parallelized to the extent possible. And they seem to be very portable. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	49
1	TRACE, we could try to do that, to get
2	there. But yeah, you're right, we have some of
3	these serial codes, a one-on-one processor, and
4	if you add the complexity, you are stuck with
5	that processor speed.
6	So, that's probably more of a question
7	mark for our codes than it is (audio
8	interference), although we're trying to catch up.
9	MEMBER MARCH-LEUBA: I'm quite sure
10	that we don't run off just into the box corner.
11	So, you're just kind of updating, because it
12	doesn't run.
13	MR. BAJOREK: It used to run on a vax.
14	MEMBER MARTIN: Okay, and one question
15	on capability. Among all those codes you have
16	there on that slide, at least (audio
17	interference), I probed a few years ago, when it
18	came to, say, a balanced plan modeling, really
19	triple machinery modeling, the codes maybe SAM
20	has something now.
21	Obviously, a code like TRACE has the
22	old simpler models. Where do we stand in code
23	capability on modeling balance of plant, triple
24	machinery?
25	MR. BAJOREK: There's some of that in
ļ	I

(202) 234-4433

	50
1	SAM.
2	MEMBER MARTIN: It's coming.
3	(Simultaneous speaking.)
4	MR. BAJOREK: Various types of heat
5	exchangers, pumps. It probably needs a little
6	work on the valves. Okay?
7	MEMBER MARTIN: Urban model
8	compressor
9	(Simultaneous speaking.)
10	MR. BAJOREK: No. That's not in
11	there. That's another reason why we have TRACE
12	part of the mix right now.
13	MEMBER MARTIN: Right.
14	MR. BAJOREK: So, as we do the
15	secondary tertiary systems, or if we have
16	hydrogen production, and some of the other ideas
17	on distributing the heat, well, we can do that
18	with a TRACE
19	(Simultaneous speaking.)
20	MEMBER MARTIN: We can do it with,
21	say, like a gas? So, if you had a gas cycle so
22	we can run air, or
23	MR. BAJOREK: Actually, we have some
24	updates for super-critical CO_2 systems to put in
25	the TRACE. They haven't been tested. I wouldn't
Į	I

(202) 234-4433

	51
1	try to run out and use them.
2	But we have properties for sodium, a
3	transfer for sodium, we have some lead, we have a
4	variety of molten salt properties within TRACE,
5	helium, a couple of other gases.
6	MEMBER MARTIN: Okay.
7	MR. BAJOREK: They're there. So, as
8	we deal with those other systems, if it's a
9	secondary salt system and we have to deal with
10	valves and pumps and things, we can do that.
11	And whether the pump is the same type
12	of and for molten salt, I really don't know.
13	But that's been one of the ideas about this whole
14	thing, is that we'll use TRACE for those other
15	systems, where you can model it in a simplistic
16	fashion, but you want to see the effects of
17	tertiary systems that can also fail, or have
18	glitches, as we understand these plants.
19	And I mentioned the importance here,
20	and the complexity comes in because so many of
21	these systems are coupled neutronically, done
22	fluid-wise, where the fast reacts with the tensor
23	mechanic. That's one of the newer twists with
24	these non-LWRs and why we went in that direction.
25	Verification and validation. As I
ļ	

(202) 234-4433

	52
1	mentioned earlier, that was a question mark five
2	years ago.
3	What's out there? How much is out
4	there? And is it really sufficient to understand
5	what's going on in these technologies in these
6	codes?
7	So, we put together a V&V Report. It
8	says draft on there. I think it's still on
9	there. It's draft in the sense that we intend to
10	update this.
11	As more assessment is done, as other
12	verification, as we get more PIRTs, and things
13	like that, we're going to build those into the
14	document.
15	I'll go through some of the contents
16	to describe it a little bit better. But the idea
17	was, okay, let's (audio interference), available
18	PIRTs, and there have been two or three
19	additional ones developed since we did volume 1.
20	We did a couple of our own for molten
21	salts. There's a new one by Westinghouse on
22	event sheet. So, I wanted to make it easy for
23	others who are looking at this to see what's
24	really out there.
25	Verification standards, that was a
I	1

(202) 234-4433

	53
1	question mark. How do you verify things? And
2	how do you make sure that if you add an update,
3	you haven't broken something else. So, we wanted
4	to at least pay some attention to that.
5	And then go by major technology. What
6	assessment has been done to collect all that?
7	And at least get citations on where it's at. And
8	as I mentioned earlier, it's spread around.
9	If you're developing a code, an Idaho,
10	if I'm doing GRIFFIN, I'm worried about GRIFFIN
11	and I'm assessing that. (Audio interference)
12	SAM, I'm doing SAM.
13	I'm doing a whole system, and it may
14	not pay much attention to that. So, I'm looking
15	for things that have these coupled assessments
16	along with those that help benchmark individual
17	code.
18	At the end of the day, I think it
19	helps us identify what assessments are out there,
20	what's been done, and what work do we still need
21	to do?
22	Okay, there's still stuff out there
23	that needs to be shored up. And in doing this, I
24	kept getting confused on what is HTR, HTTR, HTTF,
25	HTRPROTEUS, and everything else that starts with
	I

(202) 234-4433

	54
1	HT. So, we wanted to put a quick reference on
2	test facilities and benchmarks, to just identify
3	what each of those can do.
4	The contents we go through, and much
5	like volume 1, we describe the BlueCRAB codes,
6	make some reference to our integrating scale
7	shift and incorporating sockeye, a little update
8	on that, PIRTs and scenarios.
9	And then we go by technology, with
10	some separation for neutronics and individual
11	components heat pipes, pumps, what I call
12	local phenomena, because what goes on in an upper
13	or lower plenum has importance to several
14	systems.
15	So, we separated that down there and
16	identified the various tests and code-to-code
17	benchmarks that have been performed.
18	Ms. Bier, real quick, when it comes to
19	verification of these codes, you're really
20	relying on DOE and their own methods.
21	My experience with them interfacing
22	with industry, obviously, a big selling point was
23	that they were coming in within QA-1 approaches
24	to everything, and that industry would never
25	need, say, source code to verify.
ļ	I

(202) 234-4433

	55
1	Now, we're also getting into a time
2	where export control becomes a particular
3	challenge. The days of our previous light-water
4	reactor vendors having access to all the codes
5	and doing everything is probably going away.
6	That, maybe from an industry
7	standpoint, should be a good thing if they are no
8	longer responsible for the first V.
9	Where do we see the evolution, and
10	who's responsible for what, given the realities
11	of doing nuclear assimilation?
12	MEMBER MARTIN: That's a real good
13	question. Because I think the issue that could
14	arise is if I'm an applicant and I've done an
15	analysis, and somebody over here has astutely
16	identified code error in one of those means
17	tools, or whatever tool I'm using, who owns it?
18	Okay? Well, I think the NRC will
19	ultimately go back to the applicant. It's your
20	analysis. You own it. Okay?
21	How you resolve it by working with
22	whoever developed the code, is going to have to
23	be a problem between those.
24	But we all want the codes to be
25	accurate. And we're going to see the same

(202) 234-4433

	56
1	problem.
2	If we see a code error in TRACE, well,
3	we go and fix it. If there's any that messes up
4	an analysis, well, we report that.
5	If it's out there when we're going to
6	have to work with DOE to get it resolved, and it
7	we made conclusions that were erroneous because
8	of that, we're going to have to deal with it.
9	So, it'll be a more complex situation.
10	MR. BAJOREK: Right. And certainly
11	less agile. When the companies that are
12	advancing these things don't have some control
13	over the source code, it will invariably create
14	delays and heartaches, and there will be errors.
15	MEMBER MARTIN: Yeah, you have to fix
16	them. The other issue that I don't know if some
17	of the applicants have thought about, is that if
18	a public code is being used to analyze their
19	design, anybody can go get that and analyze their
20	design.
21	One of the reasons you bring that code
22	in-house as a vendor, is to put your own stamp on
23	it, you own it, but now it becomes proprietary.
24	And you don't have to worry about some job shop,
25	or going out there and doing your reload
Į	I

(202) 234-4433

	57
1	analysis.
2	MR. BAJOREK: I don't know. It's just
3	different.
4	MEMBER MARTIN: It's just different.
5	MR. BAJOREK: Faustian deal, you know,
6	you may get some benefit that you don't have as
7	much responsibility. But when there's a problem,
8	then you could be stopped.
9	MEMBER MARTIN: Okay, the content of
10	the V&V Report, I just put a snippet of one of
11	the tables over here.
12	And what we try to do is go through,
13	identify the test, the test facility, TFK&M,
14	whether it's certain fluids, kinetics, fuels, or
15	a mechanic's what got exercised, what codes
16	got involved in that particular analysis, whether
17	it was a separate effects test or integral
18	effects test, is more separate effects test than
19	what's indicated here.
20	What design type it likely pertains
21	to, and then the validation references that are
22	on there. And then the references are not
23	consecutive in order, because they all came in at
24	different times, and they couldn't get them done
25	in consecutive order.
	I

(202) 234-4433

	58
1	But we wanted to identify some by
2	placeholders. As you see down for HTR10, there's
3	some analysis that planned using SAM. That work,
4	when it's done, will fill in that missing
5	reference.
6	So, you can see what's there. The
7	yellow highlights, that's the stuff that's out
8	there that people would like to do, or intend to
9	do, or possibly could do.
10	There are some, like THTR300, which is
11	a thorium high-temperature reactor. Now,
12	everyone may look at that and say that doesn't
13	really quite have the applicability. It's not
14	worth the effort to do that assessment.
15	So, that might be dropped off the
16	list. But the idea is, let's put all the tests
17	that we know about on here and use that as the
18	potential assessment date.
19	The things highlighted in blue are
20	things that have gone into the virtual test bed.
21	These are models which have been developed for,
22	in this case, the HTTR and the HTTF. They're
23	available.
24	They're publicly available, as I
25	understand. They're good building blocks. Don't
	1

(202) 234-4433

59 1 compare to data, but they're important to keep 2 track of. Some overall comments on the report. 3 4 Contrary to maybe what some of us thought five or ago, 5 six years there has been assessment completed for all these technologies. There's 6 something else out there. 7 You do get a sense of maturity by 8 looking at the amount of work that's been done. 9 Not that you want to judge the assessment or 10 maturity based on pounds of paper that you've 11 been produced, but as you look as gas-cooled 12 systems, sodium liquid metal systems, there's 13 14 been quite a bit of work. They've received a lot of attention. 15 There's a sizeable database that has gone into a 16 lot of the assessment. 17 On the other hand, if you start to 18 look at molten fuel salts, now you start to see 19 the list get much shorter, and a high dependence 20 on the MSRE. 21 Everyone in that last column says, oh, 22 MSREs are validation. That's how we're going to 23 24 assess it. Well, there's a couple of things 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

60 1 there. MSRE's a ten-megawatt thermal reactor. And some of those systems are a couple of hundred 2 3 megawatts. Much, much larger. 4 Some are loop systems, some are pool-5 based systems. So, now the challenge eventually is going to be, can I take MSRE and its five and 6 its constituent makeup, and scale that to these 7 other designs out there? 8 There's not a whole lot else out there 9 And so, that's a question. 10 to go on. You know that some of the applicants are doing their own 11 work, their own tests. We haven't seen that yet, 12 but that would be needed to possibly mitigate 13 14 that possible concern. MEMBER PETTI: MSRE didn't have power 15 conversion either, right? 16 MR. BAJOREK: No, it just dumped it 17 out to the parking lot, yeah. 18 19 MEMBER PETTI: So, that's biq а difference. 20 MR. **BAJOREK:** Yeah, biq 21 it's а difference. The enrichment of that is 22 one probably different from what of the 23 some applicants are thinking about. 24 Things slide, but -- I get fascinated with the thermal physical 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	61
1	properties.
2	A lot of these are eutectics. They're
3	no longer eutectics once you've done fission
4	products in there. And that creates another
5	uncertain with this cost-based thermal cod
6	activity and corrosion products, which we're not
7	dealing with, but it's something else that
8	(Simultaneous speaking.)
9	CHAIR KIRCHNER: Is there a way for
10	you to split that third bullet, Steve? I mean,
11	the word fuel there's molten salt reactors,
12	and then there's molten fuel salt reactors.
13	And that's an order of magnitude, more
14	complexity in terms of coupling, and some of the
15	issues you pointed out.
16	Once you add fission products into the
17	salt, that changes properties. It introduces
18	corrosion, it introduces complexity.
19	Considerable complexity, versus just molten salt,
20	which is challenging enough, or code sets.
21	VICE CHAIR HALNON: Are you going to
22	have a relationship with, like, ACU, to get some
23	of these questions answered? Or even maybe
24	sanction some tests that might help answer the
25	questions?
I	

(202) 234-4433

62 1 MR. BAJOREK: Well, that's probably 2 going to drop down to the final bullet down here, 3 that when it comes to assessment, our codes, 4 probably their codes as well, for microreactors, and including the fuel salt, the ACU design, 5 going to depend on these prototypes. 6 that's 7 Okay? There's one being a bullet, there's a 8 couple of others out there. Illinois and ACU are 9 proposing basically research and test reactors. 10 That's really where the assessment 11 data's going to have to come from. 12 VICE CHAIR HALNON: I see a commercial 13 14 collision here, with the scientific community needing this information. yeah, 15 So, that relationship's going to be dicey at best. 16 MR. BAJOREK: Yeah, that's one of the 17 things that at least stood out to me. As we look 18 at microreactors, the fuel salt, the assessment 19 base is weak. And it has to be augmented, either 20 by applicant work, prototypes, we see the MARVEL 21 Reactor going up at Idaho, that's going to be 22 helpful and useful. 23 that's sort of a microreactor 24 But that's not like some of the other ones. It's an 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	63
1	(audio interference) instead of heat pipe.
2	So, anyway, my hopes with this V&V
3	Report is that helps identify technical and
4	knowledge gaps, and assessment gaps that we're
5	going to have to address over the next several
6	years.
7	MEMBER MARCH-LEUBA: Okay, this is a
8	different topic. I count, like, over 100 slides
9	left. It's already 10:00, and I start moving.
10	MR. BAJOREK: Okay. I can move it
11	MEMBER MARCH-LEUBA: It's not a fault.
12	I just, I must confess.
13	MR. BAJOREK: No, no, no. I'm usually
14	overly optimistic on how much I can cover in
15	time.
16	I have examples in here for all of our
17	reference models. I'm only going to do one or
18	two of those. Okay? Because it'll get to be
19	repetitive.
20	But the reference models, these are,
21	for the most part, generic public information-
22	based models of something that is fairly close to
23	what we think the applicant's going to do.
24	The scenarios are things that we think
25	are going to be part of their design basis. We
I	

(202) 234-4433

	64
1	don't know exactly what those are, but we're
2	basing that on the work in the past.
3	And the main benefit, apart from
4	educating staff in how these codes work, how the
5	technology kind of works, is we want to identify
6	deficiencies in the codes now.
7	We don't want to wait until the
8	application comes in, and then realize that, oh,
9	we don't have a mechanism of chasing neutron
10	precursors to the fuel salt. Or, gee, you know
11	we put in a solidification model.
12	Or, we have a complex structure and we
13	can't have independent channels flying through.
14	Just one of the things.
15	So, we found a number of those things.
16	But the idea is, we want to develop those
17	reference models, train the staff, and as I tell
18	the people we work with, get it in-house and
19	break it. On some sensitivities.
20	And if there's problems, it doesn't
21	converge, it fails, there's something a
22	capability that's not there, then we go back and
23	we talk to NEAMS and say, let's get that done
24	now. Because we cannot hold up the review with
25	the intense pressures that we're going to see to
	1

(202) 234-4433

	65
1	get these done in a short period of time.
2	They're designs that we've never done before.
3	So, I'll start off with what would
4	have been more of a conclusion. And I want to
5	just point out some of the things that we've
6	done.
7	On the left-hand side you can see the
8	six referenced designs that we've been working
9	with primarily. And over the course of the last
10	five years, we've made some big steps forward.
11	As we look at the gas-cooled pebble
12	bed, or the molten salt mold pebble bed designs,
13	we have methods now for doing pebble tracking,
14	getting to equilibrium core, doing a great job
15	predicting the radial and axial
16	(Audio interference.)
17	CHAIR KIRCHNER: Can I remind everyone
18	online, please mute your microphones. Thank you.
19	MR. BAJOREK: We started off by
20	looking at the core and then moving outward,
21	modeling the vessel, and then we're now at the
22	point where we've added on reactor cavity cooling
23	systems, secondary systems, DRACS systems most
24	of the models have that.
25	A couple of them, there are some
Į	I

(202) 234-4433

	66
1	improvements. We did some real simplifications
2	on the loops. We can build that in, and in a
3	couple of cases the RCCS is single-phase, but
4	we'll merge TRACE in to do a little bit more
5	funnel when two-phase flow occurs.
6	We can get a fair amount of detail and
7	still run it quickly. The ABTR Model for sodium
8	fast reactor, we model all 61 channels
9	individually. Sixty fuel channels, a bypass
10	channel, and couple that with the tensor
11	mechanics to look at the plate expansion and the
12	fuel expansion, which are your major
13	contributions to negative reactivity.
14	The MSRE, everyone's go-to model for
15	a fuel salt, we now have the thermal fluids code
16	and the neutronics code coordinating with
17	tracking the precursors. That's very important.
18	We may not get to it, but you have a loss of
19	flow. Those long-lived precursors now represent
20	a positive reactivity in the core, as opposed to
21	losing their neutron in the upper plenum
22	somewhere out in the loops. But we can do that
23	now.
24	Heat pipes, five years ago, was just
25	a superconducting piece of metal. For a lot of

(202) 234-4433

	67
1	part, that actually does a reasonably good job.
2	But we have the simplified model in
3	SAM that can handle that. We're merging in
4	Sockeye for more transient types of situations.
5	And as I mentioned, there are other
6	models that are available to us from the GCR that
7	we've exercised. You see some of those down
8	below.
9	But one I'll use as kind of an example
10	on the approach for this is the gas-cooled pebble
11	bed reference plan.
12	We selected the HTR-PM, which we think
13	is a reasonably good representative of what we
14	think X-Energy's going to come in with the X-100.
15	HTR-PM, there's two of these operating
16	in China. They're both at 250 megawatts thermal.
17	X-100, based on our public information,
18	200 megawatts.
19	If I didn't put the label on here, I'd
20	forget which is one or the other. But as you go
21	through the system, the geometry, the rank and
22	cycle that is built into the system, flow
23	arrangement upcomer, upper plenum through the
24	pebble bed, there's a lot of similarities. So, I
25	don't think we could get too much closer on
	I

(202) 234-4433

	68
1	public information on this.
2	In the interest of time, I won't talk
3	about all of the details. HTR-PM has about
4	420,000 pebbles in there.
5	We took that, we meshed the core, the
6	reflector, the vessel, we've add-used SAM and
7	GRIFFIN to provide a 2D porous media within the
8	core and the vessel, one-dimensional
9	representation for the loops, a simple air-cooled
10	RCCS.
11	It's just basically, get the energy
12	out. We're not trying to do a detailed
13	representation, because we don't know what the
14	model looks like for the X-100.
15	GRIFFIN was exercised for getting the
16	equilibrium core, doing depletion. There were
17	some questions on how long it'll actually take to
18	get to an equilibrium core. Some interesting
19	questions on that.
20	It gives us that axial and radial
21	power distributions, which you see here with the
22	power high in the core, your higher temperatures
23	down lower as you go to the exit chute, salt and
24	the fluid temperatures fairly close together.
25	And the right-hand side, cut off on
I	

(202) 234-4433

	69
1	that slide, is the fluid velocity accelerates as
2	it goes through.
3	MEMBER MARTIN: Steve, a
4	clarification. You don't need GRIFFIN
5	necessarily, to do something similar. You can
6	still use SAM in a traditional sense, where you
7	have a point kinetics model in it, and set up
8	each structure.
9	And there's a fitter model that I'm
10	familiar with, without bringing in the more
11	complexity of GRIFFIN.
12	MR. BAJOREK: This is a case where we
13	decided to add some complexity now, in the hopes
14	that when we use it with GRIFFIN and we get our
15	parameters for point kinetics, maybe we can do
16	this simply with point kinetics as we go on.
17	But we're never going to know whether
18	that's sufficient unless we look at something
19	that's a little bit more complex right now.
20	So, my neutronics experts say, oh,
21	don't go straight to point kinetics. Let's
22	explore this.
23	It's still my hope that we kind of
24	show that we can go ahead and take a more
25	simplistic approach, but that's one of the
ļ	

(202) 234-4433

	70
1	things, we want to sort that out now.
2	I don't want to have to face that
3	question a year, year-and-a-half, into a review,
4	and have to deal with NRR and say, hey, the
5	applicant's using point kinetics, is that good
6	enough?
7	MEMBER MARTIN: Yeah. My real
8	question was, the old way of being able to do the
9	simple models does exist.
10	MR. BAJOREK: Yeah.
11	MEMBER MARTIN: But you've brought in
12	the complexity because you can.
13	MR. BAJOREK: Yeah. Yeah, we'll do it
14	now, and if we can drop back to a simpler
15	approach, by all means do that. Especially if we
16	get to the uncertain stuff.
17	MEMBER PETTI: But in salt systems, I
18	don't know if the point connect's going to do it.
19	MR. BAJOREK: No. There's some
20	systems, it may be feasible for others.
21	MEMBER PETTI: Right. There's not
22	going to be a one-answer, one-size-fits-all, so
23	to speak.
24	MR. BAJOREK: Getting codes coupled
25	has its own issues. And it's nice to test it out
ļ	

(202) 234-4433

	71
1	in different ways. Again, let's break it today,
2	so we don't have to deal with the damage out in
3	licensing space.
4	So, anyway, we've done the steady
5	state transience and flow, we've done an
6	overcooling transient to give us a reactivity
7	insertion by I think we fail a bypass valve
8	and we get cold helium into the system, so we see
9	the response of that a PLOFC, a DLOFC.
10	Anticipating a risk-informed world,
11	we're going to be looking at a small leak, or a
12	small LOCA, from the system. See how that
13	progresses.
14	(Simultaneous speaking.)
15	MEMBER MARTIN: What code grade is the
16	applicant using? Or do they have different codes
17	in the name suite that they're using?
18	MR. BAJOREK: There is a mix. There
19	are some that are using some of the names tools.
20	There are others that are using their own.
21	For the gas-cooled reactor, the latest
22	I saw from one of the applicants, they were using
23	a CFD code for the thermal fluids, and I think it
24	was VSOP for the kinetics, which is my
25	understanding, might have been a South-African
	I

(202) 234-4433

	72
1	vintage code.
2	MEMBER PETTI: It's a German code.
3	MR. BAJOREK: German? Okay.
4	MEMBER PETTI: Goes all the way back
5	to the Germans.
6	MR. BAJOREK: Okay.
7	MEMBER PETTI: Called Very
8	Sophisticated Old Program.
9	(Simultaneous speaking.)
10	MEMBER MARTIN: So, how independent do
11	you think you have to be if somebody came in with
12	an analysis using the name suite? Do you
13	consider yourself not adequately independent,
14	or
15	MR. BAJOREK: I think we'd be okay.
16	Because one of the things that you find in using
17	the codes, if you give five different people the
18	same codes, all equally qualified, have them go
19	do an analysis, you'll get five different
20	answers.
21	The biggest uncertainty may be the
22	user effect. So, I think we're reasonably safe
23	by doing our own independent analysis, making our
24	own assumptions.
25	Because for something like this, we
I	I

	73
1	may say, we think the right thing to do is to use
2	KTA correlation for pressure drop and you
3	nodalize it in a certain way.
4	Applicant may choose something else.
5	And they may model things in a different fashion,
6	make different assumptions. So, I think we're
7	reasonably good. Of course, we'd be much safer
8	if they did something different. Anyway, I'll
9	just do this one quick.
10	MEMBER MARTIN: Is that something you
11	would assess if somebody came in with the same
12	code suite you're using? You'd then have to take
13	another fresh look at how independent you are?
14	MR. BAJOREK: Yeah, I think we'd have
15	to.
16	MEMBER MARTIN: Okay, thank you.
17	MR. BAJOREK: And as I go through each
18	of these reference models, we'll run through the
19	transient, in this case a pressurized loss of
20	forced cooling.
21	This just shows the pebble
22	temperatures. Their greatest temperature at the
23	start of the transient near the bottom of the
24	core as the flow stagnates, you don't get much
25	recirculation.
ļ	

(202) 234-4433

	74
1	The design has the hotspot up here and
2	the cold spot down here, so the loops kind of
3	shut off flow through those.
4	You get some recirculation in the
5	vessel. You see a lot up in the upper plenum, a
6	little bit down through our and then the
7	upcomer. Temperatures become hotter at the top
8	of the core. You see the reflector heating up,
9	with the energy eventually being taken away by
10	the reactor cavity cooling system.
11	I don't have my notes on here right
12	now, but the transient takes a number of hours.
13	I think it takes on the order of ten, twelve
14	hours, before the decay heat in the system is
15	completely removed by the reactor cavity cooling
16	system. So, it's very slow transient, but we can
17	run these in reasonable time.
18	MEMBER PETTI: So, this is one of the
19	cases where what you worry about here is not so
20	much the core people have done these
21	calculations forever it's the vessel, and
22	whether you can fail metallics that are at the
23	top.
24	And so, sometimes it's going to take
25	some thinking, as the saying goes, out of the
I	I

(202) 234-4433

	75
1	box, so you're going to have enough fidelity in
2	places that you wouldn't necessarily have to have
3	fidelity, in other systems.
4	MR. BAJOREK: When we get to next
5	steps, and explicitly, one of the things that
6	we're trying to do with this model in particular,
7	is do a better job on the upper plenum and the
8	lower plenum.
9	Because I agree entirely that fuel
10	temperatures up to I think 1,200 or 1,300, big
11	deal. But the vessel temperature in the upper
12	head potentially where you have the weld and the
13	cross-connect pipe, those are places that we want
14	to
15	MEMBER PETTI: Yeah.
16	MR. BAJOREK: So, we're moving from
17	the core on out. One of our emphasis on the work
18	right now is doing a better job on getting vessel
19	temperatures and temperatures in locations on
20	heat exchangers that no-never-minds and light-
21	water reactor space, but they're not going to be
22	that way now. So, thank you for that
23	(Simultaneous speaking.)
24	CHAIR KIRCHNER: This reference model
25	has an active the KU removal system with a
ļ	I

(202) 234-4433

	76
1	cavity?
2	MR. BAJOREK: As a reactor cavity
3	cooling system?
4	CHAIR KIRCHNER: Yeah, operable to
5	this transient?
6	MR. BAJOREK: Yes, yes. Yeah, in the
7	particular transient the rods was a SCRAM. The
8	rods dropped, goes into decay heat, and that has
9	to be removed by the reactor cavity cooling
10	system.
11	I don't want to abuse my time period
12	unless I can get away with it. But talk just
13	briefly about the ABTR. That's another one we've
14	been putting a lot of work into, because we see
15	the gas-cooled pebble bed sodium-fast reactor,
16	and the pebble bed molten salt is being kind of
17	the leaders in where they're at and coming
18	through licensing.
19	As I mentioned, we can model, and we
20	do a rather sophisticated model of the core,
21	model all the different types of assemblies in
22	the 61-channel representation.
23	We've modeled the DRACS System,
24	simplistic in the upper and lower plenum. And
25	that's another place that we need to do a better
	I

(202) 234-4433

	77
1	job in the future.
2	The interesting thing about the sodium
3	fast reactor is probably the reactor dynamics.
4	Okay? We use GRIFFIN to get the reactivity
5	coefficients for Doppler, axial fuel expansion,
6	sodium temperature and density, and HE is the
7	radial thermal expansion of that plate.
8	And that's where BISON came into play
9	for us. The model that kind of the complex
10	plate. We had to do it in two different
11	regions that outer wing, darker in the thinner
12	sections in the middle, but as we run the
13	unprotected loss of flow, the sodium if I have
14	that on here.
15	Okay, we run that one, we lose power
16	to both the pumps, the flow decreases, we drop it
17	down to like one percent. We didn't have details
18	on what the pump was like.
19	But you very quickly start seeing
20	sodium heat up that lower support plate expand,
21	you increase the leakage, and that's your major
22	negative reactivity component.
23	And power decreases and the transient
24	goes off.
25	MEMBER PETTI: So, Steve, some of

(202) 234-4433

	78
1	these designs, they're allowed to just dilate the
2	way they're going to do it. Others, they want to
3	constrain the core. Okay?
4	MR. BAJOREK: Yeah.
5	MEMBER PETTI: And so, that
6	capability's got to be really critical.
7	MR. BAJOREK: Yeah.
8	MEMBER PETTI: Because if you're
9	trying to optimize things so you restrain stuff
10	not to move, that's a pretty complicated problem.
11	MR. BAJOREK: It's a tough one. And
12	it's one of the areas with the MOOSE framework I
13	think it's going to be very beneficial to.
14	That's because we didn't do it here, but if we
15	had to look at flowering of this, you can do it.
16	I don't necessarily think it's easy, but
17	MEMBER PETTI: And I can tell you, I
18	mean, we're reviewing some documents. And the
19	flowering, and then preventing the straining
20	(Simultaneous speaking.)
21	MR. BAJOREK: You've got the core
22	restraint.
23	MEMBER PETTI: I mean, that's complex.
24	MR. BAJOREK: I'm going to jump ahead
25	here. We can always to back. Yeah, I'll just
I	1

(202) 234-4433

79 1 mention the MSRE. That's been our fuel salt. We've modeled the media 2 porous 3 approach within the core. We've added the loops, 4 simple heat exchanger, but the important thing there is that we're able to identify and track 5 the various neutron precursors to the system. 6 The short-lived ones are on the right, the long-7 lived ones are over on the left. 8 As you can see at Steady State, a lot 9 long-lived precursors release their 10 of those neutron as you're either up at the top of the 11 core, or you're getting out into the system. 12 That makes the transient 13 very 14 interesting. One, we do have some data on there. We've got favorable comparisons to the data 15 that's available for like a pump startup and 16 coast-down. 17 For the unprotected loss of flow at 18 zero and full power, when you lose that flow, now 19 those neutron precursors, they stay in the middle 20 of the core. 21 That's a positive reactivity. Okav? 22 But the Doppler and the fuel salt density, which 23 decreases, those are negative. Those mitigate 24 that situation for the MSRE. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	80
1	Now, would that behave the same way
2	for a natural circulation system? Well, this is
3	where we think we can deal with it. But until we
4	really see those systems
5	CHAIR KIRCHNER: Yeah, the actual
6	system is going be very important. Fluid
7	velocity, among other things. It's a lot more
8	complicated as this tail goes up.
9	MR. BAJOREK: Yeah.
10	MEMBER PETTI: And vacate that vast
11	salt systems even more. Higher providence that
12	you could void I mean, I'm not convinced that
13	the delayed neutron, you know it's even
14	controllable. I mean, there's all sorts of
15	issues. That's one of the ones box out there.
16	MR. BAJOREK: As I say, we get the
17	models, we bring them in-house, here's a very
18	simple one, one D-core, the model, the MSRE, and
19	we had a staff member take this, do a better job,
20	do a better model on the intermediate heat
21	exchanger and the pump, the secondary system, go
22	break it.
23	And he came back the next day and
24	found a way to break it.
25	The MSRE actually, the elevation
	I

(202) 234-4433

	81
1	between the heat source and the heat exchanger
2	isn't all that much. You change that elevation a
3	little bit, you completely defeat the natural
4	circulation within the system.
5	And so, he did that. And by changing
6	that elevation just by its (audio interference)
7	showed that, yeah, you get temperatures in the
8	core you won't want. So, that was that.
9	We've done work with the
10	microreactors. And we've looked at two different
11	flavors.
12	When we took a look at it's a
13	design by INL and then LANL; I think they played
14	a role in it too, the modified special purpose
15	reactor but we modified it and the way we came
16	up with our own microreactor. Because, one, we
17	wanted to use metallic fuel, not oxide, and we
18	wanted it to be a fast reactor with thick heat
19	pipes, large diameter heat pipes, as opposed to
20	the thousand smaller ones that they had in the
21	special purpose reactor.
22	And we've also, we have a model that's
23	being developed right now, we've got a little bit
24	of results for, an eVinci-like, both based on
25	public information, information that we have out
ļ	

(202) 234-4433

	82
1	there.
2	But they've been very useful. Because
3	we wanted to look at things like single heat pipe
4	failure. Question was like, if I fail a heat
5	pipe, or heat pipes nobody said only one can
6	fail if you're not monitoring them well, we've
7	set up a model, we failed one of the heat pipes.
8	The fortunate thing that we found is
9	that when that heat pipe fails, the temperature
10	in the core heats up just a little bit. That
11	reduces your power of the core just a small
12	amount.
13	In the vicinity of that failed heat
14	pipe, its temperature increases dramatically.
15	One surrounding it increased. They pick up the
16	load of that failed heat pipe.
17	We did not see temperatures in this
18	particular scenario, where that failed heat pipe
19	would cause you to cascade, or do any others.
20	Yeah, this is just the example that we've done.
21	Change the design, something would have to be
22	looked at. We think we're prepared to do that.
23	And hopefully, you see that same type of margin,
24	as you would for a loss of heat sync. Okay?
25	The heat pipes go through the

(202) 234-4433

83 1 condenser and they give up their energy to an 2 external cycle or something else. Well, if that were to completely fail, 3 4 your heat pipe removal basically goes to zero. Anything that's circulating when the heat pipe 5 stops, you start to increase the temperatures in 6 the core very quickly. But because of the strong 7 Doppler, that decreases the power. 8 The other important thing with this 9 had thermal-mechanical expansion, 10 one is we because it was a fast reactor. 11 As this one heated up, you also had an 12 increased amount of leakage from the core. 13 That 14 also helped shut down the reactor and mitigate getting to exceedingly high temperatures. 15 So, anyway, that's the capability that we have out 16 there. 17 We and the other volumes are taking 18 what might be called a multi-phased approach, 19 probably more so in volume 1 in the other ones. 20 Some of the details matter. 21 We want to make sure that we first 22 exercise the codes. If we find problems, let's 23 get them fixed, and then let's gradually add 24 complications the model, make it 25 to more

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Í	84
1	detailed, model things that we hadn't in the
2	original model, to get it closer and closer to a
3	specific application.
4	Stage three, that's when we get
5	proprietary information. We can at least take it
6	as far as we can right now. The transience, the
7	modeling that makes it look like the applicant
8	design, but to go further, we need the applicant
9	to come in and give us good information.
10	A couple of them have been very good.
11	We're working on an eVinci model now that's going
12	to be eventually close to what we think the
13	applicant's coming into, the publicly available
14	information.
15	We ran that one and looked at that
16	one, and we said, yeah, well now we know what
17	changing it to be. You can see some of the
18	issues though that are corrected and where we're
19	going.
20	MEMBER MARTIN: What you describe
21	sounds still very manually intensive. Is there
22	thought of automation in some way, to go from
23	reference plan to something that more design-
24	specific?
25	Automation isn't always attractive
ļ	I

(202) 234-4433

	85
1	from a funding standpoint, but everyone all
2	the applicants are doing it. Because, of course,
3	all the applicants are doing it. It becomes a
4	competitive sort of thing.
5	Because they're agile. I mean, isn't
6	there some onus on the Agency to be agile with
7	doing these?
8	MR. BAJOREK: One of the things that
9	I hope we can take advantage of, is when we set
10	up these models using the names codes, there's a
11	certain architecture to them.
12	You define the kernels. Basically,
13	the partial difference in equations, how it's set
14	up. And then the mesh is developed elsewhere.
15	What I'm hoping we see is the design
16	changes, so we can modify the mesh. And people
17	who are good with that seem to be able to knock
18	it off in a day or two, change the mesh, but the
19	rest of the model may not have to change.
20	So, hopefully, if there's not too much
21	deviation, we can do it quickly. Completely
22	automating? Maybe someday.
23	MEMBER MARTIN: Not a priority?
24	MR. BAJOREK: I can't think of how to
25	do it right now.

	86
1	MEMBER MARTIN: Well, maybe to the
2	point of my earlier question on verification
3	role, verification of elevation, these are
4	effects, right?
5	We have guidelines, right? And of
6	course, we've gone into all the gory detail they
7	did at the volume, the paper.
8	You know, there's a lot of attention
9	that goes into guidance on how you model. It's
10	got to be different now. I mean, because you
11	don't control meshing I mean, there's probably
12	some control over the density of meshes and what
13	have you but it's just not the same focus that
14	you would have with a finite volume approach to
15	the code.
16	MR. BAJOREK: You're right, we have
17	user guidelines for TRACE.
18	MEMBER MARTIN: Okay.
19	MR. BAJOREK: And I would see someday
20	as we evolve to systems that are becoming more
21	stable not stable, but I mean we know what
22	we're really getting into. And we developed
23	guidelines for probably each of the applications.
24	I don't know if you can come up with
25	a generic set of guidelines and how we're going
I	I

(202) 234-4433

	87
1	to do a sodium fast reactor to a microreactor.
2	MEMBER MARTIN: Well, the developers
3	of the codes at the different labs, I mean, in
4	their documentation are they capturing kind of
5	these guidelines?
6	Historically, they would, harkening
7	back to my work on the Real Five development team
8	35 years ago.
9	But is the documentation complete to
10	that extent? To not just the code structure and
11	models of correlation, but also, and beyond the
12	development assessment that actually includes
13	user guidelines?
14	MR. BAJOREK: Not to the extent of
15	guidelines. The input manuals that I've gone
16	through for the names codes, they give you the
17	flexibility. They don't restrict you in a
18	certain way.
19	In TRACE, we write the guidelines
20	more, and the models and correlations are locked
21	up. You really can't go in there and decide to
22	use a different one.
23	MEMBER MARTIN: I mean, TRACE has got
24	to have the flags, like RELAP-S.
25	MR. BAJOREK: Yeah. Yeah, they're
	I

(202) 234-4433

	88
1	saying like that. But we say, hey, if you're
2	doing a large grade local, these flags need to be
3	on. You need to model in a certain way.
4	With the names tools right now, I have
5	not seen that being defined. It's probably more
6	in the developer's head right now than it is on
7	the developer's paper.
8	MEMBER MARTIN: Right, right. Of
9	course, you meet with those folks, and there's
10	feedback, right? So, I would certainly believe
11	that would be the kind of feedback would come
12	from Agency back to DOE.
13	MR. BAJOREK: Our next steps. We're
14	still refining the reference models. A question
15	right now is, if we have an asymmetric event, to
16	what extent do we need to put in multidimensional
17	models in the core to look at some of that? So,
18	we're determined to investigate that.
19	We're going to be looking at whether
20	we can incorporate PRONGHORN to give us some of
21	that detail. Or, we can just stay with the 2D RZ
22	formulation that we use with SAM.
23	We'll test that out now. We've
24	largely ignored secondary group models. They're
25	there, but we can improve on some of that
ļ	I

(202) 234-4433

capability.

1

2

3

4

5

6

7

And the RCCS, there's at least one applicant out there that wants to flood those tubes with water. We think they may even get a quench rod in there. So, that's an opportunity for TRACE to be able to look at the operation in a two-phased environment.

As I mentioned, one of the things we would like to do is to incorporate better methods for doing sensitivities and certain methods in here. We've talked about that but we have to get that into our van as well.

Validation. As we go through the V&V Report, you can see where some of the gaps are. And we'll talk to DOE and say, we need to accelerate the pace of what's going on here. Probably heat pipes is the main one right now.

Once scoured again, and look for places where the database is clearly weak and point that out. And hopefully, that can be corrected by the time an applicant comes in. That's up to DOE and the applicants.

And like I say, as we get better information from the applicant, we'll build that in. So, hopefully, when we get into the review

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	90
1	stage, we're ready to go. And hopefully, we can
2	demonstrate that they believe what the applicants
3	are telling us, that there's a lot of margin here
4	in that design, and that assists the review in
5	moving forward.
6	MEMBER PETTI: Steve, just a quick
7	question. We haven't talked about ingress
8	events. So, water in the gas reactor got to be a
9	deep inside the design basis, right? Because
10	they're going to have a heat exchange.
11	And then in some of the micros, yeah,
12	ingress, depending on what the configuration
13	looks like. Whereas, in some of the others,
14	they'll say it was beyond design basis. So,
15	that, I think, MELCOR. But there may be some
16	that it's going to be
17	MR. BAJOREK: Yeah, we talked about
18	that when we did the DLOFC for the pebble bed.
19	The boundary conditions were such that we were
20	getting error and kind of objected to that.
21	But it's probably one of those areas
22	where there are some transience where I think
23	BlueCRAB can do a better job.
24	But there's others where I think you
25	need to go to MELCOR. And I think air and water
ļ	I

	91
1	ingress are those, as you get
2	MEMBER PETTI: Okay, so you just used
3	MELCOR, even though it's a deep end (audio
4	interference).
5	MR. BAJOREK: Yeah, it might be for
6	the DLOFC. You get a lot of water ingress, or
7	graphite dust and all those entertaining things.
8	That's probably more of an MELCOR. We might be
9	using BlueCRAB then to say, hey, here's what we
10	think the radial power distributions are. This
11	is a way of
12	(Simultaneous speaking.)
13	MEMBER PETTI: It's just that on the
14	steam generator-2 failure, you can get a
15	reactivity. So, like, whether MELCOR could
16	handle that, versus you guys never set up.
17	MR. BAJOREK: Because I've used my
18	time, but
19	MEMBER MARTIN: At least one last
20	question for me. Of course, the MDEP process
21	30 steps, 40 steps, or whatever it is; one of
22	them relates to code scaling, scalability the
23	practice of scaling has traditionally been more
24	of a specialist, oftentimes relying on people
25	that come from the testing world or what have
I	1

(202) 234-4433

1

2

3

4

5

6

7

When it was hot and heavy 25, 30 years ago, you had a lot of experts in that area -there are fewer and fewer now -- which begs maybe some attention to the code development, and maybe the kind of figures of error that we can draw from it.

And I know the answer to this ahead of 8 anything been 9 time. Has done really to facilitate that aspect of the MDEP process, 10 to help really practitioners to understand scaling 11 and scaling phenomena, similarity criteria --12

In integral systems, I MR. BAJOREK: 13 14 have not seen much of that. There has been some really nice work done by Peterson to scale 15 surrogate fluid to molten salt. So, you can use 16 water in place of the high-temperature salt. 17 And Т think there's also been systems 18 some consideration in that work. 19

There actually has been work done on heat pipes, as one of our questions was, well, we see some of the applicants with very large diameter heat pipes. Very long heat pipes. Twenty, 24-feet, something like that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

How does that scale to the pencil-

(202) 234-4433

25

	93
1	diameter heat pipes that are used in satellites,
2	laptops, and stuff like that?
3	And I saw a nice scaling report where,
4	yeah, you can take some of those and scale those
5	up to a larger diameter.
6	MEMBER MARTIN: So, for like
7	preparatory analysis efforts where you see the
8	role of these tools to support the valuation of
9	scaling, I mean, I don't know if it's 0 and one-
10	off kind of effort analysis with a slightly
11	different focus?
12	MR. BAJOREK: Well, I guess when you
13	say scaling though, I've always interpreted that
14	as the scaling of the experimental facility to
15	the full scale prototype.
16	MEMBER MARTIN: Right, right. But
17	there's multiple
18	MR. BAJOREK: Codes don't
19	(Simultaneous speaking.)
20	MEMBER MARTIN: Code scaling
21	enrollment. I think of applications I've been
22	involved with, where we would use the codes to
23	evaluate non-dimensional parameters in a dynamic
24	sense. You would oftentimes be looking at
25	distortion over time come into play there.
Į	

(202) 234-4433

	94
1	We would make complex control systems
2	that would otherwise draw out that kind of
3	information. Of course, we'd do shorter models
4	on the side to complement that.
5	I mean, it was its own industry, if
6	you had that resource. But because it was such a
7	unique competency, dropping that into the NRC,
8	it's dropping a rock in there. Because the
9	building would have to be developed. I mean,
10	it's not easy.
11	And I do feel like that aspect, MDEP,
12	is not getting the review that it was intended
13	30 years ago.
14	MR. BAJOREK: No, you're right. I
15	mean, I think it was when MDEP and CSAU is when
16	they got
17	(Simultaneous speaking.)
18	MEMBER MARTIN: Right. I mean, but
19	the test scaling has been around since forever
20	70's, and ISHI, and those sort of methods.
21	But with regard to the integrity of
22	codes, a valuator, from a scaling perspective,
23	which was a popular topic it certainly seems
24	diminished I do think there's opportunity in
25	co-development to tackle that.
ļ	I

(202) 234-4433

	95
1	But again, it depends on the kind of
2	questions that come from ACRS members, the kind
3	of questions that come from the staff here, and
4	what have you, on what attentions to get.
5	And I don't know if we're losing it,
6	if we worry about losing it.
7	MR. BAJOREK: I hope we keep it on the
8	table. Because I think it's going to be at least
9	there as a way of showing that the data that's
10	been produced is truly applicable to the system.
11	MEMBER MARTIN: Sure.
12	MR. BAJOREK: We're not ready to do
13	any kind of code simulation where you change that
14	yet. We're happy to get the code to run.
15	MEMBER MARTIN: It's still hard.
16	That's basically it's still hard.
17	MS. WEBBER: If I could add just add
18	one comment. The big push over the last seven
19	years is to get capability. And a lot of the
20	questions I really have appreciated, and comments
21	I've appreciated.
22	But that takes the capability to the
23	next level. And that will happen over time and
24	with resources.
25	So, it's not that we don't appreciate
	I

(202) 234-4433

	96
1	the comments. It's just we're trying to build a
2	basic capability to look at what's in front of us
3	now, and then to be able to address these much
4	more dynamic, complicated situations, as we move
5	in the future.
6	MR. BAJOREK: I think our job's being
7	patient.
8	MS. WEBBER: Yeah.
9	MR. BAJOREK: To throw it right back
10	into
11	MS. WEBBER: But we do appreciate the
12	comments and insights.
13	MR. BAJOREK: Yeah, we're still on the
14	first couple of miles of a marathon, when it
15	comes to really understanding and licensing some
16	of these designs. And I think for all of the
17	codes you're going to hear today, we've made a
18	lot of progress over the last five years.
19	When it comes to the BlueCRAB, I think
20	we're about ready for doing independent analysis.
21	Give us the design, I think we can tackle it.
22	We've got reference plants for a
23	number of these designs, especially the near-term
24	guys that are out there, and that's helped us
25	with our understanding.
	I

(202) 234-4433

	97
1	Looking at V&V. Okay, that's why I
2	put the V&V Report together. To see where we're
3	at, what's mature, what needs to be done. So,
4	that's put us along that path.
5	And I'd like to say that BlueCRAB is
6	tentatively ready for independent analysis.
7	We've dealt with the known unknowns, to the
8	extent that we can the database available
9	but there's going to be those unknown unknowns.
10	We don't know what that design is.
11	And there will be work that we're going to have
12	to deal with, whether it's scaling, whether it's
13	a mesh sensitivity, how you model a certain
14	grease plug or DRACS system, things like that.
15	Those questions are going to be out there.
16	But I think to the extent that we
17	could have done so in the last five years, I
18	think we're in a pretty good place right now.
19	But I'd really like to thank you for
20	your attention, your questions.
21	MEMBER MARTIN: All right. Yeah,
22	we've kind of come to the conclusion of this
23	first presentation of several today. Last
24	questions from the members? Hearing None, do we
25	just go to recess?
ļ	I

(202) 234-4433

	98
1	CHAIR KIRCHNER: It's a good time to
2	take a break, right?
3	MEMBER MARTIN: Yep.
4	CHAIR KIRCHNER: Let us take fifteen
5	minutes and come back at 10:45. With that, we'll
6	take a short recess break here. Thank you.
7	(Whereupon, the above-entitled matter
8	went off the record at 10:30 a.m. and resumed at
9	10:46 a.m.)
10	MEMBER MARTIN: Rejoining our meeting here
11	on the non-lightwater reactor code development. We've
12	heard from Steve Bajorek with the volume one, we're
13	moving into the subject of fuel performance analysis.
14	Kim, did you want to introduce who you have here for
15	us?
16	MS. WEBBER: So I'm behind you, James
17	Corson is going to call in. And James Corson is a
18	senior reactor systems engineer in my division, he
19	reports to Hossein Esmaili in the Fuel and Source Term
20	Code Development Branch, he's going to talk on the
21	fuel performance volume two progress. So James, are
22	you online?
23	MR. CORSON: Yes, I'm here. Can you hear
24	me?
25	MS. WEBBER: Yes, we can. Take it away.
I	1

(202) 234-4433

	99
1	MR. CORSON: Okay. Good morning,
2	everyone. Unfortunately, I couldn't be there, I'm
3	actually on travel this week and I've had other
4	meetings that have kept me away from most of this
5	morning's session. But I'm happy to talk to you now,
6	about our fuel performance analysis for non-LWRs.
7	So, as you know by now, we had written a
8	plan to look at fuel performance analysis for non-
9	LWRs, dating back to 2019. So, the whole goal of this
10	plan, and fuel preference in general, is to understand
11	the thermal mechanical nuclear fuel behavior during
12	normal operations, anticipated operational
13	occurrences, and accident conditions. So, the goal of
14	our tools is to be able to provide insights for
15	developing regulatory guidance or to support reviews
16	of topical reports.
17	So, again, we're trying to ensure that our
18	tools and models are ready for licensing actions. So
19	I'm going to talk more today about some of the work
20	that we've done since 2019 to develop the necessary
21	modeling capabilities in FAST to model LWRs, as well
22	as to perform some assessments against the data that
23	is out there.
24	And before I move on, I'll just, I want to
25	make clear that I'm talking about thermal mechanical
I	1

(202) 234-4433

performance, so stress, strain, heat transfer, fission gas release, those types of things. So I'm focused on solid fuel forms, for molten salt fuels that's a little bit different, that's covered by what Steve was talking about earlier or what you'll hear next on the volume three source term analysis. So, again, talking about solid fuel forms here.

8 So, I apologize, this slide is pretty busy 9 but this is taken from a presentation that was at the 10 RIC just to highlight what the FAST fuel performance So FAST itself is relatively new but it's 11 code is. built on FRAPCON and FRAPTRAN which are a lot older, 12 qoing back for a few decades. 13 SO FRAPCON, FRAPTRAN, 14 and now FAST were built for LWR fuel analysis, they've 15 since been extended to look at non-LWR concepts but, yeah, a lot of the work that was done in the past is 16 17 focused on LWRs.

codes have been extensively 18 But the 19 validated for the data we have for LWRs, and they're 20 used quite extensively both domestically and internationally. So it provided a good starting place 21 for us to move forward with non-LWR analysis. 22 And I'll also say that these codes, or the FAST code is 23 24 developed by Pacific Northwest National Lab primarily, do 25 but we some of our own analysis and code

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	101
1	development in-house at NRC.
2	Okay, so moving on to non-LWR fuels. Our
3	prime goals have been to update FAST with the relevant
4	models for metallic fuel, focusing especially on
5	uranium, plutonium, zirconium metallic fuel alloys.
6	Because that's what we have a lot of experience with
7	in the past, and that seems to be the predominant
8	alloy of interest moving forward, at least for the
9	very near future. And then also looking at TRISO
10	fuels.
11	And then, once we've gotten far enough
12	along with some of our code development work, the
13	important thing, of course, is to assess it against
14	available experimental data. And, fortunately, there
15	is a fair amount of data out there for both metallic
16	fuel and for TRISO, certainly nowhere near the amount
17	that we have for LWR fuels but still enough to help us
18	assess our codes.
19	MEMBER PETTI: James, this is Dave.
20	MR. CORSON: Yeah?
21	MEMBER PETTI: Just a comment on the
22	metallic fuel. There's an application in-house and
23	it's no plutonium in it, so it'd be really good to
24	make sure you've got data for the uranium zirconium

alloy, that's where the earliest focus will be, I

(202) 234-4433

25

www.nealrgross.com

	102
1	believe.
2	MR. CORSON: Yeah, you're correct about
3	that. And I should have made that clear, this is,
4	it's not only with plutonium, it in fact, I think
5	a lot of the models are probably more applicable to
6	just U-10 Zirc as opposed to UPU-10 Zirc. But we do
7	have models that should be able to handle a range of
8	plutonium fractions, going from zero to, I don't know,
9	20 percent or so. I forget exactly how high they went
10	in EBR-II days.
11	MEMBER PETTI: And then, of course, the
12	claddings are different, you know, you go back to
13	these older alloys, what will be used today.
14	MR. CORSON: Yeah. So, I think I have
15	this on the next slide but I'll just say it now, we
16	focus primarily on HT-9 right now, because that seems
17	to be what the most interest is right now. But, as
18	you say, I mean, there's some tests that had D9
19	cladding going even further back, you know, SS-304, I
20	think, or 316. I forget, but the more traditional
21	stainless steel claddings. So, yeah, I think our
22	models are primarily focused on HT-9 for now.
23	(Simultaneous speaking.)
24	MEMBER PETTI: Good.
25	MR. CORSON: Okay. Yeah. So, as I said,
I	1

(202) 234-4433

for about two decades now, maybe even a little bit

longer dating back to the NGNP days.

103

7 Okay, so first I'll say, you know, when we 8 wrote our plan in 2019 we had very basic capabilities 9 for metallic fuels, extremely simple models for fission gas release and swelling, as well as some 10 material properties like thermal conductivity, thermal 11 Since then, we've done some expansion, and so on. 12 evaluations to see what other models we need or what 13 14 improvements we can make, and so far in the last few years what we've really focused on is improving our 15 fuel swelling and fission gas release models. 16

17 So our models are still very empirical, 18 moving forward we would like to do more mechanistic 19 models. But, for now, the empirical models seem to 20 work pretty well.

21 So, on the top-right, this just shows the 22 curve fit for fission gas release for uranium, 23 plutonium 10 Zirc fuel. So, the dots, this is a 24 pretty, I guess, common graph showing results for a 25 range of plutonium fractions. I think, in fact, some

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

	104
1	of these are just U-10 Zirc with no plutonium. So
2	the, you know, the simple curve fit works pretty well.
3	There is a little bit of uncertainty, certainly, but
4	for now the empirical fit should work pretty well.
5	The anisotropic fuel swelling model, also
6	empirical, a little bit harder to visualize in a few
7	plots because it does account for plutonium fraction
8	and, you know, burn up and so on. But yeah, that's
9	something else that we've added to the code. I don't
10	have it on this
11	MEMBER PETTI: So James, just a question
12	on the swelling.
13	MR. CORSON: Yes?
14	MEMBER PETTI: You know, all this data is
15	on really shorter rods and I just, I don't know how it
16	scales well to longer rods that will be in actual, you
17	know, applications that are going to come in. But I
18	did find a more recent publication that is a more
19	sophisticated fuel swelling and fission gas release
20	model, kind of together. And it supposedly does a lot
21	better, it's a little more fundamental and not as
22	empirical. So you guys might want to look at that, I
23	believe it came from INL.
24	MR. CORSON: Yeah I, we very much, you
25	know, pay attention to what is going on in the NEAMS
I	1

(202) 234-4433

	105
1	program, or INL in general. And as much as possible
2	we'd like to leverage what's out there, to put in our
3	codes. I think for TRISO, as I'll say, that's an
4	example of where we really have leveraged a lot of the
5	work that's been done by DOE, INL in the past.
6	And yeah, I think ideally we would do the
7	same thing moving forward. We don't have the same
8	resources to develop these models ourselves that INL
9	has, but as much as possible we'd like to learn from
10	them and use their models when appropriate.
11	But I think, you know, you bring up a
12	really good point and, about, you know, the limits of
13	the existing database. We know a lot about fuel that
14	looks like EBR-II, but what happens when you change
15	things like sphere density or, as you said, the height
16	of the fuel, active fuel length, operating
17	temperatures, so on? We know a little bit from the
18	historical evidence, but the uncertainties get quite
19	a bit larger once you start deviating from our
20	historical experience.
21	So that is why the more mechanistic models
22	will be important, but I think we'll still need some
23	sort of data to, hopefully, validate them.
24	MEMBER PETTI: The other thing is just,
25	you know, beyond just the sort of steady state
ļ	I

(202) 234-4433

106 1 performance, do you envision using FAST for some of the transient performance, the overpower protected 2 3 events and the like, to show, to confirm a fuel's 4 going to be okay? 5 (Simultaneous speaking.) MR. CORSON: Yeah --6 7 MEMBER PETTI: Because that's a more 8 sophisticated calculation. 9 MR. CORSON: Yeah. To some extent we would like to use FAST. 10 I think, you know, for LWRs the way we do things, for the most part we use FAST 11 for steady type performance, and 12 state then occasionally we'll get into using it for LOCA 13 or 14 reactivity initiated accidents if we have some 15 questions about the detailed fuel performance. But 16 for the most part we can get away with using something 17 like TRACE, a systems code, or, you know, code like MELCOR, to do those sort of transients. 18 19 So the answer is yes, we would like to develop the capabilities in FAST. But I think the 20 more simplified approaches in the systems codes may be 21 sufficient. 22 MEMBER PETTI: I worry that, you know, the 23 24 FAST reactor transients, that's not, it's not going to You're going to need FAST, I think. You going 25 work.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Í	107
1	to have to deal with the creep, you know, the pressure
2	on the cladding relative to the expansion. That's why
3	this model is so important, you know, the fuel pushes
4	on the clad but it also extrudes up the clad. How
5	much it does of each is a knob in the code, as far as
6	I understand
7	(Simultaneous speaking.)
8	MR. CORSON: Yes.
9	MEMBER PETTI: Except that there's this
10	new model which gave me hope that there's something
11	more phenomenological out there that could help think
12	about how to scale it. Because to me that's, you
13	know, we're not going to be able to do a transient
14	test of a current fuel that the applicant is
15	proposing, because where are you going to get the
16	damage on the clad? It's going to all be, you know,
17	lightwater reactor, you'll be lucky to get a couple
18	DPA, that ain't interesting.
19	So, you know, the modeling is critical,
20	it'll be critical for the applicant. And so I think
21	it's going to be critical for the staff to have some
22	confidence in those calculations, so.
23	MS. WEBBER: Maybe that's something, if
24	you don't mind, you can send to us because
25	(Simultaneous speaking.)
	I

(202) 234-4433

	108
1	MEMBER PETTI: Yes, I was going to have
2	these things
3	MS. WEBBER: James may have it
4	already, but we can just double check
5	MEMBER PETTI: Yeah, I was going to send
6	it to Hossein to put on our SharePoint, I can tell him
7	to send it to you guys.
8	MS. WEBBER: Thank you.
9	MEMBER PETTI: I dug up some stuff that
10	may be useful.
11	MR. CORSON: Yeah. I mean, that'll be
12	helpful. I think, you know, usually if something is
13	in Journal of Nuclear Materials I see it and flag it,
14	but yeah, some things do slip my notice.
15	MEMBER PETTI: This one was in a weird
16	one, I'd never heard of that journal
17	(Simultaneous speaking.)
18	MR. CORSON: Yeah, that seemed yeah.
19	MEMBER PETTI: It was an odd one, so.
20	MR. CORSON: Yeah. So that yeah, if
21	you have stuff like that, that would be really helpful
22	that, you know, I haven't come across myself.
23	So, yeah, it, you know, we started to get
24	into this a little bit, but we still need to do a
25	little bit more work looking at the fuel failure
ļ	I

(202) 234-4433

1 models so that we can do more transient type analysis. We also need to add a fuel-clad chemical interaction 2 3 model. Likewise, you know, we're probably going to at 4 first do something pretty empirical, based on the type 5 of data that is shown here on the bottom-right. But, 6 aqain, you know, we would like to have more 7 mechanistic models, and we do look to our colleagues 8 at the labs to help out in that respect. 9 And, yeah, like I said, at the bottom, 10 more mechanistic swelling and fission gas release So, certainly, if you can send us the 11 models. information you have, we'll look it over and maybe 12 that can inform our own models. 13 14 MEMBER MARTIN: This is Bob Martin. То 15 your point about more mechanistic models, a code like 16 BISON has been invented for that purpose. You know, 17 the qoal should not be to make FAST-BISON, I think the emphasis on, you know, how you use and implement 18 19 empiricism based on new data, what have you, is extremely valuable for analysis because it's the best 20 knowledge, maybe, at the time. 21 22 I wouldn't want to see you lose the ability to have those empirical models in there, at 23 24 least as an option. You know, you might want to get,

replace one with a mechanistic model at some point but

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

1 code options, and I'm feeling my age, I think it's nice to be able to move back and forth. And at the 2 3 same time, you don't want to, if you keep on going 4 down the path and make it look like BISON, well then, 5 you'll get rid of FAST and everyone will be on BISON. So you got to keep the personality of the tools, you 6 7 know, unique, you know, because there are unique 8 applications for FAST and --9 (Simultaneous speaking.) 10 MEMBER PETTI: But for instance, you could paramaterize this new model, right, and could fit the 11 whole darn thing and stick it into FAST. You know, I 12 mean, and you can look at what's important, what's not 13 14 important in there, it just gives you some insight as 15 to whether or not what you have is good enough or you 16 need to extend it. 17 MEMBER MARTIN: Yeah. MEMBER PETTI: No, I agree with 18 Yeah. 19 you, you don't want this to become BISON. Yeah, that's exactly right. 20 MR. CORSON: And, in fact, you know, we're working right now on a 21 slightly more detailed fuel swelling model that does 22 have more parameters than what we have right now, and 23 24 we are adding it as an option to the more standard So we're already doing exactly what you're 25 model.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

1 suggesting. And I agree, you know, we, from the start 2 3 we never wanted to recreate BISON because we just don't have the resources for that for one thing. 4 And 5 another, you know, there is a place for a more simplified empirical analysis, we don't have the same 6 7 responsibilities, I quess I would say, as the vendors do for their own analysis tools. So, yeah, I think as 8 9 much as possible we have tried to keep things a little bit simpler, based in part on ACRS's feedback in past 10 I think that's been really helpful in 11 meetings. 12 guiding our own efforts. Okay. So, unfortunately, the assessments 13 14 that I'm showing here are pretty dated, these are 15 dating back to 2018. As I said, we had pretty 16 simplified models at the time. But even then, with 17 the very simplified models we do capture a lot of the important behavior that's from the, 18 you know, 19 especially the colliding strain, that's what we're pretty concerned about when it comes to fuel failures, 20 and so on. 21 So, we're in the process right now of 22 updating the past assessments that we've done. 23 We 24 only had, I think, four cases that we've looked at in the past but, you know, Argonne National Lab has a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

112
great database of the old EBR-II data. So we'd like
to expand beyond our, you know, the four cases that
we've done, we want to redo those and then expand to
the, you know, several dozen cases that are available
to us.
So there is still some more work to be
done here. I think, you know, our assessments so far
have shown that FAST does pretty well for the steady
state analysis, but with these better models we're
hoping to reduce uncertainties in our predictions.

So, moving on to TRISO. This is something 11 that in 2019, when we presented our plan, we didn't 12 have anything yet for TRISO fuel. So, we had talked 13 14 about, you know, having TRISO models in FAST, 15 ultimately perhaps we will end up incorporating that in the main version of the code but for now we just 16 have a standalone code, a simple 1D code for TRISO 17 fuel performance. 18

19 For those of you who are familiar with PARFUME, what we're doing with FAST TRISO is pretty 20 similar to that. And we've leveraged a lot of the 21 work that was done for PARFUME in terms of the various 22 material properties and, you know, the solution for 23 24 the mechanical stresses in the layers that were done 25 as part of that program.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

1 So, the last release of FAST TRISO was from a couple of years ago now. It was pretty simple, 2 heat transfer fission product 3 could do and we 4 transport, some very basic stress calculations in the 5 layers, it didn't account for the layer swelling and creep, that's really important. So it wasn't in that 6 7 version of the code but it did have some Monte Carlo 8 analysis capabilities to calculate failure 9 So there is, you know, some work probabilities. that's needed to be done from the last version of the 10 code that was released. 11 Now, fortunately, quite recently, in fact, 12 the mechanical model used 13 we did implement for 14 pyrolytic carbon swelling and creep. And so at the

15 bottom, this is just showing comparisons to this IAEA coordinated research project CRP6, 16 it had some 17 simplified TRISO fuel cases and asked the participants in the benchmark to do these simplified calculations. 18 19 So you can see below, you know, now our calculations for layer stresses are pretty close to what BISON is 20 getting for these idealized cases. 21

22 So, the one outstanding development item 23 is to develop the stress correlations that allow you 24 to capture multi-dimensional effects in the simple 1D 25 calculation. So, this counts for things like the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

1 pyrolytic carbon layer cracking and de-bonding, and the stresses that that would impose on the silicon 2 3 carbide, and can also account for spherical particles. 4 So we're -- this is ongoing right now, we're hoping to 5 have it done in the next couple months, to incorporate in the, in our version of FAST TRISO. 6 7 And then, once we do that, of course, we 8 need to expand our assessments. We've done some very 9 simplified calculations of fission product releases 10 from AGR, I think from the AGR-2 set of tests. So, we need to repeat them once we have the more, once we 11 have the improvements made to the model. 12

So, this last slide just sums up the work 13 14 that we've done in the last few years. So, our codes are ready to do confirmatory analysis for metallic 15 fuel and uranium oxycarbide TRISO. Obviously there's 16 17 development work that would help reduce more uncertainties, and we, of course, need to do more 18 assessments to gain confidence in our models, but 19 20 nevertheless we do have capabilities to do some confirmatory analysis. 21

That doesn't mean that we're done, we would like to add more mechanistic models, as I've said. Again, it's not going to be recreating BISON, but we could take into account more parameters,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

perhaps, that do influence the thermal mechanical performance.

But I'd say, in closing, one of the most 3 4 important things of this activity is it has really 5 helped build staff expertise in this area. It's one thing to take a model off the shelf and use it, it's 6 7 another thing to be involved in creating that model and understanding what goes into it, and all the 8 9 limitations. So that exercise, I think, has perhaps been even more valuable than the code development 10 efforts itself. It's really helped us understand 11 what's important and we'll be able to use that when 12 we're supporting licensing actions that NRR has to 13 14 take. 15 So, that's all I had for my presentation,

So, that's all I had for my presentation, and I'd be happy to take any questions.

17 MEMBER MARTIN: One -- of course, I see the statement about EBR-II and AGR. Are there fuel 18 19 data sets that are out there that you should be gathering in and incorporating into your, you know, 20 co-development efforts, your assessment efforts, that, 21 haven't risen 22 know, just in the level of you consciousness yet and that should? 23 I'm, you know, 24 looking at more -- Dave maybe has what you've been --(Simultaneous speaking.) 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

16

	116
1	MEMBER PETTI: No, the only there are
2	some FFTF metallic fuel
3	MR. CORSON: Yeah, I
4	MEMBER PETTI: I'm sure it's part of that
5	database
6	MR. CORSON: Yes, it is. I think
7	MEMBER PETTI: It's dominated heavily by
8	EBR-II, but there was some, so there's a length
9	effect, because those are longer, so that's
10	beneficial.
11	The only thing I had a question on, you
12	know, what I found in the days when we were doing the
13	TRISO modeling, you know, these rods are different,
14	what are being proposed by the applicant. Their
15	diameters are different, thicknesses of cladding are
16	different, how much of an effect does that have? You
17	probably have the capability to take, okay, here's
18	EBR-II, here's FFTF, here's what the applicant's
19	saying, you know, what's the, translate those physical
20	dimensions into things that matter.
21	Like, what you think the clad strain is,
22	you know, are they pushing the envelope or is there
23	more margin? That stuff doesn't come through and that
24	would be useful to NRR, I would think. And I don't
25	think it's a difficult, those are difficult
ļ	1

(202) 234-4433

	117
1	calculations to do, to run through those. Like, uh
2	(Simultaneous speaking.)
3	MS. WEBBER: It's like a sensitivity
4	study.
5	MEMBER PETTI: Yeah, sensitivity studies,
6	basically
7	MS. WEBBER: Yeah.
8	MEMBER PETTI: To see what's going on.
9	MR. CORSON: Yeah, I think that would be
10	really beneficial to do, I agree. You know, so far
11	we've focused more on our development efforts and to
12	a lesser extent on the assessment efforts. But going
13	forward, I think it would be useful to do those sorts
14	of sensitivity calculations, start exercising the
15	models a little bit more than we've done so far.
16	And I'd also say as far as like other
17	assessments, so this pretty much captures the
18	historical data, EBR-II and FFTF for metal fuel, AGR
19	for TRISO. But there are some very active programs at
20	DOE to generate more data.
21	So the advanced fuels campaign has done a
22	lot of work in recent years on metallic fuel. And
23	they continue to do tests. We participate in advanced
24	fuel campaign meetings at NRC, so we're aware of
25	what's going on.
ļ	I

(202) 234-4433

118 1 And for both metallic fuel and TRISO, there was recently a proposal, a project proposal 2 3 under FIDES, the NEA joint project Framework for 4 Irradiation Experiments, to do some TRISO and metallic 5 fuel irradiations at ATR. So of course, you know, it 6 takes time to accumulate burnup, it's going to take 7 some time before we get those results. But NRC is participating in that project, 8 9 so we will start to get more data on metallic fuel and 10 AGR that differs a little bit perhaps from the historical irradiation database. 11 MEMBER MARTIN: One question for Kim. 12 How formal has, you know, your division been in 13 the 14 maintenance of data sets? Is it something that, you 15 know, every code team kind of has in your back pocket 16 on a share drive somewhere? Or you know, once upon a 17 time there was a database of sorts, and that got kind of loose support I think over the years, you know, 18 19 from a maintenance standpoint. What's the status of data integrity of the 20 agency? 21 MS. Ι think 22 WEBBER: it's а great I do think that at this time, that for this 23 question.

on these codes. But internal to the division itself,

work, the data resides with the leads who are working

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

24

25

	119
1	we do actually have a data management strategy that
2	we've just started to implement to try to collect data
3	sets, put them in a centralized location, and try to,
4	you know, maintain it to the best we can.
5	What we do realize is that most of the
6	data is not ours. It's other organization's data. So
7	when it comes to maintaining data, you know, there's
8	the, it's kind of a slippery slope on what our
9	responsibility is versus others' responsibilities.
10	So right now, you know, I would say that,
11	you know, to the best that we can, we have databases
12	of data, but that's representative of other people's
13	data. Like James talked DOE's data and the national
14	labs produce data, international data.
15	MEMBER MARTIN: Well, I think back in the
16	day with light water reactor technology, you know, you
17	had the data, you know, I don't know if it was
18	database, it kind of went away. But it was tied to a
19	lot of agreements, you know. And there were
20	MS. WEBBER: Yes, it was.
21	MEMBER MARTIN: International agreements,
22	what have you. And expect those to expire, which
23	creates its own legal challenges, logistic challenges.
24	It sounds like we still really haven't solved the
25	maintenance question with data. And probably still
ļ	I

(202) 234-4433

	120
1	having folks going to like old papers and stuff and
2	digitizing.
3	MS. WEBBER: Yeah.
4	MEMBER MARTIN: Seems quite arcane.
5	MS. WEBBER: But the one thing that I have
6	to say is that, and maybe others can speak to this, is
7	for each of the major codes, like TRACE has its own
8	manual that documents what data sets it's used to
9	maintain its, you know, status of making sure the code
10	runs with new features and so forth.
11	So that is a plan, you know, that we have
12	is to document that. And you can see it in Steve's,
13	you know, efforts, he's trying to document V&V, and
14	that's a way to keep track of what data is being used.
15	The challenge that we have is so far our
16	funding has been so focused on developing the data and
17	acquiring data through these ad hoc methods to
18	validate the codes themselves that we don't have
19	funding, you know, to be able to do the, I'll call it
20	fancier things that create our own database and make
21	that accessible.
22	So I don't know if others at the table
23	want to chime in on that, but.
24	MR. BAJOREK: This is Steve Bajorek.
25	We're nowhere near the capability that we have for the
	I

(202) 234-4433

	121
1	light water reactor where we have and maintained our
2	own database. The non-LWR data is more of an ad hoc
3	basis.
4	It's with the code developers right now.
5	We get snippets of it now and then. But we could not
6	go to a central repository as we could for the light
7	water reactor.
8	Argonne National Labs has been putting
9	together one for that does include the EBR-II data and
10	some other databases, that that looks like to be a
11	good start. And there are some international efforts
12	to start pulling together a non-LWR database, but
13	they're still in their infancy right now.
14	But you know, as we go on, it is going to
15	be important to collect that data, put it in a
16	location that we can use it and keep it expert-
17	controlled, proprietary, as it needs to be.
18	MEMBER MARTIN: Well, obviously it creates
19	a challenge, not just obviously for the agency, but
20	for anybody that's advancing in technology. I mean,
21	certainly they would have to make those agreements,
22	you know, to get access to the data. But the data has
23	to be in a convenient spot where they can make an
24	agreement and make a deal, bring it in, so.
25	MEMBER PETTI: I know there are databases
I	I

(202) 234-4433

	122
1	under the Gen IV. And so you probably can get access
2	through DOE. So and they break up by area. There's
3	a whole big code area that's all about V&V. I know
4	fuels, there was data that was sent many, many years
5	ago. Labor, constitute relations, that sort of stuff.
6	And I think it was done on all the systems.
7	MR. BAJOREK: Yeah, we do try to get
8	involved in some of the international benchmarks, and
9	that's often a good way of
10	MEMBER PETTI: Yes.
11	MR. BAJOREK: Getting the data. We're
12	getting involved in one from HTTF, there are some
13	other ones that we're involved with. But that's a
14	really good way of getting data without having to pay
15	a lot of money for it.
16	MEMBER PETTI: Right, yeah.
17	MEMBER BIER: I have a quick question for
18	James. This is Vicki Bier. For one or two of the
19	fuel types where you said you did not yet have fully
20	mechanistic or phenomenological models, but you were
21	doing Monte Carlo simulation, can you talk about what
22	that is actually simulating? Is it just empirical, or
23	how is that organized?
24	MR. CAMPBELL: Yes, so for TRISO fuel,
25	this is actually something that's done in part because
Į	I

(202) 234-4433

	123
1	of the nature of ceramic material behavior. So you
2	have to do a statistical analysis to calculate what
3	the fuel failure probability would be.
4	And so it can sample on anything from the
5	layer thicknesses, which that comes from
6	manufacturing, it's usually known what the variability
7	might be in the layer thicknesses, to some of the
8	material properties we can also sample.
9	Those are maybe less well-defined what the
10	distributions would be. But there is some information
11	about how some of the material properties vary a
12	little bit.
13	But yeah, that's what we're using the
14	Monte Carlo analysis for, to calculate the probability
15	of the pyrolytic carbon and silicon carbide layers in
16	TRISO. And this is a capability that, you know,
17	PARFUME has. BISON can do this as well. So it's a
18	pretty common way to analyze TRISO.
19	MEMBER BIER: Okay, thank you very much.
20	MR. CAMPBELL: Sure.
21	MEMBER MARTIN: Any last questions on this
22	subject before we move on to the next?
23	MS. WEBBER: Okay, so thank you, James.
24	Have a safe travels.
25	MR. CORSON: Thank you.
	I

(202) 234-4433

	124
1	MS. WEBBER: And next I'd like to
2	introduce Shawn Campbell. Shawn Campbell's a Reactor
3	Systems Engineer in Hossein's branch, again. And
4	Shawn, and Lucas Kyriazidis is here to support as well
5	as Andy Bielen. So Shawn will be the main presenter,
6	and then Lucas and Andy will be able to answer
7	questions if Shawn's not able to.
8	So take it away, Shawn.
9	MR. CAMPBELL: All right, we'll do a quick
10	mic check first. Can everybody hear me okay?
11	MS. WEBBER: Yep, you're great.
12	MR. CAMPBELL: Okay, great. And just a
13	quick check on the slides as well. Can you see those
14	all right?
15	MS. WEBBER: Yep.
16	MR. CAMPBELL: Okay, fantastic, thank you
17	very much.
18	All right, well, good morning, everyone,
19	and thank you for giving us this opportunity to share
20	with you some of the work that we've been doing on our
21	codes to prepares our codes for a non-light water
22	reactor application.
23	So as Kim said, my name is Shawn Campbell.
24	I'm joined this morning by my colleagues Lucas and
25	Andy. The three of us work in the Fuel and Source
I	I

(202) 234-4433

	125
1	Term Code Development Branch in the Office of
2	Research. And our branch is primarily focused on the
3	SCALE, MELCOR, and FAST codes.
4	And you've just heard from James on the
5	FAST code. And today we're going to talk about, for
6	this next presentation, we're going to talk about the
7	SCALE and MELCOR codes.
8	Before I get started this morning, I just
9	wanted to take this opportunity to quickly recognize
10	our colleagues at Sandia National Labs and Oak Ridge
11	National Lab. Our partnership with our SCALE and
12	MELCOR code developers at these labs has been
13	instrumental in the success of this work. And so I
14	just want to say thank you to them and give them
15	recognition for the work that they've done.
16	And then also just to let you know, we do
17	have several of the code developers online with on
18	this call. If there's any specific questions
19	associated with the models or anything, just so that
20	you know that they're available for that. And I'll go
21	to the next slide. Sorry.
22	So in our approach to Volume 3, we had a
23	few key objectives in mind. First, we really wanted
24	to better understand the severe accident behavior of
25	these various non-light water reactor designs.
Į	I

(202) 234-4433

And with that better understanding provides some insights to the NRC's development of regulatory guidance. We wanted to build the knowledge and the expertise among the NRC staff on the modeling capabilities that we have for these non-light water reactors.

Our next objective was to encourage dialog 8 among the various stakeholders on our approach to 9 applying SCALE and MELCOR for source term analysis and get early feedback. And we did this by hosting public workshops for various reactor designs.

Our third objective was to ensure that our 12 That's been a big topic today 13 codes are ready. 14 obviously. Ready to support non-light water reactor 15 And so for this, to do this, we have licensing. 16 developed modeling capabilities in SCALE and MELCOR, 17 and we are able to identify accident characteristics and uncertainties that may affect the source term. 18

19 We also developed publicly available input models for each class of non-light water reactor that 20 we can make available upon request. 21

While the Volume 3 report and overall 22 approach was developed in the 2019/2020 timeframe, I 23 24 just wanted to point out that we've been working on 25 developing our SCALE and MELCOR computer codes for

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

10

	127
1	non-light water reactor applications for quite a while
2	now. So for example, back in the NGNP days, you know,
3	2006-2013, we outfitted our codes with a lot of
4	capabilities for TRISO fuel and HTGRs at that time.
5	Next slide.
6	So I'm sure you're aware that I wanted to
7	give you a very high level understanding of the codes
8	that we are using here. This is a slide that we
9	showed at the recent RIC. It was a poster, a digital
10	poster that we had.
11	SCALE is the NRC's comprehensive
12	neutronics package. It's developed, like I said, by
13	our contractors at Oak Ridge National Lab. Some of
14	the key capabilities of this code are nuclear and data
15	cross-section processing, decay heat analysis,
16	criticality safety, radiation shielding, radionuclide
17	inventory, depletion generation, reactor core physics,
18	and so on.
19	You can see here SCALE has a very wide
20	user base. It's used not just by the NRC but used by
21	61 countries around the world, with 11,000 users
22	worldwide. So, very wide user base. So it's been
23	exercised quite a bit.
24	It's also a highly validated code. It's
25	been validated against numerous shielding depletion
ļ	1

(202) 234-4433

criticality, etc., assessments. And so it has a strong pedigree associated with it.

severe accident 3 MELCOR is the NRC's 4 progression and source term code. This one's 5 developed by our contractors at Sandia National Lab. This code's able to simulate the accident 6 7 progression and thermal response of the reactor, the 8 model of the reactor heatup, the degradation and 9 relocation of the core as it degrades. Track the 10 release of the fission products from the fuel, their transport through the reactor as it goes through the 11 vessel to the containment and then out into the 12 environment. 13

Like SCALE, MELCOR is used domestically at universities and laboratories and so on. But it's also distributed throughout the world. We have over 30 organizations internationally that are using the code. And it's distributed through our cooperative severe accident research program.

20 MELCOR also has an extensive validation 21 associated with it. It's been validated against 22 numerous international standard problems, benchmarks 23 tests, and integral experiments over the years dating 24 back from the 80s to, all the way to today.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So shown here was our overall project

(202) 234-4433

25

1

2

	129
1	approach. So our approach, like I said before, was to
2	develop workshops for various reactor designs. So our
3	first step was to build representative input models.
4	So using what publicly available
5	information we could find, we had Oak Ridge National
6	Laboratory build detailed core input models in SCALE.
7	And then our counterparts at Sandia National
8	Laboratories built full plant input models in MELCOR.
9	We then proceeded to select plant
10	accidents that we thought would best demonstrate the
11	capabilities of our new models that we implemented in
12	these codes.
13	And finally, we performed a series of
14	simulations with scale modeling, things like decay
15	heat, radionuclide inventories, reactor BT, back
16	coefficients, and so on. And then feeding those as
17	inputs into MELCOR and then performing full accident
18	progression and source term analyses.
19	And then as we as appropriate, we did
20	quite a few sensitivity analyses as well for these
21	various designs.
22	So shown here is our overall project
23	scope. We had five major non-light water reactor
24	types that we investigated. For each of these, we
25	held a public workshop to describe the unique
ļ	I

(202) 234-4433

	130
1	features, describe the new models that we had
2	implemented, and provided the results for our analyses
3	and sensitivity analyses.
4	On the left here for each one, we give the
5	reactor type, and then on the right we show the
6	specific design that we used in our analysis for the
7	demonstration project. The reference reactor was
8	chosen really based upon the degree to which we could
9	find publicly available information.
10	And in those situations where we didn't
11	have specific information, for example, design of the
12	containment and leak rate and so on, we just, we used
13	our best judgment in creating those.
14	So back in 2021, we held three workshops.
15	The first one we did was for a heat pipe reactor. And
16	for this one we did the INL design, the concept
17	reactor.
18	For the high temperature gas-cooled
19	reactor, we used the pebble bed PBMR 400. And then
20	the last one we did in 2021 was a molten salt cooled
21	but still pebble bed geometry. For this one, we did
22	the UCB Mark 1.
23	Moving into 2022, we conducted a workshop
24	for a molten salt reactor. This one's a molten salt
25	fueled reactor. So this is the MSRE design. I think
ļ	I

(202) 234-4433

1 Steve talked about this design before. And then also we did the sodium fast reactors. This one was the 2 3 ABTR. 4 All of these workshop materials can be 5 found on our public web page. We have a couple ways to get there. You can click on this link if you have 6 7 the slides. Or scan this QR code. And this is a 8 snapshot of what it will take you to. 9 We have all the slides put up for these 10 workshops. We have YouTube video recordings. And then we have SCALE and MELCOR reports, and these 11 reports go into extensive detail on the design, the 12 reactor designs, the models that we created and the 13 14 analyses that we conducted, as well as sensitivity 15 analyses. So those reports qo into a lot more detail 16 than you'll even find in the workshops. 17 So from here, I'm going to provide a high level overview of the content of these five workshops. 18 19 Like I said, if you want more details, I encourage you to go to this webpage and explore some of this. 20 And at any time you're welcome to ask any questions about 21 what you find there. 22 So the first one I wanted to go into more 23 24 detail on is the fluoride salt high temperature So this one was a 236 megawatt 25 reactor, or the FHR.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	132
1	reactor. It uses Flibe for the coolant and has a
2	TRISO fuel pebbles and a pebble bed geometry.
3	The pebbles are 19.9 weight percent. It
4	undergoes online refueling and operates at atmospheric
5	pressures. I'll just point out the direct reactor
6	auxiliary cooling system, or DRACS, is made up of
7	three trains of passive heat removal systems, each
8	with a capacity of about 2.36 megawatts, or around 1%
9	of the full plant power.
10	Each train has four natural circulation
11	loops, as you can see over here. The first train goes
12	here. There's a ball valve that drops whenever you
13	have the differential pressure falls whenever you
14	have a pump. And the coolant, the primary coolant is
15	diverted into this first heat exchanger, which is also
16	a molten salt.
17	And then this one is the your first
18	loop goes over here into a water loop, and then
19	finally into an air loop or a which is just a
20	stack. All of these are buoyancy-driven flow, there's
21	no pumps. And so it's a completely passive decay heat
22	removal system.
23	Shown here are the three accidents that we
24	modeled for this workshop. We did an anticipated
25	transient without scram. So for this one, it was a
	I

(202) 234-4433

	133
1	loss of onsite power and then a failure to scram.
2	So, all of the pumps tripped, reactor
3	failed to scram. Secondary heat removal ends, and
4	then we have anywhere from zero to three trains in the
5	DRACS operating, so we investigated the ability of
6	DRACS to remove the heat.
7	The next accident was a station blackout,
8	which is kind of self-explanatory. But complete loss
9	of power. Salt pumps trip. And then your heat
10	removal ends and variable amounts of DRACS. And one
11	again to see how this scenario plays out.
12	And then our final scenario was a LOCA.
13	And so for this one, there is a three-inch line up
14	here. We don't have it pictured. But there's a drain
15	tank up here on this line. And so there's this three-
16	inch pipe that comes off into the drain tank. And so
17	we assume a break of that line.
18	So we varied the size of that break up to
19	the full break, full pipe of three inches. So for
20	this one again, we looked at variable DRACS and looked
21	at the response of the plant.
22	So shown here are some of the new features
23	for SCALE and MELCOR that we added to the codes to
24	facilitate this demonstration project. Over here in
25	SCALE on the left, we incorporated that new interface
l	1

(202) 234-4433

	134
1	for more efficient depletion calculation for TRISO
2	fuel. And so this made it easier for us to perform
3	sensitivity analyses.
4	We also leveraged a workflow that we had
5	developed for the HTGR demonstration project for
6	modeling TRISO in what we call SCALE/TRITON.
7	On the right, we added a generic framework
8	for inputting working fluid equations of state. We
9	added fission product chemistry transport models for
10	molten salts. Improved on the fission product release
11	models for TRISO that we had originally developed for
12	HTGRs. And then added point kinetics enhancements for
13	reactivity insertion transients.
14	Shown here at the bottom are our cutaways
15	of our SCALE and MELCOR models. You can see over here
16	I'm always impressed by the scale graphics that
17	they're able to create. But here's the reactor core
18	model in scale and a slice of the coming from this
19	model. And then you can see here one of the TRISO
20	pebbles with the TRISO particles on the outside and
21	the graphite core in the middle.
22	On the right here you can see our MELCOR
23	nodalization, with the core nodalized here, and then
24	here's the, excuse me, the primary and secondary
25	pumps.

(202) 234-4433

	135
1	MEMBER MARTIN: Quick question on
2	capability.
3	MR. CAMPBELL: Yeah.
4	MEMBER MARTIN: Does MELCOR have multi-
5	dekinetics if you needed that for a problem like this?
6	MR. CAMPBELL: I'm sorry, say that again,
7	I couldn't hear you.
8	MEMBER MARTIN: Does MELCOR have like
9	multi-dekinetic capability? I think you mentioned
10	that it deployed kinetics as a good improvement. It
11	just makes me ask the question if you needed more, is
12	there more.
13	MR. CAMPBELL: It's still an ongoing. We
14	do have a lot of capabilities. But as of now, our
15	plant kinetics models are pretty basic. We have
16	recently added capabilities also for, you know,
17	dissolved fuel, right. So you have your delayed
18	neutron precursors, and be able to track all of those
19	as well.
20	MEMBER MARTIN: I was specifically asking
21	just about kinetics. Is there a 1D, 2D or whatever it
22	is?
23	MR. CAMPBELL: Right now it's all 1D.
24	MEMBER MARTIN: Okay. Or zero-D.
25	MR. CAMPBELL: Oh yeah, zero-D, sorry,
I	1

(202) 234-4433

	136
1	zero-D, yes.
2	MEMBER MARTIN: Okay, thanks.
3	MR. CAMPBELL: All right, I'll move on to
4	the next slide here. So on this slide, where I
5	provide some of the typical results that we received.
6	These are high level insights that we obtained in
7	these scenarios.
8	As I mentioned before, for ATWAS, the fuel
9	heatup was limited by reactivity feedback. So this is
10	primarily the fuel temperature feedback that prevented
11	the too much fuel heatup. The passive decay heat
12	removal system DRACS was also effective in removing
13	heat, as you can see here.
14	With even a single train of DRACS
15	available, we were able to remove the decay heat and
16	prevent fuel heatup. It's only when we have all three
17	trains unavailable that we see any real fuel heatup.
18	For SBO, we had, if there was complete
19	failure of the DRACS, then we did see the coolant
20	boiling occur. But it was really over the course of
21	several days. As you can see, this is a very slow
22	moving transient over here.
23	And then for LOCA, again, a single train
24	of DRACS was sufficient to prevent any fuel damage.
25	And only when all decay heat removal was unavailable
	I

(202) 234-4433

	137
1	did we see any coolant boiling followed by fuel
2	damage.
3	Over here in the case with no DRACS
4	available, we did see some release of cesium. This is
5	the release rates that we see back there. Cesium
6	release from the pebbles to the liquid molten salt
7	starts earlier over here because of the heat at lower
8	temperatures. You can see it's a very small amount
9	until we actually get any real fuel heatup.
10	All right, so back in 2021, Kairos
11	submitted a construction permit application for their
12	Hermes 35 megawatt nonpower reactor. So at that time,
13	we were approached by NRR to perform some scoping
14	calculations to explore DVA level transients. And so
15	by that I mean we're not really exploring core damage
16	or fission product release transients in the here.
17	So the MELCOR FHR reference plant model
18	that we had that I just discussed was modified to
19	support a quick turnaround set of calculations to
20	support the review of the construction permit
21	application for Hermes.
22	These analyses provided insights on the
23	relative importance of potential accident scenarios
24	and focused the license review on the most safety-
25	significant topics. The two base scenarios that we
Į	I

(202) 234-4433

138 1 looked at here were a loss of force circulation. this is a concurrent trip of 2 So the 3 primary and intermediate coolant loops. And then we 4 also looked at an insertion of excess reactivity. And 5 this, for this one it was an accidental control rod 6 withdrawal. I'll just point out that we have 7 presented this previously during the Hermes 8 construction permit ACRS meeting. 9 So on the neutronics side of things, we 10 used SCALE KENO for the multi-group Monte Carlo transport and origin for the isotopics. We did use a 11 random pebble geometry, and we approximated that by a 12 regular lattice. Equilibrium isotopics were generated 13 14 iteratively through a two-dimensional slice models in our SCALE/TRITON code. 15 And over here on the right you'll see that 16 17 we really got excellent agreement between our results and Kairos', given the information that we were able 18 19 to glean from the PSAR. So we were pretty pleased with these results. 20 And then on the MELCOR side of things, 21 like I said before, we used the UCB Mark 1 MELCOR 22 model as our starting point and then adapted it to be 23 a little more Hermes-like. We focused our efforts on 24 25 the primary system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	139
1	And the secondary system and the decay
2	heat removal system here were really mostly modeled by
3	boundary conditions, just because of the lack of
4	detail we could find in the PSAR.
5	But the DHRS model uses a uses water at
6	a constant temperature with a boiling heat transfer
7	coefficient here for the evaporator tube wall. To the
8	right you can see the schematics that we have from the
9	PSAR, and we used these to develop our models.
10	I'll just note here the DHRS is well,
11	it's a different design, of course. It's analogous to
12	the DRACS system that we saw before in the UCB Mark 1.
13	So here I just wanted to show some of the
14	results from our two base calculations that we did in
15	doing the Hermes scoping analysis. On the left here
16	is the insertion of excess reactivity transient.
17	So for this one, there's a rod withdrawal,
18	it's the highest worth rod that we assume is
19	withdrawn. So we get about three dollars' worth of
20	reactivity inserted over 100 seconds.
21	So here the reactor trips on high power.
22	That's about 120% power. And that occurs at about
23	nine seconds. And concurrent with a PSP trip.
24	As you can see, the temperatures here all
25	remained within the safety envelope proposed by
I	

(202) 234-4433

	140
1	Hermes. And you can see up here is a snapshot from
2	their PSAR. And you can see we got pretty comparable
3	results to Kairos.
4	Also same thing over here on the left
5	on the right, sorry. We have a the loss of force
6	circulation scenario with a concurrent trip of the
7	primary intermittent coolant loops. And again, all of
8	the temperatures remained within the safety envelope,
9	and our results are very similar to those that were
10	predicted by Kairos.
11	MEMBER MARTIN: A question I can't help
12	but ask, how do you model pebbles with MELCOR?
13	MR. CAMPBELL: How do we model individual
14	pebbles, or?
15	MEMBER MARTIN: Well, I mean how do you
16	model the core, and then you could break it down from
17	there.
18	MR. CAMPBELL: Okay, complicated question.
19	MEMBER MARTIN: You don't a have a
20	coarse/medium type solution. So you have traditional
21	finite volume type modeling, correct, and you're
22	using, you know, simple geometry, each structures.
23	But yeah, you do report out like max TRISO.
24	Is that that's the truly at the kernel
25	level type solution? So there's some fidelity down to

(202) 234-4433

	141
1	a very local level?
2	MR. CAMPBELL: I think that like I said,
3	this is a as you know, MELCOR is a long parameter code
4	here, right. And so we're getting a lot of this and
5	we're having to kind of smooth it over these
6	individual volumes. Let me show up here.
7	So for each of these we have individual
8	core nodalizations, right. And so for each of these,
9	we're getting a lot of the power density and so on,
10	we're getting a lot of that information from SCALE.
11	So we're really reliant on SCALE to get a
12	lot of that information and feed that directly into
13	our MELCOR models in this lumped application, if that
14	makes sense.
15	MR. WAGNER: Shawn, maybe I could jump in
16	kind of quickly here.
17	MR. CAMPBELL: Yeah, sure, go ahead,
18	Casey.
19	MR. WAGNER: So we have sort of a lump
20	model for the bulk core behavior. We model the balls
21	we have you know sort of a porosity solution for the
22	pressure jobs that's Reynold's and porosity-based.
23	But for the peak fuel temperature, we used
24	a we modeled a single pebble in the hottest spot in
25	the core to, you know, high fidelity. And so all the
	1

(202) 234-4433

	142
1	layers, the heating on the inside at the maximum
2	heating rate. And then we used that as boundary
3	conditions for an individual TRISO that would have
4	been at the inside of the annular region of the fuel.
5	And so the TRISO codings are all modeled
6	individually in detail in the heat structure, with a
7	boundary condition from that individual pebble that's
8	in modeled with the heat structure. And so in that
9	way, we were trying to get a lot of detail and a good
10	prediction of the peak fuel temperature.
11	And so it is actually the kernel. We also
12	have the individual layer temperatures too.
13	MEMBER MARTIN: Okay. Now, is that did
14	that require development in, you know, whatever, the
15	last ten years? Or was that the capability that's
16	always been there with MELCOR?
17	MR. WAGNER: That capability's always been
18	there. We don't typically add in a heat structure
19	into the core package. And it's sort of a it's not
20	relevant from a thermal hydraulics perspective, but
21	it's very relevant from a monitoring peak temperature.
22	You know, because it's only one wall.
23	And so I can put one ball anywhere I want
24	or you know, across the core, and be able to model all
25	the way down to an individual TRISO in the layers.
ļ	I

(202) 234-4433

	143
1	And so that heat structure capability has been there
2	since the beginning of MELCOR.
3	MEMBER MARTIN: Yeah, I think of course
4	maybe a different design or maybe this design under a
5	certain situation where radiation's important. How do
6	you capture view factors and all that? Is that
7	readily accessible from the user standpoint to get
8	that in there?
9	MR. WAGNER: Yeah, yeah. So from the heat
10	structure model it has radiation and convection
11	models, you know, for the outside surface of the
12	pebble. In this case it was, you know, were covered
13	in fluid, so that wasn't too relevant.
14	But I actually leveraged the heat transfer
15	coefficient that, you know, the basic core components
16	are modeling to patch that in as boundary conditions
17	for the pebble, with passes boundary conditions for an
18	individual TRISO.
19	MEMBER MARTIN: But from a standpoint of
20	radiation, is there, I mean, is there a modeling that
21	saves the user from having to figure out all the view
22	factors?
23	MR. WAGNER: Nope, we have to put in view
24	factors and consideration of the radiation. But
25	there's a couple different types of models there. We
ļ	I

(202) 234-4433

	144
1	can do I mean a radiosity model, which you know, if
2	we had some information on that.
3	So yes, we approximate that.
4	MR. ESMAILI: Can I jump in? Sorry. If
5	your question is about how we do model the pebbles
6	versus the cylindrical fuel rods, the capability has
7	always been there. It's fundamentally no different in
8	how we are doing that, you know, straight fuel rods.
9	The radiation is there, conduction is there.
10	Then you got to these pebbles, you know,
11	it's like Casey and Shawn were saying, that then we
12	have to model it a little differently. You know, like
13	we use like for example Ergun equation to calculate
14	the you know, pressure dropped points through this.
15	Fundamentally it's very, very similar to
16	what we are doing. We didn't fundamentally change how
17	we are doing things in the core package.
18	As a matter of fact, many years ago James
19	Corson used the existing capability of MELCOR to do a
20	HTGR and now he, you know, during the NGNP times and
21	we built on that. So think that capabilities were
22	there if that's what
23	MEMBER MARTIN: Yeah, I was really just,
24	you know, wondering. I just think with pebbles it's
25	a lot harder to get that right, radiation right. I
ļ	1

(202) 234-4433

	145
1	mean, when you're dealing in prismatic, you know,
2	geometries are still pretty simple.
3	And it'd be nice, I guess, if there was a,
4	you know, some convenience incorporated into the
5	modeling capability to make sure that's done right.
6	You know, making certain assumptions about the
7	arrangements of the pebbles and you know, the packing,
8	what have you.
9	But it can certainly be done outside of
10	the code and incorporated in the input that you
11	described. It's just work, that's all.
12	MR. BAJOREK: I think for this situation,
13	radiation probably should not play a
14	MEMBER MARTIN: Right, that's why I
15	mentioned a different, yeah, a different design might
16	have that.
17	MR. BAJOREK: But when you have a pebble
18	bed, you're getting a sort of a conjugate heat
19	transfer. Could be by radiation gas-cooled react by
20	convection, also conduction through the pebbles.
21	So what you should be using is like I
22	think it's a Zener/Schrödinger type of model that
23	accounts for all of that stuff as Jose pointed out,
24	like a KTA or Ergun equation to get the pressure drops
25	correct.
I	I

(202) 234-4433

	146
1	MR. ESMAILI: Those models are already in
2	the core. We did that 12, 13 years ago as well.
3	MEMBER MARTIN: Thanks.
4	MR. BEENY: Hi, this is Brad Beeny from
5	Sandia Labs. Yeah, I just I wanted to remind
6	everybody yeah, we I think somebody just said it.
7	But we do use the Zener/Schrödinger/Bauer with the
8	Breitbag Barthes radiation term to account for the
9	effective conductivity when computing heat transfer
10	from within the core.
11	So if that's what the question is, how do
12	we account for heat transfer within the core, that's
13	what MELCOR is leaning on primarily with its core
14	components, is this effective conductivity model that
15	accounts for, as it was said, radiation, convection,
16	conduction. This that unit cell concept that's
17	yeah, that's in the code.
18	And then likewise, the Tanaka Josaka model
19	for the prismatic version, if there were any questions
20	about the other kind of HTGR.
21	MEMBER MARTIN: Yeah, thanks for the
22	clarification.
23	MR. CAMPBELL: Thanks a lot, Sandia, I
24	appreciate you guys jumping in there for that
25	question. Is it okay to move on to the next one?

(202) 234-4433

	147
1	MEMBER ROBERTS: I have a question on the
2	bottom left. It says that its first three odds in
3	reactivity in 100 seconds, but it trips at nine
4	seconds?
5	MR. CAMPBELL: Correct.
6	MEMBER ROBERTS: So it's a total
7	reactivity insertion 9/100th for three dollars?
8	MR. CAMPBELL: The total was three
9	dollars. It was done in a linear rate over 100
10	seconds. We reached the trip at 100 seconds. Or
11	sorry, we reached that trip at nine seconds.
12	MEMBER ROBERTS: Right, so most of
13	reactivity insertion occurred after the scram?
14	MR. CAMPBELL: Yes.
15	MEMBER ROBERTS: Okay. Did you look at a
16	case with no scram? Where the three dollars actually
17	got inserted?
18	MR. CAMPBELL: I'm trying to remember. I
19	think that was one of the sensitivities that we did
20	look at. I don't no, actually, I don't think we
21	did. I don't think we did.
22	MEMBER ROBERTS: Okay, so next question is
23	why? As is because it was not a design basis
24	MR. CAMPBELL: Correct, yeah.
25	MEMBER ROBERTS: And you were limited to
I	1

(202) 234-4433

	148
1	design-basis events in this comparison?
2	MR. CAMPBELL: That's right.
3	MEMBER ROBERTS: Okay, thank you.
4	MR. CAMPBELL: Yeah. Yeah, we ran several
5	sensitivities calculations. That's why I hesitated in
6	responding. But no, because we were trying to stay
7	within the confines of design-basis, we stuck with
8	this, so.
9	All right. So moving on, in September of
10	last year, the NRC staff accepted the Hermes 2 CP
11	application. So we are currently, this is ongoing,
12	we're currently supporting NRR's review of the
13	application for Hermes 2 by modifying the Hermes 1
14	model.
15	So again, we're performing DVA level
16	scoping calculations here. So I won't go into too
17	many details here just because this work is ongoing.
18	MEMBER PETTI: So Shawn, just as you do
19	that, think about whether there's a different event
20	because the loop. You know, it's not just repeat all
21	the ones from Hermes 1 again. But does the presence
22	of that secondary system cause a new event to occur
23	that you could potentially analyze.
24	MR. CAMPBELL: Right, right. Absolutely.
25	And then that's feedback for NRR as well during this
	1

(202) 234-4433

	149
1	review.
2	MEMBER PETTI: Yeah, that's the question
3	I'm going to ask.
4	MR. CAMPBELL: Sure. And this is where we
5	are building out some additional capability or
6	additional detail on the secondary side for in this
7	Hermes 2. So now that we have some more with the
8	we're able to peek under the table a bit more for
9	the Hermes 2 and get proprietary information. We have
10	been building out this secondary side.
11	MR. BIELEN: This is Andy Bielen. I just
12	want to like temper expectations, though, because
13	given we were able to incorporate some more like
14	detailed information from Kairos.
15	However, as you guys saw with Hermes 1,
16	much of the detailed design work has been, you know,
17	pushed off to the operating license stage. And we're
18	finding that, you know, it's fairly similar approach
19	for Hermes 2.
20	So we have some more information. It's
21	not a revelation, you know, in the additional modeling
22	detail this will have available.
23	MEMBER PETTI: So you have some physical
24	properties for the secondary salt?
25	MR. BIELEN: No comment.
ļ	I

(202) 234-4433

	150
1	MR. CAMPBELL: Great, well, in the time
2	that we have remaining, which is not a lot, but I did
3	want to share with you at a high level some of the
4	some details on the remaining four demonstration
5	workshops that we did. So I'll try to go kind of
6	quickly through these slides, but more information can
7	be found on the website, like I said before on slide
8	7.
9	So just as we did for going from UCB Mark
10	1 to Hermes, we've we're trying to create these
11	models so that we're we can readily adapt these
12	reactor models to future applications for new reactor
13	technologies.
14	So the next workshop I wanted to talk
15	about was our high temperature gas-cooled reactor.
16	The representative plant that we looked at was the
17	PBMR-400.
18	So this was a 400 megawatt thermal design
19	with a graphite moderated heated and cooled TRISO
20	fuel. The model is based upon the OECD NEA neutronics
21	benchmark project.
22	So because some of the new key modeling
23	for SCALE was a new interface for rapid depletion of
24	TRISO fuel for more efficient computational costs.
25	This is the same approach that we I talked about

(202) 234-4433

	151
1	back for UCB March 1.
2	For MELCOR, we have improved models for
3	TRISO fuel thermal response, radionuclide diffusion,
4	failure models, and and it's important to note that
5	a lot of this is leveraged from the effort that we did
6	back in the NGNP days.
7	MEMBER PETTI: Yeah, just Shawn, I can't
8	let this those source terms are ridiculously high.
9	There will be no gas reactor vendor ever come in and
10	say that there's an accident that releases a tenth of
11	a percent of cesium out of the core. It's off by at
12	least a factor of 50.
13	I don't think it's your diffusion models.
14	I'm assuming it's the failure rate that you assumed.
15	This is predates probably the EPRI topical report
16	that has the data that shows under these temperatures
17	what sort of failure rates you can expect.
18	So just I want to be on the record that
19	those numbers actually, I remember reading the
20	report and looking at that and saying there's
21	something that doesn't make sense, so.
22	MR. CAMPBELL: Sure, and I think we've
23	tried to say it before, you know, we're not trying to
24	necessarily say these are the exact accidents that are
25	going to occur. These are not the consequences
I	

(202) 234-4433

	152
1	associated with these designs or anything like that.
2	We're not trying to make those types of assertions.
3	We're trying to demonstrate our co-capability.
4	And so but take all of these values with
5	a grain of salt I guess is what I'm trying to say.
6	So some of our insights that we gained
7	from this. We looked at we found that graphite
8	oxidation from air ingress didn't have a didn't
9	generate enough heat to really impact the fuel in this
10	case.
11	We also found that decay heat dissipated
12	pretty readily into the reactor cavity. And it was
13	enough to limit fission product release from fuel
14	failure.
15	If you look on the right here, we did some
16	sensitivity cases to determine what parameters had the
17	greatest impact on fuel temperature. And you'll see
18	that the low graphite conductivity had the largest
19	impact on peak TRISO fuel temperature for this
20	scenario.
21	MEMBER PETTI: Shawn, can you guys handle
22	steam ingress in MELCOR yet?
23	MR. CAMPBELL: Yes, when we did. We did
24	do air ingress in this case. It depends on what
25	you're talking about. If you're talking about in a
Į	I

(202) 234-4433

	153
1	gas reactor, yes, we have that capability.
2	MEMBER PETTI: So a steam generator tube
3	leak, right.
4	MR. CAMPBELL: We could model that, yes.
5	Moving on to oh, I'm up two slides, I'm
6	sorry. So next is the heat pipe reactor. This was
7	the INL design A. It's a 5 megawatt thermal reactor.
8	It has only a five-year operating lifetime. Over 1100
9	heat pipes cooled are fueled with a metallic uranium
10	at 19.75 weight percent.
11	What's unique about this design is it has
12	these control drums on the outside that rotate around
13	the periphery of the core to change the neutron flux.
14	Some of the new modeling capabilities that we
15	incorporated for SCALE, a new multi-group fast
16	spectrum library was included. And also new 3D
17	visualization improvements.
18	For MELCOR, we added new thermal physical
19	properties for sodium and potassium. We added heat
20	pipe reactor specific models such as well, adding
21	the working fluid heat pipe connection to the
22	secondary heat exchanger, heat pipe failure models,
23	and so on.
24	The transients that we looked at here for
25	the heat pipe reactor included a transient over power,
l	1

(202) 234-4433

	154
1	loss of heat sink, and unanticipated transient without
2	scram. If you look at the workshop, it's only the
3	transient over power that we included in the workshop,
4	and the other two are described in the reports.
5	So like I said, the figures on the right
6	here then are the transient over power scenarios. And
7	some of our key observations here that were that
8	after scram, heat dissipation in this reactor cavity
9	really ended the releases from the fuel.
10	Heat pipe pressurization on failure really
11	drove the release from the reactor vessel into the
12	reactor cavity or the reactor building. And the
13	reactor building bypass actually required two failures
14	of a heat pipe.
15	So you needed one failure in the condenser
16	region and another in the evaporator region to get a
17	release of any fission products.
18	MEMBER PETTI: Did you model, I don't
19	remember in this design, the liquid metal in the heat
20	pipe running?
21	MR. CAMPBELL: Yes, yes.
22	MEMBER PETTI: Interesting, okay. And did
23	you turn it into an aerosol for the fission product
24	stuff?
25	MR. CAMPBELL: That I can't recall.
ļ	I

(202) 234-4433

	155
1	Casey, do you recall? I don't believe we looked at
2	that.
3	MR. WAGNER: Yeah, Dave, at the time we
4	didn't have the sodium fire models kind of connected
5	to it. And that came up as there's quite a bit. And
6	
7	MEMBER PETTI: Oh yeah.
8	MR. WAGNER: And so that's something that
9	now we would be able to do. And as a matter of fact,
10	when we were kind of doing some vape ETR work, we kind
11	of coupled in sodium fires in I think maybe Lucas
12	might have slides on that.
13	I don't think we have anything right now
14	for potassium burning, which is, you know, probably a
15	hole that needs to be filled.
16	MEMBER PETTI: Thanks.
17	MR. WAGNER: Absolutely.
18	MEMBER ROBERTS: Comparing this to Steve
19	Bajorek's presentation, he had two heat pipe designs
20	he's evaluating, this one and the one he eventually
21	like are you are you missing something? Or I
22	guess the question for Steve, did you learn something
23	from the second heat pipe design that would, you know,
24	point to a gap here?
25	MR. CAMPBELL: On our end or on Steve's
ļ	I

(202) 234-4433

	156
1	end? I didn't if the question is directed towards
2	us, we haven't looked at the eVinci design yet.
3	That's something we still plan to do. The
4	complication with that is having it in a horizontal
5	geometry, right.
6	And so that's something that we're it's
7	kind of the next phase. It's something that we want
8	to be doing in the next year or two as to generalize
9	this and allow for a horizontal heat pipe reactor.
10	But Steve, if you wanted to
11	MR. BIELEN: This Andy Bielen, let me just
12	say one thing real quick. One yeah, so I think,
13	yeah, Volume 1 and Volume 3, our relationship and our
14	collaboration has continued to kind of grow over the
15	last five, six years, which has been really great.
16	I think one of the things that we learned
17	from Volume 1, you know, they went and they were
18	trying to build an eVinci-like model based on publicly
19	available information. And frankly, as Steve alluded
20	to, there's a reason that Westinghouse is planning on
21	specific proprietary design features to make this
22	thing work.
23	So you know, we're sitting here in Volume
24	3 saying okay, well, we have this gap we want to fill.
25	You know, how are we going to do that. We looked over
I	I

(202) 234-4433

	157
1	at the issues that, you know, Volume 1's having. You
2	know, I was involved in that side as well.
3	And sort of like you know what, let's just
4	put this on the back burner for now. Submittal
5	schedule's a few years down the road, we want to be
6	ready for it. But we also don't want to do a bunch of
7	demo work that like we know isn't that applicable or
8	there'd be big gaps that we would need to fill in
9	anyway.
10	So I think that was that kind of helped
11	us. That interaction and that collaboration helped
12	us, you know, drive prioritization, I think. And
13	Steve, you know.
14	MR. BAJOREK: Yeah, a couple, there's a
15	few differences that you need to look at. When we did
16	the special purpose reactor A, we didn't do it exactly
17	the way they did it at the design in INL.
18	Because we wanted to change our set of
19	oxide fuel, we wanted to go to a metallic fuel and a
20	fast reactor. Because that was going to look much
21	more like one of our one of potential applicants
22	was going to be. So that exercised in a different
23	way.
24	Now as you go to an eVinci-like, well, you
25	have two things. You got a vertical orientation
ļ	I

(202) 234-4433

	158
1	versus a horizontal orientation.
2	But also the way the fuel and the heat
3	pipes interact in a in the metallic arrangement,
4	the metallic fuel arrangement, the fuel could grow
5	thermally away from the heat pipe. That creates
6	another thermal resistance that you'd need to really
7	account for and could be significant.
8	In the eVinci design, you're looking at
9	rods and heat pipes in a graphite monolith. In that
10	case, as that fuels heats up, expands into the model
11	monolith, okay, actually improving some of your heat
12	transfer. Course you're, you know, you have the
13	horizontal behavior of the heat pipe, which
14	orientation doesn't really orientation really
15	doesn't matter a whole lot for the heat pipe.
16	Except one thing we did learn that in the
17	vertical orientation, it's cooled off. You may put
18	all of your sodium down below the evaporator. You're
19	going to have a hard time you're going to have a
20	hard time melting that when you want to heat up again.
21	So there's each one has their own nuances to pay
22	attention to.
23	MEMBER ROBERTS: Thank you, that makes
24	sense.
25	MR. CAMPBELL: All right, if there's no
ļ	1

(202) 234-4433

	159
1	other questions, I'll move to the MSR. So for this
2	one, we did the MSRE. It's a 10 megawatt thermal
3	reactor, graphite moderated at near atmospheric
4	temperature or pressures. Here the reactor is fueled
5	with the dissolved fuel in the molten salt.
6	So 34-1/2 weight percent U-235. It has a
7	really rapid transit time within the core. The 25
8	seconds roughly.
9	Some of the new modeling capabilities
10	here. For SCALE, obviously modifications for handling
11	liquid fuel. So for the nuclide inventory, we
12	incorporated a time-dependent nuclide inventory to
13	accommodate noble gas removal through the off-gas
14	system, through the TRITON MSR addition, so it's a new
15	module added. So we're able to model the time-
16	dependent removal of nuclides from one mixture into
17	another.
18	In MELCOR, we added thermal hydraulic
19	equations of state for Flibe. We added a new model
20	called the generalized radionuclide transport and
21	retention model framework. And then molten salt
22	chemistry and physics pertaining to radionuclide
23	transport. And then we enhanced our fluid fuel point
24	kinetics capabilities.
25	Accidents that we looked at for this one.
I	I

	160
1	We looked at salt spills. We did it both in dry and
2	wet conditions. In the wet case here, we assume a
3	coincident water leak. So you get interaction of the
4	molten salt with water on the floor.
5	However, in this design, there's a gas
6	retention and then a condensing tank, which captured
7	most of the radionuclides that are released from the
8	spilled salt in those cases.
9	So some of our key insights here. You
10	know, if you have your filter going, a filter fan
11	going in the ops buildings, if it's operational, it's
12	going to filter most of the airborne aerosols and you
13	don't get a large release. But it has the other
14	effect of also blowing xenon out into the environment.
15	And so you increase the release of the
16	noble gasses, but you do decrease your aerosol
17	release.
18	We had very few aerosol releases to the
19	environment because of in all scenarios due to
20	settling in the reactor cell, capturing the filter, or
21	the salt spill case, capturing that condensing tank.
22	And then aerosol mass in the reactor
23	building spanned many orders of magnitude depending
24	upon your various scenario assumptions, so.
25	All right, and our final design. So we
ļ	

(202) 234-4433

161 1 have the sodium fast reactor. So for this one we did It's a 250 watt, megawatt thermal pool-type 2 the ABTR. 3 reactor usinq metallic uranium fuel with HT-9 4 cladding. 5 The reactor's fueled with those uranium, plutonium, and zirconium fuel slugs. 6 Liquid sodium 7 coolant, two pumps that circulate the sodium. And then it has four trains of DRACS. 8 9 modeling capabilities for New SCALE. 10 Generating noble data for cartesian and hexagonal lattices and cells. New capabilities were added for 11 that. 12 And then for MELCOR, we added material 13 14 properties for sodium, metallic fuel, damage 15 progression capabilities, and radionuclide release models. 16 And as Casey mentioned just a minute ago, we've improved our sodium fire models. 17 The accidents that we looked at here were 18 19 an unprotected transient overpower, an unprotected loss of flow, and then a single blocked assembly. 20 So for the UTOP, you have the highest 21 worth rod withdrawals. Control rods fail to insert in 22 the -- the -- and we did multiple sensitivities with 23 24 varying reactivity insertions and saw -- looked at the fuel reactivity feedbacks. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	162
1	Over here, this is the blocked fuel
2	assembly scenario over here. And what we found that
3	in a single blocked assembly, you got pretty rapid
4	fuel melt, as you can see.
5	Here you can see the intact fuel. This is
6	a single fuel rod going from intact fuel, heating up
7	because of the drain of the sodium, going to solid
8	debris, and then eventually molten in about 15
9	seconds.
10	So reality of this scenario is another
11	topic. But in the case of a blocked assembly, we did
12	see rapid fuel melt. And then here's the releases
13	that we saw in that case.
14	So here I just wanted to talk a little bit
15	about the V&V basis for MELCOR. Like I said before,
16	we have a long history of code assessment dating back
17	to the 80s and 90s. We're leveraging this assessment
18	basis. We're moving forward from LWRs to non-LWRs.
19	So this figure on the right is trying to
20	convey that a lot of the base physics that you can
21	find in the modeling and simulation of LWRs is still
22	present when we move into non-LWR modeling.
23	So for example, fission product aerosol
24	release and transport is in most cases pretty equally
25	applicable in both situations. And we have a really
l	I

(202) 234-4433

	163
1	strong assessment base that we get to start from.
2	So from there, we have already conducted
3	several code model assessments for a range of
4	experiments that I have listed here at the bottom.
5	But then also I show some of the assessments and
6	benchmarks that we plan to do in the next year or two.
7	Also I show here some of the results of
8	some of our assessments, including the IAEA CRP
9	benchmark, HTTU and ATCOVE.
10	So for SCALE also, these are diagrams here
11	for some of the assessments that are being done for
12	SCALE at this time. SCALE's validation is broken up
13	into four volumes.
14	So these are four volumes of validation
15	documents that Oak Ridge is putting together for
16	they have it broken up into four categories: spent
17	nuclear fuel, reactor physics, shielding, and crit
18	safety.
19	Here's three of the assessments that are
20	currently being incorporated into the reactor physics
21	validation case. I'll just point out that these are
22	still being drafted. And this is kind of the next
23	phase of our efforts in Volume 3, is performing these
24	additional assessments.
25	But what I want to point is that we have
	I

(202) 234-4433

	164
1	done some and more are still coming.
2	MR. BIELEN: This is Andy Bielen. And
3	just to further flush out, maybe get back to your
4	point. Like, underneath the hood of these assessments
5	is a database of data and models that are within a
6	repo system.
7	We have access controls, quality control,
8	all that sort of thing. So, like, we're making a big
9	effort here to embrace modernity in our code
10	development and make sure that we're able to really
11	control both the things that we're doing and then the
12	basis that kind of underpins that. And other thing
13	I'll one other remark I'll make here is that we
14	have some data that's available.
15	A lot of the assessment we've done thus
16	far are taken from, like, the international reactor
17	physics book and some other sources of data. Some of
18	these concepts, either the data is legacy and it's not
19	of great quality like MSRE. I don't think some of the
20	data there was particularly given today's
21	standards, things were a lot different back then.
22	Some of it was lost in the sands of time.
23	So we are going to rely a lot on as reactors come
24	online, as prototypes are built, we need I think
25	one of the things that we pushed on, especially with
I	

(202) 234-4433

1 our NRR colleagues and the vendors is we need support to help us, like, validate our codes with the same 2 3 facilities that the vendors are using and building. 4 So we haven't seen any big issues with that thus far. 5 MR. CAMPBELL: With that, I'll move into my summary slide. 6 So what have we accomplished and 7 where are we going? I hope you've seen that we've 8 developed significant modeling capabilities for our 9 SCALE MELCOR code over the last few years to address 10 modeling gaps for the five primary advanced reactor 11 types. addressed modeling gaps through We've 12 source code changes, model development, and even new 13 14 work flows in our SCALE MELCOR codes. A great example 15 of our code capabilities and readiness to support 16 licensing was presented with the Hermes construction 17 permit. In a very short time line, we were able to use our UCV Mark 1 model and apply it to the Hermes 18 help 19 focus NRR's design to review on safety significant aspects of the design. 20 Going forward, there's a lot 21 of COcapabilities enhancements that we're still working on 22 to improve our capabilities. Some of those are listed 23 24 here. And then as has been mentioned many times as far as data needs, this is really the next phase of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

165

our efforts.

1

So we're always in need of more data, more 2 3 assessment cases, more benchmarks that we can perform 4 to make our codes more robust and ready. For scale, 5 could really use additional criticality and we 6 depletion benchmarks that are more representative of 7 the fuel designs and conditions that we're going to 8 see. And then for MELCOR, we need additional 9 validation data on things like the diffusivity of 10 fission products and varies fuels, heat and mass transfer characteristics in the diverse working fluids 11 12 and so on.

But all in all, we do feel that SCALE MELCOR have been shown to be ready to support NRC's licensing reviews of non-light water reactors. So with that, that concludes my presentation. But I'm happy to take any further questions.

MEMBER MARTIN: I just one observation and 18 19 of course, every slide is titled severe accident analysis. And you described your methodology through 20 the referenced plans beginning with design basis 21 events and then gingerly going into the domain of 22 Is there a plan to kind of just 23 severe accidents. 24 dive in a little bit more and push these codes to truly the challenging what we consider severe accident 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	167
1	limits, like I say, a next phase application of these
2	models?
3	MR. CAMPBELL: We have done severe
4	accidents in a lot of these cases, right? So if I
5	show in all of these situations
6	MEMBER MARTIN: Sure, like, the ABT
7	like that one. That's where I said you start off in
8	a DBA space and then you kind of do your sensitivities
9	into it as opposed to designing events based on
10	assessment of hazards.
11	MR. CAMPBELL: This is kind of hard
12	because we don't want to get ahead of assuming what
13	those cases are going to be, right? But we have
14	explored a lot of these severe accident simulations.
15	We have pushed the bounds in all of these workshops if
16	you go and look.
17	We pushed the bounds into severe accidents
18	in each one of these cases to, in many case, force a
19	severe accident condition with fuel damage and
20	release. And so in all of these cases, we haven't
21	stayed just in DBA space. We have pushed the
22	boundaries in all of these.
23	MEMBER MARTIN: Okay. But to the latter
24	part of my question, is there any plan again to
25	revisit more events? The models are there now. It
ļ	I

(202) 234-4433

	168
1	should be easier. Is there any interest in the agency
2	level to continue further in this area? Or are we
3	considered done?
4	MR. CAMPBELL: I wouldn't say done. I'd
5	say prioritization. We're really looking towards
6	where's the priority of our efforts, right? Is it to
7	go out and explore additional fuel melt accidents and
8	break additional pipes.
9	Or is our focus instead to work on making
10	what we have more robust and then seeing what industry
11	is going to come in with? And they can best for
12	example, let's say TerraPower comes in and has some
13	novel accident. Then we can adjust accordingly versus
14	being ready for every possible severe accident that
15	could come about, if that makes sense.
16	MR. ESMAILI: Can I just jump in? I'm
17	just going to make thanks, Shawn. So I think as
18	Shawn said, at this point, we did the five workshops.
19	And I just want to mention I think Dr. Petti said that
20	the sources should be 50 times low.
21	So our emphasis is not looking at the
22	numerical values. We were just trying to exercise the
23	code because we have to break it to the point of
24	getting something out. We have no so please do not
25	look at those numerical values at all.
ļ	I

(202) 234-4433

1.00
169
We just wanted to see what the sensitivity
are. If I change this, how does this source term
behave compared to this? So that's one point.
At this point, I think and this is my
personal opinion is that to the extent possible, we
have shown that what we have as we have done in the
past in 12, 13 years ago when we were doing NGNP. We
have the capabilities, right, to do model a lot of
these accident sequences. And we do not have to do
additional accident sequences with this model.
As Shawn said, we are convinced that we
are ready to do this, these basic things. We need a
little bit more validation on the modeling itself.
And as we know a little bit more about the actual
design, then we can go ahead and do this.
And again, as Kim said at the beginning,
there's validation and verification. There is some we

additional a we are ready to d a 12 little bit lf. And as we k ual 15 design, then ng, there's vali we

have a lot. Some places, we don't. So we just have 18 to rely on a lot of uncertainty analysis, a lot of 19 sensitivity analysis. 20

21 And if you look at the public workshops that we put in there, if you look at some of the 22 cases, we looked at the sensitivity. Do I need to 23 worry about the diffusivity of fission products? 24 Or 25 should I worry more about the particle failure?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

13

14

16

17

www.nealrgross.com

	170
1	So I need to worry about how what is
2	the building? What's the issue with the building?
3	Those are more has more to do with the source term
4	than other things. So this is helping us to identify
5	what is important, what parameters are important or
6	not.
7	MR. BAJOREK: This is Steve. I just want
8	to kind of add to that a little bit. I got to say
9	that there are a few things that we should be looking
10	at in terms of other accident scenarios.
11	And one I think we've talked about
12	earlier, a steam generator tube rupture in a gas
13	cooled reactor, one of the international benchmarks,
14	they've identified that is the worst case. I forget
15	exactly which one it is because of all the extra
16	hydrogen you through into the system suddenly. It
17	wasn't a scenario that we kind of considered early on
18	because back in the NGNP days, I think the idea was
19	not to have any water in the entire building.
20	Well, now we've got at least one applicant
21	out there that's putting a Rankine cycle on there. So
22	that's one that's new and different. And both Volumes
23	1 and Volume 3 need to start taking a look at that
24	one.
25	If we're in a truly risk informed world,
l	I

5 But what about a small vessel breach in a 6 molten salt reactor that is highly -- molten salt, 7 it's highly corrosive, something like that? We should 8 look at those now before we get the question in the 9 middle of the review. So there are a number of things 10 that we were planning on looking at in Volume 1.

11 CHAIR KIRCHNER: I think we need to stop 12 here. We have more time scheduled for this afternoon. 13 We've gone 20 minutes after the hour. How are we --14 just calibrate, Kim. How are we in terms of your 15 overall presentation plan? All we halfway, or --

16 MS. WEBBER: Yeah, yeah, we are. So in 17 the schedule that we sent some time ago, in the afternoon, we have presentations 18 on consequence 19 analysis which is half and hour and then the licensing and siting dose assessment codes which is a little 20 less than an hour. And then we also have 21 а presentation on our fuel cycle analysis code. 22 So I think we're about 15 minutes behind our initial 23 24 schedule. So hopefully during the afternoon, we can make up a little bit of time. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

171

	172
1	CHAIR KIRCHNER: Okay. Well, we'll have
2	a hard stop later this afternoon at approximately
3	3:15.
4	MS. WEBBER: 3:15? Okay.
5	CHAIR KIRCHNER: Let's reconvene at
6	let's see. Can we take a whole hour here? Yeah,
7	let's reconvene at ten minutes after 1:00.
8	(Whereupon, the above-entitled matter went
9	off the record at 12:24 p.m. and resumed at 1:10 p.m.)
10	CHAIR KIRCHNER: Okay. We're back in
11	session. I'll turn back to Bob Martin.
12	MEMBER MARTIN: Okay. And I'll probably
13	just turn it back to Kim to introduce the second part
14	
15	MS. WEBBER: Yeah.
16	MEMBER MARTIN: of Volume 3
17	MS. WEBBER: Yeah.
18	MEMBER MARTIN: of consequence
19	analysis.
20	MS. WEBBER: Okay. Today Luis Betancourt
21	is here to represent our successes in the MACCS and
22	consequence analysis area with one of his senior staff
23	members, Keith Compton. They're both in the accident
24	analysis branch. And so let me turn it over to Luis
25	and then Keith.
I	I

(202) 234-4433

	173
1	MR. BETANCOURT: Yeah, okay. Well, good
2	afternoon. Thank you for allowing us to speak today
3	after lunch. So I hope you guys are happy. So feel
4	free to ask us any questions along the way.
5	So as Kim mentioned, my name is Luis
6	Betancourt. I'm the branch chief of the accident
7	analysis branch with Pyrra M. Tudesky come to now I'm
8	a senior reactor scientist. And we wanted to discuss
9	today is regarding what is a success story that we
10	have been at this time, readiness activities for the
11	MACCS consequence analysis computer code.
12	You're going to be hearing the
13	presentation today is basically kind of the key
14	answers that we are going to be as ready as we can be
15	at this time. And one of the things that we're going
16	to be focusing more in the next couple of years is to
17	work the SSIs so they can code. You guys heard a lot
18	of the messaging today about readiness, that we need
19	to be able to build expertise in house.
20	So you're going to be hearing some of that
21	in the presentation. So I'll turn it over to Kim to
22	discuss the slides. I'll turn it to Slide No. 2.
23	MR. COMPTON: Can you hear me? And
24	everyone okay, it sounds like I'm coming in the
25	microphone. So good afternoon. I'm Keith Compton as
ļ	I

(202) 234-4433

	174
1	we said.
2	So the first thing that I want to start
3	off, I'm going to start off with what I think of is as
4	our key messages. And then the first key message is
5	that we basically expected to wrap up most and
6	possibly all of the tasks that we identified in the
7	code development plan by the end of this fiscal year.
8	And I'll get into what that means.
9	It doesn't mean that we're going to stop
10	working at the end of this year. I'll talk a little
11	bit about that. The approach that we've been taking
12	throughout this process is that we were looking to see
13	whether there was an identifiable code improvement, a
14	MACCS code improvement that could address the topic
15	that we were looking at that was consistent with state
16	of practice.
17	And the concept of state of state of
18	practice is something that I'll kind of go through a
19	lot. We're not trying to go beyond state of practice.
20	And in some cases, we adopted algorithms from state
21	other state of practice codes. And other cases, we
22	recognize that there was nothing that would represent
23	a substantial improvement over what MACCS already
24	does.
25	So that's kind of a philosophical approach
ļ	1

(202) 234-4433

	175
1	to how we address our code development. We also
2	concluded that the motivation for some of the tasks
3	that are in the code development plan were predicated
4	on a hypothetical but an unspecified difference in the
5	physical and chemical forms of release radioactivity
6	relative to for advanced reactors relative to
7	existing light water reactors. And that's something
8	that I'll pick up again later that's important because
9	we are finding that there are a number of codes that
10	address unique physical and chemical forms.
11	They're typically highly specific to
12	specific physical and chemical forms. Some examples
13	would be tritium is unique. They are dedicated for
14	the codes.
15	Another example that you're probably all
16	familiar with is UF6. There are dedicated codes that
17	handle UF6. What we're not finding is that there's
18	kind of general purpose codes that handle anything
19	that you might through at it.
20	And that affects part of our planning. So
21	basically, yeah, we can't we're not going to try to
22	keep the plant open to handle every possible form that
23	may be encountered. Next slide, please. So on this
24	slide, I'm going to I'm just going to briefly talk
25	about the status of individual tasks.
	1

(202) 234-4433

	176
1	And I would note that we have supplemental
2	slides that give more details for each of these
3	topical areas. So for near fuel modeling, we
4	benchmark the MACCS against several state of practice
5	dispersion codes such as AERMOD and QUICK and ARCON96
6	to look at the performance in the near field. And the
7	bottom line is that we identified some algorithms that
8	we could incorporate into MACCS and we incorporated
9	them in MACCS. I'm not going to talk about any of
10	these details unless someone wants to pull off
11	wants to go into any one of these areas. So for the
12	next task
13	CHAIR KIRCHNER: Keith, not to slow you
14	down. You're on a roll.
15	MS. WEBBER: That's because I told him to
16	go fast
17	(Simultaneous speaking.)
18	MS. WEBBER: to meet your schedule.
19	CHAIR KIRCHNER: all of a sudden
20	becomes a lot more important as we see applicants
21	trying to bring in their exclusionary boundaries,
22	bring in their LPZ, et cetera, et cetera, or bring in
23	the EPZ planning zone and so on. So could you just
24	spend a little more time? So is it ARCON92 or
25	whatever 96, is that your work horse for adjusting
	1

(202) 234-4433

	177
1	the near field?
2	MR. COMPTON: Sure. Let me get into it.
3	So the issue with near field is that the MACCS as
4	traditionally used was kind of configured and
5	typically parameterized to handle offsite distances of
6	more than about 500 meters. The significance of that
7	is typically by and large beyond the wake effect of
8	buildings.
9	And there was actually just a typical
10	parameter that was used or it was an approximation
11	that was only valid at out to the 500 meters. So what
12	it is we looked into how could we have MACCS what
13	are ways to use MACCS closer in? And we identified.
14	You can actually you could've used the existing
15	MACCS in a very conservative way just by assuming your
16	source is a point source.
17	(Simultaneous speaking.)
18	CHAIR KIRCHNER: Excuse me. But do we
19	have people with open mics out there on Teams? Please
20	mute yourself.
21	MR. COMPTON: All right. I was going to
22	see whether I can keep the pace going. So right. So
23	we looked at the algorithms for have a typical state
24	of practice codes to do the near field dispersion, the
25	dispersion kind of in the hundreds of meters range.
Į	I

(202) 234-4433

	178
1	The short answer is that we found an algorithm that
2	was used to develop ARCON96, the Ramsdell-Fosmire
3	model.
4	It was based on fuel students that were
5	done in the vicinity of nuclear power plants. I think
6	the fuel students were in the '70s and early '80s.
7	And that algorithm for accounting for the enhances
8	dispersion from wakes was actually more important.
9	The enhanced dispersion due to low wind
10	speed through the air and that's a general
11	applicability. So we were able to look at the
12	technical basis of the equations, incorporate those
13	into MACCS. We then compare that to see, does it give
14	comparable answers to ARCON96?
15	And then we also compared to AERMOD, EPA
16	Workhorse code. Then we determine that we believe
17	that it's a suitable way to have dispersion estimates
18	at close ranges that are appropriate but not overly
19	conservative in a the way that's simply using a point
20	source model with no enhancement for dispersion, no
21	enhancement for meander. That would be conservative
22	and that could work, but it could be overly
23	conservative. Does that help? Okay.
24	So for the next task, the radionuclide
25	screening, we reexamined the technical basis for the

(202) 234-4433

original list of 60 radionuclides that are generally considered for light water reactors. And this is one of the first examples of where one of the real benefits of this work is that it forced us to go back and make sure that we understood not just what we could do for non-light water reactors but why are we doing what we currently do for light water reactors. So we did that.

9 We reexamined it and we essentially came 10 up with a quantitative methodology for selecting radionuclides, screening radionuclides that use the 11 same considerations that we use back in -- well, since 12 half 13 WASH-1400 actually. So the life, the 14 radiological hazard, the abundance in the core. So that task, we kind of considered we're done in the 15 sense that we've identified how to do. 16

17 Of course, you're never done until you 18 know the inventory. And that could always change. So 19 this is an example of where we're done but there will 20 always be more work to do.

We figure out how one could do it then. So the subsequent task, we examine whether there were state of practice methods to address the effect of variability and physical and chemical forms on dosimetry and atmospheric dispersion -- and I'm sorry,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

180 1 atmospheric dispersion and deposition. And we concluded capabilities 2 that MACCS were broadly 3 consistent with state of practice. 4 Aqain, this involved going back to 5 understanding why did we pick the chemical forms, for example, for dosimetry, federal guidance report 13 6 7 which is one of the standard references for dosimetry 8 for radionuclides -- for environmental exposure to 9 radionuclides. There are multiple chemical forms that 10 you can assume for radionuclides. But it's somewhat constrained. 11 You're limited to what the dosimetrist 12 have assessed. So we went back and we looked at how 13 14 did we pick what we originally picked. So we realized that MACCS is basically a state of practice. 15 16 It has the ability to -- you can change 17 the dose coefficient file, for example. You don't need to do a code change. But you need some more --18 19 you need to be more conscious about not just using 20 defaults without thinking about whether it's appropriate for your application. 21 But again, we don't think that's a code 22 We think it's an understanding 23 development issue. 24 your own source term issue. So for examining the consequences of tritium releases, we benchmarked MACCS 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	181
1	against two state of practice codes.
2	And we determined and the state of
3	practice codes were UFOTRI and ETMOD which is a
4	Canadian code for tritium releases. And this is
5	consistent with observations that the DOE has made.
6	Tritium is an issue for DOE facilities that MACCS can
7	be used for evaluating inhalation doses from airborne
8	tritium.
9	Basically, it can be somewhat conservative
10	or it can be fairly accurate. We did conclude that
11	MACCS is not suitable for estimating ingestion doses
12	from Tritium. That's a different pathway.
13	But a solution to that, the question
14	and this is the debate or the discussion we're having.
15	Do you then upgrade the MACCS code to put in that
16	special purpose capability? Or do you simply and
17	this is the approach that I believe has been taken in
18	other applications. Do you simply use a special
19	purpose code if you have to do that specific task?
20	So I'm kind of leaning towards the
21	direction that and the other is understanding the
22	risk significance, the dose significance tritium can
23	you have to release a large amount of it to get
24	significant doses. It's possible, but you should be
25	thinking about whether you're putting in a lot of
ļ	I

(202) 234-4433

	182
1	capabilities that is going to end up not being of
2	great significance. So we got into the literature and
3	got a little bit more informed about how to help guide
4	that decision.
5	So the remaining tasks, I'm going to leave
6	with the remaining tasks are not complete. But we're
7	considering closing out the final two of the final
8	tasks in the co-development plan without extensive
9	work on it. And I'll talk about why on the next
10	slide. So next slide, please.
11	MEMBER MARTIN: Going back to your second
12	bullet, is there some sort of guidance that you put
13	out to either applicants or at NRR as to how to do the
14	screening study or what the expectations are to screen
15	out the radionuclides that are important to dose?
16	MR. COMPTON: So the second it's just
17	the bottom report gives explains the methodology
18	and talks about how to do it. I want to be careful
19	about saying if we've given out guidance, I would say
20	that's something for the program offices to figure out
21	what they want to say about guidance. But we did put
22	out a report that we believe explains it in sufficient
23	detail.
24	Someone could pick it up and understand
25	how one would go about doing that and how it applied
I	I

(202) 234-4433

	183
1	to. And they can take that approach and apply it to
2	different inventory. So we tested it on an example.
3	MR. BETANCOURT: I was going to say that.
4	So basically like a you will see that in the next
5	couple of slides. So we have a demonstration project
6	that we basically use and a sample source to
7	demonstrate how comparability could be used. So just
8	give us a couple of minutes and then we can talk about
9	that.
10	MEMBER PETTI: Can I go back to the
11	tritium issue? This is really for accident.
12	MR. COMPTON: Right.
13	MEMBER PETTI: For Part 20 evaluations,
14	are the codes good enough? Do they have the skin
15	absorption do you know for the chronic release stuff?
16	MR. COMPTON: I won't talk I'll answer
17	that of the way. I won't talk about Part 20. What I
18	will talk about is MACCS. So one of the things that
19	I think we are going to do, I can't remember if we've
20	done it yet or not, the typical approach for skin
21	absorption is to increase the dose coefficient by a
22	factor of 50 percent, the inhalation to this
23	coefficient to account for the enhanced dose and skin
24	absorption. And I think we're going to make that
25	change so that MACCs will dose coefficient file
I	I

(202) 234-4433

	184
1	will ship with that increase.
2	MEMBER PETTI: Because at least data that
3	I've looked at, I mean, HTO versus HT, huge
4	difference.
5	MR. COMPTON: It's huge. And the dose
6	coefficient again, the I hate to say default
7	because you should always know why you're using the
8	code. But what I would recommend would be using the
9	dose coefficient commensurate with HTO. And then
10	MEMBER PETTI: That's not what's
11	happening. That's what I'm worried about.
12	MR. COMPTON: Well, and
13	MEMBER PETTI: In some applications,
14	they're coming out at HT. And I can justify that.
15	MR. COMPTON: And in MACCS, we do have
16	that. And that's why I won't speak to what others do.
17	And that is important. And that is part of what we
18	found in the benchmarking studies is conversion of HT
19	comes out as HT and everything is fine until it
20	converts, until the hydrogen or the tritium gas,
21	HT, coverts into tritiated vapor. And then suddenly
22	it's much more bioavailable and you see that when you
23	run something like this track. So our answer is just
24	we'll just assume that it's HTO to begin with.
25	MEMBER PETTI: UFOTRI I always considered
I	I

(202) 234-4433

	185
1	to be a benchmark.
2	MR. COMPTON: Right, right. And I agree
3	with that. Again, to go to Luis' point, one of the
4	things that has been beneficial is that we're getting
5	staff having the experience of not just running MACCS
6	but running UFOTRI and talking to Dr. Raskall.
7	(Simultaneous speaking.)
8	MR. COMPTON: So yes, so this getting
9	to know the literature. And again, it's interesting.
10	There's not a lot of people that run UFOTRI. There's
11	not a lot of people that run that. So it's important
12	to
13	MEMBER PETTI: Right.
14	MR. COMPTON: This exercise was important.
15	Even if we don't change the code, we understand how to
16	use the code.
17	MR. BETANCOURT: And one thing before
18	we're moving on, I think this is what the
19	international collaboration through certain
20	organizations has been very beneficial. And we've
21	been having those exchanges. So that's something that
22	we need to continue doing.
23	MR. COMPTON: I will say that I was happy
24	when Dr. Raskall came to the presentation that we
25	gave. Our contractor gave the presentation and we did
ļ	I

(202) 234-4433

	186
1	not get jeers or whistles from Dr. Raskall. But I
2	felt very happy about that.
3	So let's see. Okay. So that was a brief
4	status of where we are and where we expect to be by
5	the end of the year. I'd emphasize the fact that we
6	plan to wrap up the work identified as part of the co-
7	development plan does not mean we're going to stop
8	working on MACCS and stop looking at things. It's
9	simply while recognizing that we may be doing focus
10	work in the future.
11	We think that MACCS is ready for use in
12	assessing the offsite consequences for a wide variety
13	of non-light water reactor technologies. So we're
14	reasonably ready is what I would say. And I think we
15	can deal with when it comes up on a more case by case
16	basis.
17	And one thing that is worth noting is that
18	MACCS was already upgraded in the 1990s. One of the
19	motivations for the development of MACCS too was to
20	support application to DOE non-reactor facilities. So
21	it already had a large amount of technology neutrality
22	kind of baked into it.
23	So we kind of we're already starting
24	from a good spot. And one of the things as we've
25	always tried to do, we plan to stay abreast of source
Į	1

(202) 234-4433

1 term development work to see whether there are specific MACCS enhancements that are needed. 2 So I think that we're pivoting now more towards kind of pay 3 4 attention to what may be coming to be assessed with 5 MACCS and looking at the specifics instead of trying to solve problems on a generic basis. 6

7 And one other thing that I would mention 8 is that we need to make sure that any work we do has 9 a clear nexus to a regulatory application for which 10 MACCS is suitable and for which we have the requisite technical expertise. And the reason that I mention 11 that is that we have a task identified on chemical 12 But before we charge off -- and that's 13 hazards. 14 something MACCS was already -- in the 1990s, there was a code called KIMACCS, an adaptation that was done 15 that used MACCS for assessing chemical hazards. 16 17 Before we charge off and start -- bring that up, resurrect it, build in all these capabilities, we need 18 to make sure that we're the right people to be doing 19 that and that we're solving the problems that are --20 so that's, I think, a discussion that we're going to 21 be having with the program offices. 22

23 MEMBER PETTI: So one other question is 24 here. I understand it's not this one, right. But 25 from a health physics perspective, I don't know the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

Í	188
1	answer. Is there some sort of synergistic enhancement
2	when you've got chemical release and radioactive
3	release at the same time?
4	Could be in the same particle like the
5	public would inhale. I think of plutonium as a
6	classic, right? It's got its radioactive stuff. But
7	it's also toxic. There are materials that could be
8	co-released, and I don't know if that's captured at
9	all.
10	MR. TOMON: So in the code like the RASCAL
11	code, that is captured for, like, HF. It is captured
12	in there. It does both, the chemical and it's a
13	very infrequently exercised portion of the RASCAL
14	code.
15	And we're actually looking in
16	modernization to keep it in RASCAL or move those DLL
17	files into some of our other codes. But you're right.
18	But we have some codes that do look at it that way.
19	And then it used it be that we used to
20	have a few separate codes with RADTRAD and HABIT. And
21	we still have the two separate codes. But with HABIT,
22	we've completely taken out the radiological aspect
23	because it's for design basis accidents in accident
24	space. And that's what RADTRAD has bee upgraded
25	through the years to do in SNAP/RADTRAD. And so HABIT
	1

(202) 234-4433

189 code is strictly for chemical and eventually when we get to my presentation, that's one of the steps that we're -- because we have so many codes is to combine HABIT and RADTRAD into the same user interface and then bring in some of those additional code interactions both chemical between the and

8 MR. COMPTON: And one thing, though, 9 that's an example of a specific question that is 10 actionable for research. That question of -- because in general, I mean, that's something that I think the 11 EPA deals with, with chemical hazards is things can be 12 -- hazards can be additives. They can be synergistic 13 14 or they can be antagonistic.

Sometimes one can kind of cancel out the 15 So it's a -- generically, it's an issue that 16 other. 17 has been identified and addressed. And I personally would approach because I have a strong bias towards 18 19 staying within the state of practices, understanding what is a consensus state of practice method for 20 dealing with that kind of issue. But that's a very 21 specific -- I'm glad you posed it that way because 22 that's something that we could look at and figure out 23 24 how to address it.

MEMBER PETTI: And the other thing is in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

2

3

4

5

6

7

radiological.

	190
1	terms of the isotopes that you're considering, I'm
2	assuming you've also looked at activation of all the
3	coolants and the moderators that are out there. It's
4	not just fission products. There's some sodium that
5	has isotopes that activate that can give dose
6	potassium. Some of the solid moderators that move
7	beyond graphite and some of these micro-reactors will
8	produce tritium and other things that just make sure
9	it's in the
10	(Simultaneous speaking.)
11	MR. COMPTON: And that's an example of why
12	yes, and we've always, in theory, looked at
13	activation products. But we would rely I would say
14	we would rely on the output of the scale and origin
15	calculations which include not just the fission
16	products and the transuranics. But it has but we
17	had right.
18	MEMBER PETTI: Yeah, because sometimes,
19	like, the moderator is separate from the fuel in some
20	cases. So the scale calculation might only be on the
21	fuel and not look at activation in the moderator.
22	They'd have to know.
23	MR. COMPTON: They would have to know.
24	And I think that's the and that, again, gets to the
25	point of we need to talk to each other because
ļ	

(202) 234-4433

	191
1	something which might not be terribly important from
2	a neutronics point of view, for example, might be
3	significant from a consequence point of view. But in
4	general, again, we have a generic methodology that if
5	you know the activation product inventory, you can
6	figure out whether it ranks it should be included
7	in your and MACCS can handle any isotope. Well, it
8	can handle pretty much any isotope that is for which
9	you can have a dose coefficient, FTR-13 which is 825.
10	MS. WEBBER: Hey, Keith. If it's okay,
11	I'm going to speed you up a little bit.
12	MR. COMPTON: Sure. Well, okay. So the
13	next slides I think will be quicker. So next slide.
14	So like I said, the conclusion that we're ready for
15	use in assessing offsite consequences doesn't mean
16	that we're done.
17	There are several candidates for future
18	work that identify. But they're applicable to both
19	light water reactors and non-light water reactors. So
20	I think those kinds of things, we move them into just
21	kind of our normal development efforts.
22	Keep them siloed in the non-light water
23	reactor issue. Just improvements that we can make.
24	I'm not going to go into these listed in detail. But
25	these are just some specific examples of things that

(202) 234-4433

www.nealrgross.com

	192
1	we identified over the course of these exercises.
2	Again, I make the point that our co-
3	development plans have been our development work
4	has been very useful, not just in looking at our code
5	but our knowledge management. It's given younger
6	staff the chance to dig into things that they
7	otherwise wouldn't have an opportunity to dig into
8	like the tritium work. Like, the work on
9	understanding why we use the chemical forms that we do
10	currently.
11	And that's been very helpful. You don't
12	usually get an opportunity to go back and do that kind
13	of work. So let me see. Where okay, thank you.
14	Losing track of where I am.
15	One of the things I won't go into detail
16	but an activity that we've been working on for
17	advanced reactor readiness, it's not explicitly listed
18	in the co-development plan. But it's something that
19	we identify that we needed to do. And we just
20	basically realize you learn by doing.
21	You learn by actually trying to do the
22	assessment. So as an example, we took a MELCOR source
23	term that was generated for the source term
24	demonstration project. And we just said, let's run it
25	through MACCS and see what it takes to get that done.
I	I

(202) 234-4433

I won't go into the details. But I will say, yeah, we learned some things. We learned some things that we probably wouldn't have identified if we had just tried to sit back and guess what it went into.

The mechanics of developing inventory, the mechanics of coupling the source terms, the issues of, oh, what happens if you have a transient overpower where your reactor is not scrammed and you're having releases. MACCS kind of assumes that you have a scram and then you have your release. Well, what do we do?

So that's useful. It's useful to actually 12 do things and not just kind of speculate about what 13 14 you might need to do. So I think that's the kind of 15 the thing that we'd like to keep doing going forward 16 to keep practicing as it were, practice is on different kinds of source terms and see what we learn. 17 And then also again, that leads so -- that's a chance 18 19 for staff, both at the NRC and contractor staff, to learn how to use the code. And I think --20

CHAIR KIRCHNER: Just to kind of see if I
can make this a general question but specific enough.
You've got the potential for energetics. Is that a
MELCOR responsibility to give you an energetic
propelled release? Or is that something you take up

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

	194
1	in MACCS and try to account for it?
2	I'm just thinking of the fact that you
3	could have either forged materials. You can have
4	extra energy sources. How does that impact the
5	dispersion
6	MR. COMPTON: Right, okay.
7	CHAIR KIRCHNER: aspects?
8	MR. COMPTON: That's an interesting
9	question. So I'll give some thoughts on it. So
10	there's a couple of ways that energetics could come
11	in. My reaction, the first thing is whether you're
12	modeling a release as a buoyant plume or as a jet.
13	So we're aware of the fact that we tend to
14	model things with buoyancy and the momentum dominated
15	effect from a jet. I think we believe that we
16	typically assume is dissipate fairly quickly. Again,
17	that may be kind of an airfield long-term issue.
18	In that case, I'll also say the
19	orientation of the jet matters. Is it going up? Is
20	it going down? So my answer to that is probably
21	unsatisfactory.
22	I think again it goes to the importance of
23	understanding and again making sure the staff
24	continues to understand new staff coming up,
25	understands what the assumptions are that MACCS has in
ļ	

(202) 234-4433

	195
1	it and then figure out whether it's applicable. So I
2	will say that the question of well, I would say
3	that we could not that would not be in our swim
4	lane to figure out whether it's what the energetics
5	are, whether something more like an exposure or more
6	like a low velocity release. We'd have to understand
7	that from I think the source term development.
8	I would say again and this is the
9	importance of staying on top of what is going on in
10	other areas. There are people who work in dispersion
11	codes where that is an issue. And I think having our
12	staff stay on top of what's going on in other areas
13	and what is state of practice for modeling burst
14	releases or vent releases or jet releases, to figure
15	out whether do we need to make a change or not.
16	CHAIR KIRCHNER: It would likely be very
17	application specific actually, depending on the
18	chemicals and/or pressures, other factors in the
19	accidents.
20	MR. COMPTON: Right. And Luis will
21	probably pick up on this. But again, the feeling that
22	I'm taking up is that we it's reiterating we need
23	to get out of our we need to make sure we don't
24	stay in a silo. We need to talk to the source term

(202) 234-4433

people.

25

www.nealrgross.com

We need to talk to other communities of from 2 practice that learn those so we're not reinventing the wheel so that we're conveying you need to give us this information so that we know what we need to do with it. So kind of a meta level, that one nation gets highlighted when you start doing something a little different than what you've been doing for the 8 last 20 years. You got to talk to each other.

MR. BETANCOURT: Let me wrap this up so we 9 10 can actually go to the next presentation. So I think what you guys heard today that at least for MACCS it 11 tends to be more like a technology agnostic code. 12 And think we are as ready as we can be from a co-13 14 development practice of Volume 3.

15 And our plans as Steve mentioned is just 16 to continue some of the case-by-case basis that's out of our standard co-development activities. And one of 17 the focus areas that I would like to do, at least in 18 19 fiscal year 24 and beyond is to do more of the exercising of the code, use some of the source term 20 calculations just to get some insight to basically 21 help and build that expertise in house. 22 And that's all that I have, just to keep it quick and simple. 23 So 24 any questions or comments before I turn it over to the 25 other gentlemen? Go ahead, Vicki.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

6

7

MEMBER BIER: Yeah, I have a more general question that might be fore Kim or Shawn or somebody who presented earlier. I mean, you said, like, hey, we're as ready as we can be, right, which sounds pretty good. And Shawn's presentation, he said, well, there's some areas where we really can't do much yet because we don't have the suitable data or whatever.

I guess the question that I have, like I said, it's probably better for Kim who's sitting behind me. But are there areas where you guys collectively think there are critical development tasks that you have the data and analysis to be able to do NR cost constrain? Or do you have the -- is the

14

15

16

17

18

19

- -

1

2

3

4

5

6

7

(Simultaneous speaking.)

MS. WEBBER: I'm going to address that in my conclusion. I'm going to address in my conclusion. Okay. But you're leading me down the right path.

MEMBER BIER: Thank you.

20 MS. WEBBER: Would you like me to 21 introduce the next speaker or do you have anymore 22 questions for Luis and Keith?

23 MEMBER MARTIN: Just real quick. 24 Obviously, with the risk informed licensing coming 25 along, frequency consequence is a big focus of that.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	198
1	And I think that's going to mean more attention on
2	what you do. And it seems that your conclusion is,
3	well, we're ready. Maybe there's still question marks
4	on how people will use your code in that framework
5	that you're seeking answers to.
6	I'm curious if you look at something like
7	near field, dispersion as a physics model that maybe
8	you could improve on, what have you. But you have
9	questions about how people are going to use your code
10	down the road because they are that you can maybe
11	prognosticate on now and add to this future is kind
12	of nebulous because obviously there's no commitment to
13	it. But I'm just a little concerned that we're not
14	going to be ready when people are starting to be
15	creative with the presentation of frequency
16	consequence at the level that I think it's going to
17	get to in maybe the next five years.
18	I just seems like there's a lot hanging
19	out there, questions. Again, maybe you don't know
20	until people try those out. But I do think you're

going to get more users, and they're going to push it

in ways that you maybe haven't thought of or want more

Generically, we have the capability to look at a lot

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

modeling capability.

MS. WEBBER:

21

22

23

24

25

www.nealrgross.com

Can I jump in on that one?

	199
1	of things. But when it comes to very specific
2	detailed things as you're seeing, we just haven't got
3	the budgeted resources. We don't have the time yet to
4	do a lot of these very specific things.
5	But doing the code analysis is not the
6	only thing that the NRC has to really assess safety
7	and protection of the environment and all that. I
8	mean, we have regulatory tools to address key areas of
9	uncertainty beyond doing confirmatory analysis. So
10	you can put limiting conditions on operations.
11	And so collectively, we think that with
12	what we have today plus the regulatory tools that we
13	have that we'll be able to do some of do this as
14	safely as we possibly can. But we're you're seeing is
15	we've been working on this for a number of years. It
16	kind of goes to Vicki's question too.
17	We've been working on this for a number of
18	years. And with more budget and more time, we'll
19	advance our capabilities even further to address some
20	of the really important questions that you've asked
21	about today. So yeah.
22	MEMBER MARTIN: And just the intention is
23	obviously going to not be on fuel temperatures as much
24	as it's going to be on the dose. And people are going
25	to start to want margins in that area where maybe in
	I

(202) 234-4433

	200
1	the past we're not mechanistic or what have you. And
2	maybe we're looking five to ten years out and not near
3	and that's the next vision statement.
4	But I do think that's the trend. I think
5	more and more people are going to be happy with the
6	risk informed approach that focuses on radiological
7	safety issues. And you may find more demands coming
8	because of the changes. I think the landscape is
9	changing and it's going to be focusing more in this
10	direction.
11	MR. BETANCOURT: And what I will say about
12	that, I've been in this position for almost three to
13	four years already. And I've been seeing an increase
14	on MACCS users throughout the years. So we have been
15	seeing, I will say our numbers have increased 100 or
16	more, give or take.
17	And we're keeping tabs on who's using it
18	for what reason. We're trying to keep tabs also on
19	what the MELCOR users are also doing to the point of
20	watching them. So it is that we want to figure out
21	how people are doing it.
22	Do we have a cap? I think that's one of
23	the ideas that we're not learn by doing. But the
24	point that I was trying to make is that we are as
25	ready as we can be from a generic sense. Now when
I	I

(202) 234-4433

	201
1	you're talking about case-by-case basis, that's when
2	we need to be able to following the standard process
3	of co-development activities.
4	And at that time, hopefully we'll be more
5	proactive. We identify decisions before they come
6	along. But there has been an increase of MACCS users
7	throughout the years since I have been on this job for
8	three or four years.
9	MEMBER MARTIN: Is there a formal users
10	group?
11	MR. BETANCOURT: Internal. Yes.
12	MEMBER MARTIN: Okay. But not outside of
13	the broader
14	MR. BETANCOURT: Correct.
15	MEMBER MARTIN: Okay, yeah. All right.
16	MEMBER ROBERTS: And I can't resist the
17	opportunity to put in this plug again. I think that
18	what you just mentioned is an example. That's going
19	to put I think it's going to put more onus on not
20	the code but the code user, the analyst.
21	I started off my career in performance
22	assessments, waste management where the first thing
23	you do is to figure out what is the right tool to use.
24	You don't just kind of go to your standard tool. Am
25	I doing a granular problem? Am I doing a surface

(202) 234-4433

	202
1	water problem? What kind of problem is it?
2	And so I think that puts more new
3	technologies, new scenarios means that you need to be
4	a little bit more conscious of am I using the right
5	tool? Do I have all the am I looking at all the
6	phenomena that I need to look at? What's useful to us
7	to understand things like, well, is this applicable?
8	I would say MACCS model models neutral density
9	aerosols.
10	It's not a heavy gas code. It's not a
11	lighter than air gas code. It models generally non-
12	reactive, so things that don't undergo complex
13	transformations.
14	So having the experience to know what is
15	my code designed for, how well does it suit the
16	problem that I'm trying to solve is important. You
17	can't just kind of go, oh, I'm going to use what I've
18	always used and how that it actually applies. So I
19	point out this is the reason that I think we need to
20	emphasize not just the codes but also the knowledge
21	management and the skill development that you can
22	you can't put everything into the code. So that's why
23	I think the code development, trying to learn by doing
24	is important.
25	MR. COMPTON: Move on.
	I

(202) 234-4433

	203
1	MS. WEBBER: Yes. So let me introduce
2	John Tomon. He's the chief of the radiation
3	protection branch. And I'm going to ask John to try
4	to go for 30 minutes
5	MR. TOMON: I will try.
6	MS. WEBBER: acknowledging that
7	there'll be questions along the way.
8	MR. TOMON: I'll try.
9	MS. WEBBER: Thank you.
10	MR. TOMON: I have a script, so I don't
11	know how long it is. I haven't timed myself. So I'll
12	try to keep to the high points and go from there.
13	As Kim said, my name is John Tomon. I'm
14	chief of the radiation protection branch in the
15	Division of System Analysis. This afternoon, I'm
16	going to provide an overview and update on the Volume
17	4 license and siting dose assessment code to the
18	activities we've done.
19	In the following presentation, I'll
20	discuss the work my staff in collaboration with our
21	contractor Pacific Northwest National Laboratory have
22	undertaken and completed with respect to the task
23	developed in Volume 4. Next slide, please. This next
24	slide I'm trying to go fast. So Volume 4 describes
25	a vision strategy to achieve readiness with a non-

(202) 234-4433

light water reactor designs for the licensing and siting dose assessment codes.

staff 3 The and the code contractors identified several issues within the current suite of 4 5 licensing and siting dose assessment codes which should be addressed in preparation for all non-light 6 7 water reactor technologies as well as maintaining 8 their applicability to the current light water reactor 9 Working with our individual dose assessment fleet. 10 code developers and the radiation protection computer code analysis and maintenance program contractor, 11 Pacific Northwest National Lab. And for those of you 12 13 that don't know, the RAMP program or radiation 14 protection code analysis maintenance program is our cooperative code sharing program, both internationally 15 16 and domestically with licensees users.

17 We have over 2,800 users in RAMP because of the amount of code that's in RAMP. The staff 18 19 developed a five test listed on this slide to prepare the licensee and siting dose assessment codes for non-20 light water reactor readiness. These include looking 21 at code consolidation and modernization, 22 improved characterization of source terms, improved atmospheric 23 24 transport and dispersion modeling, update dose coefficient values, and update to the environmental 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

5 As shown in this image from Volume 4, we're looking towards the possibility of having to 6 7 make approximately 10 licensing and siting dose 8 assessment codes for the various non-light -- ready 9 for the various non-light reactor applications. These 10 include codes like the atmospheric relative concentrations code support of control 11 in room habitability, ARCON, you've already heard about it, 12 the ground level relative air concentration code for 13 14 accidental releases, PAVAN, the gaseous and liquid 15 effluent release code, the normal affluent dose 16 assessment and siting code, NRC Dose 3, which includes 17 liquid pathway modeling dose assessment code, LADTP, and the gaseous and atmospheric pathway modeling dose 18 19 assessment code, GASPAR.

Dose 3 also includes the normal 20 NRC relative air concentrations and relative disposition 21 22 factors code, XOODOQ. These also include the radioactive transport removal and estimation code 23 24 which has access via the symbolic nuclear analysis package model letter/number. We refer to that code as 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

www.nealrgross.com

SNAP/RADTRAD.

1

2

3

4

5

6

7

8

finally, the And then control room habitability code which we've already briefly mentioned. The code graphic on the slide shows the various does assessment computer codes in RAMP. Currently there are 20. In a few slides, I will show you a revised graphic of the consolidation of the licensing and siting codes.

9 in Volume 4, we also included Also 10 discussions on other RAMI computer codes that either non-light water reactor designers are considering 11 using in their applications. And we know this through 12 the interactions of our RAMP user group and our RAMP 13 14 meetings. These are codes such as the user 15 radioactive material transport dose assessment code, 16 NRC RADTRAD, the Generation 2 code called GENI, and 17 the decommissioning codes which we're not really working on right now because we feel that will be 18 19 later on, further on. So we pushed that out to a later phase in development and as we work on the 20 licensing and siting codes. Next slide, please. 21

This slide depicts the current licensing 22 and siting dose assessment codes that the NRC staff 23 24 uses to perform independent assessments and to 25 confirmatory calculations with respect the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

1 regulations in various parts of the code of federal regulations and the NRC regulatory guides for light 2 In Volume 4, we group these dose 3 water reactors. 4 assessment codes in areas of licensing reviews based 5 on the source terms and the type of reviews the codes are used for. As shown in the graphic, the GALE code 6 7 with its four subroutines along with the NRC Dose 3 8 computer code with its three subroutines are used 9 together to calculate the dose from the normal 10 effluent releases from light water reactors.

Additionally, the relative air 11 concentration outputs from the ARCON 12 and PAVAN computer codes are used as inputs to the SNAP/RAD 13 14 computer code to calculate the dose to the control 15 room, low population zone, and exclusionary boundary 16 for design basis accidents for light water reactors. 17 And then finally, HABIT code is a suite of codes to assist evaluating light water reactor control room 18 19 habitability in the event of accidental spills. Next This slide depicts the future of the 20 slide, please. licensing and siting dose assessment computer codes 21 after the code consolidation and modernization. 22

As shown on this slide, the consolidated licensing and siting dose assessment code called the software integration or environmental radiological

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

release assessments -- from now on, I'll just refer to that as SIERRA because it's a mouthful. And I almost referred to it to begin with because it is a mouthful. We'll replace the computer codes used to calculate the doses for normal effluent releases from existing light water reactors and future non-light water reactor designs.

8 Likewise, the RADTRAD computer SNAP/RADTRAD computer code will be combined with the 9 10 HABIT code to assess control room habitability in the event of accidental spills of toxic chemicals and 11 accidental releases of radionuclides. Finally, the 12 atmospheric transport and dispersion computer codes, 13 14 ARCON, PAVAN, and XOQ over DOQ uses similar calcium 15 The decision was made by the staff and plume model. 16 our contractor to consolidate all three into the 17 SIERRA code atmospheric transport and dispersion module with output, the relative air 18 the concentrations for the near field which would be the 19 ARCON type calculations and the midfield, the PAVAN 20 readily imported 21 type calculations, to be into SNAP/RADTRAD for design basis calculations at 22 the low population zone 23 control room and the and 24 exclusionary boundary. Next slide, please.

This slide shows the accomplishments we've

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

2

3

4

5

6

5 consolidated -- consolidation -- the code 6 consolidation framework in late 2021. 7 As mentioned earlier in the presentation, 8 this consolidated licensing and siting code is

referred to as the SIERRA code. 9 We'll combine 10 individual FORTRAN codes into the one that will pass data quickly and efficiently to the various modules in 11 The figure on the right shows all the codes SIERRA. 12 13 under the RAMP program with the SIERRA code 14 consolidation entered at the top of the code wheel and HABIT code included under SNAP/RADTRAD 15 the the computer code. 16

17 The second completed task is a Phase 1 work to improve characterization of the source term 18 and the SIERRA computer code. Specifically, Phase 1 19 for the source code -- for the source term involves 20 the incorporation of the existing light water reactor, 21 normal reactor cooling source term computer codes, the 22 GALE -- the four GALE subroutines into the SIERRA 23 24 source code module. Lastly, the third completed task is improving the atmospheric transport and dispersion 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

www.nealrgross.com

models which includes consolidating ARCON, PAVAN, and XOQ computer codes into the atmospheric transport and dispersion model.

4 And then the next few slides, I'll go over 5 those completed tasks in a little bit more detail. 6 Next slide, please. Code consolidation approach, one 7 of the first identified priorities of code 8 consolidation was increasing the efficiency and 9 maintaining the large numbers of licensing and siting 10 dose assessment codes and preparing for the different types of non-light water reactor designs and fuel 11 types being considered with the resources available. 12 Code consolidation and modernization was viewed as a 13 14 means to help remove functional redundancy between 15 improved outdated science and technology codes, 16 associated with design and development of the original 17 codes, the legacy codes, address limited ability of the current codes to assess advanced reactor designs, 18 19 apply a standard software quality assurance to address a history of changing ownership and associated lost of 20 code development and knowledge, and finally, reduce 21 the inefficiency of having to maintain multiple codes. 22 The figure on this slide is a diagram of 23 the consolidated code paradigm showing how the models 24 from the existing or legacy licensing and siting codes 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

are going to be integrated into the new SIERRA code. The modules within the SIERRA code are grouped or characterized within the general dose assessment approach. The SIERRA code has eight modules as shown on this slide which will contain similar phenomenological models with the current licensing and siting dose assessment codes. Next slide, please.

to 8 In order address the challenges 9 identified for the current suit of legacy codes, a 10 three pillar approach was adopted for the SIERRA code which includes the following steps, first creating 11 consolidated engines. This is a set of functional 12 models or engines that are being developed to perform 13 regulatory calculations as those performed by the 14 current suite of licensing and siting codes. 15 In most 16 cases, we're going to bring in what we already have 17 and then build upon that is what the plan is as we work through this. 18

19 The functional engine approach improves flexibility by allowing 20 development for future modifications and efficient data 21 transfer. capabilities 22 Furthermore, separating these as standalone modules eliminates some of the current code 23 24 redundancy and inefficiencies. The second was to 25 develop the second pillar was to develop - а

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

www.nealrgross.com

standardized data transfer schema using a standardized data transfer, JavaScript object notation or JSON for encoding data for each engine makes the data input universal and adaptable while making it easy to pass the output data between the different functional engines.

7 By using JSON as the data transfer file 8 format within the SIERRA code framework, the entire 9 system is more robust relative to the advancements in 10 the nuclear industry and any associated improvements in data entry such as downloading logical input data. 11 12 Finally, the last pillar was to built a single user interface. The single user interface has already been 13 14 developed, separate from the functional engines which 15 acts with the users and communicates with the 16 functional engines to execute user defined commands. 17 The user interface is designed to effortlessly quide users through the relevant code engines input screens. 18

This approach allows for an adaptable code that can consolidate functions of the existing codes which were bringing in a lot because many of these codes have been updated recently for growth and expansion for new challenges as they arise. Next slide, please. The figure on this slide gives you an overview of that graphical user interface showing how

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

the slide -- how the user can access any of the functional engines in the SIERRA computer code. The SIERRA code atmospheric transport and dispersion module has really just been completed -- has just completed beta testing with the meteorologist from the Office of Nuclear Reactor Regulation.

7 And then the contractor is taking their 8 feedback, suggested edits and bug fixes which were 9 during review. detected this And the staff 10 anticipates releasing the SIERRA code completely to the user community with the combined atmospheric 11 transport and dispersion module the 12 at end of September of this year. I have a few more slides that 13 14 show a little bit more about that combined module for 15 Task 3 and subsequent. So if you have any questions about the ATD module, you might want to wait until we 16 17 get to those slides.

Additionally, the contractor anticipates 18 19 completing incorporation and testing of the GALE computer code for normal reactor coolant source term 20 for light water reactors and to the SIERRA source term 21 module by the end of August of this year. So about 22 the same time as the ATD module. And we're not sure 23 24 yet as when we release this to the user community, we'll have both of those modules fully functional. 25 We

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	214
1	have to wait to see how the rest of the GALE testing
2	goes.
3	And then finally, the environmental
4	pathways and dose consequent models from NRC Dose 3
5	computer code will be incorporated into SIERRA in
6	2026. And a lot of this is progressing along the way.
7	It is progressing because of resources and getting the
8	resources to combine the code.
9	But the hope is that when we're doing
10	this, it'll be a more efficient use of those resources
11	we have for code development. Next slide, please.
12	The second task that I saw we completed, which I
13	already talked a little bit about, is improvement of
14	the source term character the source term
15	characterization of the source term. For normal
16	operation phases, we actually broke this into three
17	phases in Volume 4.
18	For normal operations, Phase 1 and 2 of
19	this task, the radionuclides of interest in the normal
20	source term include fission products, capture
21	products, activation products produced during the
22	normal operation of the reactor coolant system. As
23	mentioned previously, Phase 1 will be the
24	consolidation of the GALE codes into the SIERRA source
25	term module. And for Phase 2, our contractor is
	1

(202) 234-4433

	215
1	leveraging work done by the National Reactor
2	Innovation Center, NRIC, to implement non-design
3	specific reactor coolant source terms for non-light
4	water reactors from publicly available plant design
5	information into the SIERRA source term module.
6	And I think my last slide in this section,
7	I actually have kind of a breakdown of that format.
8	So if you're curious about that, I'll go through that
9	in a minute. And then for accident for Phase 3
10	severe accident and beyond design basis accidents, the
11	primary source will be the source term information we
12	gave from the work done in MELCOR and SCALE as
13	described in Volumes 3 and 4.
14	And those will be put into the
15	SNAP/RADTRAD computer code. Next slide, please.
16	Again, this is kind of just rehashing the actual
17	the inputting of the GALE code into the SIERRA source
18	term module. Just a couple more details on that, this
19	included adding both the pressurized and boiling water
20	gaseous liquid effluent subroutine FORTRAN
21	subroutines. There are four of them.
22	The subroutines have been implemented to
23	SIERRA with some minor code changes in C Sharp and the
24	changes to the file structure to match the existing
25	SIERRA framework that we developed in the first task
	1

(202) 234-4433

www.nealrgross.com

1 for this. The GUI and the FORTRAN based back end were decoupled for the 2 each of future development 3 activities and expansion of the SIERRA module for non-4 light water reactor technologies. Additionally, the 5 input files one of the additional features, is now the 6 input files for a light water reactor do not have to 7 be present inside a GALE directory.

8 They can be taken from anywhere for a 9 light water reactor. So that is making it a little 10 bit more robust than it was before in the GALE 11 structure. Next slide, please. Let's see. This just 12 shows the incorporation of the GALE source term and 13 the testing that has been done on it.

verification 14 The GUI and numerical 15 validation of the SIERRA source term module is 16 underway as compared to the GALE code. And that was 17 the GALE 2.2 I think it was. The incorporation has led to an improved user experience and will allow for 18 19 streamlined development efforts moving into Phase 2 which is the non-light water reactor source term --20 normal source term that we developed for the SIERRA 21 source term module. 22

The GALE to SIERRA testing includes multiple facets to ensure that the user interface is functioning as expected as well as numerical testing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

to ensure that the calculations and the results from the modules are expected. This last slide -- next slide, please. This last slide is on the improvement characterization of of the the source is the methodology I was talking about for Phase 2. This slide on this task depicts the concepts and strategy that our contractors have mapped out for developing 8 the normal source terms for the various non-light 9 water reactors and fuel designs.

10 The proposed methodology for the normal source term will draw on the -- as I said before, the 11 National Reactor Innovation Center fission product 12 modeling approach and will be similar in concept to 13 14 how the GALE code calculates normal source terms for 15 light water reactors. The methodology will use built-16 in source term data for each non-light water reactor 17 design and fuel design coupled with code features to determine fuel isotope concentrations, calculate the 18 19 fission product release fractions to the primary 20 coolant based upon ANSI 18.16 nuclide classes, determine activity concentrations in the primary 21 coolant for both fission products and activation 22 products and secondary coolant if applicable to 23 24 design, determine the liquid and gaseous effluent 25 for each reactor design including rates, streams

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

activity, and waste stream cleanup mechanisms, i.e. holdup.

3 Additionally, the normal source term 4 methodology will be flexible to allow for user defined 5 parameters wherever because we're just putting in very generic, basic designs in Phase 2. So we think -- and 6 7 as GALE was developed through the years, it was very 8 generic and basic based on some initial calculations. 9 And as more operating experience came about for light water reactors and the fuels, all those inputs for 10 GALE were then improved upon in the ANSI standard. 11 Next slide, please. 12

Task 3 improved the SIERRA ATD models. 13 14 The third task in Volume 4 for non-light water reactor 15 licensing siting dose assessment code readiness 16 involves the atmospheric transport and dispersion 17 model. Most of the licensing and siting dose assessment use or have an atomospheric transport and 18 19 dispersion models which are, as I said before, typically Gaussian models. For example, ARCON, PAVAN, 20 and XOQDOQ codes use a straight line Gaussian models 21 with different correction factors such as building 22 wake effects, wind direction, wind speed, atmospheric 23 24 stability class, location of release points, stacked down wash, plume rise to adjust for the codes used. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

	219
1	The SIERRA computer code has integrated an
2	atmospheric transport and dispersion module that has
3	the capability of performing those same calculations
4	for the near field, midfield, and far field
5	calculations. Thereby the user could perform
6	regulatory calculations relative to the three
7	distances in the regulations. The screen capture
8	shows an example of a setup for performing near field
9	or the ARCON type and the midfield, PAVAN type,
10	relative air concentration calculations used in design
11	basis accident analyses.
12	The navigation inputs navigation and
13	inputs from are similar among the legacy codes to
14	make switching from legacy codes to SIERRA codes
15	simpler for the users. Additionally, the decision was
16	made during the development of the SIERRA atmospheric
17	transport and dispersion model that the code would
18	only use hourly meteorological data by joint frequency
19	distributions data. The meteorological panel shown
20	here is a simple user interface that provides the wind
21	rows, the basic statistics about the hourly
22	meteorological data. Also a visual summary of the
23	meteorological data helps inform the users'
24	interpretation of the output data.
25	MR. BLEY: This is Dennis Bley. Your last

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	220
1	bullet using the hourly rather than joint frequency
2	data with the capitals, I'm not exactly sure what
3	joint frequency data is. But it sounds like you could
4	be losing some correlation by the name of that data
5	set.
6	MR. TOMON: Yes, and I'll show it, I
7	think, in the next couple of slides when I show the
8	testing. There is some differences between the legacy
9	codes and each of the near field and midfield and the
10	far field modeling of the SIERRA code. And some of
11	that is based upon using hourly data device joint
12	frequency distributions.
13	However, the hourly data in most cases all
14	licensees going back to the '90s, the decision was
15	made to use joint frequency data because the computing
16	power back in the '90s and the early 2000s couldn't
17	store and calculate all the hourly data that they were
18	recording. But they have been recording that hourly
19	data since the beginning of time. So joint frequency
20	distributions were used to allow to do these
21	(Simultaneous speaking.)
22	MR. TOMON: calculations. So actually,
23	the hourly data is a more if you were to look at it
24	in layman's and I'm not a meteorologist layman's
25	term, hourly data is more high resolution whereas the
I	I

(202) 234-4433

	221
1	joint frequency data is a lower resolution of the data
2	itself.
3	MR. BLEY: Okay. Thank you. That helps.
4	MR. TOMON: Okay. Where was I? So the
5	next
6	CHAIR KIRCHNER: Let me, John, interrupt
7	you for a moment. This is maybe a naive or foolish
8	question. Do you benchmark this versus the MACCS
9	modules that have ATD capability? Or is it the same
10	capability?
11	MR. TOMON: It's the same capability.
12	Right now, what we
13	CHAIR KIRCHNER: That's a better answer.
14	MR. TOMON: Yeah, yeah. We're trying to
15	do the because we're taking these outdated FORTRAN
16	because if you really look at the PAVAN code, you have
17	to build an input deck. You have to build FORTRAN.
18	There's no GUI on PAVAN.
19	So it's really outdated and old. So what
20	we're doing here is saying, okay, these are the
21	standards that we're currently using for the light
22	water fleet. This is the consolidated module. What
23	you do with the standards what we were doing before.
24	So let's compare them to those legacy
25	codes. And then from there, we will do that
I	I

(202) 234-4433

	222
1	comparisons outside as well. But the first step is
2	kind of getting them all into that module, and then we
3	can actually sunset those legacy codes, those ATD
4	legacy codes and just go on and maintain the SIERRA
5	code with the different modules.
6	CHAIR KIRCHNER: Okay. That fits in with
7	our recommendation from circa 2018 when you were last
8	
9	(Simultaneous speaking.)
10	MR. TOMON: Yeah, yes.
11	CHAIR KIRCHNER: Okay. Thank you.
12	MR. TOMON: So let's see. Okay. So next
13	slide, please. Okay. So the next three slides show
14	the results of the various testing performed on the
15	SIERRA computer code, atmospheric and transport
16	dispersion model. I apologize. It's kind of small.
17	But I'll give as many details as I can in my
18	discussion.
19	And if you really go one or two levels in
20	depth, I'm going to have to go phone a friend in that
21	regard because I'm not a meteorologist. For the
22	midfield for the near field, midfield, and far
23	field and how they compare to the legacy atmospheric
24	transport and dispersion computer codes. That is
25	ARCON, PAVAN, and XOQDOQ.

(202) 234-4433

The testing including using hourly data from 19 sites distributed across the U.S. And those sites were picked and determined by the meteorologist in NRR. So they were actual data file sets that they're using for the current light water reactor fleet to provide varied meteorological conditions for the test cases.

8 Input value such as release height, stack 9 diameter, distance to the receptor, et cetera, were 10 varied independently within the SIERRA atmosphere transport and dispersion model and the corresponding 11 legacy codes. Additionally, independent reviewers 12 tested and used the interface -- excuse me, and the 13 14 atmospheric modules by test cases identified in the 15 And what I mean by that is we used a lot test plan. 16 of our RAMP user community to test some of the -- to 17 test the atmospheric models as well as the folks over at the meteorologist over at NRR. 18

19 This slide in particular shows the results 20 from the testing of the ARCON code to the near field 21 SIERRA atmospheric transport and dispersion model. 22 When the ARCON code was compared to SIERRA for 23 relative air concentration values, they were generally 24 within a factor of 5 to 2. The results between ARCON 25 and SIERRA code near field atmospheric transport

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	224
1	dispersion model indicate regulatory consistency with
2	the legal codes.
3	And the largest difference observed were
4	for sites with high percentage of low wind speeds.
5	And I will tell you the next go to the next slide,
6	please. This is the same kind of slide for the
7	midfield module and the SIERRA atmosphere transport
8	dispersion module and the PAVAN code.
9	And the results are exactly similar, a
10	factor of 5 to 2, good regulatory consistency. And
11	again, where differences were observed, they were for
12	sites with high percentages of low wind speeds. Next
13	slide, please. And then this is the final one for the
14	far field or the XOQDOQ comparison to the XOQDOQ code.
15	And again, a factor of 5 to 2 between the
16	legacy codes. And the modules indicate they both
17	the SIERRA code module indicates good regulatory
18	consistency in most cases. And the largest
19	differences again for the XOQDOQ code as compared to
20	the SIERRA module was with high percentage of low wind
21	speeds. Next slide, please.
22	This next slide shows the next steps in
23	the computer code SIERRA computer code development
24	which is to incorporate the non-light water reactor
25	SIERRA source term, so both Phases 2 and 3 followed by
l	I

(202) 234-4433

1 work on Task 4 and 5 to incorporate improvements to dose coefficients and environmental pathways 2 the 3 accumulation models from NRC Dose 3 code. And as I 4 mentioned before, we have a time line to do that. The 5 images on this slide show the landing page for the 6 SIERRA code with the source term module showing that 7 you can do both the PWR and BWR and what it will look 8 like with the advanced reactors non-LWR which is 9 grayed out currently, as it's still under development. 10 Next slide, please. The Task 4 will be accomplished in the development of SIERRA through the development 11 of dose coefficients module. 12

coefficients 13 Currently, the dose and 14 dosimetry modules are hard wired into most of our 15 legacy licensing and siting codes. And the user has 16 a few options to edit or change them, NRC Dose 3 and SNAP/RADTRAD have hard coded values in there. And in 17 the case of SNAP/RADTRAD, you can actually adjust and 18 19 modify them.

20 Τn most of those cases, the dose coefficients are based upon the current regulations in 21 So they're based upon IRCP 2630 and 22 10 CFR Part 20. 6072 models. And so theoretically, the vision would 23 24 be that the dose coefficient module will be flexible 25 enough to allow the hard wire -- to have the hard

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	226
1	wired dose coefficients for federal guidance reports
2	11, 12, and 13 plus any updates to federal guidance
3	reports, the dose coefficient such as SGR 15 and 16.
4	Next slide, please.
5	The final task was the environmental
6	pathways module. And this is going to be developed in
7	phases. One, the first phase is the incorporation of
8	the NRC dose environmental pathways and dose
9	coefficients into the SIERRA code.
10	So that'll build out the last few modules.
11	And we expect that to be done in 2026. We're not
12	expecting as long a lead time as we had to get to this
13	point because we don't have to build the consolidated
14	framework at this point. And we don't have to build
15	a lot of the specific modules.
16	And the NRC dose code has been updated in
17	the last more recently in the last few years. So
18	a lot of what we did in that to bring it in, it'd just
19	be a straight transfer just to get it in the framework
20	that we need. And then also in this task, we plan to
21	leverage models from eventually after we get these
22	modules built, leverage models from the Generation 2
23	or the GENI code, models from the decommissioning
24	codes like RESRAD.

And then from the MAX code in Volume 3,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1 anything that they might learn out, we also look to maybe incorporate into this environmental pathways 2 3 model. Next slide, please. This slide just shows the 4 AGILE code design schedule for the SIERRA computer 5 code with completed actions and the near term planning actions and milestones for the licensing and siting 6 7 dose assessment code readiness within the next three 8 years. Just to give you kind of a future, our phased 9 approaches were almost through our near term which was 10 when we started through the three years and starting preparations for the intermediate phase which will be 11 the five to eight year portion. 12 And then with longer term being greater

And then with longer term being greater than eight years, and those are when we tried to -we'll include things like decommissioning codes. Next slide, please. And then this is my final slide, and it's kind of like the summary, cut to the chase about our readiness and it probably should've been moved up. But I put it in at the end.

20 Tt. shows our current status of our readiness for non-light water reactor reviews. 21 As currently configured, the atmospheric transport and 22 dispersion codes, as they currently exist, the legacy 23 24 codes, they can do the meteorology for non-light water reactors. However, they are not very user friendly as 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	228
1	they are currently configured as I spoke about.
2	Some don't have a user interface and don't
3	have FORTRAN input decks. The goal is that the SIERRA
4	atmospheric transport module will ease configuration
5	issues that are experienced with the legacy code. And
6	that'll make it much more user friendly experience
7	moving forward, knowing that we still have we
8	probably will still have more work to do in the
9	future.
10	Since the SNAP/RADTRAD computer code has
11	recently been updated to a more flexible framework, it
12	is current ready for these reviews right now with
13	extensive manipulation by the user. What I mean by
14	that is there are a lot of hard built-in tables and
15	models built into it. But the user can always user
16	define all that information.
17	But that requires a lot more of the user.
18	And it requires a lot more of the reviewer to know
19	what the user is actually putting in. The goal in the
20	future for this moving further is to hard wire some of
21	those tables and those models in for non-light water
22	reactor designs.
23	And we plan to build on the information in
24	Volumes both 3 and 5 directly into those release
25	timing and mechanisms in the SNAP/RADTRAD code. And
I	I

(202) 234-4433

then finally I mentioned a couple slides ago the NRC Dose 3 code was recently -- just kind of recently updated as very flexible from the standpoint that you can -- it can accept inputs -- you can accept user defined inputs from source terms or inputs from GALE for source terms. It can provide -- you can choose from the existing dose coefficients in GALE or do user defined dose coefficients.

9 So it is ready. But we want to add more 10 dose coefficients, SGR 15 and 16 into that. And also we need to look at some of the other biocumulation 11 pathways when we start talking about situations that 12 maybe are not in the lower 48 United States, looking 13 14 at those pathways because most of the models in GASPAR and LADTAP are based upon normal food consumption use 15 of waterways and stuff that are in the lower 48. So 16 17 that is something after we get NRC dose into SIERRA code -- I knew I could come up with the word -- that 18 19 will then go and do any additional -- add those additional features in for areas that are more remote 20 in those regards. And that concludes the updates to 21 22 Volume 4. If you have any questions. MEMBER BIER: Yeah, just a brief one. 23 Т

23 MEMBER BIER: Yean, just a brief one. 1 24 assume that for most advanced reactors if the source 25 term is small, it's going to put high emphasis on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	230
1	detailed fidelity within a very short distance,
2	including even onsite buildings and things like that.
3	Do you feel like the capability is there to do that?
4	And again, it's just an interface question. Or are
5	there models where you're not confident of the
6	fidelity?
7	MR. TOMON: I think it's pretty much in
8	there with the ARCON code. I mean, ARCON, a lot of
9	the models in ARCON were adapted and brought into the
10	MACCS code. So I think that fidelity is there
11	already. Again, it was to make it to try to
12	maintain ARCON, maintain PAVAN, maintain
13	MEMBER BIER: Sure.
14	MR. TOMON: And resources are hard to come
14 15	MR. TOMON: And resources are hard to come by. So we figured if we have one big code that does
15	by. So we figured if we have one big code that does
15 16	by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and
15 16 17	by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more
15 16 17 18	by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more easily to get done what needs to get done.
15 16 17 18 19	by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more easily to get done what needs to get done. MEMBER BIER: Thank you.
15 16 17 18 19 20	by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more easily to get done what needs to get done. MEMBER BIER: Thank you. MEMBER MARTIN: Related to my question
15 16 17 18 19 20 21	<pre>by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more easily to get done what needs to get done. MEMBER BIER: Thank you. MEMBER MARTIN: Related to my question earlier to Keith about anticipating how people might</pre>
15 16 17 18 19 20 21 22	<pre>by. So we figured if we have one big code that does a lot, I can get resources to fix if I need them and kind of move the shells around a little bit more easily to get done what needs to get done. MEMBER BIER: Thank you. MEMBER MARTIN: Related to my question earlier to Keith about anticipating how people might use these codes, and certain analysis particularly for</pre>

(202) 234-4433

www.nealrgross.com

	231
1	scenes, you can maybe run 1,000 cases in batch and
2	vary parameters. Is there capability there?
3	MR. TOMON: It's not there yet. It will
4	be built into it.
5	MEMBER MARTIN: Okay. That's been
6	anticipated.
7	MR. TOMON: It's been anticipated. I
8	mean, we do it's funny you bring it up. Probably
9	about three, four years ago when we did our RAMP
10	meeting, we had a non-light water reactor symposium
11	and we got a lot of the venders come in. And they
12	gave us a lot of direction.
13	That's how we decided how we were going to
14	go with volume 4 because we listened to their feedback
15	as well. And when we heard from them that right
16	now, they run they'll run ARCON and for near field
17	and they'll do it in FORTRAN and PEARL scripts so they
18	can run 100 cases and then analyze it and do
19	sensitivity. And they, like if we could do this
20	easier, it would be better.
21	So we listened to them. And another thing
22	that we found from the user community that even though
23	SNAP/RADTRAD is designed for design basis accidents,
24	we've had users that kind of use the flow path because
25	it is so flexible for other things to see how the
	1

(202) 234-4433

radionuclides will move around in their system and in different compartments in their system. That's what we call that component inside SNAP/RADTRAD. So we're seeing different uses for it than what it was originally designed for. And it's expanding our thoughts on what we do go forward and do with the code. MEMBER MARTIN: I'm sure there'll be more And I appreciate the comments on user of that. feedback because that's obviously so very important

from a developers perspective. And the more you communicate, the better. Time to move on?

MS. WEBBER: Yeah, I think we need just a 13 14 few minutes to change out speakers for the next panel. 15 MEMBER MARTIN: Do we want a ten-minute

Five-minute break. Five-minute break? break?

> MS. WEBBER: Sounds good.

So that'll just be 2:33. MEMBER MARTIN: 18 19 (Whereupon, the above-entitled matter went off the record at 2:28 p.m. and resumed at 2:34 p.m.) 20 MS. WEBBER: Okay, great. 21 Thank you. And so, for this next portion of 22 the presentation today you're going to hear from Lucas 23 24 Kyriazidis who is going to lead the conversation with cycle-related activities 25 fuel and you on our

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

16

17

	233
1	readiness.
2	And then at the end of that I'm hoping to
3	have at least 5 minutes to provide some conclusions.
4	And so, with that, you're on, my friend.
5	MR. KYRIAZIDIS: Good afternoon, everyone.
6	Thanks for giving us a chance to present today. So,
7	today I'll be presenting NRC's readiness strategy for
8	performing non-LWR fuel cycle analyses.
9	My name is Lucas Kyriazidis. I'm within
10	the Office of Research. Work within the Division of
11	Systems Analysis. Today I have my colleague Amy
12	Bielen here and then Shawn Campbell joining myself
13	online.
14	Okay. So, this slide I want to cover some
15	of the project objectives and goals for Volume 5. The
16	overall for Volume 5 is to ensure that we at the NRC
17	have simulation capabilities for performing
18	independent safety analyses for non-LWR fuel cycles.
19	The sub-bullets on this slide show how
20	we'll get there.
21	So, we'll identify major differences
22	between the non-LWR fuel cycle compared to the LWR
23	fuel cycle.
24	We'll identify any gaps in our codes and
25	models for performing fuel cycle analyses through
Į	1

(202) 234-4433

www.nealrgross.com

	234
1	exercising our codes.
2	We'll address any code gaps through code
3	development activities.
4	And then, lastly, we'll assess,
5	demonstrate, and document how our codes perform.
6	Next slide, please.
7	So, the approach that we took is similar
8	to the Volume 3 approach where we first developed
9	conceptual and as-representative-as-possible fuel
10	cycle designs for each of the non-LWR that we analyzed
11	under Volume 3.
12	So, what does a representative fuel cycle
13	design give us? It will help identify what our codes,
14	impact capabilities for to help improve our confidence
15	that we're asking and answering the right types of
16	questions. But it also helps identify the types of
17	accidents, but along the way their boundary conditions
18	and their boundary conditions and their initial
19	conditions.
20	So, then we identify and down select key
21	accidents to model and scale a melt core exercise and
22	keeping online models.
23	Lastly, we'll develop and run simulate
24	these representative accidents and SCALE and MELCOR to
25	help identify where we have continued gaps or data
I	

(202) 234-4433

	235
1	gaps, or where we need to improve.
2	So, here I just highlight that, how we'll
3	use SCALE and MELCOR.
4	Next slide, please.
5	So, this slide covers the types of
6	analyses that we're expected to perform for the fuel
7	cycle. This isn't an all-inclusive look, but covers
8	the majority. So, the top graphic covers some of the
9	accidents that we want to be able to simulate and
10	SCALE and MELCOR for the non-LWRs.
11	And here we have crit safety, radionuclide
12	decay heat generation, radiation shielding and dose,
13	and then radiological and Non-radiological material
14	and energy transport.
15	And if we dive down a bit deeper for crit
16	safety I give an example. So, we'll be analyzing
17	inadvertent nuclear criticality events for various
18	fuel forms, such as solutions, powders, and even large
19	storage arrays.
20	And here on the bottom of this slide I
21	provide some of the reference documents that we used
22	to get some insights on how to analyze these types of
23	accidents. The NUREG/CR-6410 was a handbook that
24	provided some insights and methodologies for
25	performing fuel cycle analyses.
I	1

(202) 234-4433

	236
1	NUREG 1520 was a standard review plan for
2	performing fuel cycle analyses.
3	And then NUREG 2215 and 2216 are storage
4	and transportation NUREGs that are used in NMSS.
5	Next slide.
6	So, this slide covers the starting point
7	of how we developed, or how we developed a non-LWR
8	fuel cycle. The starting point was the LWR fuel
9	cycle.
10	Here we took the open fuel cycle, which
11	assumes that fuel that exits the reactor is destined
12	for final disposal. There's no reprocessing or
13	separations activities.
14	Further highlighted on this slide are the
15	various fuel cycle stages. You have mining and
16	milling, enrichment, fabrication, utilization,
17	storage, and disposal. And on the legend it provides
18	some additional details of what each of the fuel cycle
19	stages consists of.
20	And then the image on the right just
21	showed this in another format where we also talk or
22	identify some of the regulatory areas. For example,
23	Part 71, Part 72 storage for storage and
24	transportation for spent fuel is identified. But I
25	also heard mention of Part 20. Part 20 is also listed
	I

(202) 234-4433

	237
1	for dose.
2	Go to the next slide.
3	So, I talked a little bit about what the
4	starting point for developing the non-LWR fuel cycle
5	was and how we plan to use designs. But I also want
6	to showcase on the slide how vastly different the non-
7	LWRs are compared to the LWRs.
8	So, here on the top row I cover the
9	baseline condition which was the LWR fuel cycle. Here
10	I list the licensed enrichment limits, fuel forms,
11	burn-ups, fuel residence time, whether or not we have
12	expected fuel reprocessing, storage and
13	transportation.
14	And on the following rows I present the
15	non-LWR fuel cycles that we're looking at.
16	So, what I really want to highlight here
17	is for enrichment we know we'll be looking at HALEU-
18	level enrichment, so up to 20 percent. Various fuel
19	forms, we've heard that we'll be looking at oxides,
20	metals, TRISO in pebbles, compacts, and even liquid
21	fuel. And then the burn-ups vary drastically, you can
22	see for the two type reactors. Burn-ups are fairly
23	low, but then for SFRs they can range up to 300
24	gigawatt days per metric ton yield.
25	And then if you hit that animation.
	1

(202) 234-4433

	238
1	So, really well, I had some animation
2	but that's fine.
3	So, really what I want to stress is if you
4	look at the non-LWRs for storage and transportation
5	there's a lot of TBD, which means there's a lot of
6	unknowns that we just don't know publicly how the back
7	end of the fuel cycle will look like. This really
8	limits what Volume 5 will consist of and consider.
9	So, on the next slide, this slide covers
10	what are the fuel cycle stages that we're considering
11	under Volume 5. Again, the image on the left is what
12	I've shown was the open cycle LWR fuel cycle. And the
13	figure on the right is one of the HTGR for pebbles.
14	Really what I want to highlight here are
15	just the fuel cycle stages that we're omitting or not
16	considering under Volume 5. And on the bottom I
17	highlight that. So, mining and milling we're not
18	considering, power production, outside spent fuel
19	storage and transportation, then spent fuel final
20	disposal.
21	And here I want to talk a little bit about
22	why we're omitting these things.
23	MEMBER BROWN: Could you go back to the
24	other slide. And maybe this is just a quick question.
25	I guess I was taken aback a little bit on
ļ	I

(202) 234-4433

for storage for the current light-water reactors. 2 You store it, let it decay, put it in casks that we know 3 4 what to do with it. A single, nasty waste product 5 that we have. But if you look at some of these other 6 7 ones, we no longer have just one really nasty waste 8 product, you've got multiple waste products which are 9 toxic, corrosive, can eat the hell out of everything 10 they ever touch. And, yet, there's got to be some idea of what it takes to handle those. 11 And even I would ask the question why in 12 the world are we even looking at them? 13 But that's a 14 personal opinion not a public opinion. 15 But it seems TBD doesn't get factored in 16 terms of an assessment in this overall fuel cycle 17 process. It seems to me that it ought not be ignored as opposed to -- because it's probably the worst of 18 19 everything, particularly the ones where you mix the fuel in with the coolant, which is really tasty. 20 MR. KYRIAZIDIS: So, that's a, that's a 21 good, good point. 22 When I say we're not considering it under 23 24 Volume 5, we're not considering it initially until more information becomes available. So, you can treat 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

240 1 Volume 5 as maybe like an iterative process. As more information becomes available we'll go back 2 and 3 reassess our codes to say whether or not we have the 4 capabilities to model it, or if we need to add models 5 or perform sensitivity studies. But to go back to your point of why this 6 7 is all listed TBD, we can leverage historic 8 information. How EBR-II stored their waste, how 9 We know how they're stored on pebbles were stored. 10 site, we just don't know past that stage how they will be stored for long-term storage. 11 MEMBER BROWN: Does anybody ever look back 12 at the original Sea Wolf, the submarine sodium plant, 13 14 and how that one was handled? I mean, there's an 15 historical perspective. It's not classified anymore, 16 it's public. The prototype and submarine was built 17 and you sure as heck -- and that was a sodium reactor. It's lifetime was very short because they couldn't 18 19 keep it from waking and causing other problems, and freezing all the time. 20 But all I'm saying is sodium isn't in many 21 of these, however form you look at it. 22 It's just whether you need more information on most of, a lot of 23 24 these things, they've really got to be categorized as totally -- even though you have limited experience, if 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	241
1	you look back at these other ones they're limited
2	experience, it's not like they've been trying to be
3	used for decades, because you can't.
4	MEMBER PETTI: You're aware of how they
5	dealt with this on the submarine. The question is
6	that how applicees will deal with it.
7	MEMBER BROWN: Yeah. Well, thank you.
8	That's a I'm sorry, just had to get that thought
9	in.
10	MS. WEBBER: Those are good comments.
11	I also think that, you know, we didn't get
12	started on this particular effort until more recently.
13	The research that we've been doing has been underway
14	for maybe 3 years because, you know, the focus was
15	initially on the first set of the volumes.
16	But then as we started to interface with
17	the Office of Nuclear Material, Safety, and
18	Safeguards, Division of Fuel Management, we started to
19	realize that we really need to take a look at how our
20	codes can be used for any one of these fuel cycle
21	stages.
22	So, so what you're saying here is maybe
23	less progress relative to the other areas that we
24	focus. So, you're pointing out, you know, a really
25	good source of information in both cases. So, and
Į	I

(202) 234-4433

	242
1	that we'll have to continue to take a look at that.
2	MEMBER BROWN: Okay.
3	MR. ESMAILI: Can I add that, you know, we
4	don't want to be held up in these fuels, right. So,
5	one of the things that we are doing is just this is on
6	code, you know, code readiness, right. So, as the, as
7	Lucas mentioned, you know, as information becomes
8	available and this is our code readiness then, then we
9	can, you know, we have the flexibility to do this.
10	At this point, since we do not know, we
11	don't want to, you know, expend our limited resources
12	on things that we do not know.
13	MR. KYRIAZIDIS: Yeah. And that's a good
14	point, too. We do have limited resources. So, rather
15	than propose what-ifs could happen for the back end,
16	we focus our resources on areas we have confidence in.
17	So, if we propose a back end to the fuel
18	cycle and we're completely wrong, well, then we have
19	to go back and re-do those efforts. So, rather than
20	and that focused towards one of the one end of
21	the fuel cycle and some fuel handling accidents. And
22	then we wait for the back end. As more time
23	progresses, more information becomes publicly
24	available, then we'll start looking at that back end.
25	We can go to the next slide.
	1

(202) 234-4433

	243
1	Okay. So, on this slide I present one of
2	the first deliverables we issued under Volume 5. The
3	image on the left is the report that documents all of
4	the fuel cycle designs that we came up with.
5	There's a design for, I mentioned there's
6	a design for each of the non-LWRs that we looked at.
7	So, there's a fuel cycle design for the heat pipe
8	reactor, FHR, HTGR, SFR, and MSR.
9	We issued this in December of 2023. And
10	it covers UF6 enrichment all the way through onsite
11	spent fuel storage and transportation.
12	Let's see if it's here. Okay.
13	So, I want to dive into one example, the
14	MSR fuel cycle. And I'll talk a little bit about the
15	various fuel cycles they used and some of the
16	highlights that the report mentioned.
17	So, we looked at UF6 enrichment. And that
18	really dives into process of conversion and the gas
19	center fusion, and identifies what are the hazards,
20	the chemical hazards and also radiological hazards,
21	associated with that fuel cycle stage.
22	Then we progressed to transportation of
23	UF6. In this we identified a potential transportation
24	package that could be used to move 20 weight percent
25	UF6. We assumed it was the DN30-X. I can say now
ļ	I

(202) 234-4433

	244
1	that that is an NRC-licensed package now.
2	Then we progress. We go to fuel salt
3	synthesis, and we dive into several examples. We look
4	at both thermal spectrum systems, but also fast
5	spectrum systems.
6	We go into the chemistry of how fluoride-
7	based salts are produced for thermal systems, and then
8	fluoride-based salts for fast spectrum systems.
9	We identified the steps needed to do salt
10	synthesis, but also some of the chemical hazards.
11	And then we look at the salt, salt
12	transportation, where it will happen. You've got your
13	carrier salt, you've got your fissile salt. Will it
14	happen on site?
15	So that kind of dives into U1, and then it
16	will go all the way to onsite waste treatment. But
17	for the sake of time I won't go through those. You
18	can go (audio interference).
19	So, now I want to cover some of the
20	accidents that we looked at under Volume 5. I only
21	intend to cover three, but we've looked at quite a bit
22	to date.
23	Ranges from HT well, we've gone through
24	our chops on the ACGR and the sodium fast reactors,
25	and we've modeled several accidents for the various
	I

(202) 234-4433

	245
1	stages of those fuel cycles. But I'll cover three
2	today.
3	I'll cover water ingress during
4	transportation of the UF6 shipping package.
5	I'll cover UF6 cylinder rupture within the
6	fuel facility. That was a result of overfilling and
7	heating the tanks.
8	And then, lastly, we'll look at a more
9	complicated accident where we dropped the spent fuel
10	assembly of an SFR type in the containment building.
11	And we'll look at doses and we'll look at
12	the material transport throughout the building.
13	So, I want to I'll just glance on this.
14	This is the UF6 enrichment fuel cycle stage. And here
15	I just list some of the hazardous material that we
16	identified in the research. One note is UF6 is the
17	only was the only radiological hazard associated
18	with this fuel cycle stage. And then some of the
19	potential accidents that we identified.
20	So, the first accident I want to talk
21	about is the UF6 cylinder rupture. Here we are
22	assuming a 48Y cylinder is overfilled, heated, and
23	eventually goes through a catastrophic failure,
24	essentially emptying out all its inventory within the
25	storage compartment.
I	

(202) 234-4433

	246
1	Here we're using MELCOR to model the
2	radiological transportation of the material, but also
3	to gauge how much vapor and aerosols are released.
4	The image on the right is the MELCOR model
5	that we put together. Here you can see, what's
6	important is you can see the UF6 storage area, where
7	it is in the storage compartment area, all the intakes
8	and exhaust and the doorways, so essentially where the
9	material can be transported. And then, eventually,
10	how it's connected to the environment.
11	What's important here is that it's going
12	to go through a building filter, so I do want to
13	highlight that.
14	I've also put some of the modeling
15	assumptions that we made. We assumed 14,000 kilograms
16	was loaded or is emptied out of the container. And
17	that is an instantaneous release.
18	Then, lastly, I do highlight this chemical
19	reaction because UF6 does interact with water. So,
20	you're going to be producing the UO2F2 and then
21	hydrofluoric acid. And MELCOR will also track or
22	estimate some of those findings.
23	Go to the next slide.
24	So, here I present some of the results
25	that we showcased at the HTGR fuel cycle workshop.
ļ	I

(202) 234-4433

	247
1	So, here on the top left is material species. So,
2	what we're showing here is that instantaneous or the
3	chemical reaction where we're assuming UF6,
4	interacting it with water to produce hydrofluoric
5	acid.
6	You can see that because it was an
7	instantaneous release there's a jump followed by a
8	slow increase in hydrofluoric acid. That's just
9	showing that as it interacts with the air and the
10	water it's continually being formed.
11	The bottom set of figures show the
12	transportation of UF6, UO2F2, and hydrofluoric acid.
13	What's important here is to look foremost to say
14	whether it's in vapor or in aerosol. And that is
15	important because of the release mechanisms for both
16	of these. If it's an aerosol it should be expected to
17	get picked up through building filtration. If it's a
18	vapor and then, you can go on.
19	So, that was it on the material, the
20	cylinder rupture. I do want to maybe dive over there
21	and to have a little bit more time to go through the
22	crit analysis for the DN30-X.
23	So, here the DN30-X was a UF6
24	transportation package that's built with neutron
25	poisons or constructed with neutron poisons. Here the
ļ	I

(202) 234-4433

	248
1	image on the right shows that. Here you can see the
2	control rods, the UF6, and then the PST. Essentially
3	it's a shell-in-shell shipping package where you have
4	an outer and inner metal container.
5	So, here we looked at the
6	reconfigurations. We looked at an infinite array of
7	these surrounded by air.
8	We looked at a hexagonal array surrounded
9	by water. There's no water ingress between the PSDs,
10	both the outer and inner shells.
11	And then the third array, or the third
12	configuration is we looked at an infinite array
13	surrounded by water, with water ingress in between the
14	outer and inner shells. Here's we're using SCALE
15	shift to perform a crit analysis. We're using both
16	ENDF VII.1 and ENDF VIII so we can gauge the
17	difference between the Nuclear Data Libraries.
18	And then on here I say that ship this
19	SCALE's new Monte Carlo high performance neutron
20	transport code. And then also some of the
21	assumptions.
22	All the assumptions made here were bad
23	conservatives, conservatisms to the models. So, by
24	neglecting the thermal insulating foam we're promoting
25	neutron communication between the shipping packages.
ļ	

(202) 234-4433

	249
1	And then we're using an elevated density
2	to increase the solid material. And we're overfilling
3	these shipping packages.
4	Here we assume HF as in curies, so we're
5	adding some moderation, too, to the system.
6	So, really what we're trying to showcase
7	here is that SCALE can used to model HALEU-level
8	enrichments, making sure that there's no gaps in the
9	codes. And then what we're seeing for the results
10	confirm what we would expect to be seen.
11	So, here I present the results of the
12	three cases. The image on the left is the cross-
13	sectional cut of the 10 weight percent cannister. So,
14	we looked at two, two configurations, the 10 weight
15	percent and the 20 weight percent just to compare
16	them.
17	The table on the left shows our baseline
18	condition. So, this is the infinite array in care.
19	And here you can see that the shipping packages were
20	substantially subcritical. The differences between
21	the ENDF libraries were minimum, too. So, they were
22	consistent with each other.
23	The middle figure shows the second case
24	where we have water surrounding the outer of the
25	package. And here we also added a new variant where
l	I

(202) 234-4433

	250
1	we're adjusting the spacing between the shipping
2	package. But X equals 0 on this figure. These
3	shipping packages are essentially touching on the
4	outer shells.
5	And then here what we're showing is by
6	introducing water we're actually decreasing K
7	effective or the reactivity of the system. Here we're
8	adding moderation, so it's an over moderated system,
9	so we're increasing the parasitic capture of the
10	water.
11	And that's also shown by increasing the
12	distance between the shipping packages you're
13	increasing the amount of water in the system, which is
14	why you're seeing that decrease in K effective.
15	And then the third figure where we have
16	water ingress between the inner and outer PSDs, it's
17	just also increasing the water in the system, over
18	moderating the system, and you're increasing neutron
19	parasitic capture.
20	We can go to the next slide.
21	Okay. So, the last action I want to
22	cover, which is the most complicated action that we
23	looked at, it's during refueling or spent fuel
24	operations for the SFR.

So, here we'll look at the doses estimate,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	251
1	or the dose analysis first.
2	So, during refueling operations the
3	refueling machine that's used moves fresh and spent
4	fuel out of the reactor and into the storage rack.
5	So, here what we're assuming is that during unloading
6	operations the spent fuel assembly undergoes failure
7	during a seismic event or a ring failure. The spent
8	fuel assembly is dropped within the containment
9	building. And now we want to look at what's the
10	dosage inside the containment building and outside the
11	containment building.
12	So, here we're going to be using SCALE to
13	develop the irradiated source term, but then also
14	perform the 3-D shielding analysis. And here on the
15	image is just what the ABCR building looks like. It's
16	a little blurry, but you can see where the spent fuel
17	refueling machine is, the unloading machine, where the
18	cask is.
19	And on the next slide I will show where
20	the spent fuel assembly is dropped.
21	So, we looked at two cases here, two types
22	of fuel. We looked at just U, the binary metallic
23	fuel U zirc. Then we also looked at a uranium
24	plutonium fuel. We call that, the U zirc fuel is
25	HALEU fuel and then the U tru, or transuranic, is the
l	1

(202) 234-4433

	252
1	uranium plutonium fuel. We looked at two cases.
2	We also looked at two different cooling
3	times. What's shown on this figure is the more
4	extreme case where you can think of it as two
5	accidents. This did not have sufficient coolant.
6	Typically, spent fuel will be held maybe for seven
7	cycles of 28 months. Here we assumed 10 days of
8	cooling, so it was an inadvertent picked up spent fuel
9	assembly that was going to be loaded.
10	So, here what we are showing are the doses
11	inside the containment building. Here the spent fuel
12	assembly is dropped against the containment building.
13	That arrow is pointing right where that peak dose is.
14	And then the figure on the right that shows the dose
15	outside of the building.
16	So, here what we're showing is that, yes,
17	SCALE can be used to generate your source term for
18	various types of fuels. Here we looked at SFR fuel.
19	And I think there was a question during the max
20	whether or not you can look at activated steels or
21	activated sodium. And this source term we did assume
22	that. We were able to, we did account for sodium
23	activation, we did account for stainless steel
24	activation. That made its way or was accounted for in
25	our irradiated source term.
I	I

(202) 234-4433

	253
1	And then not highlighted here, but in the
2	workshop material we did look at assume this is a PWR
3	extended fuel assembly, are the, are the comparisons
4	somewhat in the same area? And, yes, the SFR fuel was
5	about four times higher. But we all got in the same
6	order of magnitude if we were to drop a PWR spent fuel
7	assembly on the containment building floor.
8	You can go to the next slide.
9	Okay. So, now we're going to look at
10	another material transport back here using MELCOR.
11	Here it's a similar accident where we're
12	taking the spent fuel assembly, an SFR type, we're
13	loading it into the inter-building cask, that's going
14	to be essentially destined for onsite spent fuel
15	storage. But the crane fails, drops this cask. And
16	now we want to see what happens to the fuel.
17	What happens, we fail the fuel assembly,
18	then if we do does the material where does the
19	material end up?
20	So, here some modeling assumptions.
21	There's no active cooling. All the active cooling is
22	assumed to have failed as well. There's no residual
23	sodium inside the cask, so you just have a loaded bare
24	assembly inside of a shielded cask. We want to see
25	what happens to fuel temperatures and then where that
ļ	I

(202) 234-4433

	254
1	goes.
2	So, the figure on the left shows several
3	sensitivity studies. So, we looked at another actual
4	case of essentially loading a wrong assembly. After
5	one day of shutdown we loaded a spent fuel assembly
6	into the cask. The cask fails. There's no active
7	cooling on the cask. What happens to the fuel?
8	This figure on the left shows, that blue
9	line shows what happens. So, after about 40 minutes
10	the fuel assembly fails. You've hit your T-clad or
11	your cladding limits and melted.
12	If you picked up the right fuel assembly
13	after seven cycles, you can see those other line
14	graphs, you maintain your cladding integrity. You
15	don't fail the fuel.
16	So, we just wanted to show some
17	capabilities of what ifs.
18	The figure in the middle just shows the K-
19	eff as a function of time. You can see that the one
20	day cooled spent fuel assembly was several orders of
21	magnitude higher.
22	And then, lastly, the figure on the right
23	just shows, okay, you failed the fuel assembly. Where
24	does the material go?
25	Here we're just showing containment and
I	1

(202) 234-4433

	255
1	settled radionuclides. The workshop also showed some
2	environmental releases. But for this, for the safety
3	I didn't present that.
4	So, so now I'm going to transition to
5	where all these deliverables, and workshop slides, and
6	videos can be found.
7	So, on this slide it is showcased. The
8	publicly the public webpage where we can, where we
9	store all this material. So, the QR code will take
10	you there.
11	So, today we've done a fuel cycle analysis
12	for the high temperature gas cooled reactor, one for
13	the sodium fast reactor fuel cycle. And our next
14	planned workshop is for this summer for the MSR, the
15	molten salt, molten salt fuel reactors.
16	Then here I list some of the accidents
17	that we plan to cover. We'll look at some crit
18	analysis during fuel cell conditioning.
19	We'll look at some beryllium releases.
20	And then we'll also look at estimated
21	doses on the primary heat exchanger.
22	So, key conclusions and highlights.
23	So, we have revealed some information gaps
24	in our work to date. We have noticed that there is no
25	commercially sized transportation packages for moving
	I

(202) 234-4433

```
www.nealrgross.com
```

	256
1	fresh pebbles.
2	There's a lack of information on how these
3	are going to be stored long-term and even onsite. We
4	had to make some assumptions here as well.
5	But we don't envision these challenging
6	our codes. We think of these are mere, like, geometry
7	changes. If we're doing a different shipping package
8	they may be bigger, they may use some different
9	material. But we don't think that we're missing
10	anything fundamental in both SCALE and MELCOR.
11	We have noticed that we do need validation
12	data, specifically crit safety benchmarking data,
13	especially for uranium graphite-based systems.
14	Here I do want to note a new collaboration
15	between NRC and DOE that we're working to fill this
16	data gap. It's called the D&CSH program, or the
17	Development and Criticality Safety Benchmarks for
18	HALEU fuel cycle and transportation. Here,
19	essentially, this is, the goal here is to produce high
20	quality, publicly available benchmark data, nuclear
21	data, and evaluations for a wide range of HALEU
22	systems.
23	This was enacted under the Inflation
24	Reduction Act, I believe. So, this is underway. We
25	had our first workshop in February of 2024. So, the
I	1

(202) 234-4433

	257
1	goal here is just to produce or fill a data gap that's
2	being noted throughout, for emerging also industry.
3	MEMBER PETTI: On the TRISO stuff, you're
4	worried about benchmarking like in storage
5	configuration?
6	MR. KYRIAZIDIS: Yes. Yes, yeah.
7	MEMBER PETTI: Okay.
8	MR. KYRIAZIDIS: Criticality basically.
9	MEMBER PETTI: Because there was reactor
10	benchmarks done.
11	MR. KYRIAZIDIS: Yes.
12	MEMBER PETTI: But I would wonder if you
13	could contact KFA in Germany. They decommissioned the
14	AVIA, AVIA NTH, yeah. And they, you know, they have
15	casks that handle the pebbles. Their regulators must
16	ask some questions.
17	Maybe there's some data there. That's
18	something that I could think of.
19	MR. KYRIAZIDIS: Yeah. That's a good
20	point. I noted that. And we can see if we can.
21	So, we've demonstrated some of the
22	accidents. We are ready to support fuel cycle
23	analyses. We have licensed the UF6 shipping package
24	for the BN30-X.
25	There are other shipping packages that
l	I

(202) 234-4433

	258
1	have been licensed to move fresh fuel or fresh
2	pebbles. NMSS has approved two that can move compacts
3	and pebbles. So, we are, have used the SCALE to
4	perform some of these analyses.
5	And I want to leave you with some next
6	steps.
7	We do have some co-development activities
8	underway. We're adding some flexibilities in the
9	geometries that we can handle with SCALE. The last
10	two points cover that.
11	We're looking to add some controlled
12	blade, being able to model controlled blades with the
13	pebble system, being able to handle complex arbitrary
14	geometries. That's easy to model. That really would
15	be used to model fractured pebbles.
16	Or, if reprocessing does ever come,
17	looking at metallic fuel finds and potentially taking
18	the burden off the user trying to model these complex
19	geometries and having SCALE do that.
20	And then also some MELCOR improvements
21	where we were looking at adding multiple working
22	fluids and origin integration into MELCOR or MSR
23	analyses.
24	And then I want to touch upon maintaining
25	awareness of industry priorities. Earlier in my talk

(202) 234-4433

	259
1	I touched upon a lot of the unknowns for the back end
2	of the fuel cycle. And this is what I want to stress
3	is that we are maintaining awareness of what, what is
4	being proposed, what technologies are being proposed.
5	And then, continually assessing do we need to do
6	anything to our codes to be able to model this? If
7	so, make it happen. If not, we can address it through
8	some sensitivity studies.
9	And then, lastly, training and knowledge
10	management.
11	We'll continue to hold public workshops to
12	highlight our capabilities, but we'll also hold some
13	internal staff training to pass on this expertise so
14	we can use these codes.
15	MEMBER PETTI: Once again on TRISO. It is
16	a commercial shipper that is going to be shipping
17	fresh fuel. And I would imagine NMSS gets involved in
18	that.
19	MR. KYRIAZIDIS: Yes.
20	MEMBER PETTI: Right?
21	MR. KYRIAZIDIS: Yes. Yeah.
22	So, we
23	MEMBER PETTI: Data was developed, very
24	recent data was developed to support that that you
25	guys should get access to.
I	I

(202) 234-4433

	260
1	MR. KYRIAZIDIS: Yeah. I should say that
2	the two shipping packages that were approved were
3	fairly limited in size. And so, we do want to ask a
4	question on SCALE I know.
5	MEMBER PETTI: This one I'm not sure it's
6	fully approved yet.
7	MR. KYRIAZIDIS: Oh. Oh, oh.
8	MEMBER PETTI: And it's going to be
9	significant. It's going to be pro loads, a pro load.
10	You know, not all in one.
11	MR. KYRIAZIDIS: Yeah.
12	MEMBER PETTI: But multiple big, big
13	shipments.
14	The ones, I think the ones you're talking
15	about are the one that
16	MR. KYRIAZIDIS: Shipped invert.
17	MR. KYRIAZIDIS: Yeah. Yeah. That's, no,
18	there's a much bigger effort underway. And I can't
19	speak to it. But if it's commercial it means it's
20	going through NMSS.
21	MR. KYRIAZIDIS: Yeah.
22	MEMBER PETTI: The data is going to be
23	somewhere at NRC. And you guys ought to get access to
24	it.
25	MR. KYRIAZIDIS: I think that ends my talk.
I	1

(202) 234-4433

	261
1	If there's questions, glad to take them.
2	MEMBER MARTIN: Any questions from the
3	members, consultants?
4	Hearing none, let's go wrap up.
5	MS. WEBBER: Okay. Thank you.
6	Okay, so this has been a really good
7	meeting. I really appreciate the candor, the
8	comments, the questions, the references of additional
9	information.
10	You know, when I, when I think about the
11	history of licensing large light-water reactors, and
12	co-development capability that's been developed, you
13	know it was developed over decades, 40-plus years.
14	You know, we have very mature processes when it comes
15	to modeling and simulation.
16	And while it's, you know, it's nice to and
17	it's important actually to take a lot of those, maybe
18	what I would call standards of code development
19	activity, and bring them forth into this context, you
20	know, it's a little bit different context. We have
21	large light-water reactors, we have pressurized
22	systems, you know. And we've studied those reactors
23	for quite a long time.
24	Here in this context of non-light water
25	reactors it's a new, it's a new world really. With
I	I

(202) 234-4433

	262
1	fewer pressurized type reactor designs, we still have
2	a few that are pressurized. And, you know, for us the
3	challenge is then, you know, priorities.
4	There's not really been too much down
5	selection in terms of funding. Although we've been
6	following, you know, DOE's funding stream through the
7	advanced reactor development or demonstration project,
8	and all of their other funding programs to figure out
9	where we place our very limited resources.
10	And so, this program that we've developed
11	has had fits and starts over many decades. Back in
12	NGNP days there was some code development that was
13	done in some context. But more recently since we
14	started this initiative, you know we're expanding our
15	view to look at all of the capabilities that we have
16	in our codes.
17	And I think, you know, where we are today
18	is obviously not where we are with the light-water
19	reactor capabilities. But I think we have made
20	significant progress with the funding that we have
21	had, which is not it's definitely nowhere near the
22	funding levels that other organizations have for their
23	modeling and simulation capabilities.
24	And so, you know, in my estimation, you
25	know, we have generic capability to evaluate more
ļ	I

(202) 234-4433

	263
1	simple situations, and then we're developing
2	capabilities that look at more complex design aspects.
3	As Steve talked about, we're doing CRAB.
4	But, but I believe that, you know, we've
5	done a, in my, you know, my opinion, my staff
6	contractors and close collaborations with the labs,
7	and even international organizations have done what we
8	can with the information that we have available to
9	date. Recognizing there's not a lot of operating
10	experience with these non-light water reactors.
11	There's more in some reactor types, like sodium fast
12	reactors, or maybe even high temperature gas reactors.
13	But then in other areas there's a lot less data, a lot
14	less operating experience.
15	So, if we could go to the next slide,
16	please.
17	I really have to thank you so much, you
18	know, for your questions, your comments, references to
19	other information. I think that goes a long way to
20	helping us with the progress that we're trying to
21	make.
22	I also hope that you've seen from the
23	presentations today that we've made significant
24	progress with our codes capability and developing
25	staff expertise.
I	1

(202) 234-4433

On the left-hand side of the slide I note a few activities that we have completed to date. And I won't read them, for the sake of time. But I also want to note that, you know, we still have more, more work that can be done. And your questions have elucidated, you know, some areas that over time and with budgets we should take a closer look at.

8 Ι think with any kind of model or 9 simulations program it's an evolution. And it depends 10 on what the problems are that you're faced with that you're trying to evaluate. I think, you know, from a 11 regulatory standpoint, you know, the agency's taken a 12 perspective of conservatisms. 13 So, where we have 14 uncertainties that are fairly large, you're building 15 conservatisms relative to our safety findings. And we 16 regulatory tools to address some of those use 17 shortcomings.

So, all that's to say that, you know, in the area that we're focused on, which is modeling and simulation, you know, we still plan to update our reference plant model to be able to add additional capability as more information becomes available.

23 We plan to continue our verification and 24 validation efforts, update codes with new models, 25 continue the code consolidation effort in the siting

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

265 1 and licensing dose assessment area. And we'll hold public, public 2 continue to meetings and 3 demonstration workshops. 4 And, you know, the one thing that's been 5 said a couple times through the day is that the staff is building their expertise by learning and doing. 6 7 So, while they're working on the code building 8 activities, running the codes, they're building their expertise. And that's going to be really important to 9 support the licensing activities. 10 You know, admittedly, one challenge that 11 we're facinq now is continue code 12 as we our development efforts we're 13 starting to experience 14 fairly significant budget reductions. And that's 15 qoing to put us in a position to have to really very deliberately focus on how we place those resources. 16 17 And we may not be able to, as we've done in the past, be able to fund all of these different areas that 18 19 you've heard about today. Ιf face we budget shortfalls we may not be able to do that. 20 So, I can't stress enough how important it 21 is to have a letter from you to identify, you know, 22 what you think about our progress areas, where you 23 24 think in the near term, given the environment that we have here today, you know, where our focus, time, and

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

266 resources could be spent, I think that's going to be 1 very helpful to our program here. 2 3 So, I really want to thank you again for 4 your active participation. It's been a fruitful 5 meeting for our staff and I. And I look to continue dialog as we move forward in this area. 6 7 And with that, I will open it up for any 8 questions or comments that you have. 9 MEMBER MARTIN: Well, I'll go start, you 10 know, thanking you and your staff. I think I can speak for the committee that what we've seen here is 11 a remarkable accomplishment over a broad scope of 12 13 work. 14 The subject of, you know, code 15 development, deterministic safety evaluations, you 16 know, on the surface just sounds like, you know, very 17 researchy and, you know, we're trying to match data. But in the context of safety we look at the evaluation 18 19 model concept and the ability to make decisions. That's what we're ultimately trying to do. 20 You know, applicants will bring in a rock 21 and we'll need to review it. First we have the time 22 pressure to do it quickly, to do it with confidence. 23 24 The emphasis on D&B is, of course, tremendous to present evidence that the tools that we are going to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

267 1 be checking and, of course, in some cases it may be the same tools as the applicants, you know, will be 2 3 using. But, you know, we have to have general 4 confidence. 5 The reference models obviously help you That competency is invaluable. 6 develop staff. It 7 also will help you to move quickly into developing 8 models. 9 What heard Ι was, you know, your engagements with the stakeholders and partners like, 10 of course, DOE, the user community, to some extent 11 international. I certainly would encourage expanding 12 those communication channels. 13 14 I think my last thought is, of course, you know, thinking about how people will be performing, 15 16 you know, non-light water reactor safety analysis in 17 a Part 53 or NEI-18 forum where they're answering questions about how good the design is, or safety 18 19 classification of SSCs, defensive, cliff edge effects. That's only beginning to scratch 20 the surface on, you know, how the agency and people will 21 expect safety analysis to look like. And I think it's 22 a lot of fertile areas moving forward. 23 So, I'm excited for what I've seen and 24 certainly the future that is out there for, you know, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	268
1	research to contribute and answer questions that will
2	need that evidence to help make decisions.
3	So, and I'll turn to my colleagues. Do
4	you have any other comments?
5	VICE CHAIR HALNON: I just have one
6	question.
7	Kim, it's sort of, I don't know if
8	shocking is the right word, astounds me that if people
9	understand the function to do the budgeting, if they
10	understand the importance of this code development in
11	the springing of the advanced reactor world, since we
12	don't have operating experience, it astounds me that
13	you're feeling stressed on budget. I don't mean a
14	blank check.
15	But certainly so that obviously needs to
16	be a key point that we need to make is that the
17	enabler has to be the expertise and the getting and
18	gathering of data, and then the disabler can be the
19	budget.
20	MS. WEBBER: Correct.
21	MEMBER BIER: I guess I have a quick
22	follow-up on that, which is it your sense that the
23	budget constraints are due to just kind of across-the-
24	board cuts within the agency or priorities of other
25	things that are getting increased funding?
I	1

(202) 234-4433

1 MS. WEBBER: You know, it's really hard to say, to be honest with you. You know, there's 2 3 perspectives across the agency at senior levels about, 4 you know, doing the right amount of work. And so what 5 all of the agency's trying to figure out what does that look like. 6 7 So, this is part of it. You know, this is 8 part of the agency trying to figure out what's the 9 right level of effort. What's the right amount of 10 work to do what we do -- need to do to make the right safety findings? And so, we're just caught up in 11 that. 12 MEMBER BALLINGER: I have a couple of sort 13 14 of high level questions. We heard an awful lot about the code 15 16 development efforts that are necessary. I'm assuming 17 that you've prioritized based on the plants that you anticipate to come in. 18 19 MS. WEBBER: Yes. MEMBER BALLINGER: So, my first question is 20 what's the long pole in the tent for that? You've got 21 all this stuff that you're doing. If all of a sudden 22 they show up at the door and say, 23 here's the 24 submittal, what is the highest priority of all of this that you have to do? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	270
1	And the second part of that it's a two-
2	part question is that do you have enough
3	information now to ballpark the results?
4	You know what I mean by ballparking?
5	MS. WEBBER: I'm not quite sure of that
6	context.
7	MEMBER BALLINGER: You simplify things to
8	the extent that you can almost do a back of an
9	envelope calculation to find out if you're in deep
10	yogurt.
11	MS. WEBBER: Okay.
12	MEMBER BALLINGER: Right? Well, so that
13	MEMBER BROWN: There are other frames of
14	reference here.
15	MEMBER BALLINGER: once you've
16	identified those things you can then also apply that
17	knowledge to the focus that you need to have. So,
18	it's more of an organizational kind of thing, given
19	the budget constraints that you have.
20	So, have you done that analysis so you
21	know what the long poles are? You know whose
22	submittal is coming down the pike.
23	MS. WEBBER: I think the way so, let me
24	start maybe on the answer and then I'll look to my
25	other folks to chime in.
ļ	I

(202) 234-4433

	271
1	But, you know, we know that with the
2	advanced reactor thermal project, we know that those
3	are fairly certain
4	MEMBER BALLINGER: Yes.
5	MS. WEBBER: given the funding levels.
6	And the application Kairos Power submitted, you know,
7	is here.
8	So, we've been following that the last
9	several weeks to make sure that our capabilities are
10	available to support those two big type reactors.
11	You know, we've also been watching, you
12	know, all the changes that have been going on with the
13	heat pipe reactor community. And, you know, we de-
14	emphasized that. But, you know, you never know who's
15	going to submit what and when because there's a lot of
16	money out there. And so, while we are following the
17	signs of where the funding is going, you know, we are
18	doing some work in those other areas, as you've heard
19	from the staff.
20	So, you know, it's hard for me to say what
21	the long pole in the tent is because we're faced with
22	trying to figure out what's right in front of us in
23	terms of being able to support those analyses.
24	And I would also say that, you know, if we
25	you know, we're trying to build the capability to
I	I

(202) 234-4433

address some of the comments made here today. You know, to be able to have simplistic analysis capability, you know, like we used for the Hermes construction permit application. It was a very broad brush kind of analysis but it gave insights for the level of safety findings and effort that was needed at that time.

8 Now, when you get into sort of an 9 operating license stage where there's going to be a 10 need for additional analysis, you know, we're trying to anticipate what that looks like. And that's where 11 maybe we need some of the more detailed efforts in 12 our, for example, in our CRAB, through CRAB codes. 13

14 So, you know, we're not quite sure what 15 we're going to get, but we're trying to make sure that 16 we have the capability to fit as much as we possibly 17 can.

So, I don't know, I hope that partially --CHAIR KIRCHNER: I'm going to have to take my duties as chairman and interrupt because we are up against a time limit here.

We still need to allow the public to make comments. So, let me interject myself here and say to those who are participating online or in the -- with us here in person, if there is anyone from the public

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	273
1	who would like to make a comment, please state your
2	name and affiliation, as appropriate, and make your
3	comment.
4	Hearing no one volunteering a comment,
5	we're getting a lot of background noise because we
6	have people who are joining the open line for the next
7	scheduled meeting.
8	Bob, I would think I have a different
9	vantage point than you do simply because we saw this
10	at its inception back in the 2016, '17, '18 time
11	frame. And I would just observe that they've made
12	significant progress across a broad array of
13	technologies that each have their rather unique
14	challenges and requirements in terms of modeling and
15	simulation capability.
16	I don't know that we can weigh in directly
17	on budget, but we can and we have pointed out to the
18	Commission that with these new concepts they are not
19	going to come with a lot of operating data and so on.
20	So, the emphasis on modeling and simulation, and its
21	importance as part of the licensing case and
22	establishing the safety case for these concepts is
23	extremely important.
24	So, with that, we are going to look to you
25	to
ļ	I

(202) 234-4433

	274
1	MEMBER BALLINGER: Sure.
2	CHAIR KIRCHNER: write out a draft
3	letter and socialize that with the, with the members.
4	And we'll take this up again.
5	MEMBER MARTIN: I feel like I got what I
6	need to kind of get started
7	CHAIR KIRCHNER: Okay.
8	MEMBER MARTIN: on that.
9	Again, as you've noted, there was a lot
10	here. And, of course there's a lot in the material
11	provided at the meeting.
12	And I'll draw from that and have that
13	ready here certainly before our next meeting.
14	CHAIR KIRCHNER: Okay. So, with that we,
15	for those of you joining us we were scheduled to start
16	at 3:30 picking up the NuScale SDAA chapter reviews.
17	We'll take just a short break to change
18	gears here, and try and start at about 3:35 p.m.
19	I apologize for the delay.
20	MS. WEBBER: Thank you very much.
21	CHAIR KIRCHNER: We'll temporarily recess
22	then.
23	Thank you all. Thank you, Kim, and all
24	the presenters.
25	(Whereupon, the above-entitled matter went
l	1

	275
1	off the record at 3:28 p.m. and resumed at 3:37 p.m.)
2	CHAIR KIRCHNER: Okay. We are ready to
3	begin.
4	And we are turning now to our review of
5	the NuScale Standard Design Approval Application, and
6	today, we're going to take up members' assessments on
7	Chapters 2 and 11 and 17. And with that oh, excuse
8	me I left out 13 as well.
9	So, we're going to start with Greg Halnon
10	who's going to go through his assessment on Chapter 2,
11	and then, we'll continue with Greg on Chapter 13, and
12	then, loop back and do the rest in order.
13	So, with that, Greg.
14	MEMBER HALNON: Thanks, Walt.
15	I'm just going to talk in an overview at
16	this point. Okay?
17	CHAIR KIRCHNER: Yes, I think so.
18	MEMBER HALNON: So, Chapter 2 is,
19	understandably, for a standard design application,
20	would be sparse because there's no site
21	characteristics. However, there are some items and
22	they develop a set of parameters that set the
23	boundaries for site selection and construction.
24	It's sort of like a plant parameter
25	envelope-type thing. I don't want to call it that or
I	

(202) 234-4433

	276
1	put a label on it like that. However, there are some
2	parameters.
3	And rather than go through a lot of detail
4	and all the different parameters and stuff, because
5	it's pretty well done in both the SER and the SAR, the
6	only one that stuck out to me was the fact that the
7	site for the precipitation studies that were used to
8	develop the parameter about I'm going to roughly
9	say so many inches 19 inches, or whatever,
10	precipitation. Or I can't remember what the exact
11	number was.
12	But that HMR study and we went through
13	this a lot with the Fukushima flooding is storms,
14	going all the way back to the 1800s and coming
15	forward, the way they collected that data was they
16	would go out, after a big storm, they would go out to
17	a farm and find a coffee bucket that was, a coffee can
18	that was full of water, and they would measure it and
19	figure out how long it it was not super scientific,
20	but it was hard data. Nevertheless, it's served us
21	well and it is, as the staff suggested, very
22	conservative in many ways.
23	But when you transposition a study of a
24	storm, you know, you make a lot of assumptions on
25	topography and mountains, humidity, and all kinds of
I	I

(202) 234-4433

1 currents, and whatnot. And obviously, our 2 meteorological capabilities since the 1970s, when this 3 report was written, are much better now with the 4 radars and whatnot.

5 And given that, along with the scientific evidence and other people's opinion on climate change, 6 7 in the recent law that was passed the infrastructure law I think it was -- NOAA has been 8 9 given quite a bit of money to redo the precipitation 10 studies, not specifically just that. I mean, they're doing a lot of studies, but one of them is the 11 precipitation study, which makes sense that future 12 applicants are going to use the most recent studies to 13 14 do that.

And the way it's set up is that an applicant can come and say as long as I'm within these boundaries, I can put it on this site. So, that's based on an old study.

19 My point during the Subcommittee was: be better to base that on the most 20 should it contemporary study? And, in fact, the staff responded 21 back -- and I think if they want to enlighten us a 22 little bit more on it, they can -- that, in a way, 23 24 because when they do the flooding study, the Reg Guide requirements for flooding studies, not precipitation, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

277

1 but flooding, requires the use of the most contemporary data. So, when study gets done, 2 the 3 sites will use the contemporary data. In the 4 meantime, the HMR-52 study is conservative and has 5 served us well.

So, given the response that the staff came 6 7 back with and the roadmap they showed how the flooding 8 study would pick up the most recent data for 9 precipitation, I'm okay with that roadmap. What I would like to do is revise the memo to show what that 10 roadmap is in a very high level, to show how that 11 issue is picked up as we go forward. 12

I think it's an important issue. I think 13 14 it's not just the scientific and regulatory issue, but 15 this could be a political issue as well. And if 16 you're using an old study and someone comes into a 17 hearing, what are you going to say when, you know, they based this site on a 1970-something report that 18 19 had 100-year-old studies in it? And we have this 20 brand-new one over here that shows something different. It could be an interesting discussion 21 during a hearing for a site, siting of a reactor. 22 So, to me, it's important to do that. So, 23

I do need to revise this memo, because this memo has left an open question. And I feel the question is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	279
1	adequately responded to.
2	CHAIR KIRCHNER: Were there any other
3	points you wanted to make at this point? From a
4	process standpoint, since you're the first one up, I'm
5	coming back at
6	MEMBER HALNON: Breaking new ground.
7	CHAIR KIRCHNER: how we did this the
8	first time around, and then, made, also, a more recent
9	application.
10	We have the individual memos from our
11	colleagues. We, basically, have read then into the
12	record.
13	MEMBER HALNON: Yes, but I think that what
14	they don't have in the record is a response to the
15	question. And rather than me characterize it, I would
16	like the staff to characterize it.
17	CHAIR KIRCHNER: Yes. So, we do have
18	staff here to address that.
19	MEMBER HALNON: Right.
20	MEMBER PETTI: Your revised letter would
21	capture that?
22	MEMBER HALNON: Yes, but I think it should
23	be presented in a public forum.
24	MEMBER PETTI: Oh, okay. Is that what you
25	said?
I	

(202) 234-4433

	280
1	MEMBER HALNON: Yes.
2	MR. SNODDERLY: Yes, and this is Mike
3	Snodderly, Senior Staff Engineer for the ACRS.
4	I have the staff's response to the two
5	issues, the one for Chapter 2 and the one associated
6	with Chapter 13. And what I would like to propose is
7	that, for the benefit of those listening in from the
8	public that haven't seen this new information, I would
9	read it in. And, of course, both of these responses
10	will be included in the transcript.
11	And then, yes, based on this new
12	information, I would recommend that Member Halnon
13	revise the memo, and then, we can take up Chapter 2
14	tomorrow, and then, we can figure out what to do with
15	Chapter 13. And then, I expect the other three memos
16	for 10, 11, and 17 are a little more cut-and-dry and
17	ready to go.
18	But, eventually, I think being consistent
19	with what we did with Kairos, we would go line-by-
20	line, so that members have an opportunity to give
21	feedback to the reviewing member, to kind of say,
22	yeah, we're all onboard with the recommendation for
23	either no further review or we need further review in
24	these areas.
25	So, if that's okay, the first response is
ļ	I

(202) 234-4433

	281
1	just a half-page, and I'll read it into the record.
2	So concerning the issue of
3	hydrometeorological reports, the staff does not
4	consider it to be necessary that the NuScale standard
5	design approval application include a statement
6	requiring a site-specific precipitation study with the
7	use of the most contemporary NOAA HMR report HMR
8	stands for hydrometeorological report or
9	equivalent.
10	To ensure climate change is accounted for
11	in the meteorological sections impacting the design,
12	SDAA COL Item 2.0-1 directs future applicants
13	referencing the NuScale US460 design to demonstrate
14	that the site-specific characteristics are bounded by
15	the site parameters specified in SDAA Table 2.0-1. If
16	those values are not bounded, then the applicant will
17	demonstrate the acceptability of the site-specific
18	values.
19	If new precipitation studies are available
20	at the time of the application, then the applicant
21	should follow the guidance provided in Draft Guidance
22	1290, soon to be Revision 3, of Reg Guide 1.59, which
23	states that, `The probable maximum precipitation
24	values provided by the HMRs should be evaluated in
25	light of precipitation events that have occurred in
ļ	I

(202) 234-4433

1 the region since the HMRs were published.' If an alternative source other than an HMR prepared by the 2 3 National Weather Service is used for the PMP estimate, 4 the basis for the specific PMP value used needs to be 5 explained.

Considerations on an acceptable approach to the estimation of a site-specific PMP as an alternative to an HMR-based estimate can be found in 8 9 NUREG/KM-0015.

10 Current NOAA HMRs provide conservative extreme precipitation estimates and are accepted by 11 both the NRC and the nuclear industry. When new data 12 from NOAA or the National Academy of Sciences is 13 14 available, the NRC will review the data and update the quidance, as appropriate. 15

Any applicant referencing the NuScale 16 17 US460 design must demonstrate that the site is able to be protected against extreme precipitation and is 18 19 bounded by the site parameters identified in SDAA Table 2.0-1. 20

And as I said, that response will be 21 included as part of the transcript when it will be 22 made available. 23

24 MEMBER HALNON: Thank you, Mike. Just for reference, that Reg Guide 1.59 is 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

6

7

	283
1	the Flooding Evaluation for Sites.
2	CHAIR KIRCHNER: So, then, I think, Greg,
3	we should just go to your conclusion and
4	recommendation for the record on Chapter 2, unless
5	there's need for further elaboration.
6	MEMBER HALNON: Yes, well, the
7	recommendation was to consider using, basically, what
8	they said, to do a site-specific study for each use of
9	the SDAA. And, of course, that's not going to be
10	necessary because they will be doing Reg Guide 1.59,
11	Rev. 3.
12	CHAIR KIRCHNER: Right.
13	MEMBER HALNON: The only thing that's kind
14	of an open question is, when will Reg Guide 1.59, Rev.
15	3, be issued? It's in the pipeline. It's in the
16	process. You know, they work it through the process.
17	We don't have any immediate need for it right now.
18	So, I'm not
19	CHAIR KIRCHNER: Right.
20	MEMBER HALNON: It doesn't raise to my
21	level of concern that it's not going to get issued
22	someday, as needed.
23	CHAIR KIRCHNER: So, then, you will make
24	a modification to this?
25	MEMBER HALNON: Correct. I've got a bit
ļ	I

(202) 234-4433

	284
1	of rewrite to do. And the conclusion will be that
2	there's no further recommendations on Chapter 2.
3	CHAIR KIRCHNER: So, any further input or
4	questions on Chapter 2?
5	MEMBER MARCH-LEUBA: I was saying just
6	with my head, because both approaches seem to take us
7	to the same place.
8	MEMBER HALNON: Right.
9	MEMBER MARCH-LEUBA: So, let's take the
10	easy one.
11	CHAIR KIRCHNER: Okay. Thank you for that
12	one.
13	MR. BETANCOURT: Chair
14	CHAIR KIRCHNER: Yes, go ahead.
15	MR. BETANCOURT: Chair Kirchner, the court
16	reporter is still on right now and is recording this;
17	for instance, just got what Mike read into the do
18	you want the court reporter to continue to stay on
19	during this portion?
20	CHAIR KIRCHNER: Yes.
21	MEMBER HALNON: For Chapter 13, we have a
22	similar process.
23	CHAIR KIRCHNER: We have a similar
24	process.
25	MR. BETANCOURT: Okay.
I	I

	285
1	CHAIR KIRCHNER: Yes. No, I appreciate
2	that.
3	MR. BETANCOURT: So, just let us know when
4	we can cut the court reporter free.
5	CHAIR KIRCHNER: After Chapter 13 I would
6	recommend.
7	MR. BETANCOURT: All right. Thank you.
8	CHAIR KIRCHNER: Yes.
9	So, with that, we'll turn, next, to
10	Chapter 13, Greg.
11	MEMBER HALNON: Okay. Chapter 13 had to
12	do with it's titled Conduct of Operations. The
13	only one issue with that was and again, it was part
14	of the delta review, if you will, between the COL, I
15	mean, the design certification and, well, I guess it
16	was a COL. And we have it for the SDAA.
17	In the COL, there was a specific statement
18	relative to the plant, their technical guidelines.
19	They're called different things, but, basically, it's
20	the technical guidelines on how to whoa, the basis
21	document for your EOPs and how you respond to
22	accidents and casualties. They've removed that
23	specific statement in the SDAA.
24	So, in thinking about that, it was
25	important for me to see that, for an nth of a kind
I	I

(202) 234-4433

reactor, we were going to have a basis for responding to casualties, such that the very basis for part of the safety argument for these reactors is the human interface to the reaction to casualties, transients, and other things.

And, yes, we take much credit for this 6 7 passive nature of these from a safety perspective, but 8 there is still a last line of defense of the operators 9 required to respond to accidents and other items. So, 10 because we're taking credit for that portion of it, it was important that I see some consistency in how SDA 11 Reactor No. 1 equals SDA Reactor No. 2, and put an nth 12 onto that, such that all the reactors that we say are 13 14 using this design certification are designed to that 15 It is consistently applying that same level design. 16 of response, so that we can say that the same level of 17 safety is being applied.

I didn't say that real clearly, but I'm 18 19 trying to say that, for an nth of a kind, at least in my opinion -- and this is the argument that we 20 mentioned earlier today -- we're going to have in the 21 future, what are the boundaries of an nth of a kind? 22 And I can see that the operating procedures, normal 23 24 operating procedures, don't need to be absolutely consistent, because you'll have different business 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	287
1	issues and siting, and other things.
2	But the response to an accident from an
3	EOP perspective, I can see that should be based on a
4	consistent document with the plant technical
5	guidelines.
6	Now, there's a lot of ways of doing that.
7	The staff response to that question, it's long and
8	it's got a lot of regulations and Reg Guides and other
9	things, and NUREGs in it. But the bottom line is that
10	I think we can still get there. This SDA, it may be
11	early to be requesting that, and maybe that's part of
12	the basis of why they took it out of the SDA SAR.
13	But we're going to have to be diligent in
14	the COL process to ensure that we drive that
15	consistency home, if we're crediting any kind of
16	operator action to be part of the safety defense-in-
17	depth aspect.
18	In the COL, Dennis wrote the letter, and
19	he made that
20	MR. SNODDERLY: The DCA.
21	MEMBER HALNON: I'm sorry the DCA. He
22	wrote the same statement. And Mike may be aware of
23	what Dennis wrote. He said the same thing: the COL,
24	going to have to see the plant technical guidelines
25	and how they're applied, and how it's consistently
l	I

(202) 234-4433

	288
1	going to drive into the EOPs.
2	I think that's the same point we need to
3	make here to be consistent with our previous position
4	when we do get a Combined Operating License, because
5	both of these are putting the onus on the owner of
6	that COL to develop the procedure generation package,
7	or the procedures. We're going to have to be diligent
8	to make sure that that consistency is there.
9	So, I think, for ourselves, we should be
10	consistent with our previous position, which I agree
11	with. We don't need to see it here. We can see it
12	down the road on the COL. But we need to drive that
13	point home.
14	And again, my letter was written as if I
15	need to have this open question answered, and they
16	answered it.
17	Mike, I'm not sure if you want to read
18	that whole thing in, but it's
19	MR. SNODDERLY: Yeah, I'll paraphrase.
20	MEMBER HALNON: Okay.
21	MR. SNODDERLY: So, Member Halnon asked
22	for a roadmap, and the staff responded with the
23	roadmap. And the staff summarized the roadmap as
24	containing five parts: regulatory requirements,
25	Standard Review Plan guidance, expectations for SDAA
Į	I

(202) 234-4433

	289
1	and COLA submittals, the procedure generation package,
2	and the construction and inspection program. And so,
3	I'll just briefly summarize each of those pieces of
4	the roadmap.
5	MEMBER HALNON: So, before you go, this is
6	how we will see the consistency of the technical
7	guidelines being driven into the EOPs and the
8	operating procedures.
9	Go ahead, Mike.
10	MR. SNODDERLY: Thank you, Member Halnon.
11	The staff, first, referred to the
12	regulatory requirements in 10 CFR 52.79, which
13	requires managerial and administrative controls to be
14	used to ensure safe operation, in accordance with
15	Appendix B to 10 CFR Part 50 requirements.
16	Then, they also referenced
17	10 CFR 52.79(29), plans for conduct of normal
18	operations, including maintenance, surveillance, and
19	periodic testing of SSCs, structures, systems, and
20	components, and plans for coping with emergencies
21	other than the plans required by 52.79(a)(21).
22	Then, there's also 10 CFR Part 50,
23	Appendix B, Criteria 5 and 6, which establish criteria
24	for the development, approval, and control of
25	procedures for all activities affecting quality.

(202) 234-4433

	290
1	And then, they refer, also, to the
2	requirements of 10 CFR 50.34(f)(2)(ii), contents of
3	applications, technical information, and additional
4	(audio interference) related requirements that
5	establish a program, to begin during construction and
6	follow into operation, for integrating and expanding
7	current efforts to improve plant procedures. The
8	scope of the program shall include emergency
9	procedures, reliability analyses, human factors
10	engineering, crisis management, operator training, and
11	coordination with INPO and other industry efforts.
12	The second part of the roadmap was NRC
13	staff review procedures, including the Standard Review
14	Plan, Chapter 13, Conduct of Operations, and, more
15	specifically, Section 13.521, Operating Emergency
16	Operating Procedures, Revision 2, March 2007.
17	There's also the guidance in NUREG-0711,
18	Human Factors Engineering Program Review, Section 9,
19	Procedure Development.
20	Procedures are integral to an overall HFE
21	program and should be developed and implemented using
22	accepted HFE principles. The NRC reviews procedures
23	to confirm that the applicant's procedure development
24	program incorporates HFE principles and criteria.
25	The third tier of the roadmap would be
I	I

(202) 234-4433

	291
1	expectations for the SDAA and COLA submittals.
2	At the Standard Design Approval
3	Application stage, the staff reviews COL action items
4	for procedures. Plant procedures include
5	administrative operating procedures, emergency
6	operating procedures, as well as maintenance and other
7	procedures for safety-related activities.
8	The COL applicant is responsible for these
9	types of procedures. The staff's review is focused on
10	the evaluation of COL action items pertaining to
11	procedures. And the staff provides an example. COL
12	item 13.5-5 addresses EOPs.
13	An applicant that references the NuScale
14	power plant US460 standard design will provide a plan
15	in the development, implementation, and control of
16	emergency operating procedures, including preliminary
17	schedules for preparation and target dates for
18	completion. Then, additionally, the applicant will
19	identify the group within the operating organization
20	responsible for maintaining these procedures.
21	COL applicants or COL holders are required
22	to develop procedures that are plant-specific.
23	And then, the fourth tier of the roadmap
24	would be procedure generation package. Information
25	about EOP development and implementation is
	1

(202) 234-4433

	292
1	supplemented for NRC staff review via the procedures
2	generation package, or PGP. The PGP must be submitted
3	for NRC review no later than three months before
4	formal operator training on EOPs begins.
5	The procedure generation package contains
6	the following, in accordance with SRP's Chapter
7	13.521:
8	Plant-specific technical guidelines.
9	These may or may not reference the general technical
10	guidelines.
11	Plant-specific writer's guide that details
12	the methods to be used by the applicant in preparing
13	the EOPs, based on the plant-specific technical
14	guidelines.
15	A description of the verification and
16	validation programs for EOPs and a description of the
17	program for training operators on the EOPs.
18	And finally, the staff refers in their
19	roadmap to the construction and inspection program.
20	The NRC staff verifies the technical adequacy of the
21	COL holder's operating procedures through the
22	construction and inspection program.
23	Inspection procedures used by the staff
24	include the following three inspection procedures:
25	42401 on plant procedures.
Į	I

(202) 234-4433

	293
1	Inspection Procedure 42453 on operating
2	procedures and inspections.
3	And finally, Inspection Procedure 42454 on
4	emergency procedures.
5	And that concludes the staff's response to
6	the Chapter 13 issue. And as I said, the entire
7	response will be included as part of the transcript to
8	this meeting.
9	And with that, I turn it back over to Lead
10	Member Halnon for Chapter 15.
11	MEMBER HALNON: Thanks, Mike.
12	And I guess you can now see why I asked
13	for a roadmap on how to get from here to there. And
14	it doesn't ever really specifically require their
15	technical guidelines.
16	However, the staff, through this, and
17	through the fact that, at first, those regulatory
18	requirements for procedures that the review guidance
19	has to look at procedures, there's expectations for
20	those procedures to be part of the applications. The
21	procedure generation package is developed and reviewed
22	and looked at by the staff, and then, it's inspected,
23	once it's in place.
24	All those are the right elements. The
25	only problem is now the onus to make sure that they're
I	I

(202) 234-4433

1 consistent and will develop and fit a definition of nth of the kind, if that's the argument we're going to 2 have, is on the staff, because they're all plant-3 4 specific. So, you can't ask Plant No. 2 to go check 5 with Plant No. 35, or vice versa, to see if their 6 procedures are consistent. 7 Maybe they don't have to be. Maybe they 8 can have some certain level of deviation. However, I 9 think that's kind of one of those future things we're 10 going to be discussing as a Committee relative to this. 11 this will get you there. So, It does 12 allow it to be, and there's enablers in there to be, 13 14 consistent. And I think it's adequate for the stage 15 that we're at right now. 16 This is the first one we're doing. So, 17 we're going to learn some more from it and we will see where we go. 18 19 But the bottom line is that the requirements are all there and the roadmap is, in my 20 mind, adequate to ensure that there's at least a level 21 of thought being put into it. 22 So, I asked for the roadmap, or verbally 23 24 in the letter I wrote that recommended that the COL item that is referenced in the SDA be identical to the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

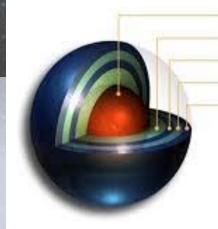
(202) 234-4433

Í	295
1	DCA, the same as the DCA, where Dennis made that
2	statement. I've got to revise that to be consistent
3	with what we did before and not make a recommendation
4	that the SDA needs to be changed, but to focus more on
5	the roadmap and making sure that we get a chance to
6	look at it in its COL stage, so that we can ensure
7	that there's a consistent approach to that level of
8	safety to the plant.
9	So again, homework.
10	CHAIR KIRCHNER: Okay. Thank you.
11	All right. And with that, now we'll
12	regress a little bit, so to speak, at least in terms
13	of numerical order, and go to Chapter 10 and Matt
14	Sunseri.
15	Matt?
16	MEMBER BIER: Well, now do you want to
17	release the court reporter?
18	CHAIR KIRCHNER: Yes, I think we could.
19	Yes.
20	At this point, we can release the court
21	reporter. But thank you for your service today.
22	(Whereupon, the above-entitled matter went
23	off the record at 4:05 p.m.)
24	
25	
	I

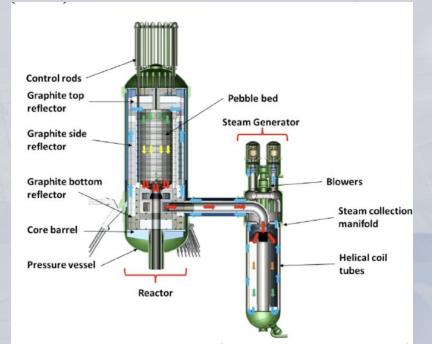
(202) 234-4433

```
www.nealrgross.com
```

Status Update on Computer Code and Model Development for non-LWRs


Kimberly A. Webber, Ph.D.

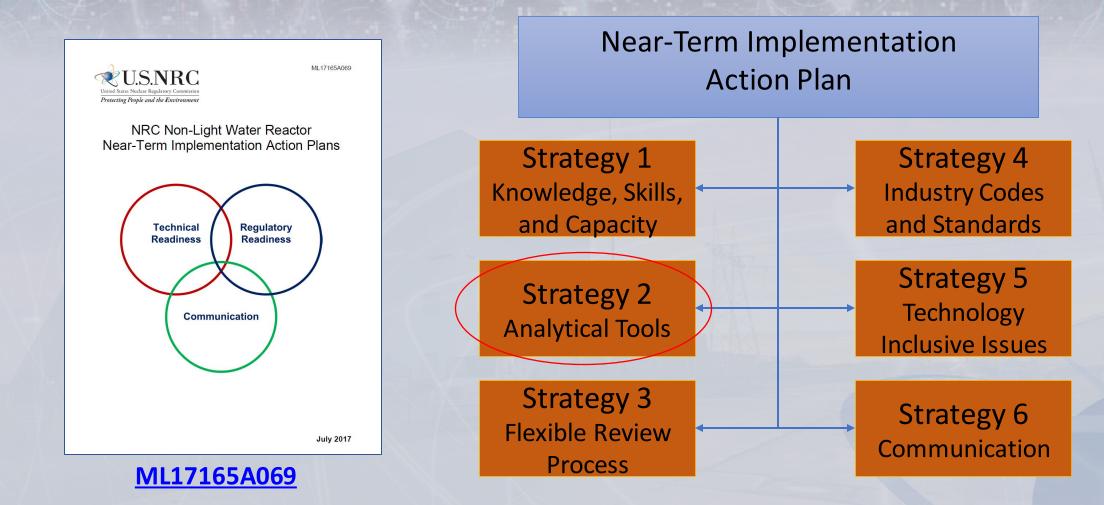
Director, Division of Systems Analysis Office of Nuclear Regulatory Research


Agenda

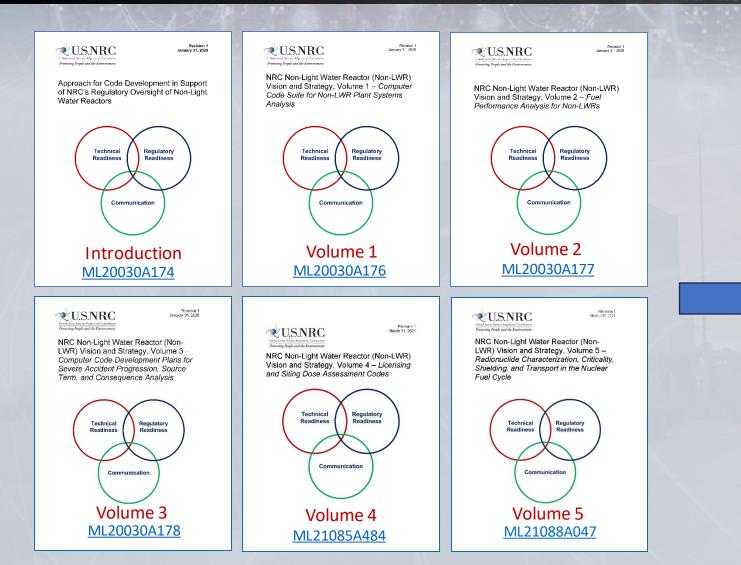
1. Overview

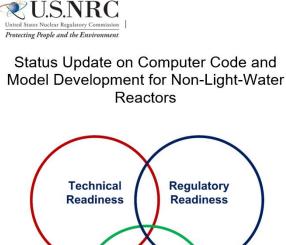
- 2. Plant Systems Analysis
- **3. Fuel Performance Analysis**
- 4. Severe Accident Progression
- 5. Consequence Analysis
- 6. Licensing and Siting Dose Assessment
- 7. Nuclear Fuel Cycle Analysis
- 8. Conclusion

Fuel Kernel (UCO, UO₂) Porous Carbon Buffer Inner Pyrolytic Carbon ^(IPyC) Silicon Carbide Outer Pyrolytic Carbon ^(OPyC)



Xe-100 Reactor System Configuration (Courtesy of X-energy, with permission)


Division of Systems Analysis (DSA) Branches



Integrated Action Plan (IAP) for non-Light Water Reactors

NRC Code Development Reports

Communication Office of Nuclear Regulatory Research

Division of Systems Analysis

March 2024

ML24069A003

Recent History of Interactions with ACRS (1/2)

- Many meetings held between DOE, NRC and ACRS over the past several years to discuss codes development efforts to support industry and NRC licensing of non-LWRs
- ACRS Conclusions
 - ✓ Significant effort by the staff to develop non-LWR code analysis capability substantially increases the readiness of the staff, promoting expeditious reviews
 - ✓ Importance of independent capability for confirmatory analyses
 - Reference plant model approach useful to assess adequacy of codes and assess data gaps
 - ✓ Consolidating radiation protection codes is comprehensive and workable
 - ✓ Flexible and workable strategy to address fuel cycle code development needs
 - ✓ Importance of code validation
 - ✓ Importance of developing staff expertise

Recent History of Interactions with ACRS (2/2)

ACRS Recommendations

- ✓ Seek simplified solutions when adequate for the problem
- ✓ Perform pilot studies to illustrate analysis capability
- Scale down the level of effort of licensing review proportionately as the hazard decreases

Conclusions

Completed

- Non-LWR Code Development Reports
- Reference Plant Models
- SCALE/MELCOR Demonstration Public Workshops
- MACCS assessments and updates
- Code Assessment Reports for Metallic and TRISO Fuels
- Training on BlueCRAB Codes

Next steps

- New and Updates to Existing Reference Plant Models
- Verification and Validation (V&V) Report for Systems Analysis
- Assessment of MACCS capabilities to model physiochemical transformations during atmospheric dispersion
- Development/consolidation of Radiation Protection Codes for non-LWR analysis
- Fuel Cycle Demonstration Project Public Workshop for Molten Salt Reactor

Historical Content on Non-LWRs and Code Development Activities

Title	Date	Material	ML
Briefing to ACRS Thermal-Hydraulic Subcommittee by DOE	Aug. 21, 2018	Transcript	<u>18254A164</u>
Briefing to ACRS Thermal-Hydraulic Phenomena Subcommittee by DOE	Nov. 16, 2018	Transcript	<u>18340A016</u>
Briefing to ACRS Future Plant Designs Subcommittee by NRC Staff	May 1, 2019	Transcript	<u>19143A120</u>
Subject: Review of Advanced Reactor Computer Code Evaluation	Nov. 4, 2019	ACRS Letter	<u>19302F015</u>
Subject: RES Response to ACRS Letter Dated Nov. 4, 2019	Jan. 31, 2020	RES Response	<u>20030A172</u>
Subject: Biennial Review and Evaluation of NRC Safety Research Program	Apr. 13 <i>,</i> 2020	ACRS Letter	20100F066
Briefing to ACRS Future Plant Designs Subcommittee by NRC/RES Staff	Sep. 22, 2020	Agenda	<u>20255A222</u>
Subject: Non-LWR Code Development, Volume 4, "Licensing and Siting Dose Assessment Codes"		Transcript	<u>20307A524</u>
Briefing to ACRS Future Plant Designs Subcommittee by NRC/RES Staff	Dec. 1, 2020	Agenda	<u>20328A290</u>
Subject: Non-LWR Code Development, Volume 5, "Radionuclide Characterization, Criticality,		Transcript	<u>21036A180</u>
Shielding, and Transport in the Nuclear Fuel Cycle"			
682nd meeting of ACRS	Feb. 3-5 <i>,</i> 2021	Agenda	<u>20351A370</u>
Subject: Review of Two Volumes of Evaluations of Computer Codes to be Used for Analyses of		Transcript	<u>21055A742</u>
Advanced Non-LWR Reactors		ACRS Letter	<u>21053A024</u>
		Staff Response	<u>21088A409</u>
Briefing to ACRS Future Plant Designs Subcommittee by NRC Staff	Feb. 17, 2022	Agenda	22026A359
Subject: Integration of Source Term Activities in Support of Advance Reactor Initiatives		Transcript	<u>22060A171</u>
		ACRS Letter	<u>22069A083</u>

Readiness for Advanced Reactor System Analysis "Volume 1 and BlueCRAB"

Stephen M. Bajorek, Ph.D.

Senior Level Advisor for Thermal Hydraulics Division of Systems Analysis Office of Nuclear Regulatory Research

Introduction / Agenda

- Background information on Volume 1 Approach
 - Intended applications
 - Why "BlueCRAB" ?
- Verification & Validation (V&V) Report
 - Content
 - Validation Status
- Reference Plant Development
 - General approach & status
 - Sample results
- Summary and Next Steps

Acknowledgements

Development of BlueCRAB, Reference Plant Models, and the V&V Report is result of a coordinated effort between NRC, INL, and ANL.

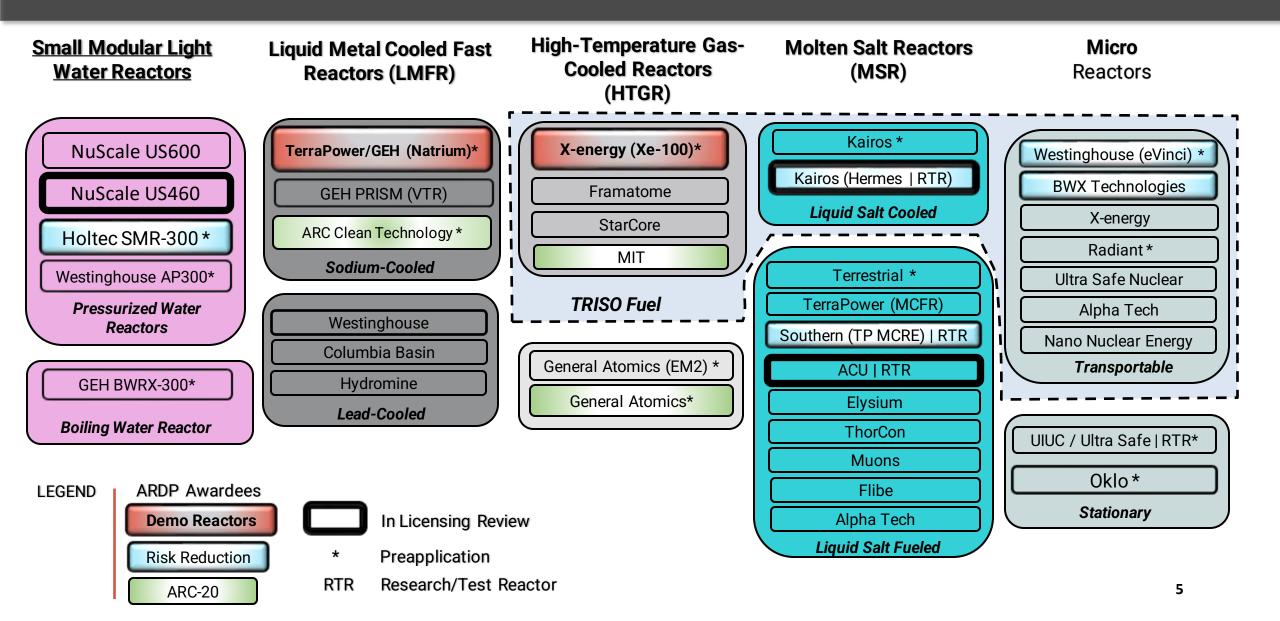
Contributors include:

NRC: Kenneth Armstrong, Stephen M. Bajorek, Matthew Bernard, Andrew Bielen, Joseph Kelly, Cole Takasugi, Nazila Tehrani, Jason Thompson, Tarek Zaki

ANL: Rui Hu, Travis Mui, Zhiee Jhia Ooi, Emily Shemon, Gang Yang, Ling Zou

INL: Namjae Choi, Joshua Hanophy, Logan Harbour, Jackson Harter, Joshua Hensel, Mustafa Jaradat, Javi Ortensi, Cody Permann, Stefano Terlizzi

Volume 1 Intended Applications

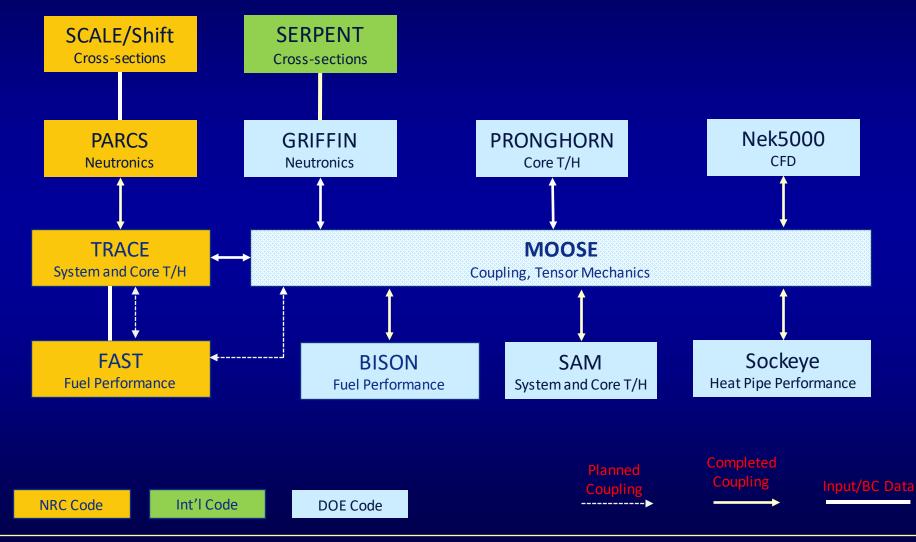

- Volume 1 of the "Implementation Action Plan":
 - Define codes for system analysis for all non-LWR technologies.
 - Reviewed PIRTs to identify important phenomena, scenarios and potential knowledge gaps
- Intended Applications & Uses:
 - Steady-state conditions with power, temperature and velocity distributions.
 - Accident analysis for scenarios not resulting in core disruption including loss-of-flow, loss-of heat sink, LOCA, reactivity insertions, heat pipe failure, etc.
 - Staff education: "How should the machine perform ?"

U.S.NRC I died States Nuclear Regionary Former Protecting Prophe and the Environment Revision 1 January 31, 2020

NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 1 – Computer Code Suite for Non-LWR Plant Systems Analysis

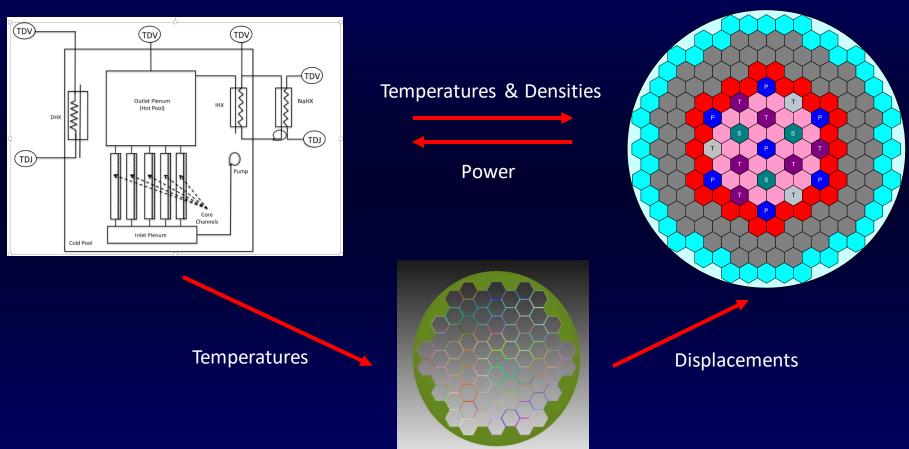
Advanced Reactor Landscape

"Modeling Gaps" Identified by PIRTs


- Phenomena that are significant and "new" with increased importance for non-LWRs relative to conventional LWRs include but are not limited to:
 - Thermal stratification and thermal striping
 - Thermo-mechanical expansion and effect on reactivity
 - Large neutron mean-free path length in fast reactors
 - Transport of neutron pre-cursors (in fuel salt MSRs)
 - Solidification and plate-out (MSRs)
 - 3D conduction / radiation (passive decay heat removal)

"Modeling Gaps in NRC Codes"

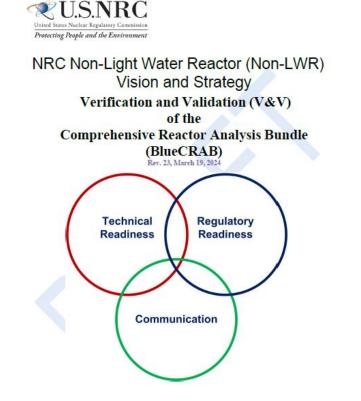
<u>Comprehensive Reactor Analysis Bundle</u> BlueCRAB



Multiphysics Coupling

Griffin: Reactor Dynamics

SAM: System Level Thermo-Fluids


Tensor Mechanics Module

Verification & Validation

- Verification & Validation (V&V) are vital components of the "Evaluation Model Development and Assessment Process" (EMDAP) as summarized in RG 1.203.
- Draft V&V Report for Volume 1 developed to
 - Document available PIRTs for each technology
 - Identify verification standards for each code
 - Cite the applicable validation for BlueCRAB codes by major technology
 - Help identify assessment and database gaps
 - Provide a quick reference on test facilities and benchmarks

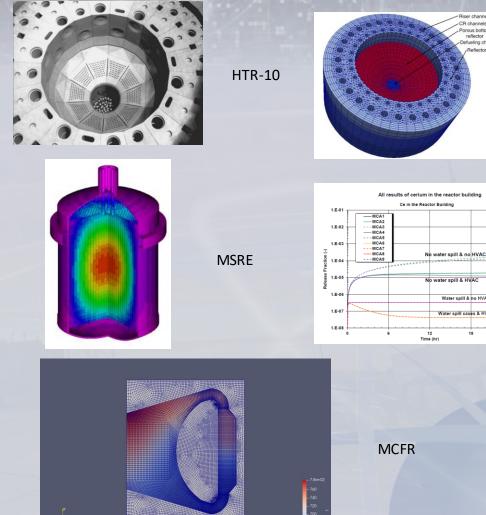
BlueCRAB V&V Report Contents

- Brief description of BlueCRAB codes
- PIRTs & Scenarios
- Verification, including code coupling
- Validation by technology
 - Gas-cooled
 - Liquid metal
 - Molten salt
 - Microreactors
 - Neutronics
 - Components (heat pipes, local phenomena)
- Test and Benchmark Description & References

BlueCRAB V&V Report Contents

 Keyword is DRAFT. Some work is on-going. New data from university programs such as NEUP to be added.

				Та	ble 4 Validation for Gas-C	ooled Rea	actors				
Test	T	F	к	м	Code(s) Involved	Туре	Design Type	Status	Validation Reference		Depetes medal in the Virtual Test Dedu
HTTR	x		X		Griffin, BISON, Pronghom	IET	HTGR	DOE-O	[5-1], [5-2] [5-37], [5-38],		Denotes model in the Virtual Test Bed:
HTTF	x				SAM	IET	HTGR	DOE-C			[5-40] VTB, High Temperature Engineering Test Reactor (HTTR) Multiphysics Mo https://mooseframework.ini.gov/virtual_test_bed/htgr/httr/index.html
HTTF	×				Pronghorn, Nek	IET	HTGR	DOE-O	[5-25],[5-26] [5-28] [5-34], [5-55]		
HTR-10			х		Shift, Griffin	IET	PBMR	DOE-C	[5-5], [5-32]		
HTR-10	X				SAM	IET	PBMR	DOE-P	[5-63]		Placeholder for future reference
HTR-PM	×		×		SAM, Pronghorn, BISON, Griffin	IET	PBMR	DOE-O	[5-6], [5-41] [5-42]	- C	
THTR-300	×		X		SAM, Pronghorn, BISON, Griffin	IET	PBMR	DOE-P	[5-7]		[5-7] TBD, Planned. (Simulation depends on recovering the data and consideration of fuel cycle.)
ΤΑΜU ΔΡ	X				SAM, Pronghorn	SET	PBMR MSPB	DOE-C	[5-8], [5-33]		


 Tables and highlights are intended to quickly show what assessment is complete, and what could be done.

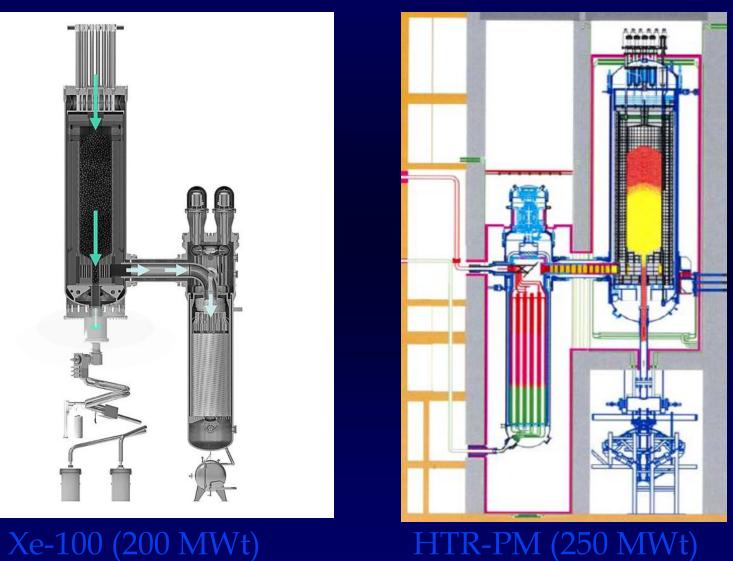
BlueCRABV&V Report Comments

- At least some assessment has been completed for all technologies.
- Gas-cooled systems and Sodium liquid metal systems have received the most attention and have the most assessment.
- Molten fuel salt assessment is highly dependent on the MSRE (10 MWt). Scaling these data to other designs may be an issue.
- Heat pipe experimental data is available, but assessment is lagging. More work is necessary.
- Microreactor assessment will depend on prototypes currently planned or under construction.

Reference Model Development

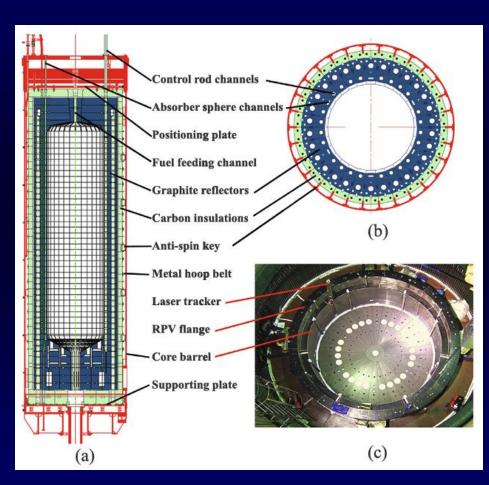
- Reference Models Generic representation of a design type, based on publicly available information.
- Scenarios "of interest" are selected (loss-of-flow, loss-of-heat sink, rapid reactivity insertion).
- Simulations performed to demonstrate code capabilities and *identify deficiencies before licensing reviews begin*.

Reference Plant Status

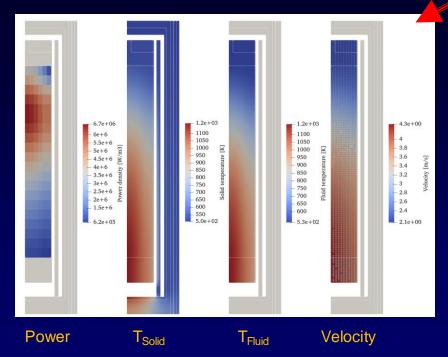

Туре	Reference Design	Accomplishments
GCR	HTR-PM (250 MWt)	2D Porous Media, Pebble Tracking & Equilibrium Core, RCCS
SFR	ABTR (250 MWt)	61 Chan Model with DRACS, Thermal Expansion, Doppler
MSR (cooled)	PB-FHR (320 MWt)	2D Porous Media, Pebble Tracking & Equilibrium Core, RCCS
MSR (fueled)	MSRE (10 MWt)	Neutron Precursor Tracking, Neutron Diffusion
MicroRx	~ SPR A	Heat Pipe Modeling, 3D Heat Conduction, Neutron Diffusion, Thermal Expansion
MicroRx	~ eVinci	Heat Pipe Modeling, 3D Heat Conduction, Neutron Transport

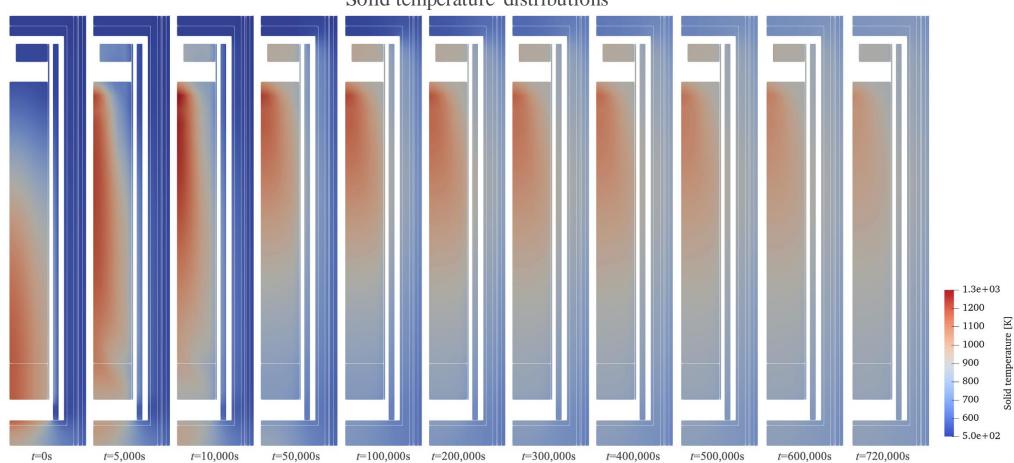
Other Available Reference Plants

Туре	Reference Design	Comments
GCR	HTTF, PBMR-400	Benchmark Participation, Validation
SFR	FFTF	Benchmark Participation, Validation
MSR (fueled)	EVOL	Internal Circulation (i.e., requires ~ CFD)


Gas-Cooled Pebble Bed Reference Plant: HTR-PM

HTR-PM General Design


Parameter	Value
Core power [MWth]	250.00
Core inlet temperature [K]	523.15
Core outlet temperature [K]	1023.15
Core outlet pressure [MPa]	7.0
Pebble-bed radius [m]	1.50
Pebble-bed height [m]	11.00
Reflector outer radius [m]	2.50
Control rods channels	24
Reactivity Shutdown Channels	4
Barrel outer radius [m]	2.69
Bypass outer radius [m]	1.69
Vessel outer radius [m]	3.00
Number of pebbles	419,384
Pebble types	1 type
Avg. pebble packing fraction	0.61
Avg. number of passes	15
Avg. pebble residence time [days/pass]	70.5

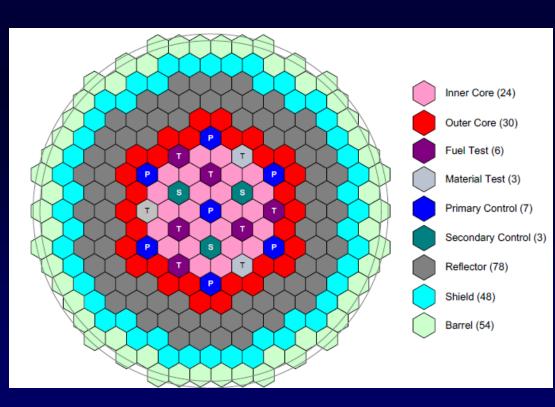

HTR-PM Applications

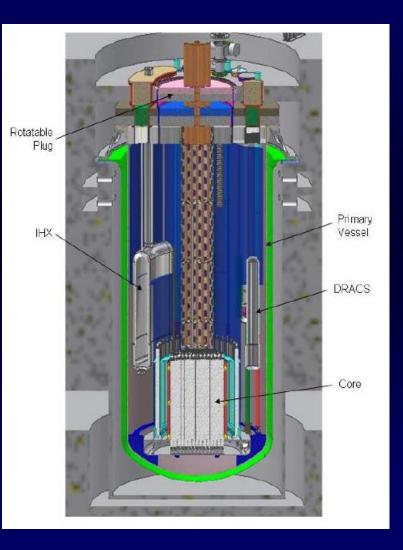
- Coupled SAM/Griffin multiapp, with 2D (r,z) porous media core & vessel with 1D loops. Includes air-cooled RCCS.
- Griffin used for pebble tracking, depletion, equilibrium core, and provides core axial & radial power, isotope distribution.
- Coupled model used for:

- Steady-state temperatures & flow
- Overcooling transient (reactivity insertion)
- P-LOFC
- D-LOFC
- Small leak / LOCA (planned)

Results: Transient Pressurized Loss of Forced Cooling (PLOFC)

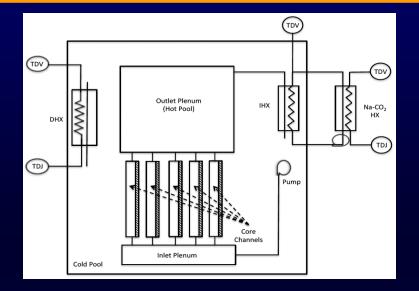
18

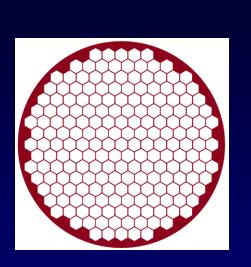

Solid temperature distributions

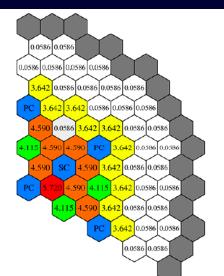

Credit: Rui Hu, et al. (ANL)

Sodium Fast Reactor Reference Plant (ABTR)

- Power: 250MWt, 95 Mwe
- Coolant: Sodium
- Temperatures: 355 °C/510 °C
- Reactor Vessel: 5.8 m diameter, 16 m height

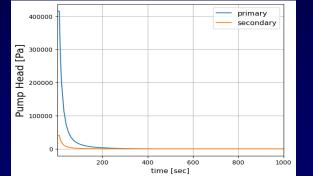


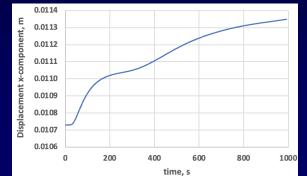


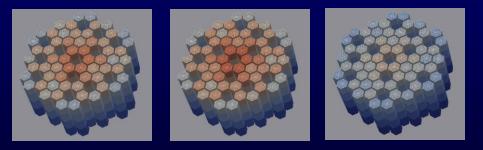


ABTR Model

- Reactor core: 61 channel representation
- Simplified intermediate loop, with two heat exchangers
- DRACS (DHX) is modeled
- Inlet plenum (cold pool), outlet plenum (hot pool), modeled with 0-D volumes
- A cover gas on top of the hot pool
- Reactivity components: Doppler, Axial fuel expansion, Sodium temperature and density, Radial support plate expansion.
- Thermomechanical model of support plate using BISON.
- Unprotected loss of flow (ULOF) scenario simulated.

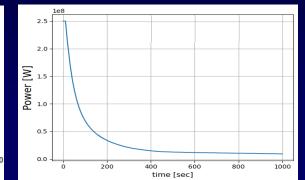


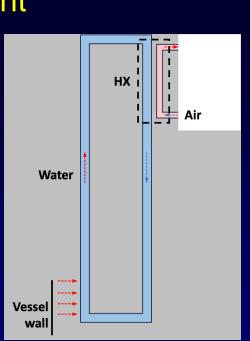


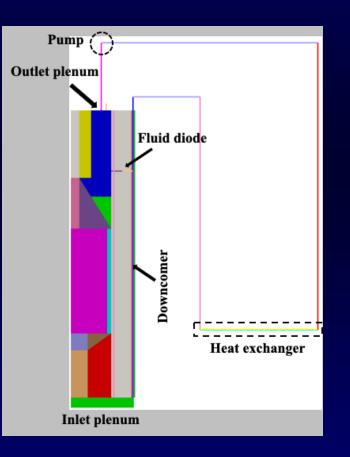


ULOF in ABTR

- ULOF is considered a beyond-designbasis accident...
- Power to both the primary and secondary coolant pumps is lost, and reactivity scram mechanisms assumed to fail.
- Mass flow rate decreases to zero due to pump head decreasing.
- Support plate displacement follows the inlet sodium temperature trend.
- Power decreases due to support plate thermal expansion and Doppler feedback

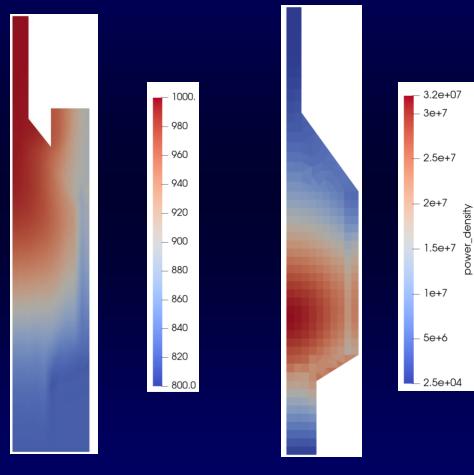



Credits: J. Ortensi et al (INL), R. Hu, et al. (ANL)



Molten Coolant Salt Reference Plant (PB-FHR)

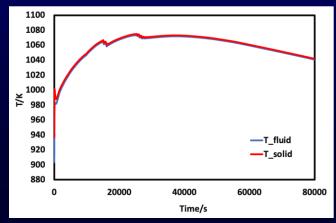
- Pebble Bed Fluoride High Temperature Reactor (PB-FHR)
 - 320 MWt
 - Coolant salt = FLiBe
 - 4 cm diameter (buoyant) pebbles
 - TRISO with 19.55% enrichment
 - Water cooled RCCS
 - UCO
 - 62.25 day transit
 - Tin = 550 C
 - Tout = 650 C

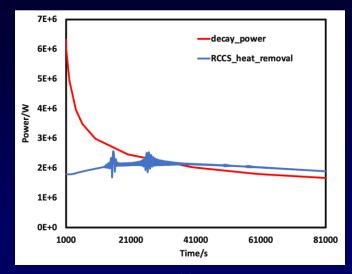


Molten Coolant Salt Reference Plant (PB-FHR)

- Coupled model developed using SAM/Griffin
- Equilibrium core determined with streamline depletion method.
- Simulations conducted for:
 - Steady-state power, temperature, flow distribution
 - Control rod withdrawal event
 - Unprotected loss-of-flow

Fluid Temperature


Power Density

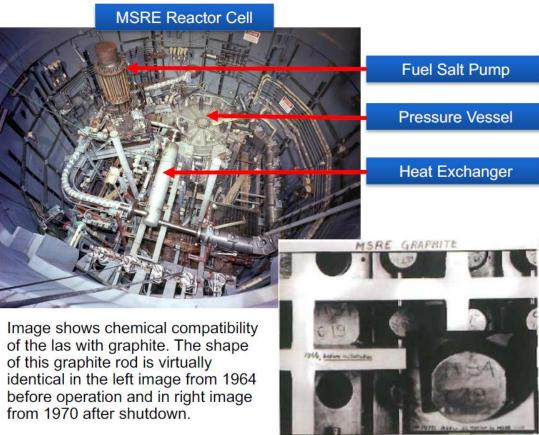

Molten Coolant Salt Reference Plant (PB-FHR)

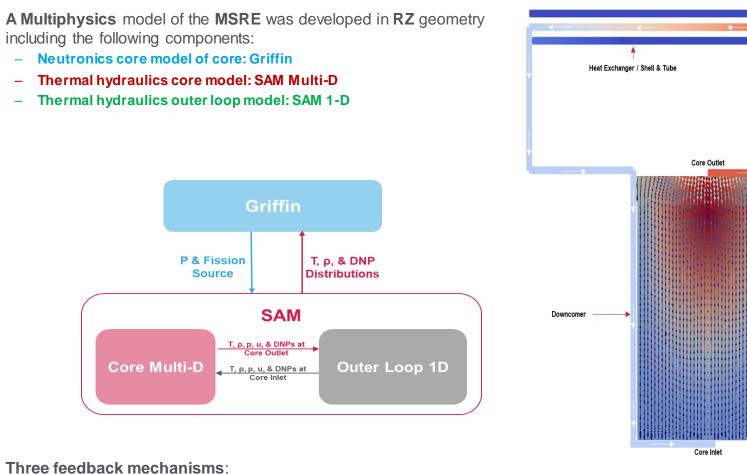
- Unprotected loss-of-flow scenario
 - Pump coasts down over 75 seconds
 - SCRAM does not occur
 - Fluid diode opens and natural circulation is established between core and downcomer
 - Core heats resulting in decrease in prompt power
 - Decay power removed by RCCS

Improved model coming soon !

Core Solid and Coolant Temperatures

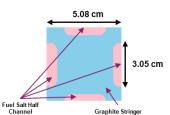
Credit: J. Ortensi, et al (INL)


Molten Fuel Salt Reference Plant


• Molten Salt Reactor Experiment (MSRE) doubles as both a reference plant and for code validation.

ORNL successfully demonstrated key MSR technology at the MSRE MSRE

Salt chemistry was well behaved (almost no corrosion) Nuclear performance closely paralleled predictions Molten-salts stable under reactor conditions


- 1965 (June) First Criticality
- 1966 (Dec) First Full Power Operation
- 1968 (Oct) First Operation on U-233
- 1969 (Dec) Shutdown
- Design features:
 - 8 MWt
 - Single region core 33% U-235
- · Graphite moderated
- Alloy N vessel and piping
- Achievements
 - First use of U-233 Fuel
 - First use of mixed U/Pu salt fuel
 - On-line refueling
 - >13,000 full power hours

26

- I nree feedback mechanisms:
 - **Temperature**: Fuel Salt and Graphite.
 - **Density**: concentration of the salt nuclides due to salt expansion.
 - Velocity: delayed neutron precursors distributions in core & outer loop.

Fuel Salt Pump

> - 9.4e+02 - 930

- 925

920

- 915

- 910

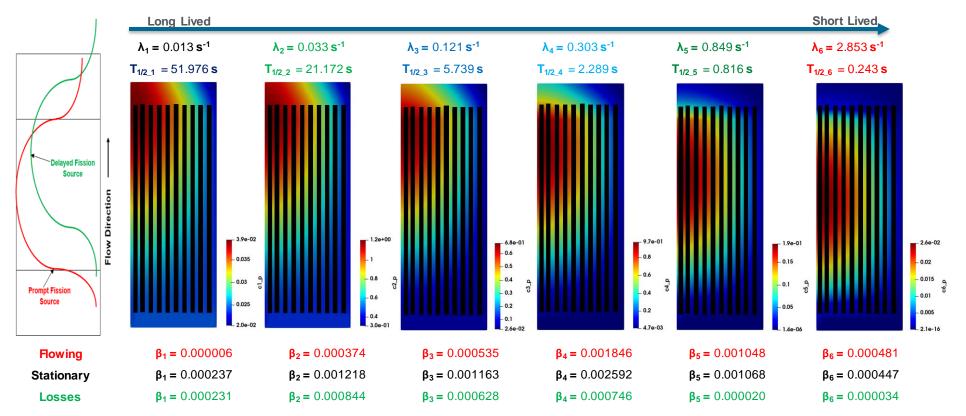
- 905

900

- 895 - 890 - 885

8.8e+02

Upper Plenum Fuel Salt

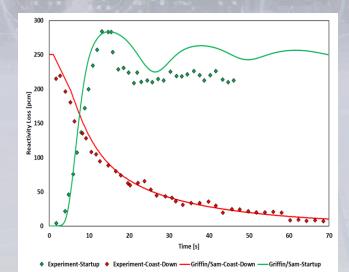

Core / Fuel Salt & Graphite

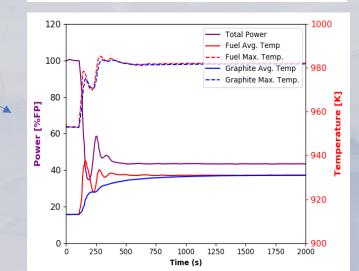
Lower Plenum Fuel Salt

•

٠

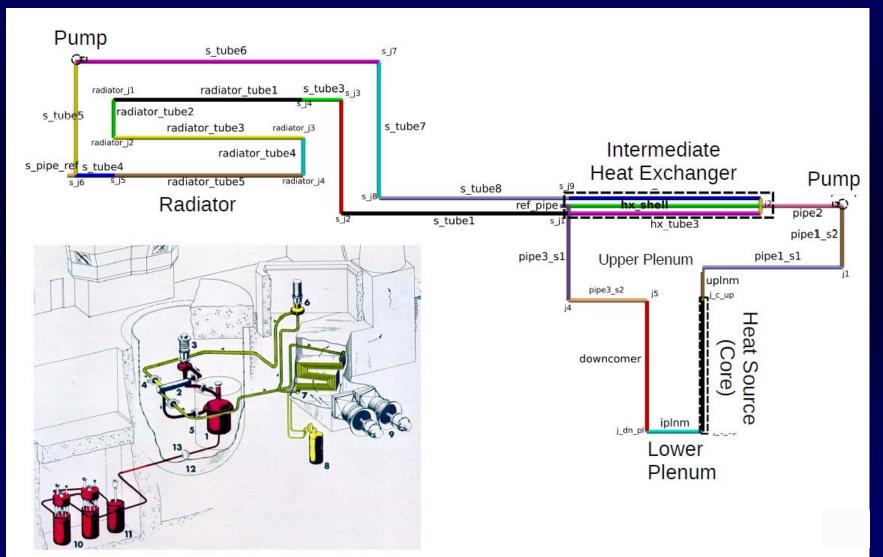
Delayed Neutron Precursors Steady State Solution




Calculated total reactivity losses due to fuel salt flow is 240 pcm.

27

MSRE Simulations

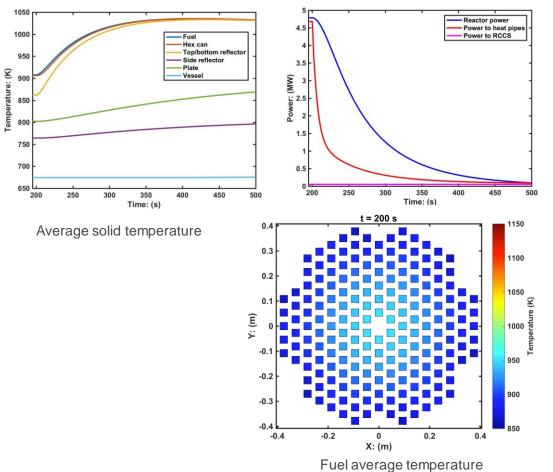

- Simulations performed for:
 - Pump start-up
 - Pump coastdown
 - Unprotected Loss-of-Flow (ULOF) at zero power
 - Unprotected Loss-of-Flow (ULOF) at full power
- Sensitivity Study on natural circulation (1D)

MSRE 1D Model

Heat Pipe Cooled Microreactors

- Reference Models developed for two types of heat pipe cooled microreactors.
 - "Modified SPR-A" which is a modified version of the "Special Purpose Reactor" as a heat pipe cooled fast reactor with metallic fuel. Orientation is vertical.
 - "eVinci-like" which is based on public information on a heat pipe cooled thermal reactor with TRISO fuel within a graphite monolith. Orientation is horizontal.

SINGLE HEAT PIPE FAILURE


- 1 of central heat pipe is assumed to be failed (HP1)
- The reactor power re-stabilizes to about 4.718 MW after 300 s of the transient
- Fuel temperature of the failed cell increases about 150 K
- Fuel temperature increase in the neighboring cells is limited, ~ 20 K
- Heat removal rate of neighboring heat pipes increases

Credit: J. Ortensi, et al (INL), J. Kelly (NRC)

LOSS OF HEAT SINK

- Heat pipe heat removal rate drops quickly to a lower level
 - Flow rate drops to 0.1% of steady-state value
 - Slow decrease due to the thermal inertial of the heat pipes
- Reactor power drops quickly due to the strong negative reactivity feedback
- Decay power was not considered yet in the reactor physics model

Credits: J. Ortensi et al (INL), J. Kelly (NRC)

Advanced Reactors Three-Phased Approach for Confirmatory Models

<u>Stage 1</u> – Generic Readiness for a Reactor Technology Code infrastructure development, reference plant model/source term demonstration, generic models that benefit all non-LWR designs (IAP Strategy 2 Volumes)

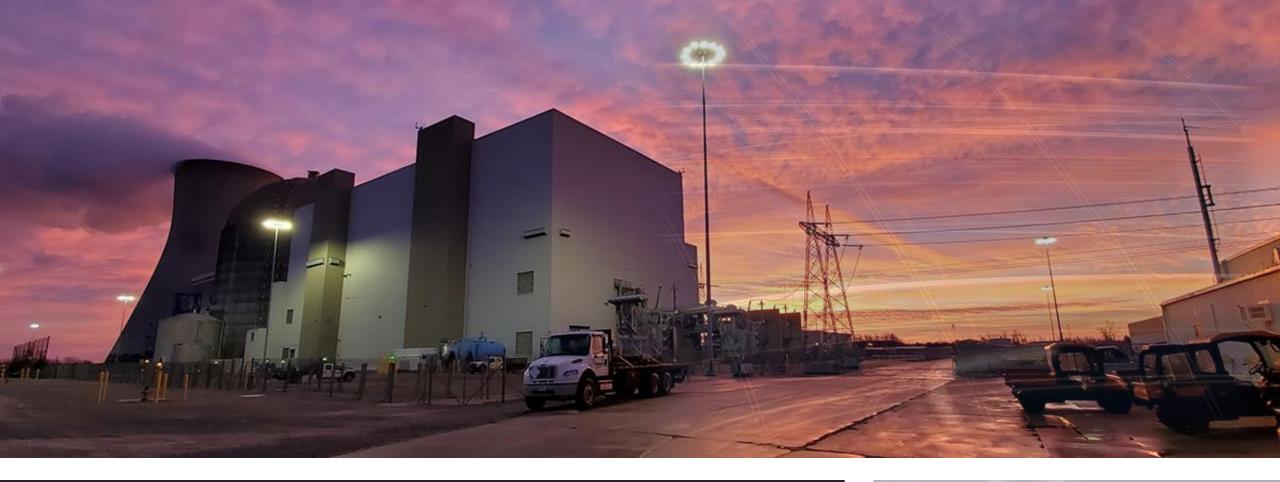
<u>Stage 2</u> – Readiness for a Specific Application

Model build of a preapplication based design)

<u>Stage 3</u> – Model build, Analysis, and Review of a specific application under licensing review

Conduct confirmatory analysis, generation of RAIs, and input to SER

Next Steps


- Improve upon existing Reference Models:
 - Multi-dimensional core models for 3D asymmetric events
 - Improved secondary loop models and more accurate RCCS.
 - More accurate core power distributions
- Additional validation
 - Address assessment gaps
 - Work with DOE and applicants on database insufficiencies
- Further prepare for applicant submittals based on improved public and proprietary information.

Summary & Conclusions

- Code development and preparation for independent analysis of non-LWRs with the BlueCRAB system codes is well underway and making significant progress.
- Reference plant models are available and being tested for each "near term" applicant design.
- Verification and Validation (V&V) has been documented in a separate report and can be used to identify weaknesses in the available database and assessment.
- BlueCRAB is "tentatively ready" for independent analysis of non-LWRs and is available to support the licensing and evaluation process.

Status Update on Computer Code and Model Development for Non-Light-Water Reactors

April 3, 2024

Fuel Performance Analysis

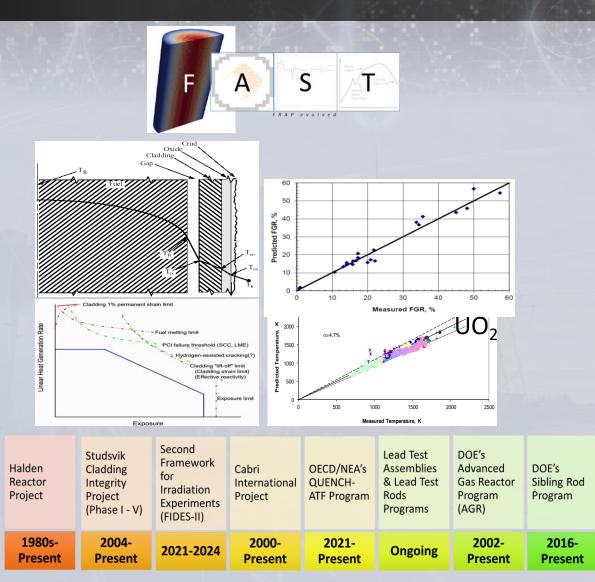
James Corson, Ph.D.

Senior Reactor System Engineer Division of Systems Analysis Office of Nuclear Regulatory Research

Fuel Performance Analysis Objectives

- Understand thermal-mechanical nuclear fuel performance during normal operations, anticipated operational occurrences, and accident conditions
 Provide insights for regulatory guidance
 Support topical report reviews
- Ensure tool & model readiness for licensing non-LWRs
 - ✓ Develop necessary modeling capabilities in FAST
 - Perform assessments against available experimental data

J United States Nuclear Regulatory Commission Protecting People and the Environment	Revisior anuary 31, 20
NRC Non-Light Water Reactor (Non- Vision and Strategy, Volume 2 – Fue Performance Analysis for Non-LWRs	1
Technical Readiness Readiness Communication)
ML20030A177	


Fuel Performance Analysis FAST Code

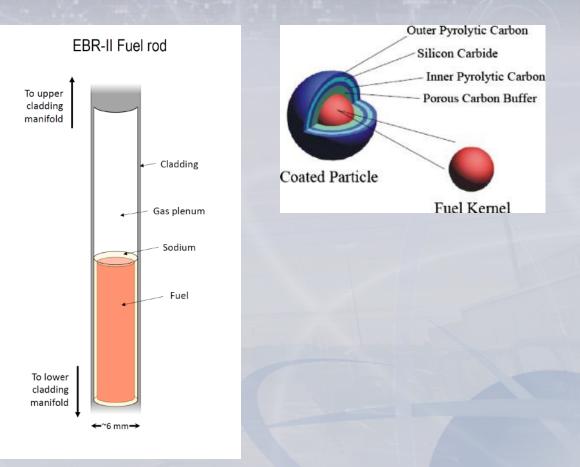
What Is It?

FAST (<u>F</u>uel <u>A</u>nalysis under <u>S</u>teady-State & <u>T</u>ransients) calculates the thermal-mechanical response of nuclear fuel under steady-state and accident conditions.

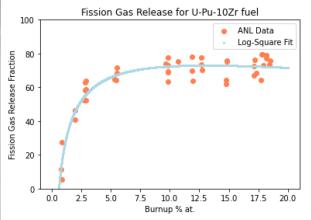


How Is It Used? FAST is used to support licensing reviews by assessing specified acceptable fuel design limits, evaluating vendor fuel codes and methods, and providing initial conditions for design-basis accident analysis. It is also used to perform spent fuel analyses.

Who Uses It?


FAST is used by more than 75 domestic and international organizations, including other regulatory bodies, technical scientific organizations, and utilities, for safety and core reload applications.

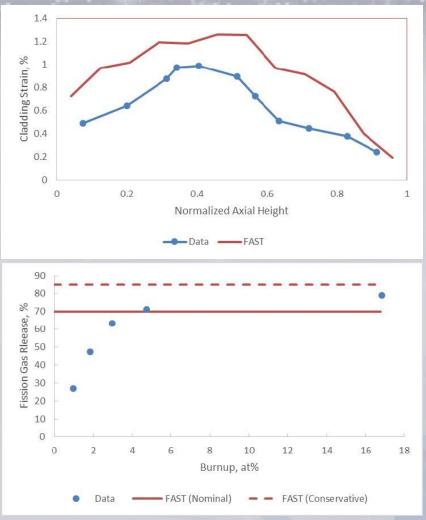
How Has It Been Assessed? FAST is built on more than 30 years of assessment stemming from the FRAPCON/FRAPTRAN codes, as well as experience with fuel vendor codes and data. It offers more than 200 assessment cases that cover the UO₂/zirconium fuel system, and new cases added for metallic fuels.4


Fuel Performance Analysis Approach for Metallic and TRISO Fuel Forms

- Update FAST with relevant models for metallic (U-xPu-10Zr) and TRISO fuels
- 2. Assess the code against relevant experimental data
 - a. EBR-II and FFTF for metallic fuel
 - b. AGR for TRISO

Fuel Performance Analysis Metal Fuel Models in FAST

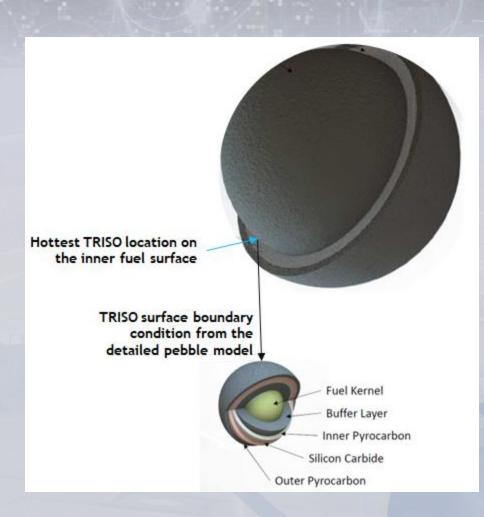
- Existing U-10Zr fuel, HT-9 cladding models are empirical, based primarily on EBR-II experience
 - Anisotropic fuel swelling fitted to experimental data
 - Fission gas release fitted to experimental data
- Future work needed for fuel failure models and to extend beyond the existing database
 - Fuel clad chemical interaction (FCCI) model
 - Cladding overpressure failure models
 - More mechanistic swelling and fission gas release models


FGR data from Pahl et al., JNM 188 (1992) 3

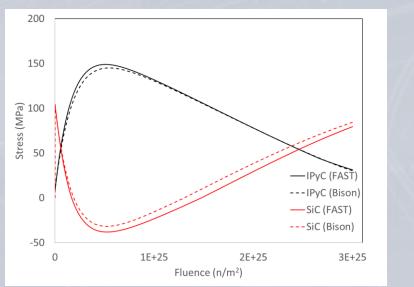
Fuel	Cladding	Depleted Zone, μm	Burnup, at%	Temperature, °C
U-15Pu-9Zr	304L 316	140 30	5 5	650 650
U-9Pu-10Zr	D9 316	100 70	17 13	580 580
U-10Zr	D9	20	17	580
U-10Zr	HT9	100	5	650
U-19Pu-10Zr	НТ9	45	12	600

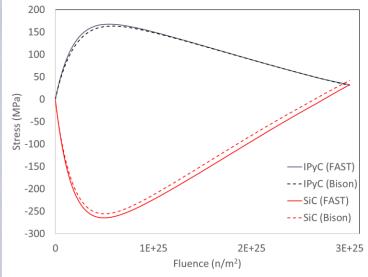
FCCI data from Hofman et al., Progress in Nuclear Energy 31 (1997) 83

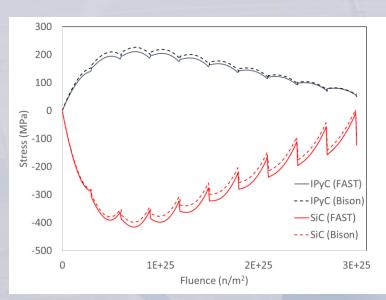
Fuel Performance Analysis Preliminary FAST Assessment (Metal Fuels)


- Initial assessments performed in 2018
 - Included constant swelling and FGR rates
 - Updated assessment using new models in progress
- Improved models can reduce uncertainties
 - Currently updating our earlier assessments

Geelhood & Porter, Top Fuel 2018

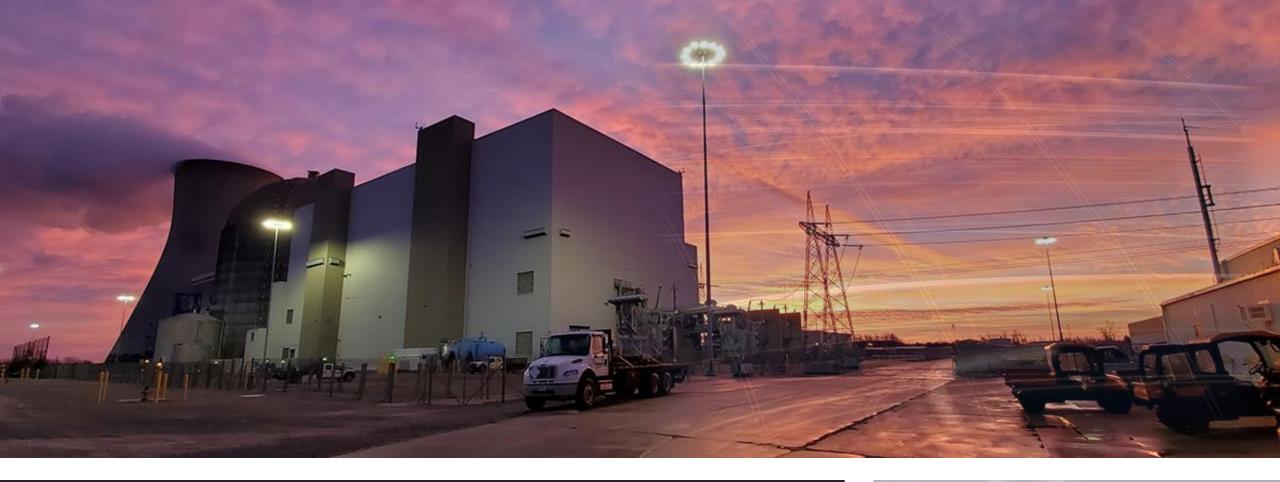

Fuel Performance Analysis FAST-TRISO


- New Standalone 1D code for TRISO fuel performance
 - Focuses on uranium oxycarbide (UCO) kernels surrounded by buffer, inner pyrocarbon (IPyC), silicon carbide (SiC), and outer pyrocarbon (OPyC) layers
- Latest release includes the following capabilities
 - Heat transfer from the kernel to the particle surface
 - Stresses in PyC and SiC layers
 - Fission product transport from the kernel through the layers
 - Monte Carlo analysis for layer failure probabilities



Fuel Performance Analysis Ongoing TRISO Work

- Code development
 - Mechanical model recently extended to include PyC swelling and creep
 - Currently developing correlations for stress concentrations due to PyC cracking and debonding and aspherical particles (using Abaqus)
- Code assessment
 - Results in good agreement with CRP-6 fuel performance cases 1-8 in IAEA-TECDOC-1674
 - Work comparing to AGR fission product release and failure data ongoing


CRP-6 Case 4d

CRP-6 Case 6

9

Fuel Performance Analysis Summary

- NRC fuel performance codes are ready for confirmatory analysis of U(Pu)-10Zr and UCO TRISO
 - More assessments against EBR-II (metallic fuel) and AGR (TRISO) would be beneficial
 - Longer-term goal is to add more mechanistic models informed by data from DOE's Advanced Fuels Campaign and NEAMS code development efforts
- Code development efforts have significantly built staff expertise on advanced reactor fuel behavior

Status Update on Computer Code and Model Development for Non-Light-Water Reactors

April 3, 2024

Severe Accident Analysis

Shawn Campbell, Ph.D.

Reactor System Engineer

Lucas Kyriazidis

Reactor System Engineer

Andrew Bielen, Ph.D.

Senior Reactor System Engineer

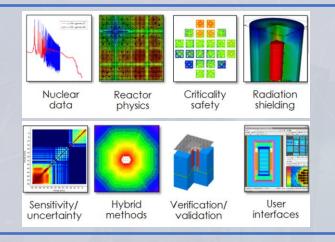
Division of Systems Analysis Office of Nuclear Regulatory Research

Severe Accident Analysis Objectives

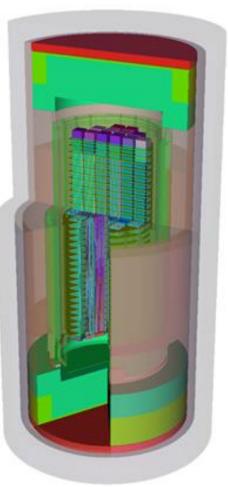
- Understand severe accident progression in non-LWRs

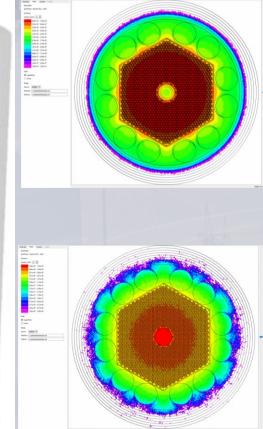
 Provide insights for regulatory guidance
 Build staff knowledge and expertise in modeling non-LWRs
- Facilitate dialogue on staff's approach for source term
- Ensure tool & model readiness for licensing non-LWRs
 - Develop necessary modeling capabilities in SCALE & MELCOR
 - Identify accident characteristics and uncertainties affecting source term

REVISION 1 JANUARY 31, 2020


NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 3 – Computer Code Development Plans for Severe Accident Progression, Source Term, and Consequence Analysis

Severe Accident Analysis SCALE Code

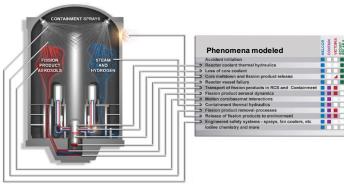

What Is It?


The SCALE code system is a modeling and simulation suite for nuclear safety analysis and design. It is a modernized code with a long history of application in the regulatory process.

How Is It Used?

SCALE is used to support licensing activities (e.g., analysis of spent fuel pool criticality, generating reactor physics and decay heat parameters for design-basis accident analysis, and review of consolidated interim storage facilities, burnup credit).

Who Uses It? SCALE is used by the NRC and in 61 countries (about 11,000 users and 33 regulatory bodies).



How Has It Been Assessed? SCALE has been validated against numerous critical experiments that cover a range of fuel and moderator materials and geometries, and against measured PWR and BWR spent fuel isotopic composition and decay heat measurements. 4

Severe Accident Analysis MELCOR Code

What Is It?

MELCOR is an engineering-level code that simulates the response of the reactor core, primary coolant system, containment, and surrounding buildings to a severe accident.

SURCE SU

How Is It Used?

MELCOR is used to support severe accident and source term activities at the NRC, including the development of regulatory source terms; support for probabilistic risk assessment models and site risk studies; containment analysis; and forensic investigations of the Fukushima accident.

Phébus- Fission Products & Source Term Program	Behavior of Iodine Project (BIP)	Experimental Program for Iodine Chemistry Under Radiation (EPICUR)	Source Term Evaluation and Mitigation (STEM) Project	Benchmark Study of the Accident at Fukushima (BSAF) Project	Management and Uncertainties of Severe Accidents (MUSA)	Experiments on Source Term for delayed Releases (ESTER) Reduction of Severe Accident Uncertainties (ROSAU)	Ihermodynamic Characterization Of Fuel debris and Fission (TCOFF-2)	Fukushima Accident Information Collection & Evaluation (FACE)
1988-2010	2006-2019	2005-2016	2011-2019	2013-2018	2019-2023	2020-2024	2022-2024	2023-2026

Who Uses It?

MELCOR is used by domestic universities and national laboratories and around 30 international organizations. It is distributed as part of the NRC's Cooperative Severe Accident Research Program (CSARP).

How Has It Been Assessed? MELCOR has been validated against numerous international standard problems, benchmarks, separate effects (e.g., VERCORS) and integral experiments (e.g., Phebus FPT), and reactor accidents (e.g., TMI-2, Fukushima). 5

Severe Accident Analysis Approach

- 1. Build representative SCALE core models and MELCOR full-plant models
- 2. Select scenarios that demonstrate code capabilities for key phenomena

3. Perform simulations

SCALE - generate decay heat, core radionuclide inventory, and reactivity feedbacks
 MELCOR - model accident progression, plant response, and source term

D

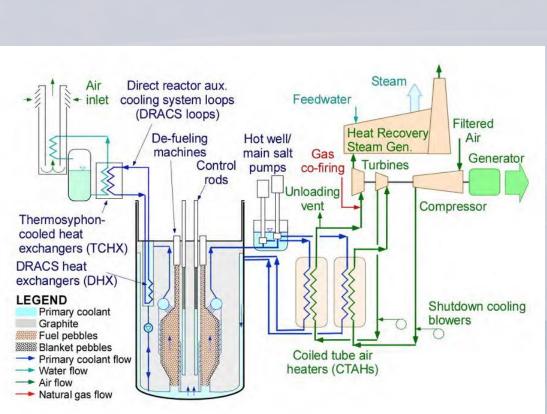
Severe Accident Analysis Project Scope

- Five Types of Non-LWRs Analyzed for Source Term Demonstration
- 2021
 - Heat Pipe Reactor INL Design A
 - High-Temperature Gas-cooled Pebble-bed Reactor PBMR-400
 - Molten-salt-cooled Pebble-bed Reactor UCB Mark 1
- 2022
 - Molten-salt-fueled Reactor MSRE
 - Sodium-cooled Fast Reactor ABTR

SCALE/MELCOR non-LWR source term demonstration project				
 Heat-pipe reactor workshop Slides Video Recording SCALE report MELCOR report 	June 29, 2021			
 High-temperature gas-cooled reactor workshop Slides a Video Recording Ext SCALE report a MELCOR report a 	July 20, 2021			
 Fluoride-salt-cooled high-temperature reactor workshop Slides Video Recording SCALE report MELCOR report 	September 14, 2021			
 Molten-salt-fueled reactor workshop Slides Video Recording SCALE report MELCOR report 	September 13, 2022			
Sodium-cooled fast reactor workshop Slides Video Recording ETT SCALE report MELCOR report	September 20, 2022			

Public workshop videos, slides, reports at <u>advanced reactor source term webpage</u> SCALE input models available <u>here</u>. MELCOR input models available upon request.

Severe Accident Analysis Molten-salt-cooled Pebble-bed Rx – UCB Mark 1

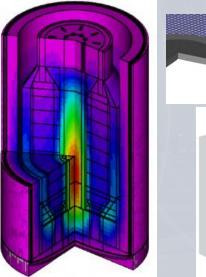

Reactor Characteristics

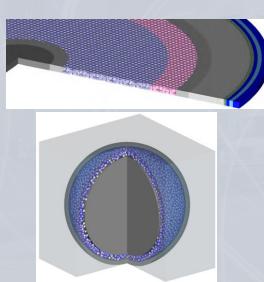
- o 236 MWth reactor
- Atmospheric pressures
- Flibe cooled
- Pebble fueled (TRISO) at 19.9 wt.% U-235
- Online refueling
- Direct Reactor Auxiliary Cooling System (DRACS)
 - 3 trains –2.36 MW/train
 - Each train has 4 loops in series
 - Primary coolant circulates to DRACS heat exchanger
 - Molten-salt loop circulates to the thermosyphon-cooled heat exchangers (TCHX)
 - Water circulates adjacent to the secondary salt tube loop in the TCHX

Accidents Modeled

- ATWS Anticipated transient without SCRAM
- SBO –Station blackout
- LOCA Loss-of-coolant accident

1000

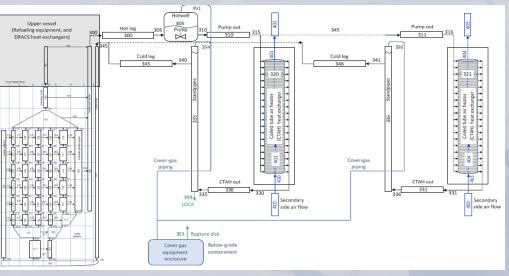

Severe Accident Analysis Molten-salt-cooled Pebble-bed Rx – UCB Mark 1


Code Improvements

• New interface for rapid depletion of TRISO fuel for low computational costs (*increased efficiencies for performing wide array of sensitivity studies*)

scale

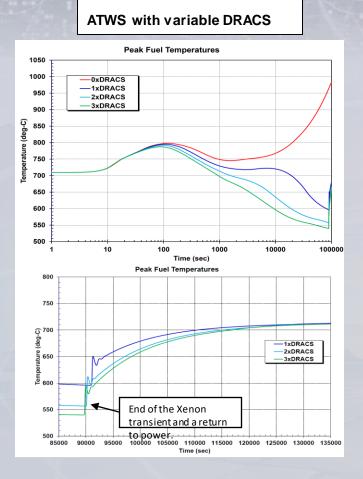
• Developed workflow for pebble-bed reactor equilibrium core generation using SCALE's efficient multigroup treatment for double heterogeneous systems

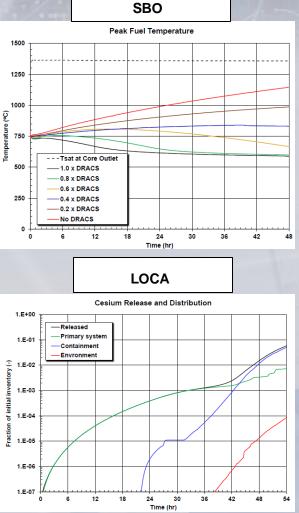


 Added a generic equation of state utility for thermal hydraulic analysis in advanced reactor working fluids

MELCOR

- Fission product transport and retention models added for molten salts
- Improved fission product release models for TRISO
 - Point-kinetic enhancements for reactivity insertion


Severe Accident Analysis Molten-salt-cooled Pebble-bed Rx – UCB Mark 1


<u>ATWS</u>

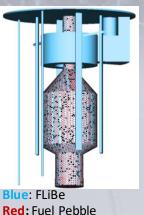
- Fuel heat-up was limited by reactivity feedback and the passive decay heat removal system
- <u>SBO</u>
- With failure of the passive decay heat removal system, coolant boiling occurred over the course of several days

<u>LOCA</u>

- With one train of decay removal system operating, coolant boiling was possibly averted.
- With failure of the passive decay heat removal system, fuel damage occurred.

Severe Accident Analysis Hermes I Construction Permit Application

- On September 29, 2021, Kairos Power, LLC (KP) submitted a construction permit application to the NRC, requesting approval for their Hermes 35 MWth, non-power reactor facility.
- Leverage the UCB-Mark 1 FHR plant model to support Hermes analysis (January-March 2022). Scope was limited to design-basis events (i.e., no fuel uncovery).
- Provided NRR with SCALE and MELCOR analyses that supported their review looking at:
 - o reactor heat-up scenario (e.g., loss of forced circulation),
 - insertion of excess reactivity scenario (e.g., accidental control rod withdrawal)



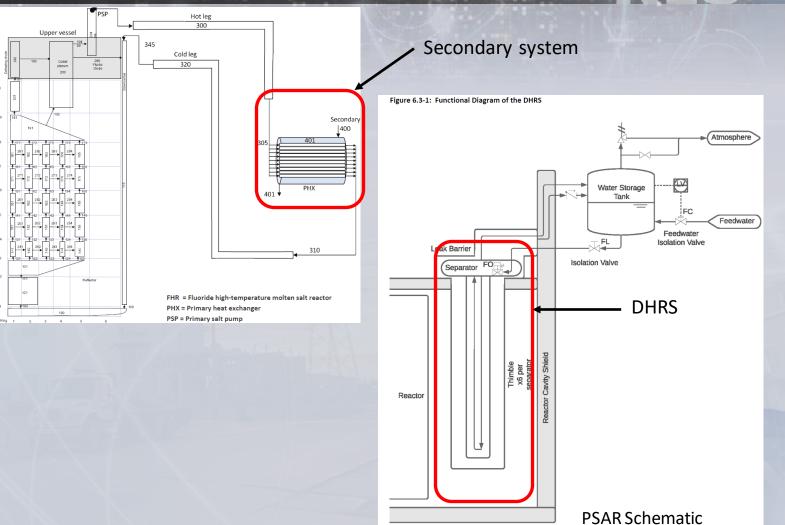
Hermes Non-Power Reactor Preliminary Safety Analysis Report HER-PSAR-001 Revision 0 September 2021

Severe Accident Analysis Hermes I: SCALE Model

- Multigroup Monte Carlo transport using SCALE/KENO-VI, fuel isotopics calculated with SCALE/ORIGEN
- Random pebble geometry approximated by regular lattice
- Equilibrium fuel isotopics generated iteratively via 2D slice models with SCALE/TRITON
- Axially-dependent fuel isotopics inserted into 3D core model for reactivity and power shape evaluations
- Does not currently include shutdown (in-bed) elements – on list for further development

Relative Power	Kairos PSAR	SCALE
Axial (-)	1.2	1.19
Radial (-)	1.2	1.76
Peak Pebble (-)	1.8	2.09

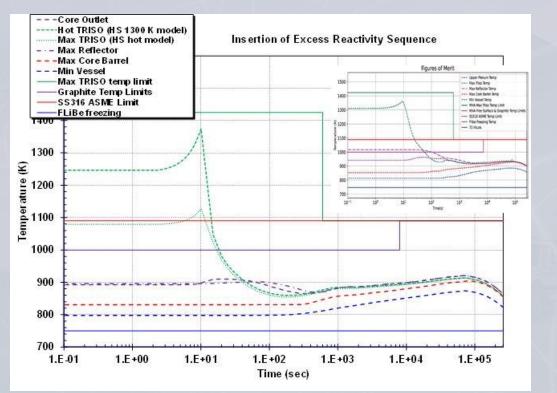
Black: Moderator Pebble


Parameter	Kairos PSAR	SCALE*
Fuel Doppler (pcm/K) ⁺	-4.1	-4.30 ± 0.27
Moderator (pcm/K) ⁺	-0.4	-0.47 ± 0.13
Coolant (pcm/K) ⁺	-1.6	-1.62 ± 0.02
Void (pcm/% void, @3% void)	-53	-46.6 ± 4.0
Reflector (pcm/K) ⁺	+2.0	+1.92 ± 0.23
β_{eff} (pcm)	605	576 ± 10
* includes Monte Carle uncertainty		12

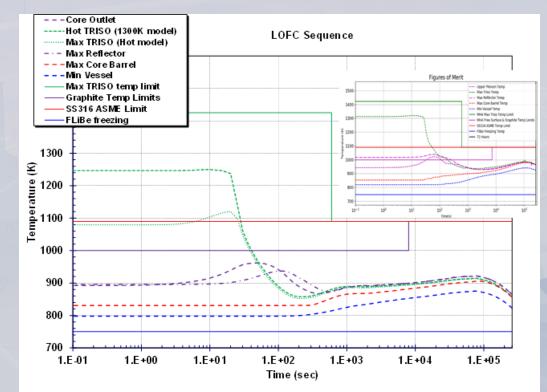
* - includes Monte Carlo uncertainty

[†] - calculated assuming temperature distributions provided by MELCOR

Severe Accident Analysis Hermes I: MELCOR Model

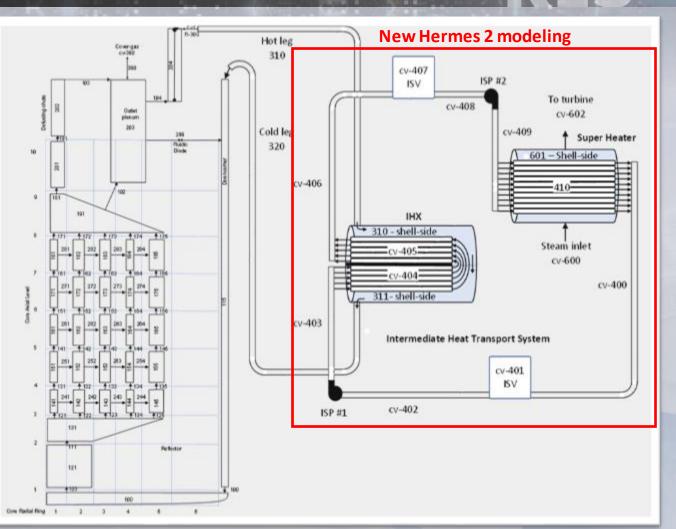

- Model focuses on primary system
 - Secondary system and DHRS represented via boundary conditions
 - Necessary given lack of detailed design info
- DHRS model
 - Water (constant boundary condition at 100°C)
 - Water to DHRS evaporator tube wall uses boiling heat transfer coefficient
 - Thermal resistance between evaporator tube to thimble casing

Severe Accident Analysis Hermes I: SCALE/MELCOR Results


Insertion of Excess Reactivity

Withdrawal of control element inserts 3.02\$ over 100 seconds Reactor trips on high power

Loss of Forced Circulation


Concurrent trip of primary and intermediate coolant pumps Reactor trips on overtemperature

MELCOR results as compared with PSAR (upper right)

Severe Accident Analysis Hermes 2 Construction Permit

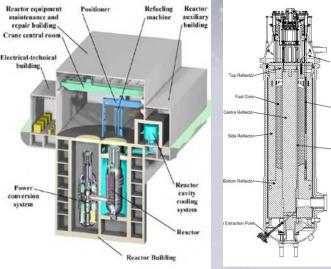
- On September 11, 2023, the NRC staff accepted the Hermes 2 CP application for detailed review (ML23233A167)
- RES is supporting NRR's review
 - Hermes 1 model updated to include the intermediate loop and the superheater steam heat exchanger
 - Perform independent scoping analysis to understand differences in DBA response between Hermes 1 and Hermes 2

Severe Accident Analysis Pebble-bed gas-cooled reactor – PBMR-400

Reactor Characteristics

- 400 MWth reactor, graphite moderated
- Helium-cooled & TRISO-particle pebble-fueled at 10 wt.% U-235
- Fuel discharged at high burnup (90 GWd/MTU)

New Modeling Capabilities


- SCALE: Interface for rapid depletion of TRISO fuel for efficient computational costs (*increased efficiencies for performing wide array of sensitivity studies*)
- MELCOR: TRISO fuel pebble thermal response, radionuclide diffusion, and failure models. Leveraged modeling efforts performed under NGNP (2006-2013)

Accidents Modeled

Depressurized loss-of-forced circulation

Insights

- Graphite oxidation from air ingress does not generate sufficient heat to impact fuel
- Passive heat dissipation into reactor cavity limits release from fuel failure
- A low graphite conductivity has the largest impact on the peak fuel temperature and release

Peak Fuel Temperatur

—Base case

-Low Gr k

-High Gr 🖡

-1.1X decay heat

0.9X decay heat

Low pebble emissivity

High pebble emissivity

-Low pebble porosity

Blocked RCCS

High pebble porosity

72

Time (hr

144

168

2000

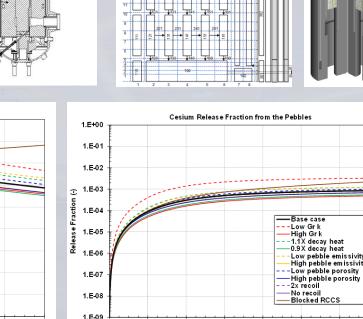
1800

1600

1400

<u> 1200</u>

<u>8</u> 1000


800

600

400

200

ΰ

72

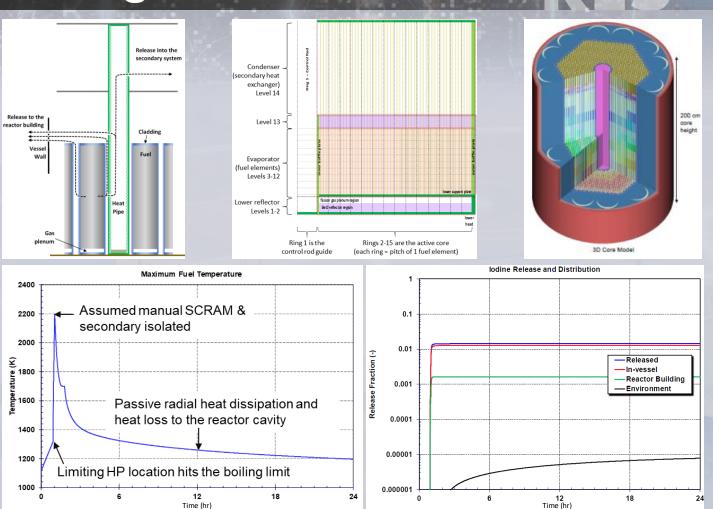
Time (h

Severe Accident Analysis Heat pipe reactor – INL Design A

Reactor Characteristics

- 5 MWth with a 5-year operating lifetime
- 1,134 heat pipes fueled with metallic U (19.75 wt.% U-235)
- Reactivity controlled via control drums

New Modeling Capabilities


- SCALE: New 302-group fast-spectrum library & 3D visualization improvements (*rapid model generations*)
- MELCOR: New thermophysical properties of sodium and potassium added, new HP-specific model (includes HP working fluid, HP connection to the secondary heat exchanger, and various HP failure modes)

Accidents Modeled

 Transient overpower (TOP), loss-of-heat sink, and anticipated transient w/o SCRAM

Key Insights

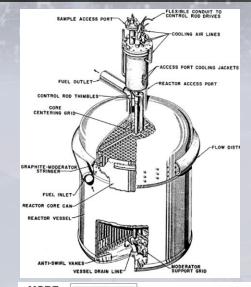
- Following SCRAM, passive heat dissipation into reactor cavity ends the release from fuel
- Heat pipe depressurization on failure drives the release from the reactor vessel into the reactor building
- Reactor building bypass requires two failures in a single heat pipe –
 one in the condenser region and another in the evaporator region

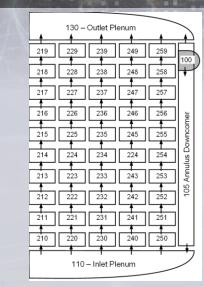
Severe Accident Analysis Molten-salt-fueled reactor – MSRE

Reactor Characteristics

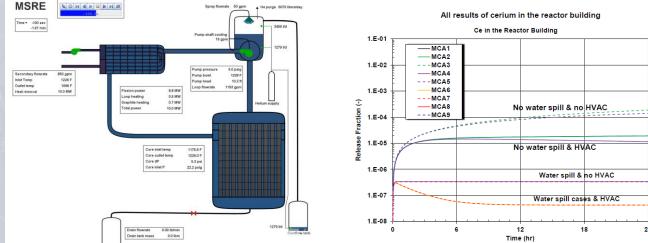
- 10 MWth reactor, graphite moderated at near atmospheric pressures
- Reactor fueled with dissolved fuel in molten salt (34.5 wt. % U-235)
- Fuel loop transit time ~25 seconds

New Modeling Capabilities


- SCALE: Modifications for handling liquid fuel, time-dependent systemaverage removal (e.g., simulating the off-gas system)
- MELCOR: Thermal hydraulic and equations of state for Flibe, Generalized Radionuclide Transport and Retention (GRTR) modeling framework, molten salt chemistry and physics pertaining to radionuclide transport, fluid fuel point kinetics


Accidents Modeled

• Full reactor inventory molten salt spill (dry and wet conditions)


Key Insights

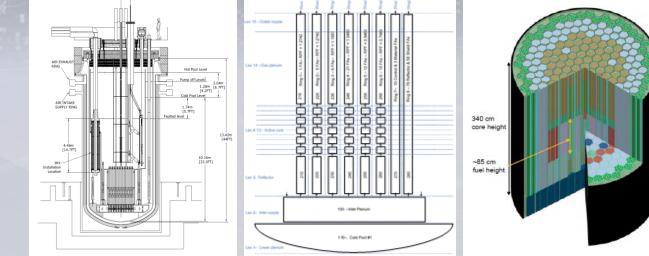
- Auxiliary filter operation increases the release of xenon to the environment while also filtering airborne aerosols
- Aerosol releases to the environment were small due to settling in the reactor cell, capture in the filter, and capture in the condensing tank in the water spill cases
- The aerosol mass in the reactor building also spanned many orders of magnitude depending on scenario assumptions

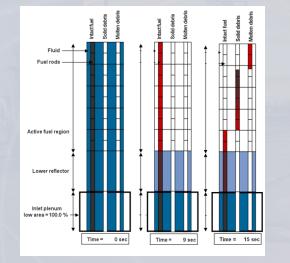
Severe Accident Analysis Sodium-cooled fast reactor – ABTR

Reactor Characteristics

- 250 MWth pool-type reactor, utilizing metallic U / HT-9 fuel rods
- Reactor fueled with U-Pu-Zr fuel slugs
- Liquid sodium coolant

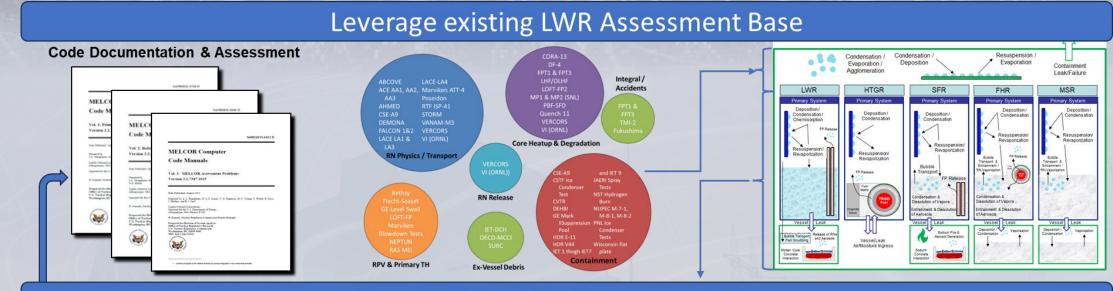
New Modeling Capabilities

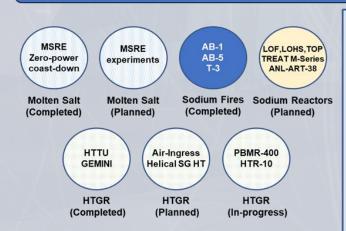

- SCALE: New capabilities in TRITON for generating nodal data for cartesian and hexagonal lattices and cells (e.g., few group homogenized cross-sections)
- MELCOR: SFR material properties, metallic fuel damage progression and radionuclide release models, sodium fire model


Accidents Modeled

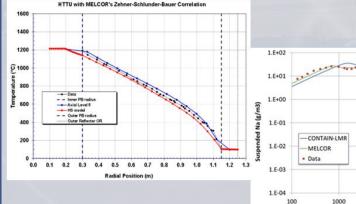

 Unprotected transient overpower, unprotected Loss-of-Flow (ULOF), and single blocked assembly

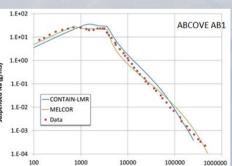
Key Insights


- With ULOF, core power eventually converges on the DRACS heat removal rate
- A single blocked assembly leads to rapid fuel melt



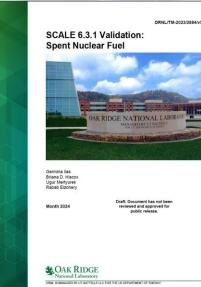
Severe Accident Analysis MELCOR Validation & Verification Basis




Non-LWR Specific Assessment Base

Case	1a	1b	2a	2b	3a	3b
US/INL	0.467	1.0	0.026	0.996	1.32E-4	0.208
US/GA	0.453	0.97	0.006	0.968	7.33E-3	1.00
US/SNL	0.465	1.0	0.026	0.995	1.00E-4	0.208
US/NRC	0.463	1.0	0.026	0.989	1.25E-4	0.207
France	0.472	1.0	0.028	0.995	6.59E-5	0.207
Korea	0.473	1.0	0.029	0.995	4.72E-4	0.210
Germany	0.456	1.0	0.026	0.991	1.15E-3	0.218
(1a): Bar (1b): Bar (2a): kerr (2b): kerr (3a): Inta	e kernel nel+buffe nel+buffe	(1600 er+iPyC er+iPyC °C for	C for 20 (1200 (1600 200 hou	00 hours PC for 20 PC for 20 Irs)))0 hours)	

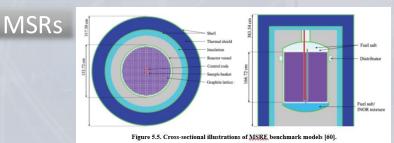
TRISO Diffusion Poloaso



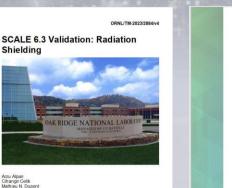
Time (second)

Severe Accident Analysis SCALE Benchmarking & Validation Activities

SCALE Validation in Four Major Areas (Criticality Safety, Radiation Shielding, **Reactor Physics, and** Spent Fuel Inventory)


HTGRs

SCALE 6.3 Validation: **Reactor Physics**


ORNL/TM-2023/3060

CAK RIDGE

Table 5.3. Eigenvalue results for the high-fidelity MSRE benchmark

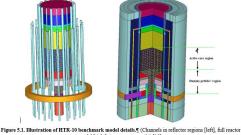
	k _{eff}	σ	Δk _{eff} ^a (pcm)
Benchmark value	0.99978	± 0.00420	reference
SCALE 6.3.1/Shift CE ENDF/B-VII.1	1.019016	± 0.00010	1924 (± 420)
SCALE 6.3.1/Shift CE ENDF/B-VIII.0	1.021833	± 0.00010	2205 (± 420)

CAK RIDGE

T. M. Greene W. J. Marshal A. Shaw XXXX 2024

SCALE 6.3.1 Validation - Volume 2:

Nuclear Criticality Safety


ORNI /TM-2020/1500 Vol 2

CAK RIDGE

SFRs Figure 5.7, EBR-II SCALE mod

Table 5.4. Eigenvalue results for the high-fidelity EBR-II benchmark

	k _{eff}	σ	Δk _{eff} ^a (pcm)
Benchmark value [7]	1.00927	± 0.00618	reference
SCALE 6.3.1/KENO-VI CE ENDF/B-VII.1	1.00722	± 0.00010	-205 (± 618)
SCALE 6.3.1/KENO-VI CE ENDF/B-VIII.0	1.00691	± 0.00013	-236 (± 618)
^a Calculated as 10 ⁵ (k-eff _{calculated} – k-eff _{benchmark}).			

model [right]; images not to scale) [35

Table 5.1. Eigenvalue results for high-fidelity HTR-10 benchmark.

keff	σ	∆k _{eff} " (pcm)
1.00000	0.00370	reference
1.00303 ± 0.00041	0.99661 ± 0.00031	303 ± 370
1.00604 ± 0.00027	0.99919 ± 0.00026	604 ± 370
1.00265 ± 0.00031	0.99595 ± 0.00025	265 ± 370
1.00376 ± 0.00027	0.99746 ± 0.00025	376 ± 370
	$\begin{array}{c} 1.00000\\ 1.00303 \pm 0.00041\\ 1.00604 \pm 0.00027\\ 1.00265 \pm 0.00031 \end{array}$	$\begin{array}{c c} 1.0000 & 0.00370 \\ \hline 1.00303 \pm 0.00041 & 0.99661 \pm 0.00031 \\ \hline 1.00604 \pm 0.00027 & 0.99919 \pm 0.00026 \\ \hline 1.00265 \pm 0.00031 & 0.99595 \pm 0.00025 \end{array}$

Severe Accident Analysis Summary and Next Steps

- 1. Modeling gaps addressed through source code changes, phenomenological model development, and new analysis workflows in SCALE and MELCOR
- 2. SCALE & MELCOR models leveraged for supporting NRR's review of the Hermes Construction Permit Applications
- 3. Additional Code Enhancements & Capabilities In-Progress
 - Integration of SCALE/ORIGEN module into MELCOR for higher fidelity MSR transient analyses
 - Capability to model multiple working fluids
 - Functionality for horizontal heat pipe reactors
 - Refinement of specialized models (e.g., fluid freezing and cascading heat pipe failures)
 - Fission product chemistry refinement
 - Spatial dependence of reactivity feedback in SFRs
- 4. Data Needs
 - Validation Criticality and depletion benchmarks that are representative of fuel designs and conditions, diffusivity of fission products, heat and mass transfer in diverse working fluids, etc.

SCALE & MELCOR code improvements and demonstration workshops have shown NRC is ready to support licensing reviews.

Consequence Analysis

Luis Betancourt, P.E.

Chief, Accident Analysis Branch

Division of Systems Analysis

Office of Nuclear Regulatory Research

Keith Compton, PhD

Senior Reactor Scientist Division of Systems Analysis Office of Nuclear Regulatory Research

MACCS Code Development Approach Summary

- Staff expects to complete most non-LWR Severe Accident Consequence Analysis Computer Code Development Plan tasks by Quarter 4 of FY24.
- Staff determined the resolution of the code development plan by identifying and adopting state-of-practice methods commonly used in the relevant topical area.
- Staff has concluded that enhancing the MACCS code on a generic basis for several tasks is not practical due to the requirement for detailed information regarding the chemical composition of the atmospheric source term.

MACCS Code Development Activities Status

Dhanamanalagisal Araas	Fiscal Year						Doporto	
Phenomenological Areas	2019	2020	2021	2022	2023	2024	Reports	Notes
Nearfield Modeling	Х	Х	Х				<u>SAND2020-2609</u> <u>SAND2021-6924</u>	MACCS 4.1 has implemented upgraded nearfield models
Radionuclide Release Screening			Х	Х			SAND2021-11703 SAND2022-12018	MACCS 4.2 has increased the radionuclide limit to 999
Radionuclide Size, Shape, and Chemical Form				х			SAND2022-12766	MACCS deposition and dosimetry capabilities are state-of-practice
Tritium Modeling				х	х	х	<u>SAND2022-12016</u>	MACCS can offer conservative estimates for tritium inhalation pathways. Staff will update the tritium inhalation dose coefficient in the MACCS code to include skin absorption. Tritium ingestion pathways may be addressed using alternative codes.
Radionuclide Evolution in Atmosphere					Х	х	In progress	State-of-practice models for generic reactive atmospheric transport are limited in availability
Decontamination Modeling							Not started	MACCS decontamination modeling shows no specific nexus to non-LWR technologies
Chemical Hazards							Not started	Chemical hazards may be out of scope for severe accident probabilistic consequence analysis

MACCS Code Development Activities Path Forward (1/2)

- Staff will continue coordinating with MELCOR code developers to determine whether new source terms necessitate MACCS model enhancements
 - Designs with significant gaseous releases may benefit from a state-of-practice resistance model for deposition
 - Designs that have the potential for large releases of tritium as HT gas or for releases leading to significant ingestion doses may require updates to MACCS
- Staff may not pursue two tasks as part of the non-LWR Severe Accident Consequence Analysis Computer Code Development Plan
 - Decontamination modeling shows no specific connection to non-LWR technologies
 - Chemical hazards may be out of scope for severe accident probabilistic consequence analysis

MACCS Code Development Activities Path Forward (2/2)

- Several tasks identified potential follow-on work that may benefit both non-LWR and LWR technologies
- Tasks will be pursued in active code maintenance, documentation, and state-of-practice development activities. Examples include:
 - Benchmarking and stress-testing MACCS wake effect and downwash models
 - Incorporate EPA PRIME model plume rise/downwash algorithms
 - Examine sensitivity of FGR13 dose coefficients to alternate chemical forms
 - Benchmark MACCS regression-based deposition model against AERMOD/HYSPLIT resistance-based model
 - Upgrade MACCS dose coefficient file to allow user specified FGR13 chemical forms
 - Upgrade MACCS deposition model to incorporate state-of-practice resistance model for deposition
 - Update guidance for modeling consequences of tritium releases when using MACCS

MACCS Non-LWR Code Demonstration Project

Purpose:

Provide practical test of the capabilities of the MACCS code to analyze a selected conceptual advanced reactor design under a postulated accident scenario (ADAMS Accession No. ML23045A044)

Conclusions:

- Staff confirmed that, despite some limitations, analysts can use the flexibility of the MACCS code to analyze the offsite consequences of an advanced reactor design under a postulated accident scenario
- The evaluation exercise provided valuable practical experience in implementing new ORIGEN inventories and MELCOR source terms in MACCS

Candidates for future research activities:

- Examine methods to analyze or conservatively bound accidents with simultaneous release and fission.
- Continue evaluating radionuclide importance to dose for non-LWR inventories and expand these evaluations to include ingestion doses
- Use core radionuclide inventory and atmospheric release from example SCALE and MELCOR demonstration calculations for further MACCS code demonstrations to facilitate NLWR knowledge management for NLWR consequence assessments

Conclusions

 MACCS was originally designed with flexibilities to accommodate various types of facilities.

Staff considers MACCS code readiness adequate for assessing consequences associated with non-LWR technologies.

MACCS code demonstration projects present opportunities to enhance knowledge management for conducting consequence assessments, both for non-LWR and LWR applications.

Near-Field Transport

Improve MACCS near-field atmospheric transport and dispersion capability to better treat building wake effects in the near field (<500 meters from a containment or reactor building) given the need for probabilistic dose calculations closer to non-LWRs relative to large LWRs.

- Status: Complete
 - The assessment concluded that MACCS 4.0 can be used conservatively at distances significantly shorter than 500 meters downwind from a containment or reactor building.
 - MACCS v4.1 includes additional capabilities to better account for the nearfield wake and meander effects using the Ramsdell and Fosmire wake/meander model or the Regulatory Guide 1.145 wake/meander model.
- Next Steps: None
- Source Term Monitoring and Coordination: No
- Potential Future Work:
 - Consider benchmarking and stress-testing MACCS wake effect and downwash models. This task may be considered part
 of standard MACCS code validation and verification activities.
 - Consider incorporating the U.S. Environmental Protection Agency PRIME model plume rise/downwash algorithms. This
 task may be considered part of normal MACCS code development activities.

Radionuclide Screening

Perform a screening analysis to identify which subset of radionuclides to include in MACCS calculations for each non-LWR type given the different mix of radionuclides that may be released in accidents from each type.

- Status: Complete
 - Staff developed a quantitative method for identifying radionuclides of potential interest for advanced reactors. The method, which is consistent with the approaches used to identify radionuclides for consideration for LWR consequence analyses, accounts for half-life, biological hazard, and relative abundance of radionuclides in the core.
 - In MACCS v4.2, the number of radionuclides that can be modeled was increased from 150 to 999. This enhancement enables the modeling of all 825 nuclides for which dose coefficients are available from Federal Guidance Report (FGR)-13.
- Next Steps: None
- <u>Source Term Monitoring and Coordination</u>: No, releases of radioactivity in chemical forms different from those assumed in the MACCS DCF file (typically 1 μm AMAD oxides and hydroxides) may require the application of a suitable dose coefficient inhalation clearance class for the expected chemical/physical form in the environment.
- Potential Future Work:
 - Consider providing guidance to model all nuclides for which dose coefficients are available. This task may be considered as part
 of standard MACCS code documentation activities to update NUREG/CR-7270 (ML22294A091).
 - Recommend coordinating inventory file processing with MELCOR inventory file processing.
 - Consider quantitative screening of additional advanced reactor inventories and ingestion pathway radionuclide screening.

Radionuclide Size, Shape, and Chemical Form

Evaluate potential differences in radionuclide releases from non-LWRs relative to LWRs including different aerosol size distributions, shape factors, and chemical forms. Based on the evaluation, improve MACCS capabilities for atmospheric transport and dosimetry to appropriately capture these issues for probabilistic consequence analysis. If necessary, consider a state-of-practice resistance model for dry deposition.

- Status: Complete
 - Current MACCS capabilities for deposition modeling appear to be consistent with the state of practice for particulate wet and dry deposition.
 - The dosimetry model in MACCS aligns with the state of practice. MACCS's code capabilities for dosimetry can accommodate variable chemical forms by employing alternative dose coefficients derived from FGR-13.
- Next Steps: None.
- <u>Source Term Monitoring and Coordination</u>: Yes, releases of radioactivity in chemical forms other than those assumed in the MACCS DCF file (typically 1 μm AMAD oxides and hydroxides) may require modification of the MACCS DCF file by either the MACCS code developer or by the MACCS code user.
- Potential Future Work:
 - Consider improving documentation of physical and chemical forms assumed for developing DC file.
 - Consider examining sensitivity of FGR13 DCs to alternate chemical forms.
 - Consider modifying MACCS/MACCS DC file to allow user specified FGR13 chemical forms.
 - Consider benchmarking MACCS regression-based deposition model against AERMOD/HYSPLIT resistance-based model.
 - Consider upgrading MACCS deposition model to incorporate state-of-practice resistance model.

Tritium Modeling

Develop MACCS model and/or dosimetry updates to better account for the unique behavior of tritium which is very mobile and can enter biological systems as part of water and organic molecules.

- Status: Complete
 - MACCS is capable of modeling inhalation doses resulting from tritium released as water vapor (HTO), but it may overestimate inhalation doses (compared to UFOTRI and ETMOD) from tritium released as hydrogen gas (HT) by approximately two orders of magnitude. Doses from inhalation of HT or HTO releases may remain low unless large amounts of tritium are released.
 - MACCS is not currently suited to modeling ingestion doses arising from tritium releases, but doses from ingestion of tritium incorporated into foodstuffs may also be low unless large quantities of tritium are released.
- Next Steps: Staff recommends updating the tritium inhalation dose coefficient in the MACCS DCF file to include the standard 50% supplement for uptake via skin absorption during air immersion.
- Source Term Monitoring and Coordination: Yes. Designs with the potential for large tritium releases as HT gas or releases leading to significant ingestion doses may require either an update to MACCS or a tritium-specific consequence code such as UFOTRI or ETMOD.
- **Potential Future Work:**
 - Consider updating guidance for modeling consequences of tritium releases when using MACCS and ingestion doses from large releases using codes such as UFOTRI or ETMOD. This task may be considered as part of the standard MACCS code documentation activities to update NUREG/CR-7270 (ML22294A091).
 - Staff will rely on the results of source term monitoring and coordination and input from program office staff to determine whether the resources needed to upgrade the MACCS food model are justified in the future. It may be noted that integration of a tritium-specific food model may be a major effort. 11

Radionuclide Evolution in the Atmosphere

Identify whether non-LWR accident releases may be more subject to evolution in the atmosphere relative to LWR releases based on differences in hygroscopic properties or potential for chemical reactions during transport

- Status: In progress
 - Staff completed a literature review to comprehend the potential chemical and physical transformations and their modeling approaches in other state-of-the-art codes for atmospheric transport, diffusion, and deposition.
 Notable codes encompassing these transformations are HYSPLIT, CMAQ, WRF-CHEM, SORAMI, and RATCHET.
 - Staff is evaluating the feasibility and methodology for MACCS to simulate these potential atmospheric transformations. Additionally, staff is planning a model intercomparison exercise against codes that simulate the transformation of iodine to assess the dosimetry significance of chemical and physical atmospheric evolution.
- <u>Next Steps</u>: Staff expects that transformation kinetics may vary significantly for individual chemical forms, such as UF6, to the extent that generic code updates may not adequately address highly reactive species.
- <u>Source Term Monitoring and Coordination</u>: Yes, releases of radioactivity in chemically reactive forms may require chemical-form specific transport and dispersion modeling.
- <u>Potential Future Work</u>: Source term monitoring and coordination efforts will continue to identify design-specific chemical and physical forms requiring code updates via the normal MACCS code development cycle.

Decontamination Modeling

Based on the potential for non-LWRs to be sited closer to developed/urban lands, develop updated decontamination costs, durations, and dose reduction factors to account for the differences in decontaminating more urban areas relative to the generally rural areas where most large LWRs are sited.

- Status: Not started.
- <u>Next Steps</u>: No additional work is scheduled for non-LWR code development in this area due to the specific nexus to non-LWR technologies and the availability of a method to address variations in decontamination between urban and rural areas.
- Source Term Monitoring and Coordination: No.
- <u>Potential Future Work</u>: Conduct sensitivity analyses using existing MACCS decontamination cost model to examine sensitivity to differences in land use (e.g., population density). This task may be considered as part of the standard MACCS code documentation and development activities.

Chemical Hazards

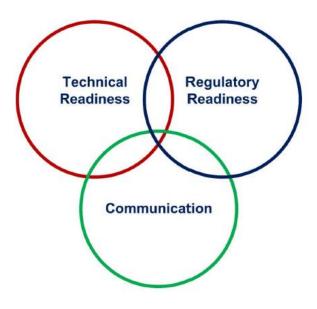
Identify whether non-LWRs themselves, or because of their potential collocation with industrial processing plants, create greater likelihood of chemical releases to the environment. If appropriate, update MACCS to integrate CHEM_MACCS for probabilistic calculations of offsite consequences of chemical releases.

- Status: Not started.
- Next Steps: No additional work is scheduled for non-LWR code development in this area due to the specific nexus to non-LWR technologies. Furthermore, any chemical hazard would be design- and source term specific.
- <u>Source Term Monitoring and Coordination</u>: Yes, if chemical hazards are found to be within scope for severe accident consequence analysis.
- <u>Potential Future Work</u>: None. However, staff could leverage methods and lessons learned from the development of CHEM_MACCS to identify necessary MACCS model updates for probabilistic calculations of offsite consequences of chemical releases. This task may be considered as part of the standard MACCS code development activities.

Update on Volume 4 – Licensing and Siting Dose Assessment Codes

John Tomon

Chief, Radiation Protection Branch Division of Systems Analysis Office of Nuclear Regulatory Research

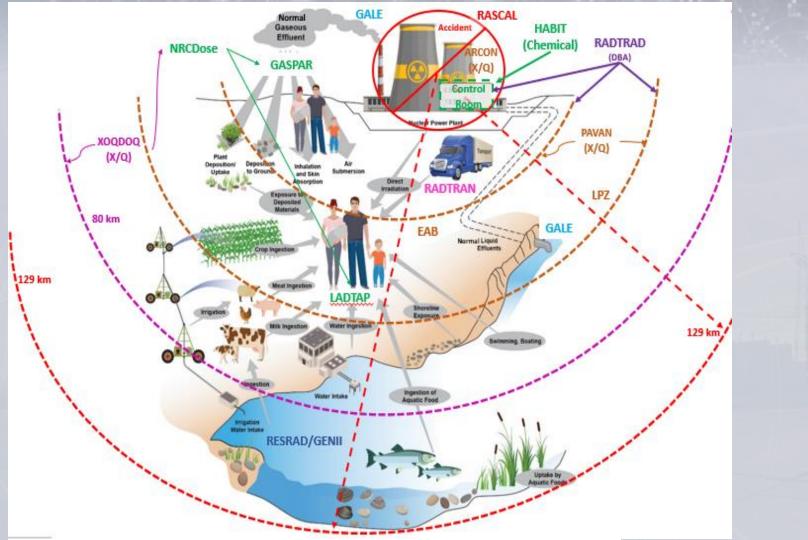
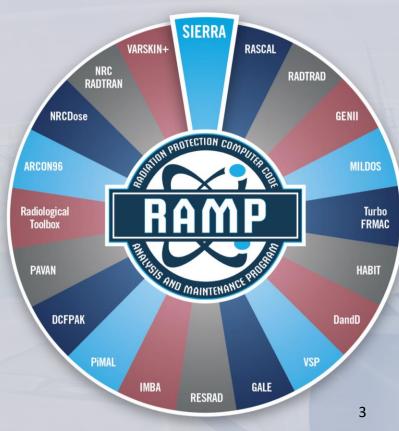

Volume 4: Licensing and Siting Dose Assessment Codes

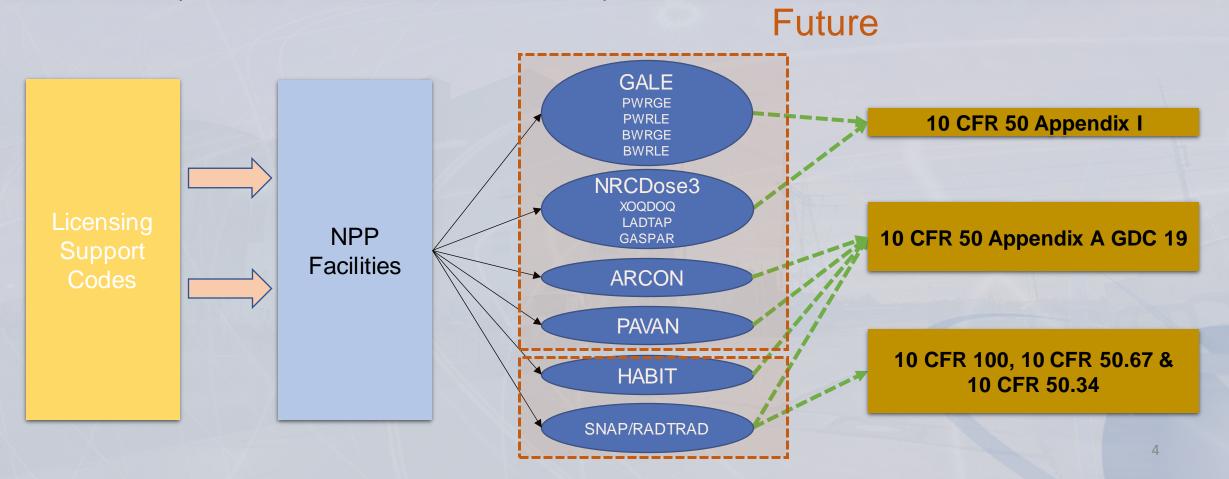
- Tasks
 - 1. Consolidate/Modernize Dose Assessment Codes.
 - 2. Improve characterization of Source Terms.
 - 3. Improve Atmospheric Transport & Dispersion (ATD) Models.
 - 4. Update Dose Coefficient values.
 - 5. Develop Environmental Pathway Models.

Revision 1 March 31, 2021

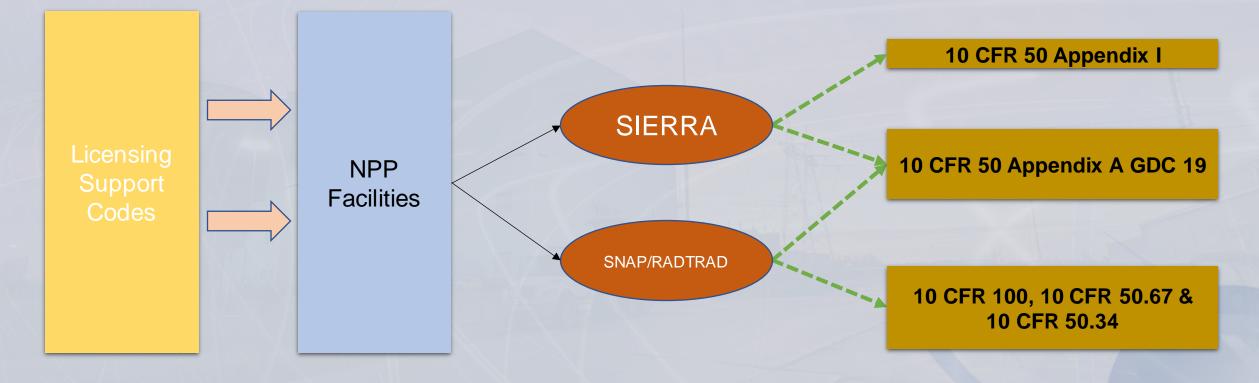
NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 4 – *Licensing and Siting Dose Assessment Codes*

Licensing and Siting Dose Assessment Codes


Image adapted from BNWL-1754, Models and Computer Codes for Evaluating Environmental Radiation Doses.

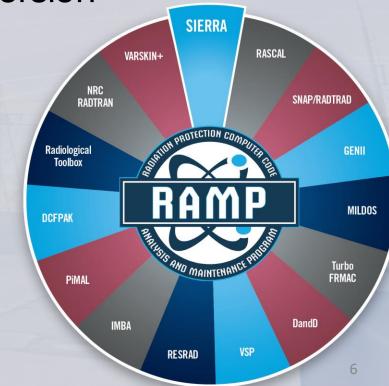
Over 10 codes used for NPP licensing and siting based on various <u>regulations</u>.


Licensing and Siting Code Regulations (1/2)

Current (Prior to Code Consolidation)

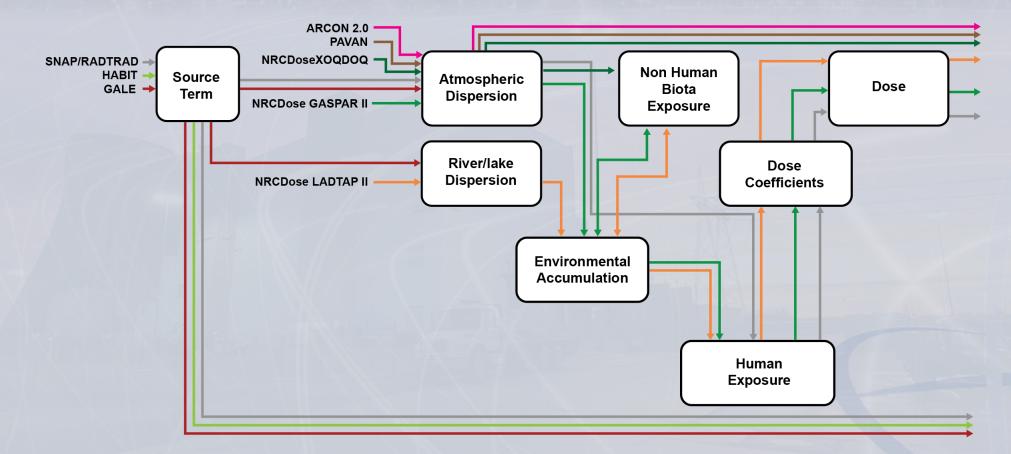
Licensing and Siting Code Regulations (2/2)

Future (Code Consolidation)



Accomplishments

- Task 1: Code Consolidation and Modernization.
- Task 2: Improve characterization of Source Terms (Phase 1).
- Task 3: Improve Atmospheric Transport & Dispersion (ATD) Models.



Software Integration for Environmental Radiological Release Assessments

Task 1: Code Consolidation and Modernization (1/3)

Conceptual Model for the Consolidated Code 8 Modules/Engines

Task 1: Code Consolidation and Modernization (2/3)

Three Pillars:

- Created consolidated engines/modules.
- Developed a standardized data transfer schema.
- Built a single user interface.

Consolidated Engines

Source

Standard Data/Input/ Transfer/Output

Task 1: Code Consolidation and **Modernization (3/3)**

SIERRA

Phased Release of SIERRA

- Software under active development which aims to combine multiple licensing and siting codes into one easy to use package.
- Release of ATD Module of SIERRA at the end of September 2024.
- Currently have two efforts underway for SIERRA.
 - Atmospheric Dispersion Models (September 2024): ٠
 - ARCON
 - PAVAN
 - XOQDOQ
 - Source Term: •
 - GALE (Phase 1) August 2024
 - Advanced reactors (Phase 2) September 2025
 - Environmental Pathways (2026): ٠
 - NRCDose3 (GASPAR & LADTAP)

.2.0.0				- 0
				Ba
RA Over	view			
ntal	*	(Not Started)	>	
		Atmospheric Dispersion (Not Started)	>	
		River / Lake Dispersion (Not Started)	>	
		Environmental Accumulation (Not Started)	>	
		Non-Human Biota Exposure (Not Started)	>	
	<u>æ</u>	Human Exposure (Not Started)	>	
	<u>(</u>	Dose Coefficients (Not Started)	>	
	*	Dose (Not Started)	>	

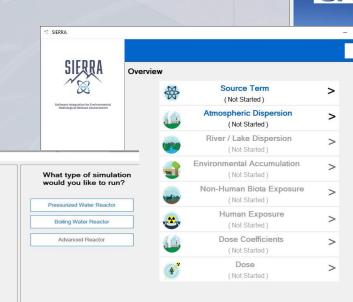
Task 2: Improve characterization of Source Terms (1/4)

- Identify source terms inputs (i.e., radionuclide fuel inventories, reactor coolant inventories, plant design and operational data):
 - Phase 1: Incorporate LWR normal source terms.
 - Phase 2: Develop Non-LWR normal source terms.
 - Phase 3: Analyze Non-LWR design basis, severe accident and transportation source terms as applications of need arises.

Task 2: Improve characterization of Source Terms (2/4)

Phase I - Input GALE code into SIERRA:

Source Term

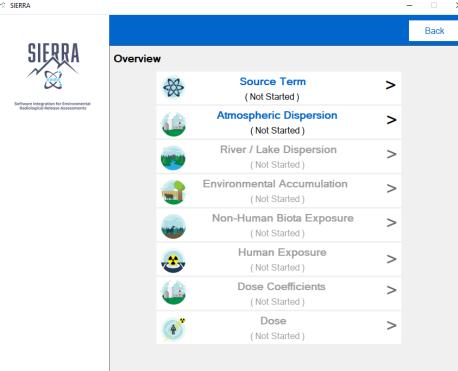

June 2019

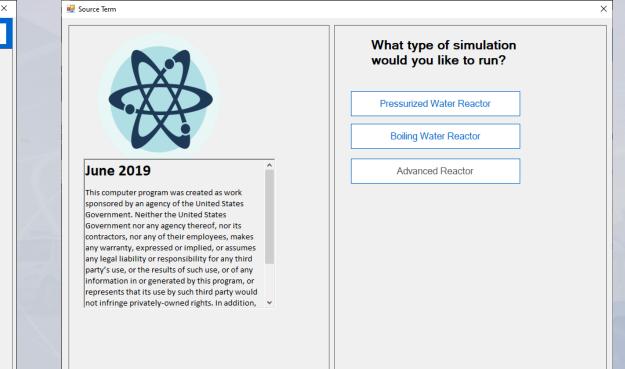
s computer program was created as work nsored by an agency of the United States rernment. Neither the United States

overnment nor any agency thereof, nor its ontractors, nor any of their employees, make

any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, or of any information in or generated by this program, or represents that its use by such third party would not infringe rivately-owned rights. In addition,

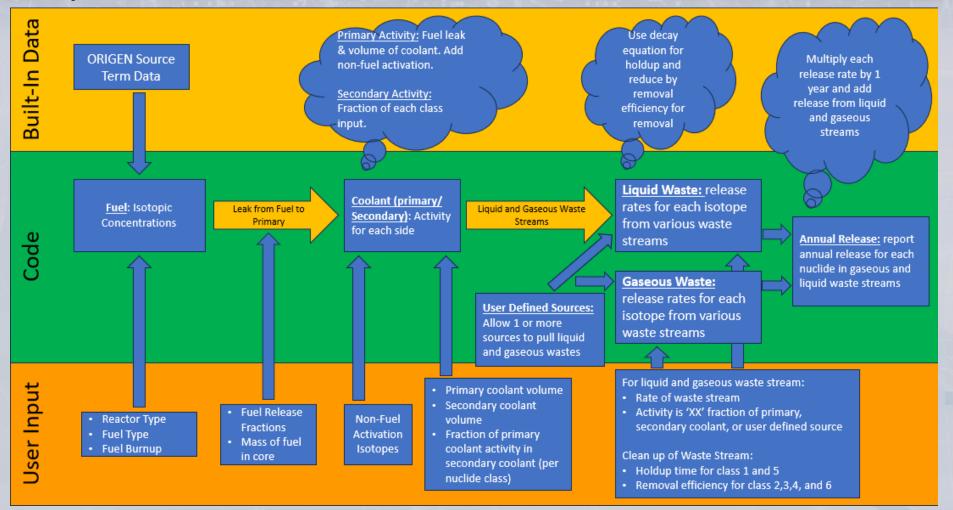
- Incorporating functionality of GALE (BWR and PWR) into the source term module.
- Status of GALE incorporation into SIERRA:
 - LWR normal source term module (Phase-1) to be available in August 2024.





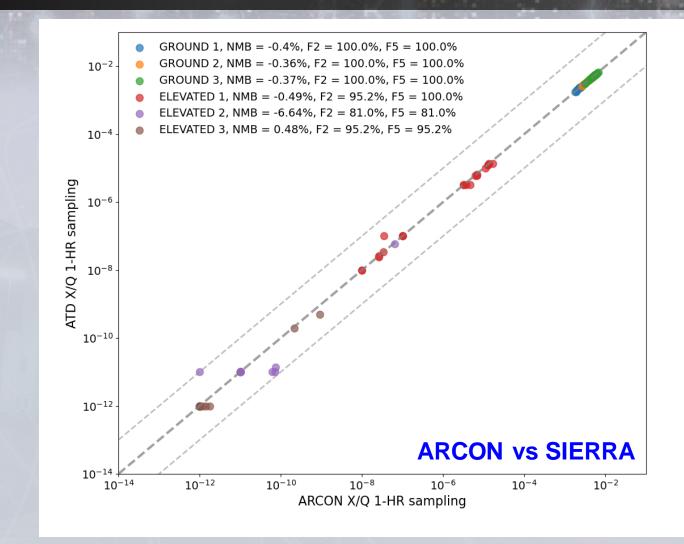
Task 2: Improve characterization of Source Terms (3/4)

• GALE to SIERRA testing:

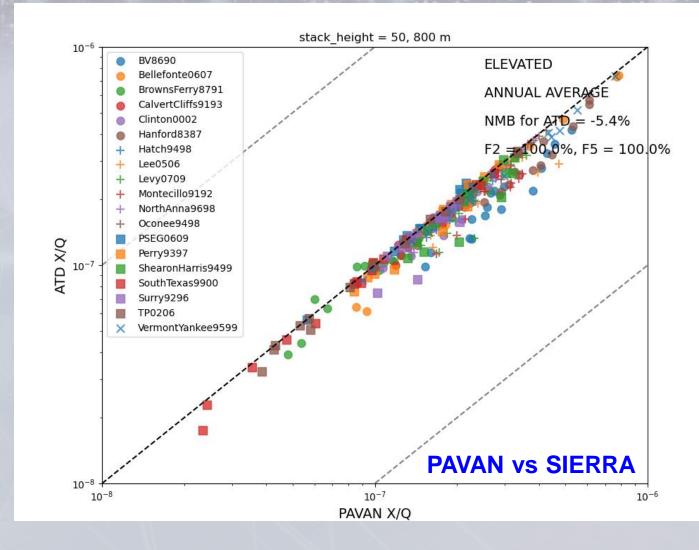

• Numerical and Graphical User Interface (GUI) Verification and Validation (V&V) underway.

Task 2: Improve characterization of Source Terms (4/4)

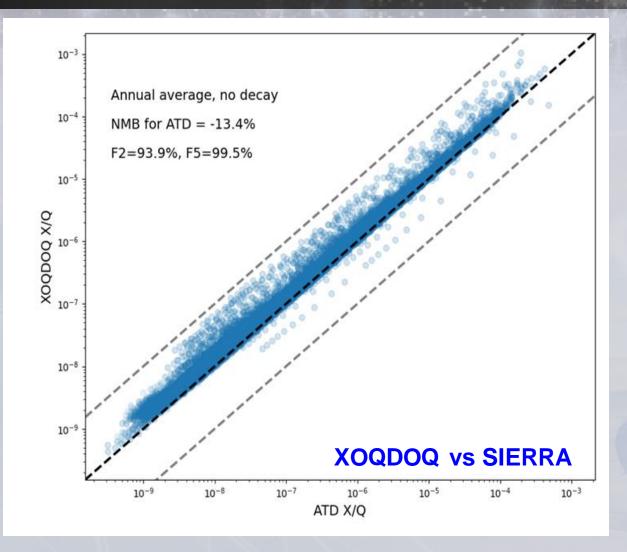
Phase 2 - Input Generic Non-LWR Normal Source Terms into SIERRA:


Task 3: Improve SIERRA ATD Models (1/4)

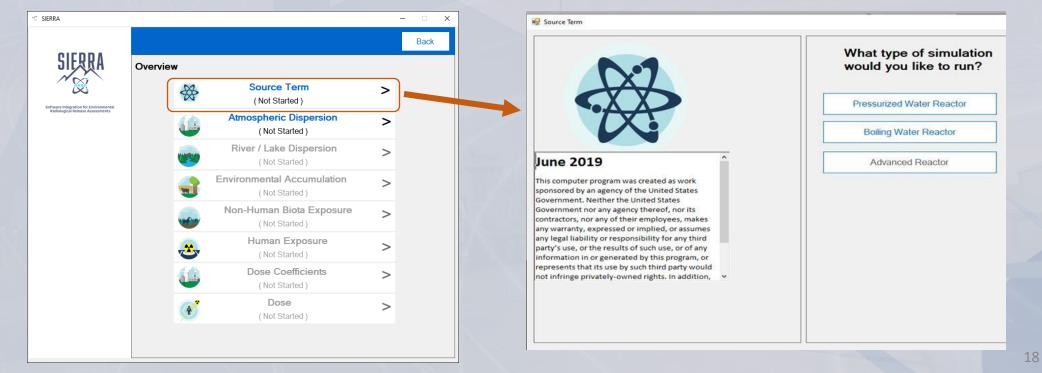
SIERRA ATD:


- Support a single user interface that allows users to access each of the codes (ARCON, PAVAN, XOQDOQ) in a relatively uniform manner.
- Facilitates future development to share data with other health physics codes in SIERRA.
- Allows users to estimate relative concentrations based on hourly meteorological data for all three codes, rather than use Joint Frequency Data.
- Written in a more modern version of FORTRAN.

Atmospheric Dispersion				
SIERRA				Run
Teran Integration for Environmental Redictogical Release Assessments	Meteorology Meteorological File Upload a meteorlogical file and provide in threshold volume for calm wind speed and			
Design Basis	C:\SIERRA\Test_Cases_ATD\MET_8387.nrc	Browse		
Accidents	Wind Speed Calm Threshold	0.1 (m/s		\searrow
	Height Type	Lower -		
	Total No. of Hours	43824		
Overview	Average Wind Speed	3.34 m/s		
orennen	Min Wind Speed	0.40 m/s	LIT XHX	T
Source	Max Wind Speed	15.60 m/s	I I YHY	\checkmark /
	Calm Records	221		\sim
Terrain	Calm Wind Speed Frequency	0.5%		
	Data Availability	99.8%	\times	\sim
Meteorology	Incomplete / Missing Records	69	INT	× /
Outputs				>
			Caim = 0.51%	
* 🖰 🖬			>=12 9-12 6-9 3-6	0-3

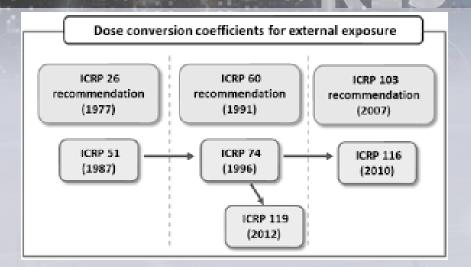

Task 3: Improve SIERRA ATD Models (2/4)

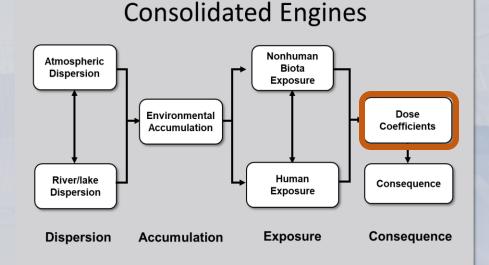
Task 3: Improve SIERRA ATD Models (3/4)



Task 3: Improve SIERRA ATD Models (4/4)

Next Steps

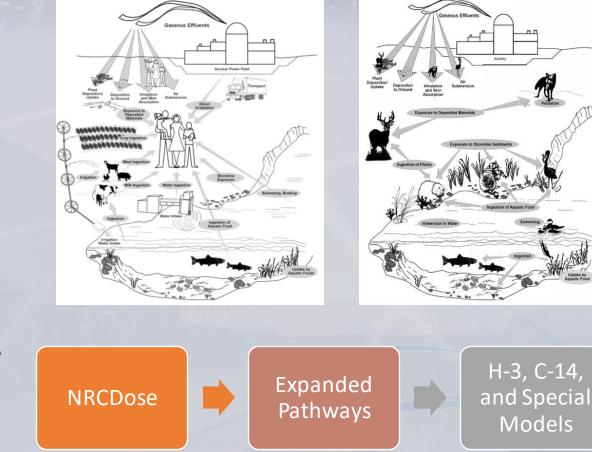

- Task 2: Improve characterization of Source Terms (Phases 2 & 3).
- Task 4: Update Dose Coefficient values.
- Task 5: Develop Environmental Pathway Models.


Task 4: Update Dose Coefficient Values

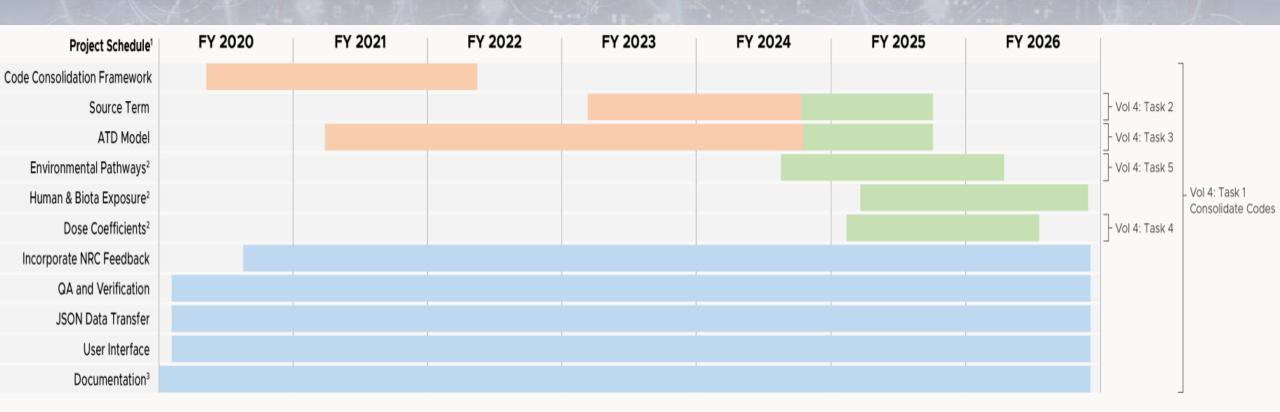
This task involves:

- Developing dosimetry modules/engines that have the flexibility to use different dose models and dose coefficient values.
- Examining dose coefficient models with respect to aerosol particle size in addition to exploring the impact of tritium and carbon-14 biokinetics since these radionuclides may be in higher quantities in Non-LWRs.

125.1

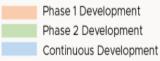

Task 5: Develop Environmental Pathway Models

Purpose:


 Developing environmental transfer pathways and environmental accumulation.

Current Status:

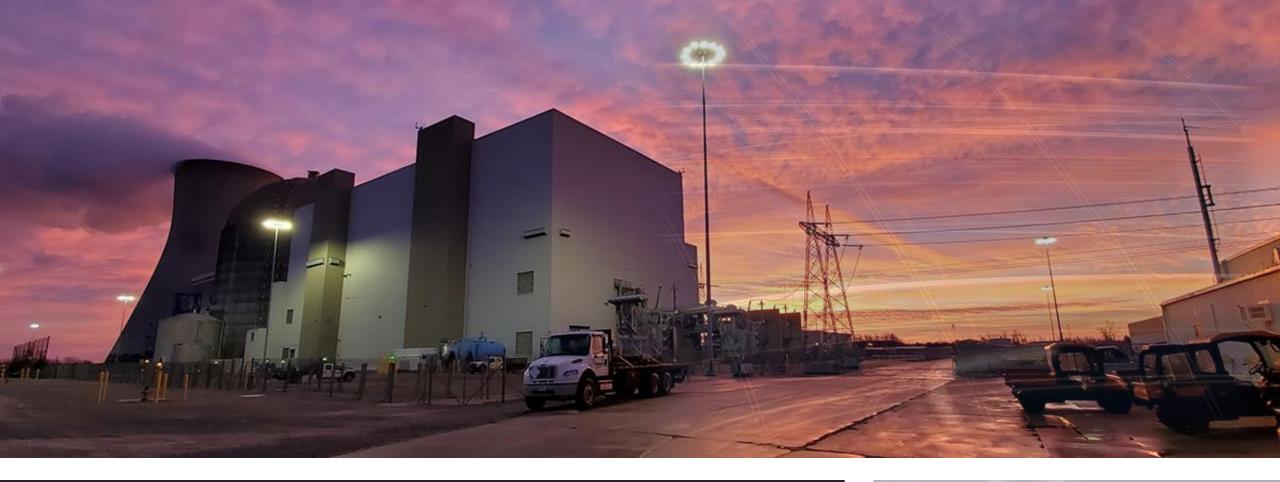
- Exploring transferring NRCDose Computer Code into SIERRA.
- Explore additional transfer model pathways for incorporation into SIERRA.
- Explore modeling H-3 and carbon-14 accumulation in the environment.


SIERRA Code Development Schedule

¹These tasks generally align with 5 tasks described in ACRS Volume 4 briefing.

² This is the anticipated development schedule for the modules.

³Documentation–SQAP, Technical Basis Document, User Guide, Training Module.


120

Summary of Code Readiness for Non-LWR Reviews

- Current Readiness for Non-LWR Reviews:
- The ATD Computer Codes Non-LWR review ready.
- The SNAP/RADTRAD Computer Code Flexible to add DBA source term for Non-LWR reviews.
- The NRCDose3 Computer Code Flexible to add environmental pathways and dose coefficients for Non-LWR reviews.
- Next Steps for Readiness for Non-LWR Reviews:
- The SIERRA computer code:
 - ATD module September 2024.
 - Normal Source Term September 2025.
 - DBA Source Term (SNAP/RADTRAD) September 2026.
 - Environmental Transport and Dose Coefficients September 2026

Questions

RES

Status Update on Computer Code and Model Development for Non-Light-Water Reactors

April 3, 2024

Fuel Cycle Analysis

Lucas Kyriazidis

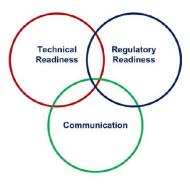
Reactor System Engineer

Shawn Campbell, Ph.D.

Reactor System Engineer Andrew Bielen, Ph.D.

Senior Reactor System Engineer

Division of Systems Analysis Office of Nuclear Regulatory Research


Fuel Cycle Analysis Objectives

- 50×

REVISION

NRC Non-Light Water Reactor (Non-LWR) Vision and Strategy, Volume 5 – Radionuclide Characterization, Criticality, Shielding, and Transport in the Nuclear Fuel Cycle

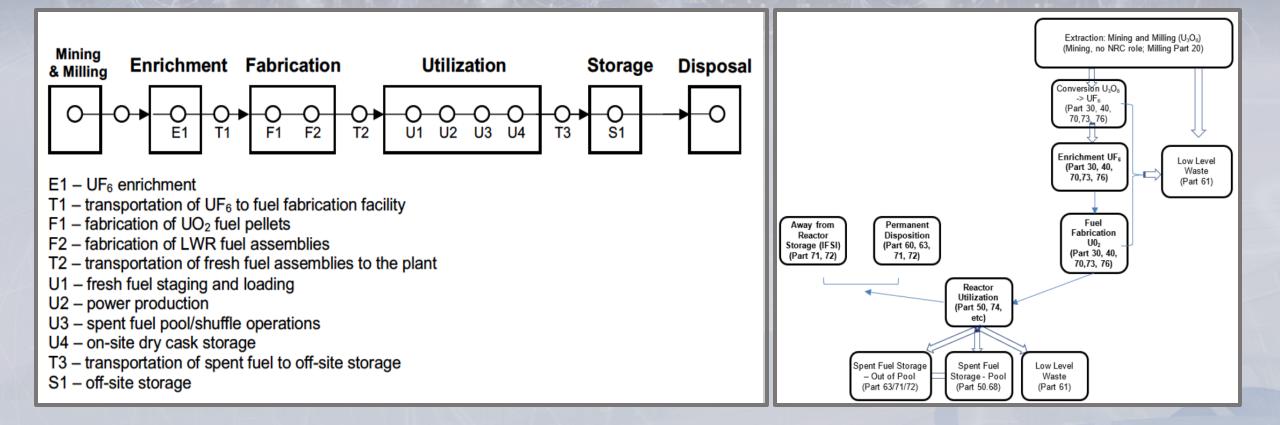
ML21088A047

- Identify differences in potential non-LWR fuel cycles compared to LWR fuel cycle
- Identify capability gaps, in NRC's simulation capabilities (SCALE & MELCOR)
- Address any capability gaps through code development activities
- Assess, demonstrate, document through publicly available deliverables

Assess changes in the non-LWR fuel cycle & evaluate NRC's simulation capabilities for performing independent safety analyses

Fuel Cycle Analysis Approach

- Based on publicly available information, develop models for stages of representative fuel cycles
 - Leverage the reference plants & reactor core designs from Volume 3
- Identify and select key accidents to model within SCALE & MELCOR, exercising key phenomena & models
- Develop and simulate representative SCALE & MELCOR models and evaluate
 - Identify areas where data gaps, high importance inputs, and areas to improve in our codes exist
 - SCALE criticality, radionuclide inventory generation, decay heat, and shielding
 - MELCOR radiological & non-radiological material & energy transport

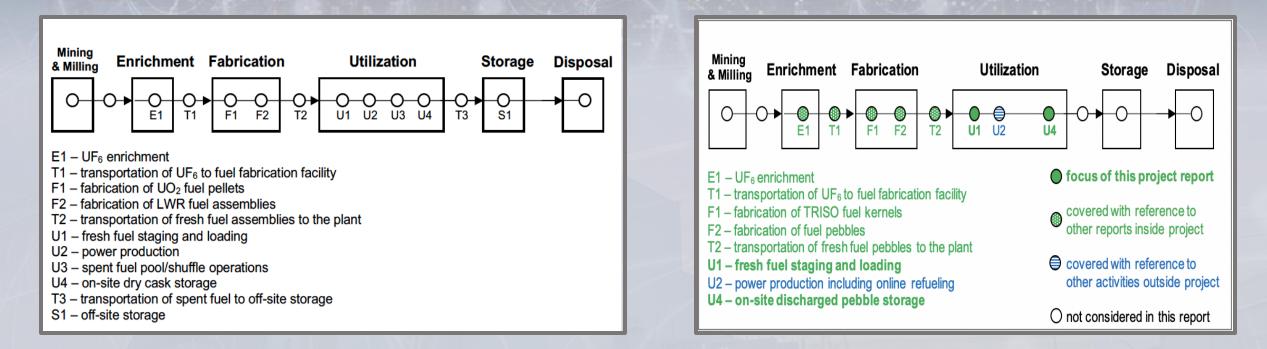

NRC's computational capabilities will be demonstrated through public workshops and technical reports.

Fuel Cycle Analysis Nuclear Fuel Cycle & Facility Accident Analysis

	Types of Fuel (Cycle Safety Analyses wi	thin Volume 5		
Criticality Safety	Radionuclide inventory & Decay heat generation	Radiation Shielding & Dose	Radiological material & energy release / transport	Non-radiological material & energy release / transport	
	nuclear criticality	olution systems owder systems arge storage arrays			

NUREG/CR-6410 provides insights and methodology for performing fuel cycle safety analyses. Other references used include NUREG-1520, NUREG-2215, NUREG-2216.

Fuel Cycle Analysis LWR Nuclear Fuel Cycle



LWR open fuel cycle used as the starting point for developing each non-LWR fuel cycle.

Fuel Cycle Analysis Non-LWR Characteristics

	Enrich (%)	Fuel Form	Approx. BU (GWd/MTU)	Fuel Residence Time	Fuel Processing	Storage	Transportation
LWRs Baseline	< 5	Uranium Oxide	62	3-4 cycles (18- 24 months per cycle)	No	Fresh / SNF storage on site or off - site	Fresh UF6 → 30B cylinders Fresh fuel → various packages Spent fuel → various packages and dry storage systems
HPR	< 20	Oxide	Up to 10	Up to 7 years	No	TBD	TBD
	Metal						
SFR	< 20	Metal	Up to 300	TBD	No	TBD	TBD
HTCP	HTGR < 20 TRISO TRISO TRISO compacts		100 – 200	TBD	No	TBD	TBD
		100 - 200					
FHR < 20	TRISO pebbles	100 – 200	TBD	No	TBD	TBD	
		TRISO compacts	100 - 200		NO	שטו	
MSR	< 20	Liquid	TBD	2 – 3 years	Yes	TBD	TBD

Fuel Cycle Analysis Non-LWR Nuclear Fuel Cycle

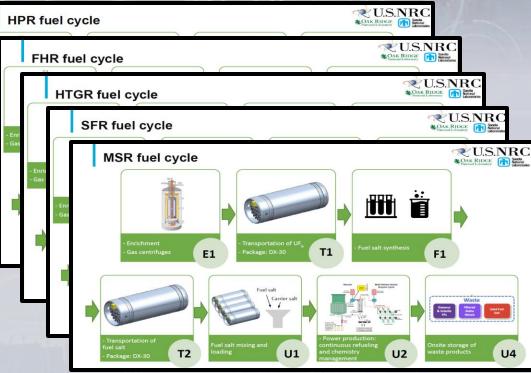
Fuel Cycle Stages Not Considered in Volume 5's Demonstration Project

Mining & Milling – No major changes envisioned from current methods.
Power Production – Executed under the Volume 3 umbrella.
Off-site Spent Fuel Storage & Transport – High degree of uncertainty for implementation.
Spent Fuel Final Disposal – High degree of uncertainty for implementation.

Fuel Cycle Analysis Representative Fuel Cycle Designs

Friederike Bostelmann, ORN Eva E. Davidson, ORNL William A. Wieselquist, ORNL

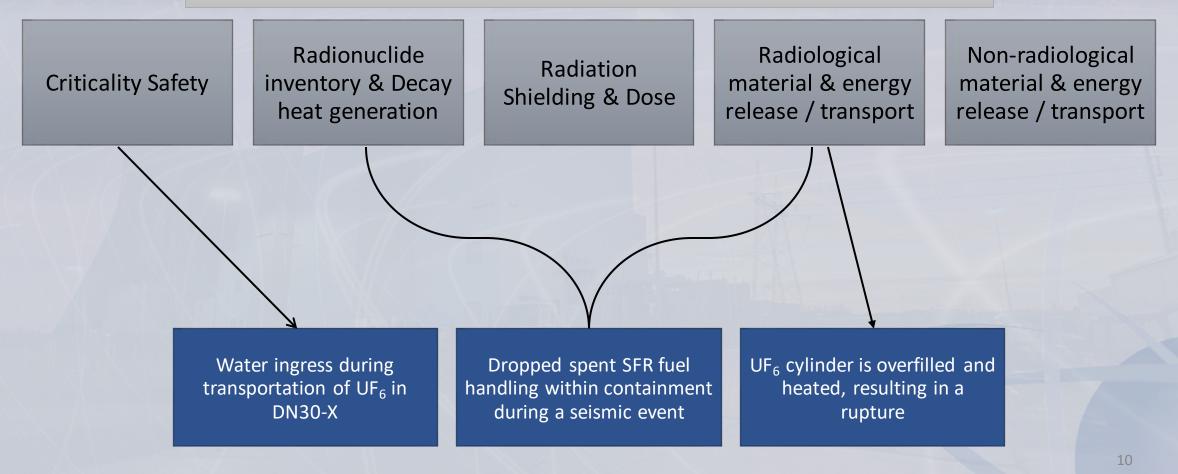
David Luxat, SNL

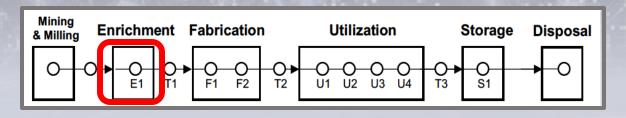

Kenneth C. Wagner, SNL

CAK RIDGE ational Laboratory

ORNL IS MANAGED BY UT-BATTELLE, LLC, FOR THE U.S. DEPARTMENT OF ENERGY

ML24004A270

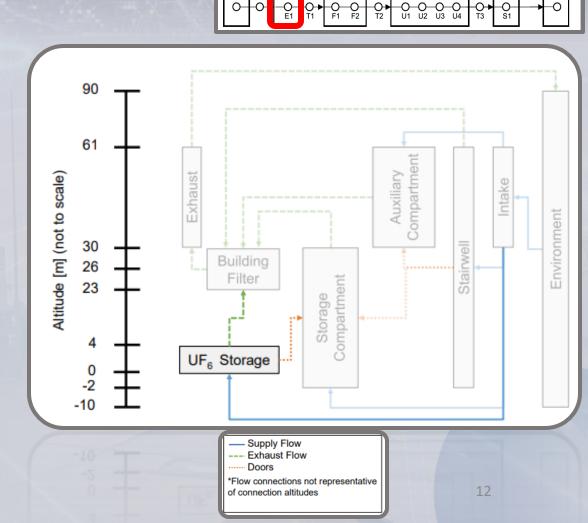

Lucas I. Albright, SNL December 15, 2023


Developed five representative fuel cycle designs leveraging the Volume 3 reactor designs & identified potential accidents for the various stages of the fuel cycle.

Fuel Cycle Analysis Types of Accidents Analyzed

Various Types of Fuel Facility Accidents

Fuel Cycle Analysis Highlights - UF₆ Enrichment


Hazardous Material Identified	Potential Accidents
Inventory of hazardous chemicals identified (NH ₃ , F ₂ , HF, KOH, UF ₆)	Radiological Release ➤ UF ₆ cylinder rupture (overfill/heated, damage/drop)
UF ₆ identified as the only source of dispersible radiological material in this fuel cycle stage.	 Criticality Safety ▶ UF₆ criticality up to HALEU enrichment Non-radiological ▶ HF, NH₃, F₂ release (seismic / pipe rupture)

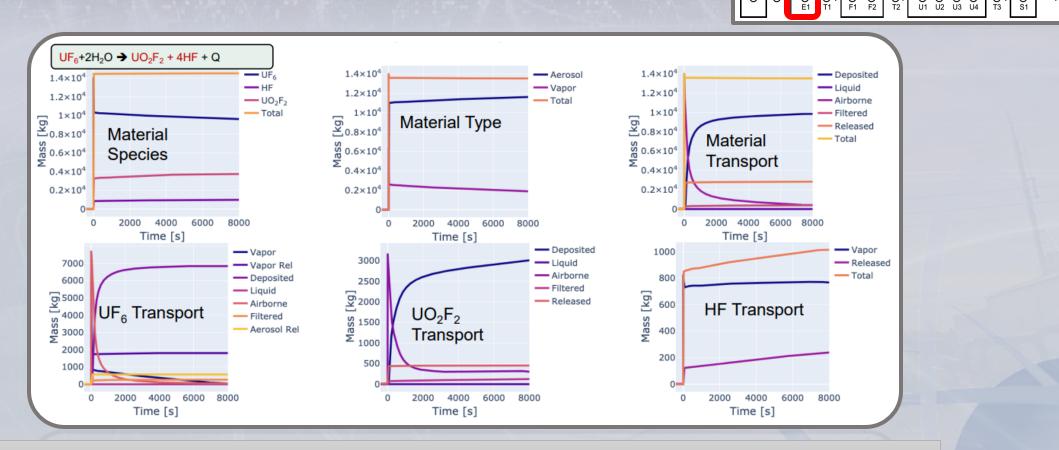
Fuel Cycle Analysis UF₆ Cylinder Rupture- Chemical Hazard

48Y cylinders may be used to store and transport UF_6 . A 48Y is overfilled and heated, resulting in a tank rupture and rapid release of UF_6 .

 $UF_6 + 2H_2O \rightarrow UO_2F_2 + 4HF$

- MELCOR has robust capabilities and flexibility for aerosol and vapor release and transport modeling. It is leveraged here to model the release of UF₆ and its transport throughout the facility and into the environment.
- Modeling Assumptions
 - 14,000 kg of UF6 is stored within the 48Y, prior to release.
 - Instantaneous release.

Enrichment Fabrication


& Milling

Utilization

Storage

Disposal

Fuel Cycle Analysis UF₆ Cylinder Rupture- Chemical Hazard

Mass released primarily during initial rupture event, with minimal releases observed afterwards. Masses are primarily aerosol and exhibit strong tendency to deposit on building structures. 123

Storage

-0-

Disposal

-0

Utilization

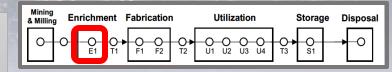
0-0-0-0

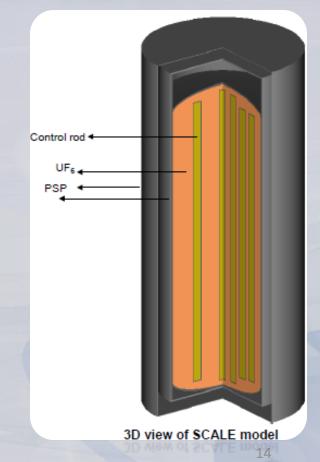
Mining

& Milling

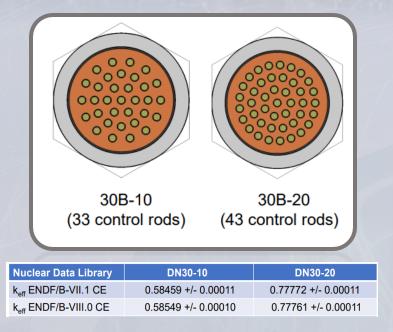
Enrichment Fabrication

↔

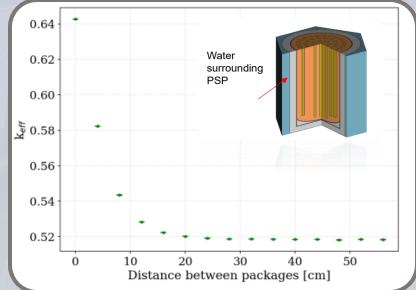

0-0

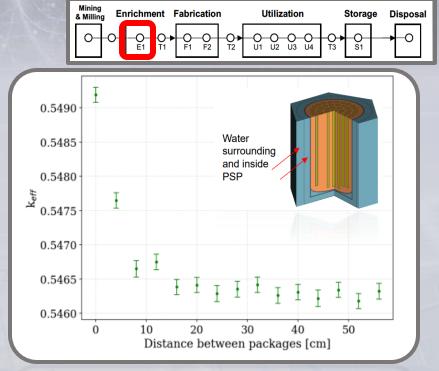

-0-

Fuel Cycle Analysis UF₆ within DN30-X Package - Criticality Analyses


DN30-X is a transportation package designed with neutron poisons, for use with HALEU. Criticality safety analyses were performed for the following configurations:

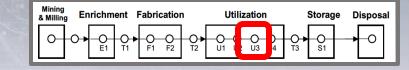
- Infinite hexagonal array; surrounded by air,
- Hexagonal array; surrounded by water, with no water between the outer and inner PSP
- Hexagonal array; surrounded by water, with water ingress between the outer and inner PSP
- SCALE/Shift used to perform the criticality safety analyses, using both ENDF/B-VII.1 & VIII.0.
 - Shift is SCALE's new high performance Monte Carlo neutron transport code.
- Modeling Assumptions
 - No thermal insulating foam modeled in the SCALE model
 - UF₆ density is assumed at 5.5 g/cm³ with 0.5 wt.% HF impurities
 - Cylinders are 100% filled with UF₆ exceeding allowable mass limits of the cylinder
- Capabilities Demonstrated
 - SCALE's Shift for simulating HALEU enriched UF₆ (20 wt. % U-235) shipping packages in 3D

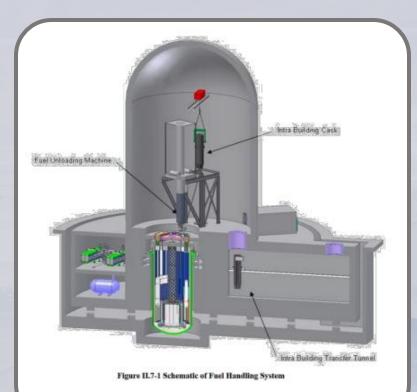



Fuel Cycle Analysis UF₆ within DN30-X Package - Criticality Analyses

Infinite hexagonal array of packages, touching on all sides, surrounded by air, with no water ingress.

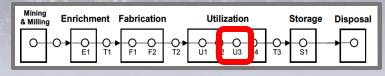
Array of packages, varied spacing, with water surrounding the PSP. No water ingress between outer and inner PSP boundary.

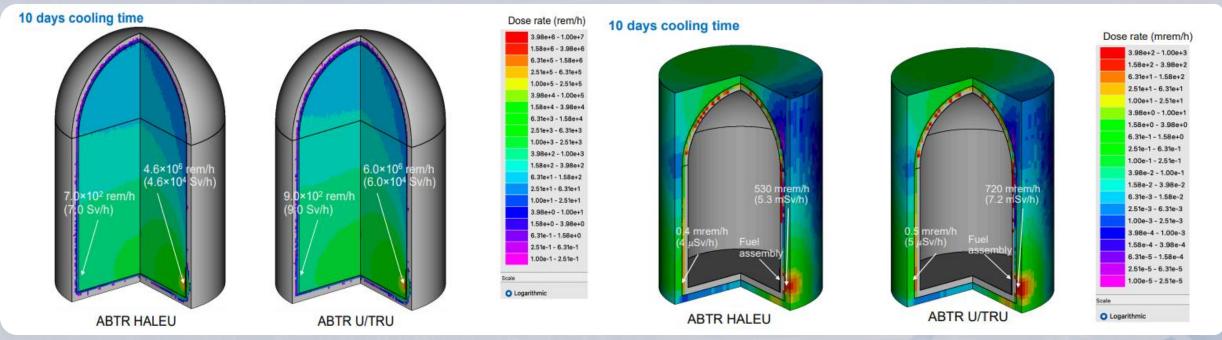



Array of packages, varied spacing, with water surrounding the PSP. Water ingress between outer and inner PSP boundary.

Fuel Cycle Analysis SFR Fuel Handling Accident - Dose

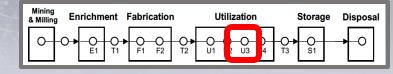
During refueling operations, the refueling machine is used to perform fuel handling operations, such as moving spent fuel assembly in and out of the reactor core. A seismic event occurs causing the refueling machine to fail and drop a spent fuel assembly within the containment building.

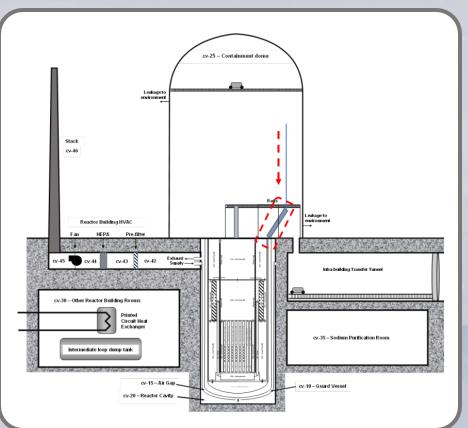

- SCALE is used to determine the spent fuel nuclear inventory and perform the radiation dose estimates throughout the containment building. The radiation dose rate (radiative source term) is based upon an intact fuel assembly at various cooling periods.
- Modeling Assumptions
 - Spent fuel assembly is intact.
 - Containment building consists of a 1.2 cm thick steel liner, with reinforced concrete (1 m). Rebar-to-concrete mass ratio is 0.106.



ABTR reactor building

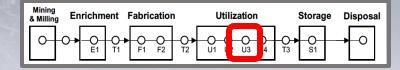
Fuel Cycle Analysis SFR Fuel Handling Accident - Dose

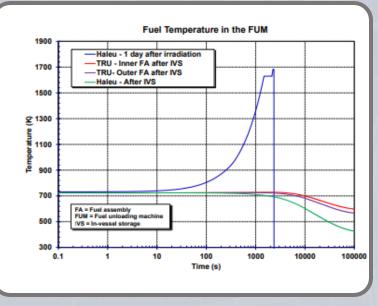


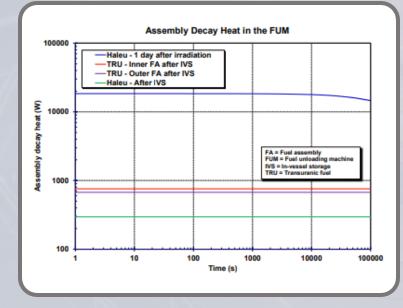

- Two cases analyzed; fuel cooled for 10 days & 7 reactor cycles.
 - 7 reactor cycles is the length of time a fuel assembly (FA) remains in the in-vessel storage.
- Neutron and gamma source terms determined for both ABTR HALEU & ABTR U/TRU fuel types.

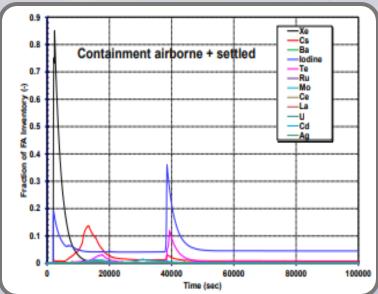
Fuel Cycle Analysis SFR Fuel Handling Accident – Material Transport

During refueling operations, the refueling machine is used to perform fuel handling operations, such as moving spent fuel assembly in and out of the reactor core. A seismic event occurs causing the refueling machine to fail and drop a spent fuel assembly loaded within a SNF cask within the containment building.


- MELCOR is used to model the fuel damage and radiological transport throughout the containment building. SCALE is used to provide the radionuclides for the HALEU spent fuel after in-vessel storage (7 cycles).
- Modeling Assumptions
 - No residual sodium in the cask.
 - All active cooling systems have failed.




Fuel Cycle Analysis SFR Fuel Handling Accident – Material Transport


 During removal from the reactor, FA are blown with argon gas to remove residual sodium.

- FAs with normal in-vessel storage cooling times remain intact within the failed fuel handling machine
- Accidental removal of a recently discharged FA would lead to fuel failures after 40 minutes.

Fuel Cycle Analysis Public Workshops & Webpage

Next planned workshop on the MSR fuel cycle will be Summer 2024

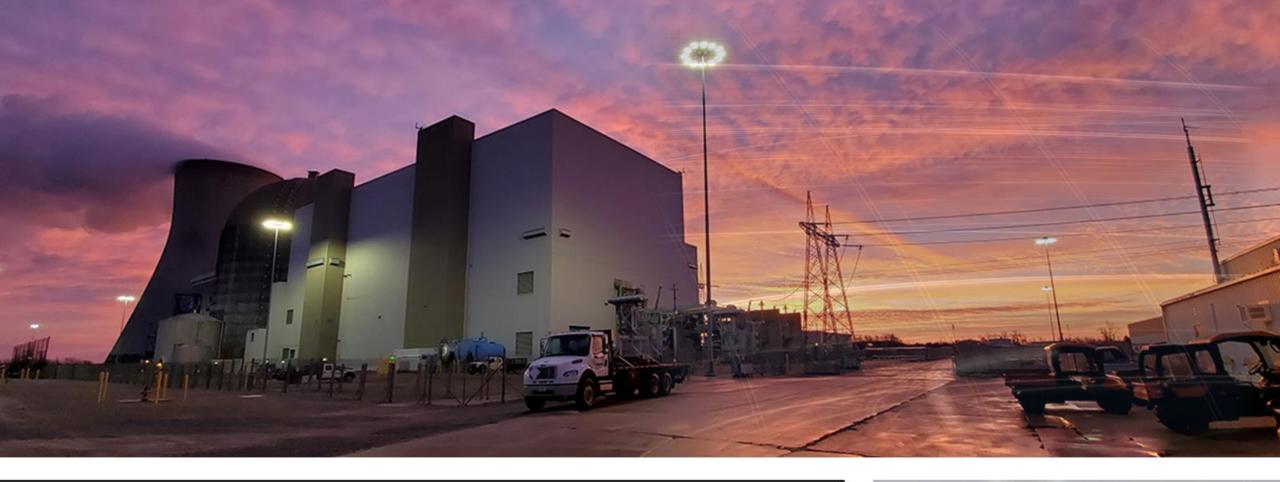
- Criticality during fuel salt conditioning
- Non-radiological release of beryllium during fuel salt conditioning
- Radiological release of fission products during a breach in the off-gas system
- Radiological release of tritium
- Dose analyses of the primary heat exchanger

Fuel Cycle Analysis Key Highlights & Conclusions

Workshops and analyses have revealed some information gaps, for example:

- No commercially-sized transportation packages for moving fresh pebbles.
- Lack of public information for onsite fresh & spent fuel storage (pebbles, SFR fuel, etc.).

It is not envisioned this will challenge SCALE/MELCOR since no new models are required.


- The need for validation data (criticality safety benchmarking) has been identified, especially for TRISO based systems.
 - New collaboration between DOE and NRC for the Development of Criticality Safety Benchmarking Data for HALEU Fuel Cycle and Transportation (DNCSH)
 - Goal is to produce high-quality publicly available benchmarking experiments, nuclear data, and evaluations applicable to a wide range of HALEU systems.

SCALE & MELCOR demonstration workshops have shown NRC is ready to support fuel cycle analyses

Fuel Cycle Analysis Next Steps

Code development activities ongoing

- MELCOR/ORIGEN Integration for MSR analyses
- Capability to model multiple working fluids in the same MELCOR plant model
- Addition of limited unstructured mesh capability to allow analysis of complex, arbitrary geometries of fissile material (e.g., fractured / damaged TRISO pebbles) in SCALE.
- Improved modeling capabilities in SCALE to control-blades within pebble bed systems.
- Maintain awareness of industry priorities
- Training and knowledge management

Status Update on Computer Code and Model Development for Non-Light-Water Reactors

April 3, 2024

Conclusions

Kimberly A. Webber, Ph.D.

Director, Division of Systems Analysis Office of Nuclear Regulatory Research

Conclusions

Completed

- Non-LWR Code Development Reports
- Reference Plant Models
- SCALE/MELCOR Demonstration Public Workshops
- MACCS assessments and updates
- Code Assessment Reports for Metallic and TRISO Fuels
- Training on BlueCRAB Codes

Next steps

- New and Updates to Existing Reference Plant Models
- Verification and Validation (V&V) Report for Systems Analysis
- Assessment of MACCS capabilities to model physiochemical transformations during atmospheric dispersion
- Development/consolidation of Radiation Protection Codes for non-LWR analysis
- Fuel Cycle Demonstration Project Public Workshop for Molten Salt Reactor

Information Request from NuScale ACRS Subcommittee Meeting - March 19, 2024

Item 1 – Chapter 2: Concerning Hydrometeorological Reports

The staff does not consider it to be necessary that the NuScale Standard Design Approval Application (SDAA) include a statement requiring a site-specific precipitation study with the use of the most contemporary NOAA HMR report (Hydrometeorological Report) (or equivalent) to ensure climate change is accounted for in the meteorological sections impacting the design. SDAA COL Item 2.0-1 directs future applicants referencing the NuScale US460 design to demonstrate that the site-specific characteristics are bounded by the site parameters specified in SDAA Table 2.0-1. If those values are not bounded, then the applicant will demonstrate the acceptability of the site-specific values. If new precipitation studies are available at the time of the application, then the applicant should follow the guidance provided in DG-1290 (soon to be Revision 3 of RG 1.59), which states that "PMP [Probable Maximum Precipitation] values provided by HMRs should be evaluated in light of precipitation events that have occurred in the region since the HMRs were published. ... If an alternative source other than an HMR prepared by the National Weather Service is used for the PMP estimate, the basis for the specific PMP value used needs to be explained. Considerations on an acceptable approach to the estimation of a site-specific PMP as an alternative to an HMR-based estimate can be found in NUREG/KM-0015." Current NOAA HMRs provide conservative extreme precipitation estimates and are accepted by both the NRC and the nuclear industry. When new data from NOAA or the National Academy of Sciences is available, the NRC will review the data and update the guidance as appropriate. Any applicant referencing the NuScale US460 design must demonstrate that the site is able to be protected against extreme precipitation and is bounded by the site parameters identified in SDAA Table 2.0-1.

Item 2 – Chapter 13: Regarding COL Item 13.5-7 Consistency in the EOPs

Roadmap for Plant Procedures

- Regulatory Requirements
- Standard Review Plan (SRP) guidance
- Expectations for SDAA and COLA submittals
- The Procedure Generation Package
- Construction Inspection Program

Regulatory Requirements

The NRC requires COL holders to have procedure programs. There is no regulatory requirement for EOPs to be consistent at sites with the same standard design.

- 10 CFR 52.79 Contents of applications, technical information in final safety analysis report (applicable to Combined Licenses)
 - (27) Managerial and administrative controls to be used to assure safe operation. Appendix B to 10 CFR part 50 sets forth the requirements for these controls for nuclear power plants. The information on the controls to be used for a nuclear power plant shall include a discussion of how the applicable requirements of appendix B to 10 CFR part 50 will be satisfied;
 - (29) (i) Plans for conduct of normal operations, including maintenance, surveillance, and periodic testing of structures, systems, and components;

(ii) Plans for coping with emergencies, other than the plans required by $\frac{52.79(a)(21)}{2}$;

• 10 CFR Part 50, Appendix B, Criteria V and VI, establish criteria for development, approval, and control of procedures for all activities affecting quality.

- 10 CFR 52.137 Contents of applications; technical information, FSAR information (applicable to Standard Design Approvals):
 - (a)(8) The information necessary to demonstrate compliance with any technically relevant portions of the Three Mile Island requirements set forth in <u>10 CFR 50.34(f)</u>, except paragraphs (f)(1)(xii),(f)(2)(ix), and (f)(3)(v) of <u>10 CFR 50.34(f)</u>;
- 10 CFR 50.34 (f)(2)(ii): Contents of Applications; technical information, additional TMI-related requirements:

Establish a program, to begin during construction and follow into operation, for integrating and expanding current efforts to improve plant procedures. The scope of the program shall include emergency procedures, reliability analyses, human factors engineering, crisis management, operator training, and coordination with INPO and other industry efforts.

NRC Staff Review Procedures

The NRC staff reviews **procedure programs** for normal operation, abnormal and emergency operation, testing and maintenance, and administrative controls.

- <u>NUREG-0800, Standard Review Plan</u>, Chapter 13 Conduct of Operations, 13.5.2.1 Operating and Emergency Operating Procedures, Revision 2, March 2007
- NUREG-0711, HFE Program Review, Section 9, Procedure Development:

Procedures are integral to an overall HFE program and should be developed and implemented using accepted HFE principles

The NRC reviews procedures to confirm that the applicant's procedure development program incorporates HFE principles and criteria

Expectations for SDAA and COLA submittals

At the **SDA application** stage, the staff reviews COL action items for procedures.

- Plant procedures include administrative procedures, operating procedures, emergency operating procedures as well as maintenance and other procedures for safety-related activities. The COL applicant is responsible for these types of procedures
- The staff's review is focused on the evaluation of COL action items pertaining to procedures
- The staff reviewed the COL information items in NuScale SDAA Section, 13.5, "Plant Procedures" for a COL to provide procedure descriptions and information about procedure program development and implementation.
- For example: COL Item 13.5-5 addresses EOPs:

An applicant that references the NuScale Power Plant US460 standard design will provide a plan for the development, implementation, and control of emergency operating procedures, including preliminary schedules for preparation and target dates for completion.

Additionally, the applicant will identify the group within the operating organization responsible for maintaining these procedures.

COL applicants or COL holders are required to develop procedures that are plant-specific.

• The COL application:

- May be received prior to development of detailed procedures
- Should contain a target date for completion of procedures
- Should describe the different classifications of procedures
- Should describe applicant's programs for developing procedures
- Procedures may be submitted <u>after</u> a COL is issued
 - Technical guidelines for developing EOPs are submitted as part of the <u>Procedure Generation</u> <u>Package (PGP)</u> at least 3 months before operator training on EOPs begins
 - Operating procedures need to be established, implemented and maintained at least 6 months prior to fuel load to allow for operator licensing examinations
 - Procedures are inspected as part of the Construction Inspection Program

The Procedure Generation Package

Information about EOP development and implementation is submitted for NRC staff review via the Procedures Generation Package (PGP)

- PGP must be submitted for NRC staff review no later than 3 months before formal operator training on EOPs begins
- PGP contains the following (from <u>SRP Chapter 13.5.2.1</u>):
 - 1. Plant specific technical guidelines (P-STGs) (these may or may not reference Generic Technical Guidelines)
 - 2. Plant specific writer's guide that details the methods to be used by the applicant in preparing EOPs based on P-STGs
 - 3. A description of the verification and validation program for EOPs
 - 4. A description of the program for training operators on EOPs
- The P-STGs must be derived from approved analyses of transients and accidents so that EOPs will be based on acceptable technical guidelines

Construction Inspection Program

The NRC staff verifies the technical adequacy of a COL holder's operating procedures through the **Construction Inspection Program**

Inspection Procedures (IPs) used by the staff during plant construction:

- IP <u>42401</u>, Part 52, Plant Procedures
- IP <u>42453</u>, Part 52, Operating Procedures Inspection
- IP <u>42454</u>, Part 52, Emergency Procedures