

SVP-24-024 10 CFR 50.36a

April 5, 2024

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D.C. 20555

Quad Cities Nuclear Power Station, Units 1 and 2

Renewed Facility Operating License Nos. DPR-29 and DPR-30

NRC Docket Nos. 50-254 and 50-265

Subject:

Corrected Radioactive Effluent Release Report for 2022

Reference:

Letter from Brian Wake (Constellation Energy Generation, LLC) to the U.S. NRC (Regional Administrator, Region III), "Radioactive Effluent Release Report

for 2022," dated April 28, 2023.

Pursuant to Technical Specifications Section 5.6.3 and 10 CFR 50.36a, enclosed is the Quad Cities Nuclear Power Station Radioactive Effluent Release Report for January through December 2022. This follow-up information is the second submittal of errata for the 2022 Annual Radioactive Effluent Release Report. Data will replace the Radioactive Effluent Release Report submitted under the April 28, 2023 letter.

Should you have any questions concerning this letter, please contact Blake Young at (309) 227-3200.

Respectfully, Houghs Hill

Doug Hild

Site Vice President

Quad Cities Nuclear Power Station

Attachments:

1. Corrected 2022 Annual Radioactive Effluent Release Report

cc: Regional Administrator - NRC Region III

NRC Senior Resident Inspector – Quad Cities Nuclear Power Station

Attachment 1

Corrected 2022 Annual Radioactive Effluent Release Report

Errata/Correction to the 2022 ARERR

The following paragraph explains the errata data that has been identified for the 2022 ARERR:

Multiple data errors were identified in the 2022 Annual Radiological Effluent Release Report for the summation of all gaseous releases, as well as batch liquid releases. The data errors were observed in the following sections of the report:

All four quarters of fission and activation gases and the associated annual total, 1st Quarter gaseous particulates and associated annual totals, 4th Quarter Tritium and Carbon-14 results and associated annual totals, and 3rd and 4th Quarters percent of organ dose limit.

The 2nd Quarter batch liquid release was updated to include Fe-55 results and the updated annual totals.

Information for the total liquid batch releases were updated including, total time, maximum time, average time, and minimum time.

To reflect the updates for the continuous gaseous releases, Total Body dose, Organ dose, and Carbon-14 dose to total body and organ and percentages were all updated for Gaseous Dose to a Member of the Public.

The updates to both the gaseous and liquid data also updated the 40 CFR 190 Direct Radiation Dose to a Member of the Public for Total Body, Organ, and Thyroid dose and the associated 40CFR190 percent of limits.

All updates listed above reflect the changes in the 10CFR20.1301(a)(1) Compliance Assessment. Unit 1, Quarter 3 and associated Percent of Limit and Unit 2, Quarter 4, Year Total, and associated Percent of Limit were updated.

Effluent & Waste Disposable Summary

Gaseous Effluents – Summation of all Releases

Period: January - December 2022

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total	Est. Total Error %
1. Total Release	Ci	1.22E+01	1.43E+01	1.88E+01	1.58E+01	6.11 E+01	12.7
2. Average release rate for the period	μCi/sec	1.57E+00	1.82E+00	2.36E+00	1.99E+00		•
3. Percent of ODCM limit (1)	%γ	2.24E-03	2.19E-03	2.65E-03	2.52E-03	1	
	%β	1.37E-04	2.35E-04	5.20E-04	3.45E-04		
	_						
B. lodine							
1. Total lodine – 131	Ci	1.22E-05	<lld(4)< td=""><td><lld(4)< td=""><td>2.36E-05</td><td>3.58E-05</td><td>41.7</td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td>2.36E-05</td><td>3.58E-05</td><td>41.7</td></lld(4)<>	2.36E-05	3.58E-05	41.7
2. Average release rate for the period	μCi/sec	1.57E-06	<lld(4)< td=""><td><lld(4)< td=""><td>2.97E-06</td><td></td><td></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td>2.97E-06</td><td></td><td></td></lld(4)<>	2.97E-06		
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
	-						
C. Particulates (3)							
1. Particulates with half-lives >8 days	Ci	4.87E-04	4.21E-04	1.00E-04	2.10E-04	1.22E-03	32.2
2. Average release rate for the period	μCi/sec	6.26E-05	5.36E-05	1.26E-05	2.64E-05		***************************************
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
4. Gross alpha radioactivity	Ci	<lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td></td><td></td></lld(4)<>		
	_						
D. Tritium							
1. Total Release	Ci	1.67E+01	1.84E+01	2.24E+01	1.50E+01	7.25E+01	6.3
2.Average release rate for the period	μCi/sec	2.15E+00	2.34E+00	2.81E+00	1.88E+00		
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
	•						
E. Carbon – 14				·			
1. Total Release	Ci	6.76E+00	6.44E+00	7.48E+00	5.24E+00	2.59E+01	
2. Average release rate for the period	μCi/sec	8.69E-01	8.19E-01	9.41E-01	6.59E-01		
3. Percent of ODCM Limit	%	N/A	N/A	N/A	N/A		
F. lodine 131 & 133, Tritium,							
Particulate, and C-14						ı	
1. Percent of ODCM Organ Dose Limit	%	6.34E-01	6.05E-01	6.96E-01	5.59E-01		

- (1) % Noble gas gamma/noble gas beta dose limits
- (2) Percent of ODCM Limit is captured in aggregate in section F
- (3) Nuclides with less than 8-day half-lives are not included per the ODCM, with the exception of La-140 and Mo-99
- (4) Gaseous Effluent LLDs reported on page 9 of 78

Effluent & Waste Disposable Summary

Gaseous Effluents - Summation of all Releases

Period: January – December 2022

Unit: 1 & 2

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total	Est. Total Error %
1. Total Release	Ci	1.26E+01	1.44E+01	1.91E+01	2.01E+01	6.61E+01	12.7
2. Average release rate for the period	μCi/sec	1.62E+00	1.83E+00	2.34E+00	2.53E+00		
3. Percent of ODCM limit (1)	%γ	4.46E-03	4.40E-03	5.32E-03	5.28E-03		
	%β	2.77E-04	4.71E-04	1.04E-03	1.16E-03		
B. lodine	٦						1
1. Total lodine – 131	Ci	1.22E-05	<lld(4)< td=""><td><lld(4)< td=""><td>2.36E-05</td><td>3.58E-05</td><td>41.7</td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td>2.36E-05</td><td>3.58E-05</td><td>41.7</td></lld(4)<>	2.36E-05	3.58E-05	41.7
2. Average release rate for the period	μCi/sec		<lld(4)< td=""><td><lld(4)< td=""><td>2.97E-06</td><td></td><td></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td>2.97E-06</td><td></td><td></td></lld(4)<>	2.97E-06		
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
			*	•	•	ı	
C. Particulates (3)	7						
1. Particulates with half-lives >8 days	Ci	3.98E-04	4.21E-04	1.00E-04	2.10E-04	1.22E-03	32.2
2. Average release rate for the period	μCi/sec	6.26E-05	5.36E-05	1.26E-05	2.64E-05		
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
4. Gross alpha radioactivity	Ci	<lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td><lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td><lld(4)< td=""><td></td><td></td></lld(4)<></td></lld(4)<>	<lld(4)< td=""><td></td><td></td></lld(4)<>		
D. Tritium	1						
1. Total Release	Ci	1.67E+01	1.84E+01	2.24E+01	2.00E+01	7.75E+01	6.3
2.Average release rate for the period	μCi/sec	2.15E+00	2.34E+00	2.81E+00	1.88E+00		
3. Percent of ODCM limit	%	N/A	N/A	N/A	N/A		
E. Carbon – 14							
1. Total Release	Ci	6.76E+00	6.44E+00	7.48E+00	7.44E+00	2.81E+01	
Average release rate for the period	μCi/sec	8.69E-01	8.19E-01	9.41E-01	9.36E-01		
3. Percent of ODCM Limit	%	N/A	N/A	N/A	N/A	1	

(1) % Noble gas gamma/noble gas beta dose limits

F. Iodine 131 & 133, Tritium, Particulate, and C-14

1. Percent of ODCM Organ Dose Limit

- (2) Percent of ODCM Limit is captured in aggregate in section F
- (3) Nuclides with less than 8-day half-lives are not included per the ODCM, with the exception of La-140 and Mo-99

6.05E-01

6.91E-01

6.34E-01

6.92E-01

(4) Gaseous Effluent LLDs reported on page 9 of 78

Effluent & Waste Disposable Summary

Gaseous Effluents Release Point Main Chimney (Elevated) Continuous Mode

Period: January - December 2022

Continuous Mode									
Nuclides Released	Jan - Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct - Dec 2022	Total				
1. FISSION AND ACTIVATION GASES: Curies									
Ar-41	7.85E-01	3.63E-01	1.12E+00	3.74E-01	2.64E+00				
Kr-85m	6.03E-02	1.82E-01	1.75E-01	1.34E-01	5.51E-01				
Kr-85	<lld (1)<="" td=""><td>2.69E+00</td><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.69E+00</td></lld></td></lld></td></lld>	2.69E+00	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.69E+00</td></lld></td></lld>	<lld (1)<="" td=""><td>2.69E+00</td></lld>	2.69E+00				
Kr-87	2.56E-01	5.01E-01	4.27E-01	3.89E-01	1.57E+00				
Kr-88	1.58E-01	4.97E-01	4.05E-01	3.15E-01	1.38E+00				
Xe-133m	<lld (1)<="" td=""><td>1.36E-03</td><td>1.39E-03</td><td>5.84E-04</td><td>3.33E-03</td></lld>	1.36E-03	1.39E-03	5.84E-04	3.33E-03				
Xe-133	2.02E-01	1.84E-01	1.07E+00	1.32E+00	2.78E+00				
Xe-135m	1.66E+00	1.67E+00	1.87E+00	1.99E+00	7.19E+00				
Xe-135	2.98E+00	7.08E-01	6.47E-01	5.09E-01	4.84E+00				
Xe-138	6.10E+00	5.89E+00	6.46E+00	7.19E+00	2.56E+01				
Total for Period	1.22E+01	1.27E+01	1.22E+01	1.22E+01	4.93E+01				
		2. IODINI	S: Curies						
I-131	1.22E-05	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.36E-05</td><td>3.58E-05</td></lld></td></lld>	<lld (1)<="" td=""><td>2.36E-05</td><td>3.58E-05</td></lld>	2.36E-05	3.58E-05				
I-133	1.51E-04	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>1.71E-04</td><td>3.22E-04</td></lld></td></lld>	<lld (1)<="" td=""><td>1.71E-04</td><td>3.22E-04</td></lld>	1.71E-04	3.22E-04				
I-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Total for Period	1.63E-04	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>1.95E-04</td><td>3.58E-04</td></lld></td></lld>	<lld (1)<="" td=""><td>1.95E-04</td><td>3.58E-04</td></lld>	1.95E-04	3.58E-04				
3. PARTICULATES WITH HALF-LIVES > 8 DAYS (2): Curies									
Cr-51	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Mn-54	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Fe-55	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Fe-59	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Co-58	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Co-60	3.00E-05	8.87E-05	7.90E-06	2.34E-05	1.50E-04				
Ni-63	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Zn-65	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Sr-89	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Sr-90	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Zr/Nb-95(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Mo-99	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Ag-110m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Cs-134	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Cs-137	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Ba/La -140(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Ce-141	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Ce-144	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Total for Period	3.00E-05	8.87E-05	7.90E-06	2.34E-05	1.50E-04				
		4. CARBON	- 14: Curies	······································					
C-14	6.55E+00	6.25E+00	7.25E+00	5.02E+00	2.51E+01				
<u> </u>		5. TRITIUI							
H-3	1.45E+01	1.56E+01	1.97E+01	1.16E+01	6.14E+01				
7. 0		6. GROSS AL							
Gross Alaba	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>				
Gross Alpha	\LLU\"	\LLD \'	VELD	\LLD	\LLD \->				

- (1) Gaseous LLDs reported on page 9 of 78
- (2) Includes La-140 and Mo-99 per the ODCM
- (3) Equilibrium assumed, i.e., value for each nuclide is ½ of total

Effluent & Waste Disposable Summary

Gaseous Effluents Release Point Main Chimney (Elevated) Continuous Mode

Period: January – December 2022 Unit: 1 & 2

	a	Continuo	us Mode					
Nuclides Released	Jan – Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct – Dec 2022	Total			
		1. FISSION AND ACTIV	/ATION GASES: Curies					
Ar-41	7.85E-01	3.63E-01	1.12E+00	3.74E-01	2.64E+00			
Kr-85m	6.03E-02	1.82E-01	1.76E-01	1.34E-01	5.52E-01			
Kr-85	3.92E-01	2.69E+00	3.08E-01	2.07E-01	3.60E+00			
Kr-87	2.56E-01	5.35E-01	4.29E-01	3.89E-01	1.61E+00			
Kr-88	1.58E-01	4.97E-01	4.06E-01	3.15E-01	1.38E+00			
Xe-133m	<lld (1)<="" td=""><td>2.17E-03</td><td>2.46E-03</td><td>1.45E-03</td><td>6.08E-03</td></lld>	2.17E-03	2.46E-03	1.45E-03	6.08E-03			
Xe-133	2.02E-01	1.84E-01	1.07E+00	1.32E+00	2.78E+00			
Xe-135m	1.66E+00	1.67E+00	1.87E+00	1.99E+00	7.19E+00			
Xe-135	2.98E+00	7.08E-01	6.49E-01	5.09E-01	4.85E+00			
Xe-138	6.07E+00	5.89E+00	6.49E+00	7.19E+00	2.56E+01			
Total for Period	1.26E+01	1.27E+01	1.25E+01	1.24E+01	5.02E+01			
		2. IODINE	S: Curies					
I-131	1.22E-05	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.36E-05</td><td>3.58E-05</td></lld></td></lld>	<lld (1)<="" td=""><td>2.36E-05</td><td>3.58E-05</td></lld>	2.36E-05	3.58E-05			
I-133	1.51E-04	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.13E-04</td><td>3.64E-04</td></lld></td></lld>	<lld (1)<="" td=""><td>2.13E-04</td><td>3.64E-04</td></lld>	2.13E-04	3.64E-04			
I-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Total for Period	1.63E-04	<lld (1)<="" td=""><td><lld (1)<="" td=""><td>2.37E-04</td><td>4.00E-04</td></lld></td></lld>	<lld (1)<="" td=""><td>2.37E-04</td><td>4.00E-04</td></lld>	2.37E-04	4.00E-04			
3. PARTICULATES WITH HALF-LIVES > 8 DAYS (2): Curies								
Cr-51	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Mn-54	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Fe-55	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Fe-59	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Co-58	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Co-60	3.00E-05	8.69E-05	7.90E-06	2.34E-05	1.48E-04			
Ni-63	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Zn-65	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Sr-89	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Sr-90	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Zr/Nb-95(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Mo-99	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Ag-110m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Cs-134	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Cs-137	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Ba/La -140(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Ce-141	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Ce-144	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			
Total for Period	3.00E-05	8.69E-05	7.90E-06	2.34E-05	1.48E-04			
	100 to 10	4. CARBON -	– 14: Curies					
C-14	6.55E+00	6.25E+00	7.25E+00	7.22E+00	2.73E+01			
		5. TRITIUI		10 ALLES AND				
H-3	1.45E+01	1.56E+01	1.97E+01	1.66E+01	6.64E+01			
0	2	6. GROSS AL			0.0.2.01			
Gross Alpha	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>			

- (1) Gaseous LLDs reported on page 9 of 78
- (2) Includes La-140 and Mo-99 per the ODCM
- (3) Equilibrium assumed, i.e., value for each nuclide is ½ of total

Effluent & Waste Disposable Summary

Gaseous Effluents Release Point Reactor Vent (Mixed Mode) Continuous Mode

Period: January - December 2022

		Continuo	us Mode		
Nuclides Released	Jan - Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct - Dec 2022	Total
		1. FISSION AND ACTIV	/ATION GASES: Curies	1	
Ar-41	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-85m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-85	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-87	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-88	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-133	<lld (1)<="" td=""><td>1.65E+00</td><td>6.61E+00</td><td>3.56E+00</td><td>1.18E+01</td></lld>	1.65E+00	6.61E+00	3.56E+00	1.18E+01
Xe-135m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-138	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	<lld (1)<="" td=""><td>1.65E+00</td><td>6.61E+00</td><td>3.56E+00</td><td>1.18E+01</td></lld>	1.65E+00	6.61E+00	3.56E+00	1.18E+01
		2. IODINE	S: Curies		
I-131	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
I-133	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
I-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
	3. PA	RTICULATES WITH HAL	F-LIVES > 8 DAYS (2):	Curies	
Cr-51	<lld <sup="">{1}</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Mn-54	1.00E-04	8.33E-05	1.28E-05	2.12E-05	2.17E-04
Fe-55	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Fe-59	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Co-58	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Co-60	2.68E-04	2.49E-04	7.97E-05	1.65E-04	7.62E-04
Ni-63	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Zn-65	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Sr-89	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Sr-90	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Zr/Nb-95(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Mo-99	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ag-110m	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Cs-134	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Cs-137	<lld (1)<="" td=""><td><lld <sup="">(1)</lld></td><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld <sup="">(1)</lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ba/La-140(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ce-141	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ce-144	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	3.68E-04	3.32E-04	9.25E-05	1.86E-04	9.79E-04
	*·*** * ·	4. CARBON -			
C-14	1.98E-01	2.26E-01	2.28E-01	2.22E-01	8.74E-01
C-14	1.300-01	5. TRITIUN		2.256 V4	0.741-01
11.3	2 225 : 00		2.70E+00	2 205 100	1 135:01
H-3	2.22E+00	2.85E+00		3.39E+00	1.12E+01
	112.72	6. GROSS ALI		-110 (a) T	
Gross Alpha	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>

⁽¹⁾ Gaseous LLDs reported on page 9 of 78

⁽²⁾ Includes La-140 and Mo-99 per the ODCM

⁽³⁾ Equilibrium assumed, i.e., value for each nuclide is $\frac{1}{2}$ of total

Effluent & Waste Disposable Summary

Gaseous Effluents Release Point Reactor Vent (Mixed Mode) Continuous Mode

Period: January – December 2022 Unit: 1 & 2

		Continuo	us Mode		
Nuclides Released	Jan - Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct - Dec 2022	Total
		1. FISSION AND ACTIV	ATION GASES: Curies		
Ar-41	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-85m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-85	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-87	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Kr-88	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-133	<lld (1)<="" td=""><td>1.65E+00</td><td>6.61E+00</td><td>7.64E+00</td><td>1.59E+01</td></lld>	1.65E+00	6.61E+00	7.64E+00	1.59E+01
Xe-135m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Xe-138	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	<lld (1)<="" td=""><td>1.65E+00</td><td>6.61E+00</td><td>7.64E+00</td><td>1.59E+01</td></lld>	1.65E+00	6.61E+00	7.64E+00	1.59E+01
•		2. IODINE	S: Curies		
I-131	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
I-133	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
I-135	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
		RTICULATES WITH HAL	F-LIVES > 8 DAYS (2):	Curies	
Cr-51	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Mn-54	1.00E-04	8.33E-05	1.28E-05	2.12E-05	2.17E-04
Fe-55	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Fe-59	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Co-58	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Co-60	2.68E-04	2.49E-04	7.97E-05	1.65E-04	7.62E-04
Ni-63	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Zn-65	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Sr-89	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Sr-90	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Zr/Nb-95(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Mo-99	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ag-110m	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Cs-134	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Cs-137	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ba/La-140(3)	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ce-141	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Ce-144	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>
Total for Period	3.68E-04	3.32E-04	9.25E-05	1.86E-04	9.79E-04
		4. CARBON	– 14: Curies		
C-14	2.03E-01	1.93E-01	2.24E-01	2.24E-01	8.44E-01
		5. TRITIUI	M: Curies		
H-3	2.22E+00	2.85E+00	2.70E+00	3.39E+00	1.12E+01
		6. GROSS AL	PHA: Curies		
Gross Alpha	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld></td></lld>	<lld (1)<="" td=""><td><lld (1)<="" td=""></lld></td></lld>	<lld (1)<="" td=""></lld>

- (1) Gaseous LLDs reported on page 9 of 78
- (2) Includes La-140 and Mo-99 per the ODCM
- (3) Equilibrium assumed, i.e., value for each nuclide is ½ of total

Effluent & Waste Disposable Summary

Liquid Effluents Release Point <u>Mississippi River Batch Mode River Discharge Tank</u>

Period: January - December 2022

Batch Mode ⁽²⁾								
Nuclides Released	Jan- Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct - Dec 2022	Total			
1. FISSION AND ACTIVATION PRODUCTS: Curies								
Cr-51	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Mn-54	N/A (2)	8.11E-04	N/A (2)	N/A (2)	8.11E-04			
Fe-55	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Co-58	N/A (2)	6.50E-05	N/A (2)	N/A (2)	6.50E-05			
Co-60	N/A (2)	1.59E-03	N/A (2)	N/A (2)	1.59E-03			
Ni-63	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
5b-124	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Sb-125	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Zn-65	N/A (2)	5.73E-04	N/A (2)	N/A (2)	5.73E-04			
Sr-89	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Sr-90	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Zr/Nb-95	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Mo-99	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Ag-110m	N/A (2)	4.71E-04	N/A (2)	N/A (2)	4.71E-04			
Cs-134	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)			
Cs-137	N/A (2)	3.51E-04	N/A (2)	N/A (2)	3.51E-04			
Ba/La-140	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Ce-141	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Ce-144	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Total for Period	N/A (2)	3.86E-03	N/A (2)	N/A (2)	3.86E-03			
	2. DISSO	DLVED AND ENTRAINE	D NOBLE GASES: Curi	es				
Xe-133	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Xe-135	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
Total for Period	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)			
		3. TRITIUM:	Curies		_			
H-3	N/A (2)	5.35E-01	N/A (2)	N/A (2)	5.35E-01			
Total for Period	N/A (2)	5.35E-01	N/A (2)	N/A (2) .	5.35E-01			

⁽¹⁾ Liquid LLDs reported on page 10 of 78

⁽²⁾ No River Discharges performed in Q1, Q3, or Q4

Effluent & Waste Disposable Summary

Liquid Effluents Release Point <u>Mississippi River Batch Mode River Discharge Tarnk</u>

Period: January – December 2022 Unit: 1 & 2

	Batch Mode ⁽²⁾									
Nuclides Released	Jan- Mar 2022	Apr – Jun 2022	Jul – Sep 2022	Oct – Dec 2022	Total					
1. FISSION AND ACTIVATION PRODUCTS: Curies										
Cr-51	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Mn-54	N/A (2)	8.11E-04	N/A (2)	N/A (2)	8.11E-04					
Fe-55	N/A (2)	3.12E-03	N/A (2)	N/A (2)	3.12E-03					
Co-58	N/A (2)	6.50E-05	N/A (2)	N/A (2)	6.50E-05					
Co-60	N/A (2)	1.59E-03	N/A (2)	N/A (2)	1.59E-03					
Ni-63	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Sb-124	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Sb-125	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Zn-65	N/A (2)	5.73E-04	N/A (2)	N/A (2)	5.73E-04					
Sr-89	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Sr-90	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Zr/Nb-95	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Mo-99	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Ag-110m	N/A (2)	4.71E-04	N/A (2)	N/A (2)	4.71E-04					
Cs-134	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	N/A (2)					
Cs-137	N/A (2)	3.51E-04	N/A (2)	N/A (2)	3.51E-04					
Ba/La-140	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Ce-141	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Ce-144	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Total for Period	N/A (2)	6.98E-03	N/A (2)	N/A (2)	6.98E-03					
	2. DISS	OLVED AND ENTRAINE	D NOBLE GASES: Curi	es						
Xe-133	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Xe-135	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
Total for Period	N/A (2)	< LLD (1)	N/A (2)	N/A (2)	< LLD (1)					
		3. TRITIUM:								
H-3	N/A (2)	5.35E-01	N/A (2)	N/A (2)	5.35E-01					
Total for Period	N/A (2)	5.35E-01	N/A (2)	N/A (2)	5.35E-01					

⁽¹⁾ Liquid LLDs reported on page 10 of 78

⁽²⁾ No River Discharges performed in Q1, Q3, or Q4

f. Estimated Total Error Percent

The estimated total error percents were calculated by taking the square root of the sum of the squares of errors for sampling and measurement parameters.

g. Less than the Lower Limit of detection (<LLD)

Samples are analyzed such that the Technical Specification LLD requirements are met. When a nuclide is not detected during the quarter, then <LLD is reported. The most conservative LLD's used for counting effluent samples are included in this report.

5. Batch Releases

a. Liquid

Number of releases: 2 releases
 Total Time: 1.63E+02 minutes
 Maximum Time: 8.75E+01 minutes

4. Average Time: 8.17E+01 minutes5. Minimum Time: 7.58E+01 minutes

6. Average Stream Flow: 63.7 gallons per minute

b. Gaseous

1. NONE

f. Estimated Total Error Percent

The estimated total error percents were calculated by taking the square root of the sum of the squares of errors for sampling and measurement parameters.

g. Less than the Lower Limit of detection (<LLD)

Samples are analyzed such that the Technical Specification LLD requirements are met. When a nuclide is not detected during the quarter, then <LLD is reported. The most conservative LLD's used for counting effluent samples are included in this report.

5. Batch Releases

a. Liquid

1. Number of releases: 2 releases 2. **Total Time:** 1.63E+03 minutes 3. Maximum Time: 8.75E+02 minutes 4. Average Time: 8.17E+02 minutes 5. Minimum Time: 7.58E+02 minutes 6. Average Stream Flow: 63.7 gallons per minute

b. Gaseous

1. NONE

During the period that the wells were routed to the discharge bay, only tritium was detected in the well discharge at levels above the required limit of detection. A total of 3.62E+O0 Ci of tritium was released to the Mississippi River via this abnormal release. The associated dose impact to members of the public from this abnormal release was calculated to be 2.65E-07 mRem to the Child/Liver dose pathway. The total body dose associated with this abnormal release was calculated to be 2.65E-07 mRem to the Child Total Body. The associated curies and doses due to this release were included in the 2021 Annual Radiological Effluent Release Report Summation of All Releases Table (page 6 of the 2021 ARERR), Mississippi River Continuous Mode (page 7 of the 2021 ARERR) and Radiological Impact on Man (page 18 of the 2021 ARERR).

Remediation of MW-R-2D2 continued through the 2022 calendar year, from January 1st through December 31st, 2022. A total of 1.65E+07 gallons were released to the Discharge Bay Outfall. Starting January 3rd, 2022, sampling frequency was reduced to once every two weeks. Samples have been consistently less than detectible values for Tritium (H-3) and all other analytes. Monthly composite samples continue to be analyzed for gross alpha, Fe-55, Ni-63, Sr-89, and Sr-90. LLDs and sampling requirements for this monitored abnormal release are identical to the requirements listed in the ODCM for routine liquid effluent analysis.

- b. Gaseous
 - 1. NONE
- 7. Radiological Impact on Man
 - a. Liquid Dose to a Member of the Public for 2022
 - b.

Total Body:

4.04E-05 mRem (Adult)

Organ:

6.78E-05 mRem (Teen/Liver)

b. Gaseous Dose to a Member of the Public for 2022

Total Body:

4.05E-02 mRem (Child)

Noble Gas Skin Dose:

1.12E-03 mRem/year

Organ (Particulate/Iodine/C-14/Tritium):

1.86E-01 mrem (Child/Bone)

The Quad Cities calculated annual doses from Carbon-14 releases have been calculated using the methodologies outlines in the ODCM. The resultant estimated releases of Carbon-14 resulted in a dose contribution of 1.84E-01mRem to organ dose (98.7%) and 3.67E-02 mrem to total body dose (90.7%).

During the period that the wells were routed to the discharge bay, only tritium was detected in the well discharge at levels above the required limit of detection. A total of 3.62E+00 Ci of tritium was released to the Mississippi River via this abnormal release. The associated dose impact to members of the public from this abnormal release was calculated to be 2.65E-07 mRem to the Child/Liver dose pathway. The total body dose associated with this abnormal release was calculated to be 2.65E-07 mRem to the Child Total Body. The associated curies and doses due to this release were included in the 2021 Annual Radiological Effluent Release Report Summation of All Releases Table (page 6 of the 2021 ARERR), Mississippi River Continuous Mode (page 7 of the 2021 ARERR) and Radiological Impact on Man (page 18 of the 2021 ARERR).

Remediation of MW-R-2D2 continued through the 2022 calendar year, from January 1st through December 31st, 2022. A total of 1.65E+07 gallons were released to the Discharge Bay Outfall. Starting January 3rd, 2022, sampling frequency was reduced to once every two weeks. Samples have been consistently less than detectible values for Tritium (H-3) and all other analytes. Monthly composite samples continue to be analyzed for gross alpha, Fe-55, Ni-63, Sr-89, and Sr-90. LLDs and sampling requirements for this monitored abnormal release are identical to the requirements listed in the ODCM for routine liquid effluent analysis.

- b. Gaseous
 - NONE
- 7. Radiological Impact on Man
 - a. Liquid Dose to a Member of the Public for 2022
 - b.

Total Body:

4.04E-05 mRem (Adult)

Organ:

6.78E-05 mRem (Teen/Liver)

b. Gaseous Dose to a Member of the Public for 2022

Total Body:

4.25E-02 mRem (Child)

Noble Gas Skin Dose:

1.12E-03 mRem/year

Organ (Particulate/Iodine/C-14/Tritium):

1.97E-01 mrem (Child/Bone)

The Quad Cities calculated annual doses from Carbon-14 releases have been calculated using the methodologies outlines in the ODCM. The resultant estimated releases of Carbon-14 resulted in a dose contribution of 1.94E-01mRem to organ dose (98.7%) and 3.88E-02 mrem to total body dose (91.2%).

c. 40 CFR 190 Direct Radiation Dose to a Member of the Public for 2022

Total Body: 7.53E+00 mrem

3.01E+01% of 40CFR190 Limit of 25 mrem/year (Total Body)

Organ Dose: 1.86E-01 mrem Child/Bone

7.44E-01% of 40CFR190 Limit of 25 mrem/year (Organ Dose)

Thyroid Dose: 4.38E-02 mrem Infant/Thyroid

5.84E-02% of 40CFR190 Limit of 75 mrem/year (Thyroid Dose)

d. Total Body Doses to the Population and Average Doses to Individuals in the Population from All Receiving-Water-Related-Pathways:

Not applicable for QCNPS. Not required per Quad Cities ODCM.

e. Total Body Doses to the Population and Average Doses to Individuals in the Population from Gaseous effluents to a distance of 50 miles:

Not applicable for QCNPS. Not required per Quad Cities ODCM.

f. Doses From Liquid and Gaseous Effluent to Members of the Public Due to Their Activities Inside the Site Boundary for the Record Period:

Not applicable for QCNPS. Any member of the public that is onsite for a significant period will be issued a dosimeter.

g. Liquid and Gaseous Effluent Radiation Monitors and Instrumentation Unavailability for the Period Beyond the Requirements of the ODCM, Including Sampling Deviation:

On May 11, 2022, the Main Chimney High Range Noble Gas Monitor was declared inoperable. On May 31, 2022, the Main Chimney High Range Noble Gas Monitor was declared operable following repairs and successful calibration and functional tests. The inoperability of the Main Chimney High Range Noble Gas Monitor required entry into ODCM Section 12.2.2, "Radioactive Gaseous Effluent Monitoring Instrumentation Report," Condition F, due to less than the minimum number of OPERABLE channels of the Main Chimney High Range Noble Gas Monitor. Action F.1 requires establishment of the preplanned alternate method of monitoring within 72 hours. This action was completed on May 11, 2022, via the Main Chimney GE monitors. Action F.2 requires the instrument channel to be restored to OPERABLE status within 7 days. The 7-day time requirement was reached on May 18, 2022 without the monitor being restored to operable. Resolution of this issue within the 7-day requirement was not feasible due to multiple failures associated with the high range detector and electronics.

40 CFR 190 Direct Radiation Dose to a Member of the Public for 2022

Total Body: 7.55E+00 mrem

3.00E+01% of 40CFR190 Limit of 25 mrem/year (Total Body)

Organ Dose: 1.97E-01 mrem Child/Bone

7.88E-01% of 40CFR190 Limit of 25 mrem/year (Organ Dose)

Thyroid Dose: 4.57E-02 mrem Infant/Thyroid

6.09E-02% of 40CFR190 Limit of 75 mrem/year (Thyroid Dose)

d. Total Body Doses to the Population and Average Doses to Individuals in the Population from All Receiving-Water-Related-Pathways:

Not applicable for QCNPS. Not required per Quad Cities ODCM.

e. Total Body Doses to the Population and Average Doses to Individuals in the Population from Gaseous effluents to a distance of 50 miles:

Not applicable for QCNPS. Not required per Quad Cities ODCM.

f. Doses From Liquid and Gaseous Effluent to Members of the Public Due to Their Activities Inside the Site Boundary for the Record Period:

Not applicable for QCNPS. Any member of the public that is onsite for a significant period will be issued a dosimeter.

g. Liquid and Gaseous Effluent Radiation Monitors and Instrumentation Unavailability for the Period Beyond the Requirements of the ODCM, Including Sampling Deviation:

On May 11, 2022, the Main Chimney High Range Noble Gas Monitor was declared inoperable. On May 31, 2022, the Main Chimney High Range Noble Gas Monitor was declared operable following repairs and successful calibration and functional tests. The inoperability of the Main Chimney High Range Noble Gas Monitor required entry into ODCM Section 12.2.2, "Radioactive Gaseous Effluent Monitoring Instrumentation Report," Condition F, due to less than the minimum number of OPERABLE channels of the Main Chimney High Range Noble Gas Monitor. Action F.1 requires establishment of the preplanned alternate method of monitoring within 72 hours. This action was completed on May 11, 2022, via the Main Chimney GE monitors. Action F.2 requires the instrument channel to be restored to OPERABLE status within 7 days. The 7-day time requirement was reached on May 18, 2022 without the monitor being restored to operable. Resolution of this issue within the 7-day requirement was not feasible due to multiple failures associated with the high range detector and electronics.

10CFR20.1301(a)(1) Compliance Assessment

Quad Cities Station Unit One and Unit Two

Assessment Period

01/01/2022-01/01/2023

10CFR20.1301(a)(1) Limit 100.00 mrem/year

Quad Cities Unit 1

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year Total	% of Limit
TEDE (mrem)	1.01E+00	9.95E-01	9.99E-01	1.03E+00	4.03E+00	4.03%

Quad Cities Unit 2

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year Total	% of Limit
TEDE (mrem)	8.30E-01	7.33E-01	9.62E-01	9.79E-01	3.50E+00	3.50%

Submitted by:

Date: 4-27-23

Miranda A. Talty

Technical Review by:

Date: 27-APR 2023

Date: 421/23

Justin Ashland

10CFR20.1301(a)(1) Compliance Assessment

Quad Cities Station Unit One and Unit Two

Assessment Period

01/01/2022-01/01/2023

10CFR20.1301(a)(1) Limit 100.00 mrem/year

Quad Cities Unit 1

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year Total	% of Limit
TEDE (mrem)	1.01E+00	9.95E-01	1.00E+00	1.03E+00	4.04E+00	4.04%

Quad Cities Unit 2

	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter	Year Total	% of Limit
TEDE (mrem)	8.30E-01	7.33E-01	9.62E-01	9.80E-01	3.51E+00	3.51%

Submitted by:		Date:
	Miranda A. Talty	
	4.74	
Technical Review by:		Date:
	David C. Basham	
Reviewed by:		Date:
	Justin Ashland	