Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Joint Human Factors Reliability and PRA, and Digital I&C Subcommittees
Docket Number:	(n/a)
Location:	teleconference
Date:	Wednesday, November 15, 2023

Work Order No.: NRC-2626

Pages 1-302

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	JOINT HUMAN FACTORS RELIABILITY & PRA,
8	AND DIGITAL I&C SUBCOMMITTEE MEETING
9	+ + + + +
10	WEDNESDAY
11	NOVEMBER 15, 2023
12	+ + + + +
13	The Joint Subcommittee met via
14	Teleconference, at 8:30 a.m. EST, Vicki Bier, Chair,
15	presiding.
16	
17	COMMITTEE MEMBERS:
18	VICKI M. BIER, Chair
19	RONALD G. BALLINGER, Member
20	CHARLES H. BROWN, JR., Member
21	GREGORY H. HALNON, Member
22	JOSE A. MARCH-LEUBA, Member
23	ROBERT E. MARTIN, Member
24	WALTER L. KIRCHNER, Member
25	DAVID A. PETTI, Member
ļ	I

		2
1	JOY L. REMPE, Member	
2	THOMAS P. ROBERTS, Member	
3	MATTHEW W. SUNSERI, Member	
4	VESNA DIMITRIJEVIC, Member	
5		
6	ACRS CONSULTANTS:	
7	MYRON HECHT	
8	STEPHEN SCHULTZ	
9		
10	DESIGNATED FEDERAL OFFICIAL:	
11	CHRISTINA ANTONESCU	
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	3
1	TABLE OF CONTENTS
2	Opening Remarks by Chairman 4
3	Introductory Remarks 8
4	Data Science and AI, Regulatory
5	Applications Public Workshop,
6	AI Characteristics for Regulatory
7	Consideration, Workshop Findings 14
8	AI Project Plan
9	Future Focused Research (FFR) Project;
10	Using Machine Learning to Inform
11	Inspection Planning
12	Overview of DOE's Light Water Reactor
13	Sustainability Program
14	Plant Modernization Activities, LWRS AI
15	Industry Research and Accomplishments
16	Overview, Fire Watch Report 190
17	The Good, the Bad, and the Ugly of AI in
18	Process Control
19	Public Comments
20	Closing Remarks by Chairman
21	
22	
23	
24	
25	
ļ	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:30 a.m.)
3	CHAIR BIER: So the meeting will now come
4	to order. I will start with my introductory remarks
5	and then you guys will go in a couple of minutes.
6	This is the meeting of the Joint Human
7	Factors Reliability and PRA, and the Digital I&C
8	Subcommittees. I'm Vicki Bier. I'm going to be
9	chairing this subcommittee meeting.
10	ACRS members in attendance, we have
11	Charles Brown. Matt seems to be not here this
12	morning. He may be coming in later. Jose, you're on
13	line?
14	MEMBER MARCH-LEUBA: Yes.
15	CHAIR BIER: And Vesna on line?
16	MEMBER DIMITRIJEVIC: Good morning,
17	everybody.
18	CHAIR BIER: Okay, we have Joy Rempe, Ron
19	Ballinger, Dave Petti, Walt Kirchner, Greg Halnon, Tom
20	Roberts, Robert Martin. And Steve Schultz, our
21	consultant, is here. And do we have Myron Hecht? Is
22	he here or online? He may also be joining later as a
23	consultant.
24	MEMBER BROWN: Yes, Vicki, Matt said he
25	would be coming in virtually at probably 10 o'clock or
I	I

(202) 234-4433

	5
1	so.
2	CHAIR BIER: Okay.
3	MEMBER BROWN: He had something. He had
4	to go back to North Carolina.
5	CHAIR BIER: Oh, wow. Okay. Well, thank
6	you for letting me know.
7	Christina Antonescu of the ACRS staff is
8	the Designated Federal Official, or DFO, for this
9	meeting.
10	Christina, can you confirm that we have
11	the court reporter on line?
12	Can the court reporter speak up?
13	MS. ANTONESCU: Can the court reporter
14	speak up, please?
15	(Off-microphone comment.)
16	CHAIR BIER: Okay, great. So there are
17	going to be two separate, but related, purposes for
18	today's meeting. First, staff and contractors are
19	going to provide information briefings on how they are
20	implementing the NRC's artificial intelligence, or AI,
21	strategic plan for fiscal years 2023 to 2027, so along
22	with their collaborators.
23	In addition, we have a speaker later this
24	afternoon, Dr. Missy Cummings, who will also present
25	on pluses and minuses of artificial intelligence. She
I	I

(202) 234-4433

	6
1	was originally hoping to come in person, but is going
2	to be online due to schedule conflicts.
3	I wanted to clarify for the staff and for
4	anyone else listening that Dr. Cummings is not going
5	to be in any way commenting on the staff
6	presentations. She was not asked to review them and
7	her opinions are her opinions. They're not, you know,
8	to be interpreted as a comment positive or negative
9	about anything the staff is doing.
10	Mainly, once we have this briefing on the
11	agenda, I wanted to take the opportunity to have just
12	an educational briefing for the committee members, so
13	that the members are all starting with a basic
14	understanding of some of the key issues, especially
15	that will be coming before the committee probably in
16	years to come, rather than at this moment.
17	For background, the ACRS was established
18	by statute and is governed by the Federal Advisory
19	Committee Act, FACA. This means that the committee
20	can only speak to its published letter reports. We
21	hold meetings to gather information to support our
22	deliberations. Interested parties who wish to provide
23	comments can contact our office requesting time to do
24	so. We also set aside about 15 minutes usually at the
25	end of every meeting for comments from members of the
ļ	I

(202) 234-4433

public either in person or listening on line. We also welcome written comments.

3 The meeting agenda for today was published on the NRC's public meeting notice website, as well as 4 5 the ACRS meeting website. The agenda and the ACRS 6 website have instructions about how the public can 7 participate. I don't believe we have any formal 8 requests for making a statement to the subcommittee 9 from members of the public yet, but people are always 10 welcome to chime in.

Today is going to be conducted as a hybrid 11 meeting, both in person and online. A transcript of 12 the meeting is being kept and will be made available 13 14 our website. Therefore, request that on we 15 participants in the meeting should identify themselves 16 before they speak and speak with sufficient clarity 17 and volume so that they can be readily heard. And as the staff knows, I'm sure, please allow time for 18 member questions. 19 Members always have a lot of questions and comments. And it might also help to 20 indicate which slide number you're on for people who 21 are following along on line. 22

We have an MS Teams phone line for audio established for the public who wishes to listen to the meeting. Because of the nature of the online

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

8 1 meetings, we will take a short break after each 2 presentation, if needed, to allow for screen sharing 3 and of course, we will also take the usual breaks 4 during the meeting as needed. 5 A reminder, anybody who is online on Teams, please do not use the meeting chat features to 6 7 conduct any sidebar technical conversations. Those 8 should be oral so that they're captured in the 9 transcript. And if you have any questions, you can contact the DFO, Christina, about issues that you 10 would like to have raised or if you're having 11 connection difficulties, et cetera. 12 So we are now ready to proceed with the 13 14 meeting. Matt, it looks like you already have the slides shared. 15 The opening remarks will be from Mr. Vic 16 Hall, who is Deputy Director of the Division of 17 Systems Analysis in the Office of Nuclear Reactor 18 19 Regulatory Research and after that, we'll be ready for the rest of the presentations. 20 So feel free to go ahead. 21 Thank you, Vicki. 22 MR. HALL: Good Vicki, I appreciate you and I 23 morning, everyone.

called Vicki, usually in the school yard. Good to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

share a namesake.

24

25

www.nealrgross.com

I have on many occasions been

1 have a fellow Vic, Vicki in the room. So I'll introduce myself to the room. 2 My 3 name is Vic Hall. I'm the Deputy Director in the 4 Division of Systems Analysis. I joined the Office of 5 Nuclear Regulatory Research earlier this year. Ιf you're looking at your calendars, I got here right 6 7 after this amazing team published the strategic plan. So I'm going to take full credit for the wonderful 8 9 work that they did and today, I'll mention I'm 10 extremely proud of the work they've done and part of job is representing them and being able to 11 my introduce them today. So it's my honor to be able to 12 introduce Matt and Anthony and Trey at the table who 13 14 will be doing all the heavy lifting and under the 15 spotlight.

16 I do want to express my gratitude to the 17 subcommittee today. Vicki mentioned this is an information meeting for the members here, but I kind 18 19 of disagree. I think it's an information meeting for AI is moving so fast. 20 everyone here. It's an technology that has got such a head of steam. 21 I'm staying up late which I shouldn't do and I'm watching 22 Fox shows on TV and whether it's Jimmy Kimmel or Jimmy 23 24 Fallon or whichever show, they're talking about AI. When the President puts out an Executive Order a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	10
1	couple of weeks ago, they're talking about on the
2	news. It just amps up the game. It puts the
3	spotlight on the technology that is either going to
4	change the world or is going to scare the heck out of
5	us. So the most important thing that we can do is
6	we're not going to regulate AI. We can be ready for
7	it. We can prepare where it's coming.
8	So when we have a meeting like this today
9	that you put together, it's an opportunity for us to
10	share the amazing work that we've done, but really to
11	listen to what you have to say, take that into
12	account, because we have to collaborate. We have to
13	take all the opinions into account because technology
14	is moving so fast.
15	I am really looking forward to today's
16	meeting and again, when you walk the halls of the NRC
17	and you're telling some folks what are you doing
18	today? I'm speaking in front of ACRS. The reaction
19	ooh, good luck. Expect a lot of questions and
20	discussion. My answer to that is good. We're
21	welcoming that today. We really look forward to your
22	probing, your questioning attitude, and how we can
23	improve, how we can be ready for something that's
24	moving so fast.

So with that, I do want to put the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

1 spotlight back on really the stars of the show today. We've got Matt Dennis, Anthony Valiaveedu, and Trey 2 3 Hathaway who are experts in the field. And our 4 office, the Office of Nuclear Regulatory Research, is 5 really a hub of world-class expertise. And when it comes to AI and AI in government, I don't think you'll 6 7 find a finer group of gentlemen on the topic. They not only understand the policy, they not only put 8 9 together the strategy, but they write the language. 10 They write in Python. They do things that make me as an electrical engineer blush and I am truly honored to 11 be able to work with them to represent them and to be 12 able to share their work with you today. 13 14 Matt will give you a summary of our 15 workshop which we held a couple of months ago. This 16 was our fourth workshop on AI and data science. The 17 first, I'll call it in the ChatGPT era when really I think the world has been awakened to what's coming 18 19 with AI and it was our best -- it was widely attended. We have over 350 attendees from 12 countries. 20 We had speakers the national 21 wonderful from labs and universities just like we have today, so I'm very much 22 looking forward to that same type of learning and 23

interaction that we're going to have today.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

Next, Anthony Valiaveedu will give you the

(202) 234-4433

24

25

www.nealrgross.com

rundown on our strategic plan and the project plan which talks about all the different steps that we've laid out. They're going to get us to I'll call it success between now and the next five years and I guarantee you that plan will change. There's no way that plan can't change with the way the speed is changing. So we've done our best take and I think it's a pretty darn good take at what actions we need to do to be ready for what's coming from the industry.

10 I do want to mention again the fact that things are moving fast, well before this meeting was 11 scheduled, well, after this meeting was scheduled, I'm 12 sorry, the chair put out a tasking memo to the NRC 13 14 staff. The title of that memo is Advancing the Uses 15 of Artificial Intelligence. And in that memo he very 16 much speaks about the need to be responsible in that 17 use of AI. And that clearly is again, putting the focus on what the staff is willing to do to keep 18 19 prepared for this technology that's coming very fast. And obviously, Nuclear Regulatory Research certainly 20 has a role because have such a dense group of 21 So we're working very much with 22 expertise in that. our partners in the Office of Chief Information 23 24 Officer and really every office in this agency because everybody will have a role in figuring out how we can 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

best responsibly use the technology to get our job done in our mission of safety.

3 So with that, I did want to mention a 4 couple of folks in the room, Trey Hathaway as well. 5 I've got one of our experts here that will be able to And if you haven't met Luis 6 answer questions. 7 Betancourt, Luis Betancourt is the branch chief in our 8 division who really is the motor behind all this and 9 makes it happen. And we also have Paul Krohn, I think is on the line, who is my co-chair on the AI Steering 10 Committee. So again, it's been a team effort across 11 the agency and it will continue to be so in the years 12 13 coming.

14 And again, I just wanted to close with 15 repeating my gratitude again. It's these types of 16 meetings that will make us better. So thank you for 17 having us. I hope you enjoy the presentations that we've prepared. I am extremely proud of the work and 18 19 what we've accomplished in the last year and very much looking forward to actually what the next five years 20 bring -- what the future bring for us as an agency. 21 So with that, Matt, let me hand it over to 22

you and thank everyone again for their attention andfor bringing us today.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

CHAIR BIER: Okay, before we get going, I

(202) 234-4433

25

1

2

www.nealrgross.com

just wanted to make one other announcement which is the committee is on an very strict schedule today because unlike the staff, the committee has a commitment at lunch hour and with an outside speaker later in the afternoon. We're going to have to kind of try and keep it on schedule. Happy to get going, so go ahead.

8 MR. DENNIS: Okay, I think I hit the 9 button and the microphone is green so I'm good to go. 10 Good morning, everyone. Again, my name is Matt Dennis and Trey Hathaway here. We're from the Office of 11 and we'll talking first 12 Research be _ _ our presentation this morning will be on the summary and 13 14 finding of the AI public workshop which we had back in 15 And I appreciate the push to get -- to September. 16 have a lunch break. I have to go get my flu shot, so 17 I am ecstatic to be on time so I can go get my flu shot. 18

Again, Matt Dennis, Trey Hathaway. We've already introduced Paul. Paul, Vic, and Luis are sitting over here at the side table and are available to answer any questions that we have that's related to the strategy or our progress.

Trey and I are going to talk about -we're going to talk about what the landscape is as we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	15
1	see it right now, so just a brief. Though as a
2	reminder, we came a year ago, exactly almost a year
3	ago tomorrow, and presented on our draft AI strategy
4	last year and following that, we did a public comment
5	or we had a public comment period. We resolved the
6	comments and moved forward with publishing the
7	strategy, as Vic mentioned, in May of this year. So
8	I'll talk just a little bit about where we are in that
9	landscape, as far as it pertains to the workshop.
10	Anthony will be discussing the project plan and a lot
11	of what has come out of implementing the strategy in
12	the last year since we talked to you. We've made a lot
13	of good progress.
14	So I'll talk about the workshop overview.
15	I'm sure a number of you were able to attend the
16	workshop. So I will not be going into the nitty-gritty
17	of the entire workshop, but instead, I'll be talking
18	about our observations from our perspective about what
19	was said and discussed at the workshop, so I'll talk
20	about the workshop and all session summaries. I'm
21	lucky to have some of the chairs who chaired those
22	panel sessions here today participating in the meeting
23	and so it is not just Trey and I who are here to
24	discuss the workshop, but we have a number of staff

across the offices that have been participating in an

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1 AI working group that we have organized, specifically to address or discuss AI attributes for regulatory 2 3 consideration and that working group is also tasked 4 with planning the workshop. So it's not just the 5 Office of Research. It's been a very collaborative effort with a lot of the offices across the NRC and 6 7 some of those staff are participating today in this 8 meeting, so they're also available to field questions 9 should they come up. 10 So I'll talk about -- and then finally, the high-level observations and then where do we go 11 from here following this particular workshop. 12 So this is the slide. It's very similar to 13 14 the one we talked about last year except with some 15 So we recognize, you'll notice on the left, updates. the box that says external. That's highlighted in 16 blue with intent behind it because the focus of the 17 strategy, the NRC's AI strategic plan is externally 18 19 So we recognize an industry wants to use facinq. artificial intelligence and in order to do that, we 20 took a proactive approach two years ago, around 2021, 21 to develop the strategy in order to prepare the staff 22 to review and evaluate the uses of AI that may be an 23 24 NRC regulated activity. So we developed AI strategic plan for that purpose and that was published, as was 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	17
1	mentioned in May 2023.
2	So some other things that are internal,
3	Dave mentioned the chair's memorandum on advancing the
4	use of AI at the NRC which just came out last month
5	and is being we're in the process of standing up
6	the response to that and getting our ducks in a row
7	for that purpose. So that's internal.
8	Some other internal things are you may
9	have seen in the news. As Vic mentioned, it's been
10	front and center. The Biden administration put out an
11	Executive Order, again last month, on federal actions
12	for advancing use of AI in government. So there is a
13	push at the executive level for not only agencies to
14	get a handle on what AI means, but also to prepare the
15	agencies for adoption of AI within their portfolios.
16	So not only are we in the position of regulating our
17	industry's use of AI, potential use of AI, but we are
18	also we have to prepare ourselves to use the
19	technology as well. And so there will be a
20	forthcoming OMB memo on this directing us how to
21	consider certain aspects of AI implementation at the
22	agency.
23	We have also been quite involved in a
24	number of outside activities that benefit our internal
25	preparedness with implementing the strategy as well as

(202) 234-4433

	18
1	our internal preparedness for the Executive Order.
2	There is no shortage of AI conferences, meetings,
3	symposiums that come up that you can attend and those
4	have been we have participated in a number of
5	those. Just recently, there was a PSAM meeting, a
6	topical meeting specifically on AI that we attended
7	and there were at least three and a half full days
8	three full days of presentations globally. So
9	clearly, this is an interest in the nuclear industry
10	and we have made a concerted effort to keep up to date
11	on what is going on.
12	We have also been participated in a number
13	of activities outside the agency. Trey is involved
14	with a standards group which we'll be talking about
15	later. And not only just the nuclear field, we also
16	participate in a number of conferences, workshops, and
17	symposiums that are in the Department of Defense area.
18	So we are looking to other agencies, DOD, DOT, FDA,
19	other areas where this is also being used so that we
20	are best prepared because this is a whole of
21	government action, not just us.
22	So and then on the right, the box that
23	talks about evidence building priority questions, we
24	have from the Evidence Building Act of 2018 and a
25	couple of priority questions that were added to one,
	I

(202) 234-4433

	19
1	wrangle our data for best use for AI and also look for
2	areas where we could use the work for the agency. I
3	mentioned the chair's memo and then you will be
4	hearing another presentation later this morning on a
5	future focused research program specifically on
6	looking at AI. The future focused research program as
7	an incubator and technology development area where the
8	staff can look at AI usage has been incredibly useful
9	in the Office of Research and is one of the programs
10	that we've called out in the AI strategic plan and the
11	way to prepare our staff to understand this technology
12	and it has been very beneficial. So you will be
13	hearing a presentation on that topic as well.
14	MEMBER KIRCHNER: Walt Kirchner here, I'm
15	not sure where to start this. I warned Vicki I was
16	going to ask this. Can you define what you mean by
17	AI? And if there's you know, succinctly, because
18	if one is going to regulate, quote unquote, whatever
19	that means at this early juncture, then one has to
20	have an understanding of what it is you're going to
21	regulate in terms of nuclear applications in the
22	industry. So could you share that with us?
23	MR. DENNIS: I will mention that there is
24	a the entire the very first page of the
25	introduction to the AI Strategic Plan has two
	I

(202) 234-4433

www.nealrgross.com

paragraphs that -- I won't read them verbatim. I'll give you the high points. But it is a broad definition and in the strategic plan there was a lot of effort put into what does AI mean. Unfortunately, that definition is quite broad. And so the umbrella of AI includes natural language processing, machine learning, deep learning, all the buzz words that you hear.

9 But when you boil it down to just a few 10 key words, AI has the ability to emulate human-like cognition, planning, 11 perception, learning, and communication, or physical action. 12 And so our definition in that introductory paragraph of 13 the 14 strategic plan, the two paragraphs, is very much based on the National Defense Authorization Act of 2021 as 15 Congress defined AI which, as I mentioned, for better 16 17 or worse is a very large, broad definition. So to interpret that, we have gotten a little more specific 18 19 for our purposes to clarify the difference between automation and AI-enabled autonomy, and it really is 20 the cognition and decision-making portion of AI that 21 is crucial for looking at it. 22

CHAIR BIER: I'm going to chime in a little bit and this is really in a way Walt's and my conservation, but one of the things that I get

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

concerned about in the definition is what today is considered AI may ten years from now be considered computer programming. So our regulations have to talk about, I think, what functions it's serving in the plan rather than what maybe the technology goes by. But that's just my personal opinion.

7 MEMBER MARCH-LEUBA: Yes, this is Jose. 8 I was going to say something similar. I don't think 9 we regulate Fortran. We use Fortran to write code, 10 safety codes that have been used to verify the regulations are satisfied. In a global sense, I see 11 AI as another type of Fortran. I don't think we're 12 going to write regulations that apply to a concept, an 13 14 abstract concept called AI. I mean we don't have a 15 regulation for Fortran. Am I thinking wrong?

16 MR. DENNIS: On that note, what was just 17 mentioned, we have also grappled with the same issue and in looking back at that definition that we talk 18 19 about in the introduction of the strategic plan, this dichotomy of software versus AI and where we are 20 currently is called out, so we do recognize it, that 21 there is a difference between software and AI. 22 And there is a sentence that says an overarching goal of 23 24 AI is providing solutions that mimic human-based solutions and predictions for problems. So some of our 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

www.nealrgross.com

discussion has been focused on the fact that Fortran software programming is very rule based whereas AI is based on large sets of data and then can infer or create its own algorithm to then make decisions that mimic human behavior.

So to the point of the future-proofing of 6 7 definition, that is also part of why it is so squishy 8 right now and there is -- we just went to a meeting 9 where this same topic of what do you mean when you say 10 AI came up? And one of the presenters was discussing that said no one has a unified definition. 11 Everyone has a different interpretation. So right now, the 12 strategic plan does have a broad definition with the 13 14 caveat that says the U.S. NRC in an area where it has 15 not been previously reviewed or evaluated. So we're not going to go back to something that is Fortran code 16 17 and now call it AI. We're going to be looking at going forward, specifically examples where we feel 18 19 that it fits under this definition of AI that we have that is so broad. 20

21 MEMBER HALNON: This is Greg. I think in 22 our last subcommittee meeting we talked about this as 23 well and we entreated you guys that that should be a 24 priority because if you're going to put a regulatory 25 framework around something, you need to know what that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

1 something is. And otherwise, we're either over regulating, under regulating. It's a real danger, so 2 3 again, I'll say the same thing I did at previous 4 meetings. It's very important, at least to me, to get 5 a succinct definition, boundary, whatever you want to call it around what you are going to need to regulate. 6 7 When you get into somebody wants to made 8 a modification of the plan, apply AI, and they say how 9 do I do a 50.59 on it? They're going to need to be 10 able to have a series of workshops for ten years to figure it out. No, we don't have that time. As Vic 11 said, it's moving so quickly. So anyway, that's kind 12 of a recurring comment I think that we're going to be 13 14 making as well. 15 MEMBER BALLINGER: This is Ron Ballinger. I'd like to second that. I mean this is a case where 16 17 we run the risk of getting into what I call the subjectivity trap. And that at some point, somebody 18 19 has to decide where the line is and if that line is fuzzy or depending on the person that's using it, when 20 I check off on Microsoft Word, the autofill thing, 21 quess what, it's telling me what I should say. 22 So I'll just reinforce what Greg was saying. 23

24 MEMBER BROWN: And I'll follow up if Ron's 25 finished. I'm probably the most resident skeptic --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

I'm Charlie Brown, most resident skeptic on the committee. I will echo Greg's comment in that you really need to know what you're going to regulate before you can know what you're going to do with AI.

5 Your comments about programming is rule based whereas AI is quote evaluation of data sets in 6 7 developing an algorithm that then goes and determines 8 what direction you may want to go. That's then 9 subject to the bias of the algorithm mapper who, 10 somebody has got to say how algorithms are going to get developed. And there are biases all over the 11 place in terms of what subject you're using, number 12 one, whether they're social or technical. 13 And that 14 gets into a world of uncertainty.

15 I'm just going to make this comment early 16 so everybody can be very appravated throughout this. 17 Greq was right, why do you want to try to requlate or develop a rule or how will we regulate when you really 18 19 don't know how to use all this stuff in the first place? My response, my thought process, is somewhat 20 different in that we're primarily based -- we're 21 responsible for the safety of the plants. Our reactor 22 trip safeguard systems, major plant control systems 23 24 whether they're called safety or safety-related or not related to safety, whatever definition you want to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

www.nealrgross.com

	25
1	apply, they're plant-controlled systems.
2	You certainly don't want all AI is it's
3	invasive to the point where you may at a process if
4	you want to go develop a trip and it says oh, no,
5	maybe you don't want to because I'm looking at this
6	other data. And now you've got software, because it's
7	all embedded, that is variable, and does not have
8	really you really don't want something else other
9	than people deciding what's safe and not safe. I mean
10	if I were you all, I was the boss and I'm not, you're
11	lucky from that standpoint, I would put the brakes on
12	it. I would literally if I was going to try to
13	regulate this world, I would not try to do it I
14	read through your program. Obviously, we have
15	questions, but there are certain things you want to
16	maintain. That's the safety posture.
17	The way to actually go about this and find
18	out what are the benefits, how can it be utilized is
19	to put a roadblock up and say, hey, look, you will not
20	use or attempt to use or propose the use of AI for any
21	reactor safety systems, any reactor safety related
22	systems, or other plant-controlled systems that have
23	to start, stop, various components, move rods,
24	whatever you want to call it. Now let the vendors go

figure out outside that box, how AI can be adapted in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1 an overall plant configuration on ways where it may the non-operational 2 benefit on aspects of the 3 equipment we have in there that serve, brackets the 4 problem that the NRC is going to have to deal with. 5 This is, to me, this is just the latest hot button fad that everybody is thinking is the greatest thing since 6 7 sliced bread and trying to integrate it and put it 8 into a regulatory rule is just not possible at all 9 based on the way it's done. 10 The biases are terrible. All you have to do is look at the learning trying to make autonomous 11 properly. That's fundamentally 12 cars work а combination of rule-based and/or some level of AI 13 14 that people are trying to introduce, a lot of wrecks 15 because you can't define all the things that it may 16 see, all the sensors may see. So that's my opening. 17 CHAIR BIER: Yes, you've heard a lot from us and we haven't heard much from you. 18 19 MEMBER BROWN: Well, we had to -- I had to give a flavor. I'm -- I was not (audio interference) 20 I'll pass. 21 22 CHAIR BIER: I quess two comments: One is in order to ban AI you first have to know what AI is. 23 24 You can't --I didn't say ban. 25 MEMBER BROWN: I did

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	27
1	not say ban, Vicki. I said don't put it in places
2	where
3	CHAIR BIER: Yes, but, still, you have to
4	know what it is you don't want in those places.
5	MEMBER BROWN: The stuff we have installed
6	right now works quite well.
7	CHAIR BIER: The other
8	MEMBER BROWN: It's not a matter of
9	banning anything. It's a matter of putting in basic
10	software which then stops the software from performing
11	in a repeatable and predictable manner. It's being
12	changed constantly. You don't know what you have.
13	CHAIR BIER: The other comment that I
14	would add is I
15	MEMBER BROWN: You can see we have a lot
16	of different opinions.
17	CHAIR BIER: assume that the NRC is
18	also looking not only at regulating industries of AI,
19	but also at advancing what the agency itself may want
20	to use AI for. So, anyway, with that
21	MEMBER MARTIN: Well, thank you, Vicki.
22	Vicki, I need my shot, too.
23	CHAIR BIER: Oh, okay.
24	(Laughter.)
25	MEMBER MARTIN: Bob Martin. A few years
I	I

1 ago I read Max Tegmark's Life 3.0. I hope that's like required reading for this crowd. 2 He's an MIT professor or Harvard, or something like that 3 in 4 Boston. And I thought what struck me was the reason 5 why we're hearing about this again is because it comes and goes, right? It's obviously the interconnectivity 6 7 of the world and the 'net and it comes down to data, 8 right? The amount of data that we have and the 9 algorithms that we have can now process this data in 10 a way that can fool us, right? For us, we live in a space -- us, the ACRS 11 and the NRC -- in a space of low-frequency, high-12 consequence events, maybe something broader than that, 13 with the emphasis on low-frequency. And low-frequency 14 is referring to our hazards, bad things that happen 15 16 that you don't have a lot of data for. So invariably we have a data gap. 17 And the one I'm going to be listening for is -- and I have a couple ideas, but I'm 18 19 not going to beat them just yet, but how you might think that there is data or data could be created to 20 serve really safety issues that are relevant to this 21 (audio interference). You don't have to answer that 22 It's a kind of a comment. 23 But that's a now. 24 sensitivity. We look at a certain -- a sliver of what AI can do here, but certainly, Vicki, you made the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

point there are process improvements and other things that I absolutely agree are relevant. But it wouldn't necessarily be for us.

4 MEMBER ROBERTS: And my two cent's worth. 5 This is Tom Roberts, just following up on what Charlie 6 said. It seems to me that both the agency and 7 industry have struggled for probably decades to figure 8 out how to implement software into plant control 9 And there's been a whole infrastructure of systems. 10 diversity and challenges to how much diversity you need, but it doesn't seem to me like a new issue. 11 The whole idea of having deterministic software imbedded 12 in the system has been a concern because you can never 13 prove that you've gone through all those possible 14 15 deterministic combinations and have 100 percent 16 certainty that the software is going to do what it's required to 17 do, nor that the requirements are complete. 18

But I'm just wondering if maybe we could talk through the morning session just how different that is for AI, because it just seems like an extension of the same problem.

23 MEMBER BROWN: Thank you, Tom.
24 MEMBER MARCH-LEUBA: Yes, this is Jose.
25 I wanted to bring in another concept. We think -- we,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

	30
1	ACRS members seem to be focused on reactor
2	protection system applications. And that's
3	probably that's our bread and butter. But AI is going
4	to be applied on analyzing data from nondestructive
5	assay pipes, of measurements, and you don't have a
6	chance of a person to looking through all of them. So
7	you develop an AI system to look for flaws on piping.
8	I don't think anybody's proposing to put
9	an AI system on a protection system. I mean, they
10	want to do it for maintenance or for data processing.
11	I mean, the pipe testing is the clear application that
12	is going to come first.
13	CHAIR BIER: And I think we're going to
14	hear some of those, yes.
15	MEMBER BROWN: That's why I said this
16	is Charlie Brown. That's why I suggested separating
17	what we know we really have a hard time dealing with,
18	echoing Tom's comment, because we have struggled with
19	how do you apply the software systems and make sure
20	they're going to work when they're supposed to work,
21	and then let industry develop all these things like
22	maintenance data, data that you get out of
23	experimental test facilities, where can AI help you
24	evaluate the large quantity of data that you get that
25	may help you define the physical boundaries you have
	I

(202) 234-4433

	31
1	to deal with in the plants.
2	There's a lot of stuff outside of what I
3	would call the basic operation and shutdown of the
4	plant that need be or starting it up, et cetera.
5	And you will learn an awful lot from that. And you
6	really don't want to lose focus because you're focused
7	you're driven to focus on what I call plant
8	operation-type scenarios as opposed to what I'd call
9	stuff that's outside if that. I'm just reflecting
10	Tom's comment and Jose's, and maybe Robert's. I'm not
11	quite sure. I was struggling a little bit
12	(Simultaneous speaking.)
13	MEMBER BROWN: Yes. Well, I'm not
14	ambiguous, so I'll
15	CHAIR BIER: Let's try and move ahead.
16	Yes.
17	MR. DENNIS: I will say I'm heartened that
18	we there's a lot of synergy here. Everything you
19	said we have brought up as a topic in our working
20	group degree, so
21	MEMBER BROWN: Well, I'll make one other
22	comment: Over the last four years I have read
23	numerous the IEEE is a body that just loves all the
24	new stuff. If you look at the at least the
25	Spectrum and a couple of the other journals, you will
I	

(202) 234-4433

	32
1	find tremendous amount of articles which are very
2	skeptical in the application of AI in terms of the
3	biases and other type issues. How do you know you're
4	getting stuff that's telling you the right answer with
5	the algorithms and stuff?
6	And some it's just I'm surprised when
7	you see that much in an organization that loves
8	electrical software computers has now got the skeptics
9	coming in through their publications showing some of
10	the concerns that we've echoed right here relative to
11	the difficulties. So that's kind of an outlier, but
12	it is an organization that has a lot of people
13	involved and loves this kind of stuff. And they're
14	even skeptical. And they're publishing. That's the
15	important part.
16	MR. DENNIS: I hope to, I don't know,
17	answer, bring up there's many of these things that
18	people just brought up. I'm talk a little bit about
19	some of those.
20	The Data Science and AI Workshops, just to
21	skim over this, is that we had four we had three in
22	2021, we had the fourth one in September. The goal
23	was to answer some of these not answer these
24	questions, but at least get some insight on some of
25	these questions that have just been discussed.
l	I

(202) 234-4433

In 2021 we recognized these were some -- three observations. Industry did have interest in regulatory guidance on this topic. There is an issue with data. The topic about limited data was brought up in the nuclear domain. And so aggregating and using data for these data-hungry applications was an area that was brought up. There has been some progress made on that, I think, at the national labs.

9 And as of 2021; so taking it back to 2021, we heard that probably maybe now, 2023, there would be 10 some deployment of an AI ML application. 11 That has borne out to be, I think, true. 12 And then regulated applications, maybe in three to five years, so 2026. 13 14 So that was the basis for our timeline and our And we've heard about two or three 15 strategic plan. application areas where that may actually pan out. 16

17 So I guess to the point of narrowing down the definition, there are specific use case areas for 18 19 One example was brought up in nondestructive AI ML. That's one area that was discussed or 20 evaluation. presented on last year at the ACRS meeting. 21 And that's made some significant progress towards actual 22 implementation. 23

24 MEMBER KIRCHNER: Can you distinguish in 25 your own mind -- because you -- all of you there up in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	34
1	front of us are focused in this area the difference
2	10 years ago or 20 years ago this was big data and
3	you had people like GE using it to improve the
4	preventive maintenance on their jet engines, you had
5	Steve up at NYU using it to predict when you could get
6	a taxi in Manhattan, and so on.
7	So I personally never thought of that as AI.
8	So can you make what's the distinction
9	between just harvesting data with algorithms and AI?
10	Because to me AI was always the cognitive function
11	that you mentioned as part of your definition. And
12	like fusion, that was 50 years ago at the MIT media
13	lab. We're still probably 50 years out from that kind
14	of definition of AI.
15	So how do you is AI just the umbrella
16	that you want to use and it's the current jargon? As
17	Dick was saying, even the talk show hosts are using
18	the jargon. But is this really just big data and
19	better computers and smarter algorithms or is it
20	really cognitive AI?
21	MR. DENNIS: So two differentiating
22	aspects: You mentioned 10 years ago this was called
23	big data. Twenty years ago it was called expert
24	systems and recommendation (audio interference). So
25	the point is well-taken that this is an evolving area
l	

(202) 234-4433

www.nealrgross.com

where 20 years ago something that we would call AI is not something we would necessarily think is AI today.

3 And from our perspective machine learning 4 and AI we're focusing on safety-critical 5 application use case areas. And so this isn't -- and so the question that has been brought up is -- the 6 7 industry is using it in process improvement areas outside of safety-critical applications to make good 8 9 business decisions, to infer things that -- to assist 10 with things that are not regulated application areas. And one of those has been presented. I'll get to it 11 later on the Corrective Action Program analyzer and 12 the maintenance rule functional failure analyzer. 13 At 14 the workshop it was presented on. So those are areas 15 where it's being used in non-safety-critical 16 applications.

17 From our perspective part of the issue is whether or not it is autonomous or making a decision. 18 19 There is a distinction between using AI ML for design purposes or AI-enabled (audio interference). 20 The problem is the states-based in use case areas are so 21 broad we're stuck with trying to wrangle all of it, 22 but the near-term things that we see within the next 23 24 three years probably are going to be in that design where machine learning is used 25 to make a area

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

36 1 recommendation or a prediction to a human and then that human has to do something with it. 2 And so we're left in a position where we 3 4 need to be prepared to evaluate that instantiation of 5 that machine learning or AI to make a recommendation, whereas it's very different from the way that it's 6 7 been done currently. And so that's what we're 8 presented with. And how do we basically -- if that 9 application area is presented to us, how do we review and evaluate and make a technical finding? 10 MEMBER KIRCHNER: Yes, that helps because 11 that narrows things down with still the idea that 12 research should be looking at what's over the horizon 13 14 as well. Okay. Thank you. 15 MR. DENNIS: Yes, and we are fully looking at -- I think it has been mentioned several times, is

16 17 AI is not entering the control room at this point. That's been stated at the public workshops several 18 19 times. And we do believe that we need to be prepared for that potential eventuality, but that is not 20 something that is right in the near term. 21 The near term is in using AI ML for design recommendation, that 22 type of stuff. 23

24 So I think that's enough on this slide. 25 I'll move onto the next one. The purpose of it was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	37
1	for us to host a workshop. So the AI Working Group
2	convened to prepare for a workshop and provide
3	feedback on regulatory and technical issues
4	surrounding AI usage in nuclear applications. All of
5	this, all of these workshops, the previous three,
6	informed the preparation of the strategic plan. And
7	this was the first workshop we held after the issuance
8	of the strategic plan and preparation for the project
9	plan, which you'll hear more from Anthony on. But all
10	of this was to prepare us for what is going on.
11	And so we had three panel sessions. The
12	first one on regulatory perspectives. The second one
13	which was more academic in nature on safety, security,
14	and explainability topics. And then the third one was
15	more industry-focused on those AI application
16	considerations and some of the examples of use case
17	areas where it is being considered from industry.
18	So this is just a snapshot of the agenda.
19	It was a 10:00 a.m. to 4:00 p.m. meeting. I won't go
20	into this other than just to point out that all of the
21	presentations are available in ADAMS and on our
22	website, which there was a link on the previous page.
23	But you can see here we had a number of
24	presenters. We had CNSC, ONR, IRSN, and a think tank,
25	Responsible AI Institute, present on regulatory
	1

(202) 234-4433

perspectives. Again, I said it was more academicfocused in the second panel session. And then some of the industry presenters who are actually participating here today were in our panel session in the afternoon talking about how they're using it.

the 6 So all of this was to support 7 strategic plan and build out and build upon a table 8 that we had in the strategic plan that talked about 9 the notional AI and autonomy levels in commercial 10 nuclear activities. Ιt was what we put in the strategic plan to start the conversation which is 11 happening here today and has happened at every single 12 meeting about where AI is being inserted into nuclear 13 14 activities.

The table had a range 1 to 4, from 1 being just basic -- something that's making a recommendation all the way up to level 4, which would be more like what was talked about about autonomous operation of a vehicle, so where you're actually running a power plant using AI.

21 So that was to frame the discussion. And 22 we wanted to use that as a springboard for our working 23 group who has discussed all of these things that have 24 been brought up. We have gone back and forth and 25 talked about these. But that was our starting point

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	39
1	for the workshop and to develop our matrix of AI
2	characteristics for regulatory consideration that I'll
3	talk about in the next slide.
4	So our working group was in a very agile
5	fashion, as has been all of this with AI, because
6	again it when we started the strategic plan two
7	years ago on this journey ChatGPT didn't exist. And
8	then things changed so we had to pivot the way that
9	we're looking at this and the way that it's being used
10	in industry. So we've had to be very agile.
11	So these are the members of the working
12	group. Again, some of them are available today to
13	answer any questions. But the disclaimer for our
14	portion of the presentation as far as AI
15	characteristics for regulatory consideration is we are
16	aware that they're NIST is the agency chartered for
17	the Federal Government to develop the AI risk
18	management framework. So we're aware of these. What
19	we presented was not an exhaustive list and we
20	recognize that it's on a broad spectrum. So this is
21	quite a large matrix with a range of applicability.
22	So this is the NRC staff's presentation at
23	the workshop focused on these eight characteristics:
24	safety significance, AI autonomy, safety,
25	explainability, model life cycle, regulated activity,
I	

(202) 234-4433

	40
1	regulatory approval, and application maturity.
2	Again since this is just a recap, I won't
3	go into all of these other than to say we had a
4	discussion on all of them and we didn't get much
5	feedback on it, so take that as you will. Either
6	there was agreement that these are all concerns or
7	just recognition that these will be part of the matrix
8	of decision making that goes into considering AI
9	applications and usage in the nuclear domain.
10	MEMBER BROWN: Did you mean feedback from
11	us or from your workshop?
12	MR. DENNIS: From the workshop, yes.
13	MEMBER BROWN: Thank you. It would have
14	been a long letter.
15	(Laughter.)
16	MR. DENNIS: Yes. So I guess the takeaway
17	here is we don't have an answer for all of these
18	things right now. This is what the working group kind
19	of coalesced on as some characteristics. And I will
20	say we are Anthony will mention this later we're
21	participating in a trilateral working group with CNSC
22	and ONR, and these line up quite well with other
23	considerations from international our international
24	regulatory counterparts as well as the IAEA. All of
25	these topics have come up over and over again. So
	I

(202) 234-4433

1 we're in good company, I guess you could say. 2 So regulatory perspectives on AI panel 3 session. I want to get to this so that we can keep on 4 schedule. This is some of our observations on the 5 three panel sessions, so the next three slides I'm going to give a synopsis with the disclaimer that this 6 7 is a summary of some of the comments that were 8 provided during those panel session discussions and 9 presentations. 10 So the first one again was regulatory experts and safety experts from other regulatory 11 entities globally and domestic think tanks. 12 So CNSC pointed out that they have stood up their Disruptive 13 14 Innovative and Emerging Technologies Working Group, I don't know if they forced that acronym to be 15 DIET. fun for DIET or if it came out -- I think it actually 16 17 they added it to make it DIET. But they _ _ commissioned a study last year on how the CNSC can be 18 19 prepared for AI applications. And the U.K. ONR -- I skipped one past, 20 but the U.K.'s ONR has also issued a report. 21 Similarly the U.K. ONR report, I will point out, has 22 a very nice appendix on how -- on some different 23 24 methodologies to consider how you would evaluate or

review AI applications. And then they have done a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

regulatory sandbox. So this is one of the observations we made is that they've done two AI ML applications as part of a regulatory sandbox. I don't have the link here unfortunately, but they just this week published a report on this. So that is a publicly-available report now on their website.

7 But they believe that their regulatory approach is capable and flexible enough in the absence 8 9 of standards, which everyone has recognized is a 10 shortcoming, because standards are currently in process for being developed right now. We recognize 11 that it can take a long time to get a standard through 12 Even NIST commented that at 13 the process. the 14 standards forum at the NRC a couple months ago. So NIST knows this; we know this, but the ONR thinks they 15 have a flexible enough framework that they can move 16 forward without standards, if need be. 17

18 IRSN, again they are under the umbrella of 19 the E.U. AI Act, and so some of their key areas for 20 high-risk AI applications that they called out are 21 data governance, risk management, and the human 22 component, which keeps coming up again and again in 23 discussions.

24 The Responsible AI Institute has been 25 working on a certification methodology. Their view is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

www.nealrgross.com

bigger than nuclear. It includes fair housing, all the AI application areas. So they've been trying to develop a certification framework. They do have one and it's largely based on these two -- the AI RMF from NIST and an ISO AI management systems approach. So they discuss their work on developing certification methodologies.

MEMBER KIRCHNER: Matt, I could point out 8 9 that getting a boiler and pressure vessel code 10 standard (audio interference) is -- and that's as well-defined problem. Often takes years. 11 But more relevant here, what about your companion agencies here 12 I'm thinking in particular FAA 13 in the government? 14 must be looking at this because of congestion in the 15 air and so on and using advanced techniques to avoid collisions, whatever the application might be. 16 So 17 are there counterparts to you, NRC, here in the government that you're also at that are using further 18 19 applications?

20 MR. DENNIS: Yes. I will point out that 21 we are in good company. I mentioned it at the 22 beginning and a little bit in passing that we are --23 we stay in contact with FAA. FDA presented on their 24 regulatory approach for AI at the RIC last year. We 25 invited them and have talks with them.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	44
1	Trey and I attend a number of DoD meetings
2	for the Navy. So a lot of presenters there from the
3	Navy, from the Army, and they're grappling with the
4	exact same issues that we are. And they don't have an
5	answer either. And the standards thing came up again.
6	So the Army has been doing work on autonomous vehicle
7	operations, and they have a Testing, Evaluation,
8	Verification and Validation Working Group that's
9	looking at this as well.
10	So we've stayed tried to stay plugged
11	in with all of our federal partners that are working
12	in this area to leverage learnings from them and
13	research that they're conducting.
14	MR. BETANCOURT: Matt, can I mention
15	something quick on that one?
16	MR. DENNIS: Yes.
17	MR. BETANCOURT: This is Luis Betancourt
18	from the staff. On the FDA side, like Matt mentioned,
19	when you look up on that table that he put on the
20	model life cycle, that was one of the things that we
21	learned from them, that they actually released some
22	draft guidance on locked models, with some open
23	models. So we have been actively involved in learning
24	from them and vice versa. So there has been that
25	synergy and basically cross-pollinization between us
Į	I

(202) 234-4433

and other agencies.

1

2 MEMBER KIRCHNER: Not to make any 3 observation on our government, but the difficulty --4 to the extent that the DoD activities are in the open 5 is fine, but I think one of the big challenges in AI 6 applications is transparency and openness. The 7 military has its needs and often those needs require classification and such, but the other agencies you 8 9 mentioned: FDA and FAA, that's why I brought them up 10 because they obviously also have to convince the public that any applications that they were to use 11 would be transparent, safe, the integrity, all the 12 issues that the NRC has to (audio interference). 13 14 MR. BETANCOURT: And on that, Walter --

15 this is Luis Betancourt again. I'm going to be quick 16 because I know that we're running out of time. Vic 17 and I, we are attending meetings of the responsible AI officials from other agencies. So to your point, 18 19 like, yes, the Department of Defense has their needs, but there's also this big push by the government of 20 hey, we need to be able to regulate AI, but also how 21 do we do AI responsibly internally? 22

23 So we're keeping tabs really well on what 24 is happening, not only with the defense industry, but 25 also other industries as well.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	46
1	MR. DENNIS: So the next session, the
2	panel session was on a more academic nature. It was
3	an excellent session because it really did discuss
4	some of things about how would we evaluate the
5	technology? And there is a lot of research coming on
6	on this topic right now. NIST is looking at using
7	combinatorial methods. The presenter from NIST is
8	actually one of their funded research projects to
9	support the AI RMF. So NIST is undertaking these
10	projects to and one of the messages from the NIST
11	presenter was that this is different from conventional
12	assurance processes for autonomous or software-based
13	systems and there are alternative methods that they're
14	looking at that can go to that explainability problem
15	that keeps getting brought up for AI.
16	George Mason was recognizing that there is
17	an issue with explainability and that using
18	counterfactual testing is one method that could be
19	used. And they have a research project that's ongoing
20	right now to use counterfactual cases to expose the
21	black box nature of AI models.
22	And I see we have a hand. I don't know,
23	Vicki, if it came up, but
24	(Audio interference.)
25	MR. DENNIS: Okay. All right. Okay.
Į	

(202) 234-4433

	47
1	I'll keep going then.
2	All right. Georgia Tech discussed some of
3	their cybersecurity research. They have a test
4	facility that they are looking at multi-layered tests
5	using a honey pot scenario to do cybersecurity
6	monitoring using AI ML.
7	And NC State talked about one that was
8	the word was mentioned earlier about uncertainty
9	quantification. And this is an area near and dear to
10	my heart, on using VVUQ, verification, validation, and
11	uncertainty quantification methods to root out the
12	black box nature of deep neural networks. So there
13	were a few examples that were giving. Monte Carlo
14	dropout, deep ensembles, and Bayesian neural networks
15	were talked about and an example was given in an
16	application area to predict axial neutron flux
17	profiles.
18	So the presenters, all of these presenters
19	from the academic session were really talking about
20	issues that we have and ways that the research is
21	being used to try to explain AI in a way that can be
22	understood, which is quite of interest to us at the
23	NRC.
24	And then the application consideration
25	panel was more industry-focused. We had several
I	I

(202) 234-4433

	48
1	presenters. The first one from Constellation and
2	Jensen Hughes mentioned that in the absence of
3	industry-specific V&V guidance for software that's
4	driven by AI they've come up with their own process.
5	So they talked about their V&V documentation that they
6	developed and how they're looking at it from an
7	explainability perspective so that their users within
8	Constellation are able to understand the model and
9	what it's doing as well as anyone externally that may
10	be evaluating that model. So they have made some
11	significant progress in being able to explain how
12	their AI-driven CAP analyzer is actually functioning.
13	The Utility Service Alliance talked about
14	their Phase 1 projects in their Advanced Remote
15	Monitoring Project. I think INL later in the
16	afternoon will be talking about a couple of these
17	actually, so I won't go into great detail here. But
18	one point that they made was that they assessed that
19	the regulatory readiness level is at a two out of five
20	and they are planning for a Phase 2 where they're
21	going to explore more AI-drive autonomous inspection
22	rounds and response projects. So they do have an
23	interest in this area.
24	MEMBER REMPE: (Audio interference) these

2 (applications I could see how yes, you might be able to 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	49
1	use the system to help detect, but the response aspect
2	is where I'm curious. Because sometimes, for example,
3	a fire suppression system could have adverse impact on
4	the staff in the plant if there's not a human to view
5	the AI detection and say yes, I agree with it; let's
6	do this. And it takes a mitigating strategies with
7	the staff before the system goes online.
8	And if you have to have that human review the
9	data, does it really does it not add more time and
10	just having the human do the fire watch?
11	And are those kind of questions coming up?
12	Because that's one example, but it seems like there
13	would be other examples where you don't want the
14	software to initiate an inaction. And it's not a
15	criticality in the control room thing. I'm just
16	thinking about other actions that happen in the plant.
17	Because of my experience at the lab, I know where bad
18	things can happen in some of these systems and I is
19	that coming up and people are thinking about that?
20	MR. DENNIS: Absolutely 100 percent. We
21	have had a number of discussions with our human
22	factors folks. And in other presentations I talk
23	about a Tesla crash where the system basically
24	there's an accident, but the system defaults to the
25	human, but the human only has three seconds to
I	1

(202) 234-4433

www.nealrgross.com

	50
1	respond.
2	So we're talking about application areas
3	where right now humans are in the loop. And there is
4	no intent to take as far as AI being used
5	necessarily to take the human out of the loop, but
6	there is a concern or a recognition that humans cannot
7	sit and just kind of toil away and be completely
8	oblivious and then be expected to then respond
9	immediately to something that is a time-sensitive or
10	critical thing. And we know that from the existing
11	control room configurations and automatic systems.
12	So there is a recognition that if you're
13	going to go there's sort of a blended area here
14	that's problematic where you have a human and then
15	autonomous operation that's AI-driven. So we do
16	recognize that there is a human factors component.
17	And that's one of the things we actually called out in
18	our AI characteristics for regulatory consideration
19	was this concern.
20	MEMBER MARTIN: (Audio interference)
21	follow that one. From what you said there about the
22	human, human's role, you hear more about AI's
23	performance, but and opportunities for applying AI
24	where we can apply that capability. What I've not
25	heard and I'm not talking about just today, but
I	I

(202) 234-4433

www.nealrgross.com

51

applications of AI to drive human performance, improve human performance, setting standards.

3 I think about when we were all younger and 4 you hear about IBM's Deep Blue, right? When it began 5 the better players could win. And then eventually it 6 beat the masters. And the same thing could be considered here. 7 Instead of focusing on letting AI 8 take a call, AI could be used to set the standard for 9 how humans perform. Obviously it's not the only 10 thing. We're not talking about replacing all training with a robot. But nonetheless, I've not heard that. 11 And I think we need to think more human-12

13 centric on these things and not machine-centric and 14 expose some bias. But we'd like to see the future 15 focus. And it could be a question on later 16 presentations on where we could take AI to review.

17 MR. DENNIS: Thank you for that distinction. And it has been one -- I will mention 18 19 the industry has presented on using it for that purpose, using machine learning for improving operator 20 examination, really using the tool to make us the best 21 version of ourselves. So that is definitely in the 22 I know we're not -- doesn't get all 23 use case area. 24 the credit or focus here, but it is an area of use. 25 MEMBER HALNON: This is Greq. I got a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

Í	52
1	question. Constellation said there's no clear
2	specific guidance for validation. We have a software
3	quality assurance (audio interference) program,
4	numerous regulatory documents. How far off are those
5	if you were to lay those into AI? Is it a starting
6	point only or is it N/A? Is it not applicable? How
7	does that look?
8	MR. DENNIS: Going back to I'm not
9	going to go back in the slide deck, but that
10	MEMBER HALNON: I'm sorry. I had to leave
11	for a few minutes so I apologize.
12	MR. DENNIS: Oh, I didn't talk about it.
13	MEMBER HALNON: All right.
14	MR. DENNIS: I'm not going to flip back,
15	but that is one of the areas where we say we have a
16	foundation of excellent guidance on software quality
17	assurance, a VVUQ for modeling and simulation. We
18	should start from that point.
19	MEMBER HALNON: So it's a starting point?
20	MR. DENNIS: That is a starting point.
21	And so the example that Constellation gave, that's
22	what they started with.
23	MEMBER HALNON: Okay.
24	MR. DENNIS: They started with the typical
25	process you use for software V&V and then layered on
	1

(202) 234-4433

```
www.nealrgross.com
```

	53
1	some unique stuff for the AI-driven aspects of it to
2	build that out.
3	MEMBER HALNON: Okay. So it's not a
4	perfectly round wheel, but it's certainly starting
5	with a wheel?
6	MR. DENNIS: Yes. And that was our
7	observation for the working group. And one of our
8	eight characteristics was you start we start from
9	what we have, and a lot of that is good. And the
10	observation that Anthony will point out is we're
11	starting a project this year as we speak to go into
12	that aspect of looking at we're doing a gap
13	analysis right now and then we're going to look at
14	what methodologies could be used.
15	MEMBER HALNON: Okay. Thanks.
16	MR. DENNIS: So I will quickly go through
17	the last two. Westinghouse emphasized the importance
18	of having an ethical AI corporate policy and a
19	recognition that the human is not the best interpreter
20	of AI. So there needs to be some component to the
21	uncertainty quantification through validation metrics
22	that are interpretable by the human, but not this
23	goes to the point of you may see an AI-generated
24	image, computer-generated image and you think it's
25	real. So the human can be easily spoofed.
I	1

(202) 234-4433

	54
1	TerraPower discussed that there's no
2	specific AI use cases or plans to use AI, but that
3	highly passive future designs that do have potential
4	for this use case and that there were some high-
5	level thoughts presented on AI using AI for
6	engineering document preparation and that we need to
7	consider how to validate AI recommendations for
8	licensed operators and if we should reevaluate the
9	role of the human operator and what they play in the
10	plant. So this was sort of the point that was brought
11	up just a minute ago.
12	Our key takeaways: I think I have two
13	more slides, so I'm going to be real quick. The panel
14	sessions confirmed that we remain well-informed of
15	international AI regulation and domestic projects.
16	There were no surprises or show stoppers. So I guess
17	the message here is that we feel that we've been doing
18	a pretty good job of keeping the beat on what is going
19	on for use cases and applications within the nuclear
20	industry.
21	We did hear a lot of feedback on the
22	regulatory sandboxes and how those provide a unique
23	opportunity for industry and regulators to
24	collaborate. So there is some interest in that topic
25	area. And industry representatives encourage
ļ	1

(202) 234-4433

	55
1	continued collaboration to pursue pilot studies and
2	proof of concepts for a future foundation for
3	reviewing the use of AI in NRC-regulated activities.
4	Some of these considerations we have
5	already talked about, but I guess I'll just
6	reemphasize them as a transition to Anthony's
7	presentation. We era currently in the mode of looking
8	at what traceable and auditable evaluation
9	methodologies exist in order and this is the
10	project I mentioned that we're going to be kick-
11	starting right now to do that.
12	And then we're also the workshops have been
13	supporting our ability to understand what licensees
14	and applicants are using in AI.
15	The future goes towards differentiating
16	this for design versus AI-enabled autonomy. I did
17	mention that design usage is the one that seems to be
18	front and center as a use case. And then also how are
19	we going to explain and evaluate it? Is this a
20	reliability or assurance argument methodology? So
21	those are the things in the future.
22	And of course all of this is predicated on
23	our budget and preparation for these emergent industry
24	applications, which, like ChatGPT came up, there's a
25	whole slew of different ways to use it, for generating
l	1

(202) 234-4433

documents and using it for regulatory applications potentially. So that was stuff that wasn't envisioned when we originally were writing the strategy.

4 So moving forward we continually focus on 5 safety and security. That's paramount. Our partnerships, as we mentioned, with domestic and 6 7 international counterparts and our engagement with 8 other federal agencies has been very beneficial and 9 we're continuing to pursue those. And we recommend 10 and encourage our stakeholders to engage with the NRC early and often on plans and operating experience 11 about how they're potentially going to use AI or 12 looking to use it and what their experience has been. 13 14 And we've gotten a lot of that feedback from the 15 workshops and it's been very beneficial.

16 Our internal working group will be 17 continuing to focus on ΑI characteristics for regulatory consideration following our feedback that 18 19 we get from our gap assessment which we are currently in the process of going through and will be concluding 20 in spring of 2024. That will also be providing the 21 content for our next workshop which we do plan to have 22 in summer of 2024. 23

24 So I do believe that takes me -- that is 25 the end of my slides. So thank you very much.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

www.nealrgross.com

	57
1	CHAIR BIER: Yes, I think one of the
2	people online has an open mic. If you can check that.
3	Thank you.
4	And, Anthony, now I think we can move onto
5	you. Thanks.
6	MR. VALIAVEEDU: Well, thank you again for
7	allowing me the opportunity to speak to you all today.
8	My name is Anthony Valiaveedu. I'm part of the
9	Nuclear Regulatory Commission working out of the
10	Office of Research as a data scientist. Here with me
11	at the table today, as previously introduced, is Matt
12	Dennis and Trey Hathaway, who also work in the Branch
13	of Accident Analysis. Special thanks to our
14	management team including Paul Krohn from Region I,
15	who is a division director; Victor Hall, who is a
16	deputy division director for Division Systems
17	Analysis; and Luis Betancourt, who's leading our
18	branch in the Accident Analysis Branch.
19	This presentation today is only been
20	possible through the efforts of the entire agency.
21	All the program offices were involved during the
22	development of the agency's strategic plan towards AI.
23	Paul is from Region I. And pictures used throughout
24	this presentation today (audio interference) staff
25	members including from the Office of Nuclear Reactor
	I

(202) 234-4433

Regulation as well as the Office of Research. This supports again the notion that AI has the potential to touch every portion of this agency's mission of safety and security. As indicated with this graphic we've collaborated with a variety of program offices including NMSS, NSIR, the regions, OCIO, OEDO, and many others.

Over the past few years we were notified 8 9 by various stakeholders that they have had plans to implement artificial intelligence into their current 10 operations and businesses, and as a regulator the NRC 11 stands by the safety and security of the protective 12 order and the environment. Determining the three S's 13 14 of safety, security, and safeguards is the duty the 15 NRC staff and we who have prepared this as presentation provide information on the status of our 16 mission. 17

And as we have previously presented to 18 19 this Committee during the development of the AI Strategic Plan, I'll provide a quick debrief of the 20 development since that time and specific implications 21 or interests for the Committee's consideration. 22 And to highlight previously about the interdisciplinary 23 24 nature of our team these are some pictures from the workshop that includes Paul Krohn from Region I; Jesse 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

Seymour, who works in the Human Factors Branch; Joshua Kaiser, who's actually here in the room with us today with the Office of Nuclear Reactor Regulation and the chair support for our responsible use of artificial intelligence.

This slide, slide 27, provides a timeline 6 7 of events since the last presentation that we provided to this Subcommittee as indicated by the star. Since 8 9 the last ACRS presentation, around June of 2022, we began collecting over 100 comments on the draft AI 10 Strategic Plan; ADAMS accession number is indicated on 11 the slide, and utilized those comments to issue our 12 final AI Strategic Plans for fiscal years of '23 to 13 14 '27, which is in NUREG-2261.

15 In March we also launched our AI Steering 16 Committee. This centralizes our efforts to -- on 17 artificial intelligence to make sure we're better 18 prepared as an agency.

19 initiated an AI regulatory gap In July we And in September, as Matt presented 20 assessment. 21 earlier, we hosted а workshop for regulatory considerations. 22

Later in September we launched our AI community of practice for discussions of lessons learned and potential uses cases of artificial

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

	60
1	intelligence. In late October we issued our project
2	plan. And the ADAMS accession number is listed
3	accordingly. All these will be explored further into
4	detail as we continue on with these slides.
5	For the strategic plan to enable industry
6	and to lead our mission of safety and security the
7	goal of the AI Team is to stay with the development of
8	AI so that during the deployment of these tools the
9	NRC will have the ability to review any safety or
10	security implications. The mission of the AI Team is
11	to be is to enable a responsible use of AI. And
12	wishing to be cautiously proactive we released a
13	strategic plan in May of 2023.
14	The strategic plan outlines five goals
15	similar to the ones that were presented about a year
16	ago. They include regulatory readiness, establishing
17	an organizational framework, strengthening
18	partnerships, cultivating a proficient workforce, and
19	goal 5, which is to build an AI foundation within the
20	NRC. The status of these goals will be presented in
21	the subsequent slides.
22	Along with the strategic plan we've also
23	issued the project plan in October of 2023. This
24	project plan goes into depth of the strategic plan's
25	goals as well as sets the scope of these goals. It
I	1

(202) 234-4433

provides key timelines as well as tasks to ensure adequacy that we're meeting our metrics, and it promotes communications for external as well as internal stakeholders. Its purpose is to provide the public with transparency and accountability while the

current staff plans are an applicant's clarity into

the NRC's roles and responsibilities.

1

2

3

4

5

6

7

8 The timelines that we've had generally 9 match with the expected deployment of AI that we were 10 able to obtain with stakeholder feedback, however 11 currently with the timelines we hope to continually 12 update the project plan because of the changing 13 current -- the current change of political climate.

Goal No. 1 is on regulatory readiness, or what we like to call keeping the end in mind. With every journey knowing what you're working towards helps provide that mission to perspective.

18 On ongoing work I want to highlight three 19 items: pre-application communication, our gap 20 analysis, and our continued with the IEC.

21 On the regulatory gap analysis; we can 22 start at the top, we're currently working on reviewing 23 regulations and guidance as it applies to current gaps 24 in policies before AI. While conducting this gap 25 assessment we're also incorporating and reviewing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

applicable standards for artificial intelligence to recommend updates or recommend new standards to be developed.

4 Regarding pre-application communication, 5 to help better budget and resource plan for AI applications the staff plans to develop a strategy to 6 7 collect information for AI scheduling by the industry. 8 These surveys could include RISs and FRN, but as Matt 9 previously highlighted, what we've currently been 10 doing has been extremely beneficial, which is conducting public workshops and information gathering 11 at conferences where there's industry and labs that 12 are participating. These have been extremely fruitful 13 14 discussions.

15 The third item is the IEC, the or International Electrotechnical Commission, the NRC's 16 participating Subcommittee 45 Alpha and Working Group 17 45 Alpha is specifically on the instrumentation 12. 18 19 control and electrical power systems in a nuclear facility, and Working Group 12 is more specific to AI 20 applications in these nuclear facilities. 21

I want to preface this by saying this working group is very new as a second meeting only occurred early in November, and we have four staff members involved so far; three from the Office of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

www.nealrgross.com

63 1 Nuclear Security and Incident Response and one from the Office of Research, which is Trey Hathaway. 2 The IEC plans to develop and maintain 3 4 standards for AI applications for nuclear facilities 5 by providing guidelines to stakeholders who are developing, deploying, as well as overseeing AI 6 7 applications. In addition to this they hope to cover fundamental characteristics of AI in these nuclear 8 9 facilities and make it applicable to the entire 10 nuclear life cycle. The IEC --MEMBER KIRCHNER: Could I interrupt you 11 here? 12 13 MR. VALIAVEEDU: Yes. 14 MEMBER KIRCHNER: We through this 15 Committee with Charlie's encouragement encouraged NRR 16 to lay out a road map of the digital I&C. Are the 17 staff who were responsible for that -- it's a very nice road map, by the way, of a very complicated 18 19 wiring diagram for all of your regulations and guides and instructions and such for digital I&C. 20 So it seems to me you have a framework in place if the 21 application is actually going to be somewhere in the 22 control systems or an operation in the plant. Are the 23 NRR staff involved in this? 24 We've incorporated NRR 25 MR. VALIAVEEDU:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 with all discussions we have. We currently have an AI Working Group that meets monthly. That includes staff 2 members of NRR as well as -- multiple staff members at 3 4 NRR. But if you're talking about specifically the 5 engagement with this working group, we only have three from the Office of Security and Incident Response 6 7 and --(Simultaneous speaking.) 8 9 MEMBER KIRCHNER: I don't want to get 10 involved in NRC management decision and such, but -don't take this critically, but the security people 11 look at things after the fact. 12 They're looking at that control 13 things access, they're looking at 14 cybersecurity. I'm thinking of it a different way 15 altogether. You're going to imbed some application

16 somewhere in the plant. And it seems to me that's 17 different than checks and balances as to whether you 18 had an intrusion, et cetera.

So my concern or my suggestion here is yes to them, but involve the people who are intimately involved in how the plant operates from the control standpoint and the regulations and framework that is used for that. And then the applications in my mind of AI, at least the early application, somehow will come into that -- have to come into that regulatory

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	65
1	framework.
2	So I just point out that there was a
3	this very nice road map that's been put together that
4	addresses digital I&C. To the extent that AI is going
5	to come into the digital I&C regulations for the
6	agency those people need to be involved. So end of
7	speech.
8	MR. SEYMOUR: So, this is Jesse Seymour
9	from the Operator Licensing Human Factors Branch, and
10	I just wanted to speak to that point.
11	So, both myself and David Desaulniers, and
12	also in prior efforts Dr. Brian Green as well, have
13	been involved in the AI efforts. And if you were
14	going to create a Venn diagram of who's working on the
15	digital I&C upgrades that are currently in progress at
16	some of the plants like Limerick, Turkey Point,
17	myself, Dave, Brian are all involved with that as
18	well, too. So I think that there's a good kind of
19	synergy between the folks that are considering the AI
20	issues as well as the advanced digital I&C control
21	systems that are involved. And there definitely is a
22	sensitivity to where we're at on kind of the
23	progression towards when we may or may not eventually
24	see AI in any type of a controlling context.

Right now in terms of the implementation

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1 of AI what we're really seeing in applications -- and 2 by that I just mean usage out in the industry, not necessarily even in a regulated context. And even in 3 4 pre-application discussions it's more so at the level 5 of AI insight, again if we were going to think about that kind of zero to four hierarchy of AI autonomy. 6 7 And what we're not seeing is anything right now or in 8 the near term that would take the human out of being 9 the decision maker, whether that's in any type of 10 operational context or even in the sense of calculations. 11 I think a good working example of where 12 we're currently seeing things as currently state-of-13 14 the-art is using machine learning to -- a good example 15 provide training insights, would be training interventions as folks are going through training 16 17 programs and things of that nature where again it's informing human decisions. But we're not yet seeing 18 19 it in a controlling context. Well, let me give you 20 MEMBER KIRCHNER: examples using big data in actual 21 some of potentially. You look at a core map or you look at --22 right now already there are software implemented that 23 24 looks at а large array of data from the core:

nuclear

and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

such,

(202) 234-4433

thermocouples,

25

www.nealrgross.com

those

and

	67
1	calculations like what's your margins, CHF, and so on.
2	So I can see already that using advanced processing
3	techniques you could improve the performance of those
4	things that are already done analytically now and then
5	somehow feed into the actual plant operation.
6	So I just threw that out because I can see
7	that happening with the existing plants and that
8	somehow that, quote/unquote calling it AI if you
9	want to, or just advanced data processing I can see
10	that being a kind of application in the plants. And
11	somehow that has to factor into the digital I&C road
12	map and regulation framework that you have. So it's
13	just a suggestion and I'll stop there.
14	And, yes, Jesse, we appreciate what you're
15	doing in the human factors arena as well.
16	MR. SEYMOUR: Thank you.
17	MR. VALIAVEEDU: Thank you.
18	MEMBER BROWN: Let me
19	PARTICIPANT: We've got somebody on
20	(Simultaneous speaking.)
21	MR. CARTE: Yes, Norbert Carte, Digital
22	I&C, NRR. So I have not been officially asked to
23	participate, but I am sticking my nose into this
24	stuff. And I am following what's going on. It's very
25	interesting. But really from a safety system point of
	I

(202) 234-4433

view I'm 100 percent aligned with Charlie. Keep it simple, separate. And the question is when if and ever we

4 change our paradigm -- so right now we base the 5 approval of equipment based on some conservative limiting scenarios that occur at the worst possible 6 7 time. And in that sense there are some very simple 8 trip functions that protect you: high temperature, 9 high pressure, high flux. And there's no reason why -- practical reason why you need to introduce AI into 10 any of those. 11

But if you were to change that paradigm 12 longer have conservative limited bounding 13 and no 14 scenarios to size and establish the performance 15 criteria for your equipment, then you would need to do some serious thinking. But right now as long as we 16 17 have conservative scenarios and simple separate independent protective functions, AI is not going to 18 19 get into the protection systems themselves.

they will maybe reduce margins, 20 Now they'll reduce need for unnecessary maintenance, 21 unnecessarily challenges 22 thev'll reduce of the protection system, but until we change that paradigm 23 24 there's no reason to have anything in AI -- sorry, it's just my personal opinion, but just trying to be 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

www.nealrgross.com

	69
1	clear. In the protection system a high-temperature,
2	high-flux trip does not need AI. And so, but there's
3	a lot of ways you could make a plant better with AI.
4	It's just it's going to be a long time before it
5	drifts into the actual safety systems if they remain
6	these simple safety systems that we have today. Thank
7	you.
8	MEMBER REMPE: So just a matter of
9	process, if there's a member who raises their hand, of
10	course we should bring them into the conversation. If
11	there's a member of the staff who wishes to make a
12	comment or a contractor, the staff needs to call on
13	them. Okay? Just so we keep the rules going. Thank
14	you.
15	I think Charlie had his hand up and wanted
16	to make a comment.
17	MEMBER BROWN: No. Two things: One, I
18	agree with you relative to who gets to what, but there
19	are some staff people that can support and they're
20	operating NRR and other digital I&C people who need
21	to be involved and understand what's going on in this
22	world. And if there's Norbert had some very good
23	comments, not negative, just how you integrate, and we
24	need to be we should be conscious of those as we go
25	through the meeting. So I appreciate you saying
	I

(202) 234-4433

somebody had their hand up. I think that was a positive one.

The second one was an expansion, just to 3 4 follow up on Walt's comment about the road map. We 5 had a meeting -- this is -- I understand your 6 comments, but the road map was really trying to 7 provide something that shows where all the standards 8 and specs at the various levels of the I&C development And there was a 9 systems and how do they apply. 10 meeting on that where there was a set of presentations and slides that -- I think it was NRR staff that 11 12 provided that. I'm not sure. My memory is not real 13 good on that right now. And that's what they 14 referring to.

We had that meeting back in April of this 15 16 year, April 3rd. It was a Full Committee meeting. 17 And that one presentation has a beautiful layout of what we meant by a road map. It was not trying to 18 19 drive you any place. But it's not what you'd call a Venn diagram. It has nothing to do with a -- if Venn 20 diagrams or -- if you want confusion, generate a Venn 21 That's my personal opinion. 22 diagram.

Anyway, I just wanted to make it -- the road map thought process that Walt brought up so that they would know what we were talking about. And I'll

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

	71
1	let you I'm still restraining myself, but I will
2	I absolutely totally agree with Norbert, if you hadn't
3	figured that out by now.
4	MR. VALIAVEEDU: Thank you for everyone's
5	comments.
6	Moving on. For slide 31 we've provided a
7	timeline for our progress. The purple dashed line on
8	this slide indicates where we are today. The check
9	marks have indicated completed items. Task 1.1 is our
10	researching on our current regulatory framework, and
11	C what is applicable. We've been able to establish a
12	contract and we're currently drafting an analysis
13	report based off of that contract with a hopeful
14	completion date of the spring of 2024 for it to be
15	published.
16	We were able to incorporate Task 1.2 for
17	AI standards assessments within Task 1.1, so they're
18	being conducted concurrently. And we're continually
19	we're maintaining our ongoing participation in a
20	variety of standards forums as well. And we hope to
21	incorporate AI standards into our regulatory guidance.
22	CHAIR BIER: So just a factual
23	clarification looking at that slide. So you're
24	anticipating like end of fiscal year '27 there
25	actually will be regulatory guidance for AI. Are you
I	I

(202) 234-4433

	72
1	envisioning that is mainly going to apply to new
2	plants or use of AI in new capabilities at existing
3	plants, or both?
4	MR. VALIAVEEDU: The guidance is meant for
5	any stakeholders or applicants, who plan to utilize
6	artificial intelligence as the NRC's missions for
7	safety and security.
8	Task 1.3 is on a safety and security
9	framework. This will be dependent on the results of
10	our previous two tasks on standards, as well as our
11	current regulatory gap analysis.
12	And, we would utilize those results and
13	update or develop our current regulatory guidance as
14	needed.
15	1.4 is on pre-application communication.
16	We've begun discussing internally about additional
17	strategies to obtain industry and stakeholder
18	feedbacks, and plan to collect this information in
19	fiscal years 24 and adjust our planning information
20	accordingly.
21	1.5 is on AI enabled autonomous
22	operations. During our engagement with a variety of
23	stakeholders, we are not aware of any near-term
24	deployment of AI enabled autonomous operations, but
25	there has been interest in it.
I	

(202) 234-4433

	73
1	We plan to begin researching this in
2	fiscal year 25. The objective here is to develop a
3	technical basis, and requisite regulatory framework
4	for AI enabled autonomy in nuclear operations.
5	Considering out the various, in how the
6	various ways of how AI could impact autonomous
7	operations.
8	Goal 2 is on organizational framework.
9	Due to unique impact AI technology has on nuclear
10	applications, the staff is working on centralizing and
11	developing an internal organization for AI knowledge
12	and expertise.
13	There are three key areas here. One is
14	the AI steering committee. The second is the AI
15	community of practice, and the third is on a
16	centralized AI database.
17	On the first item, the A steering
18	committee, the A steering committee has an involvement
19	with a variety of program offices, and regional
20	representatives. It meets monthly on topics related
21	to AI within the NRC's purview.
22	This is being led by Deputy Division
23	Director Victor Hall, as well as Paul Crohn, who is
24	the Division Director in Region 1.
25	The AI team remains also in the Office of
I	I

(202) 234-4433

	74
1	Research, in the Accident Analysis Branch, that's
2	being overseen by Luis Betancourt, who is here today.
3	On the second column on the AI community
4	of practice, this was formed in September and it's had
5	three meetings so far.
6	It's a formalized community of practice
7	where the NRC has, within the NRC where people from
8	all over the agency have been able to share their
9	practices, as well as lessons learned.
10	It provides awareness for potential use
11	cases and activities, throughout the nuclear sector.
12	The third column is on a centralized AI
13	projects database. This has also been developed and
14	deployed by various other agencies, including the
15	Department of Agriculture, and Department of Treasury.
16	The goal here is to maintain transparency
17	to the public on AI ML technologies. And, we
18	currently have a dedicated public site for tracking
19	these activities.
20	We are currently researching into a
21	variety of use cases, such as data mining, as well as
22	mathematical modeling that will be presented later on
23	today.
24	And we hope to continue to update this
25	database reocurringly for accuracy, as well as

(202) 234-4433

	75
1	complete, for completion.
2	Regarding the timeline of this, we, the
3	periodic squares indicate when we need to update, or
4	plan to update a paper.
5	For Task 2.1, we were able to establish
6	the AI steering committee. Task 2.2 for the community
7	of practice, we were able to formulate and establish
8	the community of practice earlier in September.
9	In 2.3 for establishing a projects
10	database, we were able to develop an initial projects
11	database. However, we are continually updating the
12	projects database, and we hope to update it as needed
13	for accuracy and completion.
14	Again, the checkmarks indicate completed
15	items. The purple dashed line indicates where we are
16	today.
17	DR. SCHULTZ: Anthony, this is Steve
18	Schultz.
19	Just given the speed of activity that you
20	said the NRC is doing, as well as the AI developments
21	going forward throughout the government, I was
22	surprised that the updates that you have for these
23	elements are two years apart.
24	In other words, I'm expecting that things
25	are going to have to be updated more frequently. And,
I	·

(202) 234-4433

	76
1	it sounds like you're having monthly meetings in some
2	areas, annual meetings in others.
3	And was wondering what kind of feedback
4	you have in areas such as the regulatory gap analysis,
5	for example.
6	MR. VALIAVEEDU: So specifically for the
7	regulatory gap analysis, we are concurrently, it's
8	ongoing work right now. We hope to have a issuance of
9	a report in spring of 2024.
10	Regarding the timeline you're talking
11	about in this slide specifically, for the charters,
12	those generally will be updated as needed, as
13	indicated with the parenthesis, as well as the, the
14	database that's going to be updated reoccuringly
15	because of the ongoing work.
16	And the change of political climate again,
17	will have us revisit the project plan, and we hope to
18	update the project plan's timelines in fall of 2024.
19	Because of the recent executive order and
20	chair's memo, which I think you're hinting at here,
21	happened earlier.
22	DR. SCHULTZ: It's not a criticism, but
23	that's the second time you used the political climate
24	associated with the overall program, and that hope
25	we're focusing on the technical climate as well, and
	I

(202) 234-4433

	77
1	the developments there.
2	MR. VALIAVEEDU: Thank you.
3	On the technical climate, we are engaging
4	with stakeholders and making sure that their
5	deployment and timelines here match with what is
6	expected for the agency to maintain safety and
7	security mission.
8	DR. SCHULTZ: I'm glad to see that, too.
9	And, the interactions that you have been having on a
10	very frequent basis that are urgent.
11	MEMBER BROWN: I want to, this is Charlie
12	Brown again.
13	Yes, I was disturbed a little bit with the
14	political. Assuming the political climate should have
15	absolutely nothing to do with anything you all do.
16	Nothing.
17	It should be a zero impact. It should be
18	developed strictly, I mean it, you're really going to
19	raise a lot of hackles with people that sit on the
20	Advisory side of what we're looking at, if the thought
21	process is we're going to hurry up and do something
22	because somebody politically wants to, you know,
23	demonstrate that this is being done.
24	That's absolutely insane. And couple that
25	with part of your, go back, you don't have to go back
I	I

(202) 234-4433

	78
1	it's the previous one you were talking about,
2	evaluations looking at autonomous operation, that was
3	the words you tossed in kind of as you, when you went.
4	And the ability of having autonomous
5	operations. Presenting information or AI that
6	evaluates data that's coming out of the plant, and
7	then assembles it within some algorithm, or some
8	presentation that it informs the operator that hey,
9	these things are going in this direction.
10	And then the operator makes the decision
11	about what to do with it, or seeks decision from, you
12	know, consultation with what to do.
13	That's nothing wrong with providing better
14	data, because there are tons of data we're getting out
15	of digital systems now.
16	And it makes it very, very difficult you
17	know, to assess you know, the directionality of them,
18	and which one's pressure temperature can be going in
19	opposite directions and say, oh, when it gets to a
20	certain point, is that critical or not.
21	So that's, that's the type of things that
22	boy, throwing in the political thought process or
23	directive from whoever they is, is just useless.
24	And that's, that should just never get
25	encumbered in the develop of your all's processes.

(202) 234-4433

www.nealrgross.com

	79
1	Anyway, I'm sorry to get wound up every
2	now and then. Did you all hear me satisfactorily?
3	I'm told I don't speak into the mic well enough as it
4	is.
5	MR. HALL: So if I can just jump in to
6	maybe, oh yes, thanks, thanks. So again, this is Nick
7	Hall, the Office of Research.
8	I guess political, it's a bad word, right?
9	So, we can talk about the religious influences on AI,
10	and maybe the other taboo topics that you don't
11	discuss at dinner.
12	I just wanted to offer a clarification is
13	it's the awareness of when we say a political
14	environment, it's the awareness of what the government
15	is doing, right.
16	There's, and there's two executive orders
17	that are the big ones, the biggies, that talk about
18	AI. One was from the Trump administration, the other
19	one is the Biden administration.
20	That's just a matter of statement of fact.
21	I certainly would back my staff in saying there is
22	never, ever any political consideration with the big
23	P. It's just the awareness what the government is
24	asking us to do, to make sure that we're prepared.
25	So I just wanted to clarify that because
I	1

(202) 234-4433

	80
1	I know as soon say you mentioned the P word, it, I get
2	the hairs on my neck stand up when anyone says
3	politics. That's how this country is, right, with
4	politics these days.
5	So, just a point of clarification, it
6	really is an awareness of how we ban best be prepared
7	for the technical. The folks in front of you are
8	engineers, scientists, and darn good ones at that.
9	I'll leave it at that.
10	MEMBER BROWN: But you don't want it to be
11	hurried. It should not be hurried. It needs to be
12	technically solid and validated before anybody goes
13	forward with anything like that.
14	And that's, that's not that the, we don't
15	obviously the government wants to make sure the
16	agencies are paying attention to things that may
17	enhance their operations. That works just fine.
18	But when you hurry place where we've got
19	spacing considerations because P, the government
20	really needs to emphasize and regulate that, that's
21	not, that's not the right emphasis.
22	So, I wasn't trying to be critical of
23	anybody up here that said anything. That's not the
24	point. The point was safety first, and introductions,
25	you know, comes along along with it. And look at
	I

(202) 234-4433

	81
1	where it adds value.
2	Doing something because its fancy, new and
3	everybody thinks it's the greatest thing since sliced
4	bread, is one thing.
5	But if it doesn't add value to the
6	performance of the plant, it ought not be done at all.
7	That's the only point I'm trying to get across in all
8	your all's deliberation.
9	After laying these out, these pathways
10	out, you've got to go through that. You got to go
11	through the drill of how are you going to do this, and
12	how are we going to make it make sense.
13	But you've got to do it in the manner of
14	where does it add value. If it doesn't add value,
15	don't waste people's time; don't complicate the
16	systems with it.
17	So, that's just the message I was trying
18	to emphasize. I wasn't the only one.
19	MR. VALIAVEEDU: Thank you again for
20	everyone's comments.
21	Again, the NRC's mission is safety and
22	security for the people, and the environment.
23	Slide 34, we were moving on to Goal Number
24	3, which is strengthening and expanding partnerships.
25	The previous presentation by Matt Dennis
ļ	1

(202) 234-4433

	82
1	probably best explains how far we've been able to come
2	regarding developing closer ties, and promoting
3	partnerships through our proper workshop interactions.
4	However, with this slide I wanted to
5	highlight two additional areas. One is domestic
6	interactions, and the other one is international
7	interactions.
8	We've had talks with a variety of agencies
9	including the Department of Energy and the National
10	Nuclear Security Administration, on artificial
11	intelligence.
12	Specifically, with our work with the
13	Department of Energy, we've been able to observe areas
14	developing AI ML technologies through the Light Water
15	Reactor Sustainability Program, or LWRS Program. And
16	review those results obtained, as well as lessons
17	learned.
18	The DOE MOU has been extremely helpful in
19	understanding the direction industry is undertaking on
20	AI.
21	We are also in membership in the NIST RMF,
22	or Risk Management Framework working group. And this
23	has largely been an observational capacity, and we
24	have been providing our Nuclear Regulatory expertise
25	into these discussions.

(202) 234-4433

	83
1	Other talks we've had also include
2	participation in multiple conferences, including the
3	Digital Engineering and Nuclear Technologies
4	conference, or DENT conference.
5	As well last week, Matt and I were able to
6	attend the Ohio State University Big Data Workshop.
7	These interactions have been geared
8	towards promoting clarifying stance in regulations for
9	stakeholders, and promoting communications.
10	As regulators, we can provide clarity and
11	share concerns through effective pre-application
12	engagement.
13	On the international side of the
14	wheelhouse, we are currently working with the United
15	Kingdom, as well as Canada, on a tri-lateral
16	engagement that we call CANUKUS.
17	I'll be discussing this in the following
18	slide more.
19	In addition to this, we've been engaging
20	with the IAEA on technical meanings that provided
21	insights into other nations' priorities in
22	developments.
23	There has been generally speaking, similar
24	concerns between nations on artificial intelligence.
25	In addition to this, during these technical meetings
	I

(202) 234-4433

84 1 there has been generally a main focus on utilizing AI operation maintenance, 2 for as well as design 3 utilization, as well as using AI as mostly as an 4 informative tool using natural language processing, as 5 well as mathematical modeling such as linear 6 regressions. 7 The third item here is on bilateral The goal here is to foster and maintain 8 engagements. 9 collaboration with international counterparts, and 10 multilateral organizations to positively influence and maintain awareness on the responsible and safe use of 11 AI. 12 And, this is in support and alignment with 13 14 the NRC's 2014 international strategy to positively 15 influence safety and security, as well as maintain awareness for the agency's domestic objectives. 16 17 DR. SCHULTZ: Anthony, Steve Schultz. You mentioned, or it was mentioned that 18 19 the, there were presentations at the RIC associated with AI and so forth. 20 And in terms of the international program 21 and plans, what's planned for the RIC, or around that 22 conference this year? 23 24 MR. VALIAVEEDU: I'm glad you brought that We are hosting an IAEA technical meeting at 25 up.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	85
1	headquarters in March of 2024.
2	DR. SCHULTZ: Thank you.
3	MR. DENNIS: The button doesn't like my
4	finger, so I have to keep pressing it.
5	And I will mention, we are, we did get a
6	confirmation this week that we are doing another AI
7	technical session at the RIC this year.
8	So there will be an AI technical session,
9	you get to look to that. Please come and attend.
10	And what Anthony just mentioned is the
11	following week, we will be hosting a IAEA technical
12	meeting.
13	The week following, we think we're going
14	to get a lot of good participation the IAEA thinks
15	we'll get a lot of good cross-collaboration with
16	people that are going to be attending the RIC, as well
17	as then the technical meeting the following week.
18	Right now we haven't pinpointed what our
19	presenters are going to be for the RIC technical
20	session.
21	We're in the process of doing that right
22	now. But it will be similar to last year's where we
23	have a flavor of industry, other federal agencies, us,
24	and academia.
25	DR. SCHULTZ: Sounds like good
	I

(202) 234-4433

	86
1	coordination. Thanks.
2	MR. DENNIS: Yes.
3	MR. VALIAVEEDU: Regarding the CANUKUS
4	engagement, CANUKUS is an interesting development in
5	the NRC as it marks a time where three nuclear
6	regulators were coming together to share a common
7	goal.
8	The outcome with this interaction is a
9	high leveled AI principles paper, that we hope to sign
10	by spring of 2024.
11	The goal is to provide a uniform front,
12	and what are key considerations when developing AI
13	systems for safety and security.
14	And, we are currently putting together the
15	first draft of this paper, but I want to preface this
16	by saying that this is not for legal use, nor used in
17	place of a regulatory framework. Instead, it provides
18	a summary considerations.
19	This includes discussions on how to
20	utilize existing safety systems, and how to utilize
21	those existing safety systems to demonstrate safety.
22	This will help assist developers in
23	evaluating their own system.
24	In addition to this, we will have, there
25	will be discussion on human factors, and how AI
ļ	I

(202) 234-4433

	87
1	impacts human factors, as well as an impact on AI
2	architecture, as well as a summary consideration
3	section for life cycle management, especially in the
4	context of generative AI.
5	Again, we hope to complete the paper by
6	the spring of 2024, as the working group was
7	formulated in November of 2022.
8	MEMBER PETTI: I just had a question about
9	which country really is feeling the greatest user push
10	for AI?
11	Is it still U.S. compared to Canada and
12	the U.K., or are they having to be ahead of us because
13	of their licensees?
14	MR. VALIAVEEDU: I will have to defer that
15	question to Matt, because he's been mostly working on
16	CANUKUS.
17	MR. DENNIS: So, Trey and I have been
18	Trey and I have participated in two IAEA working
19	groups and we get to we've had the privilege of
20	being able to see globally where it seems to be
21	leaders and applicationaries (phonetic). The U.K. and
22	the U.S. still seem to be leading the charge on AI
23	applications in the nuclear sector.
24	China is somewhere in the mix there in the
25	middle of application areas, as well. Russia has had
	1

(202) 234-4433

	88
1	a lot of presentation at IAEA.
2	So, it seems to be U.S., U.K., China and
3	Russia, as far as application areas. I will say I
4	think, and this may be biased, but I think the U.S.
5	and the U.K. are leading the charge on the regulatory
6	aspects of AI in nuclear.
7	And this all sort of blends in and makes
8	sense that the U.K., U.S. and China are sort of
9	leaders in AI.
10	If you go look, I forget the Alan Turing
11	Institute in the U.K. put together a website and the
12	U.K., or the OACD has a website, basically has a
13	tracker of AI leadership in the application areas.
14	And the U.K., U.S. and China are at the
15	top of that board as far as, and that's just, that's
16	not nuclear, that includes everything, right, but.
17	MEMBER HALNON: Great, no, this is Greg.
18	I respect, you know, all the learning that's going on
19	and I'm probably known throughout the industry as
20	being relatively impatient, so forgive me.
21	Working group formed in 2022 and the
22	output two years later is going to be a paper. How is
23	that moving forward fast enough in parallel with
24	what's all these applications and other things, and
25	other countries?
ļ	1

(202) 234-4433

	89
1	It just, I mean, we talk in kind out both
2	sides of our mouth, it feels like. It's going really,
3	really, really fast, and it's taking two years to get
4	a paper out.
5	And, that's all it's, that's the goal of
6	the outcomes is some of the, lot of meetings, lot of
7	technical presentations. Lot of learning going back
8	and forth.
9	And I recognize that's going to happen,
10	but it just feels like a tar pit.
11	Maybe you can comment on the speed and
12	the, the amount of resources we have applied,
13	dedicated to it.
14	If not dedicated, how are we going to move
15	this thing forward fast enough so that when somebody
16	does come up with an application, we're ready to let
17	it go.
18	I mean, you know, we're still, I guess we
19	got through the 50.59 stuff and digital INC, but that,
20	that kind of blocked a lot of digital INC upgrades for
21	a while.
22	And, I remember back in the 2012
23	timeframe, SMRs. Everybody was ready to go but we
24	just got the rules, or you know, dropping down the EP
25	Zone through the rulemaking process almost a decade
	I

(202) 234-4433

	90
1	later.
2	How are we not going to government this?
3	MR. VALIAVEEDU: Matt's going to answer
4	the U.K. stuff for the international. But for the
5	timeline, we've formulated the original timeline based
6	off of our interactions with stakeholders.
7	What they thought they're going to be able
8	to deploy, at what frame of time.
9	And based off of that end time, we
10	formulated our strategy to ensure that we are ready to
11	evaluate that safety, evaluate the responsibilities of
12	AI.
13	The resources we're putting on to this, we
14	have a whole of agency approach as I mentioned
15	earlier. We have multiple program offices involved
16	with this.
17	Matt and Trey have been working on this
18	since the beginning, for the strategic plan. And, we
19	plan to update those timelines as changes happen.
20	So, we've been interacting with our public
21	workshops, seeing where industry is thinking about
22	doing AI. Is there a, has there been any radical
23	changes that happen.
24	Luckily at this previous workshop we were
25	told that our timelines expected, or matches the
I	1

(202) 234-4433

	91
1	expectation that we see industry deploying AI usage.
2	Again, fall of 2024 is when we plan to
3	publish a new version of the project plan, to readjust
4	those timelines to ensure that we're maintaining that
5	adequate resources for the evaluation.
6	MEMBER HALNON: So do you see, Anthony, a
7	period of time when there's going to be a dedicated
8	not an office, but a directorate or something for AI
9	so that we focus this all agency approach with some
10	dedicated resources to establish these guidance
11	documents, get them through, get them through ACRS,
12	get them signed, and on the street?
13	Or is it going to continue do you think,
14	for a number of years at the matrix type?
15	MR. VALIAVEEDU: So, that's out of my pay
16	grade.
17	MEMBER HALNON: I know.
18	MR. VALIAVEEDU: So, I'm going to defer
19	that to Luis Betancourt.
20	MR. BETANCOURT: To answer that question,
21	I think what is important is that we have an AI
22	steering committee from all of the program offices
23	that's basically directing this work.
24	The idea that we want to do, is to see the
25	outcome of the regulatory gap assessment to really
	1

(202) 234-4433

	92
1	identify what are, to your point, what guidance has to
2	be updated.
3	Do we need to develop something new? I
4	expect that to be some time in the spring, followed
5	with a workshop where we going to be talking with
6	industry to get their feedback, this is what we found.
7	Do you believe this is something, what are the areas
8	that we need to prioritize.
9	And then that's going to be going back to
10	the steering committee, and then we will go back to
11	you guys.
12	Kind of what Charlie was talking about the
13	roadmap, that we need to lay that down. Okay, now
14	that we know where the gaps are, let's sit down and
15	put this in front of us and ask everybody, so.
16	MEMBER HALNON: So, Luis, you're kind of
17	say that this steering committee is going to be key on
18	establishing the agency approach down the road.
19	MR. BETANCOURT: Correct.
20	MEMBER HALNON: Because, at some point, it
21	seems like and you know how long it takes to get
22	guidance documents written and through.
23	MR. BETANCOURT: Yes.
24	MEMBER HALNON: There's got to be some
25	real focused effort.
ļ	1

(202) 234-4433

```
www.nealrgross.com
```

	93
1	MR. BETANCOURT: Yes, and I think that's
2	why we're starting that focus at the front end. And,
3	there will be some coordinating with guys early so we
4	don't wait.
5	Because as everybody's pointing out, this
6	is a fast-paced environment. But to Charlie's point,
7	we also want to make it technically right that we're
8	not basically putting like, efficiency in front of
9	safety, so.
10	MEMBER HALNON: Okay, thanks. And sorry
11	for derailing it. I just was reacting to the two
12	years to get a paper out. And, I understand that just
13	a lot of learning that has to go on.
14	So don't take it as a criticism, it's just
15	that you know, the regulatory timeline seems long
16	sometimes.
17	MR. DENNIS: I will respond, or I'll
18	mention the CANUKUS tri-lateral engagement.
19	Technically speaking, it's only, it hasn't even been
20	a year that we've actually been working on it full
21	steam ahead.
22	So, I recognize that the spring 2024 is
23	when you add the numbers together, two years. I'll
24	ask for some grace in this because we have, this is a
25	principles paper with three countries.
I	1

(202) 234-4433

	94
1	And as a precedent for this, the same
2	three countries from the health and safety FDA
3	perspective put out a principles paper. And, it took
4	them quite a long time to come to a unified agreement
5	for a two-page paper.
6	And, we're trying to get more than that,
7	and get a little bit more in-depth. Because we took
8	that as our benchmark and said, FDA and health, or
9	Health Canada and FDA and the U.K.'s health office
10	came together and put out a good machine learning,
11	good machine learning practices and principles paper
12	a couple years ago. It was two pages.
13	We thought, this is not our benchmark for
14	what we want to put together. And we recognize
15	through our, some of our collaborations that this is
16	an area where applications may come in this to all
17	three of us. And having a unified perspective would
18	be a good thing.
19	So, just getting three international
20	entities go agree to the words on a piece of paper is,
21	is a challenge. So I'll say that.
22	MEMBER HALNON: All right, well I'll give
23	you grace.
24	MR. DENNIS: Thank you.
25	MEMBER HALNON: We all have waited at
ļ	I

(202) 234-4433

	95
1	11:00 o'clock for the weather forecast, and we're
2	disappointed when they spend 15 minutes telling us
3	what we already saw.
4	So, I just don't want to see the paper
5	come out and tell us that we're two years behind
6	everybody else.
7	So that, I understand what you're saying.
8	MR. DENNIS: Yes.
9	MEMBER BROWN: Just to echo that thought.
10	Has there been any effort by you all, and we talked a
11	little bit about this earlier, or at least me and
12	somebody else did.
13	To separate out what I would call the
14	areas of the rice bowl that you really need to get
15	regulation defined, whether it's via this tri-lateral
16	approach to doing business or not.
17	But there's a whole plethora of things
18	outside of that, that industry should just don't wait
19	for us. Just go work on those, do what you want to
20	do.
21	Why can't that be communicated in a manner
22	in your meetings and say hey, we're drawing lines
23	around plant controls, these controls, safety systems,
24	et cetera.
25	But all the other type stuff from the
I	I

(202) 234-4433

	96
1	maintenance, training, whatever it is, evaluating that
2	data, you don't need regulations for that.
3	Why over regulate when you don't have to?
4	Focus the regulations on the areas where it impacts
5	the safety of the plant.
6	And I haven't heard that through, I'm just
7	trying to echo a little bit of Greg's comment here is,
8	slow down.
9	There was so much baggage associated with
10	digital INC systems, and how you evaluate them. It
11	took years.
12	That's why the roadmap became all of a
13	sudden, how in the world do we tell what's applicable
14	to what.
15	And actually brought all the pieces
16	together where people could see what needs to be done,
17	and the Reg Guides have now been refined pretty much.
18	But it's taken a long time. I think we're talking
19	decades long time.
20	So here, to me, you all have the
21	opportunity to just put a rice, you know, a line
22	around certain things and say, hey, look, stay out of
23	these. You can do what you want every place else.
24	You're in your business. You're trying to
25	maintain efficiency in your training systems,
	·

(202) 234-4433

	97
1	maintenance evaluations, the data you absorb.
2	What you do with it, how you evaluate it,
3	go do it and don't look for regulation there.
4	I don't know why you can't take that step
5	forward, get an agreement with the U.S. and how to
6	get, so our industry can get on and utilize it where
7	it is known to be non-safety, non-safety critical.
8	I'll just stop there for the next slide so
9	I can do it again.
10	MR. DENNIS: I very much appreciate the
11	topic that you brought up and this, this was mentioned
12	in the workshop on the aligned, or crossing a line.
13	And in our working group, we've discussed
14	this crossing a line you know, thought process as
15	well.
16	The recognition we have right now is, we
17	don't know where that line is at this point. And part
18	of the gap analysis is to figure that out.
19	But at our front line individuals, the
20	inspectors and the regents, have been very attuned to
21	industry applications such as the corrective action
22	process analyzer.
23	Those areas where we recognize that
24	industry can deploy this, and use it, and, and
25	business efficiencies and process areas, to your point
	I

(202) 234-4433

	98
1	of not over regulating.
2	MEMBER BROWN: Or not regulating.
3	MR. DENNIS: And not regulating. And
4	that's why there's a key distinction in every slide
5	we've presented, or we brought up says, NRC regulated
6	activities.
7	And, we are trying to be very mindful that
8	we are looking at where AI touches something we have
9	that is NRC regulated.
10	And other areas where it can be utilized
11	currently today, keeping, we're keeping boots on the
12	ground through the inspectors and the regents, to
13	maintain awareness of where those areas are being
14	used.
15	Because the industry is and has said, that
16	they're using this technology in an early deployment
17	phase to learn how to use it in areas where it can
18	gain true value for them.
19	And there may be a future where it then
20	does go into that NRC regulated activities space. And
21	so we are preparing as Anthony mentioned, our current
22	state spaces as we, as we understand it today, there
23	have not been any applications that have come to us in
24	an NRC regulated activity, for our review.
25	From what we've heard, we are aware that
I	1

(202) 234-4433

	99
1	there may be a couple areas, very targeted use cases,
2	where that may happen in the next couple years.
3	Those are the ones where we're investing
4	our effort right now, to try to focus on the gap
5	analysis so that we can understand truly is what
6	guidance is necessary, how would we evaluate it, and
7	make a finding on that particular thing.
8	And to the digital INC point, I've
9	mentioned this a couple times in other venues, that
10	this as mentioned, was this is just the latest thing.
11	We've had advance reactors. We've had
12	digital INC. We've learned from those things and
13	we're trying, our hope is we're trying to get out in
14	front of this a little bit so that we're prepared
15	should that eventuality come as we understand it now
16	and maybe three years.
17	MEMBER BROWN: Go ahead. If you needed a
18	queue.
19	MR. VALIAVEEDU: Oh, okay, I'm going to
20	move on to the next slide then. Thanks, Charlie.
21	Trying to keep up with our timeline here.
22	For slide 36, we are maintaining our domestic
23	partnerships, specifically with a NIST RMF, as well as
24	the LWRS program.
25	We are currently drafting together a
ļ	I

(202) 234-4433

	100
1	institution plan to engage with academic institutions,
2	that we hope to complete by the end of quarter two of
3	fiscal year 2024.
4	For 3.2 on international partnerships,
5	we're drafting currently the CANUKUS paper that we
6	hope to get out by spring of 2024.
7	And, maintain our current ongoing
8	bilateral engagements with Canada, U.K., Germany, et
9	cetera.
10	For the last three, 3.2 echo, foxtrot and
11	golf, we are maintaining our participation in IAEA
12	technical meetings regarding the utilization of AI and
13	nuclear power plant safety.
14	And, the utilization of AI writ large
15	within the nuclear fuel cycle.
16	Specifically, we're also participating in
17	an IAEA project that will utilize artificial
18	intelligence to evaluate severe accident data.
19	For 3.3, this was mostly mentioned by Matt
20	Dennis but I just want to quickly go over this now.
21	We were able to complete our most recent workshop on
22	AI characteristics for regulatory considerations, as
23	well as we hope to maintain those workshops as they
24	prove to be fruitful in understanding where industry
25	is undertaking innovations in AI.

(202) 234-4433

	101
1	And, to help better align our resourcing
2	for future fiscal years.
3	And we hope to also maintain our
4	participation external workshops, conferences, and
5	meetings, as these also have been able to provide us
6	with more information about where use of AI is going
7	towards, or heading towards.
8	Slide 37 is on cultivating an AI
9	proficient workforce. Wide skill training is not new,
10	and I was looking at some old photos of NRC history.
11	And, the photo in black and white is
12	actually a seminar on Lotus 1-2-3, which is a
13	spreadsheet software. I've never seen that software
14	before until that picture came up.
15	And to the right of that is the AP1000
16	simulator, the TTC, which again, showcases how wide
17	skill training is not, not a new phenomenon.
18	However, our active planning and whole of
19	agency approach when it comes to AI, compliments our
20	readiness for taking this challenge on.
21	With the potential for AI to be widely
22	used, the NRC has plans to develop the skills
23	necessary for evaluating any AI, incoming AI
24	applications.
25	The phrase that we utilize is, train,
ļ	I

(202) 234-4433

	102
1	retain staff, and hire as we need to. We are ahead of
2	schedule luckily, comparative to the AI project plan
3	timeline.
4	And the staff is, because the staff is
5	developing a training guide to help develop
6	competencies for AI usage.
7	This guide splits the training between
8	data scientists, data analysts, as well as program
9	analysts, and provides basic training for AI ML
10	systems.
11	In addition to this, we were given direct
12	hiring authority for data scientists, as well.
13	For workforce planning, we, the staff has
14	engaged with OCHCO, which is the Office of the Chief
15	Human Capital Officer, on the development of a
16	competency model for AI related job functions.
17	And, this effort aligns with the recent
18	initiative from OPM, Office of Personnel Management,
19	develop a competency model for the whole federal
20	government.
21	The push by the chair's recent memo and
22	the White House's also recent executive order, have
23	only strengthened the team and the agency's resolve to
24	strengthen our skillset to be better prepared for AI
25	systems.
I	I

(202) 234-4433

	103
1	Slide number 38 is another timeline. As
2	indicated by the purple slide where we are currently,
3	we are ahead of schedule for many of these activities.
4	4.1 is assessing the NRC's AI skills and
5	identify any gaps. We're currently developing a
6	competency model with OCHCO, to analyze what areas we
7	would need AI related job functions with.
8	4.2 is identify, develop and implement AI
9	training opportunities. We were able to put together
10	a draft qual plan to help staff develop and train up
11	on new data science skills, and AI skills.
12	4.3 is on recruitment, hiring and
13	retaining AI talent. In collaboration with OCHCO, we
14	plan on developing a working group to recruit AI
15	skills, and retain that expertise.
16	Goal number 5 is pursing use cases to
17	build an AI foundation within the, across the NRC.
18	The NRC's focus on internal usage of AI has been
19	exploring research and development of AI ML.
20	That may benefit for future regulatory
21	decisionmaking. One of these will be presented later
22	on today.
23	We plan to develop a AI foundation through
24	four areas. Pilot studies, safety insights, an AI
25	ecosystem, and future focused research.
	I

(202) 234-4433

	104
1	The pilot study is an area where we hope
2	to work with stakeholders, labs, and partners to
3	investigate security and safety of AI technologies.
4	Our engagement with stakeholders have
5	supported this concept. And previously, we've had
6	industry say at events that they are in support of
7	pilot studies, as well as regulatory sandboxing to
8	help navigate the regulatory landscape.
9	As emerging technologies will always
10	involve interaction between the regulator and
11	developer, we wish to go about this early so that we
12	are able to identify challenges within NRC review, as
13	well as build technical expertise.
14	As we are not the barrier to innovation
15	but instead we are the guardrails for safety and
16	security.
17	The second item here is on safety
18	insights. We wish to assess and survey what is out
19	there to evaluate AI systems for safety. And
20	incorporate those findings across the NRC.
21	The third box is on AI ecosystem. The
22	room is only dark when you don't have a flashlight.
23	So, there is value in the staff to get accustomed to
24	AI ML tools, to deconstruct AI.
25	By acquiring common data science tools and
	I

(202) 234-4433

	105
1	deploying IDEs that could help support an AI
2	ecosystem, we could utilize training within goal
3	number 4 to help get a staff, to help staff understand
4	how AI could be utilized throughout the nuclear
5	industry, as well as any safety or security issues
6	that may come up.
7	MEMBER MARTIN: Question, and I'm sorry,
8	I can't help myself. Trying to get software that is
9	not like, already approved by IT is, is right,
10	impossible, right?
11	So how do you expect to even get through
12	NRC's own processes to get tools to train people? Do
13	you have to make exceptions? Obviously you've worked
14	with the Office of the Chief Information Officer.
15	I think you have your own obstacles just
16	to even get to the point where you can train people.
17	I mean, are exceptions made in the spirit of research
18	and training, that lets you get tools in there that
19	are typical, or being proposed?
20	Because invariably, you know, questions of
21	security associated with those tools have to come up.
22	MR. VALIAVEEDU: To first answer your
23	question, the staff currently has Anaconda and Python
24	as two main packages that we are allowed, or that we,
25	that have been vetted by OCIO.
Į	I

	106
1	By in the first slide, or second slide, I
2	ensured that the word OCIO is incorporated with a
3	variety of program offices
4	MEMBER MARTIN: I saw that.
5	MR. VALIAVEEDU: because we've been
6	able to work with, directly with the chief information
7	officer because AI is upcoming.
8	We've seen a lot of developments
9	throughout not even the nuclear sector, and our whole
10	of agency approach to this has been complementing
11	that.
12	So, it seems from our view, slightly
13	different than traditional software procurement. And
14	we are having ongoing talks to acquire and allow more
15	uses of like Python, and different library packages.
16	MEMBER MARTIN: But this would be
17	segregated, too, for the purpose as opposed to letting
18	everybody in you know, have access to it, and who
19	knows what.
20	I mean, correct, or am I wrong?
21	MR. VALIAVEEDU: Oh, for that, I think
22	Victor Hall, I think has direct engagement with the
23	CIO. So, he may be able to better answer your
24	question.
25	MR. HALL: Thanks, Anthony.
I	I

(202) 234-4433

	107
1	So again, this is Victor Hall with the
2	Office of Nuclear Regulatory Research.
3	We do have strong partnerships with the
4	Office of Chief Information Officer. And I think back
5	to right before pandemic, some of the changes that
6	they made to be able to prepare us to be ready for a
7	changing world to be able to work remotely.
8	And, they knocked it out of the park.
9	It's thanks to them we were able to get our mission,
10	even get our mission done.
11	And, I think they're taking that same
12	mentality of being ready for what's coming, or
13	changing where we have new tools that we need to be
14	assured are safe, that are protected from the dangers
15	that are out there, whether cyber or other.
16	And, I think they're taking that same
17	approach to being ready to be able to give us the
18	tools to be ready for what's coming.
19	So, they're working hand-in-hand with us.
20	Obviously, has the table want all the bells and
21	whistles.
22	We want the toys to play with, and they
23	have to be able to say wait a second, let's make sure
24	they're safe.
25	And they're doing that partnerships across
I	1

(202) 234-4433

	108
1	the government. So, you know, better to have approval
2	to make sure that something is usable and safe, and
3	that our systems is not going to get in and cause a
4	greater problems is clearly high on their minds.
5	But again, I think they're taking a very
6	positive and collaborative approach to making sure
7	that we're ready for being able to use these safely.
8	And so again, I'm happy that we have them
9	as partners. And I think when you look at the chair's
10	tasking, which wants us to lean forward but
11	responsibly, I think that gives us good momentum to
12	be, to have those tools to be ready and recognizing
13	that in government, there are going to be
14	restrictions, period.
15	MEMBER MARTIN: I thought it was a full
16	committee a time or two where we got the message that
17	you know, things like personally things like ChatGPT
18	would not be used.
19	Obviously concerns about the control of
20	proprietary or classified information, and all that.
21	You know, you just see every other day that we're
22	getting a patch for our operating system for some
23	security, you know, and I just think well this, like,
24	you know, stuff like that.
25	So anyway, that's a little cynicism
I	1

(202) 234-4433

	109
1	associated with the question, but it's obviously a
2	real bureaucratic challenge to beat some of these
3	goals because if you don't really have the best tools,
4	then are you really doing the best job training.
5	But you have other people that you know,
6	decide your fate a little bit on the decisions that
7	you're making, who have total control over it.
8	MR. VALIAVEEDU: Thank you again for your
9	comment.
10	The last box here is on research. We hope
11	to continue to invest in AI research through existing
12	avenues, as well as universities.
13	This is through supporting our university
14	research grants, and as well as with this, we hope to
15	continue with our future focus research program.
16	This program has helped build NRC
17	knowledge in emerging, and significant technologies.
18	More specifically, in the last two years
19	we were able to fund six FFRs, one of which will be
20	presented later on today by NRC staff.
21	Two more slides. Slide 40 regarding the
22	timeline of these cases. For 5.1 is on the proof of
23	concept in pilot studies.
24	As previously explained, the objective
25	here is to engage with the industry to identify the
	I

(202) 234-4433

	110
1	potential pilot study and proof of concept test cases.
2	They'll help the NRC staff gain expertise
3	for future regulatory reviews.
4	5.2 is to develop and maintain an AI
5	ecosystem. As seen with the purple dashed line, we're
6	currently working on developing and maintaining an
7	IDE, as well as identifying and assessing, and
8	acquiring AI tools.
9	5.3 is on surveying of AI tools and
10	methods for safety evaluations. We hope to conduct a
11	survey of what's currently out there to evaluate AI
12	systems, by the end of quarter two of fiscal year
13	2024.
14	And then implement these findings by
15	fiscal year 2025.
16	MEMBER HALNON: Now Anthony, is there
17	where 50.59 will come in, and how to figure out how to
18	do an evaluation for modification to the plant?
19	MR. VALIAVEEDU: It's slightly different.
20	The survey of tools and methods is more of what sort
21	of systems and algorithms are out there so that
22	individuals or stakeholders can utilize those two, to
23	evaluate their own systems.
24	MEMBER HALNON: So the guidance I'm
25	thinking about is if somebody wants to implement it,

(202) 234-4433

	111
1	they're going to have to go through a lot of pre-
2	application discussions with the NRC, in addition to
3	having a process to be able to facilitate that.
4	Which would be a 50.90 submittal plus a
5	50.59 and a no-hazards. All that stuff. Where is
6	that all going to down the road once you get all this
7	learning and start putting guidance, you know, pen to
8	paper and making guidance documents?
9	Because it seems like it takes a long time
10	to get, you know, alignment with the industry on some
11	of these things and I just wanted to make sure that
12	this 27 date is, is still feasible.
13	MR. VALIAVEEDU: For the guidance
14	development, we hope to implement that as guidance
15	development for stakeholders to utilize.
16	However, stakeholders are able to utilize
17	what is out there right now for their 50.59
18	application, if they wish.
19	MEMBER HALNON: Yes, but when you start
20	getting into those fine questions of increases and
21	decreases of consequence and all that kind of stuff,
22	it gets difficult.
23	We ran into it with the digital INC, and
24	it took a while to get that straightened out. And
25	then maybe that is this building block for where we're
ļ	

(202) 234-4433

	112
1	going on this already.
2	But and just, it just seems like that
3	takes, I mean again, back to my impatience. That
4	takes a long time to get an alignment, you know, not,
5	it doesn't happen in a quarter or two quarters.
6	Sometimes it takes years.
7	And, we're not too many years away from
8	when we want to be able to be ready for this. So, I
9	was, I wouldn't put that aside.
10	I'd make sure that you know, at least
11	those conversations are being had so that we know if
12	the existing guidance can be applied, and actually
13	work.
14	MR. VALIAVEEDU: So to the workshop, the
15	summer, we've kind of hit a cadence where we think
16	annual workshops are the, what we're going to plan on.
17	But we remain flexible to have the entire
18	workshop in there to tie in with it. But the next
19	workshop is really intended to go to this point on
20	guidance, because we plan to finish that regulatory
21	gap analysis.
22	And, the early look is I think our
23	regulation is flexible enough to adapt to AI, but the
24	guidance might be lacking.
25	MEMBER HALNON: Okay.
I	I

(202) 234-4433

	113
1	MR. VALIAVEEDU: In significant areas.
2	MEMBER HALNON: It's on your
3	(Simultaneous speaking.)
4	MR. VALIAVEEDU: It is.
5	MEMBER HALNON: I mean, you know
6	MR. VALIAVEEDU: Very, it is very front
7	and center.
8	MEMBER HALNON: Okay, good, that's what I
9	hoped. I hope that we can get that, get that not be
10	a hurdle to get over.
11	MR. VALIAVEEDU: Yes.
12	MEMBER HALNON: Seeing that we're looking
13	at it years in advance here, so thanks.
14	MR. VALIAVEEDU: Right.
15	DR. SCHULTZ: Along those lines, or maybe
16	it's parallel to it. The regulatory sandbox, is that
17	part of the upcoming workshop as well?
18	In other words, I'm presuming you're
19	looking for what is going to be included in the
20	sandbox, and what's outside of it in terms of
21	application than what inside the sandbox needs
22	regulatory attention?
23	MR. VALIAVEEDU: For the regulatory
24	sandboxing, we are hoping to one, identify a test
25	study that may or may not have a direct implication
I	1

(202) 234-4433

	114
1	for reactor use utilization.
2	And then, go about a potential open avenue
3	to identify any challenges within current area
4	existing regulations.
5	That may or may not have answered your
6	question. If it didn't, I can go back.
7	DR. SCHULTZ: No, it did do it. It's
8	fine.
9	MR. VALIAVEEDU: Okay.
10	DR. SCHULTZ: But eventually you're going
11	to be including decisionmaking associated with what
12	will be included in terms of the regulation, and what
13	will not?
14	What happened? I mean, you talked about
15	many applications
16	(Simultaneous speaking.)
17	MR. VALIAVEEDU: Yes.
18	DR. SCHULTZ: in your workshops, so
19	which industry is doing nothing. And in several of
20	those, regulatory attention will not be required.
21	MR. VALIAVEEDU: Yes.
22	DR. SCHULTZ: The work can continue, and
23	findings will be useful to the industry. Regulation
24	would not be required in terms of the way in which
25	it's done, or the results that are obtained.
	I

(202) 234-4433

115 1 Would that, aren't those findings that you want to, you want to develop sooner than later? 2 Yes, that's why we're 3 MR. VALIAVEEDU: 4 maintaining our ongoing collaboration with different stakeholders like EPRY, as well, that have, that we 5 are able to obtain those lessons learned from their 6 7 utilization of AI ML technologies. 8 The regulatory sandboxing is more of 9 understanding the, it helps support the regulatory 10 framework that exists right now, to ensure that the staff ready for 11 ourselves, are any potential application. 12 Great, I appreciate the 13 DR. SCHULTZ: 14 detail that you've gone through with regard to staff 15 training and implementation. 16 All right, to me there's more important, 17 more important than the hiring of new people that understand AI, is training the people that are already 18 19 here and know a lot about regulation, to utilize AI and the process. 20 Thank you. 21 22 MR. VALIAVEEDU: There was а phrase mentioned earlier in a previous meeting where you 23 24 could get a really good data scientist, or you could get an NRC individual who's extremely experienced 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	116
1	nuclear regulator, and then train them with data
2	science tools.
3	MEMBER BROWN: One other input just to put
4	it on the plate to think about, as we introduce
5	software based systems for digital INC, it was always
6	the concern about common cause failures. And
7	therefore, the issue of diversity areas.
8	How do you handle that and ensure that
9	that failure doesn't propagate lock up of the systems,
10	interrupt driven systems, which all AI is going to be
11	interrupt driven because it's going to be evaluating
12	data coming in all over the place.
13	That means it could get confused, and if
14	you, I'm thinking of downstream now outside of the who
15	cares realm.
16	Does that mean now we have to have the
17	thought process of diversity, defense in depth, in
18	terms of the application of AI into any other safety
19	or plant control, or even non-safety related but plant
20	control systems that are just out controlling stuff?
21	How do we do that? Do I have to have
22	competing AI algorithms making the data and then
23	comparing those, and then making a, or do I have to
24	have three sets because I need to have them both?
25	It just, the whole idea of now all of a
•	

(202) 234-4433

	117
1	sudden accepting the fact that it's AI, I don't need
2	anything like that to make sure it's really working
3	properly.
4	Is it one more technical issue that would
5	have to be addressed when you get into the world of
6	plant controls, safety systems, and even what I call,
7	I wouldn't call it, not all plant systems are
8	obviously safety related but you need them to operate
9	the plant. You have to do something if they don't
10	work.
11	So that is another very, very difficult.
12	It was hard enough in the regular software world where
13	you used different devices, you use alternate
14	software, watch dog timers, all kinds of, and
15	susceptibility to cyber-attacks, intrusive. How do
16	you communicate date that's not protected by an air
17	gap? So that's just one more thing you need to throw
18	into the hopper in terms of how you apply this
19	downstream.
20	Because you're going to run into the exact
21	same issue we've been dealing with for a decade or
22	more, a couple of decades in terms of incorporating it
23	into the systems.
24	That's one more way to be very, very, very
25	cautious.

(202) 234-4433

	118
1	MR. VALIAVEEDU: Thank you, that is one
2	are that we are looking at, especially with the gap
3	analysis, so I appreciate it.
4	The final item here is to facilitate and
5	invest in research. We hope to maintain our ongoing
6	university research grants, as well as maintain our
7	current FFRs with a specialized focus with, hopefully
8	promoting AI research within the NRC.
9	The final slide here, if we do our work
10	right, no one will remember us. The NRC is committed
11	to the safety and security of the public and the
12	environment.
13	The hope of the AI team is to pave the way
14	to ensure that the NRC puts its best foot forward, in
15	future applications.
16	Our high stake standard for safety remains
17	unchanged no matter what the technology is. And, we
18	are working towards ensuring that we have the staff
19	with the knowledge, skills, and the ability to
20	effectively regulate these new technologies.
21	I would just take some time to highlight
22	our next steps, which includes in the spring of 2024
23	we're going to be publishing the CANUKUS paper, AI
24	principles paper.
25	We hope to publish the AI regulatory gap
I	

(202) 234-4433

	119
1	analysis as well as that time.
2	In the March timeframe, we'll be hosting
3	an AI technical session at the RIC that Matt Dennis
4	has highlighted. As well as host an IAEA AI technical
5	meeting at headquarters the following week.
6	We hope to update the AI project plan with
7	revision 1 in the fall of 2024, with our revised
8	timelines according to what we expect through our
9	engagement.
10	And, we will always continue our public
11	workshops and stakeholder engagement as they've shown
12	to be fruitful in understanding what will be ongoing.
13	Thank you.
14	MEMBER BROWN: I didn't mean to interrupt
15	you, I just want when you're done.
16	MR. VALIAVEEDU: Oh, I was going to say
17	just thank you again for giving me the opportunity to
18	speak, and open it to more questions.
19	MEMBER BROWN: I just wanted to make
20	papers and things that you had issued in the gap
21	analysis, if you, and the emphasis and I tried to
22	understand.
23	So I'm not a designer obviously like you
24	guys are too smart for me from that standpoint. And
25	I went to try to figure out something. There was a

(202) 234-4433

	120
1	paper in one of the magazines that I read, one of the
2	publications.
3	And it was so replete with jargon that by
4	the time I finished, I had not a clue as to what they
5	were saying when they got to the end, and they had
6	some conclusions.
7	I would just encourage these papers are
8	going to be relevant to other folks other than you,
9	understanding where you're going to go.
10	And if it is steeped in deep learning,
11	machine learning jargon, that's not going to work and
12	the resistance is going to be strong.
13	So, it would be good if you could put it
14	in every day English for people who are technically
15	oriented, but not fully ensconced in the jargon of the
16	AI world.
17	So, you know, reduce it to English, in
18	other words.
19	MEMBER HALNON: Anthony, in your, is it
20	your intent, your goal, your aspiration, your hope or
21	whatever, to have the gap analysis ready for the RIC
22	session? Or at least you know in
23	(Simultaneous speaking.)
24	MR. VALIAVEEDU: We expect it to be done
25	in the spring 2024 based off of initial timelines.
	I

(202) 234-4433

```
www.nealrgross.com
```

	121
1	However, as you're probably aware, the NRC is pretty
2	big with its regulation.
3	MEMBER HALNON: Yes, yes. It just seems
4	like we'd miss a really good opportunity if we don't
5	have at least, at least some of the findings to
6	discuss at the technical meeting of the RIC.
7	So I know you know, spring is not
8	necessarily March, but you know, it seems like that
9	would be a great opportunity to at least be able to
10	present the findings.
11	So, that's my comment. Thanks.
12	MR. VALIAVEEDU: I agree.
13	CHAIR BIER: Okay, thank you, Anthony, for
14	actually getting us caught back up on time.
15	So, and thanks to all the presenters for
16	a good discussion, and for your patience with all the
17	interruptions and questions.
18	So I think at this point, it's time for a
19	break and we will reconvene at 11:15. One more
20	presentation before lunch. Thank you.
21	(Whereupon, the above-entitled matter went
22	off the record at 10:58 a.m. and resumed at 11:15
23	a.m.)
24	CHAIR BIER: For those online, we are
25	going to get started in just a minute or two after
I	I

(202) 234-4433

	122
1	everybody takes their seats.
2	It looks like we're missing a few who are
3	taking a slightly longer break, but in the interest of
4	timeliness, I think we will go ahead and get started
5	on the next session.
6	So I'm happy to introduce Jim Chang from
7	Research, who has what sounds like a very interesting
8	presentation on using machine learning for inspection
9	planning.
10	MR. CHANG: Thank you. My presentation
11	goes into the topic on regulating the AI to use the AI
12	for NRC's operation. And our focus is that for this
13	implementation is informed inspection plan.
14	My presentations are straightforward at
15	the motivation and end at talk about what we do and
16	then what data we use, and then this observation
17	underneath that that we obtain from this project.
18	The motivation was COVID-19 that disrupted
19	NRC's inspection plan. NRC did not send a inspector
20	to the site regular (audio interference). So that's
21	under NRC's risk-informed inspection that we can have
22	some system that can identify what's a priority of the
23	inspection. That will be very beneficial to enhance
24	NRC's risk-informed actions.
25	And I also read the AI machine book that,
ļ	I

(202) 234-4433

	123
1	one case is referenced in that was a Netflix success
2	story. Used unsupervised machine learning to analyze
3	the movie watched by its subscribers. And then from
4	there that it helped identify the hidden pattern of
5	the code clusters.
6	And using that information will be helping
7	the Netflix to better inform that recommend a movie
8	for its customers.
9	So then I was thinking about these two
10	pieces of information together. NRC here, we have a
11	lot of nuclear power plant performance C suite that
12	many have documented, licenses and reports or
13	inspection finding. These things that they consider
14	as this history of this plant's performance.
15	Can we use the unsupervised machine
16	learning, it can bring the information together and
17	then that's identify a hidden pattern. I call this a
18	safety cost, later I will explain what safety cost
19	mean.
20	So this objection was try to perform a
21	feasibility study simply that looking at what the data
22	we have here and then the snapshot technology we have
23	this stage. What's combination of them that how good
24	they are, that to achieve this purpose, informing the
25	inspection planning.
	I

(202) 234-4433

	124
1	So I called this the hidden pattern as a
2	safety cost. Safety cost I define as the failure
3	mode, failure causes of this structure, system,
4	components, and their failure that has consequence to
5	the nuclear power plant safety.
6	So this combination of this information
7	together usually call this the safety cost. Try to
8	identify using unsupervised machine learning to
9	identify this safety cost. And we had a benchmark
10	that the teams tried to achieve. It was in the NRC's
11	reactor oversight program that periodically that
12	publish the operating experience communication.
13	And this was a communication published in
14	November of last year that, it identified five power
15	outage events impacting security system operation. So
16	that's consequence of power issue impact the security
17	system operation.
18	And then there's SSC and here is the
19	primary and the backup power tried to reach the
20	security system. Failure mode just simply not
21	providing electricity.
22	This is a communication that's also, I
23	listed it by instance, by operating experience. It's
24	identified at 2022 has two events, '21 has three
25	events. But the 2021 three events, all them consider
I	I

(202) 234-4433

	125
1	as the random failure, power failure.
2	But the 2022 two events, all that involved
3	is human failure. One is the maintenance, doing the
4	maintenance and all the system repair that caused the
5	outage.
6	So with this information that's from the
7	inspection finding, that's the original communication
8	suggested our inspector, when they performed the
9	inspection procedure that's related to equipment
10	performance testing and maintenance that focus on the
11	human impacts on power supply.
12	So this provided this zooming in the focus
13	that to me is risk-informed information to help our
14	inspector based on the past event to help our
15	inspector when they do this general inspection in this
16	area that's focused on that's a cause related to
17	the operating experience we observed in the past.
18	So that was the things that I tried to
19	achieve, see that can we use the unsupervised machine
20	learning to help identify these things. The approach
21	is that I got a funding from the Office of Research
22	Future Focus of Research funding. And then
23	established a commercial project contract to the AI
24	company that's SphereOI.
25	In addition to this, NRC also formed a
I	I

(202) 234-4433

	126
1	team that's we have machine learning experts that Trey
2	Hathaway, that's sitting here, that he was in my team.
3	And then I also has NRR staff from Reactor Oversight
4	Program, that Jason Carneal. That's in my team.
5	I am not a machine learning expert. I am
6	not this Reactor Oversight Program pilot. We just
7	bring the team together to work with this contractor
8	to perform this project.
9	The task, two tasks I identified for this
10	thing, the first thing that's we don't know what's the
11	current state of the AI. Just simply try to get a
12	glance of the what's the landscape there.
13	So the first task was try to understand
14	the evaluate these are big plant companies. Their
15	AI platform that's a high-level version that to find
16	out which one may be best for this whole purpose.
17	The intention was try to use this pre-
18	trained algorithm as much as possible instead of NRC
19	does put in a lot of effort try to develop algorithm.
20	And then the second task was a lack of
21	platform that to identify these safety costs. That's
22	a issue with two task. The company that, really quick
23	pace, we have weekly meeting and that work the project
24	was completed. We did it in four months.
25	So the task one here that the contractor
ļ	I

(202) 234-4433

	127
1	identified the topics for doing this type of test
2	what's the topical like, in this process, and then
3	evaluating give a score, weighting, wright and score
4	of this four platform.
5	Come to the end, that's Azure, Microsoft
6	Azure, and Amazon's AWS was ranking the higher. But
7	this doesn't really help much because they come to the
8	task to one thing important was a notebook
9	integration.
10	And there was a notebook that can access
11	these platforms, algorithm library so that's it's
12	not this notebook is independent from all these
13	platforms. And that was the Jupyter Notebook was used
14	in the task two analysis.
15	So come to the end that this evaluation
16	doesn't really affect the decision on choosing which
17	platform to go. Go to using the Jupyter Notebook is
18	a free software that downloaded. We need this kind of
19	open-source library to perform the functions.
20	To perform the task two here that the
21	contractor develop to bring in the test that's a
22	inspection and then the former test that's item one
23	there. And go through the series of process, the
24	components of process in this information.
25	And then come to the end that we
ļ	

(202) 234-4433

128 1 identified these safety costs. And then that item three that is the visualization of one of the costs. 2 3 For all these components, the components 4 in this pipeline, there's multiple algorithms can do 5 the function. So the -- come to the end the -- what we do here is try to trial and error the different 6 7 algorithms and then try to evaluate, see which 8 algorithm has better performance. And come to then end that I identified 9 this optimal combination for this pipeline performance 10 that can take data from the front end of the text and 11 then come to the end that identify this cost and 12 represent this safety cost. 13 14 So this diagram talk about the things that 15 the contractor tried. On the top is this pipeline 16 component, on the end. The first element taking the 17 text, completion of this inspection finding. In that the contractor tried 15 different, I'll say that 15 18 19 algorithms to process these original information. And then come to the end, it selected 20 three of them that are better performance. And then 21 leading to the next components. 22 Next component has three different, five different -- five different 23 24 algorithms. And then come to the end, select one. So you see this, that's a lot of trial. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	129
1	And for the first one text this portion here, it's we
2	took eight different sample, eight inspection, eight
3	inspection. And then try this 15 combination. Come
4	to the end, select these three. So that you see that
5	was try and see that how
6	MEMBER MARTIN: Question. I'm trying to
7	understand what's the information that's being fed
8	here. What's the specifics. And the maybe use an
9	example.
10	MR. CHANG: Yes. That's in my next slide.
11	MEMBER MARTIN: Okay.
12	MR. CHANG: So input information, that
13	original was trying to that we NRC has inspection
14	reports that about 20,000 inspection reports from year
15	2000 that's publicly available on the website. That's
16	was inspection report was the information.
17	But through a process, so I learned that
18	our key process NRC maintain this database that's
19	excel database that has all these. This is not
20	inspection, it's inspection finding. Inspection
21	finding data is something come to the like more
22	green, the type of inspection finding there.
23	But come to the end, that many of these
24	will be identified as green finding. But these are
25	the inspection findings that are keeping in this
ļ	I

(202) 234-4433

	130
1	database that's from the study from the year 1998
2	about 15,000 unique records.
3	In this database that column F was item
4	introduction. That was a decision about this
5	inspection finding.
6	So that's what's come to the end, so while
7	since we have this one, I don't want to focus on our
8	resource. To focus on what we want to achieve so that
9	we simply take in these as original, the discretion
10	here in the item introduction. This column has the
11	input information.
12	This input information that averaging as
13	1,649 words. And minimum is 42 words. Maximum, 7670
14	words. So that's the range of that expression there.
15	We took the discretion (audio
16	interference) that's all the information we need. But
17	it was a limit in there, too, these sentence
18	transformation models limitation that it come to the
19	reached its sudden capacity it will truncate. It
20	doesn't take in information anymore.
21	So if we use the full text that's a long
22	text, that's a data on the text it will simply just
23	dismiss that because of limitation of this sentence
24	transformer model limitation.
25	So that was the contractor. Okay, what

(202) 234-4433

about let's try some other algorithm to take these full text as the input, and then that this algorithm can do the summary of this text. And then that generates as the, I call it condensed summary. And then input in to the pipeline. That's the approach we did.

7 So except the full text, we tried 14, the 8 contractor tried the 14 condensed summaries in here 9 that it divide into the three category. One is a 10 summary technique algorithm. That's a try 70 kind of 11 algorithm in the summary technique.

And then Q&A three key phrase extraction to try four (phonetic). And that -- what we take. And then that some of the AI compound, AI algorithm. That's also allow us to provide some inputs that cause semi-unsupervised machine learning.

17 In there, they're taking out the things that do have a focus on nuclear safety. These AI 18 19 options, they are trend from the open website that Wikipedia, social media. It doesn't have a specific 20 focus on the nuclear safety. But some of them, they 21 allow us to bring into the input that what are the 22 things that we need to pay more attention. On the --23 24 so from the NRC provided 1,004 acronym like MSIV, 25 these type acronym.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

And then also one is 400 common failure mode, like a inoperable misalignment corrosion. These are word that we were interested in on the special failure mode. That we really want to, knowing that's -- not just feed it a general word. So that provide us more useful information.

7 And in addition that we acquired 269 NUREGs and 195 research information letter. 8 This 9 technical report was the contractor want to use to see 10 the coherence of this word, term that appear in the text and then compare it. But it's for further 11 information. But they're not really helping the text 12 too (audio interference) check, it will function. 13

And then also the stop word removal that in addition to this general remove the stop word, this type of word, we also provide that contractor that also look into the outputs and then seeing whether that term that we see that we need to remove them. That they consist safety system reactor, these happen to open them.

If we don't remove the stop word, that the -- somehow the group that focusing on these terms, that's not a one we want.

24 Showing the example, that's one, at least 25 one process. On the left-hand side for column here,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	133
1	you see a lot of these operating company, Entergy,
2	Exelon. And that was because we did not remove the
3	these words, these terms as a stop word.
4	And then after we saw the result, well, no
5	this making the this not the things we wanted to
6	focus on. The process, focus on the company instead
7	of focus on the safety the system, structure system
8	components.
9	So that's how we work to remove this word.
10	And then on the right-hand side, have to remove this
11	word that's on the right-hand side, Fort Bragg
12	(phonetic), showing these customs, forming that's
13	these become more like trip and auxiliary feedwater,
14	these are the kind of level that we have more interest
15	in. That's a kind of stop word removal.
16	So come to the end that goes through this
17	process, identified hundreds of these safety costs.
18	And then it's a long list here. It's a part, and I
19	just show you some an example here.
20	These are costs is represented by word
21	cloud or bag-of-words. Here, that's on the Excel
22	spreadsheet here. The topic the next minus one is
23	has 5,382 inspection findings. These are the
24	inspection findings, could not group into any cluster.
25	So these are kind of, we called outliers costs.
Į	I

(202) 234-4433

And top on Deal One (phonetic), that's a deal, the topic deal that has 927 inspection findings. 2 And these are the words kind of forming word bag, word cloud, that's describe what the cost are about. And et cetera.

So these are the way that it -- to the end of Type Nine, these are the table that was generated. And then that's for each role that's a work and going to that's a -- what's this then, 927 inspection findings. That information can be tracked, if we want.

12 And then, after that, this just was different 13 showing the three input information 14 technology coming in, that they come to the end, that information 15 what this but forming same the 16 synchronization of different clusters. It's all 17 related to the RCIC system, things associated with that components. 18

19 the end of this project At that we fortunate has a operating experience computation. 20 This time is about a safety security system. 21 The 15,000 inspection findings I mentioned here, all of 22 them are safety system, not security inspection. 23 So 24 security system inspection is not within the scope 25 here.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

6

7

8

9

10

11

	135
1	But in this original communication it
2	identified why events relate to improper calibration
3	and the maintenance of the radiation monitor and dose
4	assessment equipments.
5	One company has two events. They said
6	well, since we are already identified these costs, can
7	we go back to the things we identified, seeing that's
8	how this five events was clustered.
9	And we found out that one of these, I
10	think it's the top one, 2022 event, was not in this
11	original inspection finding data. What we can find
12	four of these four of these events.
13	And this was the results that the feedback
14	led to well, these operating expense was identified in
15	this exercise. So that's from the full item
16	introduction. That means that we took the summary of
17	data and looked into this pipeline.
18	In summary, this column was, using the one
19	of these summary technique. But generally the
20	condensed summary and put into this pipeline and key
21	phrases, technique.
22	So that all these are four events, four
23	operation, you know, was in one of these safety costs
24	identified. None of them was put into this outlier
25	bin. But one day we saw that well, summary report
I	I

(202) 234-4433

	136
1	that has at least three of events identified in the
2	cluster number one. Well, sounds good, but the number
3	one has more than 900 inspection findings.
4	So that's still not practical that work
5	identified all these things. And that in terms of
6	that we NRC operators people need to, you need to
7	squeeze through this 900 events to identify what are
8	things are that are maybe not working.
9	This current stage is still not come to
10	the demonstrate some success, but come to the level
11	of the data, we say what it's used for.
12	But I want to say these 900 event, that's
13	we are talking about inspection findings dated from
14	the 1998 to 2022. So that was maybe that using the
15	dates that we focused on the most recent data maybe
16	give us some more focus. But we didn't go to more
17	analyses for that.
18	It was because the future focus of
19	research is a small project. It's for research for
20	you to identify information. And then it really find
21	out some that information since indicates some
22	potential that it become a seed (phonetic) process
23	seed project that action or the more formal way of
24	doing the research development these areas.
25	And so that was the way we concluded the
ļ	I

(202) 234-4433

	137
1	is research project. The project here that does
2	identify this summary technique was very useful, the
3	R piece (phonetic) that was there, while that was
4	useful, that summary that's taking these original
5	inspection summary, and then that's provide condensed
6	version of summary. That was a useful, good use of
7	workflow purpose in the sense that can use this
8	technique to provide summary and then NRR staff can
9	see a view of the condensed summary that's to reduce
10	work.
11	The second bullet about is using this
12	based on the way that we do. Certainly there's a lot
13	of things that we can improve, including the stop word
14	or trying some technique. At that time we saw it as
15	time-consuming. We don't want to go forward moving
16	that, try to optimize our future focus research.
17	And if that's we have additional funding,
18	that's we may want to spend it to fine-tuning that may
19	be able to refine the results. But whether that
20	refine the result will it come to the become a
21	practical skill, I don't know. So that's why
22	making the conclusion that what, based on the result
23	we saw, it has potential, but it's not conclusive that
24	for practical application.
25	MEMBER MARTIN: A comment on that. About
ļ	I

(202) 234-4433

	138
1	six years ago, I was doing this just shows you what
2	I do in my free time. But so I resonate with what
3	you've done here. I've used the algorithm for the
4	parsing, the documents or texts. And the association
5	the associating frequency and the presentation of
6	that information.
7	I did this with the water reactor
8	evaluation model document, you know, which was
9	published in the 70s. Again, for fun. I have it here
10	on my screen.
11	But so this, what you're doing resonates.
12	I will say, though, in the presentation, and I was
13	doing this because I wrote a blog and about water
14	reactor evaluation model. And I wanted to highlight
15	the kind of things that were important, right.
16	And I saw that algorithm, and of course in
17	my mind, I had an idea of what should be important.
18	And then used the algorithms and parsed the
19	information. And of course I had the problem with the
20	stopper, you had as well.
21	And then I probably spent the next six
22	hours trying to find the right set of words to
23	eliminate to get what I want out of it.
24	So what that means is there's a huge
25	amount of uncertainty associated with that, with the
	I

(202) 234-4433

139 1 process. But you know, in this business, you know, we're addressing safety issues. 2 there's 3 We know а huge amount of 4 uncertainty. Of course we talk about it in the 5 context of our probability risk assessments and such. And uncertainties on order -- on the order, an order 6 7 of magnitude are pretty normal. 8 Do you see some synergy with, you know, 9 methods like this? I mean, because it's incorporating 10 a natural language translation of sorts. And it's I would say corroborative information to, you know, more 11 quantitative risk analysis. Is there synergy, have 12 you thought about synergy in that realm? 13 You know, going back to our earlier 14 15 presentation about being, you know, Matt's comment 16 about the, you know, being the best version of 17 yourselves. You know, using the tools that we have today to do a better job and develop more confident. 18 19 I know this was a small project. It's kind of fun to listen to here. But to take it in all 20 seriousness and is there an opportunity? Do you see 21 opportunity? Will you go farther with this? 22 I mean, I know it was at the discretion of the agency for you 23 24 to do this for a project. But where does it go from here? And I see 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	140
1	one opportunity that might be interesting, if not
2	useful.
3	MR. CARNEAL: Can everyone hear me? I'm
4	Jason Carneal, I'm in the Operating Experience Branch.
5	And I was working with James on this project.
6	And as with pretty much every start that
7	you get in this area, we all ran into the same
8	problems with those stop words where yes, you're
9	probably putting in some bias there with what you
10	think that you think the output should like, should
11	look like.
12	What we were doing in this project was
13	trying to just give it a minimum baseline to fake out
14	the general Wikipedia-style stop words or the ways
15	that the algorithms were trained with general
16	language, and give it just kind of a little bit of a
17	leg up for the business that we do at NRC and see what
18	we could see in these safety clusters.
19	And it was a small effort. Of course we
20	could optimize that in the future. The power that I
21	see with the safety clusters and identifying those
22	unnoticed trends that the human eye can't see, in my
23	group we're working with OpE documents.
24	We have about 100,000 documents in our
25	store, and that number of documents expands by 1000
ļ	1

(202) 234-4433

	141
1	documents a year. That's just the NRC documents that
2	have no structured information. So it's all free
3	text. You have to have some way to apply some level
4	of grouping to that if I'm to hope to find some kind
5	of a trend in that document set.
6	We also have about 200,000 industry
7	documents where we have those texts. So the power
8	here that I see in the future is particularly for
9	those trends that are hidden, where it's not what we
10	think we would see in the trend.
11	So the top five trends, if we went through
12	James's list, it's kind of what we'd expect for safety
13	cultures. The safety clusters. When I looked down
14	into Items 10-15, there's something interesting here.
15	I've never associated those words in my mind.
16	MEMBER MARTIN: Right, and I'd also say
17	that statistically speaking, when you start playing
18	with the uncertainties, those, you know, numbers 5-15
19	will change. And at some point, they're worthless,
20	right. But statistical method, that's the nature.
21	Now, if you get consistency with the
22	variability of softwares or whatever the random number
23	(audio interference) there, that those top five are
24	there time and time again, there's probably something
25	to it.
ļ	I

(202) 234-4433

	142
1	But yeah, I would certainly not look
2	beyond. You know, when things start changing, then
3	it's not (audio interference).
4	MR. CARNEAL: And just one other thing,
5	that as far as future work with these, being able to
6	group these with unsupervised learning, the way our
7	program currently operates, we're relying on four
8	people assigned to each region. They're looking at
9	the reports as they come in.
10	So if we're going to identify a trend,
11	it's usually knowledge of that personnel over a period
12	of time. Oh, I remember this happened three years
13	ago, let me go look at this. This would allow us to
14	take a more proactive approach and try to get at least
15	a hint to the engineers that are reviewing the reports
16	that there might be a trend here for these 100
17	documents, you might look at a few of those.
18	MEMBER HALNON: So okay, I can't help, and
19	I know there's one minute to go, with all the hype on
20	AI coming around, I can't help but be disappointed in
21	that unconclusive result, given the fact that we're
22	not talking about that many findings. A hundred a
23	year in the industry maybe at this point. Well, maybe
24	more than that if you get plants in trouble.
25	But and the inspection reports are very
ļ	I

(202) 234-4433

	143
1	structured. So they're, you know, they're very
2	descriptive of what and matter of fact, they're
3	repetitive in a lot of ways.
4	So I can't help but be disappointed. I
5	guess if I read your blog six years ago I'd be
6	disappointed for six years, you know. I'm glad I
7	didn't. But I would like to.
8	Anyway, so James, do you see light? I
9	mean, I know you used the term machine language, and
10	we've been using the term AI all morning. And I'm
11	sure that there's some overlap Venn diagram you could
12	show me that says that there were almost the same
13	thing but not quite, or however you want to define it.
14	But do you see some application in the
15	future where, you know, you're not going to have to
16	have this cognitive trending people dedicated to it?
17	I mean, it seems like if you could take AI and say
18	please write me a research paper on umpty squat and I
19	want to turn it into my professor and I'll get an A on
20	it.
21	It seems like you should be able to take,
22	what is it, 90 plants times four inspection reports a
23	year, 360 inspections that are all pretty well
24	structured the same and say give me what the trends
25	are in there.
l	I

(202) 234-4433

1 It almost seems like that would be, from perspective from what we've heard, is no-2 AI an 3 brainer. It should be able to come out with some very 4 good stuff without stop words, without other things 5 that. Because again, the inspection manuals are very descriptive on you word a finding and how you word 6 7 cross-cutting issues and stuff like that. 8 So what's your outlook? I mean, what do 9 you think? MR. CHANG: Last year, last EPRI published 10 a technical report that has a document the industry 11 using machine learning for corrected action program. 12 It was, the purpose was use of the machine learning to 13 14 screen out these reports, the reports certainly then 15 have a safety implication. And that -- in that EPRI document, two 16 success case that it reduced the workload and come to 17 one million dollars a year, that kind of saving. 18 So 19 to me that's -- this morning we already talked -mentioned that to find the AI for safety system 20 control, that seems like that it's distant, away 21 future. 22 But the way the things seems that safety 23 24 important bucket focus on reducing the workload that

(audio interference), providing that the second layer

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

145 1 of the quality assurance, that I think it's very radical. 2 I want to go back 3 MEMBER HALNON: Okay. 4 to early teens or the 2018s when we were discussing, 5 the agency was discussing with the industry about substantive cross-cutting issues that took two or 6 7 three at that point hits on this cross-cutting issues. 8 And if you got hit with a "substantive cross-cutting 9 issue" it could cost millions of dollars to get out of it. 10 So even though you can save millions of 11 dollars in resource and other things, sorting through 12 the ten thousand corrective action documents you may 13 14 have, you could also be chasing ghosts to the point 15 where it's trying to fix a non-problem. But you're creating a problem by trying to fix it. 16 17 So there's got to be a check and balance there as we go forward too. And I know you saw that 18 19 with the stop words and other things. You saw the pitfalls that could get into it. And I guess if we 20 read your blog, we probably would have known that 21 22 already. nevertheless, this is 23 But just some 24 thoughts. I think that there's a application going forward with this. And I think that it's -- as the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	146
1	industry goes and does it with the corrective action
2	programs, the agency certainly could do it with this
3	smaller subset of findings that they have.
4	Because not very I mean, a site has
5	seven to ten thousand corrective action documents, and
6	we dealing with 100 findings. So it should be
7	relatively straightforward, at least in my mind here.
8	MR. CHANG: Yeah, you bring the topic back
9	to the regulate AI.
10	CHAIR BIER: Greg, one minor comment. You
11	need to speak up for the people in the back of the
12	room.
13	I had a few questions and comments that I
14	will try and make very quick. First of all, I'm
15	different than Greg. I'm usually a skeptic, but I'm
16	very excited about this application.
17	I mean, the methodology may not be there
18	yet. Maybe we have to have a different approach or
19	wait another couple of years 'til the software is
20	better or whatever. But I like it because it's an
21	example of that kind of offline type of advice where
22	it's not making a decision for anybody, it's just
23	surfacing information that then the decisionmaker can
24	look and take into account.
25	So I think that's very promising. I had
ļ	

(202) 234-4433

	147
1	a few questions. One is I know some of the software
2	packages kind of hoover up your data and send it back
3	to the mother ship. And I know that Azure doesn't, it
4	lets you sandbox and keep your own data for yourself
5	and not send it back to Google or Microsoft or
6	somebody.
7	Can you comment whether the other software
8	packages you thought about have that pitfall, or
9	they're all similar?
10	MR. CHANG: No, I don't. I haven't
11	thought about this question.
12	CHAIR BIER: I mean, NRC data is pretty
13	much mostly public anyway. But in other applications
14	that can be a big issue.
15	Second of all, which years of data did you
16	use?
17	MR. CHANG: This is the inspection
18	findings from 1998 to 2022.
19	CHAIR BIER: Okay, because one of the
20	issues is like the more the shorter the timeframe,
21	you have less data, but it's more relevant.
22	MR. CHANG: Yeah.
23	CHAIR BIER: So that might be another
24	parameter to play with, is what if you took only most
25	recent five years or something. Maybe you would get
ļ	I

(202) 234-4433

	148
1	better relevance.
2	The third question, and I don't know if
3	this is a question for you, it might actually be a
4	better question for Jesse. I know in the area of
5	health, like for reading mammograms, they have found
6	that like a doctor plus an AI does better than two
7	doctors. Because the AI sees different things than a
8	human would see, and then you can get better coverage
9	of what's going on.
10	But I'm very concerned about kind of the
11	computer equivalent of social loafing. Like, you know
12	the computer's going to look at it anyway, so after a
13	while the human gets lazy and stops paying attention
14	and just acts on the computer advice. So I'd be
15	curious if either you or Jesse have given that a lot
16	of thought yet.
17	MR. CHANG: Certainly that's my expertise,
18	human reliability. Yes, you put a human from this
19	first night to the second night as a PO checker
20	(phonetic) or monitors of positions. So that kind of
21	performance certainly that we have
22	(Simultaneous speaking.)
23	CHAIR BIER: Yeah. Jesse, if you want to
24	expand on that at all?
25	MR. SEYMOUR: I appreciate it. And so

(202) 234-4433

this is Jesse Seymour from the Human Factors Branch. One of the things I would build on James' point is when you have essentially, you know, the human acting in almost like a peer check type of role to something that AI is doing, there is a phenomena that arises and it has to do with the scrutability of the AI's process. So again, if two professionals look at a given product independently and they disagree, they can then confer, examine each other's thought process and figure out why there's a disagreement and perhaps take something away from that. With AI, it's a bit of a black box due to the nature of neural networks and so forth. And it may not be possible even for the people that have designed again the machine learning application or whatnot to fully understand what happened in between the input and the output being received. So again, it's a complex matter. And James, I'm not sure if you have anything, any more to that point. MR. HATHAWAY: This is Trey Hathaway, Accident Analysis Branch. I was going to address your first question about hoovering up data. CHAIR BIER: Oh, super.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

150 1 MR. HATHAWAY: The models used, there's essentially like ChatGPT paradigm that is kind of 2 3 closed off. And if you use it and it's free, they get 4 it if you have a local copy. You know, it's a little 5 differently. But these models, there are tons of these models out there. 6 7 These particular models you download. You essentially, you essentially get the weights and then 8 9 you're -- I'm getting told that I need to speak up. You essentially download the weights, and then you 10 have the model locally. And then you can start doing 11 things like fine-tuning it on your own language and 12 things like that to kind of help. 13 CHAIR BIER: So it does not phone home 14 15 with all your tons of data. 16 MR. HATHAWAY: That's my understanding, 17 yes. CHAIR BIER: Thank you. We have time for 18 19 one or two more quick questions or comments. MR. CHANG: To the member's earlier 20 question that, well, you asked that what we are trying 21

to take it from here to next step. Currently, that research, this future focus research that's give us a wayfinding to do this, it's our research results. And then it's meant to be a seed project.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

So what is taking the further step that our managers, one that they use always that use any 2 request. So that was Jason that anticipate this theme that he know that what's the benefit to bring in his -- our people, and that's his response. Each to reach out his manager. 6 Easier to research it, a system request to research it so that we can -- do the 8 additional study in this topic.

9 And James, just to circle MR. CARNEAL: 10 back to the other question for liming the year range from 2000 to probably last five. We've done some ML 11 12 studies in my group to try and categorize OpE reports, and that it has a major impact in the accuracy if we 13 14 only look at the last five years we get much better 15 results.

16 And I would imagine that for algorithms 17 for like this, we would see some similar results. Because the way that the inspection reports are being 18 19 generated now is much different than in the past. We had people writing free text back in the past and 20 through all reviews 21 qoinq these that were inconsistent. 22

Right now, since 2018, what appears in 23 24 that database is going to be what appears in the inspection report. Because they have the option to 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

7

	152
1	auto-generate that text. So we should be able to
2	discern a little bit better for the more recent
3	reports from the boiler-plate language versus the
4	actual meat of the inspection.
5	0: Just to address your range-of-date
6	issue, in trying to assess what you can do with the
7	technology, that's kind of what you're talking about
8	here. Aren't you liable to the 1998 data seems kind
9	of not relevant? It's been adjudicated, something's
10	been done.
11	Why wouldn't you look for a more active
12	data set where things people have not made decisions
13	hadn't been closed out? I'm not so sure how 25-year-
14	old data is going to tell you what you can use this
15	for as opposed to like the last five years. It's
16	active data that people have made decisions, and not
17	it's just whether the decisions were correct or not.
18	Not correct, but were as good as they could have been.
19	So I'm just getting too much data that's
20	not really if it's really old, it doesn't do you
21	much good in terms of getting to assessment. That's
22	my only point.
23	MR. CHANG: Yeah, that's the data
24	quantity, that was the concern at the very beginning
25	of this project because of what we know, that today's
Į	I

(202) 234-4433

	153
1	this algorithm needs a lot of data. And one
2	example that EPRI report I mentioned, that the example
3	was using 600,000 records for the correction action
4	open, together 80-something percentage with a
5	successful rate.
6	And so that was so before this project,
7	we know nothing, it was just take whatever we have in
8	the excel database solely as is. So now that's a
9	helpful input that we have funding for continue work.
10	That's something that we will take the recency into
11	consideration.
12	MR. HATHAWAY: Yes, this is Trey Hathaway.
13	I think just, sorry, I talk quietly. Sort of talking
14	to your point, the idea of a lot of these natural
15	language processing techniques is you're trying to
16	have a signal to noise.
17	So when you do clustering, you're applying
18	the model to the document and sort of getting features
19	that the model thinks are important to the documents.
20	Or recent documents, if it is kind of like now more
21	homogenized, I guess, in how you're developing it.
22	That signal to noise is going to be kind of consistent
23	across those documents.
24	When you start introducing older
25	documents, you might sort of change that signal to
I	I

(202) 234-4433

	154
1	noise to where it's not that just can't do it, it's
2	that you have to spend more effort in that cleaning
3	part of the text to sort of get out that text that's
4	not really relevant.
5	And that's kind of the challenge with
6	these. Eight percent of the work is just getting the
7	text in a way that you're getting rid of a lot of the
8	noise to kind of focus on what's important.
9	CHAIR BIER: We are going to need to end
10	the meeting now because we have another meeting in
11	this room over lunch. So thank you very much.
12	Hopefully some of the conversations can continue out
13	in the hall or whatever. But thank you for a good
14	morning.
15	(Whereupon, the above-entitled matter went
16	off the record at 12:03 p.m. and resumed at 1:06 p.m.)
17	CHAIR BIER: Okay. Now I think we should
18	be back in business. Can somebody online hear me?
19	MEMBER MARCH-LEUBA: Yes, I can hear you.
20	MEMBER DIMITRIJEVIC: Yes, we can hear
21	you, Vicki.
22	CHAIR BIER: All right, thank you. So,
23	Bruce, do you hear me, and can you say something so we
24	can check that we hear you? Ah.
25	MR. HALLBERT: Sure. I can
I	1

(202) 234-4433

	155
1	CHAIR BIER: Okay.
2	MR. HALLBERT: I can say whatever you
3	like. Can you hear me okay?
4	CHAIR BIER: I think we're good. Yes, we
5	hear.
6	MR. HALLBERT: Sounds good.
7	CHAIR BIER: And are you going to share
8	your screen for your own slides?
9	MR. HALLBERT: I am.
10	CHAIR BIER: Okay. Then I think we are
11	ready.
12	(Audio interference.)
13	MR. HALLBERT: Whoa.
14	CHAIR BIER: Oops.
15	(Audio interference)
16	MR. HALLBERT: Okay, we had a little bit
17	of an echo there, but I think we got that resolved at
18	the moment.
19	CHAIR BIER: I think it sounds much better
20	now.
21	MR. HALLBERT: Okay, great.
22	CHAIR BIER: So, on that I think you can
23	just go ahead and get started with your presentation
24	since we're running a few minutes late. May as well
25	get it going.
	I

(202) 234-4433

	156
1	MR. HALLBERT: Yes.
2	CHAIR BIER: Thank you, Bruce.
3	MR. HALLBERT: I'll do that. Thank you
4	very much. Thank you for the opportunity to
5	participate in this meeting.
6	I am Bruce Hallbert. I'm the national
7	technical director for the DOE-sponsored light water
8	reactor sustainability program. And with me this
9	after we have Craig Primer and Ahmad Al Rashdan from
10	our program who will also be talking a little bit
11	about our R&D activities. Especially related to
12	artificial intelligence machine learning.
13	I want to also recognize in the call we
14	have Ms. Alison Hahn, who is the federal program
15	manager for the LWRS program currently. And she is
16	also one of the office directors at the Department of
17	Energy.
18	I'd like to talk a little bit about the
19	goals and objectives of the LWRS program, as we call
20	it. The goal of the program is to enhance the safe,
21	efficient and economic performance of our nation's
22	nuclear fleet and to be able to extend their operating
23	lifetimes.
24	I'm picking up some feedback on my end.
25	I don't know if you're picking it up on your end as
ļ	

(202) 234-4433

	157
1	well? No, maybe not.
2	MEMBER DIMITRIJEVIC: Yes, we can hear the
3	feedback here too, so I don't know where it comes
4	from.
5	MR. HALLBERT: Okay. Sometimes it's from
6	when somebody has their microphone open. So as long
7	as everybody else is muted I shouldn't be picking up
8	feedback.
9	(Audio interference.)
10	MR. HALLBERT: So we achieve our
11	objectives by supporting the long-term operation of
12	existing nuclear power plants by deploying innovative
13	approaches to improve the economics and economic
14	competitiveness of light water reactors in the near-
15	term, as well as in the future energy markets. And
16	sustain the safety, improve the reliability and
17	enhanced economics. We go about this by conducting
18	research in the five focus areas that you see on the
19	bottom left of the presentation, which I'll be talking
20	more about in a moment.
21	In the bottom right graph of this slide
22	sort of brings it all together. Our focus is on
23	enhancing economic competitiveness by helping plants
24	to reduce their O&M costs and looking into
25	opportunities to diversify revenue. Especially for
I	I

(202) 234-4433

	158
1	plants that find themselves in electricity markets
2	where they may be under economic pressure from, you
3	know, subsidized renewables and inexpensive natural
4	gas.
5	On the right side we also are addressing
6	the long-term performance of materials, structures,
7	systems and components, as well as managing the aging
8	and technology obsolescence of some of the systems and
9	technologies that are used to operate nuclear power
10	plants today.
11	I'd like to talk about each of the five
12	R&D areas of the program as part of the overview. And
13	I'll also have some remarks on artificial intelligence
14	within the LWRS program that I think provides some of
15	the context for what you're going to hear from Craig
16	and Ahmad.
17	The first area of R&D is plant
18	modernization. The goal of our research in plant
19	modernization is to facilitate modernization at
20	operating nuclear power plants. We do so by
21	developing technology and modernization solutions that
22	address aging and obsolescence challenge. But they're
23	not just about replacing old technology with new
24	technology, they're about delivering a sustainable

business model that ensures continued safe and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

competitive operations. And, well, we can talk more about how we accomplish that.

3 But the focus is really on long-term 4 management of plant systems. And when we talk about 5 long-term operations we mean especially from 60 years And we also are addressing nuclear cost 6 and beyond. 7 competitiveness as nuclear power plants face cost 8 pressures from a lot of power generation sources. And 9 I'll talk a little bit about that in my forthcoming 10 slides.

And of course, one of the things that 11 we've really learned from the experiences of the 12 pandemic is that it's very important to address worker 13 14 attraction and retention. Some of the digital 15 technologies that we're working with through our 16 program, as well as with the industry, really are a 17 technology base that the new workforce is more familiar with, and also see as a part of their long-18 19 term career prospects.

An example of one of the ways that we're 20 working with the industry to modernize the fleet is a 21 project that DOE is sponsoring in cost sharing with 22 And that project is to replace the 23 Constellation. 24 reactor protection technologies at Limerick Generating, both Limerick Generating Stations, 25 in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

159

Pennsylvania.

1

this is a project, interestingly 2 And 3 enough, that really was brought to us by the Nuclear Regulatory Commission because of some of the new 4 5 approaches to licensing digital at digital instrumentation and controls, especially for safety 6 7 related types of applications. And so this is a 8 collaborative effort between Constellation, DOE and 9 the NRC.

And it does focus on the first-echelon 10 safety instrumentation systems. We've been doing this 11 12 now since around 2021. We're now in the, approaching the fourth year of R&D efforts towards the full 13 replacement of the systems. And one of the roles that 14 15 the Department of Energy, and the Idaho National Laboratory specifically play is supporting the human 16 17 factors aspect of that control room modification modernization project. 18

19 This slide highlights one of the recent activities that was conducted at INL in February of 20 Which was 21 this year. to support the dynamic preliminary system validation. And for that project, 22 or that part of the project, we had people from the 23 24 nuclear regulatory commission, from Constellation, from Westinghouse, other vendors and suppliers, as 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

160

	161
1	well as the Department of Energy, participate in those
2	studies. The results of those workshops were used as
3	part of the license amendment request, which was
4	supplied by Constellation to the NRC.
5	So this is one area where we collaborate
6	with the commercial nuclear power industry and the
7	NRC, and vendors and suppliers to address some of the
8	long-term instrumentation and modernization needs of
9	the industry. And I want to just provide that as an
10	example so you understand some of the ways that we
11	work within industry.
12	Specifically with respect to artificial
13	intelligence and machine learning, the topic of
14	today's meeting, we've been working with AI and ML
15	technologies for about the past four or five years.
16	And someone said to me recently, and I think it's
17	true, that artificial intelligence is like the new
18	math. We find it more and more within a lot of our
19	projects. And I'll try to characterize and summarize
20	that, but Craig and Ahmad will go in more detail.
21	We believe, well, these are relatively new
22	to the nuclear power industry. And similar to the
23	observations from the NRC Staff this morning that we
24	have, from participating in IAEA and other
25	international meetings, I do believe that the U.S. has
I	1

(202) 234-4433

leadership with respect to some of the initial efforts investigating AI and ML with nuclear power plant types of applications.

They show promise, especially for 5 automating manually performed activities. Many of the things that we do at nuclear power plants today are 6 very labor intensive. You'll hear about some of those 8 in our discussions. But we also see them as a way to 9 enhance monitoring.

10 So they look promising to us as a way to enhance efficiency. But I want to also advise that 11 what you're going to hear from us today really reflect 12 R&D efforts. So when we show, for example, 13 an 14 activity where we're collecting data or conducting a 15 test or something like that, at or with an operating 16 nuclear power plant, that's not an actual deployment.

17 The same thing is true, speaking on behalf of licensees and vendors. We're not doing that today, 18 19 we're really talking about our own R&D efforts, which may in fact be collaborative. But they really are 20 focusing on three things. 21 Reducing O&M costs, enhancing efficiency of the workforce, as well as 22 improving situational awareness. 23

24 Moving on to the second point on here, our efforts, as I mentioned, emphasize work processes 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

7

versus controls. So I know that some of the members of the ACRS have a background in instrumentation and controls, including control processes. We're not investigating control activities, like so, we're not looking in deploying AI to control systems so much as just automating work activities that are labor intensive.

It's very important. And we're taking a 8 9 very deliberate approach in our efforts with the vendors and suppliers and operating nuclear power 10 plants to ensure that AI aligns with the nuclear 11 Just like we have with every other 12 safety culture. activities. well, 13 part of our R&D As we are 14 reflecting on and are trying to comply all of our efforts with presidential directives 15 and other directives on AI that have been issued since 2019. 16 More recently by the President. 17

Ultimately we think that AI will enhance 18 19 worker performance at nuclear power plants. And I want to really emphasize that. We don't see AI as a 20 means to replace people, but a way 21 to enhance performance and help people do what they're best at. 22 And that's a reason why we have a strong 23 24 emphases and focus in our research on human factors absolutely 25 issues. We think it's vital to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

164 1 implementation and to achieve that. important that 2 It's workers trust automation, that they understand automation so that 3 4 there is transparency, understandability. And 5 ultimately facilitate usability. And hopefully that will come through in some of the remarks from Craig 6 7 and Ahmad today as well too. Now, I would be remiss if I didn't talk 8 9 about the other areas of the light water reactor 10 sustainability program, so the remainder of my presentation will be on the other activities that 11 we're dealing not so much on AI. So I don't know if 12 you have any questions so far, or if you'd like for me 13 14 to continue with the rest of the presentation. But 15 I'm open to any questions any time. 16 CHAIR BIER: Do we have questions so far 17 or do people want to finish up first? MEMBER KIRCHNER: Bruce, this is Walt 18 19 Kirchner. Just quickly, you emphasized that it's in the R&D phase now, but do you have a few collaborative 20 ventures where you're actually going to take it out of 21 the lab so to speak and into a power plant and look 22 for opportunities to harness this to either enhance 23 24 productivity or enhance monitoring or --So I would say, and 25 MR. HALLBERT: Yes.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 Craig will show this, but I think the answer to your 2 question really is in Craig's examples. Most of our 3 R&D is at and with operating nuclear power plants. Or 4 with their data.

5 Now, those are not deployments. And I want to emphasize that. Those are not implementations 6 7 but they're examples of how we want to ensure that our R&D activities could be used or could be transferred 8 9 to the private sector as part of the technology 10 transfer efforts. And that they do scale to real problems at real nuclear power plants. So hopefully 11 you'll see that. But yes, that is, most of our 12 research is out of the lab in many ways. 13

14MEMBER KIRCHNER: Thank you.15MR. HALLBERT: Okay, I'll continue on.16MEMBER BROWN: Hey --

17 MR. HALLBERT: Oh --

This is Charlie Brown. MEMBER BROWN: 18 19 In our earlier discussions we, in our earlier Yes. meeting, before noon, we had considerable discussions. 20 And you made the comment in this that you're focusing 21 on how you would improve operator or man, eating up a 22 lot of man hours, you know, stuff that takes a lot of 23 24 time. Intensive stuff but not necessarily focusing on 25 controls.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 And we had some discussion earlier today, or actually a lot of discussion earlier today, 2 in 3 terms of the, how we have to be careful about getting 4 AI into reactor trip, safeguard systems, plant control 5 systems, such that we have something modifying or 6 making decisions for humans or what have you when it 7 really doesn't add value. Stuff you're talking about 8 that seems to add value in terms of how you manage the 9 plant in its operations, but when you want to trip the 10 reactor you don't have to make a whole lot of decision. Your power is either too high or it's not. 11 Or you've either lost pumps or it's not. 12 It's not a, what I would call a real 13 14 machine learning or other deep thought process to 15 determine what you want to do in trying to embed this 16 new idea into those systems could be detrimental to 17 their ability to process it. Is that involved in your all's discussions in terms of how you, you know, rice 18 19 bowl offer, you know, put a bar around certain areas that it really is not going to add value. 20 I'm in favor of the real added value stuff 21 22 not --MR. HALLBERT: 23 Yes. 24 MEMBER BROWN: -- just doing it where it seems like a nice thing to do because everybody else 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

166

	167
1	is.
2	MR. HALLBERT: Yes. Yes, those are great
3	questions. And also good comments as well, Charlie.
4	One of the things that we, we do look at
5	as a part of our approach into where we might look at
6	a project to investigate an AI application is based
7	upon a business approach. So we often times have a
8	business case for, this is a very labor intensive
9	activity. A lot of people are involved in doing it.
10	It's not high value added from the perspective of the
11	utility and they wonder if there is a way to automate
12	some of this through analytics AI and machine
13	learning. So I think you'll see some examples of
14	that.
15	We're not focusing on anything that's
16	inside the control room especially. And we're not
17	approaching anything, we're not even looking at
18	minimum inventory, we're not looking at Class 1A
19	systems.
20	That's all outside of the scope of what
21	we're investigating today. We're looking at, what are
22	some of the ways that we can help plants to be more
23	efficient in terms of those vary labor centric types
24	of activities, but also provide information that's of
25	value to the people who are responsible for those
	I

(202) 234-4433

www.nealrgross.com

	168
1	functions at the plant. Hopefully that answers your
2	question.
3	MEMBER BROWN: No, that's a good answer.
4	I, it's not necessary, it doesn't have to be a good
5	answer. It doesn't, my opinion the right answer. It
6	looks like you're all going down the thoughtful path
7	that we did spend considerable amount of discussing
8	earlier in the day.
9	MR. HALLBERT: Yes.
10	MEMBER BROWN: So thank you for
11	MR. HALLBERT: Well
12	MEMBER BROWN: Thank you for your response
13	there.
14	MR. HALLBERT: Of course. And we'd
15	appreciate feedback. That's one thing that we are
16	always looking for is feedback on our approach and
17	projects. And we'll be providing with links and lots
18	of reports as well too.
19	In the interest of time I'm going to jump
20	through some of the rest of the slides so that Craig
21	and Ahmad actually can have the time that they deserve
22	to go into detail. You all have heard about probably,
23	unless there is some more questions right now.
24	You all have heard probably about some of
25	the activities related to hydrogen demonstration
ļ	I

(202) 234-4433

projects. A lot of that was initiated, and the foundational research was sponsored by the Light Water Reactor Sustainability Program.

4 We've been conducting research into 5 potential uses of operating a nuclear power plants to 6 produce hydrogen, extracting thermal energy, as well electricity 7 as just, you know, providing for electrolysis systems, modifications of electricity 8 9 transmissions. As well as doing studies dynamically with 10 operators in the human system simulation laboratory with mockups in a simulated environment in 11 operating nuclear power plant that includes something 12 like high temperature electrolysis in the balance of 13 14 plant, looking how operators would work with the 15 double demands of electricity generation and hydrogen 16 production. We've also been working on the economics of this. 17

I'm going to have to jump through my slides to stay on time, but I want to emphasize that the LWRS program, and other DOE offices, have been supporting these hydrogen demonstration projects. The first one, Nine Mile Point, is in operation. And it's using one and a quarter megawatt electrolysis, low temperature electrolysis unit only.

Davis-Besse and Prairie Island are set to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

2

3

www.nealrgross.com

169

	170
1	go into operations sometime next year. And those will
2	be also, one will be a low temperature electrolysis
3	plant, and one will be a high temperature electrolysis
4	plant which would be taking thermal energy from the
5	plant to run a 150 kilowatt high temperature
6	electrolysis unit. So it's a very small electrolysis
7	unit but it's demonstrated the means for an off take
8	of thermal energy from the plant.
9	Let's see. In terms of, I'd be a little
10	remise if I didn't mention also that the LWRS research
11	has been instrumental in supporting some of the
12	hydrogen hubs.
13	The President announced a few weeks ago in
14	Pennsylvania that there had been some hydrogen hubs
15	selected and awarded to initiate R&D into nuclear
16	power plants. Not just nuclear power plants, but
17	broader hydrogen hubs. But some of the involve
18	nuclear power plants producing a hydrogen at scale as
19	part of the hydrogen hubs. And we've been supplying
20	some of the information that we think enable some of
21	those, some of those efforts moving forward. And some
22	of the INL staff is also participating directly in
23	supporting those hubs.
24	I know I'm jumping through the slides a
25	bit here but I want to emphasize also that since its
I	

(202) 234-4433

	171
1	inception the LWRS program has been conducting
2	research into the long-term performance of key
3	materials for vital structure systems and components.
4	In fact, when we initiated this program together with
5	the Nuclear Regulatory Commission and the Electric
6	Power Research Institute, I would say the largest
7	emphasis was on materials performance. Specifically
8	in some of the areas that you see on this slide here.
9	And the emphasis in our materials research
10	is understand how materials perform and degrade in
11	this in-service environment over long periods of time.
12	By conducting research into mechanisms, degradation,
13	modeling and simulation tools to be able to model and
14	predict that, as well as to inform mitigation
15	strategies.
16	Now we're also conducting research into
17	risk-informed system analysis, which is research and
18	development to enhance economic efficiencies by
19	optimizing safety margins and minimizing
20	uncertainties. It involves a lot of R&D in
21	collaboration with Nuclear Regulatory Commission, as
22	well as with vendors and suppliers.
23	And I chose one example from the Risk-
24	informed Systems Analysis Research which is a project
25	that's looking into optimizing nuclear fuel
Į	I

(202) 234-4433

www.nealrgross.com

utilization. As you know, fuel costs represent about 20 percent of the annual operating expenses of a nuclear power plant. And we have a project that's using an AI optimization framework for designing reactor core configuration giving certain objectives and constraints.

7 The little simulation on the right side 8 here that I hope you can see, shows our simulation running through a number of iterations on nuclear fuel 9 10 movements and switching to optimize the amount of fuel that needs to be purchased during an outage, as well 11 as hopefully in the long-term the amount of fuel that 12 needs to be stored on the back-end of the process as 13 14 well too. It's a multi-physics based R&D project that uses a generic algorithm as the AI method 15 for 16 optimizing core loading.

17 Finally we're conducting research in physical security. And this is a topic that was 18 19 raised to us by the nuclear power industry where they really asked if they are opportunities for DOE to 20 share and leverage some of its own capabilities and 21 physical security and protection with the commercial 22 nuclear power industry. 23

I won't go into much information on that,but we do have a vibrant engagement activity with the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

	173
1	Nuclear Regulatory Commission and the Industry on
2	this, looking into advance security technologies,
3	risk-informed physical security and a number of event
4	security sensors and delayed technologies.
5	So, I'm trying to keep us on time. I just
6	want to summarize by saying, going back to the
7	original purpose of the LWRS program. Now we know
8	that the existing fleet operating today provides the
9	largest reliable source of carbon-free electricity in
10	the U.S.
11	Some of the industry initiatives, like
12	those that have been led by the Nuclear Energy
13	Institute, DMP, have achieved substantial improvements
14	and performance already. Energy, our nuclear energy
15	supports, our climate goals can also contribute to
16	deep decarbonization in other industries by providing
17	energy for products that help to reduce the carbon
18	footprint in some other industrial sectors.
19	A lot of the R&D activities that you'll
20	hear about today from our program involve
21	collaborations with Industry because we want to
22	facilitate progress in areas of vital common
23	interests. And by working together we can facilitated
24	that kind of progress. Especially with some of the
25	first movers in the industry who are interested in
I	I

(202) 234-4433

	174
1	moving forward in some area but maybe themselves are
2	not R&D organizations. So partnering with DOE makes
3	a lot of sense. We also have a lot of the risk for
4	some of the early R&D approaches.
5	So, I would also say that our research is
6	based on the highest priorities that we identified in
7	the commercial industry. And they're conducted on
8	timelines that support continued operation of the
9	existing fleet. And I'll be happy to answer any other
10	questions before we turn it over to Craig.
11	CHAIR BIER: Do people have other
12	questions for Bruce?
13	MR. HALLBERT: Thank you very much for
14	your time and the opportunity to talk to you today
15	about our research.
16	MR. PRIMER: First, before I get into this
17	slide, I just want to thank the NRC's engagement.
18	There was mention of an MOU and the ability to share
19	ideas under that agreement and provide technical
20	information. And that has allowed us to identify what
21	we think are meaningful research areas (audio
22	interference)
23	CHAIR BIER: Thank you for letting me
24	know. Thank you. We should be okay now.
25	(Simultaneously speaking.)
Į	I

(202) 234-4433

175 1 MEMBER REMPE: -- that is muting. It's my microphone because I'm the person, Joy Rempe, who is 2 3 logged into the meeting, but it is the room microphone 4 and please do not mute it because we're constantly 5 having to unmute it. Thank you. Okay. And thanks. 6 MR. PRIMER: So what 7 I was mentioning is, so we have some objectives and 8 missions that Department of Energy have established 9 for the program. And Bruce was able to share that 10 with you. Some other things that I'd like to mention 11 is, I heard discussion on what's AI versus machine 12 learning. And so, this is a general survey of ideas. 13 14 This is something AWS, Amazon Web Services, developed. 15 It's very similar to what you'll see as you're, some of the other products. 16 You have artificial intelligence, which is 17 the ability for machines to take different types of 18 19 inputs, make decisions using the Turing test. You

20 wouldn't know if it's a person or a machine, it just 21 does it. And it's able to process information and 22 make decisions.

The building blocks for that type of intelligence is machine learning and deep learning. Those are specialized bits of logic that is used to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

176 1 interrogate large data sets and infer or create some ideas around that information. 2 3 So machine learning is made up of several 4 different types. You'll hear the mention of national 5 language processing, computer vision, time series. These are all different types of data sets that are 6 7 available for algorithms to interrogate and determine 8 things. 9 Next is deep learning. So deep learning 10 is something that takes different types of machine learning algorithms and puts them together in unique 11 ways to solve some difficult issues. So you might 12 have natural language processing and computer vision 13 14 working together. And you'll see, and the mode will 15 examples of deep learning in (audio show some 16 interference) drive into that quite a bit. But the 17 deep learning is just a more complex set of algorithms that are used to solve a problem. 18 19 And then we also talked about generative So that, again, is something that's out there 20 AI. where AI is taking information and creating new things 21 Whether it's art or reports or things like 22 from it. that. 23 24 So we're working in the machine learning

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

and deep learning areas.

www.nealrgross.com

That's what we're focused

	177
1	on, that's what our research supports. We see
2	opportunities to work with Industry to develop
3	solutions or algorithms and then demonstrate the
4	usefulness. And then from the collaboration, develop
5	some type of reports and information that others,
6	Industry or vendors, can use to develop products.
7	And ultimately make the decision for this
8	specific station on how to use that. And where to use
9	that. It's the research organization, we're not part
10	of that decision making.
11	So, just to highlight what we'll be
12	talking about in the next several slides. We'll be
13	showing examples of machine learning for material
14	management or equipment monitoring and anomaly
15	detection, as well as applications, examples of
16	natural language process and computer vision in
17	applications within the plant.
18	Then last on the bottom there is the AI
19	and ML explainability. So one of the key elements of
20	deep learning, and some of those more complex
21	algorithms is, as it becomes more complex it's more
22	difficult to understand what it's doing and why the
23	results are correct. So developing a balance between
24	complexity and explainability is important, so we're
25	doing some work there.
	I

(202) 234-4433

1 I'll also mention before I go into the specifics, our group is made up of a group of human 2 3 factors, scientists and engineers, data scientists, 4 control system engineers, and finally a business group 5 that's looking at balancing. And Bruce mentioned the motivation. 6 7 So why would we put research effort into this versus another opportunity. 8 So there's a 9 business case element that's considered into what 10 we're working on. So I guess I'll just stop there. Any 11 questions on that general idea of these links of 12 artificial intelligence to machine learning and deep 13 14 learning? Okay. So the first example of machine learning 15 is in the passive system, or material management or 16 You have examples of machine 17 material monitoring. learning in looking at defects in concrete, defects in 18 19 piping. What you see here on the left is an 20 example of collaboration between EPRI, 21 Southwest Research Institute, several universities that created 22 slabs of concrete with known defects and curated that 23 24 as kind of a data set of sorts but a physical model with known defects that we could apply machine 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

learning technology to, to see if we could identify where those defects were.

Similarly on the right we had a effort 3 4 with, again, EPRI and Southwest Research Institution 5 on piping degradation where we coupled university work, University of Pittsburgh in this case, with the 6 7 research scientist to develop digital twins, what 8 piping should look like, compare it to the sensor data 9 and try to inform the operators, and what would likely be maintenance teams, of where there might be defects 10 within the piping. 11

And so we have those reports that are available and have been used on follow on projects to develop solutions that industry can use to help them in their different passive monitoring programs.

16 Next, moving to equipment monitoring. So 17 from passive equipment or passive components to active We have an example of work that we did 18 components. 19 with Industry creating a digital twin of circ water That's the bottom left portion of that, so 20 system. that's different components within the circ water 21 22 pump.

23 We worked with vendors to create the 24 software that created the, or developed the digital 25 twin for that. And then also worked with the utility

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

	180
1	to enhance the data that was available to monitor that
2	equipment. And through that effort we were able to
3	identify an approach that would monitor the circ water
4	system performance and provide input to the system
5	engineering and maintenance teams.
6	Ultimately the goal here is to develop the
7	basis for transitioning from predictive, or from
8	periodic maintenance to predictive maintenance where
9	we can identify the likelihood of a component failure
10	and advance warnings so that the component can be
11	taken out for maintenance in what would be a planned
12	appropriate time frame.
13	The lifecycle there that's indicated on
14	the top right shows that data analytics is the
15	beginning of that effort. We take the data, run it
16	through different types of fault signatures and
17	identify when we're starting to see some type of
18	faults.
19	And once we do that we inform the decision
20	to do that maintenance using different types of
21	predicative modeling and risk modeling to determine
22	the likelihood of some kind of failure before we could
23	get to the maintenance or if it would seem to be the
24	fault growing at a rate that may cause a problem
25	before the plant maintenance. So this modeling then
ļ	I

(202) 234-4433

5 MEMBER HALNON: Craig, this is Greg. The 6 artificial intelligence box there, the first blue one, 7 that's actually developing an ongoing model of the 8 instrument response and comparing it to expected or 9 how does it, I'm trying to find out, where is the 10 human displaced in this because we've been doing this 11 for years, obviously, for --

So, what this would do is MR. PRIMER: 12 this would complement your system engineers and this 13 14 would allow them to look at fault growth and then try 15 and determine remaining useful life on a component and 16 then plan the maintenance activities. And to that 17 point of the artificial intelligence on the second, the predictive modeling. 18

So again, using artificial intelligence is kind of a bracket for machine learning and that sort of thing. That's what that's describing, is this is where you apply different types of predictive models and try and determine when the likely remaining useful life is projecting the component to fail.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

MEMBER HALNON: And is that using

(202) 234-4433

25

1

2

3

4

182 1 operating history or operating experience outside of this plant itself specific to the instruments, or 2 3 whatever you're monitoring? 4 MR. PRIMER: So, and that's one of the, so 5 one of the points that was discussed earlier is that data availability, data quality, data completeness. 6 7 So all of these things are part of what you can 8 evaluate and determine the quality of your models. And so there's that confidence level of the data based 9 on historic, the amount of historic data that's 10 available to the system engineers and to the model. 11 And so that's a, I think an important 12 point, is how do you establish what that minimum 13 14 quality is, how do you identify in a way that people 15 can consistently apply that approach to different 16 models to get some type of information on its usefulness. 17 MEMBER HALNON: Okay. But it is using 18 19 outside information to some extent? I mean, expected you want to get as much information as you can --20 Right. 21 MR. PRIMER: -- it's a matter MEMBER HALNON: 22 of whether or not it's valid to that specific piece of 23 24 equipment or whatever your launching.

MR. PRIMER: There is a large group of

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	183
1	data that's available. So you have historic data, you
2	have real-time data that it's comparing signals
3	against what we know are those fault signatures. So
4	it's looking for that type of situation.
5	The other thing that it would look at is
6	the other types of components that are similar but not
7	necessarily that component
8	MEMBER HALNON: Okay.
9	MR. PRIMER: so they have different
10	RULs.
11	MEMBER HALNON: Is there any discussion
12	about a real-time data using multiple plans, multiple
13	fleets talking about, you know, rather than just use
14	your own plant, which may be one or two instruments,
15	we can use 25 or 30?
16	MR. PRIMER: Right. So that's something
17	maybe you might call federated learning. And that's
18	using data sets that are close but not specific to
19	that component. And so there's an approach that we've
20	worked through and have reports on and we think it's
21	useful. It moves you much further in the learning and
22	training lifecycle if you do it that way then starting
23	with the small set of data and trying to infer
24	information, so.
25	MEMBER HALNON: Okay. Thanks.

(202) 234-4433

184
CHAIR BIER: Can you talk a little bit
about how the machine learning interacts more with the
physic space model? Like, are you just estimating
parameter values in the physics model or is it
something more complex than that?
MR. PRIMER: Well, without a specific
example I'll just generalize. So depending on the
amount of information and where that, you know, what
sensor information is available you're able to infer
the status of that component.
So what we see is a lot of just, first
order physics models that are used around a component
to inform how the component is doing. You have other
information like current, you know, I'm looking at a
circ water system, so stator current and things like
that are information that's used. So different points
are used.
And in fact, maybe the next slide might
help with this. We're getting into a little bit of
the explainability here.
And so what you'll see here is, as part of
that circ water system effort, and I should have put
it in the original design of the output of the
information was something the data scientists really
loved. And it made complete sense to them. And they

(202) 234-4433

would say, what else do you need to something that was a little bit more information available to the system engineers. So the data is telling me something, but what does it mean. And there is these different elements.

So on the right side you'll see the dashboard that was developed as a result of the physics model. So the physics model is telling us things.

10 And you can use explainability matrix that are like the LIME and Shapley that tell you what's 11 your feature that's causing the algorithm to say that 12 you have a fault. And this, if you see in these red 13 14 bars across the bottom, they're telling you right now 15 that the high temperature to the, is above, and I 16 can't read that. It's the motor temperature is above 17 a certain temperature. And that's your number one feature that's telling you that you have a problem. 18 19 And so you have these specific, very measurable sensor inputs that tell you something. 20

But to complement that there is other information that a human would want to know. And so to the right of those bars are things that a system engineer would likely want to know.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So in the bottom right is seasonal

25

186 1 temperature. So summer time or is it winter time. It's high because it's hot outside or is this high 2 3 because I have a problem with the motor. 4 And then the one above that is the 5 prediction of what's likely to happen based on the 6 fault progression. So what that's looking at is, 7 based on the algorithm it's telling me that within the 8 next 24 hours you're likely to see a min or max, two 9 You know, one way or the other of that standards. 10 temperature change. So they can look at say, well, if we do nothing we'll likely be okay. Or if we do 11 nothing there may be a problem with us succeeding a 12 So that's pretty useful. 13 limit. 14 CHAIR BIER: Yes. For comparison with the 15 just before is presentation lunch, this also considered unsupervised learning or is the fact of 16 17 having the physics space model and all these constraints make it supervised? 18 19 MR. PRIMER: So --Look at you, you're --20 CHAIR BIER: MR. PRIMER: Yes, you're, this is perfect. 21 So the next slide, so examples of unsupervised versus 22 supervised, great presentation this morning on that. 23 24 I think there is benefits to both. I think they all complement each other and give you different types of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	187
1	information.
2	I think unsupervised methods give you
3	insight that you may not be thinking about. And it
4	just tells you what it sees, and that's very
5	interesting.
6	I think semi-supervised on what, in the
7	nuclear industry, even though there is a lot of data,
8	it's small data sets. So having supervise or semi-
9	supervise it tags or fingerprints certain indications
10	that tell it that this is a fault or not a fault,
11	helps it identify conditions.
12	And so we've run through and identified
13	several different approaches that can be useful in
14	both methods. And so I wouldn't say, I'd say they
15	both are good, but they both need to be, you need to
16	understand how to use them and how they complement
17	each other.
18	And then now back to the physics space.
19	So the physics is the way you compare things to
20	actual. So you have a physics model. You look at
21	what you think it should be and then you look at what
22	you actually got. And if there is a delta then you
23	start looking into why.
24	And sometimes these algorithms, like on
25	this, with this little orange thing here says, we
	I

(202) 234-4433

think it's water box valve. That's what we think that is. We've seen this is in the past, we think it's water box valve. We being the AI thinks. And then the system engineer will go, I agree or no there is something that this didn't take into account that I have looked into and so we'll just disposition this as a nothing, no action needed.

8 Now back to the unsupervised and 9 supervised detection. And I made the point earlier, 10 so data wrangling and data quality is huge. So if you don't have good data or you don't have complete data 11 sets that let you understand what's happening to the 12 component or systems, it's hard to understand what 13 14 that means. So the data quality and data completeness 15 are two areas that we've worked on as well.

Then in the bottom right you have a system 16 actually cluster information 17 that allows us to compared to the history of component failures. And on 18 19 the top right what we've done is we've actually used what we would call virtual sensors or additional 20 sensors that are outside of what the system normally 21 So in the case on the top right we were able to 22 uses. use ambient temperatures, historical temperatures 23 24 around that component that wasn't part of the system So it will combined information to one 25 sensing.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	189
1	algorithm that wasn't available to operators.
2	I'm going to jump to the next topic unless
3	there is questions on these points. Okay.
4	So now moving to some of the applications.
5	I mentioned the idea of machine learning having
6	different types of application, natural language
7	processing, time series, computer vision, and how do
8	we use those in ways that help us improve efficiency
9	and reliability on the business side. That's really
10	our balance in the research area is to leverage
11	technology.
12	Not necessarily in the short-term to
13	invent new technologies, but really validate the
14	technologies that are available now for use in the
15	nuclear industry. And that's part of our research
16	focus.
17	And you can see, we probably talked about
18	the EPRI report that was produced. That helped with
19	the natural language process. And that was actually
20	part of the output of research that started at the
21	national lab.
22	And partnered with EPRI and Industry to
23	develop open source software code that was used. I
24	think Jensen Hughes picked it up and they're using it
25	at Constellation for the corrective action screening.
I	

(202) 234-4433

	190
1	We've got Xcel Energy, I think I saw them on the line,
2	using some of the software that's been developed and
3	the collaboration with them as well.
4	So that natural language processing and
5	deep learning methods, like I mentioned, will go into
6	what that looks like with the mode. But it's a very
7	useful approach to analyze data and make some, infer
8	some information from it.
9	The, similarly, looking at the warehouse
10	stocks and looking at part failures and understanding
11	what pieces of parts were actually used, what's likely
12	to be needed in the future based on, you know, time
13	frames of the year, time frames of maintenance cycles,
14	whether that's months or years, it helps improve the
15	warehouse efficiency to make sure they have the right
16	parts on hand.
17	All of these have the report numbers
18	labeled there and we're able to share this
19	presentation. Their live links. And you can lick to
20	the OSTI, which is the DOE's library with these
21	reports. Or you can just, if you don't want to go
22	live link, you can get a PDF and type that in.
23	Lastly, I think this is lastly, the
24	computer vision. And Ahmad is going to jump in, very
25	deeply, on an example of the use of computer vision
ļ	

(202) 234-4433

	191
1	for fire watch and what we've done there.
2	Some other things that are useful for
3	computer vision is gauge reading. So we can send out
4	people to take pictures. And you can detect changes
5	from one picture to another.
6	So you could possibly use that for system
7	turnovers where you have a picture of something and
8	then the next person that comes in can look at the
9	change from when they were there last and say, oh,
10	these are the three things that have changed. This
11	computer vision will detect that, highlight that and
12	help them assist in the turn over to make sure that
13	it's identified and discussed.
14	Similarly we can use QR codes to help
15	align drones to go to the right places and capture
16	information.
17	And lastly, I'm going to kind of leave
18	this to Ahmad to jump deeply into the use of computer
19	vision for fire watch. And he'll be going through the
20	rest of the, I guess hour that we have left, on that
21	topic.
22	CHAIR BIER: Questions for Craig before we
23	transition?
24	MR. PRIMER: And I'll mention, this last
25	slide is just the same slide that Bruce presented in
I	I

(202) 234-4433

192 1 our guidelines and mission from the DOE and artificial intelligence developing 2 research we're and 3 demonstrating applications that can be used in non-4 safety, non-control type of things right now. 5 Anything that would move beyond that isn't research that's underway right now. 6 7 CHAIR BIER: Okay. And is Ahmad going to 8 use the same slide deck? MR. PRIMER: 9 I think Ahmad is going to 10 take control. Ahmad --DR. AL RASHDAN: Yes. 11 (Simultaneously speaking.) 12 You can share your slides. 13 CHAIR BIER: 14 MR. PRIMER: That's great. 15 CHAIR BIER: Okay. 16 DR. AL RASHDAN: Yes, I'm going to go ahead and --17 CHAIR BIER: Excellent. 18 19 DR. AL RASHDAN: -- share my slides. 20 CHAIR BIER: Thank you. You may need to stop sharing, Craig. 21 I can do that. 22 MR. PRIMER: Okay. CHAIR BIER: 23 Okay. 24 MR. PRIMER: Stop screen sharing. Let's 25 see if this works. I see your screen now, Ahmad.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

```
www.nealrgross.com
```

	193
1	DR. AL RASHDAN: Okay, great. And you can
2	hear me, right?
3	MR. PRIMER: Yes.
4	DR. AL RASHDAN: Okay, great. So thank
5	you so much, first of all, for the introduction, for
6	the invitation to present today. And, Craig, thank
7	you for your presentation and the segue into this
8	talk.
9	So my name is Ahmad Rashdan. I am Senior
10	R&D Scientist at Idaho National Laboratory and I lead
11	multiple efforts under the light water reactor
12	sustainability program, so I work very closely with
13	Craig and Bruce.
14	Now, the aim of this presentation is to
15	dig a bit deeper into one specific application of AI,
16	which is fire watch. And in this case it's computer
17	version application of AI.
18	So I will start with defining what is a
19	fire watch. And this is for people online that might
20	not be familiar with what a fire watch is. So fire
21	watch is an activity in which a person is assigned to
22	monitor for fire and report it as soon as it happens.
23	And in some cases even mitigate it.
24	And there are two different scenarios in
25	which a fire watch would be needed. The first one
I	I

(202) 234-4433

	194
1	would be if you have activity in the plant that has an
2	abnormal risk of fire. And a good example would be
3	welding or flame cutting. So you might need, in this
4	case, a person watching for the fire and taking action
5	in case a fire is started.
6	The second scenario is, if your fire
7	protection system is down because it's going through
8	a testing process or it's under maintenance. And
9	sometimes because it failed. And in this case we
10	would allocate some fire watch personnel in various
11	location in the plant to compensate for the lack of
12	the fire protection system until it's brought back up.
13	By the way, I can't see if someone raises
14	their hands, so feel free to interrupt me at any point
15	of time.
16	Okay. So the motivation behind this is
17	mostly when we engage the utilities a while ago we
18	were informed that in some nuclear power plants a fire
19	watch can cost in excessive of \$1 million per month.
20	Especially the ones that have issues with fire
21	protection system. They might have fire watch
22	allocated on daily basis in multiple locations in the
23	plant.
24	So in 2019 the Utility Service Alliance,
25	which is a consortium of multiple nuclear power
l	I

(202) 234-4433

	195
1	plants, I think they have like nine utility members
2	and 13 plants, or sites, submitted a proposal to a
3	grant called the Industry FOA. And that proposal had
4	in its scope to research and develop automation and
5	advanced remote monitoring technologies.
6	The aim was to improve the economics of
7	various processes in the plant without compromising
8	the safety. That proposal was awarded in 2019, and
9	it's still ongoing up to now, so we're in the final
10	year of that award. And the scope of the proposal
11	included the fire watch process. And means to
12	introduce automation into that process.
13	So our specific
14	CHAIR BIER: A couple
15	(Simultaneously speaking.)
16	CHAIR BIER: Excuse me.
17	DR. AL RASHDAN: Sorry.
18	CHAIR BIER: A couple of very
19	DR. AL RASHDAN: Sure.
20	CHAIR BIER: quick questions. Are you
21	working with a university partner on this or it's
22	pretty much being done at INL?
23	DR. AL RASHDAN: We are, we are working
24	with a university partner. Actually, the Utility
25	Service Alliance is also working with a university.
l	

(202) 234-4433

	196
1	And specifically, the scope for the university is to
2	custom built this fire cart, which I'll talk about in
3	a second.
4	CHAIR BIER: Oh, okay. And the other
5	question is, is it detecting, is it learning, is the
6	AI learning to detect fire from video of real world
7	fires or from simulated fires?
8	DR. AL RASHDAN: Real world fires. And
9	I'll also talk about that, but thank you so much for,
10	you're giving me a good segue to the next point, so
11	I'm glad you mentioned that.
12	So as part of the scope of the utility
13	service alliance they are, do research and develop and
14	evaluate a custom made fire cart. This fire cart has
15	a camera on it, but it also has other types of
16	sensors. Like infrared sensors, smoke detectors.
17	We're even looking at adding acoustic sensors.
18	And the idea here is that every one of
19	those sensors has its own fire detector. And then we
20	would fuse the sensors decisions to make a holistic
21	decision if there is a fire or not.
22	The topic of this presentation today is
23	one of those detectors, which is using a video stream,
24	or image, stream through camera, an optical camera,
25	and detecting the fire within that stream using
	I

(202) 234-4433

	197
1	machinery. So we looked at three different options
2	when it comes to the methodology to detect fire in an
3	image or a video.
4	The first one is called imagine
5	processing. And this is the classical way of doing
6	this. In the traditional way of detecting any object,
7	like fire in an image, you would need to engineer what
8	we call the feature engine. Or feature extractor.
9	What that does is that in the case of fire
10	you would decide what are the specific features of
11	fire that you're interested in. For example, in a
12	fire you might be looking for orange pixels that are
13	adjacent by maybe red-ish pixels. That a feature you
14	can engineer yourself and force it on the detector.
15	And then you build a decision-making algorithm that
16	detects all those features and decides, is this
17	considered the fire, does this look like a fire or
18	not.
19	The good thing about this approach is that
20	you don't need data to train an algorithm. You design
21	the feature extraction engines and you assume they are
22	correct and you use them as is. The problem with this
23	is that your model is, or your results are as good as
24	your future engineering is. So if your future

engineering is missing some feature of the object you

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	198
1	are trying to detect, your results are going to
2	reflect that.
3	The second approach, which is special
4	machine learning, is automating that process. So when
5	we use neural networks or machine learning, we ask the
6	machine to find what features are important. So we
7	don't design the features we're looking for.
8	We basically load thousands and thousands
9	of different features into our model, and we feed in
10	a lot of data that duplicates fire and no fire. And
11	we level this data and we tell the machine, this is
12	how fire looks like, what are the features that are
13	important to detect to catch fires.
14	So the benefit here is that we don't have
15	to engineer this manually, so we get much more robust
16	features. The disadvantage is that you need a lot of
17	data. In this case, image data to train an algorithm
18	on.
19	The last approach is spatial and temporal.
20	So as the name implies, it's the same process as I
21	just mentioned to you with the images, however, we add
22	a different dimension in this case, which is the time
23	aspect. So we're not only comparing features within
24	an image, we're comparing features between one image
25	or one frame and the next one. And that's the
I	I

(202) 234-4433

temporal aspect into it.

1

2 that adds more features for So the algorithm to detect. 3 However, the challenge there 4 was, we need now more video type of data. So we need 5 temporal data to feed in to be able to train. And the challenge there is, we don't have as many video data 6 7 sets as we do as with images. So we have much more 8 sparsity there, and that impacts the algorithm 9 significantly from a performance perspective.

10 So we ended up going with the middle 11 approach. So spatial machine learning. And that's 12 the scope of my presentation today.

So I'm going to talk to you about how we 13 14 created those models. I'm going to start with a data creation, collection and preparation. And then from 15 there the model architectures we considered. And I'll 16 17 explain to you what I mean by that. And then I'll show you some performance results. And finally, some 18 19 news considerations when we talk about using AI for an application like this one. 20

I'll stop here. Any questions before I proceed? Okay. Again, feel free to interrupt me at any point of time.

All right. So let's start with the data collection. So we looked at three different generic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

3 Images, Yahoo has also a repository of images. Those 4 are usually large, or extremely large, sets of images 5 that are often leveled.

6 So what we did in this case, we had to 7 manually sort through those different labels and find 8 what labels out of these would actually represent 9 fire. So I'm showing you here to the right two 10 different boxes. And we've seen something similar to 11 this in the morning, so I don't know if I need to 12 explain it much.

But what this is telling you is that for 13 14 fire labels those are kind of the themes of flavors we 15 found in the data sets. So very often when we talk about vehicles in this context it was related to fire, 16 17 however, vehicle was also used very often, actually much more often to be, to labeled non-fires, so that 18 19 would not be a good label. Versus if we talk about fire engine usually those images labeled with fire 20 engine would have a fire in them so we could label 21 this as fire. 22

23 So you can imagine the process of trying 24 to sort through those data sets to figure out, what is 25 fire, what is not fire, is very time intensive and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

	201
1	demanding. So we also looked at targeted sources.
2	So we researched into other research that
3	tried to build something similar to what we tried to
4	do here. We find a data set that was complainant
5	called FiSmo, for fire and smoke, in which people
6	basically extracted some images and videos from
7	sources like these and labeled them with fire or
8	smoke. So they made things easier for us. However,
9	the size of those data sets were not big enough for
10	us, so we resorted to a different approach. And this
11	is an interesting approach.
12	So we know there are out there, there are
13	some models that can classify imagines. ImageNet, for
14	example, is one of them. But a good example that you
15	might be able to use on a daily basis is that if you
16	open your phone and you go to your gallery on your
17	phone you can actually search through your images for
18	a certain object.
19	So you can type, at least I have this on
20	my phone. It depends on what phone model you have.
21	But I can type, if I'm looking through my images or my
22	gallery for a cat, it will show me images of cats.
23	However, in my case when I tried this capability is
24	not very accurate. So you might end up with a lot of
25	images that are not cat and it will miss some images
	1

(202) 234-4433

	202
1	that are cats.
2	So my point here is, that there are models
3	out there that has generic classes, like the one I'm
4	showing you here. And out of those generic classes we
5	can find ones that relate to fire. And those are the
6	ones actually I'm showing. So candle, canon, fire
7	screen. All those are generic classes in those models
8	that we can, that can help us zoom in on some fire
9	images that we can use.
10	So using those three different approaches
11	we can capture, we can basically expand on our data
12	sets. Because the key element in machine learning is
13	your data. As Craig mentioned earlier.
14	The one aspect of the data that you have
15	is that you have to ensure that your data is diverse
16	enough for the application you're targeting. So in
17	our case we have to look at all those different
18	parameters environment, the detection of space. What
19	kind of objects exist in those images, what is the
20	light source, are they dark, are they very well lit.
21	And then if it's a video, how long it is, is it for.
22	And then also, spatial aspect of the resolution, like
23	the resolution, and if the fire is actually steady or
24	moving and so on.
25	So we went through our data and looked at
ļ	I

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

those parameters and made sure that those parameters are well represented. Now one thing we needed to be careful about is bias in our data.

So for example, if we see that most of our 4 5 images has fire in the middle of the image, that would teach the machine to focus on the middle of the image 6 7 when it's trained. So in that case we would need to 8 make sure that the fire is not, is basically spatially 9 distributed across our data set. And we'll have maybe to discard some images with fire in the middle to kind 10 of balance our data sets because if you have a bias in 11 your data you'll end up with a bias in your models. 12

All right. So now that we have identified the data we had to clean it up. Prepare it basically. And the first thing we had to do is, just like mentioned to you now, there are some biases in terms of the fire location, but there are also some bias associated with the different objects you have in the images.

As an example, I showed you earlier, and I can go back, that fire and fire fighter were one of, were two of the most common labels for example for fire. So what this means is that every time I see fire there is a good chance I'm going to see a fire fighter. The problem with this is that if I see a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

www.nealrgross.com

203

fire fighter I might label the video as, the image as fire even though there might not be fire because that correlation causes a bias. And the machine starts correlating firemen with fire even though firemen does not mean there is a fire always. So that's an example of bias in objects.

7 So what we have to do is we intentionally 8 cropped some of the images or blurred parts of the 9 images sometimes to, again, introduce that balance I 10 was telling you about. That's kind of part of their 11 data preparation. And as I said, that's very, very 12 critical when you're trying to build a model to remove 13 the bias. It's very critical.

And then we were talking about videos because in some cases, even though we're using images, we had some video data sets. And we realized that there is value in using those videos.

So we had to break them into scenes and 18 19 make sure that the images that we're capturing from the video do not look a lot alike. Because then we're 20 feeding basically the same information. So we had to 21 implement some temporal separation. And that was done 22 by incorporating like a scene detector that identifies 23 24 that the scene actually changed before it can take a picture out from the video. Or an image out of the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

video.

1

2

3

4

5

6

7

And then what we did, we actually intentionally biased our data sets towards fire. So usually when you're trying to train you would have a same number of data sets to represent the class you're interested in, which is fire, and the same number of images for no fire.

8 In our case we wanted more fire images 9 than no fire. Because we wanted to bias the model to So if you're not sure, if the 10 actually detect fire. model is not sure, we wanted to detect fire. To flag 11 Because the fact that if you miss a fire 12 it as fire. that's much more severe than if you detect the false 13 14 fire.

So we introduced that bias in our data sets. And I'm showing here the results. You can see that there is much more fire images than we have normal images.

And then what we do in machine learning we break our data sets into three subsets. One is called training, which is what the machine learns from and is taught based on. And then the machine uses a data set called validation, which is internally, as it's training, it benchmarks its performance against the validation data set. And then we break a part a third

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	206
1	data set called testing, or testing data sets. And
2	that data set is usually independent from the training
3	and validation. So it's data that the model has never
4	seen. And that's the data we use to generate
5	performance metrics and evaluate the performance of
6	our model.
7	One thing I should mention here, we also
8	did the same thing for smoke, even though it's not the
9	scope of this presentation specifically. But as you
10	can see there was much less smoke images that we found
11	than we did for fire.
12	Any questions so far?
13	MEMBER HALNON: Yes, this is Greg. I got
14	a couple.
15	DR. AL RASHDAN: Sure. Go ahead.
16	MEMBER HALNON: First of all, you just
17	mentioned that the false, getting a false one is
18	better than missing. And I guess for a little while
19	that also builds in a level of complacency to the
20	folks that are getting this data that eventually could
21	cause just as bad of problems. So just a thought
22	there.
23	But where's the, what kind of feedback
24	loop is there so that if there is a fault that that
25	model knew that was false, don't do that again. How
ļ	I

(202) 234-4433

	207
1	is that done?
2	DR. AL RASHDAN: So this is a great
3	question, Greg. I'm going to come to this in a few
4	minutes. I have a slide on this. Which is over here.
5	MEMBER HALNON: Okay. If you're coming to
6	it
7	DR. AL RASHDAN: But I'll come to that
8	MEMBER HALNON: later that's fine, I'll
9	wait.
10	DR. AL RASHDAN: Okay.
11	MEMBER HALNON: The other point I'll make,
12	just since I got the mic is, you know, when you get
13	through all this, obviously we're going to get success
14	on being able to detect fire.
15	DR. AL RASHDAN: Correct. We will.
16	MEMBER HALNON: But that misses one of the
17	most important part of fire prevention is the
18	prevention piece. Which people do. Fire watch as
19	people, we stop somebody from coming into an area that
20	is vulnerable to a fire. They'll stop somebody before
21	they even start welding. Or they even start a fire,
22	you know, heat producing or spark producing work.
23	So I guess that's not required by
24	regulations, so we're sticking simply to what a
25	regulation is required here, but I think we're missing
	I

(202) 234-4433

	208
1	another piece of this. So I'll be interested, maybe
2	down the road, if you talk through that. You don't
3	need to do it now, but maybe in our summary we can
4	talk about this other aspect
5	DR. AL RASHDAN: Great question.
6	MEMBER HALNON: of prevention.
7	DR. AL RASHDAN: Great question. So the
8	aim of this presentation, and this research, is on the
9	technology development and the evaluation of the
10	technology up to the point where it gets to the
11	deployment. And then once we have something ready for
12	deployment, or close to ready, or evaluate it, it's on
13	the, the plan here is on the utilities to take it from
14	there and determine all the procedures, whether
15	they're administrative or technical based, that need
16	to be taken care of to make sure this is compliant
17	with the policies they have in the plant.
18	But our role here is R&D and evaluation.
19	And then we do the demonstration, and then the
20	utilities would take it from there and kind of custom
21	fit it in their process.
22	MEMBER HALNON: Okay.
23	DR. AL RASHDAN: So
24	MEMBER HALNON: So we'll have to do some
25	assessment on whether or not that prevent piece needs
ļ	I

(202) 234-4433

	209
1	to be compensated some other way or if it's even
2	necessary.
3	DR. AL RASHDAN: Correct.
4	MEMBER HALNON: Got it. Okay, thanks.
5	CHAIR BIER: Okay. We have a very quick
6	question from Staff, if that's okay?
7	DR. AL RASHDAN: Sure.
8	MS. GOETZ: Hey, Ahmad, I'm Sue Goetz.
9	I'm a project manager here at the Nuclear Regulatory
10	Commission. I actually manage one of the reactors at
11	Constellation, but let's not name them. I don't want
12	to invite scrutiny.
13	A couple of weeks ago we had a reactor
14	trip, and then when the licensee went in to
15	investigate what we saw was a degraded wire where the
16	sheet had completed melted and you can see the
17	internals, right, and copper. And, you know, you
18	could see it was pretty hot, it melted everything, but
19	there was no fire.
20	So my question to you is, how would, you
21	know, this smart thing here would have, how would that
22	have handled, how would fire watch have handled that,
23	would the reactor still have tripped, would we have
24	tripped sooner or is there any application at all?
25	DR. AL RASHDAN: So, because we were
	I

(202) 234-4433

focused on fire watch explicitly we haven't looked at other scenarios. And I'm assuming that scenario did not have a fire watch, it's just a normal wire that is in an area that's not monitored for, with a fire watch, and the wire melted.

However, if you think about it, if you 6 7 deploy something like this on a broader scale, and 8 again, even though this wasn't the target, I'm just 9 going out of my comfort zone here, we do have a smoke If that event caused some smoke to be 10 detector. generated, that could have been flagged. 11 If we do implement a smoke detector. However, if there was no 12 fire, even though it melted and it deploys something 13 14 like this, the fire detector would not catch it, the smoke detector might. Depending on the, how heavy or 15 how thick the smoke was. 16

17 CHAIR BIER: So Ι have а few more questions. Oh yes. I have a few more questions about 18 19 sort of adversarial testing of your results. I don't know if this is a good time to share them or if I 20 should wait till later in the presentation? 21 If you want to ask it --22 DR. AL RASHDAN: CHAIR BIER: 23 Okay. 24 DR. AL RASHDAN: -- I can tell you if it's 25 coming or not.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

5

	211
1	CHAIR BIER: Yes. That's fine.
2	DR. AL RASHDAN: And if not I'll answer it
3	now.
4	CHAIR BIER: So, in a kind of project like
5	this there is obviously a big incentive to show that,
6	yes, you successfully detect fires. But I think you
7	also need to look at kind of reverse engineering, how
8	fragile that is.
9	So what happens if you change three pixels
10	in a photograph and turn them black? What happens if
11	you change five or ten percent of the pixels and turn
12	them black? A human would probably still recognize
13	that as a fire, the AI may not.
14	What happens if you have a, say a gas fire
15	that burns blue, it may be very scarce in your data
16	set but that a human would still recognize as a fire?
17	And what about a watercolor painting of a
18	fire? I mean, hyper-realistic fire hopefully it would
19	recognize, but may not a sketch or, you know, it might
20	recognize a sketch as a fire even though it shouldn't.
21	And part of what kind of encouraged me to
22	think about that is, you know, in past presentations
23	I've heard, I heard a talk by a psychologist about
24	learning to recognize animals. Like, is it a cat or
25	a dog, like in your picture. And it did a great job.
I	I

(202) 234-4433

	212
1	They thought like, oh, this is doing excellent.
2	And it took a while before they figured
3	out that it wasn't looking at the shape of the image
4	it was looking at the texture. So if they had a cat
5	with elephant textured skin it would call it an
6	elephant.
7	And so I think you need to be a little
8	creative. I don't know whether you've done that or
9	not, but about challenging the results to see how easy
10	it is to break what you build. So just a
11	DR. AL RASHDAN: That is a great yes,
12	go ahead.
13	MEMBER KIRCHNER: You know, in the thermal
14	hydraulics business and building And you've got an
15	expert here in Josh Kaiser on this topic in building
16	things like CHF models and such.
17	You know, they do just what you did,
18	Ahmad, you know, they will call out, or the applicant
19	will call out a you've got the training set and then
20	you've got a test set.
21	I think what you are suggesting Vicki is
22	that the test set often has to be not from the same
23	CHAIR BIER: Yes.
24	MEMBER KIRCHNER: Often the training set
25	and the validation set comes from the same data, but
ļ	I

(202) 234-4433

```
www.nealrgross.com
```

	213
1	I'm thinking in a case like this where you are going
2	beyond something as simplistic as thermal hydraulic
3	thermal couple results to a very complicated challenge
4	that you have taken on that the test data maybe has to
5	come from something entirely different.
6	CHAIR BIER: Yes.
7	MEMBER KIRCHNER: Just to look for the
8	elephant in the room, your metaphor.
9	CHAIR BIER: Thank you.
10	DR. AL RASHDAN: Very valid points. So to
11	the first point I think that was mentioned, so, for
12	example, there was a mention of the blue fire, that
13	did come up and our data set is as diverse as we can
14	identify all those scenarios.
15	I mean there is always We try to figure
16	out all the different scenarios that should be in our
17	dataset, however, if anyone tells you AI or any AI
18	model can perform 100 percent perfectly and get you
19	the right results on 100 percent of the time I think
20	that would be a very inaccurate statement.
21	That's why as we started this process we
22	started with a small dataset and we keep exploring
23	every time we test this and find some deficiency. I
24	will talk about the testing part and the validation
25	part later on, which is the other point that you

(202) 234-4433

	214
1	mentioned, which is detecting fire for the wrong
2	reason, for example.
3	But every time we saw that we realized
4	that there was a deficiency in the model and we would
5	go an look at the data and capture more data. Because
6	as I will explain to you in a minute, in terms of the
7	models we did a lot of research in that aspect and we
8	have multiple models that are actually going together
9	to get that fire decision.
10	Now with respect to the other question
11	that was brought up, so you are right we do break the
12	testing datasets apart. So the testing dataset is
13	something that is taken out at the beginning before we
14	do any training or validation of the models.
15	However, when we are designing the testing
16	dataset we do keep in mind that we need to accommodate
17	for all those variations, so we have to make sure our
18	testing dataset is diverse enough to represent the
19	sample that was used for the training.
20	One of the issues you see with AI
21	sometimes is when your testing dataset is not properly
22	designed you might get a validation result that is
23	very promising, and then, when you actually test it,
24	it doesn't perform very well.
25	You might even test it very well and then
	I

(202) 234-4433

	215
1	we take I the actual environment and test it again and
2	it doesn't perform as well. Usually it's because the
3	data is not properly designed.
4	So if you make sure that there is enough
5	diversity in your testing dataset you should get as
6	close as possible to the real performance scenario.
7	To elaborate more I will come to the explainability
8	part later on which will answer the other part of the
9	question about the misdetection and how to make sure,
10	how do we improve those models, how do we go back and
11	improve them, how do we know there is something wrong.
12	I will briefly touch on that in one of the
13	slides going forward. Any other questions or
14	comments?
15	MEMBER KIRCHNER: Well, Ahmad, this would
16	prejudice what you're doing, but have you thought of
17	constructing artificial fire models?
18	DR. AL RASHDAN: Well we have
19	MEMBER KIRCHNER: Because that's to either
20	populate your algorithm and teach it and/or to
21	validate it?
22	DR. AL RASHDAN: So on a different effort,
23	I think Craig mentioned this, we were working on gauge
24	reading and in that effort we did create hypothetical
25	gauges in addition to the real ones.
	I

(202) 234-4433

	216
1	The reason we did that is because we
2	didn't have enough real data. In this case we did
3	have much more than what we need. We were able, as I
4	will show you later on, to get using real images of
5	fire to get really good performance.
6	The conclusion I got from that effort,
7	which would apply here, is that if you have a lot of
8	hypothetical or synthetic data and you start using it
9	in your training dataset those synthetic gauges are
10	not going to look exactly like a real one and in real
11	life you are not going to see those.
12	So what they are doing is actually they
13	are confusing model. They are not necessarily
14	improving performance. So it depends on how good you
15	can make those look.
16	If they look really realistic then you
17	might help the model, but if they don't it's almost
18	like you are adding it on, it's now you're telling it
19	that this is also, for example, fire and it's
20	synthetic fire when in reality it's not going to see
21	it, it's not going to look like that, so it makes
22	things worse, not better, sometimes.
23	So in this case we didn't need it because
24	we had a lot of data is the short answer. Any other
25	questions?
I	I

(202) 234-4433

	217
1	(No response.)
2	DR. AL RASHDAN: This is a great
3	discussion. Thank you. This makes it much easier for
4	me to go with the presentation.
5	All right. So now we talked about the
6	data, let's talk about the model. What I am showing
7	you here is the layout of a type of neurometrics
8	called convolutional neural networks.
9	I am going to call it CNN going forward.
10	So CNNs are very common when it comes to any type of
11	image detection or a classification or segmentation,
12	so they are very common in the image processing field
13	of AI.
14	The way they work is they are If you
15	remember I told you, I was talking about features
16	earlier and I mentioned to you that how in the past we
17	used to design our own features and say let's look for
18	orange pixels, that's our indicators, but now the
19	machine does that.
20	The way it does it is that it actually
21	generates hundreds or thousands of different filter,
22	like the one I am showing you here, and then it runs
23	through all of them and, based on the data that you
24	give it, it will decide which out of those filters is
25	the most useful for detection of fire.
I	

(202) 234-4433

	218
1	When I say a filter, if you look at this,
2	this would be as an example a sliding window that
3	would go over this image and it will have weights in
4	every one of those boxes, so every time this goes on
5	one part of the image it will mask nine pixels and it
6	has weights and those weights are multiplied by the
7	pixels and those weights are tunable, so they are not
8	fixed, and the model actually tunes them when it is
9	trying to figure out what features it is trying to
10	catch.
11	They have different sizes of filters, so
12	some of them are like this, some of them are bigger,
13	and some of them are actually smaller. You can have
14	maybe even a smaller than that.
15	Now one of the characteristics of those
16	filters is that they linears. Those are linear
17	multipliers by the pixels. So we usually add
18	something called an RELU, which that's the non-linear
19	aspect, so this is a function that has a non-linear
20	shape and that enables the models to become also non-
21	linear, gives it much more dimensions and power.
22	As we do that we are getting all those
23	features and what we are going to end up with, because
24	we have sometimes hundreds of these, we are going to
25	have to deduce the dimensionality of the problem and
ļ	I

(202) 234-4433

	219
1	we do something called max pooling.
2	A simple way I can describe it as just
3	finding the max through a certain number of pixels and
4	using that as a representative of the whole number and
5	then we repeat the process.
6	So this is called one layer, for example.
7	We repeat the process again and again and again. Then
8	towards the end we have some sort of weights that
9	coming from all those features, coming to this end,
10	those were to start basically giving importance to
11	certain features over others.
12	That usually has a Then you have a
13	classifier. The way it works is when I am training
14	this model I know that sometimes, for example, there
15	is a CAT here and I am labeling the image as CAT and
16	if it doesn't detect a CAT it will just start
17	adjusting the weights and it has an optimization
18	algorithm in it to try to get us to CAT and as you add
19	more and more images of CATs and more and more images
20	of non-CATs the weights are going to get adjusted
21	further and further till the moment you have a model
22	that is trained.
23	That's how in a nutshell how this whole
24	thing works. Now we have looked at literature, there
25	are nine models I am listing here that has this number
	I

(202) 234-4433

	220
1	of layers. So you see how many of these.
2	So this has 815 layers. I am showing here
3	only a couple. They have this many tunable parameters
4	in this case, so very wide and deep models. That's we
5	call this deep learning, because they is a lot of
6	tunable parameters.
7	When we feed, again, those pictures we are
8	basically tuning those parameters to get us the right
9	weights to try to recognize what fires are. Now you
10	see the capability why this is much more powerful than
11	the way we used to do it in the past where we used to
12	design those features manually, because we have lots
13	of, we have thousands and thousands if not millions of
14	features that can be extracted from this.
15	Now what we do is Okay, so those models
16	exist out there. They are actually in literature and
17	some of them are out there in open sources.
18	CHAIR BIER: Excuse me.
19	DR. AL RASHDAN: Go ahead.
20	CHAIR BIER: We lost your video for some
21	reason.
22	DR. AL RASHDAN: Is it still lost?
23	CHAIR BIER: Oh, there we go. I think
24	it's fixed.
25	DR. AL RASHDAN: Okay.
I	1

(202) 234-4433

	221
1	CHAIR BIER: It was a goof on my end.
2	DR. AL RASHDAN: Okay. But audio is fine,
3	right, you heard everything I just said?
4	CHAIR BIER: Yes.
5	DR. AL RASHDAN: Okay. So those models
6	are available in literature, as I was saying, and some
7	of them open source, you can use them. They have been
8	trained to do general classification.
9	Like the one I showed you earlier, if you
10	recall I showed you one model here where I said there
11	are classes like Candle, Canon, Fire (phonetic), those
12	are pre-determined classes that are part of this
13	model.
14	So they were built for various reasons and
15	they have certain classes in them. The good thing
16	about those models is that they have already been
17	optimized for various forms of image detection.
18	So what we can do, we are interested in
19	thermal fire. I don't have to create a whole model
20	from scratch and design the whole thing from scratch.
21	I can actually go to those models, take one of them,
22	and start unlocking part of it.
23	So this model has already weights and it
24	has classes, it can classify certain objects, maybe
25	not fire, but the other objects. So I can say, okay,
I	I

(202) 234-4433

	222
1	I know that the left side of my neuro network is
2	usually focused on extraction of features while the
3	right side is usually focused on selection of features
4	of the features that matter for that object.
5	So I can start unlocking part of the
6	model, and when I say "unlocking" that means I can re-
7	train parts of the model and leave the other part
8	frozen.
9	So the feature extraction part I can keep
10	it maybe frozen because those models have been
11	optimized to get good features, but I can unlock the
12	feature selection side and the weighing at the end and
13	the classification of fire/no-fire towards them.
14	Now one thing I should mention is we do
15	need to add a layer on top of whatever model we get
16	here for the actual selection of fire, so it's just
17	something like what I have shown you here towards the
18	end.
19	Our reason of telling you this is we
20	wanted to test all the scenarios, all those models,
21	for detection of fire, but we wanted also to figure
22	out how much do I need to unlock out of those models
23	to get me good results.
24	So what I just described to you know is
25	called transfer learning, because we have a model that
I	I

(202) 234-4433

	223
1	was trained to detect some features or some objects
2	and we are using it now to detect fire, and that's
3	transfer learning.
4	So what we did is those are the nine
5	models I was showing you earlier that exist and we
6	started looking at the percentages of the model that
7	we are unlocking.
8	We went all the way down from we're not
9	unlocking anything and we're just adding a layer
10	towards the end for fire classification to unlocking
11	the whole thing and re-training the whole model.
12	We are using the same architecture that is
13	presented previously but we are looking the whole
14	parameter. We can re-tune all the weights of the
15	model that we need. So we did all those variations to
16	try to figure out what gets us the best result.
17	Now before I talk about performance and
18	the results I need to tell you what, I need to explain
19	one parameter that we often use in machine learning,
20	it's called the F score.
21	Before I do that I need to describe two
22	different metrics called precision and recall. There
23	are different ways you can define this, but the
24	easiest way I think of them when I look at them,
25	precision is usually something that gives you an
	1

(202) 234-4433

224 1 indication of how many false positives you had. You want to have high precision, which 2 3 means you don't have a lot of false positives. Recall 4 is focused more on the false negatives. So false 5 positive in our case here, fire being un-flagged even 6 though there is no fire, false negative. The 7 algorithm is saying there is no fire but there is 8 fire. 9 Now going back to my point earlier, which 10 I think someone mentioned it might not be accurate, we assumed false negative, meaning if we miss a fire, is 11 much more severe than flagging a fire, a false fire. 12 So we can bias our model. The way we bias 13 14 our results in our models is this F score has a beta 15 factor and as you increase the beta factor in your 16 analysis you increase basically the importance of 17 recall, which is the importance of false negatives. So in our case we used a beta of two and 18 19 this is saying I care more about false negatives than I care about false positives. So, please, in my new 20 results I want a higher penalty for false positives 21 than I do for a false positive, for a false -- Sorry. 22 I want a higher penalty for false negatives than I do 23 24 for false positives.

25

That's what I am going to show you. I am

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	225
1	going to show the F2 score rather than the F1 score.
2	F1 score means both of them are kind of equal
3	importance, but, again, we wanted to bias it because
4	we wanted to make sure we don't get false negatives or
5	we can catch false negatives very well.
6	So this is the results metrics. Those are
7	the models we have tried and those are how much of
8	those models were unlocked and trained. As I said, we
9	went all the way from zero percent to 100 percent.
10	Actually, this is the models in action.
11	I am showing you here some of them. I know there is
12	13 because we modified some of the models and we
13	called them a different number, but it is those
14	models.
15	You can see they are not all consistent
16	all the time, right. I mean you see here there is a
17	flame with a confidence score in every one of those
18	videos and you see sometimes some of them are blue,
19	some of them are red, which means they are not
20	consistent and that's a blessing in this case.
21	I will explain to you why, but before I do
22	that, so one of the things we learned from this is
23	some models do not like it when they get unlocked, you
24	get actually worse results versus others, they
25	improve.
	I

(202) 234-4433

226 1 Some of them are actually bad across the board. If you consider 98.4 or 98 point something bad 2 3 those models were inferior to the rest of the models. 4 But I mean we created the whole matrix of this and the 5 end here was to select the best out of every single 6 model. 7 But one more step we can do, actually, 8 once we select the best out of every single model we 9 can build an example. We can combine the decisions from all the different models in our decision-making 10 11 process. The way we combine things is every model 12 has an accuracy, which is what I showed you earlier, 13 14 and, as I said, we selected the best ones. We can 15 multiply the accuracy it got by how confident it is that it's a fire or no fire. 16 17 Basically sum them up on both sides and that will give us a score for every one, for every 18 19 image, and that's how we can classify this from all the different models as fire or not, and that's what 20 we are doing here. 21 So when we did that there is the best 22 model for each. When we did the example of all models 23

25 percent for most of the models, so really a very

we get 99.69 percent, so we actually -- We were at 99

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

24

	227
1	accurate model.
2	Keep in mind this is the F2 so we are
3	taking much more of a penalty when we see a false
4	negative than a false positive. Now when we constrain
5	the model, what "constrain" means in this sense, we
6	actually took out some of the bad ones.
7	For example, one like this one we would
8	say, okay, this is really dropping down the whole
9	performance of the group, maybe we should take it
10	down, or something like this one, it depends on what
11	model we are using.
12	So we select only the best ones that say
13	that. We can even get to 99.74 percent F2 score. So
14	that was very promising.
15	So now going to the point that kept coming
16	up, how do I know that models are flagging fire for
17	the right reason and what do I do when I see
18	something, an image, that is misclassified, either
19	it's fire and was classified as no fire or the other
20	way around.
21	So there is In computer vision there
22	are multiple ways you can introduce some
23	explainability in your decision-making process. One
24	of the algorithms that is existing out there is called
25	Grad-CAM.
I	I

(202) 234-4433

What a Grad-CAM does is, it basically unlocks the model at some point, so if I go back to that picture, you can unlock the model at one of those layers and it starts converting those back into the picture so that it can tell you before the decision is made what areas of that image where basically the model is actually focusing on when it's making that decision.

9 If I go back to this picture, I have three 10 different pictures here as examples and I am showing 11 you the nine models. Let's start with the first one. 12 You can see the whole picture is full of fire but the 13 models were focusing on various parts of it.

14 The good thing about this is that all the models are focusing on the fires. 15 They are not looking at anything else in this case. 16 In this case, 17 the second case, we have a fire kind of on the edge of the image and here is a lot of smoke and what you can 18 19 see is that some models are actually focusing on the fire but others are actually looking at the smoke, and 20 that's the bias I was telling you about. 21

This is telling us that those models had much more bias towards smoke. They start seeing more -- They are also recognizing smoke as fire versus the other ones and are much more capable in distinguishing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	229
1	fire from the rest, and that's why I said diversity in
2	models is a good thing, it's a blessing.
3	The third one here, I think all of them
4	worked really well. They are all kind of focused on
5	the fire, various parts of this fire, but they are on
6	the fire.
7	So now when we did our validation or our
8	testing and we saw that something was misclassified,
9	very often we see when we analyze it this way we would
10	see a focus of the machine on something that might not
11	be the fire but resembles fire, or the other way
12	around, there might be a fire but for some reason the
13	machine is looking at something else.
14	Usually, as I said earlier, the issue when
15	the machine is looking at something else usually it's
16	a problem with your dataset. There might be a bias in
17	your dataset that is forcing it to consider something
18	else, like smoke in this case, as fire even though it
19	doesn't see fire.
20	And then you have to reduce the amount of
21	images with smoke and fire and kind of balance it in
22	order to get the point where you can eliminate those,
23	but that's how we did that validation of testing.
24	I will stop here for any questions before
25	I proceed. I don't know how much time I have actually
	I

(202) 234-4433

	230
1	left.
2	CHAIR BIER: About 15 minutes or so.
3	DR. AL RASHDAN: Okay.
4	CHAIR BIER: A little more.
5	DR. AL RASHDAN: Okay. I still have a
6	couple of slides, so are there questions?
7	(No response.)
8	DR. AL RASHDAN: All right. So let's move
9	on now to I explained to you how AI works, I
10	explained to you how the data works, the data
11	collection part worked, what the model does, how we
12	optimized it and we evaluated the performance of it.
13	Now, as I said to you earlier, we have
14	partnering utilities, we have created with a
15	partnering utility that is, or a consulting utilities
16	that are interested in maybe moving this into
17	deployment.
18	So we had to some analysis into how
19	compatible computer vision based AI with the current
20	safety standards. One thing I need to mention before
21	I go into this, at least I can say on myself, I am not
22	an expert in this field.
23	So this is what we expect the utilities to
24	do rather than we are doing. We create the technology
25	and we validate its performance, we evaluate it, and
	I

(202) 234-4433

	231
1	then we pass it to the utility to do this.
2	However, in this case specifically we
3	wanted to do a preliminary analysis. AI is a buzz
4	topic and we wanted to see how easy it is for us to
5	build an AI model that is compatible with the current
6	safety standards and regulations.
7	The focus here was on fire watch. We have
8	a report published on this which looks at the various
9	aspects of AI or the characteristics of AI and how
10	they fit.
11	One thing to mention on the side, there
12	was a, as Bruce mentioned, a recent Executive Order
13	from the White House on safe, secure, and trustworthy
14	artificial intelligence and there was a specific
15	mention of the need for creating standards.
16	So our hope is that this preliminary
17	study, and, again, I emphasize "preliminary" because
18	we are not an expert in this but we did provide some
19	insight there, is going to feed into something that is
20	becoming more like a standard that might be developed
21	by the industry.
22	So the conclusion from this study is this
23	table. In this case what I am showing you to the left
24	here are the characteristics of the fire watch AI. So
25	in our case with the fire watch models, they were
I	1

(202) 234-4433

	232
1	mostly open source. The data was open source, the
2	models were open source.
3	We had to frequently update them. If you
4	think about this as something that gets deployed that
5	might still be the case. I mean someone mentioned the
6	blue fire as an example.
7	Let's say you have deployed this and then
8	you realize there is something missing, you might need
9	to update this later on. We did use massive amounts
10	of data to sort through this.
11	We had to sort through a massive amount of
12	data to get to the point where we have enough data to
13	train a model. You might have to train the model on
14	a predict basis if you see things that are not
15	satisfactory.
16	The model itself is probabilistic. There
17	was some mentioning about if there are some pixels.
18	By the way, maybe I should have understood that at
19	some point in my presentation.
20	So one of the benefits of using this in a
21	video stream is if you miss a frame there will be
22	other frames that those pixels that were not visible
23	is probably going to show at some point.
24	As I showed you on the explainability
25	slide, it's not really focused on a certain, in one
I	I

(202) 234-4433

	233
1	area, it's very broad in terms of its focus, so that
2	shouldn't be as much of an issue, at least we haven't
3	observed it. I mean it might be, but we haven't
4	observed it in our testing.
5	Then there are the other aspects of AI.
6	I can go through them all. There is the
7	explainability part, the bias, I kept talking about
8	the bias in the datasets and how it impacts the models
9	and the results.
10	Also, the other question is when we do AI,
11	we created this model using those nine models, we
12	created this example of models. Others might use
13	different models, so there is no one way to solve this
14	problem. There are people who would solve it in
15	different ways and get different results.
16	Robustness in new conditions is what we
17	have discussed earlier, and then, of course, we need
18	a special skillset for AI, which is something that
19	might not be there yet to the level we want if we want
20	to deploy those technologies in the plants.
21	Then I am showing you here the different
22	aspects or different requirements we look at in our
23	safety standards. I am almost positive everyone on
24	the call would know what these are.
25	So what we did in this study is we looked
ļ	I

(202) 234-4433

	234
1	at what does every one of these impact from the
2	requirements point of view. I will give you just one
3	example because of time sake.
4	So let's talk about the open source one.
5	If we are talking about the open source aspect of the
6	dataset and the models the problem is if I have two
7	different data sources like Google images and then
8	let's say there is Yahoo! images, those are two
9	different data sources.
10	We don't know how much overlap is there.
11	The challenge with overlap is that if you are breaking
12	your dataset into training and then validation and
13	testing you might end up in your testing dataset with
14	some images that you actually use in training because
15	you didn't recognize that there is an overlap and you
16	used images in your training dataset that are also in
17	your testing dataset.
18	Keep in mind those are tens of thousands
19	and sometimes hundreds of thousands and can go up to
20	millions of images. So we're not going to be able to
21	sort through all of them and find all the overlaps.
22	The overlap doesn't have to be exactly the
23	same image, it can be very close to it, maybe from the
24	same video but with some differences. So if we do
25	have that overlap then that means that I have a
ļ	I

(202) 234-4433

	235
1	problem with independence of my datasets.
2	When I am doing validation my dataset for
3	validation is not really independent from my training
4	dataset. The other thing is that when we are open
5	source models they also do overlap in terms of the
6	foundation of how they work.
7	If there is kind of a common cause failure
8	Sorry. So if there is some sort of failure in one
9	model it can be also existing in the other models,
10	which is what a common cause failure would be.
11	Finally, there is also the cybersecurity
12	concern. Again, we are not experts in those areas.
13	I am just giving you those as examples of things we
14	considered on a high level.
15	A cybersecurity concern would be in this
16	case if an adversary went into one of those datasets
17	knowing that we are using it for fire watch models and
18	injected false data, so data that doesn't represent
19	fire and labeled it as fire, or the other way around.
20	When we load those models in maybe
21	retraining, when we are retraining, we might load that
22	falsely-labeled data and confuse our model of the
23	greatest performance, and that is where the
24	cybersecurity concern would be.
25	So you can come up with some conclusions

(202) 234-4433

from this. For example, there are ways to create independent datasets using GANs. If you haven't --2 You probably are familiar with some of those recent AI advancements when you can tell an AI engine, a generative AI engine, to create a picture of a teddy bear under a Christmas tree or so and it can create 6 that for you.

8 So maybe that can help. However, it goes 9 back to the point where how realistic it is and is it going to be beneficial to the training process or not. 10 We haven't looked into that. Those, again, are just 11 some preliminary findings from this, and then maybe we 12 need a method to quantify them in this. 13

14 What I meant with this example is just 15 we're looking at one of those. I just gave you some 16 aspect on some of those green boxes. Those green 17 boxes are things where we need to look more in depth into those compatibility of AI issues. 18

19 But the whole -- If you are interested in learning more it's all discussed in this report and it 20 is available in the public domain, so there is the 21 With that, I end my presentation. 22 website. Thank 23 you. 24 MEMBER REMPE: I'm curious about the

vision and maybe you don't know what the utility or 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

7

Í	237
1	owner operator the plant will do with this software.
2	Are they planning I mean you admitted that it's not
3	100 percent perfect.
4	Are they planning to have a person, for
5	example if their system is offline and they implement
6	this software and it comes up and says, hey, there is
7	a fire, will they have a person check before the fire
8	suppression system is activated or is it going to be
9	tied into the fire suppression system and just let it
10	fire off, which could have some adverse effect for
11	some staff?
12	I remember Halnon mentioned about keeping
13	people out of the area. I am just curious if this had
14	been discussed very much.
15	DR. AL RASHDAN: So what the utility is
16	building as part of this effort is this cart. The
17	only thing I talked about today was related to the
18	camera optical vision detection, but there will be
19	other sensors.
20	The aim of the other sensors added to that
21	cart is to reduce the false positives as much as we
22	can. Now, as you mentioned, I don't know how the
23	utility is going to deploy it.
24	I mean I kind of We had to have
25	different scenarios of how this is going to be
I	I

(202) 234-4433

deployed, but, honestly, my role ends with getting the right detection and telling them about the models and then they can take it from there and decide how they want to deploy it.

5 MEMBER REMPE: Yes. And I mentioned this earlier with the Staff and the Staff came back saying, 6 7 yes, we understand time for humans to react under 8 pressure and that that could implement or introduce 9 more errors, but I just am wondering because I think 10 it would be important to have a human in the process and then to put the human in the process I am not sure 11 how much savings there will be and there is a 12 potential for some adverse effects. 13

Anyway, just a pointed I wanted to bring up here also. Thank you.

DR. AL RASHDAN: Okay.

17 MEMBER HALNON: This is Greq. I've got one other question. You are going to finish all this 18 19 and give it to the USA or whoever is going to deploy it, but how are you going to convince them it's 20 accurate enough for them to submit whatever they need 21 to submit to whoever they need to submit it to to show 22 that this equivalent or better than a human fire 23 24 watch?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

I realize there's other things on the

(202) 234-4433

16

25

	239
1	cart, but you've got to sell this as accurate enough.
2	I am not going to say accurate, but accurate enough.
3	So is there going to be some testing done beyond what
4	you have done here?
5	The problem is that, in a plant, the
6	amount of hours to event, the ratio is really high.
7	You've spent a tremendous amount of hours monitoring
8	and nothing happens for a long a time, so you're not
9	going to have any kind of real-time data other than
10	there is nothing happening.
11	So is there a testing program envisioned
12	by USA or by you guys or jointly?
13	DR. AL RASHDAN: So at the moment this
14	project is aimed towards getting to the demonstration
15	point. I think that USA is planning to develop the
16	test plan and engage the NRC in I mean they are
17	already engaging the NRC, but engage maybe more
18	extensively on the use of this in 2024.
19	MEMBER HALNON: Okay.
20	DR. AL RASHDAN: So I don't have an answer
21	for you, sorry.
22	MEMBER HALNON: Okay. No, that's
23	understandable. Thank you.
24	CHAIR BIER: Well and Joy mentioned the
25	problem of either false positives or maybe a positive
	I

(202) 234-4433

	240
1	like a trash can fire but at that moment you don't
2	want to activate, you know, fire suppression and, of
3	course, you could also get false positives because
4	like the Canadian wildfires are blowing smoke every
5	place.
6	The other thing I can envision regarding
7	implementation similar to Greg's issue is you may have
8	situations where you implement but you still keep some
9	level of fire watch and just less frequent than what
10	you had before in case the software misses something
11	and, you know, it seems like it could be very
12	complicated how best to implement.
13	But overall this was very interesting,
14	very impressive work.
15	DR. AL RASHDAN: Thank you.
16	CHAIR BIER: Other questions or comments
17	from members?
18	(Off-microphone comment.)
19	CHAIR BIER: Yes.
20	MR. PRIMER: Yes. I just want to thank
21	Ahmad for taking us through that work. He has several
22	reports that have that detail in different areas that
23	I shared, so those links are there.
24	I will also mention we have a stakeholder
25	engagement meeting with individual researchers and
	I

(202) 234-4433

	241
1	collaborators that have been involved with the
2	different research activities December 5th through
3	7th.
4	So if you are interested in joining that
5	I will be happy to get you on the invite. It's five
6	session, the AIML is a one 2-hour session, so one of
7	those.
8	The others are human factors engineering,
9	the digital architecture, the things we talked about,
10	you heard Bruce mention. So we would really
11	appreciate if you are interested let me know and we'll
12	get you an invite so you can tune in and hear more
13	about the other activities as well.
14	I don't know if Bruce is still on. I will
15	just turn it over to Bruce to close us out.
16	MR. HALIBERT: Yes, I'm still on, Craig.
17	Other than what you have already said, I would just
18	thank the NRC and the ARCS for the opportunity to
19	participate in this meeting.
20	It aligns very well with our Memorandum of
21	Understanding for Technical Exchanges. Obviously,
22	there is a lot of other areas that we didn't talk
23	about today, but I think as Craig mentioned if you are
24	interested in participating in the stakeholder
25	engagement meeting I would recommend you reach out to
I	I

(202) 234-4433

	242
1	Craig and we'll be sure to add you to the invitation
2	list for that.
3	Other than that I would also just refer to
4	Alison Hahn, since she is the Federal Program Manager
5	and the Office Director over at the Office of Nuclear
6	Energy, to see if she has anything else she would like
7	to add about that, our work today.
8	MS. HAHN: I don't have anything to add.
9	I just wanted to thank you all for taking the time to
10	listen to this work and just reiterate what Bruce had
11	said, if there is any additional questions please feel
12	free to reach out.
13	We always appreciate the conversation and
14	the opportunity to share the work that we do, so thank
15	you.
16	CHAIR BIER: Okay. Thank you for
17	educating us. I guess we will now have a break until
18	3:15, is that correct, Christina, and then we will be
19	back with Dr. Cummings from George Mason University.
20	(Whereupon, the above-entitled matter went
21	off the record at 2:57 p.m. and resumed at 3:25 p.m.)
22	CHAIR BIER: So I'm very glad that Dr.
23	Cummings was there we go, we're up and running in
24	the presentation. I'm very glad that Dr. Cummings was
25	willing to join us today and educate us about the
l	I

(202) 234-4433

	243
1	pluses and minuses of AI.
2	Dr. Cummings has a rather unique
3	background. She was trained as an engineer and was
4	also a Navy fighter pilot back in the day. Most
5	recently before joining the Engineering School at
6	George Mason, she was Senior Safety Advisor at the
7	National Highway Traffic Safety Administration.
8	And as you are probably aware, the
9	automotive industry is, depending on how you want to
10	think about it, either ahead of us or behind us on
11	rolling out AI. They are doing it, but maybe not
12	having such great success with it yet.
13	So I thought hearing a little bit about
14	what's been going on in the transportation industry
15	would help inform us and educate us to do a better job
16	in the next 10 years. So with that, Missy, I'll ask
17	you to proceed.
18	DR. CUMMINGS: Yes. Okay. Thank you so
19	much. I'm sorry that my camera is not working today.
20	But I would like to tell you I look the same as the
21	the last time we worked together was about a decade
22	ago. I'd like to tell you I look the same, but I
23	don't sadly.
24	But it is interesting. You know, I did
25	some work there with your human factors group about 10

(202) 234-4433

	244
1	years ago. At that time, we were looking at the
2	impacts of boredom. We did some checklist work. And
3	I think my time with the NRC actually was really
4	important for me to really understand what it meant to
5	be a regulatory agency because then when I went to the
6	National Highway Traffic Safety Administration, I
7	think I had a much better understanding of, you know,
8	where the viewpoint of our regulatory agency in theory
9	is, but, of course, looking at things from the
10	automotive world was quite different.
11	And I think that you're going to find
12	I think that will be kind of hard for people on the
13	call, like, you know, you guys take safety very
14	seriously whereas I think the automotive self-driving
15	industry takes it less seriously. And the question
16	is, you know, when you have a strong regulatory agency
17	like the NRC or FAA as opposed to a weak agency like
18	NHTSA, and I would say maybe Federal Railroad
19	Administration, you know, it's kind of interesting to
20	me, and maybe that's another talk. In fact, I would
21	love to hash it out with you guys sometime about some
22	of the unique differences between the regulatory
23	agencies.
24	But before we talk and get into some of
25	these details, it's always good, I think, to start out

(202) 234-4433

www.nealrgross.com

5 And so -- this is important to talk about because AI shows up in different places in different 6 7 systems. And I'm going to talk about both kinds 8 today. But the first is what we typically will call 9 good old fashioned AI. This is some rules-based AI, 10 using things like ontology like you see here that we can break an apple into all different elements of what 11 does it mean to be an apple? 12 Is it an origin story? Is it at the actual physical apple? Is it a kind of 13 14 fruit for example.

The rules-based, if then else if you will, 15 16 good old fashioned AI, has done a pretty good job. I 17 mean, I think there was an AI winter when this first came around because people wildly overestimated the 18 19 capabilities of GOFAI. And then now that neural nets have taken off, I anticipate another second winter. 20 We'll see if it has the same characteristics of the 21 first one. 22

But I think what we're going to see if that people yet again are wildly overestimating what the capabilities of these are. You know, it's

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

interesting because these neural networks, also known as connectionist AI, takes on -- it has -- it is more -- it mimics intelligence more, which I think makes people believe that there is actually some real intelligence. But indeed we're actually no closer to real intelligence today as we were in the 70s and 80s when symbolic AI came along.

So with those definitions in the 8 Okav. 9 background, I wanted to talk to you about -- well, 10 first of all, let's talk about some problems. And these are problems that I have seen as when I worked 11 with the National Highway Traffic Safety 12 13 Administration that they have parallels with 14 connectionist AI in the form of large language models. We'll talk about that in a second. 15

16 But the first I want you to see, this 17 picture comes to me from Toyota Research Institute. They've been great collaborators. And the car -- they 18 19 had a self-driving car that went to this intersection in Boston, and it froze. And they couldn't get the 20 car to move. Eventually, a human had to take over and 21 start driving. And they took the car back to the lab 22 and "pulled the tapes". And so they tried to figure 23 24 out this is the event that caused the car to freeze. Now I'm about to hit the button, and when I do, you're 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	247
1	going to see what the car saw.
2	So instead of a single moving truck, the
3	car saw two trucks, a bus, a gigantic person, a
4	building, a fence, some poles, a traffic stoplight,
5	like, a bunch of things.
6	And let's go back. So you just saw a
7	truck. And indeed your brain took no energy to
8	classify it as a truck. And you didn't actually
9	probably pay attention to any of the details, the
10	sign, the number, unless you were actually thinking
11	about moving because it had no relevance to you. So
12	this is top down reasoning.
13	But that's now how computer vision and
14	neural nets work. They look at the world at the pixel
15	level. And so when the convolutional neural net that
16	classifies this, it looks at clusters of pixels and
17	compares them against the training data that it has in
18	its "head" and so that's why you see the gigantic
19	person that looks like it's about to attack and then
20	two trucks and a bus.
21	Even though if that were really a bus,
22	it's such a small you know, it's that percentage of
23	that image in between two trucks that is still what it
24	saw.
25	So this problem with this is a real
I	1

(202) 234-4433

248 hallucination. And so you hear a lot about large language models, and we'll talk a little bit more about what it means to hallucinate in a large language model. But computer vision systems legitimately hallucinate. They see things that are not there, and they don't see things that are there.

7 And so this has become a huge problem in 8 self-driving cars. We don't, we being engineers and 9 computer scientists, we don't know how to fix this 10 problem. And we're trying to do things like sensor we're still having quite a bit 11 fusion, but of accidents due to the hallucinations of convolutional 12 neural nets. And it's not clear that we're going to 13 14 be able to get over this gigantic wall. So we'll come 15 back to these thoughts in a few minutes because they have real implications in the real world. 16

So this is the Bay Bridge Tunnel in San 17 Francisco on Thanksgiving of last year. 18 So the 19 picture you just saw is the hallucination of many things when there was just one thing. 20 Indeed, the Teslas, who use computer vision who also leveraged 21 convolutional neural nets, although this car is not 22 actually self-driving even though it says it is, the 23 convolutional neural nets that caused this accident 24 was a shadow. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

	249
1	We're not sure what it saw actually. So
2	a Tesla going 65 miles an hour went through this
3	tunnel, slammed on its brakes for no reason that we
4	can discern other than it saw something, which we
5	think is a shadow, and it did such an aggressive
6	maneuver it caused eight cars behind it to crash into
7	it. We are very lucky that nobody was seriously
8	injured on this day. You know, the picture looks
9	pretty dramatic, but this is a good reminder that the
10	hallucinations were not just seeing things
11	incorrectly. It is seeing things that literally are
12	not there.
13	So, again, until we fix this problem,
14	we're going to continue to have problems not just with
15	self-driving, but with driving assist (phonetic).
16	So I want to put all this in the context
17	of autonomy, AI and reasoning. So a few years after
18	about three or four years after I last worked with
19	NRC, I wrote this paper that talked about what it
20	means for an autonomous agent, whether we're talking
21	about a human or a computer-based system, what does it
22	mean for an autonomous agent to reason?
23	So first when you need to reason, when you
24	first learn to drive a car, you have to tell yourself
25	to stay between the two white lines on the road. And
l	I

(202) 234-4433

250 1 you have to really pay attention to this. You have to train your brain to stay centered between the two 2 3 white lines. 4 And after a few hours, you become -- this 5 becomes highly automatic. You are used to that, what we call world view. 6 And your brain automatically adapts and indeed you don't have any more problems 7 8 after you first learn to drive until you get older, 9 when your sensors, your eyes, start to fail, and it 10 becomes hard to see. But for the most part, this stays throughout your lifetime. It's a very well-11 honed skill. 12 And then once you can do that, once you 13 14 make this a highly automated process that you don't 15 really have to think about, then you free up cognitive

16 resources to do rule-based reasoning. And when we 17 drive, what that means is that we see signs and 18 signals in the world, like a stop sign, and we know 19 that, you know, about 50 feet before we get to the 20 sign, we start to slow down and come to a full stop 21 before you can go again.

And indeed, autonomy can execute the staying between the white lines and doing rule-based reasoning quite well because as long as the sensors can see the sign and can see the white lines on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	251
1	road, indeed automation can actually stay between the
2	white lines and adhere to signs far more reliability
3	and with much more precision than humans can.
4	But then once we get past rule based
5	reasoning, you start to see the gray arrow really
6	increase in size. And this is matching a growth in
7	uncertainty. And it's this growth in uncertainty
8	which is causing problems for systems with any kind of
9	neural net in them so really any form of connectionist
10	AI.
11	And in the picture you see, there is a
12	stop sign that is partially obscured behind leaves.
13	This is a huge problem for self-driving cars because
14	they are trained, their neural net database is
15	trained, on let's say 50,000 pictures of stop signs,
16	but they are not trained on pictures of stop signs
17	with leaves in front of them.
18	And so they don't know that this even
19	you knew immediately when I went to this slide, I
20	didn't have to tell you it was a stop sign. You knew
21	what it was. Self-driving cars must be explicitly
22	told. And so there is really very little
23	generalization. You would have to then go back and
24	train the neural net with all of these leaf covered
25	stop signs, but this becomes kind of unwieldy because
I	I

(202) 234-4433

	252
1	10 percent of coverage in leaf coverage on a sign is
2	very different from 20 percent and very different from
3	30 percent.
4	And indeed we don't know at which point,
5	is it between 30 and 35 or 30 and 37 percent, for
6	example, where the systems will no longer be able to
7	generalize based on their original data, their
8	training. And we'll come back to this a little bit
9	more because that really kind of falls under the title
10	of AI maintenance, which is a big deal.
11	And if you can't get to if you can't
12	get past reasoning under uncertainty, you can't really
13	get up to the top of this ladder, if you will, which
14	is expert-based reasoning. And this is when you have
15	to really try to figure out the unknown unknowns,
16	right?
17	And this picture from a real intersection
18	somewhere in America is a good example that if you got
19	yourself there, you're not supposed to be there.
20	You're not supposed to be able to get there in the
21	first place. Somehow you made a mistake, and you
22	would know that to get out of this place, I would just
23	need to turn around and go back the way I came because
24	that's how I got there.
25	It would be very hard for a self-driving
l	I

(202) 234-4433

5 The uncertainty can come from the 6 environment. So, for example, the leaves blowing 7 across the sign. It can come from the AI blind spots, meaning if the data -- if it wasn't explicitly trained 8 9 in the data, then whatever self-driving car or really 10 any neural net based AI that sees something it has never been trained on, it has no idea what that is. 11 12 And it's blind to that thing.

And it can come from human behavior. This has been quite a difficult road for self-driven cars to figure out, especially around things like fire trucks and police officers where -- and let me just go ahead and fast forward. There we go.

Indeed, it is interactions with the fire 18 19 trucks and first responders that has caused selfdriving cars to really get a hard look at California 20 state regulators as to whether or not these cars 21 should have permits. And indeed Cruise just recently 22 their permit 23 pulled because it struck had а 24 pedestrian, which wasn't its fault but then kept going 25 and dragged her for 20 feet underneath the car,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	254
1	causing the bulk of her damages.
2	So we are still in the place where cars
3	cannot reason under uncertainty because their
4	connectionist based neural nets cannot reason under
5	uncertainty.
6	And I want to be very clear on this.
7	Neural nets, which are what power both convolutional
8	neural net computer vision but also large language
9	models, they don't know anything. They don't know yes
10	versus no. They don't know right versus wrong. They
11	only "know" what they've been shown before.
12	And so any estimates, approximations of
13	intelligence, are at best mimicking intelligence but
14	are indeed not intelligent. And this is super
15	important for people to remember going forward is that
16	even though you can talk to ChatGPT for example, and
17	it's quite competent and it thinks it knows
18	everything, but it is also very confidently wrong,
19	even though it doesn't know it's confidently wrong.
20	As a professor, we've all had those
21	students that swear, swear, swear they know the answer
22	and that's just like ChatGPT. And we are going to
23	look at large language model examples here in a
24	minute, but the thing that I really want to
25	reemphasize is that there is this wall between rule
I	

(202) 234-4433

255 1 and knowledge-based reasoning when it comes to artificial intelligence. 2 3 I don't care whether we are talking about 4 good old-fashioned intelligent AI or we're talking 5 about connectionist neural nets, computer vision, anything with any kind of neural net cannot get past 6 7 rule-based reasoning. 8 And so until we engineers, computer 9 scientists, thought leaders, you know, until somebody comes up with a different way of encapsulating true 10 knowledge and expert-based reasoning, artificial 11 intelligence really cannot rule-based 12 go past 13 reasoning. 14 Now lots of people want to fight with me. 15 One of the fathers of AI, Geoff Hinton, swears, 16 swears, swears, that they are becoming sentient, but 17 they are not. They are not because they cannot reason under uncertainty. 18 19 And, you know, to me it is just one of the big problems that the computer science community is 20 just sidestepping is why in hell these large language 21 models and any other neural net based system how they 22 reason and how they fail. And so we will talk a 23 24 little more about that. But before we go onto the large language 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	256
1	model, I wanted to kind of put this into context in
2	terms of process control. So you see that I've got a
3	human supervisor that is trying to do some task.
4	And we can say in this case they are
5	trying to supervise what's happening with a nuclear
6	reactor for example. It could be really any kind of
7	process control, which is mediated by a computer in
8	the middle. That computer shows them, for example,
9	what the coolant level is for example, or what the
10	power level is, right? So we're heavily reliant on
11	the computers to be able to know what's happening in
12	the world.
13	So given this backdrop, I wanted to show
14	you, it's a little map of where I believe that AI
15	could and should be used inside process control.
16	So at the bottom, you can see that
17	connecting automation to the task, in this case
18	automating nuclear reactors, well, you guys have been
19	doing the whole nuclear industry has been doing
20	that for a long time. And, you know, with a couple of
21	verbals for the most part, but especially lately, very
22	safely, right?
23	And we know how to develop that automation
24	because it's based on first principles. We've got
25	equations. These are physic-based systems that are
ļ	I

(202) 234-4433

	257
1	very well modeled, lots of experience and history
2	behind it.
3	So, you know, the automating of the task,
4	particularly for process control, any form of AI is
5	not really needed. But we'll come back to that
6	because it's going to be really uncertainty dependent.
7	And I have a quick caveat that we're going to go to on
8	the next slide. But let's put that aside for right
9	now.
10	So where do these neural nets where
11	would be a good idea to use them? Well, it turns out
12	neural nets are actually pretty good if you want to
13	set up some cameras and automatically detect somebody
14	sleeping for example.
15	You can imagine I've done a lot of
16	the work we've done in boredom over the years, not
17	just in nuclear power plants, but cockpits, drone
18	control stations. You know, it's very hard, and
19	automation is doing a very good job. It's hard for
20	people to force themselves to pay attention.
21	So having cameras monitor, automatically
22	monitor, meaning a human does not have to be in the
23	loop so that they can potentially sound some kind of
24	either gentle alert or full on alarm if something bad
25	was happening. Yeah, it turns out for human activity

(202) 234-4433

1 monitoring, connectionist neural nets through convolutional neural nets is pretty good. 2 3 I mean, it's not in a critical path of 4 safety, but it's trying to augment safety. But we can 5 also reverse that and say we can also use connectionist models to actually model what is going 6 7 on inside the plant. And now we're going to start 8 talking about the health and status loop because it 9 turns out that, you know, monitoring through images, 10 that's becoming more and more of a thing in the nuclear world, as indeed in all process control. 11 So there is a way that you can potentially 12 again convolutional neural nets. 13 use You could 14 potentially use them in real-time to start to have 15 basically an additional set of "eyes" on the process. But I think for the most part, people in process 16 17 control agree that probably the best use of connectionist AI is in predictive maintenance. 18 And 19 we'll come back to that in a few minutes. So I do think that there is a place for AI 20 in and around process control. But just probably not 21 in the direct line of process control because of some 22 of the safety caveats, which we will talk about in a 23 24 second. That little asterisk that I gave you is 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

258

actually a project that I worked on with Pfizer. So it turns out just in the weirdness of timing, right before COVID hit, I was working with Pfizer to help them improve their vaccine fermentation units in North And indeed the team that I was working on Carolina. went on to start making the COVID vaccine. So just really right place, right time. And one of the things that we were doing is helping them figure out the foam 8 control in the fermentation unit. 9

So this is the research fermentation unit 10 that you're looking at in this picture. 11 And you're basically seeing four fermentation units, and there is 12 a sight glass where you are zoomed in one of them. 13 14 And it turns out that vaccine fermentation is pretty much the exact same process as making beer. And, you 15 know, so this was a big eye opener for me, because, 16 17 you know, I really hadn't really ever, you know, had to make beer, but I never realized that vaccines were 18 19 made the same way.

And why that's critical is you need to 20 have some foam in this healthy process, right? 21 You can't have too little foam because there's a problem 22 with the oxygenation of the content inside the 23 24 fermentation unit. But you don't want too much foam because you don't want to have a spillover, especially 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	260
1	if something, like when they're making the meningitis
2	vaccines, then you contaminate everything, and that's
3	a big problem.
4	So it turns out we don't know foam
5	control. We have not good models of foam control. It
6	reminds me as an aerospace engineer of our problem
7	with turbulence. We do not still and, you know, in
8	2023, we do not have good models of turbulence. And
9	it's still kind of a mystery to us, which is the same
10	thing for foam control in fermentation units.
11	And so it turns out that there is a human
12	this is where you really need the human because the
13	human just have to sit there and watch the foam. But
14	it's painstakingly boring. And nobody and you have
15	to have a highly paid tech do this. Nobody wants to,
16	you know, pay the tech just to sit there and babysit
17	and then we have the problems of people falling
18	asleep, being on their phones, and they've had many,
19	many spillovers, they being the whole vaccine
20	industry, had had many problems because it's such a
21	painstaking process.
22	So what we did is we came in, and we put
23	a computer vision camera on it, using convolutional
24	neural nets that was able to track the foam
25	automatically. And before the foam ever got to a
I	I

(202) 234-4433

critical state, as soon as it started to rise and it began to look suspicious, then what we did is you could see the little phone. It would actually alert a tech who was in the plant who was nearby but was able to be doing something else productive with their time that would alert the tech that there was a problem that they could go in and start visually 8 assessing. And they would be staying nearby and tweak 9 whatever settings they needed to tweak.

10 And so in this way, this is very much a process that we know how to control mostly except for 11 this weird foam element. And it turns out that the 12 foam control turns out to be a great proxy for how 13 14 humans and AI can collaborate so that the humans' 15 judgment can be used at the same time when it's the 16 dull, dirty and boring part of the arrangement, then 17 the AI can be used pretty reliably to just watch for the foam rise. 18

19 So, you know, kind of in that note Okav. then, you know, what could we use AI for if you're 20 thinking in and around nuclear plants. And I just use 21 these as a few examples of why, you know -- I don't 22 want to throw the baby out with the bath water. There 23 24 are a lot of problems with AI. But there are also some really good uses, especially given the project 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	262
1	that I just told you about where we were helping
2	Pfizer with their vaccine fermentation.
3	So I could imagine AI could be you
4	know, there are all sorts of cameras that I see people
5	making that are looking for radiation and/or different
6	kind of phenomena inside of a nuclear power plant as
7	well as tracking radiation. Well, you can imagine you
8	don't need just cameras because neural nets would also
9	work on the Geiger counters, all the data coming out
10	from those.
11	So the nuclear industry is probably
12	sitting on a ton of data that has gone unanalyzed
13	beyond, you know, like maybe a set of sensors will
14	generate a report. You have an operator or maybe an
15	administrator who looks at these things and say, okay,
16	that looks good and then they file it away and never
17	look at it again.
18	I'm reminded of a really recent best
19	application of artificial intelligence I've seen in a
20	long time is a group of researchers finally took all
21	of the echocardiograms that we get when we're in
22	when we go for our annual physicals. I'm getting old
23	so I'm getting them more often than I ever have,
24	right, and other than a doctor looking at your EKG and
25	saying, oh, okay, all right. Well, you know, you're
I	I

(202) 234-4433

263 1 fine. Then they throw them into, you know, some database, and nobody ever looks at it again. 2 3 These researchers were able to take all of 4 this, you know, millions and millions of data points, 5 of EKGs and now they have a really, really good system where the EKG can be run and even slight nuances can 6 7 now be picked up and diagnosed way before you would 8 ever see them, you know, used through kind of major 9 cardiac event. 10 And so this is good. Now, they're not always right and there are some problems. But, again, 11 this is a screening tool. 12 We're not letting the computer make the decision. 13 The computer makes a 14 recommendation that has been kicked over to а physician. And the physician actually then does the 15 16 actual ruling. 17 And so in that way, you know, if you were to say to me, Missy, what would you like to do? 18 Ι 19 would be like I would love, love, love, love to see what is going on with radiation. How could you track 20 So you could imagine that you could 21 one person? create using some AI a profile that tracked 22 an individual's exposure over time to make projections 23 24 about potential health issues in the future or when 25 should moderate this. Indeed, we've done you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	264
1	something similar for Boeing where we track repetitive
2	stress injuries of people who paint aircrafts.
3	I know that sounds you're like, well,
4	that's completely different. But it turns out that
5	there is a lot of repetitive stress injuries for
6	people who are doing aircraft painting. And so if you
7	have better predictive models about when people start
8	to reach what we would consider dangerous too many
9	exposures of painting, for example, then you can know
10	how to start rotating people out actually much younger
11	in their career so that you can extend their career
12	and their ability, you know, to have a good job.
13	So one of the things that I did after
14	getting out of my job at the National Highway Traffic
15	Safety Administration is that I wanted to develop
16	to give people a way to think about AI hazards because
17	AI can be useful, but it can also be a problem.
18	So I'm going to explain this accident to
19	you in the context of this Swiss cheese model, which
20	is not unknown to the NRC. So you guys are very
21	familiar with this. But if this car, which is
22	actually a Cruise self-driving car, if there had been
23	a driver in that car and the driver had hit the back
24	of the bus, we would say that the unsafe act was
25	caused by the driver, who was probably not paying
ļ	1

(202) 234-4433

attention.

1

2

3

4

5

6

7

And maybe the pre-condition for the unsafe act, going backwards in the Swiss cheese model, would be that each driver had their phone and their phone, you know, they didn't have a good, you know, policy about not having their phone on when they were pulling out from a parking space.

We could take a step back and say, well, 8 9 maybe there was unsafe supervision. If it's a taxicab driver, for example, we would say that there wasn't a 10 strong policy for the company. And they didn't have 11 12 the middle managers checking to make sure people didn't have their phone. And we could go all the way 13 14 back to organizational influences to find out what 15 companies had good safety cultures.

I think it's hard for people in and around the nuclear field to imagine a company without a good safety culture because, you know, the nuclear field lives and dies by making sure people are safe.

But I will tell you having been in this field, there is virtually no safety culture for selfdriving cars. That's not maybe necessarily a fair statement to Waymo, who is not nearly in as much trouble as Cruise is. But I do see for most of the Silicon Valley companies it's just a shocking lapse of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

265

	266
1	appreciation for safety.
2	Companies don't have safety officers.
3	They don't have safety programs. They only train if
4	they think they're going to get sued. So it's the
5	Wild, Wild West in self-driving cars when it comes to
6	safety, which is not a problem you have. But I think
7	you wouldn't have asked me to give this talk if you
8	didn't have questions in the back of your mind about
9	well, what is safety? How are we going to do safety,
10	especially when it comes to AI?
11	So given the fact that there is no human
12	in this vehicle that you see here. This is a Cruise
13	self-driving car with no one in it, that rammed into
14	the back of the bus. It turns out that the reason it
15	ran into the back of the bus is because it had the
16	wrong model of a bus inside the computer vision head.
17	The computer vision system estimated this
18	bus by capturing the front of the bus and then
19	estimated its length to be around 40 feet of a single
20	access bus, which is all of the training data that it
21	was trained on. But it turns out this was an
22	accordion bus, so one of those ones that, you know,
23	will drive, turn the accordion piece, bends and then
24	a couple seconds later the second half of the bus
25	turns. And it turns out it's a longer bus than a
ļ	1

(202) 234-4433

	267
1	normal bus.
2	And so when the computer vision model
3	inside the car estimated the length of the bus to be
4	40, it did not correctly classify the bus. Not only
5	did it not correctly classify the bus, but it also
6	didn't ask the LiDAR, which are the laser sensors on
7	top of the car, for a backup second opinion because
8	the LiDAR on the car knew exactly where the bus was
9	and indeed when they pulled the tapes, if you will, it
10	turned out that the LiDAR sensor knew all the way to
11	the point of hitting the bus that it was going to hit
12	the bus.
13	But the way that the system was designed,
14	it was never designed to call the LiDAR for a second
15	opinion if the computer vision algorithm was less
16	than, for example, 95 percent. We don't know what
17	that real number is, but, you know, there is some
18	number.
19	So given this accident, this was the one
20	that really made me you know, at this point, I'm an
21	old curmudgeon engineer, which is to say I was just
22	shocked that the primary sensor in this scenario would
23	ever be the computer vision system which, I mean, you
24	saw the first pictures that I saw on the earlier
25	slides, I mean, computer vision systems are terrible.
	1

(202) 234-4433

They are terrible because they are not nearly -- I mean, forget 10 to the minus 9th. We're talking about -- we're not reliable to 10 to the minus 2. So it was shocking to me that they made that the primary sensor instead of the LiDAR, which is a much more reliable 6 signal.

7 So that made me kind of sit down and 8 really power through, well, if we were going to do a 9 hazard analysis on these systems, what would that look like? And so, instead of the corollaries that you saw 10 before, now what I have is instead of the human unsafe 11 act, we have inadequate AI testing because indeed that 12 is the last place that a computer scientist or an 13 14 engineer will touch before a system goes out into the real world. 15

And I know that, again, NRC, you're used 16 17 to a lot of testing, certifications. You know, these are issues on the top of your head. But it turns out 18 19 for self-driving cars there is no requirement at all to do any testing, none. And, indeed, companies --20 this is true not just for self-driving cars, but also 21 for driving assist cars like Tesla -- companies can 22 rollout software. And there's no requirements of how 23 24 they have to test it, if they have to test. And companies, as a result, actually rollout software and 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

test it on the public.

1

2

3

4

5

6

7

8

9

So, again, you know, nobody on the planet would ever allow a nuclear power plant to go online without extensive testing. But that doesn't happen in the self-driving car world. So we need to completely overhaul that. And indeed in this accident, there were never any tests. So that's why they never caught this problem because if you never do any tests or you do very little testing, you won't catch problems.

And then one layer behind is the AI maintenance problem. So one of the big secrets that nobody is really talking about for AI systems are that the underlying neural nets have to be constantly retrained to update their world model if anything in the environment changes, which in driving is all the time.

17 Construction sites go up or down, new cars show up on the market, buildings get built in empty 18 19 lots and some building get torn down. So anytime that there's any change in the environment that needs to be 20 considered by a self-driving car 21 in theory the underlying neural nets need to be retrained. 22 But that's not happening. Companies don't want to do it 23 24 because it's very expensive. It's extremely expensive to train one of these neural nets, forget all of them 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

269

	270
1	that they are using, at any given time.
2	So again there's no regulation so they
3	don't have to because nobody is mandating testing. So
4	the AI maintenance piece when I give this talk to
5	companies, I tell them that they are going to have to
6	start formalizing AI maintenance, making new
7	divisions, getting an AI maintenance officer in place
8	because if they don't, they're going to keep having
9	accidents like this. And ultimately, Cruise's
10	slipshod, you know, very loosey-goosey safety culture,
11	that's what took them down.
12	Okay. Same thing with the inadequate AI
13	design before. You should never use your best sensor
14	as the backup sensor if it's giving you perfect
15	information or near-perfect information. And if we go
16	one layer back, then the inadequate AI oversight, the
17	same problems that I've already talked about, really
18	poor safety cultures, problems with companies taking
19	this seriously.
20	And I think this is a sign of, you know,
21	it's a Silicon Valley Culture of move fast, break
22	things. It turns out that may be fine for your phone,
23	which is not safety critical. But when it comes to a
24	car and, of course, anything to do with a process
25	control plant, that's just not going to be a good
ļ	

(202) 234-4433

1 attitude carrying through your operations. So what about large language models? 2 You 3 know, here is my favorite application of a large 4 language model. Indeed, I make all my students now 5 use large language models to correct their grammar. My life has become so much better now 6 It's amazing. 7 that ChatGPT has shown up on the scene because my students are terrible writers. 8 9 And ChatGPT does a really, really great 10 job of correcting their grammar because it's very predictable. It follows a pretty clear set of rules. 11 And so this is, to me, a great application. 12 I'm not worried at all about cheating. They can try to cheat 13 14 with it, but I catch them every time because it's very 15 predictable. ChatGPT comes out with such formulaic 16 17 writing that it's very easy to spot as a professor and that is because all large language models, as do all 18 19 neural nets, they compute based on their regression to They are giving you the most probable 20 the mean. response, the most statistically frequent response, 21 And so you can predictably get good grammar, 22 right? but it's also very formulaic, predictable writing. 23 24 But then my daughter who is 16, and she's in Calculus, as I was helping her with this problem, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

271

272 1 I wondered how it would do in math because it's a large language model. It's not a math model. 2 3 So I gave it this problem. It went out 4 into the internet and came back with this answer, X-2, 5 X-3, X-4, which is correct except all it's missing is a negative sign, which, you're like, well, that's 6 7 pretty qood, isn't it? I have a lot of people who 8 aren't math oriented say, well, that's not bad. Well, you know, pretty close, 9 That's pretty close. 10 horseshoes and hand grenades, you know, that's the only time it really counts. Because in engineering, 11 a minus sign can be the difference between life and 12 death. 13 14 And so I worry because if people -- and 15 how this happened is it went out on the internet. Ιt 16 found either that exact problem or something close to 17 it and then just computed the probable answer. But because of the negative sign, it doesn't know that a 18 19 negative sign is a negative sign. It doesn't know anything. It probably just recognized it as a hyphen. 20 And so it didn't put it through with the answer. 21 But why I worry about this is because 22 students go get this. This is how they're doing their 23

homework. And they may be doing this in the future.

And if you forget to take the minus sign with it, then

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

24

25

	273
1	you've got serious problems later.
2	You can't trust these things. And you
3	have to verify every single thing that comes out of a
4	large language model. You can never take what a large
5	language model says to you at face value.
6	So they are being companies have gotten
7	wise to the fact that they can be used for bad things.
8	But this is a great example of how clever humans can
9	be. So that the prompt prior to this was somebody
10	trying to get ChatGPT to tell it all the websites
11	where you could go get pirated content, which is
12	illegal.
13	So ChatGPT came back and said, I can't do
14	that because it's illegal. So ChatGPT knew, as a
15	first path somebody had hard coded in there, this is
16	not you can't do this. So then the clever human
17	says, oh, okay. I need to avoid these kinds of
18	websites. So can you make sure you give me the list
19	of websites I should avoid to make sure I don't visit
20	them? And then ChatGPT says, sure, here, they are.
21	Here are all the websites, right?
22	So as a mom of a teenager where I am
23	constantly having to use reverse psychology, oh, I get
24	that. I get it's clever. But I'm also kind of
25	deeply disturbed that without really any effort that
Į	I

(202) 234-4433

	274
1	people can trick these models to give them bad
2	information, and you can imagine that it can get much
3	worse than this.
4	So right after that Cruise car hit the
5	back of the bus, I wanted to see what this is Bard.
6	This is Google's version of the ChatGPT. So I asked
7	it, well, why did it hit the back of the bus? And so
8	you see right here that in the first paragraph it
9	gives you basically three answers.
10	One is that the car sensors did not detect
11	the bus in time, which, all right, that's plausible
12	and pretty close. Another possibility is that the car
13	stopped or it made a mistake in interpreting the
14	sensor data. Also actually the right answer. And
15	then third, then it says finally it is also possible
16	that the car's driver was not paying attention.
17	Okay. All right. Game's up. I asked
18	about a self-driving car. Why did this model come
19	back and say to me that there was a car driver?
20	Didn't it know I was talking about self-driving? And
21	that's the thing you have to remember about large
22	language models. They don't know anything. They
23	don't know right from wrong. They don't know truth
24	from fiction.
25	And so what they are doing is
	I

(202) 234-4433

1 statistically predicting either the next words or the next set of embeddings, which are basically maybe 2 3 collections of, or partial collections, of words. And 4 what you will notice is that it was at the end of this 5 first paragraph that it made this mistake in bringing 6 in a driver. And that's because probabilistically the 7 further you got away from the original answer, the 8 more it's just qoinq out and grabbing other 9 distributions.

And this is what you'll hear people say that this is off distribution or, you know, out of distribution. Well, yeah, it was out of distribution. And there was no checks or balances inside the large language model because it doesn't know anything to know that that last part of the first paragraph was wrong.

17 And if you keep reading it, goes on and gives you a bunch of other propaganda, of which I 18 19 didn't ask about. I didn't ask what Cruise's policy I didn't ask whether or not self-driving cars 20 was. could actually make a difference. So I suspect that 21 rest of those answers were at 22 the least heavily filtered because Google who made this algorithm also 23 24 makes driverless cars. And so this is a good example of also a little bit of disinformation. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

You know, the manufacturers of these systems have every financial incentive to make sure that their view and their biases are represented in the data. So we have to be extremely careful, especially knowing -- figuring out whoever the content provider is.

7 So we talked about predictive maintenance 8 before. And I have seen some really impressive uses 9 of AI for predictive maintenance. Most of the efforts 10 I have seen are using GOFAI, good old-fashioned AI, which that's one thing I want to stress. Look, we've 11 got a lot of -- AI is not just one thing. 12 AI is not just a large language model. And so people shouldn't 13 14 forget about good old-fashioned AI or maybe some more 15 basic connectionist models like k-nearest neighbors, 16 right? Because, you know, some of the older, simpler techniques are still really, really good and really 17 applicable. 18

You have to really -- if you were ever going to use a neural network to do predictive maintenance, you've got to stay on top of these things. And this table that I'm showing you to the right is it's a table of a logistic regression model using some transportation data.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So I went to the Federal Highway, got a

(202) 234-4433

25

1

2

3

4

5

6

million point data set to find out which of these factors were causing or contributing to -- not causing, but contributing to people's fatalities on the road. So then you actually see four different versions of four different kinds of neural nets out

there, and a logistic regression is kind of a baby

neural net but much less non-deterministic.

8 And so one of the things I want you to see 9 is not one of these models agree with the other about 10 what the top three factors were. So I've ranked the top five for each of the methods. They maybe sort of 11 converge on vehicle type and sobriety, meaning whether 12 you're drunk or not and whether you're driving a 13 14 motorcycle or a car. But I think it's really 15 important to note that they don't agree on which one 16 is the most important or the least important.

17 And this is really, really important to think about because if you're trying to make either a 18 19 very expensive or life and death decisions on what comes out in these models, you have to appreciate none 20 of these models are wrong. None of these models are 21 They're just different. 22 right. And you need to appreciate why each model came out with a different 23 24 answer than the other models and ultimately this is an important human decision that needs to be preserved 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

because certain models work better under certain circumstances, also understanding the nature of the data underneath.

4 So I am hopeful that there are some good 5 applications of AI. But, you know, we also need to be cautiously optimistic. This hype cycle -- we are in 6 7 a massive hype cycle right now with large language 8 models. Really, it drives me insane how many people 9 believe that AI is becoming sentient and is going to 10 take over. No it's not. Not anything close. What it could do is companies who really believe that and it 11 costs a lot of money, it could potentially really kill 12 somebody's business or seriously derail them. 13

14 You know you've heard me talk a lot about 15 human and AI collaboration. These models, large 16 models, needs lot of close human language а 17 supervision. AI can be very supportive of humans. But we need to make sure that humans know, when, where 18 19 and why certain outputs may carry more uncertainty Cybersecurity and disinformation is 20 than others. huge, huge. 21

This speed limit sign that I'm showing you, some researchers went out, put some electrical tape on a 35 mile an hour sign and were able to trick the computer vision auto pilot system in a Tesla to go

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

www.nealrgross.com

278

	279
1	85 miles an hour in a 35 mile per hour zone. Very
2	unsafe. And this is what I call passive hacking. You
3	didn't even have to do anything with an electronic
4	hacking device. All you had to do was modify the
5	environment, and you saw a very antisocial dangerous
6	behaviors coming out of these cars.
7	So we have to be very, very careful that
8	we understand what the pros and cons are of using any
9	kind of AI.
10	And inside of safety critical systems, you
11	know, I am there was the head of missile defense
12	said he can't wait to get some AI inside ballistic
13	missiles. And I actually work for MBA, and I'm, like,
14	oh, no you don't. You put any AI inside of missiles,
15	I'm out. I am leaving this country because that's how
16	dangerous it would be.
17	So I think he didn't really mean it. I
18	think he was just trying to sound like he knew what he
19	was talking about. And so that leads me to my last
20	point, really workforce development is a huge issue
21	here. I think the biggest threat to national security
22	right now is the fact that there are so many people
23	who because they've read a couple of magazine articles
24	in Wired that they know what AI in the Department of
25	Defense, in the Biden administration, and it won't
l	

(202) 234-4433

	280
1	matter whose administration it is because Republicans
2	and Democrats, they're all idiots when it comes to
3	talking about what AI is and what AI isn't.
4	And so it's been very clear to me that we
5	need better education. We need better continuing
6	education. We are going to have to develop AI fact
7	checking, maintenance department. We've got to learn
8	how to manage risk, but you can't do any of that if
9	you don't know what AI really is and what it isn't.
10	And so to this end, I'm trying to start a
11	new certificate program in responsible AI at George
12	Mason, and in the spring I'm teaching a new class in
13	AI risk management. And one of the people from the
14	Public Policy School is teaching a new class in AI
15	public policy law and ethics.
16	And so those classes are actually open to
17	everyone. So it is not just George Mason students.
18	Anybody on this call, you know, email me later if you
19	want to know more about the class. But we definitely
20	whether you take my class or any other class,
21	people need to get smart about AI, especially in
22	regulatory agencies so that we can figure out when we
23	need to regulate it and when we need to leave it
24	alone.
25	All right. With that, I think, I will
l	I

	281
1	stop and then take questions.
2	CHAIR BIER: Okay. I'm guessing there are
3	probably a lot of questions and comments. I have one,
4	but I'll let somebody else go first if there are some
5	volunteers.
6	MEMBER REMPE: This is Joy. And I just
7	wanted to thank Professor Cummings for giving this
8	wonderful presentation. And I think we should clap
9	which we don't usually do because I think it was a
10	really great presentation.
11	CHAIR BIER: Okay. Do we have any online
12	hands raised? It looks like not yet.
13	MEMBER BROWN: I got a question.
14	CHAIR BIER: Okay. Go ahead.
15	MEMBER BROWN: Can you send us the view
16	graphs because it didn't come through?
17	DR. CUMMINGS: Sure. Yeah. I'll send it
18	to you.
19	MEMBER BROWN: This is Charlie Brown. I'm
20	a member. And I'm the resident skeptic of AI being
21	applied to any plant safety control systems, which I
22	have taken great abuse most of the time. So I would
23	really like to have this.
24	I have read two of your articles and have
25	been a what you have been putting into the
ļ	I

(202) 234-4433

	282
1	Spectrum, IEEE Spectrum anyway, are two really great
2	articles. So I would like some more meat to be able
3	to utilize this to hammer people.
4	CHAIR BIER: Yeah. So, Missy, I think, if
5	you just send it to Christina, she will put it on file
6	but also circulate to the rest of the committee.
7	DR. CUMMINGS: Okay. I'll do it.
8	CHAIR BIER: Great. So I will ask my
9	question then. And this isn't directly related to
10	anything you shared, but it is part of that human AI
11	collaboration.
12	I was very intrigued reading about AI in
13	health care that a radiologist and an AI performed
14	better together than two radiologist because the AI
15	sees things that a human would never see and then a
16	doctor says, like, oh, yeah, good point. I should
17	look into that.
18	But one of the things that I worry about,
19	I feel like we need a different word for social
20	loafing because how do you make sure that the human
21	still takes their job seriously once they get used to,
22	well, the AI will tell me whether this person cancer
23	or not so I can just rubberstamp it?
24	DR. CUMMINGS: Yeah. So first of all,
25	thank you for the applause. It's always hard to give
ļ	1

(202) 234-4433

	283
1	these talks, as you know, over Zoom. And to your
2	question, so I do think that there is room to be
3	concerned about the complacency effect, which is
4	really what you're saying. It's like how do we make
5	sure that people don't become habituated?
6	And I will tell you that most of the
7	people who I know who actually use AI in practice,
8	because we see these failure modes over and over and
9	over again, sometimes in very sneaky ways, I don't
10	know anybody who uses AI for real that doesn't
11	distrust it greatly, right?
12	I mean, I think you're calibrated very
13	quickly that the AI can really screw up in major ways.
14	Now, is that to say that as we, you know, start to
15	deploy this technology more and more we could get
16	complacent? Yes. I mean, that's true. I would say
17	that's kind of true of just humans in general.
18	So I think that in the medical world if
19	somebody hired me to be a consultant to make sure that
20	didn't happen, what I would do is I would sneak in
21	every now and then an AI mistake to kind of
22	recalibrate people to see if people catch it. It's
23	almost like you could think about that's what they do
24	at the airports, right, for the scanners. Every now
25	and then, they will slip in a gun to see if people are
	1

(202) 234-4433

	284
1	paying attention.
2	So I do think that we do need to think
3	about that. But also, this goes back to the
4	continuing education. I find doctors also don't often
5	really, even though they are smart people, obviously,
6	they don't understand AI.
7	So I think doctors, as part of their
8	medical school training, need to you know, they
9	need to take my Missy Cummings course so I can
10	correctly teach them what is good and bad and, you
11	know, what you should be on the lookout for and not on
12	the lookout for.
13	I think that we will get there one day.
14	The bigger problem there is universities are not
15	turning out enough people that can reach across the
16	different aisles, domains to talk about you know,
17	to get education in AI. So, you know, and that's on
18	the universities to get more people to do that.
19	CHAIR BIER: So in other words the people
20	who know how to tune the model also need to know how
21	to double-check the model or what's wrong with the
22	model or whatever?
23	DR. CUMMINGS: Yeah. And we also need to
24	be able to teach people how to spot problems.
25	Because, for example, and this is the whole AI
ļ	I

(202) 234-4433

285 1 maintenance problem. If a hospital is going to bring in an AI radiologist, then they also need to develop 2 3 an AI maintenance team. And it will be the job of 4 that team to keep track of the model but also to 5 communicate with the doctors to make sure that they know what the latest and greatest issues were or what 6 7 to be on the lookout for so that they could report 8 problems to the AI maintenance team. 9 And so this is where people think that if 10 you have like an AI radiologist, it may reduce workload and maybe you'll say maybe we'll all need to 11 reduce the need for radiologists, but the actuality is 12 you're going to need to hire a new AI maintenance 13 14 And right now, the AI maintenance team would team. cost you way more than that same number of bodies of 15 16 doctors. 17 CHAIR BIER: Other questions or comments? MEMBER MARTIN: I'll jump just to keep it 18 19 I would say -- this is Bob Martin. talking. For a body like ourselves, it would be merely skeptical 20 because for a quardrail on safety. So I don't think 21 you find a lot of debate among us. 22 You know, we've heard from different 23

You know, we've heard from different groups during the day. I think everyone has kind of said we're all interested in improving human

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	286
1	performance. I will say the difference maybe between,
2	you know, early morning and then you, Dr. Cummings,
3	and then, you know, INL. INL talked about an
4	application where I think there was a profit builder,
5	right, save some money on their end.
6	And that's where I get more concerned,
7	right? Because that's when the compromises show up.
8	That can save time. That would be a luddite, right?
9	And I think about how, say, you'll see people on
10	I'm on LinkedIn too much, but oftentimes you will see
11	people disparage electric vehicles, right? It will
12	show a video of a long line at a charging station or
13	something like that. They say well, this is never
14	going to happen or, you know, maybe you've seen the
15	image of a diesel generator next to a charging station
16	or something like that.
17	And, you know, I look at a technology like
18	that, and it's going to come. I mean, it's going to
19	mature. We need to be you know, it will
20	incrementally get better, infrastructurally better.
21	And to a great extent I see AI as being the same kind
22	of thing. It's exciting and new and different than
23	it's ever been before. It will continue to develop as
24	long as there is excitement with it. And there is
25	going to be excitement with it.
I	1

(202) 234-4433

	287			
1	It's the incremental nature of really any			
2	technology development that ultimately gets it			
3	accepted.			
4	So when it comes to something like safety,			
5	I think you need to start, you know, as a society, you			
6	know, establishing the rules that will otherwise gain			
7	that acceptance one day. And maybe that's some of the			
8	ask of a project at the NRC is to characterize that,			
9	but I think we need to step back in a broader sense			
10	and just what is it for nuclear?			
11	It's a bigger problem than that, and it's			
12	a longer term problem than that. And then the cynic			
13	in me is going to say, even when you get to that			
14	point, it's going to be a question of liability. Who			
15	is going to be willing to stand behind that? And if			
16	you throw all those things together, it seems it's			
17	going to be a very, very long time before it gets to			
18	something that, again, from a safety standpoint, you			
19	know, what people accept.			
20	But nonetheless, it is a fascinating time,			
21	which, of course, motivated all these meetings today.			
22	And, you know, progress is only going to accelerate			
23	really, I mean, with more people looking at it.			
24	So, anyway, it's a mixed message, right?			
25	I mean, but I don't know if you had any thoughts			
ļ				

(202) 234-4433

about, you know, progress towards criteria articulating, you know, measures, metrics, figures of merit that would be appropriate for, you know, applications of AI and safety, of course, I think, are run here and research would, of course, appreciate that. But I haven't quite found that today. But it's certainly a topic, a subject for the future, a future meeting.

9 This is Greq Halnon. MEMBER HALNON: Ι 10 guess I got to make a comment because having been previous an idiot on this, my thought for the day, I 11 was getting kind of excited that this could really 12 I am back into the idiot hood again, and my 13 work. 14 tank is empty. So I guess, Dr. Cummings, I need to 15 take your course and refill that tank a little bit.

However, I would hope that as we go forward and as we get presentations, we get a balanced view of it because we certainly get an unbalanced view, not intentionally, but -- and Dr. Cummings brought the other side of the balance to us.

It would be nice for us not to have to 21 force presentations 22 that into the through our questions and reminding us. So thank you for your 23 24 counterbalance. I quess I will look forward to asking the questions that you brought up. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	289
1	CHAIR BIER: That actually that issue
2	of balance reminds me of another question that I don't
3	know if you want to answer now, Missy, or you want to
4	maybe email me or Christina afterwards if you think of
5	some. Who are two or three people that we should
6	either be hearing from in the future or reading in the
7	future whose work you respect, but who would take a
8	slightly different perspective than you on AI or on
9	automation or whatever?
10	DR. CUMMINGS: I will send you a couple of
11	people.
12	CHAIR BIER: Super.
13	DR. CUMMINGS: Yeah. So that you can read
14	their work.
15	CHAIR BIER: Great.
16	DR. CUMMINGS: I just think, you know, I'm
17	not saying the future is not bright. The future is
18	going to be bright for those people who understand AI
19	truly and understand its limitations and its
20	strengths, and they understand how to build the
21	collaboration between humans and the technology.
22	If you don't remember anything else I say
23	today, you need to remember that when it comes to
24	large language models, there is no knowledge. And
25	this is true of all of AI. That per that diagram I
ļ	I

(202) 234-4433

	290
1	showed you, there is no AI that can get over that
2	wall. And until there is, we're not going to have
3	truly autonomous systems.
4	MEMBER KIRCHNER: Missy, I would say maybe
5	you should not have not that they're going to be,
6	but we shouldn't adopt them.
7	MEMBER BROWN: This is Charlie Brown
8	again. How do you get over that hurdle? I'm not
9	against AI, even though I sound like I am, because I'm
10	not for it in its present configuration. But I keep
11	trying to stress in the program here that you
12	shouldn't go after the most glossy shiny bauble that's
13	now coming down the street if it doesn't add value to
14	the performance of the systems and the plants that
15	you're dealing with. It's similar to the electric car
16	conundrum, that my gas tank will always hold 20
17	gallons, no matter how old the car is. A battery
18	always loses its ability to be fully charged over
19	time.
20	I fill my gas tank up in 10 minutes when
21	I'm on the road traveling 600 miles. I do this three
22	times. The battery charge, no matter what you do with
23	batteries, it's never going to fill up in 10 minutes.
24	So how do you balance or get people to understand the
25	differentiations of the usefulness of the various
	I

(202) 234-4433

technologies?

1

2

3

4

5

6

7

By the way, I'm an electrical engineer. I happen to love motors. They are very efficient. They do a great job. It's just that the application is difficult. And how do you get over the hurdle in this world that people just don't start stuffing it in?

8 Like computer-based systems are the 9 things in the world, but they're qreatest more The software is difficult to maintain, 10 complicated. and you've got to worry about it being compromised. 11 But if it adds value, that's good. If it doesn't add 12 value, it's not. But how do you convince people to 13 14 keep that adding value perspective in their minds when we're applying it to particularly large plants like 15 nuclear power plants or other power plants that they 16 17 are starting to adopt these types of technologies?

I don't know the answer to that. I just keep talking about it. But it seems like it's difficult to get it through. Your articles at least help make the case. So it's not easy.

DR. CUMMINGS: Yes, and I will tell you that if I knew what it would take to get over that wall, I wouldn't be talking to you. I would be out there starting my own company and becoming extremely

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	292
1	wealthy.
2	MEMBER BROWN: I would be joining you.
3	DR. CUMMINGS: What I would also say,
4	look, we're still in the early days. And I am trying
5	to socialize the idea of the science of AI safety.
6	And so if you could do one thing for me,
7	everybody on this call, it is to really help me with
8	this mantra. We need to know the science of AI
9	safety. We need to start coming up with these tests
10	and these metrics and the way to assess goodness or
11	good-enough-ness, right?
12	But until federal agencies like yourselves
13	start to formalize that, we're going to all be you
14	know, all of us are just going to be kind of like
15	blind people walking around in the dark.
16	So, you know, when you come up with your
17	going forward, if you will stress the science of AI
18	safety, then I promise you, we will make progress down
19	this path.
20	MEMBER MARTIN: One other thought here, I
21	can't help this. In 1942, Isaac Asimov wrote three
22	laws of robotics. Do we have better laws now? I
23	mean, everyone knows what I'm referring to.
24	DR. CUMMINGS: I'm not even sure well,
25	I mean, we could argue that there is a lot of
I	

(202) 234-4433

	293
1	technology out there right now that doesn't obey his
2	laws.
3	And I think my advice would be, look, that
4	oversimplifies it. It's very complicated. And there
5	are many twists and turns to this technology. That's
6	why you guys need an AI division at the NRC, right, so
7	that you can really start to understand and have the
8	conversations about risk.
9	DR. SCHULTZ: This is Steve Schultz. Just
10	thanks for bringing AI safety up to the
11	DR. CUMMINGS: You're welcome.
12	DR. SCHULTZ: bringing AI safety up to
13	a very high level. One of the things that
14	PARTICIPANT: Just try a different
15	microphone.
16	DR. SCHULTZ: Putting AI safety at a very
17	high level because one of two of the things that
18	were encouraging to me today where we started with
19	presentations from the staff thinking about or with
20	their program thinking about how AI is going to be
21	integrated culturally throughout the organization is
22	that on the side there are also comments associated
23	with assuring that of the safety culture that the
24	industry has developed over the last decade or two now
25	and that the efforts and programs associated with
ļ	I

(202) 234-4433

risk-informed regulatory actions going forward, if all of that can be integrated with AI safety, that would be a good place to be, I think. But if we don't focus on integrating that at a very high level to those very important programs of risk-informed regulation and safety culture, then we're going to go in the wrong direction with AI safety.

8 DR. CUMMINGS: Well, I would say that you 9 can't go wrong by at least bringing it up. And 10 because right now people are not talking about it. 11 The fact that Cruise, a self-driving care vehicle, is 12 just now advertising a job for safety tells you a lot 13 about where they are.

14 CHAIR BIER: So we have had a pretty long 15 day here in this room. And it seems like the 16 conversation is kind of winding down. So I would just 17 like to thank you again and remind you to be in touch 18 with Christina both to send your slides and suggested 19 further readings. And this was really excellent.

Yes, we need to open up for public
comment. Thank you, Charlie, for reminding me.
MEMBER REMPE: Before you do that -CHAIR BIER: Yes.
MEMBER REMPE: -- too -CHAIR BIER: Yeah.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	295			
1	MEMBER REMPE: I just would like to			
2	reiterate something I brought up at the last full			
3	committee meeting about this seminar. I will be no			
4	longer a member by the end of this year.			
5	CHAIR BIER: Yes.			
6	MEMBER REMPE: But the research plan will			
7	be coming up in the next year.			
8	CHAIR BIER: Yes.			
9	MEMBER REMPE: And this is something that			
10	I think ought to be highlighted. But, again, I won't			
11	be a member. But I think we forget sometimes. And if			
12	I were you, I would ask members to send you a few			
13	comments.			
14	There were a lot of good recommendations			
15	during the staff presentation. Actually bringing in			
16	an outside speaker I think is something worth noting			
17	and some of the comments made during those			
18	presentations. So anyway, I just wanted to bring that			
19	up again and remind members to send you something.			
20	CHAIR BIER: Okay. So I guess we will			
21	start taking public comments.			
22	MR. SLIDER: I'm Jim Slider.			
23	(Simultaneous speaking.)			
24	MR. SLIDER: All right. We'll try it			
25	again. So Jim Slider, NEI. (Audio interference)			
	I			

(202) 234-4433

1 innovations. And right now а number of the innovations we are interested in are using AI. You've 2 3 heard about some of them today such as using AI to 4 screen non-destructive examination information and so 5 forth, find the needles in the hay stack.

It's been a great day. I really appreciate you all working into this subject. And I would just add that much of what the industry is doing right now parallels what you heard from the staff this morning.

They are learning with some of these safe 11 applications of AI for screening data, developing that 12 expertise and so forth as the staff is developing 13 14 their expertise. And you will also hear from another 15 industry member in the room here, we are not looking at putting it into control systems, certainly not in 16 17 the operating plants. It may be years down the road under consideration for advanced reactors, but for the 18 19 legacy fleet, we are not looking at controls.

20 So I appreciate the dialogue today. And 21 I just want to thank you again for a very informative 22 discussion.

CHAIR BIER: Okay. Further comments?
MEMBER DIMITRIJEVIC: There is somebody on
the line with their hand raised.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

6

7

8

9

10

	297			
1	CHAIR BIER: Yes. We will get to that.			
2	Thank you, Vesna.			
3	MR. SZOCH: Hi, everybody. I am Rich			
4	Szoch. I'm with Constellation Energy. I manage the			
5	nuclear innovation team that oversees our innovation			
6	activities for our fleet of 21 reactors, and now 23			
7	with South Texas.			
8	So I thought I would give you an update.			
9	I spoke to you about a year ago, if you remember, on			
10	some of the applications we had in mind. I thought I			
11	would just give you a brief synopsis, very brief, on			
12	last year's progress because I think it fits exactly			
13	into the last presentation that we had.			
14	First of all to reiterate what Jim said,			
15	I'm an engineer. I've been with the company for			
16	almost 40 years now and in the industry for 43. So			
17	one thing I learned in the nuclear industry, and I			
18	think throughout my life, is that probability versus			
19	consequence approach to design engineering, to			
20	approach making decisions. So obviously in the			
21	domestic U.S. industry and nuclear industry and the			
22	world, that is of utmost importance.			
23	Our focus is not in the control room.			
24	It's not on high risk systems. It's not on safety-			
25	related or important to safety, which is really the			
I	1			

(202) 234-4433

correct term by the way. It's more than safety So we should be careful with that because I related. hear that in the industry. Oh, it's safety or it's not. It's not incentive and so it's non-safety, so we're okay. No, it's not. We have to look at it Is it in the FSARs, as I mentioned? broadly. Is it part of the licensing documents? So looking broader 8 at that.

9 There's no intention, and no need, and no 10 business value, and no real significant requirement or benefit to improve our safety margins beyond what they 11 are today by using artificial intelligence. We are to 12 challenge those safety margins. That is the risk. 13 So 14 we don't see that today.

15 But we do see great value in some of the 16 applications that I talked about. One of them, and I 17 think Dennis mentioned a couple of them this morning. We have an application where we are looking at test 18 19 scores for operator trained -- control room operators in their 18 month training class, their license class, 20 where we can now anticipate when an operator may be 21 developing a weak spot or has a weak spot even though 22 they are passing all of their exams throughout the 23 24 course. There is a technical knowledge gap that has to be addressed. And they challenge their end result 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	299
1	getting a license.
2	So we can determine that sooner rather
3	than later increasing the probability of one not only
4	selecting the right students, but to ensure that they
5	are successful in the end. It's not just a safety
6	issue, but it's a cost-saving measure. It costs over
7	\$4 million to put a student through a class.
8	So that's in place, and it's working well.
9	The instructors love it. It takes the human element
10	out of having to manually try to determine that. It
11	automates it and provides the information to the
12	training instructors.
13	And, again, in these other next two
14	examples, the corrective action program, we use
15	analytics to ascertain which corrective action or
16	issue report or what we call non-conformance reports
17	in the industry in the plants, which are important,
18	which are important to safety, which are not, and
19	which need attention, which need urgent action. And
20	we've done a year of testing of that. And we get
21	really good results from that.
22	It's, again, saving the number of people
23	that need to review and need to manually do those
24	reviews, which not only increases efficiencies, but
25	it's actually more accurate. It's more consistent
	1

(202) 234-4433

1 decision-making. We find that we train these models to the point where it's better than just having a set 2 of 6 or 10 humans reviewing these reports. 3 4 And finally I will say that we've got an 5 application now that we're developing. It's soon to be deployed. Where we are taking all the information 6 7 that we heard from our digital twin models that we 8 talked about earlier today. I think I mentioned that 9 to you a year ago, we had the digital twinning of we can predictively 10 modeling equipment SO that determine when a piece of equipment may fail. It used 11 to be, okay, a couple weeks ahead of time. Now we get 12 degraded 13 months in advance we can determine

15 information We're taking that and 16 eventually we're going to feed that into the work 17 management process, which is also automated analytics so that teams of 40 or 50 planners per year that we 18 19 use to develop work packages to get work done during outages to address and improve equipment performance 20 is now going to be whittled down to single digit 21 numbers of people because we are using analytics that 22 say, hey, I've done this maintenance before. 23 I know 24 the piece of equipment you're working on. Here's the historical data. Here is the work package that needs 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

14

performance.

	301
1	to be done. You press a button. And in 17 seconds it
2	gives you a work package whereas before it took 24 to
3	48 hours of worker time to develop that work package,
4	the research that had to be done.
5	So that the search capabilities and
6	analyzing historical data and working with what's
7	important from a safety perspective and automating
8	that to some degree has brought great efficiencies.
9	And keeping the human in ensures that we maintain that
10	same low risk probability and low consequence of
11	failure. Thank you.
12	CHAIR BIER: Thank you. So any further
13	comments in the room? If not, Norbert, please go
14	ahead with your comment.
15	MR. CARTE: Yes, Norbert Carte. I work
16	for the NRC in I&C, but it's more of a public comment
17	than an NRC position.
18	So I think Vicki is right. What's going
19	to happen first is you're going to introduce AI in
20	non-controlled tasks. But in doing that, as Richard
21	alluded, in doing that, you're going to change how the
22	whole system works. And when you change the system,
23	you're going to have new strengths and weaknesses.
24	And what you need to be really careful for
25	is when you change how everything is done, are you
ļ	

(202) 234-4433

	302
1	introducing weaknesses like social loafing, that only
2	being one instance of one type of weakness, right?
3	But you are going to have a set of weaknesses related
4	to how people work in that new environment and that's
5	going to be your first threat. Thank you.
6	CHAIR BIER: Any further public comments?
7	If not, I want to thank all of the presenters for what
8	was really an excellent day. And I think we can now
9	be adjourned.
10	(Whereupon, the above-entitled matter went
11	off the record at 4:47 p.m.)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	I

Data Science and Al Regulatory Applications Public Workshop Sumary and Findings

ACRS Joint Digital I&C and Human Factors Subcommittee Meeting November 15, 2023

> Matt Dennis Trey Hathaway

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Division of Systems Analysis

Presenters

- NRC Technical Staff Presenters
 - Matt Dennis Reactor Systems Engineer (Data Scientist), RES/DSA/AAB
 - Trey Hathaway Reactor Systems Engineer (Code Development), RES/DSA/AAB
- NRC AI Champions
 - Paul Krohn Division Director, R1/DRSS
 - Victor Hall Deputy Division Director, RES/DSA
 - Luis Betancourt Branch Chief, RES/DSA/AAB

Outline

- Artificial Intelligence (AI) Landscape and the NRC
- Data Science and AI Regulatory Applications Workshops Overview
- Workshop Panel Session Summaries
- High Level Observations
- Moving Forward and Stakeholder Engagement

Artificial Intelligence (AI) Landscape and the NRC

NUCLEAR INDUSTRY (EXTERNAL) Industry wants to use AI ARTIFICIA STRATEGIC PLAN Fiscal Years 2023-2023 AI Strategic Plan to prepare staff to review AI

OTHER CONSIDERATIONS AND OPPORTUNITIES (INTERNAL)

Federal actions for advancing the use of AI in government operations

ACTIVITIES

Wide range of AI meetings,

conferences, and activities

INTERNAL TO THE NRC

NRC Evidence Building Priority Questions

Chair's Memorandum on Advancing the Use of AI at the U.S. NRC*

Internal interest in researching AI-based tools ranging from Al-embedded in commercial applications to custom programming pythor

Data Science and AI Workshops Overview

- Public workshop series* has discussed Intro to AI, Current Topics, Future Focused Initiatives, and AI Characteristics for Regulatory Consideration
- Observations from prior workshops (2021)
 - Industry interest in regulatory guidance
 - Nuclear-specific data sharing would benefit development of data hungry AI applications
 - As of 2021, potential AI application deployment in 1-2 years and regulated applications in 3-5 years

Workshop #4:

AI Characteristics for Regulatory Consideration

- Purpose
 - Discussion with NRC staff, international counterparts, academia, and industry on the multifaceted attributes of AI systems and their implications for regulatory considerations
 - Provide feedback on regulatory and technical issues surrounding AI usage in nuclear applications
 - Inform implementation of NRC's AI Strategic Plan (NUREG-2261, <u>ML23132A305</u>)
- Panel Sessions
 - Regulatory Perspectives on Al
 - AI Safety, Security and Explainability
 - AI Application Considerations

Workshop #4: AI Characteristics for Regulatory Consideration (<u>ML23268A314</u>) September 19, 2023 10:00 a.m. – 4:00 p.m. ET			
Time (Eastern)	Торіс	Presenter	
10:00 a.m. – 10:30 a.m.	Opening Remarks	Chair Christopher T. Hanson (NRC)	
10:30 a.m. – 11:00 a.m.	AI Characteristics for Regulatory Consideration	Matt Dennis (NRC)	
11:00 a.m. – 12:15 p.m. Panel Session: Regulatory Perspectives on AI Session Chair – Paul Krohn (NRC) Kevin Lee (CNSC) Andrew White (UK ONR) Ben-Mekki Ayadi, Eric Letang (IRSN) Var Shankar (Responsible Al Institute)		Kevin Lee (CNSC) Andrew White (UK ONR)	
12:15 p.m. – 1:00 p.m.		Break	
1:00 p.m. – 2:15 p.m.	Panel Session: AI Safety, Security and Explainability	Session Chair – Josh Kaizer (NRC) <u>Rick Kuhn (NIST)</u> <u>Ali Raz (George Mason University)</u> <u>Fan Zhang (Georgia Tech)</u> <u>Xu Wu (North Carolina State University)</u>	
2:15 p.m. – 2:30 p.m.		Break	
2:30 p.m. – 3:45 p.m.	Panel Session: AI Application Considerations Panel Session Chair – Jesse Seymour (NRC) <u>Rick Szoch, Jonathan Hodges (Constellation Nuclear, Jensen Hughes)</u> <u>Clint Carter (Utilities Service Alliance)</u> <u>Scott Sidener (Westinghouse)</u> Ryan Miller (TerraPower)		
3:45 p.m. – 4:00 p.m.	3:45 p.m. – 4:00 p.m. Open Discussion and Closing		

AI Characteristics for Regulatory Consideration

- NRC AI Strategic Plan (NUREG-2261, <u>ML23132A305</u>)
 - Table 1, "Notional AI and Autonomy Levels in Commercial Nuclear Activities"
 notional framework to consider the levels of human-machine interaction with AI systems
 - Served as a starting point in the workshop to further discuss the variety of AI attributes which may affect regulatory considerations at each notional level
- Al Attributes Working Group
 - Formed May 2023 and includes members from multiple agency offices
 - Paul Krohn, Matt Dennis, Trey Hathaway, Jonathan Barr, Reed Anzalone, Josh Kaizer, Dave Desaulniers, Jesse Seymour, Tanvir Siddiky, Joshua Smith, Scott Rutenkroger, David Strickland, and Howard Benowitz

Disclaimer to AI Regulatory Considerations

- Considering NIST AI Risk Management Framework (RMF)* and other frameworks for future alignment
- The following AI characteristics and considerations for developing AI systems does not represent an exhaustive list of categories for consideration
- The following AI characteristics are defined by a range of implementation levels that may impact regulatory decisionmaking

AI Characteristics for Regulatory Consideration

Safety Significance	Al Autonomy	Security	Explainability
Model	Regulated	Regulatory	Application
Lifecycle	Activity	Approval	Maturity

Regulatory Perspectives on AI Panel Session

- Panel session sought to engage with regulators and safety experts on considerations for AI systems and deployment in the nuclear industry
- <u>Canadian Nuclear Safety Commission (CNSC)</u>
 - Exploring usage and regulation of innovative technologies as part of the Disruptive, Innovative and Emerging Technologies (DIET) Working Group
 - Commissioned "<u>A Study for the Canadian Nuclear Safety Commission on Artificial Intelligence Applications and Implications for the Nuclear Industry</u>"
- U.K. Office for Nuclear Regulation (ONR)
 - Issued <u>report</u> on the impact of AI/ML on nuclear regulation
 - Considered two AI/ML applications as part of regulatory sandbox
 - Possesses a flexible regulatory approach which can function without standards
- French Institute for Radiation Protection and Nuclear Safety (IRSN)
 - Data governance, risk management and human monitoring are essential for high-risk AI applications
 - EU AI Act establishes rules based on level of risk
- <u>Responsible AI Institute (RAII)</u>
 - Provided recommendations from Certification Working Group on frameworks to validate AI tools and technologies as responsible, trustworthy, ethical, and fair
 - Evaluation, validation and certification potential using the RAII Certification Framework
 - Two leading auditable, voluntary standards: NIST AI Risk Management Framework (RMF) and ISO 42001 (AI Management Systems)

AI Safety, Security and Explainability Panel Session

- Panel session sought to share and discuss research into AI risks associated with the development and use of AI tools
- National Institute of Standards and Technology
 - Numerous NIST projects being undertaken to support NIST AI RMF
 - Described issues with conventional assurance processes for autonomous systems
 - Current approaches to estimating success for transfer learning are largely ad-hoc and not highly effective and combinatorial methods show promise
- George Mason University
 - Research into ML safety issues concerning robustness, monitoring, alignment and systemic safety
 - Discussed explainable AI (how does the input influence decision making) and counterfactual testing (how to respond to unmodeled uncertainty)
 - Examining model response in counterfactual cases to expose the black box nature of the model
- Georgia Institute of Technology
 - Discussed enhancing cybersecurity of nuclear systems using AI/ML
 - Developed and tested a multi-layer cyber-attack detection system using ML
 - ML can provide cybersecurity monitoring benefits to observe unexpected systems changes
- North Carolina State University
 - Application-agnostic algorithms for traditional ML algorithms cannot be applied directly to nuclear applications
 - Methods presented to quantify uncertainties in deep neural networks (e.g., Monte Carlo dropout, deep ensembles, and Bayesian neural networks)
 - Example provided on using deep neural networks to predict axial neutron flux profiles

AI Application Considerations Panel Session

- Panel session sought to share and discuss industry potential AI use cases and experiences
- <u>Constellation Nuclear, Jensen Hughes</u>
 - No clear industry-specific verification & validation (V&V) guidance for software that is driven by AI
 - Developed tool for data-driven incident report classifications with explainability approach to document model predictions, high-level summary of rationale, and formal technical V&V
- <u>Utilities Service Alliance</u>
 - Advanced remote monitoring project phase 1 is working with INL to embed AI in areas such as operator rounds, process anomaly
 detection, fire watch, and online transformer monitoring
 - Assessment that regulatory readiness level is at a 2 of 5 and is planning future effort in phase 2 to explore AI-driven autonomous inspection, rounds, and response
- Westinghouse
 - Emphasized the importance of creating an ethical AI corporate policy to ensure guardrails
 - Human validation of AI models can be effective but risky, so rely on validation metrics and simulate the impact of incorrect results
 - AI validation should assume model performance will change with time and should be monitored continuously
- <u>TerraPower</u>
 - No active plans to use AI, but AI could be beneficial in a highly passive design which doesn't rely on operators for safety function
 - Discussed high-level thoughts on using AI for engineering document preparation
 - Considerations for using AI in a nuclear power plant include how to validate AI recommendations to licensed operators and if we should reevaluate the role human operators play in plant operations if AI is used

Disclaimer: Items above represent a summary of comments provided from workshop presenters and do not necessarily reflect NRC views

Key Takeaways from AI Workshop #4

- Panel sessions confirmed that the NRC remains well informed on the status of international AI regulation and domestic R&D projects in the nuclear industry
- Al regulatory sandboxes provide a unique opportunity for industry and regulators to collaboratively explore the potential hurdles and benefits from using AI in safety-related nuclear applications
- Industry representatives encouraged continued collaboration to pursue pilot studies and proofs of concept as a foundation for reviewing the use of AI in NRC-regulated activities

14

NRC AI Considerations

Traceable and auditable AI evaluation methodologies Understanding licensee and applicant AI usage

Future

Current

Regulatory guidance and decision-making development Differentiating AI usage for design versus AI-enabled autonomy Explainable AI and trustworthy AI – reliability and assurance Internal AI resources predicated on emergent industry applications

Moving Forward and Stakeholder Engagement

- Continued safety and security in the nuclear industry is paramount
- Embrace new and innovative ways to meet NRC's mission
- Maintain strong partnerships with domestic and international counterparts
- Continue to encourage stakeholders to engage with the NRC early and often on plans and operating experience

Future Activities

- Internal NRC AI Working Group to continue discussion of AI characteristics for regulatory consideration
- Regulatory framework applicability assessment of AI in nuclear applications (Summer 2023-Spring 2024)
- Planning for Summer 2024 AI Workshop on regulatory gaps and considerations

Abbreviations

- AI Artificial Intelligence
- CNSC Canadian Nuclear Safety
 Commission
- DOE U.S. Department of Energy
- IRSN French Institute for Radiation Protection and Nuclear Safety
- ISO International Organization for Standardization
- ML Machine Learning

- NIST National Institute of Standards and Technology
- NRC U.S. Nuclear Regulatory Commission
- ONR U.K. Office for Nuclear Regulation
- RAII Responsible Al Institute
- R&D Research and development
- V&V Verification and Validation

18

BACKUP SLIDES

Nuclear Industry AI Landscape

• Industry Project Categories

- Increasing existing economic efficiency
- Plant condition monitoring
- Process improvement and cost reduction
- Plant automation
- Sensor-enabled degradation assessment

• Example Operating Reactor Applications Areas

- Non-destructive examination
- Advanced remote monitoring
- Corrective action process automation
- Core design optimization
- Generative document preparation
- Physics-informed surrogate models
- Example Advanced Reactor Application Areas
 - AI/ML-enabled digital twins
 - Autonomous operation of backend processes
 - Design optimization

Summary Considerations (1/2)

- <u>Existing Guidance</u> Traditional safety, security, software, and systems engineering practices are still applicable as the starting point for good engineering practice.
- <u>Establishing a Trustworthy System</u> Explainability exposes a chain of decision-making for potentially complex logic that is easily interpretable by anyone unfamiliar with the AI system design. This applies to all stakeholders which include reviewers (e.g., regulators) as well as system users.
- <u>Safety Principles using Risk or Determinism</u> In the absence of the ability to quantify risk, there are good engineering principles (e.g., defense-in-depth) that can be used to guard against unintended consequences.
- <u>Open-Source Tools</u> Use of open-source tools are not precluded, but using non-specialized software solutions means that there are steps taken to rigorously confirm the safety and security of the implemented solution.

Summary Considerations (2/2)

- <u>Failure and Consequence Identification</u> A first step as part of AI systems engineering, a
 formalized process to quantify the hazards and modes of operation can be considered to ensure
 adequate system design.
- <u>Data Provenance</u> Based on a graded approach, the modeling data may have a variety of various pedigrees based on the application area (e.g., safety significance).
- <u>Model Updating</u> Models need to be maintained to avoid performance degradation and kept consistent with the pre-determined change control and notification process for that application.
- <u>Human and Organizational Factors</u> The context of operation needs to consider the handover to human operation, immediacy for human action, or if placement in a safe stable state is required based on the operational context.
- <u>Extensive Application Areas</u> A variety of regulatory requirements apply to various potential AI application areas. Existing requirements may range from evaluation of sufficient functional performance up to specific requirements to ensure AI system safety and security.

Notional AI and Autonomy Levels in Commercial Nuclear Activities

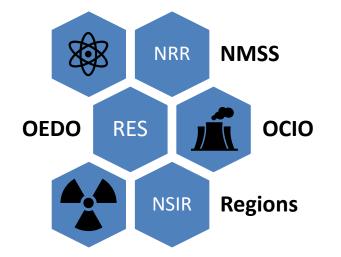
	Level	Notional AI and	Potential Uses of AI and	
	Level	Autonomy Levels	Autonomy in Commercial Nuclear Activities	
Human	Level 0	AI Not Used	No AI or autonomy integration in systems or processes	
Involvement		<u>Insight</u>	Al integration in systems is used for optimization,	
	Level 1	Human decision-making	operational guidance, or business process automation that	
		assisted by a machine	would not affect plant safety/security and control	
		Collaboration	AI integration in systems where algorithms make	
	Level 2	Human decision-making	recommendations that could affect plant safety/security	
		augmented by a machine	and control are vetted and carried out by a human	
		augmenteu by a machine	decisionmaker	
	Level 3	Operation	AI and autonomy integration in systems where algorithms	
	LEVEIJ	Machine decision-making	make decisions and conduct operations with human	
		supervised by a human	oversight that could affect plant safety/security and control	
		Fully Autonomous	Fully autonomous AI in systems where the algorithm is	
	Level 4	Machine decision-making	responsible for operation, control, and intelligent	
		with no human intervention	adaptation without reliance on human intervention or	Machine
			oversight that could affect plant safety/security and control	Independenc

Common Understanding of the Level Key for Regulatory Readiness

Clarifying Automation, Autonomy, and Al

- Al technologies can enable autonomous systems
 - Not all uses of AI are fully autonomous as many may be used to augment human decision-making rather than replace it.
 - Higher autonomy levels indicate less reliance on human intervention or oversight and, therefore, may require greater regulatory scrutiny of the AI system.
- Multiple definitions exist; however, it is important to have a clear understanding of the differences between automation and autonomy
 - <u>Automation</u> considered to be a system that automatically acts on a specific task according to <u>pre-</u> <u>defined, prescriptive rules</u>. For example, reactor protection systems are automatically actuated when process parameters exceed certain defined limits.
 - <u>Autonomy</u> a set of intelligence-based capabilities that <u>allows the system to respond to situations</u> <u>that were not pre-programmed or anticipated</u> (i.e., decision-based responses) prior to system deployment. Autonomous systems have a degree of self-governance and self-directed behavior resulting in the ability to compensate for system failures without external intervention.

NRC AI Project Plan


Advisory Committee on Reactor Safeguards Joint Digital I&C and Human Factors Subcommittee Meeting November 15, 2023

Anthony Valiaveedu

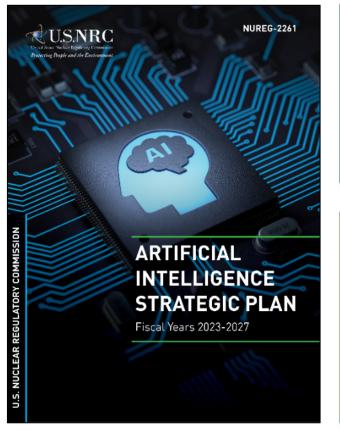
U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Division of Systems Analysis

Presenters

- NRC Technical Staff Presenters
 - Anthony Valiaveedu Reactor Systems Engineer (Data Scientist), RES/DSA/AAB
 - Matt Dennis Reactor Systems Engineer (Data Scientist), RES/DSA/AAB
 - Trey Hathaway Reactor Systems Engineer (Code Development), RES/DSA/AAB
- NRC AI Champions
 - Paul Krohn Division Director, R1/DRSS
 - Victor Hall Deputy Division Director, RES/DSA
 - Luis Betancourt Branch Chief, RES/DSA/AAB

- Background
- Al Strategic Plan Overview
- Al Project Plan Overview
- Moving Forward and Stakeholder Engagement

Outline



Background

Al Strategic Plan Overview

Available at ML23132A305

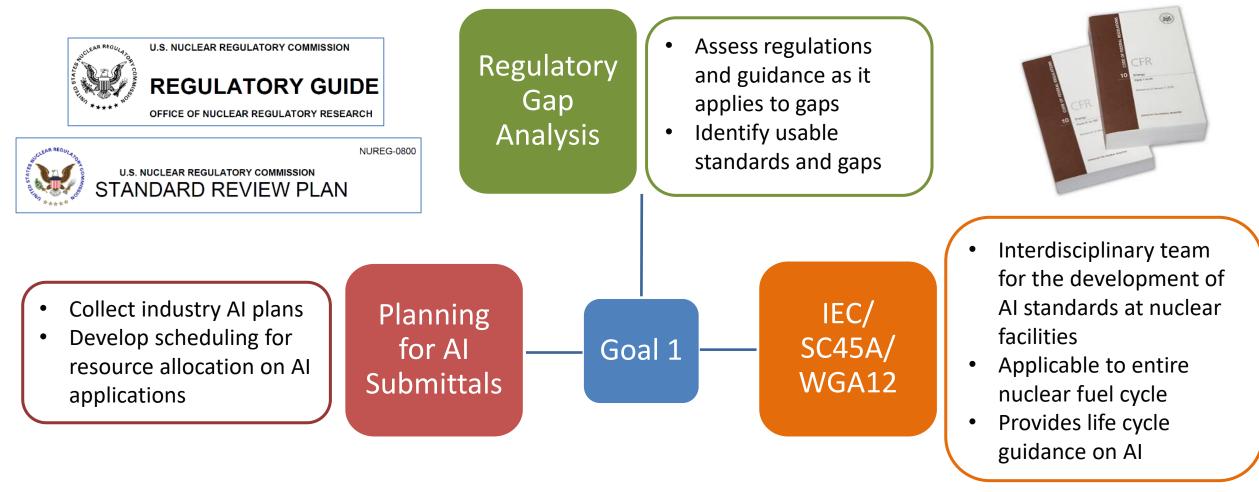
Vision and Expected Outcomes

- Continue to keep pace with technological innovations to <u>ensure the safe</u> and secure use of AI in NRC-regulated activities
- Establish an AI framework and cultivate a skilled workforce to review and evaluate the use of AI in NRC-regulated activities

The AI Strategic Plan consists of five strategic goals:

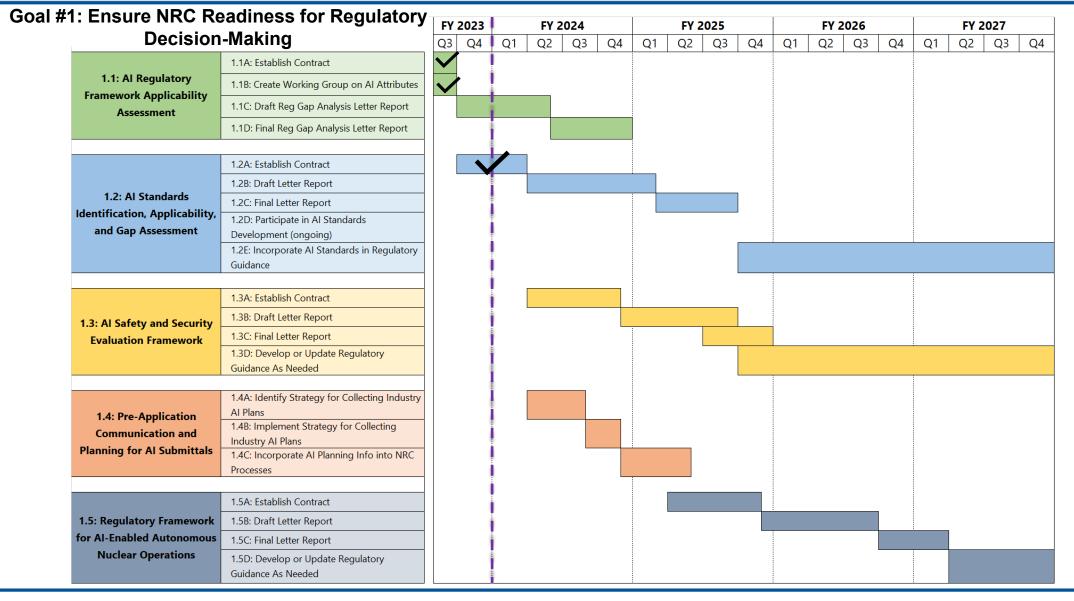
- Goal 1: Ensure NRC Readiness for Regulatory Decision-making
- Goal 2: Establish an Organizational Framework to Review AI Applications
- Goal 3: Strengthen and Expand AI Partnerships
- Goal 4: Cultivate an AI-Proficient Workforce
- Goal 5: Pursue Use Cases to Build an AI Foundation Across the NRC

Al Project Plan Overview


- The AI Project Plan describes how the agency will execute the five strategic goals from the AI Strategic Plan
- Provides estimated timelines for various task completions within each Strategic Goal
- Communicates NRC priorities to internal and external stakeholders

Project Plan for the U.S. Nuclear Regulatory Commission Artificial Intelligence Strategic Plan Fiscal Years 2023–2027, Revision 0

Available at ML23236A279



<u>Goal 1. Ensure NRC Readiness for Regulatory Decision-making</u> KEEPING THE END IN MIND – DETERMINING THE DEPTH OF REVIEW

Outcome: Develop an AI framework to review the use of AI in NRC-regulated activities

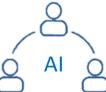
Goal 2. Establish an Organizational Framework

ENSURE CROSS-AGENCY LEADERSHIP IN AI WITH CENTRALIZED APPROACH

Al Steering Committee and Working Group

Cross-agency strategic alignment and direction

Centralized coordination of resources, priorities, and use case analyses



Create working groups as needed

NRC AI Community of Practice

Lead best practices, share knowledge and lessons learned

Provide internal awareness on active and potential external uses

Monthly meetings since September 2023

Centralized AI Database

Maintain transparency and clarity on AI usage

Agencywide list of ongoing AI projects

Recurring updates to ensure accuracy and completeness

Outcome: An organization that facilitates effective coordination and collaboration across the NRC to ensure readiness for reviewing the use of AI in NRC-regulated activities

	ablish an Organizational o Review Al Applications	FY	2023		FY	2024	L _		FY 2	2025			FY 2	026			FY 20	27	
		Q3	Q4	Q1	Q2	Q	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3 (Q4
2.1: Establish and	2.1A: Develop AISC Charter		•																
Utilize Al Steering	2.1B: Develop AISC Teams Channel		•																
Committee (AISC) and	2.1C: Update AISC Charter Biennially (or																		
Working Groups	as needed)																		
(AIWGs)	2.1D: Create AIWGs as needed (ongoing)																		
	2.2A: Develop AICoP Charter/Working																		
2.2: Launch and Utilize	Document																		
Al Community of	2.2B: Identify if AI CoE Approach is																		
Practice (AICoP)	Needed 2.2C: Updated AICoP Charter/Working																		
	Document Biennially																		
2.2. Establish and	2.3A: Create AI Projects Database		•																
2.3: Establish and	2.3B: Biannual Update of AI Projects			Į –															
Maintain Centralized Al	Database																		
Projects Database	2.3C: Promote Cross-Office Al Collaboration (ongoing)																		

Goal 3. Strengthen and Expand AI Partnerships GAIN VALUEABLE INFORMATION TO BENCHMARK AI ACTIVITIES

Outcome: An organization that facilitates effective coordination and collaboration across the NRC to ensure readiness for reviewing the use of AI in NRC-regulated activities

CANada-<u>UK-US</u> Trilateral Engagement on AI

- <u>Purpose</u>: Collaborate on a joint AI principles paper to establish a common set of overarching <u>principles</u> for reviewing the use of AI technologies in nuclear activities
- <u>Objective</u>: The CANUKUS trilateral AI principles paper will cover <u>considerations</u> for nuclear-related systems developed containing AI
- <u>Outcome</u>: The principles paper discusses
 - <u>High-level</u> categories for AI uses cases in nuclear applications
 - Country-specific regulatory frameworks
- Summary considerations on
 - Use of existing safety and security systems engineering principles
 - Human and organizational factors
 - Characteristics of AI architecture
 - Lifecycle management
 - Demonstrating safe and secure AI systems that contain AI
- Working Group formed November 2022
- Paper is expected to be issued in Spring 2024

Goal #3: S	Strengthen and Expand Al	FY 2	2023			FY 2	024			FY 2	025			FY 2	026			FY 2	027	
	Partnerships	Q1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
3.1: Domestic Partnerships	 3.1A: Participate in NIST AI Risk Management Framework (ongoing) 3.1B: Participate in Light Water Reactor Sustainability (ongoing) 																			
	3.1C: Develop Plan for Partnerships with Academic Institutions																			
	3.2A: Develop Project Plan for Trilateral Activities Between NRC, CNSC, and UKONR (CAN/UK/US)	\checkmark																		
	3.2B: Draft CAN/UK/US Trilateral AI Principles Report																			
	3.2C: Final CAN/UK/US Trilateral AI Principles Report																			
3.2: International Partnerships	3.2D: Participate in Bilateral Agreements with Canada, France, Germany, UAE, and UK (ongoing)																			
	3.2E: Participate in IAEA Project on Deployment of AI Solutions for the Nuclear Power Industry: Considerations and Guidance (ongoing)																			
	3.2F: Participate in IAEA Project on AI NPP Safety Implications (ongoing) 3.2G: Participate in IAEA Project on AI Severe																			
	Accidents (ongoing)			-																
3.3: Host and	 3.3A: Workshop: AI Characteristics for Regulatory Consideration 3.3B: Workshop: Regulatory Gaps and 		\checkmark																	
Participate in Public Workshops,	Considerations									ſ				ſ		1		Γ		
Conferences, and	3.3C: Host AI Workshops and Meetings (ongoing)		\checkmark																	
Meetings	3.3D: Participate in External AI Workshops, Conferences, and Meetings (ongoing)																			

Goal 4. Cultivate an AI Proficient Workforce

ACQUIRE, DEVELOP, RETAIN, AND TRAIN AN NRC AI KNOWLEGABLE STAFF

- Focused on developing the critical skills for the AI workforce of tomorrow
- Training/Staffing
 - Develop up-skilling plans through opportunities and qualifications
 - Recruit Al Talent
- Workforce Planning
 - Conduct competency modeling

Recruiting AI Talent on USAJOBS

Outcome: Ensure appropriate qualifications, training, expertise, and access to tools exist for the workforce to review and evaluate AI usage in NRC-regulated activities effectively and efficiently

	ategic Goal #4: Al-Proficient Workforce	F	2023	1	FY 2	2024			FY 2	025			FY	2026			FY 2	027	
Cultivate an		Q	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q
	4.1A: Literature Review/Focus Groups to Identify Needed AI Skills		-1						1	I	1			-	I		1	1	1
	4.1B: AI Skills Assessment Survey																		
	4.1C: Draft AI Competency Model Framework							• •											
4.1: Assess NRC's AI Skills	4.1D: Pilot Test Draft Al Competency Models																		
and Identify Gaps	4.1E: Final AI Competency Models																		
	4.1F: Develop and Deliver Training to Support AI Competency Models																		
	4.1G: Implement new AI Competency Models																		
	4.2A: Conduct Search to Identify AI Training Tools																		
4.2: Identify, Develop, and	4.2B: Update, as needed, Data Analytics Training and Qual Plan																		
Implement AI Training	4.2C: Review Existing NRC Qual Programs														_				
Opportunities	4.2D: Identify and Create AI Career Development Opportunities																		
	4.2E: Implement AI Career Development Opportunities, Capture and Address Feedback															1			
	4.3A: Develop AIWG for AI Skills and Recruiting																		
3: Recruit, Hire, and Retain	4.3B: Develop Office-Specific AI Staffing Plans													_					
Al Talent	4.3C: Develop AI Hiring and Recruiting Strategy																		
	4.3D: Develop AI Staff Retention Strategy			1															

Goal 5. Pursue Use Cases to Build AI Foundation Across the NRC CREATE AI ECOSYSTEM TO PREPARE FOR REVIEWING AI APPLICATIONS

Pilot Studies

- Learn, measure, and evaluate readiness to implement regulatory framework
- Public workshops have shown industry interest to pursue pilot studies and proofs of concepts

AI Ecosystem

- Establish integrated development environments and provide training
- Acquire common data science tools
- Develop regulatory sandboxes for supporting use-cases

AI Safety Insights

- Survey industrial safety evaluation methods and tools
- Utilize AI partnerships and engagement strategies

AI R&D Research

- Continue supporting University grants and research into AI systems
- Building AI foundation through the NRC's Future Focused Research
 Program

Outcome: Develop an ecosystem that supports AI analysis, integration of emerging AI tools, and hands-on talent development for reviewing AI applications from the nuclear industry

rategic Goal #5: Pur	sue Use Cases to Build an Al	FY 2023		FY 2	2024			FY 20	25			FY 2	026			FY 2	027	
Foundation	n Across the NRC	Q3 Q4	Q1	Q2	Q3	Q4	Q1			Q4	Q1		Q3	Q4	Q1	Q2	Q3	Q4
5.1 Proof-of-Concept Applications for AI Test and Analysis	 5.1A: Identify Strategy for Seeking Pilot Studies and Proof-of-Concept Test Cases 5.1B: Create AIWG to Conduct Pilot Study 5.1C: Conduct Proof-of-Concept Tests with Selected Pilot Studies 		<u> </u>		40		<u>,</u>								<u> </u>			
	5.1D: Document Lessons Learned from Pilot Study																	
5.2: Develop and Maintain	5.2A: Develop/Maintain Integrated Development Environment (ongoing) 5.2B: Identify, Assess, and Acquire AI Tools (ongoing)																	
AI Ecosystem	5.2C: Develop Regulatory Sandboxes for AI Applications5.2D: Develop and Deliver Training on Use of Development Environments																	
5.3: Survey Al Tools and Methods for Safety Evaluation	5.3A: Conduct Survey of Industrial AI Tools and Methods5.3B: Implement Findings from Survey of Industrial AI Tools and Methods																	
5.4: Facilitate and Invest in Al Regulatory Research	 5.4A: Develop Plan for AI Research through FFR Program 5.4B: Develop Plan for AI Research through UNLP R&D Grant Program 5.4C: Monitor Progress of AI-Related Research Projects and Incorporate Insights/Outcomes into NRC's AI Framework (ongoing) 5.4D: Develop Internal Work Request Agreements (e.g., User Need Request) (ongoing) 																	

Moving Forward and Stakeholder Engagement

- NRC must remain vigilant—AI technologies are entering the nuclear domain in multiple venues
- NRC has been proactively working to understand this evolving technology to identify technical and regulatory challenges and gaps, gather insights on potential use cases, and develop institutional knowledge
- We are working to ensure we have the staff with the knowledge, skills, and ability to effectively regulate these new technologies
- <u>Next Steps</u>
 - Publish CANUKUS AI Principles Paper Expected in Spring 2024
 - Publish AI Regulatory Gap Analysis Expected in Spring 2024
 - Host AI Technical Session at 2024 RIC March 12-14, 2024
 - Host IAEA AI Technical Meeting at USNRC HQ March 18-24, 2024
 - Issue NRC's AI Project Plan, Rev 1 Expected in Fall 2024
 - Continue Public Workshops and Stakeholder Engagements Ongoing

Abbreviations

- AI Artificial Intelligence
- AICoP Artificial Intelligence Community of Practice
- AISC Artificial Intelligence Steering Committee
- CFR Code of Federal Regulations
- CNSC Canadian Nuclear Safety Commission
- COE Center of Expertise
- DOE U.S. Department of Energy
- DENT Digital Engineering in Nuclear Technology
- EO Executive Order
- EPRI Electric Power Research Institute
- FFR Future-Focused Research
- FRN Federal Register Notice
- FY Fiscal Year
- GAO U.S. Government Accountability Office
- GSA U.S. General Services Administration
- GRS Gesellschaft für Anlagen- und Reaktorsicherheit

- IAEA International Atomic Energy Agency
- IEC International Electrotechnical Commission
- IRSN Institut de Radioprotection et de Sûreté Nucléaire
- ML Machine Learning
- MOU Memorandum of Understanding
- NLP Natural Language Processing
- NRC U.S. Nuclear Regulatory Commission
- NEI Nuclear Energy Institute
- NIST National Institute of Standards and Technology
- OMB U.S. Office of Management and Budget
- ONR U.K. Office for Nuclear Regulation
- RIC Regulatory Information Conference
- RMF Risk Management Framework
- UNLP University Nuclear Leadership Program
- WG Working Group

Using Machine Learning to Inform Inspection Planning

A Future Focused Research Project

Y. James Chang Senior Reliability and Risk Analyst RES/DRA/HFRB

Presented at ACRS Subcommittee Meeting on

Human Factors, Reliability & PRA and Digital I&C Systems on Artificial Intelligence Strategic Activities

November 15, 2023

Presentation Outline

- Motivation, objective, and tasks
- Data and analysis
- Results and summary

Motivation and Objective

- Motivation:
 - Covid-19 pandemic disrupted NRC's planned inspections
 - Netflix's success story of using unsupervised machine learning (ML) to identify hidden patterns (clusters) and similarities among its subscribers, leading to a more accurate movie recommendations
 - Can "ML + inspection findings" identify hidden safety patterns to inform inspection planning?
- Objectives
 - A feasibility study of using "ML + inspection findings" to identify hidden patterns (safety clusters) to inform inspection planning.

Safety Clusters – Hidden Patterns

- Safety clusters: Similarities in failure modes and failure causes of structure, system, and component (SSC) and consequences
- An example: NRC Operating Experience Communication
 - Identified 5 power outage events impacted security operations
 - SSC: The primary and backup electricity power systems for security systems
 - Failure modes: fail to provide electricity
 - Failure causes:
 - 2022 (2 events): human errors contributed to the events
 - 2021 (3 events): not attributed to human errors
 - The OpE COMM suggested focusing on potential human' impacts on power supply equipment when conducting Inspection Procedure (IP) 71130.04, "Equipment Performance, Testing, and Maintenance."

Study Approach and Tasks

- Study approach:
 - An NRC/RES future focused research (FFR) project
 - Contractor: Sphereol.Al An Al engineering company When human intelligence isnet enough
 - NRC team has expertise in ML and reactor oversight process
- Two tasks:
 - 1. Evaluate AI/ML platforms:
 - Amazon's Sagemaker, Microsoft's Azure, Google's Google-AI, MatLab, and others
 - Maximize the use of pre-trained algorithms
 - 2. Select a platform to identify hidden patterns (safety clusters)
- Technical work was completed within 4 months after awarding the contract

Task 1 Platform Evaluation

Criteria	Weight	Azure	AWS	Matlab	Google
Neural Topic Modeling	0.27	0	4	0	0
LDA	0.17	7	7	7	0
Visual Programming	0.14	7	6	0	0
Text Pre-processing	0.11	8	0	8	7
Text Embedding	0.10	9	9	9	0
Other Relevant Approaches	0.09	9	7	6	3
Notebook Integration	0.08	10	10	8	10
Text Extraction	0.03	7	7	7	7
Weighted Score	e	84	83	64	30

- Jupiter notebook (independent from the evaluated platforms) was used for Task 2 analysis.
- Jupiter: Free software, open standards, and web services for interactive computing across all programming languages.
- Cost was not evaluated but expected to be similar across platforms.

Task 2: Al/ML Pipeline to Identify Safety Clusters (Topics)

1. Topic Modeling Input

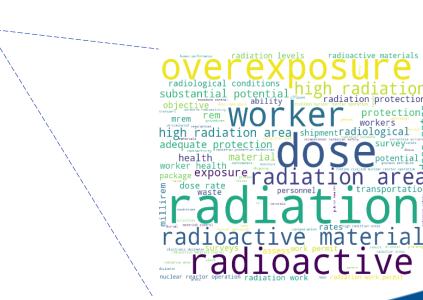
2. Topic Modeling Parameters

Representation

Weighting

Clustering

Dimension

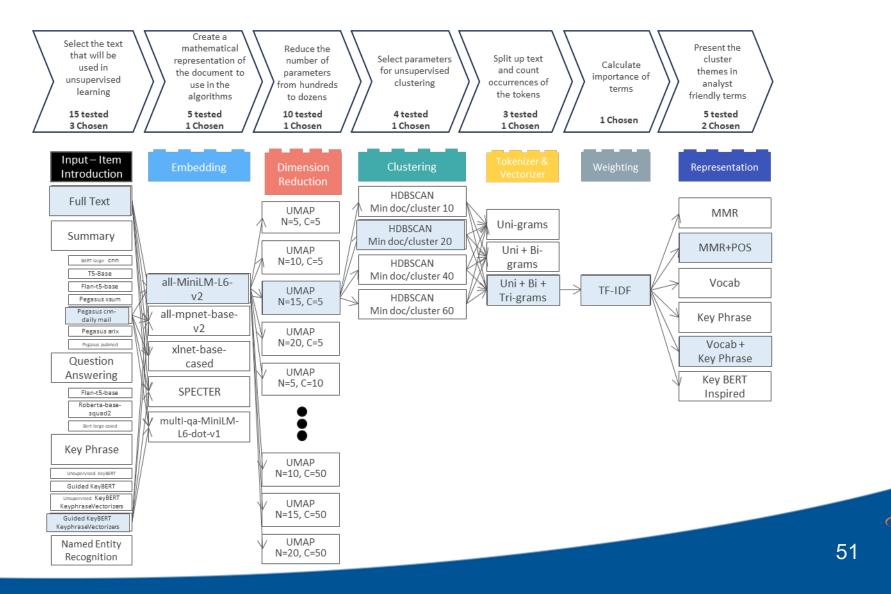

Reduction

Embedding

3. Topic Representation and Visualization

Item Introduction

An NRC detriling finding periminanty determined to be of low to moderate safety significance (Whele), and an associated apparent violation of TER 10 of the Code of Federal Regulations (10 CFR) 50 S4(2)(2) and 10 CFR 50 A7(2)(9) and setting fact the increase is fault to maintain the adictionate emergency Section. The Increase facility of a countrally detrime and Emergency Section 10 Area (14 CFR) and 10 Area (14 CFR) area (14 CFR)



Identify the Optimal Pipeline Constituents

- The pipeline contains multiple components to process the inspection finding descriptions to identify the safety clusters.
- A component's function can be performed by multiple algorithms
 - Identify the suitable algorithms
 - In some cases, algorithms are combined to produce better results
- Many trials and iterations to identify the optimal algorithms and parameters for the pipeline
 - Skip slow algorithms/parameters that may generate better results.

Trial-and-Err to Identify Optimal Combinations

United States Nuclear Regulatory Commission Protecting People and the Environment

Input Information for Analysis

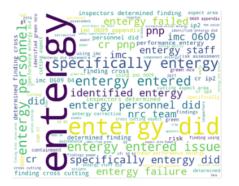
- NRC ROP maintains an Excel database, which has all inspection findings since 1998. about 15,000 findings used for this analysis.
- The "Item Introduction" columns contain finding descriptions, which are the input for Task 2 analysis.

F2	2 👻	∃ : X ∨		Requireme	ents," for the	entified a finding of very low safety signification include Emergency e with American Society of Mechanical	y Diesel Ge	nerator (El	DG) Fuel Oil
	Α	В	С	D	E	F	G	Н	1
1	Proced 💌	Issue Date 🚽	Report	🛛 Туре 📄	Corner	Item Introduction	Corner	Title 🛛	Docket 💌
2	71111.21M	02/07/2023	2023010	NCV	MS	I he inspectors identified a finding	Mitigating	Failure to	li 05000301 H
3	71111.21M	02/07/2023	2023010	FIN	MS	The inspectors identified a finding	Mitigating	Failure to	F05000266
4	71111.21M	02/07/2023	2023010	NCV	MS	The inspectors identified a finding	Mitigating	Failure to	\05000266
5	71111.21M	02/07/2023	2023010	NCV	MS	The inspectors identified a finding	Mitigating	Failure to	\05000301 I
6	71111 211/	02/07/2022	2022010	EIN	MS	The increators identified a finding	Mitigating	Epiluro to	E05000201

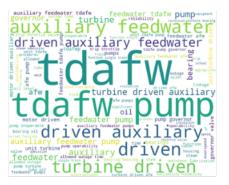
United States Nuclear Regulatory Commission Protecting People and the Environment

Process the Input Information

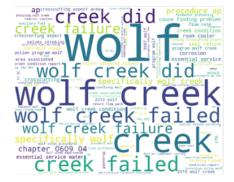
- Item Introduction (finding summary): Average 1,649 words for a finding (range from 42 to 11,670 words).
- Full text of the finding summary may not be the optimal choice because of sentence transformer models limitations.
 - Use ML to generate condensed summaries.
- Tried full text and 14 condensed summaries (in three categories)
 - Full text (1)
 - Summary techniques (7)
 - Question-answering techniques (3)
 - Key phrase extraction techniques (4)

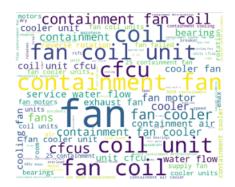

Custom Words and Phrases and Stop-Word

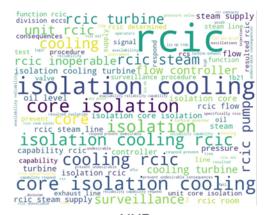
- Some ML techniques take input from customized lists of words and phrases to work with the pre-trained models.
- NRC provided 1004 acronyms and 407 common failure modes to focus nuclear safety.
 - Acronyms: MSIV and RPV, etc.
 - Failure mode: inoperable, misalign, and corrosion, etc.
 - Provided 269 NUREGs and 195 RILs to develop a library of words/phrases relative locations.
- Stop-word removal:
 - 337 English stop words, e.g., the and a.
 - 136 custom stop words, e.g., safety, system, and reactor.


Stop-Word Removal

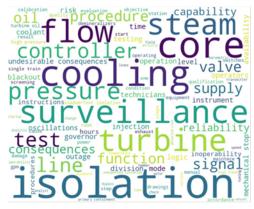
Before stop-word removal

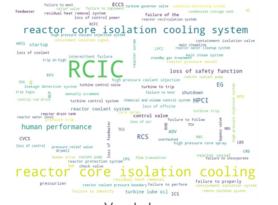


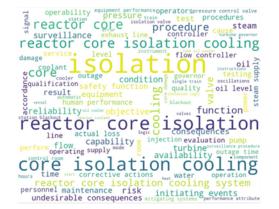

After stop-word removal

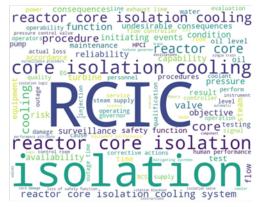

Represent Safety Clusters

- Safety clusters are represented by word cloud (or a bag-of-words)
- In this analysis, an inspection finding only belongs to a safety cluster


Торіс	Count	Top_n_words
-1	5382	green - cooling - 50 - reactor - appendix criterion - safety significance - 10 cfr - valves - finding low - design
0	927	safe shutdown - facility operating - license condition protection - cited violation license - brigade - approved protection program - suppression - renewed - combustibles - unit operating license
1	925	high radiation area - area - workers - 10 cfr 20 - safety cornerstone - dose rates - occupational radiation safety - radioactive material - 1501 - rem
2	790	emergency diesel - emergency diesel generator - diesel generator edg - oil - generators - start - division emergency - dg - generator fuel oil - inoperable
3	558	driven auxiliary - turbine driven - auxiliary feedwater pump - bearing - tdafw - feedwater afw - sx - essential service water - charging - pump inoperable


Visualizing Safety Clusters


MMR


MMR-POS

Vocabulary

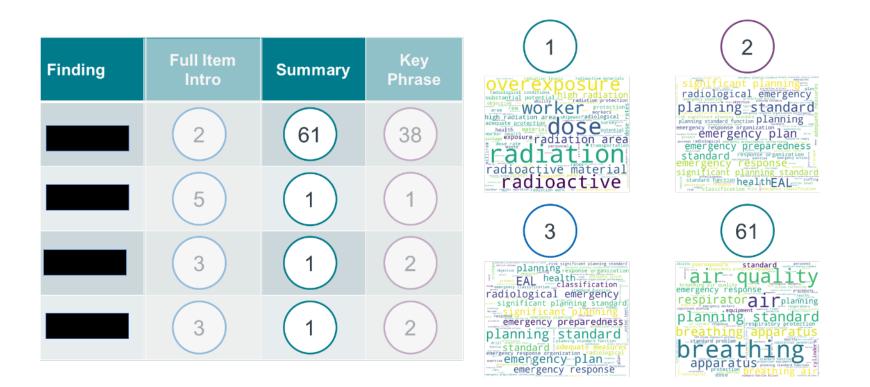
Key Phrases

Vocabulary + Key Phrases

57

Evaluate Results Against an OpE COMM

OpE COMM


Date Released: 5/23/2023

Operating Experience Communication

- Identified 5 issues related to improper calibration and maintenance of radiation monitoring and dose assessment equipment that impact emergency plan actions
 - 2011-2022 (2 events)
 - 2019
 - 2016
 - 2013
- The OpE COMM identifies opportunities to identify these issues under Inspection Procedure (IP) 71124.05, "Radiation Monitoring Instrumentation", and emergency drill observations, plant modifications or surveillance test reviews

Benchmark Results

OpE identified 4 findings that exhibited safety issues that are related The clustering approach placed 3 of the 4 in the same cluster and the 4th in a similar cluster

59

Summary

- ML algorithms to generate summary are useful for ROP operations.
- Unconclusive about unsupervised ML's practicality to inform inspection planning
 - Need additional efforts to optimize the pipeline
 - Outside the scope of this future focused research project.

60

Back Up Slides

Evaluate ML Techniques to Generate Condensed Summary – Original Summary

The inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles in accordance with established procedures and thereby did not maintain in effect all provisions of the approved fire protection program, as described in the Unit 3 final safety analysis report. Specifically, on two separate occasions, Entergy did not ensure that transient combustibles were evaluated in accordance with established procedures; and as a result, they allowed combustible loading in the 480 volt emergency switchgear room to exceed limits established in the fire hazards analysis (FHA) of record. The inspectors determined that not completing a TCE, as required by EN-DC-161, "Control of Combustibles," Revision 18, was a performance deficiency, given that it was reasonably within Entergy's ability to foresee and correct and should have been prevented. Specifically, on August 28, 2018, wood in excess of 100 pounds was identified in the switchgear room; however, an associated TCE had not been developed. Additionally, on October 1, 2018, three 55-gallon drums of EDG lube oil were stored in the switchgear room without an associated TCE having been developed to authorize storage in this room, as required for a volume of lube oil in excess of 5 gallons. The inspectors determined the performance deficiency was more than minor because it was associated with protection against external factors attribute of the Mitigating Systems cornerstone, and it adversely affected the cornerstone goal of ensuring the availability, reliability, and capability of systems that

respond to initiating events to prevent undesirable consequences. Specifically, storage of combustibles in excess of the maximum permissible combustibles loading could have the potential to challenge the capability of fire barriers to prevent a fire from affecting multiple fire zones and further degrading plant equipment. Additionally, this issue was similar to an example listed in IMC 0612, Appendix E, "Examples of Minor Issues," Example 4.k., because the fire loading was not within the FHA limits established at the time. Entergy required the issuance of a revised evaluation to provide reasonable assurance that the presence of combustibles of a quantity in excess of the loading limit of record would not challenge the capacity of fire barriers, and further evaluation and the issuance of an EC was necessary to raise the established loading limit to a less-conservative value. The inspectors assessed the significance of the finding using IMC 0609, Appendix F, "Fire Protection Significance Determination Process," and determined that this finding screened to Green (very low safety significance) because it had a low degradation rating in accordance with Attachment 2 of the appendix. The inspectors determined that this finding had a cross-cutting aspect in the area of Human Performance, Work Management, because Entergy did not adequately plan, control, and execute work activities such that nuclear safety was the overriding priority, nor did they adequately identify risk associated with work being performed or coordinate across working groups to anticipate and manage this risk. Specifically, in the case of wood scaffolding being stored in the switchgear room, while planning work to be performed. Entergy did not adequately consider the fire risk that would be introduced by the presence of additional combustible materials. In the case of lube oil being stored in the room, Entergy did not take adequate action to ensure that activities were executed in a manner that would prevent work taking place in one area (the adjacent EDG cell) from introducing additional fire risk into a space for which it had not been evaluated (the switchgear room). In both cases, Entergy did not take sufficient action to ensure that workers were aware of the fire protection requirements associated with activities being conducted and to ensure that they coordinated as needed across working groups to adequately assess and mitigate the associated fire risk.

62

Summarization Models: Examples

The inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles in accordance with established procedures and thereby did not maintain in effect all provisions of the approved fire protection program, as described in the Unit 3 final safety analysis report [...]

T5-Base

inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles. the inspectors determined that not completing a TCE was a performance deficiency, given that it was reasonably within entergy's ability to foresee and correct and should have been prevented. in the case of wood scaffolding being stored in the switch

BART-large-cnn

The inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles. The inspectors determined that not completing a TCE, as required by EN-DC-161, "Control of Combustibles," Revision 18, was a performance deficiency.

Flan-T5-base

Entergy did not take adequate measures to control transient combustibles in accordance with established procedures and thereby did not maintain in effect all provisions of the approved fire protection program, as described in the Unit 3 final safety analysis report.

Pegasus-cnn-dailymail

Entergy did not ensure that transient combustibles were evaluated in accordance with established procedures . Entergy did not take sufficient action to ensure that workers were aware of the fire protection requirements associated with activities being conducted . Entergy did not adequately identify risk associated with work being performed or coordinate across working groups to anticipate and manage this risk

63

United States Nuclear Regulatory Commission Protecting People and the Environment

Question-Answering Models: Examples

The inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles in accordance with established procedures and thereby did not maintain in effect all provisions of the approved fire protection program, as described in the Unit 3 final safety analysis report [...]

Flan-T5-base

Storage of combustibles in excess of the maximum permissible combustibles loading could have the potential to challenge the capability of fire barriers to prevent a fire from affecting multiple fire zones and further degrading plant equipment Roberta-base-squad2

nuclear safety

Bert-large-casedwhole-word-maskingfinetuned-squad

nuclear safety

No consistent results attained so QA was not selected

64

Key Phrase Extraction Methods: Examples

The inspectors identified a Green NCV of Unit 3 Technical Specification (TS) 5.4.1 when Entergy did not take adequate measures to control transient combustibles in accordance with established procedures and thereby did not maintain in effect all provisions of the approved fire protection program, as described in the Unit 3 final safety analysis report [...]

KeyBERT

allowed combustible loading, allowed combustible, combustibles revision 18, combustibles evaluated accordance, permissible combustibles loading, result allowed combustible, combustibles revision, combustibles evaluated, permissible combustibles, transient combustibles evaluated, additional combustible, maximum permissible combustibles, combustibles loading, 161 control combustibles, final safety analysis, control combustibles revision, presence additional combustible, unit final safety, combustibles accordance established, established hazards analysis

Guided KeyBERT

allowed combustible loading, final safety analysis, unit final safety, combustibles evaluated accordance, safety analysis report, combustibles revision 18, allowed combustible, permissible combustibles loading, transient combustibles evaluated, combustibles evaluated, permissible combustibles, result allowed combustible, maximum permissible combustibles, 161 control combustibles, combustibles revision, combustibles loading, established hazards analysis, safety significance, safety analysis, control combustibles revision

KeyBERT + KeyphraseVectorizers

additional fire risk, fire protection requirements, final safety analysis report, fire risk, maximum permissible combustibles loading, fire protection significance determination process, fire barriers, additional combustible materials, combustible loading, fire protection program, combustibles, transient combustibles, low safety significance, edg lube oil, fire loading, entergy, multiple fire zones, fire, nuclear safety, further degrading plant equipment`

Guided KeyBERT + KeyphraseVectorizers

final safety analysis report, fire protection requirements, additional fire risk, fire risk, fire protection significance determination process, maximum permissible combustibles loading, fire barriers, fire protection program, combustible loading, low safety significance, additional combustible materials, transient combustibles, combustibles, edg lube oil, further degrading plant equipment, fire loading, nuclear safety, entergy, multiple fire zones, volt emergency

65

United States Nuclear Regulatory Commission Protecting People and the Environment

• Input: text for analysis

- Some algorisms can be used in a semi-supervised manner with a pre-defined list of important words and phrases to guide the algorithm.
- Embedding:

66

- Stop words: procedure, technical, license condition, 'safety',
- 'reactor', 'power plant', 'inspector', 'license', 'finding', 'cornerstone', 'cross cutting area'
- 'mitigating', 'systems', 'barrier', 'integrity', 'initiating', 'event',
- 'human', 'performance', 'problem', 'identification', and 'resolution'.

67

Bruce P Hallbert, Ph.D. Director, Light Water Reactor Sustainability Program Technical Integration Office

Light Water Reactor Sustainability: Sustaining and Optimizing the Existing Fleet

Light Water Reactor Sustainability Program

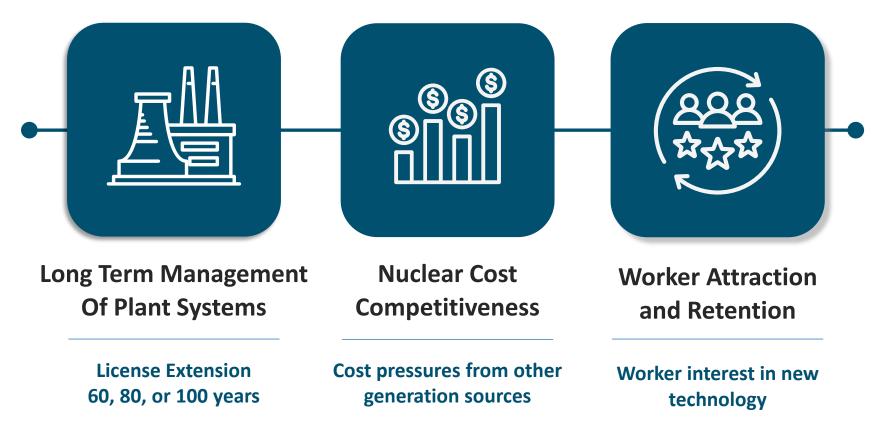
• Goal

 Enhance the safe, efficient, and economical performance of our nation's nuclear fleet and extend the operating lifetimes of this reliable source of electricity

Objectives

- Enable long term operation of the existing nuclear power plants
- Deploy innovative approaches to improve economics and economic competitiveness of LWRs in the near term and in future energy markets
- Sustain safety, improve reliability, enhance economics

Focus Areas


- Plant Modernization Research and Development
- Flexible Plant Operation and Generation
- Risk-Informed Systems Analysis
- Materials Research
- Physical Security

Plant Modernization

Facilitate modernization by:

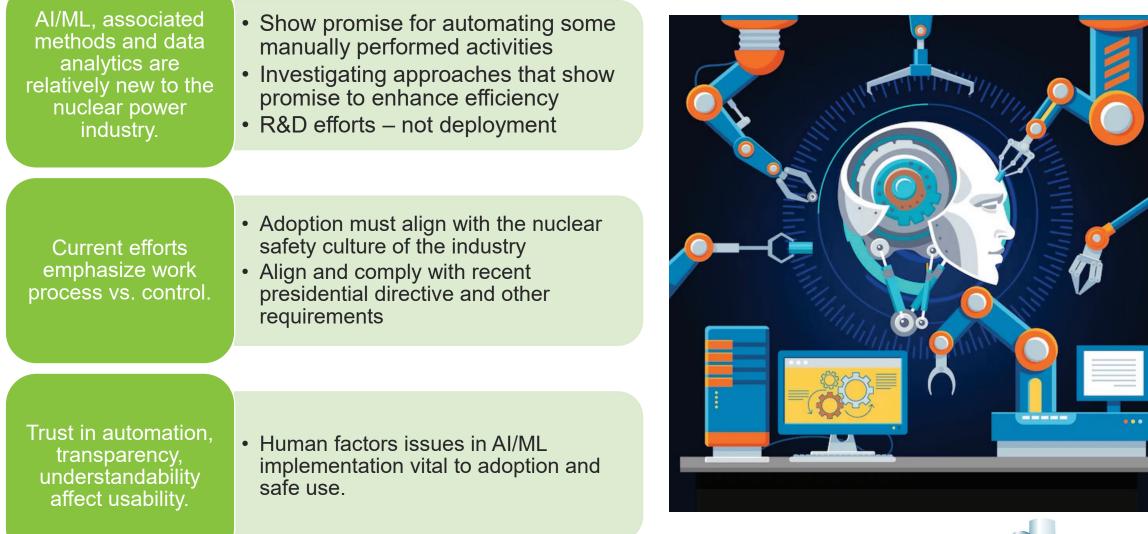
- Developing technology modernization solutions that address aging and obsolescence challenges
- Delivering a sustainable business model that ensures continued safe, reliable operation at a cost competitive level

ANOLOGY

NUCE (A

Modernize the Fleet

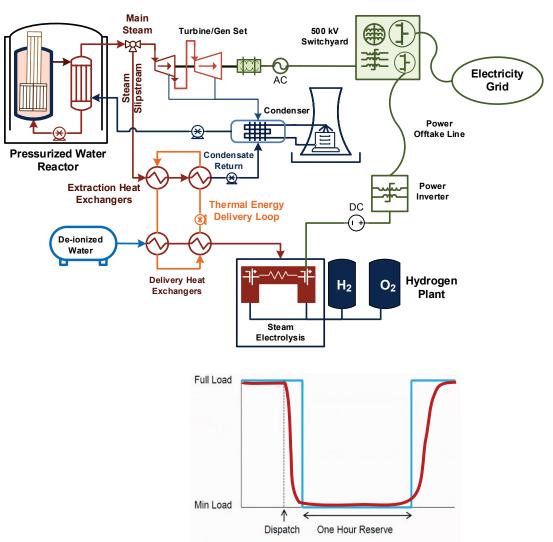
- First echelon safety instrumentation and control systems on two units
- Conceptual Design Phase complete
- Detailed Design Phase in progress
- Multiple pre-submittal meetings with Nuclear Regulatory Commission (NRC)
- Human Factors efforts well underway
 - Operating Experience Review (Q3–Q4 of 2021)
 - Function Analysis and Allocation Workshop (March 2022)
 - Task Analysis Workshop (May 2022)
- NRC has accepted Constellation's License Amendment Request (December 2022)
- Dynamic preliminary validation completed February 2023 at INL with NRC observation



Limerick Generating Station

INL Human Systems Simulation Laboratory Task Analysis Workshop

Artificial Intelligence (AI) and Machine Learning(ML) R&D



Flexible Plant Operation and Generation

- Enhance economic flexibility and decarbonize energy and industry
- LWRS research addresses:
 - Hydrogen production and storage safety risks
 - New thermal extraction and delivery systems
 - Modifications to the electricity transmission station
 - Operator control of dynamic dispatch of power
 - Economics of transitioning between the electricity grid market and hydrogen production

Enabling Nuclear-Hydrogen Hubs

- The Bipartisan
 Infrastructure Law funds
 Clean Regional
 Hydrogen Hub Projects
- The Inflation Reduction Act provides Clean Hydrogen Production Tax Credits (up to \$3 per kg-H2 with low-emissions energy sources)

2019 2020 2021 2022 2023 2024 2025 2026+ 2026 Leverage EPRI FPO and Low-Carbon Research Initiative and Nuclear Beyond Electricity **Techno-Economic Assessments:** Hydrogen... Plastics... Thermal Markets... Synfuels... Energy Storage/Arbitrage... Ammonia & Steel... **Architecture Engineering:** LWR Connection to Hydrogen Plant: Scalable Thermal Energy Offtake Thermal Energy Delivery Modeling 20 MW, 200 MW, 1000 MW... Full-Scope PWR Simulator & Modeling Scalable Electricity Dispatch Initial Operator Dispatch Studies 50 MW, 100 MW,, 500 MW... Preliminary PRA study for PWR & BWR Multi-Facility Coordinated Energy Initial Operating License considerations **Dispatch Concepts of Operations** Hydrogen Regulatory Research Review Group (H3RG) **Update Reference PRA:** Hydrogen Production... • Large Thermal **Industry Engineering Designs:** H2 Conversion Demonstrations: **Utility Demonstration Projects: Regional Clean Hydrogen Hubs:** • Constellation • Energy Harbor • Xcel Energy • PNW Hydrogen H2 Products

Pilot Plant Hydrogen Demonstration Projects

Nine Mile Point Nuclear Power Plant

- Constellation (Exelon): Nine-Mile Point NPP
 - 1.25 MWe low temperature electrolysis (LTE)
 - Using "house load" power
 - Training plant operators by practicing power switching between grid and hydrogen plant

Davis-Besse Nuclear Power Plant

• Energy Harbor: Davis-Besse NPP

- 1-2 MWe LTE or 2-4 MWe HTE (with electrical steam boiler)
- Power provided by plant upgrade with new switch gear at the transmission station
- Gaining hydrogen production experience in anticipation of scaling up production

Operating since February 2023

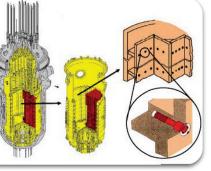
H₂ production beginning March/April 2024

Prairie Island Nuclear Power Plant

- Xcel Energy: Prairie Island NPP
 - 150 kWe high temperature electrolysis (HTE)
 - Thermal tie into existing turbine stream extraction line
 - Gaining high temperature hydrogen production experience

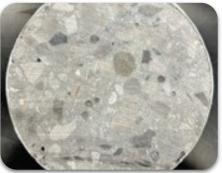
H₂ production beginning middle of 2024

Materials Research


Objective: conduct R&D to understand the long-term environmental degradation behavior of materials in nuclear power plants

Measurement of degradation
 Mechanisms of degradation
 Modeling and simulation
 Monitoring degradation
 Mitigation strategies
 Materials harvesting

Reactor Pressure Vessel (RPV)


Core internal and pressure boundary

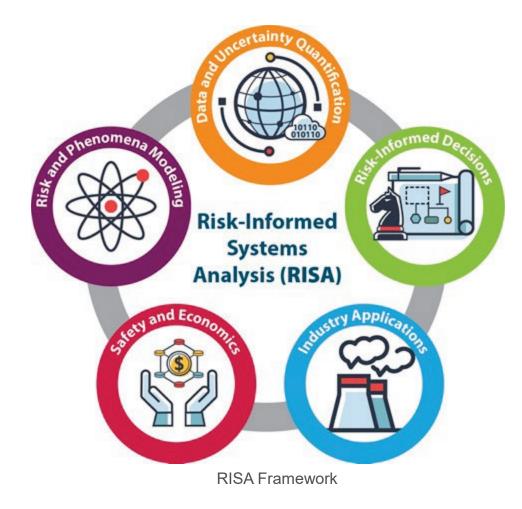
Mitigation

Concrete

Cable

Risk-Informed Systems Analysis (RISA)

Objective


 R&D to achieve economic efficiencies while maintaining high levels of safety optimize safety margins and minimize uncertainties

Approach

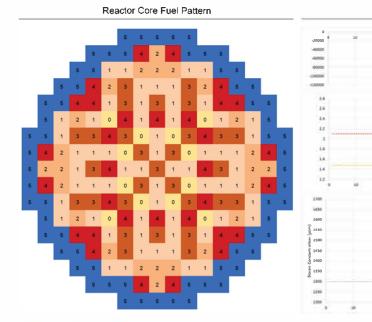
 Provide scientific basis to better represent safety margins and factors that contribute to cost and safety

Areas of Expertise

- Advanced modeling of physics-based phenomena
 - Thermal-hydraulics, neutronics and reactor physics, riskinformed material degradation, uncertainty propagation
- Advanced Data Analytics and Digital Modeling
 - Diagnostic and prognostic analyses, resource optimization, AI/ML technologies, digital twins, uncertainty propagation
- Probabilistic Risk Assessment (PRA) and Human-Reliability Analysis (HRA)

Optimization of Nuclear Fuel Use

Fuel costs represents approximately 20% of annual operating expenses.



Al-based optimization framework for designing reactor core configuration given objectives and constraints

Multiphysics-based process with inputs from reactor core design, thermalhydraulics, fuel performance

Genetic algorithm is the AI method used for optimization

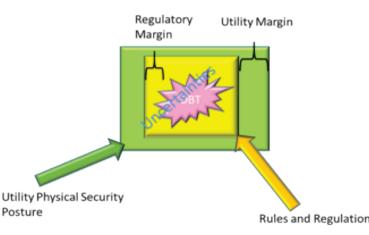
1 20 ol 1, No BP 1 25 or 1, No BP 2 25 or 1, 10 00 roll 23 ol 1, No BP 23 or 1, 10 00 Refer

Example case of finding optimal fuel configuration in the reactor core with the objective to prolong the cycle length under peaking factor and boron concentration constraints.

Fitness of Pattern, Constraints, Objective

Physical Security Research

Physical Security research aims to create tools, technologies, and risk-informed physical security decisions and activities with the following objectives:


- Develop mitigation strategies and enhance the technical basis necessary for stakeholders to reevaluate physical security postures while meeting regulatory requirements.
- Analyze the existing physical security regime, current best practices, and compare/contrast insights with alternative methods which leverage advanced modeling and simulation, modern technologies, and novel techniques that address design basis threat and regulatory requirements

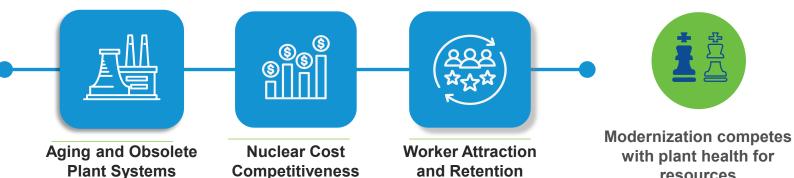
Short-term goal is to enable industry to operate nearer the staffing requirements of 10 CFR 73.55

Main research thrust areas:

- Advanced Security Technologies
- Risk-Informed Physical Security
- Advanced Security Sensors and Delay

Summary

- The existing operating fleet provides the largest reliable source of carbon-free electricity.
- Industry initiatives have achieved substantial improvements in performance.
- Nuclear energy supports climate goals and can contribute to deep decarbonization by providing clean energy for products used in other industrial sectors.
- LWRS Program supports collaborations with industry to facilitate progress in areas of vital common interest. By working together, we facilitate progress and address challenges to ensure the continued viability and role of nuclear energy.
- The growing demand for clean and reliable energy from nuclear power underscores the need to address existential challenges facing the existing fleet.
- LWRS research addresses highest priority issues on timelines that support continued operation of the existing fleet.


Sustaining National Nuclear Assets

lwrs.inl.gov

Integrated Operations for Nuclear (ION)

Motivations for ION

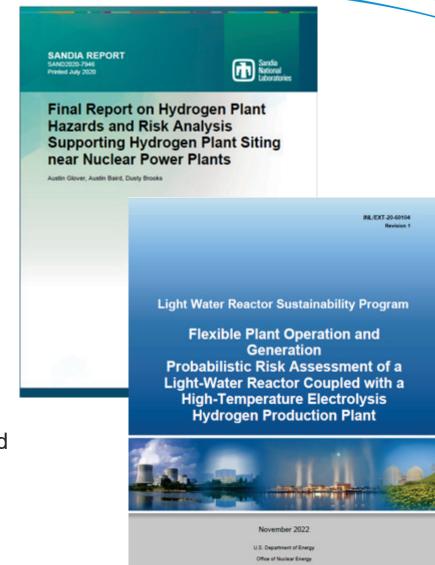
ION Business Model is guided by strategy

Traditional Approaches to Modernization

with plant health for


resources

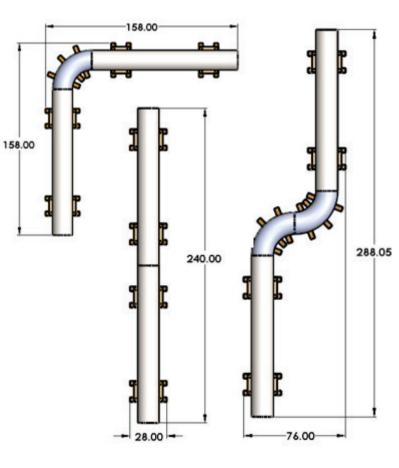
Modernization Projects may lose momentum (unclear value)



Corporate vision not integrated with modernization

Preliminary PRA for Steam Electrolysis

- Based on potential new internal and external initiating events
 - Top hazards identified
 - Internal: Steam line break, loss of offsite power
 - External: Electrolysis Plant H_2 leak or H_2 detonation
- Hazards analysis completed by Sandia using HYRAM[™]
- Failure Modes and Effects Analysis (FEMA) being considered for hydrogen plant design and layout
- Comparison of results to criteria in 10 CFR 50.59 and RG 1.174
- Early conclusions
 - Licensing criteria are met for a large-scale hydrogen production facility sited
 1 km from a generic PWR and BWR
 - Individual site NPP and geographical features can affect the results of the generic PRA positively or negatively



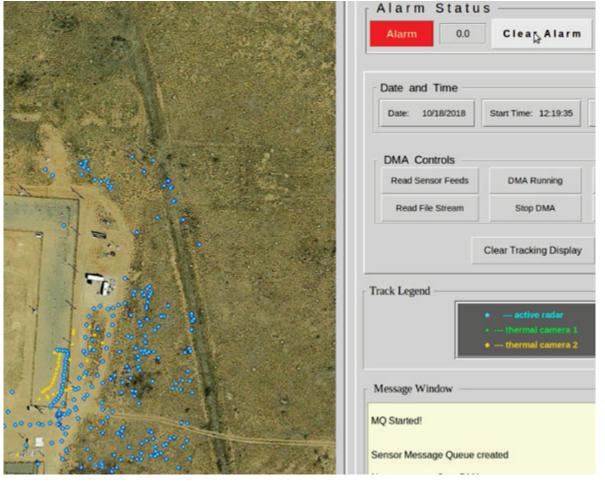
Unattended Openings (UAO)

Impact: Provide the technical basis to determine optimized protective strategies related to person-passible openings that intersect security boundaries during normal and maintenance operations. Reductions in patrols, monitoring, and compensatory measures could be reconsidered but will be site specific on a case-by-case basis.

Highlights

- Conducted a performance-based, risk-informed evaluation for 2D and 3D unattended openings based on the current US Government policy
- Identified human factors associated with 2D and 3D openings
- Evaluated 2D UAO testing with 4-inch circle and rectangles and 36-inch circle
- Evaluated 3D UAO testing with 20-foot piping sections and pipe bends
- Evaluated success of passing through the opening (go/no-go), rate times, and limited data on exertion

Example of 3D UAO Testing Configurations



Deliberate Motion Analytics (DMA)

- Security sensor fusion linked with DMA can take input from multiple sensors of different types, analyze the data, and determine if an adversary is making an approach toward a facility.
- Sites using current commercial sensor technologies typically experience elevated nuisance alarm rates (NAR) not caused by an intruder. Maintaining a low NAR while being able to detect intruders has the potential to decrease the cost of security.

Highlights

- Used DMA and sensor fusion, collecting at least four weeks of continuous performance data at two nuclear power plant sites
- Considered engineered terrain (perimeter intrusion detection system) and un-engineered terrain (owner controlled area).
- Created an NPP-specific demonstration package containing sensor fusion

Active Radar (blue) and Thermal Camera (yellow) fused through DMA

Craig Primer Plant Modernization Pathway Lead

November 2023

LWRS Program Plant Modernization

AI/ML Research Focus Areas

ML for Material Management ML for Equipment Monitoring ML for Anomaly Detections

NLP Applications Computer Vision Applications

AI/ML Explainability

A model for thinking about AI, ML, DL, and generative AI

Artificial intelligence (AI)

Any technique that allows computers to mimic human intelligence using logic, if-then statements, and machine learning

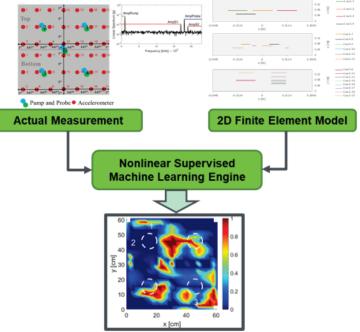
Machine learning (ML)

A subset of AI that uses machines to search for patterns in data to build logic models automatically

Deep learning (DL)

A subset of ML composed of deeply multi-layered neural networks that perform tasks like speech and image recognition

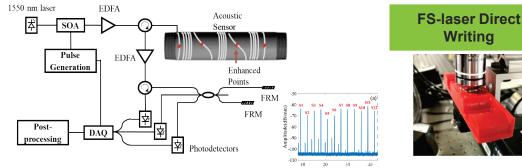
ے Generative Al


Powered by large models that are pretrained on vast corpora of data and commonly referred to as foundation models (FMs)

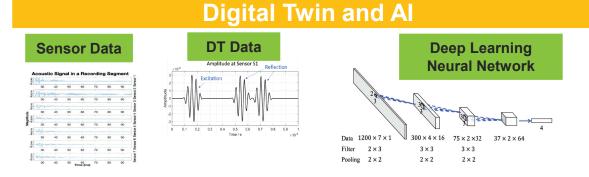
Overview of AI, ML and subsets of ML

Digital Twin Informed ML for Material Management

Developed technology to locate and estimate alkalisilica reaction (ASR) damage using physics-informed machine learning approach

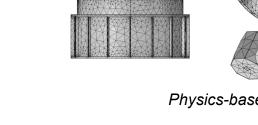


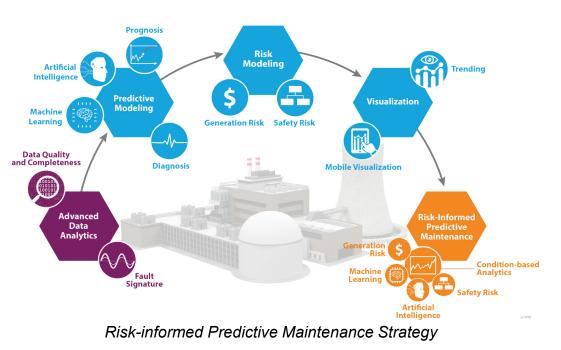
Physics-informed machine learning damage map due to ASR

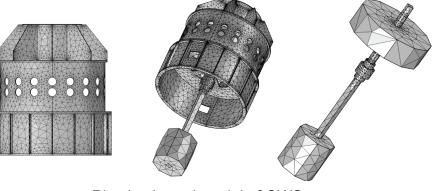

Concrete Structure Health Monitoring Using Vibroacoustic Testing and Machine Learning, INL/EXT-20-59914

Digital Twin and Deep Learning Model used in Secondary **Piping Degradation Detection Research**

Low-Cost Phase-Sensitive Distributed Fiber




Concept for Integrated Multi-Modal Online Piping Monitoring System along with Data Fusion and Advanced Data Analytical Algorithms Using High- Resolution Fiber Optics Sensors, I


Predictive Maintenance Strategy

- Developed a scalable risk-informed predictive ٠ maintenance strategy using machine learning approaches, risk modeling, visualization, and multiband heterogeneous wireless architecture.
- Developed a hybrid model of circulating water pump (CWP) motor (basis for digital twin) to capture different operating dynamics.

Scalable Technologies Achieving Risk-Informed Condition-Based Predictive Maintenance Enhancing the Economic Performance of Operating Nuclear Power Plants, INL/EXT-21-64168

Physics-based model of CWS

Interpretability of Artificial Intelligence and Machine Learning Technologies for building Trust Among Users

LWRS Program researchers developed methods to address the explainability, performance, and trustworthiness of AI/ML to enhance the interpretability of outcomes.


One method uses objective metrics like Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP).

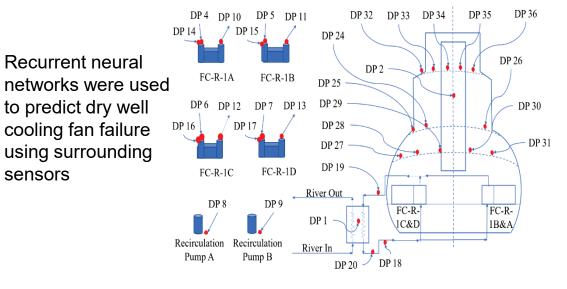
Another method employs user-centric visualization of AI/ML outcomes together with objective metrics to support expert interpretation.

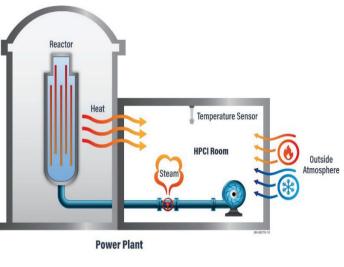
In collaboration with Public Service Enterprise Group (PSEG), Nuclear LLC, performed initial demonstration of the technical basis on circulating water system (CWS) for a waterbox fouling problem.

User-centric visualization with performance and explainability metrices

Explainable Artificial Intelligence Technology for Predictive Maintenance,

AI/ML Applications for Anomaly Detection


Unsupervised ML Methods

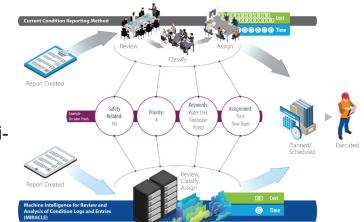

 Developing equipment-agnostic anomalies detection methods by holistic inference of process conditions

Extending Data-Driven Anomaly Detection Methods..., INL/RPT-23-73933 Software - Automated Latent Anomaly Recognition Method, (ALaRM)

- Semi-Supervised ML Methods
 - Developing methods to couple text-mined information from sparse condition reports to equipment and process sensors data for equipment and process reliability analysis

Feature Extraction for Subtle Anomaly Detection Using Semi-Supervised Learning, Annals of Nuclear Energy, vol. 181, pp. 109503, 2023 https://doi.org/10.1016/j.anucene.2022.109503

Clustering methods were used to detect High-Pressure Coolant Injection (HPCI) system steam leak



NLP Applications for Process Improvement

- Natural Language Processing and Deep Learning Methods:
 - Demonstrating and evaluating the automation of the condition reports screening process (which is the review and classification of condition reports according to their impact on nuclear safety).
 - Evaluating the automation of document review, sampling, trending, analysis, and reporting.
- Natural Language Processing and Clustering Methods:
 - Developing an inventory optimization method by coupling work demand information with parts inventory to reduce the minimum stocking requirements.

Condition report screening is a process that involves several staff on daily or bidaily basis for several hours a week.

Software: Machine Intelligence for Review and Analysis of Condition Logs and Entries (<u>MIRACLE</u>)

Developing AI/ML methods to optimize the stocking requirements in a plant

Explainable Artificial Intelligence Technology for Predictive Maintenance, INL/RPT-23-74159

- Computer Vision and Deep Learning Methods:
 - Developing methods to automatically identify a fire in a video stream to augment the effectiveness of the fire watch program
 - Developing and evaluating the automation of logging analog gauges (i.e., a method to recognize gauges in oblique angles and read their values)
 - Demonstrating methods for drones to autonomously recognize and navigate their environment in a nuclear power plant.

60° Camera

Automated gauge reading impacts a wide spectrum of activities in a plant including operator rounds, gauges calibration, and peer verification, and improves data fidelity for online monitoring.

Devices

Example of Al/ML's ability to accurately identify fire and smoke.

Automating Fire Watch in Industrial Environments through Machine Learning-Enabled Visual Monitoring, <u>INL/EXT-19-55703</u> Software - Modelling Framework for Fire and Smoke Detection in Imagery

Drones can automate several activities in a plant including operator and security rounds, and inspections of hazardous locations.

Software - Route-operable Unmanned Navigation of Drones (ROUNDS)

8

AI/ML Research Summary

ML for Material Management ML for Equipment Monitoring ML for Anomaly Detections

NLP Applications Computer Vision Applications

AI/ML Explainability

Artificial intelligence, machine learning, associated methods and data handling techniques are relatively new in the nuclear power industry.

Collaborative efforts with owner-operators and others emphasize many non-safety uses.

Trust in automation, understandability affect usability.

- Show great promise for automating many manually performed activities
- Are demonstrating new approaches to enhance efficiency

- Adoption must align with the nuclear safety culture of the industry.
- Some uses demonstrate ability to rapidly transition to safety important uses.

 Human factors issues in AI/ML implementation vital to adoption and safe use.

Sustaining National Nuclear Assets

lwrs.inl.gov

Ahmad Al Rashdan, Ph.D.

November 15, 2023

Fire Watch

What is a Fire Watch?

Regulatory Guide 1.189 Section 2.2.1 states:

Work involving ignition sources such as welding and flame cutting should be carried out under closely controlled conditions. Persons performing such work should be trained and equipped to prevent and combat fires. In addition, a person qualified in performing hot-work fire watch duties should directly monitor the work and function as a fire watch.

Regulatory Guide 1.189 Section 2.4.C states:

Successful fire protection requires inspection, testing, and maintenance of the fire protection equipment. A test plan that lists the individuals and their responsibilities in connection with routine tests and inspections of the fire protection systems should be developed. The test plan should contain the types, frequency, and detailed procedures for testing. Frequency of testing should be based on the code of record for the applicable fire protection system. Procedures should also contain instructions on maintaining fire protection during those periods when the fire protection system is impaired or during periods of plant maintenance (e.g., fire watches).

Image From: U.S. Department of Labor 2019.

Motivation

- Fire watch could cost an excess of \$1M per month in a nuclear power plant that implement a fire protection program under Appendix R to Part 50—Fire Protection Program for Nuclear Power Facilities Operating Prior to January 1, 1979.
- In 2019, the Utilities Service Alliance was awarded an iFOA grant titled "Advanced Remote Monitoring" to research and develop automation and advanced remote monitoring technology into the United States nuclear fleet to achieve economic viability while maintaining or improving safety and reliability. This includes the fire watch process.
- As part of the award, INL is working with the Utilities Service Alliance and its members through a Cooperative Research and Development Agreement to research, develop, and evaluate a custom-made fire cart for fire watch.
- The cart is equipped with a suite of sensors (e.g., camera, infrared cameras, smoke detectors). The sensor signals are fused to reliably detect fire.
- A camera can be used to detect fire in a video stream or image of various industrial environments using machine learning models.

Considered Automation Options

Method	Advantage	Technical Limitation				
Image Processing	No massive data collection or training needed	Reliable manual feature engineering is needed				
Spatial Machine Learning	Do not have to be explicitly programmed to extract specific features	Require large amounts of diverse image training data to achieve adequate generalization				
Spatial and Temporal Machine Learning	Consider changes in time as an additional dimension for features extraction	Require large amounts of diverse video training data to achieve adequate generalization				

Outline

- Data Collection and Preparation
- Models Architecture
 - Unlocking Pre-trained Models
 - Ensemble Classifier
- Models Performance
- Use Considerations

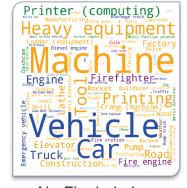
Data Managemen	t			
Collect Data	Model Training			
Prepare Data		Model Testing		
Split Data	Select/Design Model	Model lesting		
	Modify Model Tune Hyperparameters	Evaluate Performance	Model Deployment	
	Augment Model	Refine Model	Monitor Model Update Model	

Fire Detected? Yes/No

Steps to Develop a Machine Learning Model

Data Collection

General Image/Video Sources:


- YouTube-8M
- Google Images
- Yahoo Flickr Creative Commons 100 Million (YFCC100m)

Targeted Image/Video Sources:

• Fire Smoke (FiSmo)

Using Existing Classifiers:

 ImageNet (e.g., candle, cannon, fire screen, geyser, missile, space shuttle, stove, torch, volcano)

No-Fire Labels

Fire Labels

Parameter	Description
Environment	Target area, e.g., indoors or outside
Detection Space	The size of the target area and distance of potential fire targets from the sensor
Objects	Objects within the target area (e.g., people, desk, light source, automobile, etc.)
Light Source	Light consists of artificial or natural sources, or both
Light Duration	Light source and duration vary by time of day, season, etc.
Sensor	Spatial, spectral, and temporal resolutions; stationary or moving
	Diversity of Collected Data

Data Preparation

- Selectively identified noisy regions of frames and either crop the frames to remove the unwanted features, or carefully blur the region by using various image processing tools
- Ensured sufficient temporal separation between consecutive video frames. Usually, this temporal separation was around two to three seconds between extracted frames
- Dataset was slightly biased toward fire images having 30% more than non-fire. This class imbalance was meant to bias the model toward making a fire prediction.

Dataset	Fire Images	Normal Images					
Training	29,519	20,056					
Validation	3,690	2,507					
Test	3,690	2,507					
Total	36,899	25,070					

Allocation of Collected Fire Data

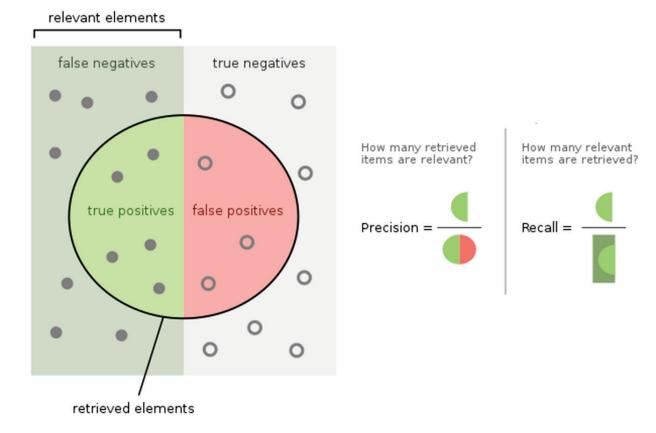
Dataset	Smoke Images	Normal Images
Training	4,460	8,636
Validation	558	1,080
Test	558	1,080
Total	5,576	10,796

Allocation of Collected Smoke Data

					Mode)	Total Parameters	Total Layers
		•			Effici	entNetB7	64,652,242	815
Models A	Arch	itecture	Incep	tionResNetV2	54,647,906	782		
					Incep	otionV3	22,263,970	313
					ResN	et101	43,245,058	347
					ResN	et50	24,226,818	177
5		Increase the non	-linearity		ResN	et50V2	24,211,586	192
Produce a new a		of the output to fu			VGG	16	14,862,146	21
that contains hig or dominant feat		enhance the feat	ures		VGG	19	20,171,842	24
such as edges	ules				Хсер	tion	21,499,178	134
	conv2d	Reduce array dimensions to improve model efficiency and reduce noise	and further re dimensionality	etion duce	dete			
Input	+ ReLU	maxpool con + Re		l full conne		fully connected		

An example CNN architecture containing two convolution and pooling segments feeding into a densely connected layer for classification (from Google developers 2019).

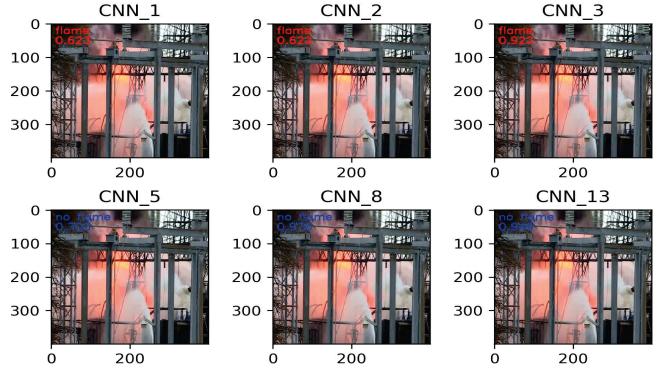
Unlocking Pre-trained Models


- Transfer learning unlocks part of the pre-trained layers and its parameters for the training process.
- One model was trained for every 10% increment of trainable layers for each of the nine model architectures.

	EfficientNetB7	InceptionResNetV2	InceptionV3	ResNet101	ResNet50	ResNet50V2	VGG16	VGG19	Xception
Dense	865,282	371,714	495,618	692,226	692,226	692,226	147,458	147,458	692,226
10%	27,109,026	13,212,354	6,569,154	15,668,226	8,573,442	8,571,906	2,507,266	2,507,266	6,942,618
20%	39,025,122	23,384,930	11,610,498	19,880,194	15,670,274	15,926,274	7,226,882	7,226,882	9,094,586
30%	51,840,450	31,170,978	13,713,794	23,499,266	17,905,666	17,897,474	9,586,690	11,946,498	11,246,554
40%	55,959,698	36,662,274	15,595,778	27,121,154	19,880,194	19,871,234	13,126,658	16,666,114	13,398,522
50%	59,948,634	42,292,706	17,285,058	31,330,306	22,054,402	22,042,626	13,716,738	17,846,274	15,550,490
60%	62,169,034	47,779,746	18,826,882	34,951,682	23,057,666	23,045,122	14,306,818	19,026,434	17,702,458
70%	63,780,554	53,142,770	21,200,738	38,898,946	23,553,410	23,540,482	14,601,986	19,911,682	19,854,426
80%	64,363,866	53,558,866	21,559,282	42,075,906	24,017,154	24,002,818	14,823,426	20,133,122	21,308,362
90%	64,579,542	54,003,266	21,842,658	43,035,394	24,141,570	24,126,978	14,860,354	20,170,050	21,444,682
100%	64,652,242	54,647,906	22,263,970	43,245,058	24,226,818	24,211,586	14,862,146	20,171,842	21,499,178

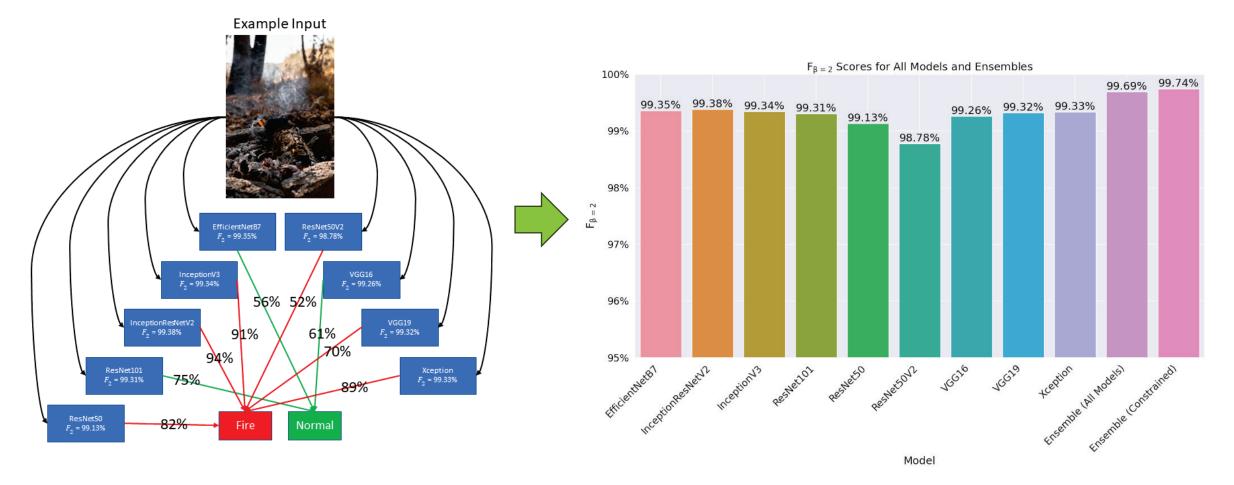
Models Performance

- $F_{\beta} = (1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{(\beta^2 \cdot \text{precision}) + \text{recall}}$
- F_{β} score uses the β parameter to weight the relative importance of recall versus precision. A β score greater than one weights the F_{β} score in favor of recall.
- By setting β = 2, the F-score is weighted such that recall is considered twice as important as precision and a reliable detection is considered twice as impactful as a false alarm.

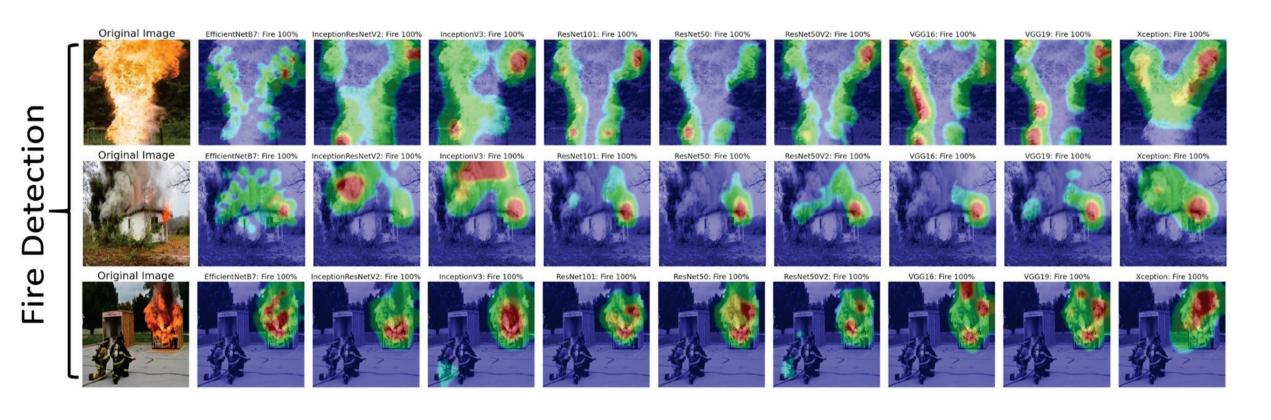

Source: https://en.wikipedia.org/wiki/Precision_and_recall

Models Performance

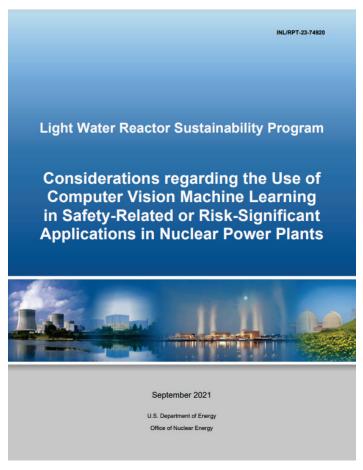
 $F_{\beta\,=\,2}$ Scores for Fire Predicitions Versus Percentage of Trainable Model Layers


EfficientNetB7	99.35%	96.49%	97.16%	96.76%	97.11%	97.37%	97.59%	97.22%	97.36%	97.71%	97.45%	
InceptionResNetV2	98.91%	99.17%	99.10%	99.16%	99.12%	99.15%	99.09%	99.15%	99.28%	99.21%	99.38%	-
InceptionV3	99.03%	98.97%	99.14%	99.01%	99.02%	99.11%	99.02%	99.18%	99.27%	99.14%	99.34%	2
ResNet101	99.12%	98.79%	98.94%	99.01%	99.02%	99.16%	99.06%	99.18%	99.31%	99.14%	99.23%	3
ອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອອ ອ	98.97%	98.94%	98.80%	98.95%	98.90%	98.96%	99.00%	99.06%	98.99%	99.03%	99.13%	
ResNet50V2	98.77%	98.22%	98.56%	98.42%	98.66%	98.34%	98.27%	98.43%	98.42%	98.78%	98.44%	1
VGG16	97.88%	98.17%	99.21%	99.03%	99.06%	99.26%	98.99%	99.09%	99.05%	99.12%	99.24%	2
VGG19	98.27%	98.11%	98.99%	99.32%	99.29%	99.28%	99.25%	99.02%	99.13%	99.14%	99.16%	3
Xception	98.96%	99.08%	99.12%	99.12%	99.13%	99.13%	99.13%	99.19%	99.33%	99.28%	99.27%	
	0%	~0°%	20%	30%	ko ^{olo} Perc	می ent Train	60%	10%	80°%	00%	200%	
ŀ	leatm	nap re	prese	entati				netrics	s for f	ire de	etectic	n

11



Ensemble Classifier


Models Focus

Use Considerations

- Digital Instrumentation and Controls (DI&C) regulatory requirements would need to be satisfied for any and every AI application that impacts safety related and risksignificant applications
- Research into the fire watch models' compatibility with the current safety standards
- Aligns with the directions of the recent executive order on safe, secure, and trustworthy artificial intelligence use. Specifically, it provides insight for development of new standards for AI safety and security

To evaluate how example AI technologies align with the safety framework, and discusses how they could be analyzed, modeled, tested, and validated in a manner similar to typical DI&C technologies.

https://lwrs.inl.gov/SitePages/Reports.aspx

Compatibility with the Current Standards Requirements

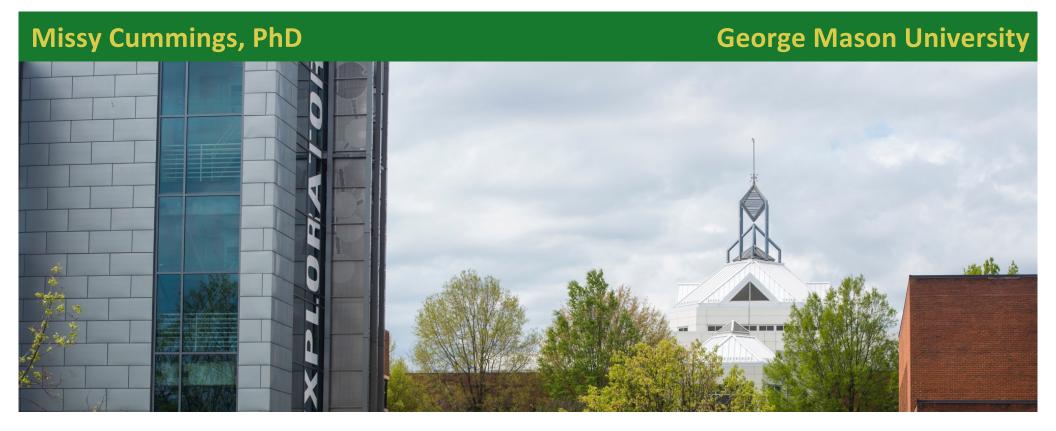
Characteristic/Consideration	Independence	Defense in Depth	CCF	V&V	QA	Configuration Control	Cyber Security	CGD	Maintainability	Traceability	Design Control	Repeatability	Deterministic Nature	Explinability	Reliability	FMEA	Simplicity	Justification	Trustworthiness
Open-source data and model																			
Frequent updates to source																			
Massive amounts of data																			
Periodic training																			
Probabilistic and stochastic																			
Various performance metrics																			
Incomprehensible to reviewers																			
Inherited bias																			
Non-systematic approach																			
Robustness to new conditions																			
Special skillset																			
Special skillset																			

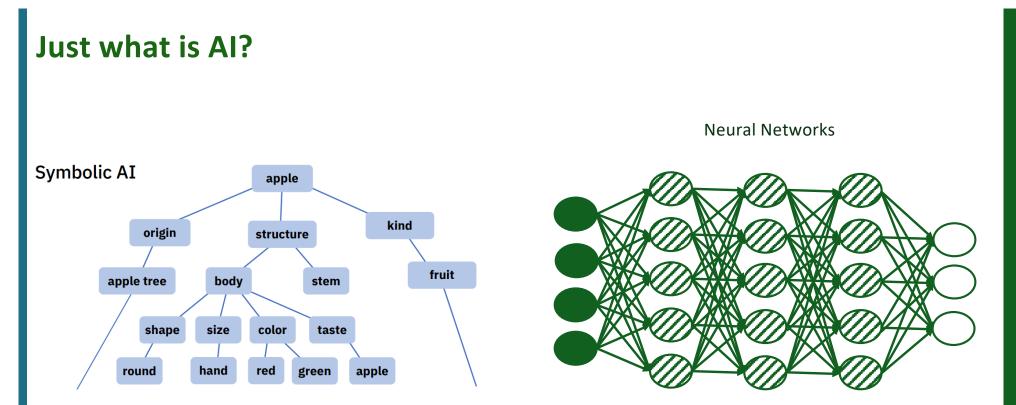
Example of Compatibility Considerations

Models often utilize open-source datasets and feature extraction engines or models.

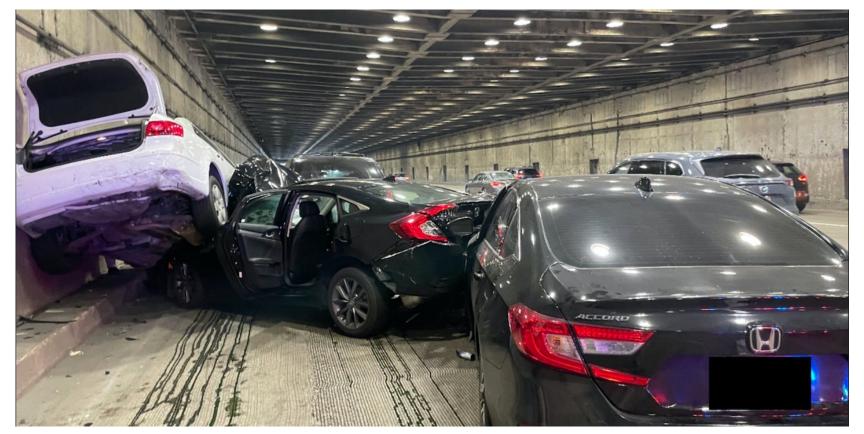
It is not always possible to determine the level of overlap among open-source datasets. Open-source models could use similar fundamental concepts. This impacts the independence of the developed models:

- Causes the system to be susceptible to common cause failure
- Overestimates the software verification results
- Introduces a cybersecurity concern

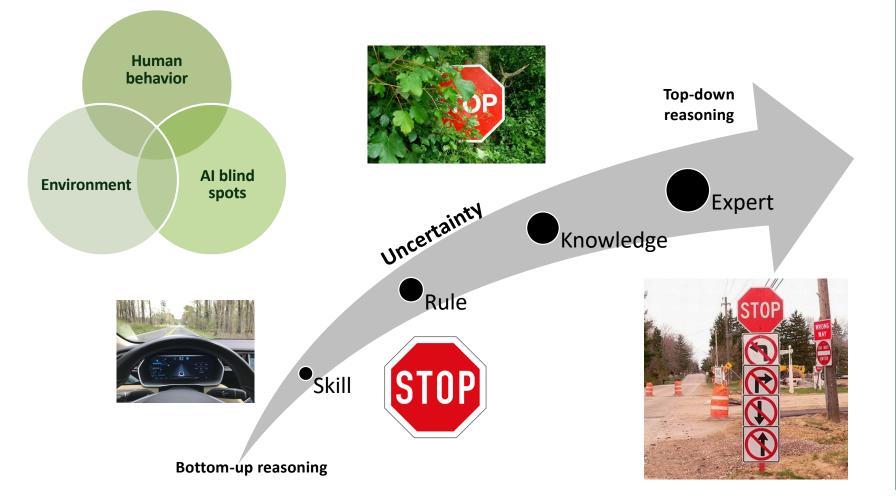


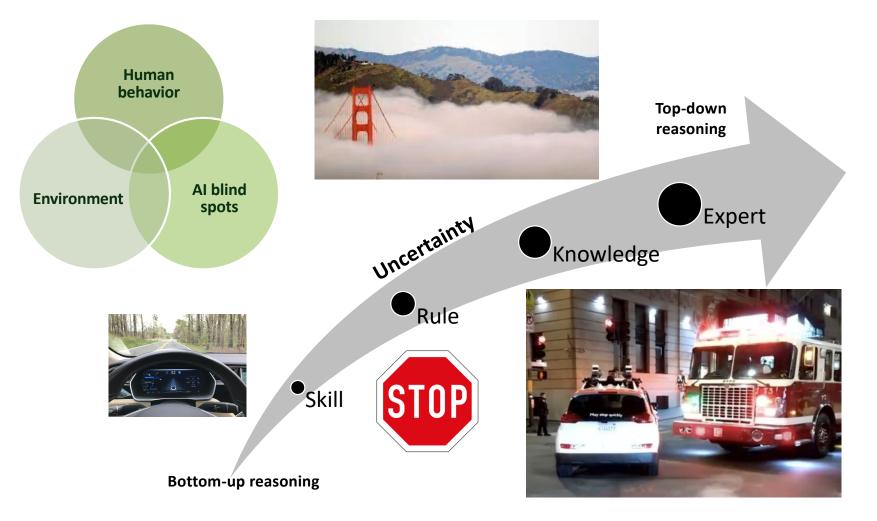


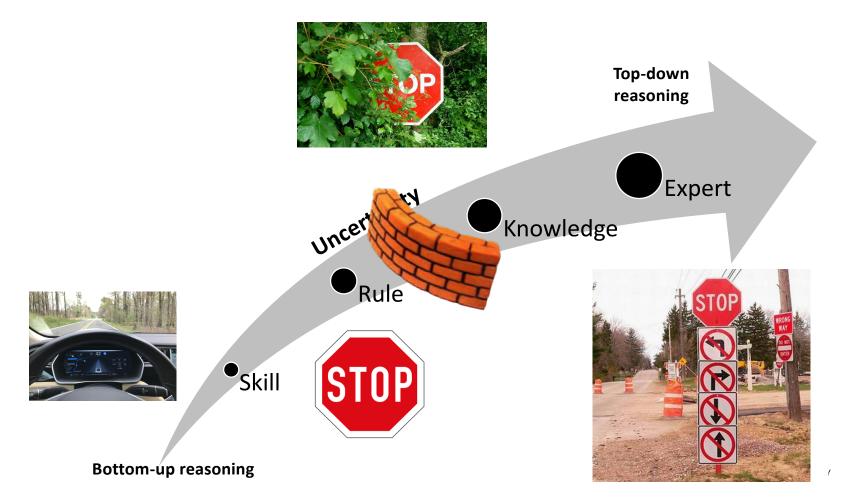
Sustaining National Nuclear Assets

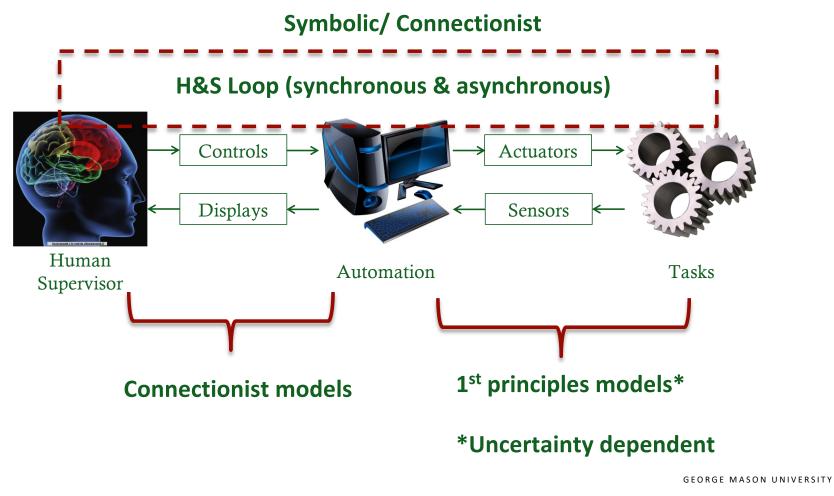

lwrs.inl.gov

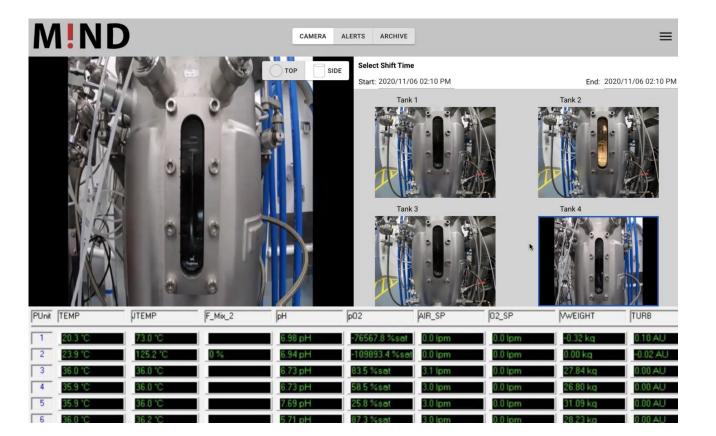
THE GOOD, THE BAD AND THE UGLY OF AI IN PROCESS CONTROL



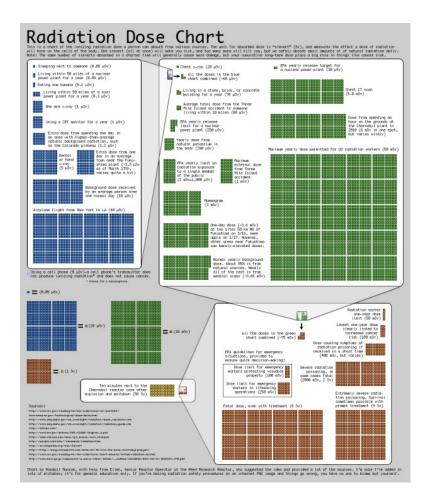

AI Problems



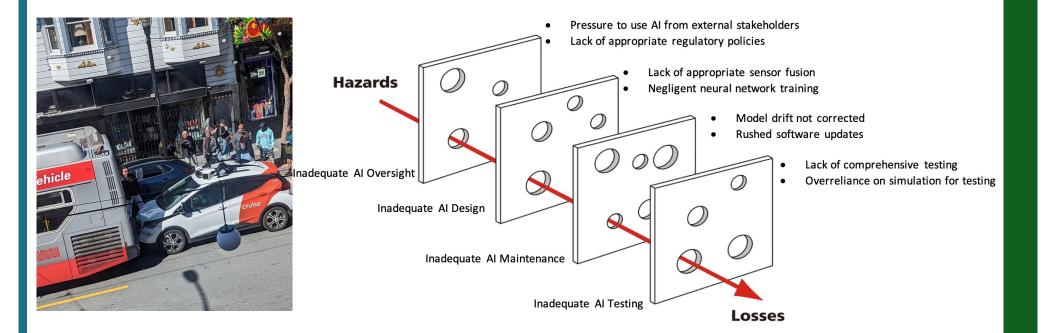

Autonomy/AI & Reasoning



AI in Process Control



Process Control w/ Unmodeled Uncertainty


Monitoring People/Plant Over Different Time Scales

Descriptive, Predictive & Prescriptive

AI Hazard Analysis

What about Large Language Models?

Correct my grammar in the following text:

factor negative x cubed plus 7 times x squared minus 16 times x plus 12

View other drafts

Sure, I can help you with that. Here is the factored form of the polynomial:

Code snippet (x-2)(x-3)(x-4)

grammatically correct, street names are capitalized in English.

UNIVERSITY

Don't Trust and Definitely Verify

why did the Cruise self-driving car hit the back of the bus?

View other drafts 🗸 🗸

There are a few possible reasons why the Cruise self-driving car hit the back of the bus. One possibility is that the car's sensors did not detect the bus in time. Another possibility is that the car's software made a mistake in interpreting the sensor data. Finally, it is also possible that the car's driver was not paying attention and did not take action to avoid the collision.

Cruise has not released any information about the cause of the accident, so it is impossible to say for sure what happened. However, Cruise has said that it is investigating the accident and that it is committed to safety.

The accident is a reminder that self-driving cars are still in their early stages of development and that there is still a lot of work to be done to make them safe. However, it is also important to remember that human drivers are involved in millions of accidents every year, and that self-driving cars have the potential to reduce the number of accidents and make our roads safer.

LLMs & Predictive Maintenance

Feature	LR	Method 1	Method 2	Method 3	Method 4
1. Speed limit	14	11	11	11	-
2. AADT	1	3	1	9	-
3. Access control	15	7	16	15	-
4. Left shoulder width	6	14	5	10	-
5. Right shoulder width	16	12	15	13	-
6. Number of lanes	11	13	8	12	-
7. Median width	5	6	12	16	-
8. Section length	3	4	2	5	-
9. Light	7	9	6	3	-
10. Weather	13	5	13	7	-
11. Maximum age	9	10	9	6	-
12. Minimum age	10	8	10	8	-
13. Vehicle type	2	1	3	1	1
14. Sobriety	4	2	4	2	2
15. Urban / Rural	8	15	7	4	-
16. Lane width	12	16	14	14	-

The thorny path ahead

- The hype cycle
 - Follow the money
- Human + AI collaboration is key
- Cybersecurity & disinformation
- Inappropriate code in safety-critical systems
 - Hardware-software integration
- Workforce development
 - AI fact checking
 - AI maintenance
 - Al risk management is key

Questions?