Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Radiation Protection and Nuclear Materials
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Tuesday, September 18, 2012

Work Order No.: NRC-1896

Pages 1-171

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	SUBCOMMITTEE ON RADIATION PROTECTION
8	AND NUCLEAR MATERIALS
9	+ + + + +
10	TUESDAY
11	SEPTEMBER 18, 2012
12	+ + + + +
13	ROCKVILLE, MARYLAND
14	+ + + +
15	The Subcommittee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B3, 11545 Rockville Pike, at 8:30 a.m., Michael T.
18	Ryan, Chairman, presiding.
19	COMMITTEE MEMBERS:
20	MICHAEL T. RYAN, Chairman
21	J. SAM ARMIJO
22	DENNIS C. BLEY
23	STEPHEN P. SCHULTZ
24	JOHN D. SIEBER
25	GORDON R. SKILLMAN
l	I

		2
1	NRC STAFF PRESENT:	
2	KATHY D. WEAVER, Designated Federal Official	
3	GORDON BJORKMAN	
4	JOHN COOK	
5	EARL EASTON	
6	ANITA GRAY	
7	ALSO PRESENT:	
8	DOUGLAS AMMERMAN	
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
I		

	3
1	AGENDA
2	OPENING REMARKS AND OBJECTIVES 4
3	STAFF OPENING REMARKS 5
4	DRAFT NUREG-2125 BACKGROUND 6
5	DRAFT NUREG-2125 METHOD AND RESULTS 47
6	BREAK
7	DRAFT NUREG-2125 METHOD AND RESULTS CONTINUED 69
8	PUBLIC COMMENT AND PROPOSED RESOLUTION 156
9	COMMITTEE DISCUSSION
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	I

	4
1	PROCEEDINGS
2	(8:31:40 a.m.)
3	CHAIR RYAN: The meeting will come to
4	order. This is a meeting of the Advisory Committee on
5	Reactor Safeguards, Subcommittee on Radiation
6	Protection and Nuclear Materials.
7	I'm Michael Ryan, Chairman of the
8	Subcommittee. The Subcommittee members in attendance
9	are Sam Armijo, Dennis Bley, Dick Skillman, Steve
10	Schultz, and Jack Sieber. That's it so far. Oh, and
11	let's see, sorry. Kathy Weaver is the Designated
12	Federal Official for today's meeting.
13	The Subcommittee will hear presentations
14	by and hold discussions with representatives of the
15	NRC Staff on Spent Fuel Transportation Risk
16	Assessment. The Subcommittee will gather information,
17	analyze relevant issues of facts and formulate
18	proposed positions and actions, as appropriate, for
19	deliberation by the full Committee.
20	The rules for participation in today's
21	meeting have been announced as part of the notice of
22	this meeting previously published in the Federal
23	Register on September 12 th , 2012. A transcript of the
24	meeting is being kept and will be made available as
25	stated in the Federal Register notice.
I	I

(202) 234-4433

	5
1	It is requested that speakers first
2	identify themselves and speak with sufficient clarity
3	and volume so they can be readily heard.
4	We ask at this time that you silence your
5	mobile phones and other electronic devices.
6	The ACRS full Committee briefing is
7	scheduled for December. We'll now proceed with the
8	meeting, and I call upon John Cook, Senior Project
9	Manager in NMSS to begin. John.
10	MR. COOK: Good morning.
11	CHAIR RYAN: Good morning.
12	MR. COOK: This morning we'll be providing
13	you with some information about the Spent Fuel
14	Transportation Risk Assessment that the NRC has
15	recently completed. We've designated as we refer to
16	it as SFTRA, but has been the report from that
17	effort has been designated as draft NUREG-2125.
18	Today's agenda, I'll be providing some
19	opening remarks, some background about the study, and
20	I will also provide some preliminary findings of the
21	report. And then we will turn for a more detailed
22	discussion to Doug Ammerman from Sandia National
23	Laboratories, who will present additional information
24	on how the study was conducted, and its results.
25	Towards the end of the presentation, we
Į	I

(202) 234-4433

	6
1	will discuss some of the public comments received, and
2	what our proposed resolution to those comments are.
3	And then make some concluding remarks.
4	The outline for this morning's discussion,
5	I already talked about what we'll be going through
6	first. Again, the additional details is what we'll go
7	through, and then finally about public comments that
8	we just discussed.
9	With respect to the origination of SFTRA,
10	where it originates from excuse me. First, let's go
11	through the project teams, who's actually been
12	involved with this activity.
13	We had the work done at Sandia National
14	Laboratories. Dr. Ammerman has been the principal
15	investigator. He's been assisted out there by Carlos
16	Lopez, who has provided the thermal analysis. Dr. Ruth
17	Weiner, who has provided the risk assessment.
18	I would point out that Sandia National
19	Laboratories is well regarded in this arena, that many
20	other countries, in fact, come to Sandia National
21	Laboratories to have work done with respect to
22	packages that they may be seeking to get tested, so
23	Dr. Ammerman and his group are not only analysts with
24	respect to the package performance under severe
25	accident conditions, but are also practitioners in

(202) 234-4433

	7
1	that activity.
2	Within the NRC, we had our own technical
3	review team to review the work from Sandia. And today
4	we are joined by some of those seated to the table to
5	the right. We have Dr. Gordon Bjorkman who is one of
6	SFST's senior-level advisors who did the review on
7	structural activities. Chris Bajwa, who is not
8	available today did the thermal review. Dr. Robert
9	Einziger was our fuels and source terms expert. He
10	also is unavailable today. And we have Dr. Anita Gray
11	who did the health physics review, also from NMSS.
12	Now, after the NRC Staff had conducted its
13	review of the work from Sandia, we had the project
14	subjected to an external peer review. That was
15	conducted at Oak Ridge National Laboratories. That
16	external peer review team was headed by Matt Feldman.
17	He was assisted by Dr. Cecil Parks and a number of
18	other professional staff at Oak Ridge.
19	With respect to SFTRA's purpose and goal,
20	you can consider the origins of SFTRA from the first
21	Final Environmental Statement that was conducted in
22	this area. That was NUREG-0170, which was completed in
23	1977. That study included a Spent Fuel Transportation
24	Risk Assessment, and it was based on that assessment

that the Commission concluded in a Federal Register

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

1 notice that the level of risk associated with spent fuel, that the regulations in Part 71 that govern 2 3 fuel transportation we adequate to provide spent 4 adequate public health and safety during spent fuel 5 transport. But they went on to say that spent fuel -that transportation of radioactive materials should 6 7 be subject to close and continuing review. And it is and SFTRA satisfies that internal commitment to 8 9 continue to look at transportation safety. 10 And as you can see, we've done these reviews on about a 10 to 12-year review cycle. And you 11 can also note that the level of analysis has improved 12 so these studies have been about 10 years apart. So, 13 14 for example, the 0170 effort was basically based on 15 engineering judgment to a large degree. The modal 16 study which followed it 10 years later was the first 17 time finite element analysis was used in looking at package performance, but that did not investigate 18 19 sealed region or releases to any great extent. Most recently, the reexamination done in 20 2000 was the first time in which the finite element 21 models also included the seal region, 22 but in а relatively low-resolution mode by today's standards. 23 24 And if you consider that to be a low-resolution version, then today's SFTRA review is more of a high-25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	9
1	definition version in which the cask and its seal
2	regions have been modeled in very great detail,
3	including the impact limiters, as well.
4	MEMBER SKILLMAN: Would you please say more
5	about the seal regions, explain what you mean by that,
6	please?
7	MR. COOK: The seal region is where the
8	cask lid is bolted to the cask container. And there
9	are either metallic or elastomeric seals between the
10	lid and the cask body, so the behavior of how that
11	interface between the lid and the cask behaves during
12	severe accidents determines if there's going to be a
13	release path. And if there is, what size is it, so
14	that's why that area is important.
15	MEMBER SKILLMAN: Thank you. I understand
16	the technology. The administrative point that you were
17	making was the previous study did not examine that as
18	thoroughly?
19	MR. COOK: That's correct. That's only
20	because the technology was not available to do so.
21	MEMBER SKILLMAN: Oh, thank you.
22	MR. COOK: Another purpose that NRC, or
23	that SFTRA serves is that we not only want to provide
24	an updated basis for our regulations, but also in this
25	effort to obtain public comment on the results of
ļ	I

(202) 234-4433

	10
1	SFTRA. That was done for the FEIS back in 1977, but
2	neither of the other contractor reports were provided
3	for public comment, so this is the first time we've
4	done that in a while.
5	We also, since the transportation of spent
6	fuel is subject to NRC's Part 71 transport
7	regulations, providing information to the public about
8	those shipments is our responsibility, as well, so we
9	do want to provide information to the public.
10	The basic message here is pretty
11	straightforward, that is that risks are low. They're
12	very low, so that safety provided is high. And we hope
13	to improve the public's understanding of the shipments
14	hopefully leading to greater acceptance on the part of
15	the public with respect to future spent fuel
16	shipments.
17	Now, at the time when this study was begun
18	in 2006, potential future shipments were also a
19	consideration, but with the current inactivity in that
20	regard, this is much less of a driver at the current
21	time. But, nonetheless, SFTRA's overall method
22	certainly would be applicable to future shipments.
23	In trying to explain what SFTRA is
24	sometimes it's helpful to look at what it's not. It is
25	a generic Spent Fuel Transportation Risk Assessment.
	I

(202) 234-4433

	11
1	It is an informational report, essentially, and it is
2	not, as we see here, an EIS. It's not driven by any
3	external commitment or requirements, not major federal
4	action. It's not required to license any facility or
5	to certify any package. It doesn't contain any
6	regulatory change proposals, and it does not include
7	any analysis of transport security concerns.
8	Now, this
9	MEMBER BLEY: That part, I know you have
10	Memos of Understanding with other agencies.
11	MR. COOK: Yes.
12	MEMBER BLEY: So, the NRC's role is
13	primarily just dealing with the cask itself?
14	MR. COOK: Primarily, yes.
15	MEMBER BLEY: And you didn't look at the
16	security aspects because they're done elsewhere, or
17	why?
18	MR. COOK: Correct.
19	MEMBER BLEY: Okay.
20	MR. COOK: There's another office, NSIR,
21	within NRC that would be looking at the security
22	aspects. We're primarily focused on safety within
23	SFST.
24	MR. AMMERMAN: And part of the reason we
25	didn't want to consider security in this report was
I	I

(202) 234-4433

	12
1	because we wanted it go out to public comment. And if
2	you address the security issue, then it becomes
3	protected information.
4	MEMBER BLEY: Okay.
5	MR. COOK: In this slide, what's the basic
6	method? We're looking at radiological impacts only
7	when we're doing the Spent Fuel Transportation Risk
8	Assessment. We don't look at traffic fatalities, we
9	don't look at the environmental effects of the fuel in
10	making shipments. It's only radiological impact, and
11	those come in two types; routine conditions in which
12	the shipment is completed without any accident or
13	incident. Then which is strictly dose consideration,
14	and then for accident conditions, there you're looking
15	at how does the cask perform under various accident
16	scenarios.
17	But since this is a risk assessment, we
18	look not only at how the cask might perform but we
19	look at what's the probability that the cask is going
20	to encounter conditions which might lead to a risk.
21	And this the way we've done SFTRA is similar to the
22	previous studies we've had. In fact, RADTRAN 1 was
23	used to do NUREG-0170, and we use RADTRAN version 6 in
24	order to do the study itself.
25	MEMBER SKILLMAN: Let me ask about the
I	I

(202) 234-4433

you're using event trees developed by the Department 1 of Transportation. To what extent do the states buy 2 3 into that data? For instance, you might say gee whiz, 4 here is this package and it meets all the requirements 5 of DOT. We have used all of the risk information that the federal regulations guide us to use, and as far as 6 we're concerned this package is good to go. 7 8 So, you have Ohio, and Wyoming, and Pennsylvania say no, our standards are higher still. 9 10 And for that package to cross our roadways or our railways you've got to meet our requirements in 11 addition to the DOT requirements. To what extent are 12 the DOT requirements accepted, if you will, for the 13

14 lower 48 states?

15 MR. Well, for COOK: DOT transport 16 requirements, those are national standards with which 17 all states would comply, that should a local qovernment decide 18 that they want to impose 19 restrictions that qo beyond what the Department of 20 Transportation has in their regulations, the 21 Department of Transportation can preempt local regulations that are found to be inconsistent with 22 DOT's national transport standards, because we can't 23 24 have a system in which states can have different 25 levels of requirements for these types of transport.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	14
1	Not necessarily restricted to the radioactive
2	materials, for any hazardous material, there needs to
3	be a national system. That is what's in place. And,
4	again, should one state try or enact regulations that
5	are essentially a prohibition against transport, those
6	can and in fact have been overturned by DOT in the
7	past.
8	I would also mention that we have used in
9	the study statistics that reflect state-by-state
10	accident rates, so we are trying to be we are
11	trying to consider there are variations within states.
12	But once we look at the accident rate, then the
13	response to those accidents, that we use the event
14	trees that we're mentioning here, and those are the
15	same.
16	MEMBER SKILLMAN: Thank you.
17	CHAIR RYAN: John, I think it's fair to
18	say, too, that states are pretty well versed at
19	coordinating. Very often for some shipments, and we've
20	seen high-activity waste or fuel, or spent fuel,
21	there's essentially a handoff from one state police
22	organization to the next along a transport route. And
23	that's all correct me if I'm wrong, you don't have
24	to agree, but I think that's all fairly well
25	established as to how well that works, and the
	I

(202) 234-4433

1 handoffs are pretty well managed, and it's really not any argument, other than we want to know what's coming 2 3 in. We want to notify you when it's leaving to make 4 sure those border cross and handoffs are well 5 orchestrated. So, I think that's probably the only sort of challenge there, is how do you plan a route, 6 7 and then get everybody on board. Because as you might 8 expect some places you can't do things on Saturday or 9 Sunday, and some places that's okay, so there tends to 10 be a lot of coordination that has to go. But I don't think there's any disagreement about the fundamental 11 requirements for a package or a transport unit. 12 MEMBER SKILLMAN: Okay, thank you. 13 14 CHAIR RYAN: Is that --15 MR. COOK: Yes, that is very correct. 16 CHAIR RYAN: And those are the followers in 17 the handoffs, not in the basic unit rolling down to the road. 18 19 MR. COOK: And each state is notified. CHAIR RYAN: Right. No, it's a pretty well 20 exercised system. Yes. 21 MEMBER BLEY: Before you leave this overall 22 description of the study, are we going to go into 23 24 detail on the fire analysis later? MR. COOK: We will. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	16
1	MEMBER BLEY: Okay. Let me just pose two
2	quick questions that maybe you were going to get to
3	there. The last National Academy study on the
4	transportation left with saying a completely engulfing
5	fire hasn't been fully analyzed. Does the analysis
6	we're going to see really go into the details of the
7	seals and their response during the fire?
8	MR. COOK: It does.
9	MEMBER BLEY: Okay. And the fire you look
10	at is at least as bad as the Baltimore Tunnel fire?
11	MR. AMMERMAN: Actually, one of the public
12	comments that we received from the State of Nevada was
13	about that, and we are going to address the public
14	comment, add a discussion specifically about the
15	Baltimore Tunnel fire into the report.
16	MEMBER BLEY: Okay. Well, when you get to
17	the fire maybe you say something more about how it
18	relates to
19	MR. AMMERMAN: Yes.
20	MEMBER BLEY: Okay, thank you.
21	MR. COOK: So, kind of jumping ahead to
22	provide some of the findings which we'll review again
23	later at the end of the presentation, but so, we
24	haven't gone into how this derived, but still just to
25	go give you what the insights in the report are going
I	I

(202) 234-4433

	17
1	through.
2	First, with respect to routine
3	transportation we find that the collective dose from
4	routine transportation are very small, that those
5	doses are a small fraction of the background dose that
6	a population along the route would receive during the
7	same time period that a shipment might be conducted,
8	and that the
9	CHAIR RYAN: One thought on that point, and
10	I find myself being asked about that kind of
11	comparison a lot. In terms of collective dose, you're
12	always troubled with facts of how many people are
13	involved in one side and then the other. So, I'm
14	guessing that this really represents the collective
15	dose they get from background to a set population, and
16	then the additional dose that would be involved in a
17	transport unit going by that population. So, that's
18	the increment that you're looking at.
19	JUDGE PARCHMENT: That's correct.
20	CHAIR RYAN: So, it is you know, if we
21	give an analogy, it's an apples to apples comparison
22	in terms of the population exposed, first the
23	background and then to what's added by transport units
24	going past that population along the route of choice.
25	MR. COOK: That's right. We're looking at

(202) 234-4433

(202) 234-4433

1 the population that's within an 800-meter band on either side of the transport route, be it roadway or 2 3 railway. 4 CHAIR RYAN: Right. 5 MR. COOK: So, what is that total population? What is the dose to that population from 6 7 natural sources? 8 CHAIR RYAN: Yes, so we're not deleting the 9 route of transport by the population and the entire 10 metropolitan area. MR. COOK: No, we're not. 11 CHAIR RYAN: So, it very much is a fair 12 apples to apples comparison of population. 13 14 MR. COOK: Right. And then we'll go into more detail --15 CHAIR RYAN: Okay. I just want to clarify. 16 Sure. And we found little 17 MR. COOK: variation in the routes. I mean, we're going to show 18 19 that we selected. They're you the routes just examples, you could pick other routes, but essentially 20 the results are not changed if you do use other 21 routes. 22 We find that radioactive material would 23 not be released in a fire if the fuel is contained in 24 an inner-welded canister, which is a design. Both of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	19
1	the designs that we have selected have that
2	capability.
3	MEMBER ARMIJO: Are there any designs that
4	don't have that capability?
5	MR. COOK: Yes. In fact, one of the casks
6	we analyzed can go either way. It can be either direct
7	loaded, which there is no welded inner canister, or it
8	can be loaded with an inner welded canister, so we
9	have both options. The truck cask does not have an
10	inner welded canister, so you so, only and our
11	study, in fact, to your point, only the real cask
12	without an inner welded canister would release any
13	radioactive material, but only then in exceptionally
14	severe accidents.
15	We estimate that if there were an accident
16	during a spent fuel shipment sort of additional
17	probability here, there is less than a one in a
18	billion chance that the accident would result in a
19	release of radioactive material. And we'll show you
20	why that is, the derivation of that result.
21	We then decided to take a non-
22	probabilistic look, kind of ignore the probabilities
23	that this ever occurs, just look at the consequences.
24	And we found that the release if there were such a
25	release, that the does to the maximum exposed
I	

(202) 234-4433

	20
1	individual from that release would be non-fatal.
2	MEMBER ARMIJO: I had a question on that.
3	MR. COOK: Sure.
4	MEMBER ARMIJO: And I think the number that
5	you that's in your document was the maximally
6	exposed individual getting would get less than 200
7	rem. And, first of all, is that accurate? And,
8	secondly, non-fatal means immediately non-fatal or
9	long-term non-fatal?
10	MR. COOK: Well, it's immediately non-
11	fatal.
12	MEMBER ARMIJO: Okay. But long-term,
13	whoever got this 200 rem
14	MR. AMMERMAN: There's a chance that they
15	would develop a latent cancer.
16	MEMBER ARMIJO: Yes.
17	MR. COOK: Yes.
18	MEMBER ARMIJO: And then maybe later we'll
19	talk about what are the chances.
20	MR. AMMERMAN: And this is different than
21	both 0170 and the reexamination study that was done in
22	2000, in that we stopped the analysis at exposure. We
23	didn't report latent cancers. And that was a conscious
24	decision on our part not to report latent cancers.
25	CHAIR RYAN: Good.
ļ	I

(202) 234-4433

	21
1	MR. AMMERMAN: And it's because the I
2	think primarily the science isn't there to demonstrate
3	that a micro dose to a megapopulation ending up with
4	the same collective dose as a large dose to a few
5	people causes the same amount of latent cancers.
6	CHAIR RYAN: It's kind of equivalent to
7	saying you've got a 100-mile an hour wind for an hour,
8	or 1-mile an hour wind for 100 hours.
9	MEMBER BLEY: If that were really true we
10	still would we wouldn't have any debate about this.
11	MEMBER ARMIJO: I still want to get
12	let's assume there was only one individual exposed.
13	He got the 200 rem. He didn't die right away. Based on
14	what the health physics people know, what are his
15	chances of getting cancer within his lifetime from
16	this exposure, that you can actually distinguish it
17	from normal probability of getting cancer.
18	MR. AMMERMAN: That's a true statement,
19	yes. I mean, the a 200 rem exposure is has a
20	certain probability, and I don't know off the top of
21	my head what that probability is, but it's not an
22	insignificant probability that that person will
23	develop cancer due to that exposure.
24	MEMBER ARMIJO: Yes.
25	CHAIR RYAN: Well, you know, you can put
ļ	I

(202) 234-4433

	22
1	some at least order of magnitude number on it.
2	Everybody talks about three times ten to the minus
3	four of cancer per rem, so 100 rem is roughly, you
4	know, a few percent. That's another risk of getting
5	cancer by being a human being on earth.
6	MEMBER ARMIJO: Yes.
7	CHAIR RYAN: It's .3, so I think all that
8	has to somehow come into some sort of view that we
9	understand the probability of getting cancer anyway,
10	the added risk of cancer from some activity, whether
11	it's smoking or transportation unit going by your
12	house, or whatever it might be. So, all that has to
13	come together in sort of a I think a coherent view
14	of the risk instead of picking on one element and
15	saying this added risk is huge compared to not having
16	that added risk. That's not the right way to look at
17	it.
18	MEMBER ARMIJO: Yes. Was that three times
19	ten to the minus four?
20	CHAIR RYAN: Cancers per rem.
21	MEMBER ARMIJO: Cancers per rem, and I
22	multiple that times 200, I get .06.
23	CHAIR RYAN: There you go.
24	MEMBER ARMIJO: Is that a fraction, so 6
25	percent chance of getting cancer?
l	I

(202) 234-4433

	23
1	CHAIR RYAN: In addition to the 30 percent
2	or 33 percent
3	MEMBER BLEY: But with nothing near the
4	precision, the way you just said it.
5	MEMBER ARMIJO: I understand that. I just
6	want to get into the ball park.
7	CHAIR RYAN: Near bar is interesting.
8	MEMBER ARMIJO: Yes, near barge big. Got
9	it. Thank you.
10	MEMBER SCHULTZ: John, you mentioned that
11	this portion of the study was to back up and now take
12	a deterministic look at the maximum exposed individual
13	dose. And in doing that, does the report include in
14	your view enough evaluation and reporting of
15	uncertainties associated with that calculation to
16	describe I mean, we say 200 as if that's it, and
17	back when you're doing a deterministic analysis you
18	want to describe as completely as possible what the
19	assumptions have been, what the uncertainties are in
20	that estimate of 200 rem. Has that been done and
21	reported?
22	MR. COOK: Well, I think our look at
23	uncertainty is at the probability of getting into the
24	accident that might lead to an event that might lead
25	to the 200 rem. And I do believe that we have
	1

(202) 234-4433

1 addressed that in the report, so you will see I think later on that our estimate of less than one in a 2 3 billion, there are still residual conservatisms; that 4 is, factors which would overstate the risk that we're 5 reporting. So, we can describe those later so that we believe the less than one a billion is -- it is less 6 7 than that in our view. So, in that regard we've looked 8 at the certainty or uncertainty in that estimate. make 9 MEMBER ARMIJO: Just to sure Ι 10 understand from Dr. Schultz' question. The uncertainty you use a term maximally exposed individual 11 _ _ receiving less than 200 rem. To me that says you added 12 up all your uncertainties and said this quy is never 13 14 going to get more than 200, you know, with high confidence. Is that correct? 15 16 MR. AMMERMAN: That's correct. 17 MEMBER ARMIJO: You've already got the uncertainty built into that number. 18 19 MR. AMMERMAN: Yes. 20 MEMBER ARMIJO: Okay. MR. AMMERMAN: I think the biggest factor 21 on that is the assumption of where that person is. 22 MEMBER ARMIJO: Sure. 23 24 MR. AMMERMAN: Is there actually a person at the location that receives the maximum dose? Highly 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	25
1	improbable that that is the case, because that
2	distance is actually I think 22 meters from the
3	accident site, 22 meters down wind from the accident
4	site. So, is there a person at that location? Most
5	likely not, so the
6	MEMBER ARMIJO: But you just placed him
7	there
8	MR. AMMERMAN: We said yes, if he was
9	there, this is the dose he would get.
10	MEMBER ARMIJO: Got it.
11	MR. COOK: If the accident occurred and it
12	was that severe, and the person was there, then you'd
13	get this result.
14	CHAIR RYAN: But I think there are other
15	conservatisms built into that, as well, how long is he
16	there?
17	MR. AMMERMAN: Yes.
18	CHAIR RYAN: He's got to
19	MEMBER ARMIJO: He's got to stick around to
20	get
21	MR. AMMERMAN: And our assumption is that
22	he's there for a day.
23	MEMBER ARMIJO: For 24 hours.
24	MR. AMMERMAN: For 24 hours, yes.
25	MR. COOK: This is, of course, 21 meters
Į	I

(202) 234-4433

MEMBER ARMIJO: Okay, not a very smart guy. MEMBER SCHULTZ: The reason I asked the question is that as we were describing one of the -what I think is one of the chief goals of the study that we've added in this case at this time is the communication with the public of the information, and allowing public comment is one. We can talk later about those comments, and what the plan is to go forward with those in terms of public communication.

In regard to this piece, it's important to 13 14 understand that those in the public that either don't 15 understand or have a difficulty with probabilistic 16 analyses will instead go to this number. So, an 17 appropriate description of that in a way that someone in the public can fully understand what has been 18 19 stated here is very important because as a member of the public, one may be likely to focus on this number, 20 and the concern that's associated with a dose of 200 21 rem, so I think we need to discuss this further. 22

23 CHAIR RYAN: Steve, I agree. I find myself 24 in situations trying to explain all that. And the real 25 sort of central point of the conundrum is you're

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

(202) 234-4433

	27
1	trying to convince people that it's this is a
2	worthwhile exercise in spite of the fact it's never
3	going to happen. And that doesn't pass the every man
4	kind of common thinking test.
5	MEMBER SCHULTZ: That's right.
6	CHAIR RYAN: So, why are you spending all
7	this time and energy analyzing something that's an
8	extremely low probability, and what are you getting
9	at? So, it's not well grasped why we do this, so that
10	I think is a very important point that you're raising,
11	is we really have to figure out a way to explain why
12	this informs the scientific assessment side of it, and
13	then how do we translate it into routine risks that we
14	accept every day.
15	MEMBER SCHULTZ: That's what I believe we
16	need to work toward.
17	CHAIR RYAN: I agree. I mean, I think that
18	should be something we think about how we address it.
19	MR. COOK: I would just add that it's
20	somewhat ironic I think that the reason or one of
21	the reasons we did this analysis is because of the
22	difficulty of trying to explain the point that comes
23	before or how unlikely these events are, trying to
24	explain that the probabilities here are very, very
25	small using scientific notation terms that are
I	I

(202) 234-4433

	28
1	difficult to grab. So, let's try to get them
2	explained in that issue, so we'll go to the health
3	effect issue. And that has it's own in fact, it's
4	potentially confusing, as well.
5	MEMBER SCHULTZ: But I believe both can be
6	explained
7	MEMBER ARMIJO: I think it can. I think
8	this is very good.
9	MEMBER SCHULTZ: On both parts really.
10	CHAIR RYAN: Yes, and I think it can be
11	done. We address everybody's concerns or interests,
12	perhaps not, but I think we can at least lay it out in
13	a logical way so people will get a grasp of the
14	scientific kind of thinking about this, is we want to
15	assess things we don't think can happen just so we
16	understand how it would if it did, even with a remote
17	probability, happen. You know, people understand that
18	plane crashes don't happen every day, but when one
19	happens it's a big deal. So, that's really what we're
20	trying to get across.
21	MEMBER ARMIJO: People buy lottery tickets
22	and the probabilities of winning are very small, but
23	they believe it's going to happen to somebody, and why
24	not them.
25	CHAIR RYAN: Line up
I	I

(202) 234-4433

	29
1	MEMBER SCHULTZ: If you turn that around
2	that's a concern, because that could happen to me.
3	MEMBER ARMIJO: People don't
4	MEMBER SCHULTZ: So, that's what I'm
5	concerned about.
6	MEMBER ARMIJO: Yes. No, I understand.
7	CHAIR RYAN: But I think Steve's point is
8	right on target, that is a communication issue that we
9	need to do some more serious thinking about.
10	MEMBER SKILLMAN: I wonder if there are
11	other shipments that pose very similar risks. I'm
12	thinking about transportation of propane. I'm thinking
13	about transportation of gasoline.
14	MEMBER BLEY: Much higher likelihood.
15	MEMBER SKILLMAN: Much higher likelihood,
16	and it some cases just stunning damage and fatalities.
17	I mean, we saw the, what was the bridge on the west
18	coast, the Bay Bridge with the gasoline tank. So,
19	maybe a way to begin this discussion is to point out
20	that in comparison to other rides that you drive next
21	to on the interstate, these are benign compared to
22	some other things that you simply accept as a
23	consequence of living in our culture.
24	MEMBER BLEY: That requires extraordinary
25	caution. If you go back to when WASH-1400 was
l	1

(202) 234-4433

1 published, the thing that caused the greatest confusion with the public were the comparison things. 2 3 Most engineers appreciate them, most people in the 4 public turn them around and there's been just a myriad 5 of studies on risk communication that show trying to do those kinds of comparisons to bolster your case is 6 7 generally much more trouble than it is good to you. It 8 backfires almost every time, so it requires a great 9 deal of care.

MEMBER ARMIJO: I don't know if this is 10 fact, but I read or was told that when comparisons 11 were first made about radiation exposure from nuclear 12 operations to x-rays, dental x-rays, chest x-rays 13 14 people stopped taking x-rays because they said well, 15 if it's that bad, you know, instead of being 16 comfortable about it. They got even more nervous, so 17 it's a tough --

MEMBER SIEBER: Well, I think there's one 18 19 way to look at it. There was a study I think in the late 1960s or early '70s at MIT related to how people 20 -- the general public perceives risk. And in general, 21 if it's some -- if they are taking or undergoing a 22 risk that they can't see or feel, they are much more 23 24 afraid of that than if a fire was burning right in front of you. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Secondly, people are much more afraid of somebody doing it to them rather than they making a choice to expose themselves. And if you study that thoroughly you come up with a number of risk aversion, it is something like ten to the third, so there's a factor involved there in people's willingness to accept certain risks.

You get on an airplane, you know that 8 9 there's some kind of a risk there in your heart, and 10 I as a pilot probably knew it more than a lot of ordinary people do because I saw them. And on the 11 other hand, people fly every day, don't worry about 12 it. They drive cars every day, and there's tens of 13 14 thousands of people killed every year in automobiles.

On the other hand, radiation you can't 15 see, and in the case of commercial radiation not 16 17 medical, you don't get to choose either. It's just there and you don't know it, whether you're exposed or 18 19 not, and people fear that. And so that has to be taken into account and dealt with carefully when you 20 communicate to the public. The fact is they just won't 21 -- they won't accept this compared to other things 22 that are riskier that they will accept. 23 24

CHAIR RYAN: Go ahead.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. COOK: Okay. So we said previously that

(202) 234-4433

25

1

2

3

4

5

6

7

1 in the study kind of following along with the 2 methodology that's been used previously, and yet the 3 study also introduces some new, we call them 4 improvements.

in 5 We used certified casks this 6 assessment, and what I mean by that is that the 7 designs that we used here are casks that have been 8 certified by the staff at SFST, so the previous work 9 was based on generic casks. Those were casks that were 10 modeled to just satisfy NRC's transport regulations in 10 CFR Part 71. So, both 0170 and the modal study, and 11 6672 all used these generic representative casks, but 12 SFTRA actually uses casks that have been certified. 13 14 And what we found is that certification of casks, there are additional robustness in casks that are 15 actually fabricated, and certified, and used. I think 16 17 the study reflects that.

18 MEMBER ARMIJO: So, the generic was a 19 hypothetical cask?

MR. COOK: Yes.

21 MEMBER ARMIJO: It met the minimum
22 requirements.
23 MR. COOK: Correct. That's exactly right.
24 MEMBER ARMIJO: Okay.

MR. COOK: We've used updated event trees,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

20

25

(202) 234-4433

so we have what we believe is a better handle on the probability of severe accidents and what those rates are for both truck and rail in the study. We used improved thermal analysis model in the study, and we've used better and more finely detailed finite element models.

7 And on the routine -- well, kind of in between the routine dose and accident dose we've also 8 9 studied for the first time in this study an accident, 10 essentially considered a fender bender, there's no real damage to the cask at all. But, of course, in 11 one of these shipments if any of these casks were 12 involved even in a minor incident, it would be pulled 13 14 over to the side, or escorted. There's police. It 15 would be a long time before that shipment would be 16 allowed to continue, so what we're looking at here is the stop time dose to people around the cask should 17 one of those events occur. And that's not been looked 18 19 at in previous studies either.

20 MEMBER BLEY: I don't remember. Did that 21 end up being any significant part of the risk? 22 MR. COOK: Well, it's separate. We didn't 23 -- we kind of kept it separate since none of the 24 previous studies looked at it. But it is with respect 25 to the routine transport analysis, because it involves

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	34
1	stop time. And as soon as you stop one of these
2	shipments, then it's easier for dose to accumulate for
3	people that are in close proximity to it. So, it is
4	something that we've looked at. It's not dissimilar
5	from let's say fuel truck stops, or inspector stops,
6	but it's just longer.
7	MEMBER BLEY: The assumptions on where it
8	was stopped?
9	MR. COOK: It could be in a rural area, or
10	an urban area, or
11	MEMBER BLEY: You looked at all of those.
12	MR. COOK: Yes.
13	MR. AMMERMAN: Yes. And as a matter of
14	fact, we report both the collective dose and the MEI
15	dose for that event, as well.
16	MEMBER BLEY: Okay. I missed that.
17	MR. COOK: And we're just briefly taking a
18	look at the accident conditions that are required to
19	be satisfied for a package design to be certified by
20	NRC in Part 71. We have free drop, puncture thermal,
21	and immersion. Those are in themselves very robust
22	conditions, and to be certified you must demonstrate
23	that not only does the package withstand these events,
24	but that there is a specified but very small release
25	of material that is approved, that is provided for in
Į	1

(202) 234-4433

	35
1	the regulations. So, you have both, a very severe set
2	of accidents, but also very stringent criteria
3	acceptance, as well.
4	MEMBER BLEY: Can you something about how
5	things like the drop test correlate with the finite
6	element, or is the finite element tuned to match the
7	drop test that you have, how those things relate?
8	MR. AMMERMAN: As a matter of fact, yes.
9	The finite element analyses are benchmarked by
10	available test data from physical tests. And most
11	casks are certified by a combination of drop testing
12	of scale models, not a full scale test, and finite
13	element analysis with probably in modern
14	certifications and, Gordon, correct me if I'm wrong
15	here, modern certifications leans more toward the
16	analysis side than the test side. I think the staff
17	requires a lot more detail in the analysis than was
18	the case 10 or 20 years ago. And at the time when the
19	original study, 0170 was published, there was a lot
20	heavier reliance on test data than there is today
21	primarily because our analysis tools have gotten so
22	much better in the intervening 35 years.
23	MEMBER ARMIJO: These various tests have
24	been around for 40, 50 years.
25	MR. AMMERMAN: Yes, they have. Yes,
I	I

(202) 234-4433

	36
1	exactly.
2	MEMBER ARMIJO: Long before the more modern
3	analytical tools became
4	MR. AMMERMAN: Yes, that's right. And
5	that's why I say, that 40 years ago people
6	demonstrated were more likely to demonstrate
7	compliance with these environments by testing as
8	opposed to by analysis; although always there was
9	analysis. Might not have been finite element analysis,
10	it might have been hand calculation analysis, but
11	there has always been a component that has been
12	analysis, as well as a component for testing.
13	CHAIR RYAN: And I guess there hasn't
14	really been too many new designs of casks. I mean,
15	they're all fairly standard these days. Is that right?
16	Have there been some new ones here?
17	MR. AMMERMAN: There is nothing radically
18	different I would say. Yes, that's true.
19	CHAIR RYAN: Changes here.
20	MR. AMMERMAN: I mean, the capacity of the
21	cask is it keeps on going up. You know, there are now
22	casks I think are certified up to 37 maybe PWR
23	assemblies per transport. And if you were to look at
24	20 years ago, maybe 30 years ago, 12. So, I mean,
25	we've taken essentially the same cask and we've
I	

(202) 234-4433

	37
1	crammed three times as much fuel into it.
2	MR. COOK: Because the fuel is much cooler.
3	MEMBER SKILLMAN: What sets that upper
4	limit? Is that the 80,000 gross vehicle weight for a
5	tractor trailer, or is it the maximum for a railroad
6	car? What sets that upper limit?
7	MR. AMMERMAN: There are several factors
8	that set that. One is the external temperature of the
9	cask, so how much decay heat can you put inside of it.
10	So, if you're transporting older fuel you can
11	transport more, similar decay heat, of course.
12	I think a big one is the criticality
13	analyses. And we have changed the way we do
14	criticality analysis. Older design casks have flux
15	traps within the basket inside, so it had air space in
16	between cells to reduce the neutron flux that was
17	going from one assembly to another one. And in our
18	more detailed analyses that we've been able to do
19	today on criticality has said that those are needed.
20	So, now you have essentially a thin steel plate that
21	separates Assembly A from Assembly B. And that's one
22	of the reason why we can so we can physically fit
23	more. And you're also geometry limited. You can only
24	transport you know, legal width on a rail car is 10
25	feet 8 inches. It's 128 inches wide. That's all you

(202) 234-4433

	38
1	can go down the rail tracks. On the highways it's even
2	less, 102 inches. So, you're limited by geometry, how
3	much more can we go above the 37 that we have now?
4	Not a heck of a lot I don't think because of that
5	restriction.
6	MEMBER SKILLMAN: Where I was really going
7	is if you had an infinitely decayed fuel assembly, a
8	lot of them, what sets the maximum, the combination of
9	the number of fuel assemblies plus the mass of the
10	cask plus its over pack. And I'm thinking it's either
11	the 80,000 gross vehicle for a tractor trailer, or
12	it's whatever the limit is for a rail car.
13	MR. AMMERMAN: For rail there really isn't
14	a limit.
15	MEMBER SKILLMAN: It's 100 tons.
16	MR. AMMERMAN: You can have rail cars that
17	go significantly more. They just put more axles on
18	them. Now, at a certain point they have a hard time
19	making curves because they
20	MEMBER SKILLMAN: It's really the tractor
21	trailer, 80,000.
22	MR. AMMERMAN: Yes, for truck transport
23	it's been 80,000. And there's movement to change that,
24	so the next one of these risk assessments is done 10,
25	12 years from now maybe, you might see truck casks
I	I

(202) 234-4433

	39
1	that are heavier.
2	MEMBER SKILLMAN: Okay, thank you.
3	MR. COOK: So, the casks that were selected
4	for this study include two rail casks, the Holtec HI-
5	STAR 100, which is a steel-shielded rail cask that's
6	always transported with an inner welded canister. The
7	NAC STC, which is a lead-shielded rail cask that can
8	be transported either direct loaded or with an inner
9	welded canister. And the GA-4 which is a DU-shielded
10	truck cask. And we selected those for a variety of
11	reasons which you see here.
12	Just some quick pictures here to give you
13	a feeling for what we're looking at. These are the
14	rail casks, are about 120 tons, 100 to 120 tons, and
15	the truck cask is close to the vehicle well, it's
16	about 55 tons to allow a little bit of head room for
17	the truck and the rest of the vehicle.
18	In order to do risk assessments you need
19	to use routes that are probably close, so we selected
20	I'm going to first, I guess, put our disclaimer out
21	that these are what we've used are example routes
22	only, and they do not represent in any fashion any
23	current or planned transport of any spent fuel from
24	any of these destinations to or from any of these
25	points of origin to any of these destinations. We just
I	1

(202) 234-4433

40 1 selected these to be generally representative of wide geographic regions across the United States. 2 They 3 represent thousands of miles of both rail and highway 4 through the rural, urban, and suburban areas across 5 the country. MEMBER BLEY: So, there is a claim that 6 7 they're at least representative. 8 MR. COOK: Yes, we don't -- again, you 9 could select different routes, certainly. But would 10 they be significantly different over these kind of mileages that we're talking about, probably not. 11 There's a different code that's used to take -- to do 12 not only routing but to calculate the number of people 13 14 along the routes, as we were talking about earlier. 15 That's WebTRAGIS, and we used that as input to the 16 RADTRAN code which is the code that actuallv 17 aggregates the doses for both individuals and to collective populations, as well. 18 19 MEMBER ARMIJO: Where is Deaf Smith and Skull Valley? What states are they in? 20 MR. AMMERMAN: Deaf Smith is in Texas, 21 Skull Valley is in Utah. 22 MEMBER ARMIJO: Texas and Utah. 23 24 MR. AMMERMAN: And Deaf Smith is right on

the border of New Mexico. It's in the same salt

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

	41
1	formation that the WIPP site is in.
2	MEMBER ARMIJO: Okay.
3	MEMBER SKILLMAN: Was there an intentional
4	action to make sure that for these exploratory routes
5	places like the Cross-Bronx Expressway, Fort Lee, the
6	Baltimore tunnel, Interstate 90 where it weaves its
7	way through Chicago, those types of very high
8	population areas received the attention that might
9	disarm an angry population?
10	MR. AMMERMAN: I think yes, and that's part
11	of the reason why we chose Maine Yankee and Indian
12	Point as origins, is that you get those the routes
13	that you would take from those northeastern reactors
14	to sites, and so we have routes that go the
15	railroad from Indian Point goes right down the eastern
16	seaboard. You know, it goes
17	MEMBER ARMIJO: You can't find a
18	MR. AMMERMAN: Yes, you know, Philadelphia,
19	Baltimore, goes past the Mall in DC.
20	MEMBER SKILLMAN: What I was really
21	wondering is if the antagonists would say it's dandy
22	that you have identified those routes, but in Indian
23	Point you went off to the west and you went into the
24	great State of New York where there's no population,
25	for Kewaunee you found your way down through the
Į	1

(202) 234-4433

	42
1	center of Wisconsin where there are more dairy cows
2	than people. So, the antagonists would say this is
3	dandy, but you really didn't get to the heart of where
4	there's an extremely high population where if the
5	shipment stalled, by golly, there's a real issue. That
6	was the real question I was
7	MR. AMMERMAN: Yes. And, actually, I think
8	the highway routes from both Maine Yankee and Indian
9	Point go into especially Hanford, they go through
10	Chicago. I mean, they don't go through downtown. They
11	take the route that a spent fuel shipment would take.
12	I mean, it's the real route that shipments would take
13	if
14	MEMBER SKILLMAN: That's where the truckers
15	would be assigned.
16	MR. AMMERMAN: Exactly.
17	MR. COOK: Just for truck routes, I'd point
18	out that the Department of Transportation does have
19	routing rules. And if there is a bypass, supposed to
20	be on the interstate highways, of course, but if a
21	city has a bypass then you take the bypass, you don't
22	take the direct route like through a city. So, these
23	routes comply with existing DOT regulation with
24	respect to their routing rules. So, other than that
25	then we'd pick routes that we believe do exercise,
	I

(202) 234-4433

(202) 234-4433

	43
1	like the urban corridor on the eastern seaboard, and
2	rural areas, as well.
3	MEMBER SKILLMAN: Okay, thank you.
4	MR. COOK: And with respect to our report
5	here, we did have in mind that we thought that the
6	you try to ask yourself well, who's going to be the
7	audience for this report, and the answer to that could
8	be just about anyone, everyone from members of the
9	public to other technical organizations both in the
10	U.S. and elsewhere. So, we're tried to use a graded
11	approach when we put the report together. We have both
12	executive and public summaries in the report. Those
13	were written hopefully to be clear to all audiences.
14	The main body of the report, because this
15	is a technical effort, we tried to keep that
16	information accessible as best we could to a general
17	science for an informed public audience. And then
18	everything else of a more detailed and technical
19	nature were put in the appendices which others could
20	study at their leisure. So, we're trying to make the
21	information as transparent and available as we could.
22	MEMBER BLEY: So, the public summary is an
23	appendix.
24	MR. COOK: The public summary is an
25	appendix, yes.
l	I

(202) 234-4433

	44
1	MEMBER BLEY: Was the idea that I'm not
2	even sure of the question.
3	MR. COOK: Well, with the
4	MEMBER BLEY: It's
5	MR. COOK: The public is probably, if they
6	ever look at this, they're probably going to start in
7	the front.
8	MEMBER BLEY: It seems likely this isn't
9	the thing the public would look at, in a way they'll
10	probably never find it.
11	MR. COOK: Well, it's odd you mention I
12	think we've had it in both locations, but when we put
13	the executive summary, which we wrote with there's
14	no numbers in it at all.
15	MEMBER BLEY: Right.
16	MR. COOK: It's only two pages, so we
17	thought that that would be and if anyone was only
18	going to just take a brief look at this, that's what
19	they would see so we went with the executive summary
20	up front. And then, essentially, the public summary is
21	sort of like a built-in brochure.
22	MEMBER BLEY: Yes. It almost see, it
23	would seem to me that it would be right up front like
24	a brochure or something would be helpful. I don't
25	remember if the executive summary actually pointed
I	I

(202) 234-4433

	45
1	people to the public summary.
2	MR. AMMERMAN: I don't know don't think
3	that it does. That's a good point. It could. That
4	could be helpful
5	MEMBER BLEY: Because otherwise I think the
6	likelihood of
7	MEMBER ARMIJO: That might be very
8	MEMBER BLEY: the public ever seeing it
9	is pretty low. But maybe we're intending to actually
10	come out with a brochure at some time. I'm sorry.
11	MR. AMMERMAN: The I think the first
12	place we see it is this public summary in the
13	appendices is at the very front of Chapter 1. Chapter
14	1 has the outline of the report, and I think it's
15	MEMBER BLEY: It does, but I don't think it
16	calls it out in the text.
17	MR. AMMERMAN: It may not.
18	MEMBER BLEY: I just searched for it when
19	you said it, and the first place it popped up was
20	actually back in the appendix. It is Chapter 6 in
21	Appendix F. It's there.
22	MR. AMMERMAN: Yes, a plain-language study
23	of the summary. Right.
24	MEMBER BLEY: Yes.
25	MR. AMMERMAN: Yes.
I	I

	46
1	MR. COOK: We can certainly add another
2	reference.
3	MEMBER ARMIJO: Yes, make it a little more
4	visible.
5	MEMBER BLEY: I would just think yes,
6	and actually call it the public summary or something
7	like that, or the brochure. One of your colleague
8	groups over in Research actually put out a brochure on
9	one of their recent studies, maybe not a bad idea. Go
10	ahead. It just seemed to me it was tucked away in a
11	place.
12	MEMBER ARMIJO: Are you talking about the
13	SOARCA?
14	MEMBER BLEY: Yes.
15	MEMBER ARMIJO: Yes. I thought that was a
16	good idea.
17	MEMBER BLEY: I thought it was a good idea.
18	There were never mind. And it was very beautifully
19	presented.
20	MEMBER ARMIJO: Yes. It takes work to do it
21	right.
22	MR. COOK: I think we could certainly at
23	least put in additional references to the public
24	summary.
25	MEMBER BLEY: I think, and the executive
I	I

(202) 234-4433

	47
1	summary, just let people know.
2	MR. COOK: Sure.
3	MEMBER BLEY: For the general public there
4	is a smaller I mean, a little bigger introduction
5	than this thing you're seeing up front.
6	MR. COOK: Yes, exactly right.
7	MEMBER BLEY: Okay.
8	MR. COOK: Well, if there are no further
9	questions at this point, I would turn it over to Doug
10	for a more in depth discussion of the method and the
11	results, et cetera.
12	MR. AMMERMAN: Okay. So, my presentation
13	now is going to primarily follow along with the
14	chapters of the report, so I'm going to be talking
15	first about routine transport. Then I'm going to talk
16	about the impact analyses, and then the thermal
17	analyses, and then the accident risk studies, and then
18	the conclusions of the report. So, for routine
19	transport
20	MEMBER BLEY: Where is criticality talked
21	about?
22	MR. AMMERMAN: It's not.
23	MEMBER BLEY: Yes, and I'm just thinking
24	- I mean, it's precluded even if you fell into water
25	and it somehow leaked, it's precluded but it doesn't

(202) 234-4433

	48
1	say that anywhere I don't think.
2	MR. AMMERMAN: It doesn't.
3	MEMBER BLEY: So, maybe in the appendix
4	where it talks about certification it might
5	MR. AMMERMAN: Actually, I suspect that the
6	word "criticality" is not in this report.
7	MEMBER BLEY: Well, it's in the appendix,
8	but it's under some compliance or something.
9	MR. AMMERMAN: Yes, and the reason is
10	because the probability of a criticality event is
11	zero.
12	MEMBER BLEY: Well, wouldn't it be good to
13	tell people that?
14	MR. AMMERMAN: Yes, it probably should be
15	MEMBER BLEY: We considered this accident
16	and it's impossible for the following reasons.
17	MR. AMMERMAN: Yes, yes.
18	MEMBER BLEY: It's not low probability. It
19	can't happen by design.
20	MR. AMMERMAN: Yes.
21	MEMBER BLEY: I think it would be really
22	useful to tell people that. You don't get any public
23	comments like that.
24	MR. AMMERMAN: No, we didn't, and
25	MEMBER BLEY: That surprises me.
	I

```
(202) 234-4433
```

	49
1	MR. AMMERMAN: That is a very good point,
2	is that no we sort of just brushed it off because
3	it
4	(Simultaneous speech.)
5	MEMBER BLEY: into the water and if it
6	should leak, it can't, you can't have a criticality
7	problem.
8	MEMBER SIEBER: Well, you have to make sure
9	that this applies only to civilian fuel as compared to
10	all fuel.
11	MEMBER BLEY: I think that's true, but
12	these casks are for civilian
13	MEMBER SIEBER: Criticality is I think
14	possible for some types of high-enriched fuel.
15	MEMBER BLEY: But for what this study is
16	looking at, I think these guys are right. And I just
17	think I would say so. I'm astonished nobody brought
18	that up. I'm sorry for the diversion. I was looking
19	for the criticality accident
20	(Simultaneous speech.)
21	MR. AMMERMAN: Yes, where it should be is
22	in Chapter 5 that is talking about accident risk.
23	MEMBER BLEY: Yes.
24	MR. AMMERMAN: So, yes.
25	MEMBER BLEY: It doesn't take much.
ļ	I

(202) 234-4433

MR. AMMERMAN: It's very easy to add a paragraph in there. You know, give them the results of these impact and fire analysis that there is no probability of an -- zero probability of a criticality accident.

So, for routine transport the key factor 6 7 is the dose rate that's coming off the cask while it's 8 going down the road. And the maximum permitted dose 9 rate is ten to the minus four sieverts per hour, or 10 100 millirem per hour at two meters from cask, of 10 millirem per hour at two meters from cask, or RADTRAN 11 12 actually uses the dose at one meter from cask which is the shielded TI, transport index, which is a number 13 14 that people are required to provide. So, that's 15 available for every package.

MEMBER BLEY: Can you give us a two-minute tutorial on RADTRAN, what does it do? What goes in, what comes out?

MR. AMMERMAN: So, for routine transport what goes into RADTRAN is the size of the package and the external dose rate. And then, of course, the route parameters, and how fast you're driving, and all those sorts of things.

24 MEMBER BLEY: So, RADTRAN looks at maybe 25 you might in traffic, and somebody might be sitting

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	51
1	next to you, and all that kind of stuff?
2	MR. AMMERMAN: It considers all the
3	possible well, maybe not all the possible
4	receptors, but it doesn't consider the hitchhiker sat
5	down and jump on the back of the truck. They ride it
6	to, you know but it considers the public that is
7	along the route, it considers people that are at
8	stops, it considers people that are sharing the route,
9	we call on-link. It considers workers, it considers
10	inspectors, so the truck driver, the escort vehicles
11	are all all those people are considered in the dose
12	that they get, and those are presented in this report.
13	Essentially, what it does is it's an
14	adding code. It says okay, I have this person, what's
15	the dose he gets? I'm going to add that in and does a
16	summation to calculate the dose of all the possible
17	receptors.
18	MEMBER BLEY: Okay.
19	MR. AMMERMAN: Ask me that question again
20	when we get to the accident part, and I'll tell you
21	MEMBER BLEY: Okay.
22	MR. AMMERMAN: So, in this study the
23	external dose rate at one meter was the number that
24	was presented in the Safety Analysis Report for each
25	package. And for the HI-STAR 100 cask that was 1.03
ļ	

(202) 234-4433

	52
1	ten to the minus four sieverts per hour. For the other
2	two casks it was 1.4 times ten to the minus four which
3	is the regulatory maximum. And whether that is the
4	actual I think this is one of the places there's
5	some conservatism because what RADTRAN does is it
6	assumes that there's that same dose emitted in all
7	directions at all points from a search of the cask. In
8	reality that number that the cask designers report is
9	the peak dose at any location, so the rest of the cask
10	may be having lower dose and, therefore, we're over-
11	estimating. And then this is, of course, the dose for
12	the hottest fuel that that cask could transport.
13	MEMBER BLEY: Just to put that in a little
14	perspective for me. This would be the highest
15	legitimate dose you could have, which if you're
16	shipping older fuel it wouldn't be there probably.
17	MR. AMMERMAN: Exactly.
18	MEMBER BLEY: But from what I hear from the
19	folks in Europe who have been shipping fuel all along,
20	that is a limiting thing. They hold stuff until it
21	just meets the shipping criteria and then they go. So,
22	at some point in time if we ever catch up we might be
23	doing the same thing.
24	MR. AMMERMAN: That's right. Yes, exactly.
25	And people say well, how do you transport these casks
	I

(202) 234-4433

(202) 234-4433

	53
1	without testing? Well, this is one place where there
2	is testing. They measure that dose before they let
3	that cask go. They know that external dose is not
4	bigger than this number, so there is a physical test
5	on every transport relative to external dose
6	MEMBER ARMIJO: At the peak locations where
7	people expect the dose to be
8	MR. AMMERMAN: Yes, they know where the
9	peak location should be, but they don't just measure
10	that one spot. They go check all the way around.
11	MEMBER SKILLMAN: I've watched that occur,
12	and it always impresses me that the health physicists
13	get done with their survey, and they're out a meter,
14	and a half a meter, and there's a whole document that
15	identifies all of those radiation levels. But in
16	almost every case I've seen the same inspector say are
17	you sure that tire is okay, or are you sure that gizmo
18	in the truck is okay. And I've seen the packages
19	pulled not because of the radiation package or the
20	cask that's on the vehicle, but an actual physical
21	issue pertaining to the trailer. I've seen tires
22	changed, lights changed, license plates that are bent
23	fixed, placards with their broken holders are repaired
24	before the shipment is released. So, there is an
25	inspection part of that that's worthy of respect.
I	I

(202) 234-4433

	54
1	These people really know what they're doing.
2	CHAIR RYAN: I don't recall the exact
3	number, but there's handfuls of permits on packages
4	this thick to get transportation unit safely in the
5	northeastern United States to the southeast. So,
6	radiation survey is clearly important, and as you
7	pointed out there's a slew of other high-quality
8	documentation packages that have to go with that, it's
9	one of many that gets addressed.
10	MEMBER SIEBER: It actually goes beyond
11	that. I've seen in every instance that I can recall
12	where the truck driver does his own surveys, and
13	documents everything because he's responsible while
14	that shipment is on the road for everything about that
15	shipment. And they're very the ones I have met and
16	talked to are very knowledgeable and very thorough.
17	MR. AMMERMAN: And, actually, we'll see
18	here at the end of this section on routine transport.
19	CHAIR RYAN: I'm going to suggest we pick
20	up the pace just a little bit. We're kind of getting
21	MEMBER ARMIJO: Yes, you have a lot of good
22	stuff back here.
23	MR. AMMERMAN: Yes, the people who get the
24	most dose are those inspectors.
25	MEMBER BLEY: If you ever say thing about
I	I

(202) 234-4433

	55
1	the hitchhikers again, you better tell your audience
2	why there won't be any hitchhikers
3	(Laughter.)
4	MEMBER BLEY: I'm seeing that riding the
5	rails has become more popular again like it used to
6	be, and a lot of young folks are jumping railroad
7	trains around the country these days, so some way we
8	know there isn't somebody sneaking a ride on this. If
9	you're going to say that, I think you've got to tell
10	them why it isn't going to
11	MR. AMMERMAN: Okay. So, this slide answers
12	your question about the routes. These show a couple of
13	our half of our example routes, and you can see the
14	Maine Yankee route. The interesting thing about this
15	slide is how the Maine Yankee rail route to Oak Ridge
16	goes. You would think it would follow pretty much
17	along the same way as the highway route does, but it
18	doesn't. It goes way west and then comes down.
19	Indian Point rail route does not. It
20	follows along the eastern seaboard. But you can see we
21	go right through Chicago right here.
22	MEMBER ARMIJO: Is there any of this route
23	on barges or ships?
24	MR. AMMERMAN: No, we only looked at rail
25	casks transported by rail, and truck casks transported
	I

(202) 234-4433

	56
1	by truck. Now, there is the possibility that rail
2	casks could be transported by heavy haul truck, or by
3	barge. We did not consider that in this study.
4	Although, if you were to do a real risk assessment for
5	some proposed shipments from some proposed power
6	plants that would be part of the mix because they
7	would transport some by barge, or they would transport
8	some by heavy haul truck. And we also did not consider
9	truck casks transported by rail, which does happen.
10	That's not an impossibility.
11	MEMBER BLEY: What's the orange route from
12	up in New England down to Oak Ridge?
13	MR. AMMERMAN: That's the you mean what
14	highways is it?
15	MEMBER BLEY: No.
16	MR. AMMERMAN: It's the route from Maine
17	Yankee to Oak Ridge.
18	MEMBER BLEY: Oh, okay.
19	MEMBER SKILLMAN: Yes, that appears to be
20	the I-95 corridor from New York. That's the one I was
21	talking
22	MEMBER BLEY: So, it goes right adjacent to
23	the city.
24	MEMBER SKILLMAN: Oh, it goes it's the
25	Cross-Bronx Expressway. It comes down Long Island,
	I

	57
1	Cross-Bronx, George Washington Bridge, comes across to
2	Pennsylvania and comes down 81. And that is the normal
3	that's the vacation route for anybody going to
4	Maine. That's how you do it.
5	MR. AMMERMAN: Yes.
6	MEMBER ARMIJO: Now, you didn't extend from
7	Skull Valley down to Yucca Mountain.
8	MR. AMMERMAN: No, we did not.
9	MEMBER ARMIJO: Nobody lives there anyway,
10	so I don't I can't imagine that would add much to
11	the risk.
12	MEMBER BLEY: Well, that's where some folks
13	they're riding right next to this truck for a long
14	time.
15	MEMBER ARMIJO: Would you call that
16	analysis?
17	MR. AMMERMAN: So, the roads that we've
18	looked at span many states, thousands of miles through
19	rural, suburban, and urban areas, and they are
20	adequate to represent other routes. Yes, you could get
21	a little bit different numbers if you have for
22	example, a lot of risk assessments that we do we look
23	at the Crystal River to Hanford route. We can't get a
24	longer route than that, so for a shipment from one
25	reactor to one destination site, that one is going to
Į	1

(202) 234-4433

	58
1	give you the biggest total shipment doses, but it
2	doesn't you know, the per exposed mile, the routes
3	are all the same. And then we're stressing again that
4	no shipments are planned from any of the SFTRA's
5	points of origin to any of the SFTRA's destinations.
6	MEMBER BLEY: Those DOT rules preclude
7	being on single tracks or tunnels. Right? Or not?
8	MR. AMMERMAN: No.
9	MEMBER BLEY: No?
10	MR. AMMERMAN: Yes, first off those rules
11	are AAR, American Association of Railways. And what
12	they say is that they preclude a passing of two trains
13	in a double bore tunnel, or a single bore tunnel with
14	two tracks. So, if there's a single bore tunnel that
15	has two tracks, while they're in that tunnel they're
16	not allowed to pass another train.
17	MEMBER BLEY: So, they have to hold up.
18	MR. AMMERMAN: So, they have to hold up one
19	or the other.
20	MEMBER BLEY: Okay.
21	MR. AMMERMAN: Right. To prevent the two-
22	train accident in the tunnel.
23	MEMBER BLEY: Yes.
24	MR. AMMERMAN: The WebTRAGIS route tool
25	determines the urban, suburban, rural route segment
Į	I

```
(202) 234-4433
```

here's an example of the I-80 corridor through Salt Lake City, and you can see that on the east and west of town you rural populations. In the suburbs you have suburban populations, and going through the heart of the city you have urban population. And it's a little bit confusing, I think, the nomenclature that's used for between urban and suburban, and it's somewhat arbitrary.

9 The way RADTRAN treats urban is that it 10 assumes that urban is heavily built up, which it is. primarily multifamily dwellings, 11 And it's brick 12 buildings as opposed to wood frame buildings or concrete buildings. And that's not always the case in 13 14 places that have urban population. If you have wood 15 frame houses cheek to jowl, people with no yards, 16 essentially, you're going to be in an urban population 17 density. So, if you look at some places that are suburban, it's not New York, it's Trenton or something 18 19 like that, it still has urban population density, and some parts in the center of the city, nobody lives 20 there maybe, and so it could not have urban population 21 density. 22

The factors that affect the routine dose, how long you're exposed, so how fast the vehicle goes, how often does it stop and how long does it stop, how

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

60 1 often is the package inspected, the number of people exposed, so the population as to traffic density and 2 3 number of people per vehicle, and what is the dose 4 that they're getting? So, the external dose rate from 5 the package which is not listed on here but probably should have been, the shielding provided by housing. 6 7 For rural areas we assume that people are outside, 8 suburban areas there's 13 percent of the dose that's 9 shielded by the housing, and 98 percent is shielded 10 for urban population densities. And then how far they are from the cask at stops. 11 are different types of exposed 12 These populations that are considered by RADTRAN in the 13 14 study which I've talked about earlier, residents along 15 the route, the people on the route, people at stops, and inspectors. So, who's getting the biggest dose? 16 17 The maximally exposed individual is -now, this is the maximally exposed public individual, 18 19 so this is not counting workers and inspectors. We consider the person at 30 meters as the closest that 20 RADTRAN assumes people are to an interstate. Vehicles 21 we're looking at 24 kilometer per hour, so it's pretty 22 slow. I think that's 15 miles per hour for both truck 23

and rail. And you could see that the total dose that

they get there is pretty small. And that's about the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

61 1 same as one minute of average background dose. So, the maximally exposed individual from a shipment going by 2 3 gets about the same dose that he gets from background 4 from being alive for one minute. 5 And you can see the total collective dose for truck -- this is truck transport is on the order 6 7 of ten to the minus three person-sieverts for the 8 various routes studied. And that the -- you look at 9 the numbers on the right in the longer routes at the 10 higher dose, as you would expect. And Ι think this slide really 11 demonstrates, first off, that total dose is negligible 12 compared to background. That big blue circle is all 13 14 background, and that teeny tiny little slice is the 15 transportation dose that you qet from the of 16 radioactive material. And you can see how that's 17 broken up, that the inspector is the lion's share of that. It's almost half of it is the inspector dose. 18

19 MEMBER ARMIJO: Just to make sure Ι understand this chart. The blue represents the total 20 background dose during the same period of time that 21 this transportation is occurring, it's not an annual 22 23 thing? 24 MR. AMMERMAN: It's not -- for the 10

25 hours, I think this is 10 hours from --

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	62
1	MEMBER ARMIJO: Okay.
2	MR. AMMERMAN: This is the Maine Yankee to
3	Oak Ridge, assume that it took 10 hours, 11 hours,
4	something like that.
5	MEMBER ARMIJO: So, in that same period of
6	time this is what you get from background.
7	MR. AMMERMAN: Yes, exactly. So, in summary
8	for routine transportation the individual and
9	collective doses are very small. The maximum
10	individual dose is comparable to background dose, and
11	the collective doses for routine transport are several
12	orders of magnitude smaller than the collective
13	background dose.
14	MEMBER BLEY: How does it treat the person
15	traveling the same route? Does it assume they're
16	always at a constant distance from the truck? I mean,
17	in the real world you wouldn't be there very long, but
18	you could be there
19	(Simultaneous speech.)
20	MR. AMMERMAN: Actually, there's
21	MEMBER BLEY: So, what does it do? What
22	does the code assume?
23	MR. AMMERMAN: The code assumes that I
24	believe that somebody is next to the truck
25	MEMBER BLEY: They're escorted, aren't
l	

(202) 234-4433

	63
1	they?
2	MR. AMMERMAN: Well, there's the escorts as
3	well, yes. And that's part of the worker dose that's
4	included there. But an individual could be next to the
5	truck, and I don't know exactly what the period of
6	time is. It assumes the truck is traveling at two
7	different rates of speed. Well, in urban areas at
8	different rates of speed, 90 percent of the time it's
9	not during rush hour, and 10 percent of the time
10	during rush hour. So, for rush hours it halves the
11	speed and it doubles the traffic density so there's a
12	lot more people on the road. And it considers both
13	traffic going that you're meeting is exposed for a
14	very short period of time, and traffic that is going
15	in the same direction. And, actually, one of the
16	backup slides that we have shows a model of that.
17	MEMBER BLEY: Why don't you go ahead. If we
18	have time at the end you
19	MR. AMMERMAN: Okay. So, it considers
20	traffic flowing in the opposite direction in its top
21	lanes, as well as traffic flowing in the same
22	direction.
23	MEMBER BLEY: What I was after was that guy
24	who's nearest to it, how long does
25	MR. AMMERMAN: I think it doesn't count the
	I

(202) 234-4433

(202) 234-4433

64 1 person next to it for very long. I think it -- you see this min here, it says that that's the closest person 2 3 that he's following, not adjacent. MEMBER BLEY: Okay. 4 5 MR. AMMERMAN: Okay, now do you remember which line I was on? 6 7 MR. COOK: Yes, 22. 8 MEMBER SKILLMAN: I guess these guys, 9 whoever designed RADTRAN never went home on 270. 10 (Laughter.) MR. AMMERMAN: Actually, the people who 11 designed it live in Albuquerque, so --12 (Simultaneous speech.) 13 14 MEMBER SKILLMAN: I know you could be 15 forced to be adjacent to a tractor trailer for an 16 extended period, for a long time. 17 MR. AMMERMAN: Yes, and I'm not positive that that is accounted for in RADTRAN. That is a good 18 19 comment. MEMBER BLEY: That's the one I was -- I was 20 wondering how you did that. 21 MEMBER SKILLMAN: Abiding time that you're 22 forced -- and I would say that that is particularly 23 24 true on 270, and 95, 495, but particularly that corridor coming down out of New England, that 95 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	corridor across the Cross-Bronx, George Washington
2	Bridge down into New Jersey on the 95. I had seen that
3	closed for an hour, two hours, and people are in lock
4	step. They can't get off, can't get on.
5	MEMBER BLEY: I second that. I've been in
6	MEMBER SKILLMAN: And you've got a riding
7	partner with you.
8	MEMBER BLEY: Or no speed.
9	MEMBER SKILLMAN: Yes. And you might put on
10	your brakes and let the truck go ahead. You'll
11	probably get shot.
12	MEMBER BLEY: I would probably try not to
13	go through there at those times, but if they get
14	caught in that
15	CHAIR RYAN: We're getting to the halfway
16	point. We've got to take a break.
17	MEMBER SKILLMAN: I think it's worth adding
18	some consideration into this long
19	CHAIR RYAN: We probably are behind
20	schedule by a good bit on this part. Is that right?
21	MR. COOK: We are about there are 50
22	slides in the package, so 25 is halfway.
23	(Simultaneous speech.)
24	CHAIR RYAN: We need to be done with that
25	at 10.
Į	1

(202) 234-4433

	66
1	MR. AMMERMAN: Actually, this is a very
2	good time to take a break because this is the last
3	slide on routine transportation, and now I'll start
4	talking about accidents.
5	MEMBER ARMIJO: Well, before you do that,
6	you know, routine years ago I had to ship fuel,
7	spent fuel from California to Sweden and back meeting
8	all the DOT stuff on a ship went through the Panama
9	Canal, up the eastern seaboard, Port of Halifax across
10	the ocean, very complicated stuff. But it was also
11	preplanned, so a lot of these route issues and
12	everything else, the times when the shipments are
13	made, where they go, the escorts, all that stuff is
14	preplanned, so a lot of the things that maybe we're
15	raising as a concern, people have
16	MEMBER BLEY: Things happen, Sam.
17	MEMBER ARMIJO: Yes.
18	MEMBER BLEY: Railroads hold the cars for
19	a lot longer than you thought they would because of
20	other needs on their track. They do that, and all of
21	a sudden you didn't want to be there.
22	MEMBER ARMIJO: I understand that. But, I
23	mean
24	MEMBER BLEY: An accident on the highway
25	and all of a sudden you're backed up and you're
	I

(202) 234-4433

	67
1	sitting there for three hours.
2	MEMBER ARMIJO: They don't pick the rush
3	hour to take the truck.
4	MEMBER BLEY: It doesn't take a rush hour
5	to shut down a freeway.
6	MEMBER ARMIJO: At 2 and 3 in the morning,
7	I think it's
8	MEMBER BLEY: Doesn't, takes an accident.
9	MEMBER ARMIJO: It takes an accident, yes.
10	MEMBER BLEY: Shuts you down.
11	MEMBER ARMIJO: The number of people on the
12	road is much smaller and your normal heavily
13	congested, so
14	MEMBER BLEY: Especially out where you
15	live.
16	(Simultaneous speech.)
17	MEMBER BLEY: At 3 in the morning you stop
18	that traffic and in not long it's going to be
19	completely filled up.
20	MEMBER ARMIJO: The other question I had
21	is, you know, the we do have a lot of eastern
22	seaboard plants. And I can mention Crystal River. I
23	just wondered why analysis wasn't made about shipping
24	over water on ships or barges, or whatever. Is that
25	going to be done in the future?
	1

(202) 234-4433

	68
1	MR. AMMERMAN: I think the biggest reason
2	is because, you know, we said the nearest person is 30
3	meters from here. Well, if you're shipping out on the
4	open water the nearest person could be
5	MEMBER ARMIJO: It's a crew.
6	MEMBER BLEY: Yes, and you have no dose to
7	public essentially because everybody is far away. And
8	I think that's the biggest reason that it's not in
9	here, because the answer isn't very interesting.
10	MR. COOK: And another consideration is
11	when we do these studies we try to keep a commonality
12	amongst them so that we can do comparisons as we go
13	forward in time. And that the large transport, for
14	example, is not considered in the previous studies,
15	but would be considered in any site-specific
16	assessment that would be done. But in order to keep
17	the results comparable with the previous efforts we
18	have kind of stuck to the simple truck, simple
19	MEMBER BLEY: Very good.
20	MR. AMMERMAN: Mike, do you want to take
21	the break now, or do you want me to continue?
22	CHAIR RYAN: It's up to you. I mean
23	MR. AMMERMAN: I would like
24	CHAIR RYAN: This is the entire packet of
25	slides that you're doing?
Į	1

(202) 234-4433

	69
1	MR. AMMERMAN: Yes.
2	CHAIR RYAN: Oh, okay, so we're in pretty
3	good shape then. If this is a good breaking point, we
4	can take a 15-minute break here, if that suits
5	everybody.
6	MEMBER BLEY: So you want us back at 10
7	after?
8	CHAIR RYAN: That would be 17 minutes, but
9	I guess so.
10	(Whereupon, the proceedings went off the
11	record at 9:51:50 a.m., and went back on the record at
12	10:06:22 a.m.)
13	CHAIR RYAN: Let's go. I'm going to turn it
14	back to you, John. You're up.
15	MR. COOK: We're still with Doug at the
16	present time.
17	MR. AMMERMAN: Okay. So for impacts, casks
18	are required to stand a 30-mile per hour, 48 kilometer
19	per hour impact onto a flat essentially unyielding
20	target in the most damaging orientation. And the NRC
21	requires conservative approaches to demonstrate this.
22	We have a limited set of materials that you're allowed
23	to use. You want to use ductile materials. You'd use
24	minimum material properties instead of actuals. You
25	don't allow stresses that are up to the failure point.
ļ	I

(202) 234-4433

	70
1	So, all these things combined assures the cask will
2	survive an even more severe accident than this 48
3	kilometer per hour one.
4	So, we did finite element analysis of
5	casks at 30, 60, 90, and 120 miles per hour, or 48,
6	97, 145, and 193 kilometers per hour on the rigid
7	targets. Now, recall on this slide I said essentially
8	unyielding. A physical test is always on to an
9	essentially unyielding target because there is no such
10	thing physically as a rigid target. But in finite
11	elements rigid is possible.
12	MEMBER BLEY: You can make things rigid.
13	MR. AMMERMAN: So, that is what we used.
14	MEMBER BLEY: And rigid means it doesn't
15	move at all.
16	MR. AMMERMAN: It does not move, exactly.
17	It absorbs zero energy. The response was determined
18	using a Sandia-developed code PRESTO. It's a non-
19	linear transient dynamic explicit dynamic finite
20	element code. It's very selected in commercial code,
21	LS-DYNA.
22	The fuel region was treated as a
23	homogenized mass, and I'll get into a little bit more
24	detail on that why that was. Actually, the fuel, of
25	course, is made up of individual assemblies and when
I	I

(202) 234-4433

	71
1	we started this we thought well, the response of those
2	assemblies is going to be important, but we didn't
3	want to include the level of detail in this global
4	model that you need to determine the response of the
5	assemblies, so we did an assembly model separately.
6	As it turned out, the response of the fuel
7	wasn't important because you had to have such a severe
8	impact in order to fail the casks, and we never failed
9	the casks by fire, the seals by fire.
10	MEMBER BLEY: You never failed the seals.
11	MR. AMMERMAN: We never failed the seals in
12	a fire environment. None of the fires we looked at
13	caused seal failure.
14	MEMBER ARMIJO: But was that limited by the
15	30-minute fire
16	MR. AMMERMAN: No, we looked at all fires.
17	MEMBER ARMIJO: Okay.
18	MR. AMMERMAN: So, because we only got cask
19	failure when we got to severe, very severe impacts, at
20	that time it doesn't matter how the the fuel is
21	just all going be banished. It's going to all
22	you're going to get cladding failure in all the fuel
23	assemblies.
24	MEMBER BLEY: You used two terms that I
25	don't know what they mean in that sentence.
I	I

(202) 234-4433

	72
1	MR. AMMERMAN: Okay.
2	MEMBER BLEY: Cask damage and severe.
3	MR. AMMERMAN: Okay, so the only impacts
4	and I'll get into this in a couple of more slides,
5	the only impacts that cause seal failure were the 90
6	mile per hour, 120 mile per hour impacts in the side
7	orientation.
8	MEMBER BLEY: And that would but the
9	seals are protected by those cushion things. So, what
10	did you do about those? Did they get hit directly
11	MR. AMMERMAN: They're in there and you'll
12	see that in a couple of slides.
13	MEMBER BLEY: Okay. I'll wait.
14	MR. AMMERMAN: And at those high-speed
15	impacts the acceleration on the cask is sufficient
16	enough that it's going to fail all the fuel. So, how
17	well you modeled the fuel didn't make a difference
18	because it's all going to be
19	MEMBER BLEY: That means cladding will
20	crack.
21	MR. AMMERMAN: Cladding is cracked.
22	MEMBER BLEY: You've cracked others then.
23	MR. AMMERMAN: Yes.
24	MEMBER BLEY: Now, just for my orientation,
25	and I don't know if you can do this, but the cask drop
I	I

(202) 234-4433

	73
1	test onto the pin on that unmoving surface, or almost
2	unmoving surface, is there any way you can correlate
3	that to one of these speeds? I know this is a pretty
4	severe event.
5	MR. AMMERMAN: The cask drop is a 30 mile
6	per hour impact, so the regulatory impact is 30 miles
7	per hour onto the rigid target.
8	MEMBER BLEY: It's actually moving at 30
9	miles an hour?
10	MR. AMMERMAN: It's moving 30 miles per
11	hour. Right.
12	MEMBER BLEY: And it's hitting the
13	MR. AMMERMAN: And it's hitting a
14	MEMBER BLEY: target that's more fixed
15	than anything it's going to hit in the real world.
16	MR. AMMERMAN: Most likely
17	MEMBER BLEY: And maybe more pointed.
18	MR. AMMERMAN: As a matter of fact, when we
19	do tests at Sandia, the target that I have is two
20	kinds of concrete on top of 10 inches thick of
21	battleship armor. So, that's what I call an
22	essentially unyielding target.
23	MEMBER BLEY: And that's pretty good. And
24	that's not like much of anything
25	MR. AMMERMAN: You don't see that in the
	I

(202) 234-4433

	74
1	real world, exactly. Yes.
2	MEMBER BLEY: So, it's 30 mile an hour onto
3	that
4	MR. AMMERMAN: Yes.
5	MEMBER BLEY: which there's no real way
6	to correlate that to a real accident at a higher
7	speed, is there?
8	MR. AMMERMAN: We attempt to.
9	MEMBER BLEY: Okay, that's what I wanted
10	you tell me about if you can. I've never seen that
11	before. I know it's very severe, but I don't know how
12	severe compared to these others.
13	MR. AMMERMAN: So, this is an example of
14	worst case impact for lead slump. This is 120 mile per
15	hour impact onto a rigid target in CG over-corner
16	orientation. There is no leak path formed so there's
17	no release. But there is lead slump, and you can see
18	the amount right here.
19	MEMBER BLEY: So you could get some
20	streaming.
21	MR. AMMERMAN: So, you get some streaming,
22	exactly. And here you can see that impact unfolding.
23	Let's try that one more time.
24	MEMBER ARMIJO: How exaggerated are these
25	scales?
	l

```
(202) 234-4433
```

	75
1	MR. AMMERMAN: This is not exaggerated.
2	This is
3	MEMBER ARMIJO: This is actual
4	MR. AMMERMAN: Actual, yes.
5	MEMBER ARMIJO: Okay.
6	MR. AMMERMAN: So, you can see that you get
7	some buckling down here at the bottom of the lead
8	liner area, or the shell outside the lead. And that
9	area grows. And primarily that buckle is caused by the
10	hydrodynamic stress caused by the lead. And at this
11	kind of accelerations that lead acts like fluid. And
12	it's going out and push out that liner.
13	MEMBER SKILLMAN: Is the lead are the
14	properties of the lead such that the lead is limiting
15	on the strain rate. It is the flow rate of the lead
16	that causes that dimple and nothing else as material
17	properties that will also flow?
18	MR. AMMERMAN: No, actually you may get
19	buckling in that area even if you didn't have lead in
20	there, so instead of lead you had that with an influid
21	rigid well, not
22	MEMBER SKILLMAN: So, rigid steel it might
23	still it would probably still buckle.
24	MR. AMMERMAN: Yes, yes.
25	MEMBER SKILLMAN: But you get the void as
I	1

(202) 234-4433

	76
1	a consequence of the strain rate when the lead
2	actually goes fluid.
3	MR. AMMERMAN: Yes, exactly.
4	MEMBER SKILLMAN: Yes, okay.
5	MEMBER BLEY: And this is 120 mile an hour
6	into something that doesn't move at all.
7	MR. AMMERMAN: Exactly.
8	MEMBER SKILLMAN: And that's a corner
9	MR. AMMERMAN: That's a corner, yes. And
10	then now to get to your question on the side impact
11	that happens. This is this picture is from a 90
12	mile per hour impact, but the behavior is similar at
13	120 as well. And you can see right at this location
14	that you've got deformation enough that you have a
15	leak path, and this particular cask has two lids, an
16	inner lid and outer lid. And the deformation on the
17	inner lid is also enough that you get a leak path
18	right through here.
19	MEMBER ARMIJO: So, those are bolted lids?
20	MR. AMMERMAN: Those are bolted lids,
21	correct.
22	MEMBER BLEY: Both of them.
23	MR. AMMERMAN: Both of them, yes.
24	MEMBER BLEY: And that inner lid, there's
25	not much of a leak path but there's a leak path.
I	

	77
1	MR. AMMERMAN: Exactly. And it's enough
2	that you get blowdown quickly. So, any internal
3	pressure is blowing down in the order of seconds, not
4	minutes or hours.
5	MEMBER BLEY: And you also said all the
6	fuel is cracked so anything that's
7	MR. AMMERMAN: Exactly.
8	MEMBER BLEY: gaseous and pressurized
9	will come out.
10	MR. AMMERMAN: Exactly, yes. So, this is
11	our worst case response.
12	MEMBER BLEY: In terms of material.
13	MR. AMMERMAN: In terms of material
14	release, exactly. Yes.
15	MEMBER SCHULTZ: But the case chosen here,
16	the previous slide was 120 miles an hour. This happens
17	to have been chosen at 90 miles an hour.
18	MR. AMMERMAN: Yes.
19	MEMBER SCHULTZ: So, in the cases your
20	analyzed this is the worst one. Is that what you're
21	saying?
22	MR. AMMERMAN: Yes, the response
23	MEMBER SCHULTZ: It could have been higher
24	than 90 miles
25	MR. AMMERMAN: The response at 120 miles
ļ	

(202) 234-4433

	78
1	per hour isn't any different than this.
2	MEMBER BLEY: Really? The gaps are
3	MR. AMMERMAN: The gaps are bigger, but the
4	cask blows down in a short period of time. The
5	consequences are the same. Accelerations are already
6	enough that you failed all the fuel.
7	MEMBER ARMIJO: In those cases, the 120
8	miles an hour and 90 mile, if you had an inner welded
9	canister you would not have a leak?
10	MR. AMMERMAN: Correct, there would be no
11	release if you had an inner welded canister.
12	MEMBER ARMIJO: Okay.
13	MEMBER SKILLMAN: That assumes that weld
14	does not tear. That assumes you
15	MR. AMMERMAN: The stresses in that weld
16	are not high enough to make a tear.
17	MEMBER SKILLMAN: Understand.
18	MR. AMMERMAN: So, we modeled that region.
19	MEMBER SKILLMAN: Okay.
20	MR. AMMERMAN: So, in the side orientation
21	at 60 miles per hour onto a rigid target we didn't get
22	any leak path, so in that case this gap here on the
23	inner lid was small enough that the seal was able to
24	remain sealed.
25	MEMBER BLEY: Now, is it I asked this
I	

(202) 234-4433

	79
1	before and maybe you're still coming to it. Is there
2	any way to correlate a side impact onto a rigid target
3	to some other speed into some normal things you might
4	really crash into?
5	MR. AMMERMAN: I think in our backup slides
6	we have a set of slides that talks about how we
7	MEMBER BLEY: Do we have your backups?
8	MR. AMMERMAN: Yes, you have them in your
9	packet.
10	MEMBER BLEY: That's not in the report, is
11	it?
12	MR. AMMERMAN: It's in the report, yes.
13	MEMBER BLEY: Oh, it's in the report?
14	MR. AMMERMAN: Yes, yes, yes. It's called
15	impact
16	(Simultaneous speech.)
17	MR. AMMERMAN: Okay. And I'm going to not
18	go through jump to that right now, but
19	MEMBER BLEY: That's fine.
20	MR. AMMERMAN: but if we have time at
21	the end we'll look at this, and we'll show you that.
22	So, from the side impact at 60 miles per
23	hour we assume the risk assessment assumes that if
24	it's an impact into hard rock which is 5 percent of
25	the target above 50 miles per hour because that's what
ļ	I

(202) 234-4433

	80
1	the advantage ring has as a branch point in it, result
2	in a leak path. So, we add some conservatism there.
3	If you don't hit hard rock no impact no
4	matter how fast it is at recorded accident velocities
5	is severe enough to cause a release.
6	MEMBER BLEY: A bridge abutment is like
7	hard rock, or no?
8	MR. AMMERMAN: A bridge abutment is not
9	like hard rock.
10	MEMBER BLEY: Okay.
11	MR. AMMERMAN: A bridge abutment is like
12	soft rock.
13	MEMBER BLEY: Okay.
14	MR. AMMERMAN: Or concrete, and we did
15	analyze concrete.
16	MEMBER BLEY: Right.
17	MR. AMMERMAN: So, that's one of the things
18	that's in that. And you'd have to be going, I don't
19	remember exact number, but let's say over 150 miles an
20	hour in order to impact the target to cause this level
21	of damage. And there are no accidents that are that
22	fast.
23	MEMBER BLEY: So, the event tree is 50 mile
24	an hour into hard rock, or just 50 mile an hour?
25	MR. AMMERMAN: The event tree is 50 mile
Į	I

(202) 234-4433

	81
1	- well, that's an interesting question.
2	MEMBER BLEY: Does it ask that, or is it
3	conservative in a sense?
4	MR. AMMERMAN: The event tree, the real
5	event tree says accidents at 50 miles per hour. And
6	then we said okay, independent of impact target. But
7	we did a survey of what is the possible targets, and
8	that actually is in the rail in the truck event
9	tree, not in the rail event tree. But rail going the
10	same place as the truck lines do, so the wayside
11	surfaces are the same. So, that's where that 5 percent
12	hard rock number came from.
13	MEMBER BLEY: Okay.
14	MR. AMMERMAN: The accident is a free drop
15	onto a rigid target with the accident velocity
16	perpendicular to the target. So, it's normally
17	speaking you don't drive straight into the surface
18	that you're driving on. You drive along it, so there's
19	some probability that and most likely it's the case
20	that if you have an accident it's a glancing accident.
21	You have a low angle of impact, in this picture is
22	close to zero. We assumed a triangular distribution on
23	impact angle with theta being zero the most likely,
24	theta being 90 the least likely, and you come up with
25	these different probabilities binning those into 10
ļ	1

(202) 234-4433

	82
1	bins or 9 bins of impact angle. And then in the second
2	column you see what the velocity would have to be, the
3	accident velocity, how fast the truck would have to be
4	going or the rail car would have to be going in order
5	to have the component that's into the surface be equal
6	to in this case 60 miles per hour. And you can see
7	that it has to be less than 30 degrees in order for
8	that to be or if it's less than 30 degrees, I mean,
9	if it's less than 30 degrees or maybe even less than
10	45, you have to be going more than 120 miles per hour
11	in order to have the same response as 60 miles per
12	hour. And only above 10 percent of the accident are
13	greater than 45. Well, we assumed a third, actually.
14	So, if only a third of the accidents, because of
15	impact angle are going to cause that
16	MEMBER BLEY: Was that a judgment kind of
17	distribution, or did that come out of some actual
18	accident
19	MR. AMMERMAN: That was a guess.
20	MEMBER BLEY: Okay.
21	MR. AMMERMAN: There is no data to support
22	that, and the previous risk assessments have assumed
23	that it's a uniform distribution as opposed to a
24	triangular distribution. But I think that is overly
25	conservative because, like I said, you don't track it.
	I

(202) 234-4433

(202) 234-4433

	83
1	You never travel perpendicular to the surface you're
2	traveling on.
3	MEMBER BLEY: Not for long.
4	MR. AMMERMAN: You travel parallel to it,
5	so the skew is going to be towards the low angle
6	impacts as opposed to the high angle impacts. Whether
7	the skew is triangular or it's parabolic, even a
8	higher probability at those low impacts is probably
9	more close to reality.
10	So, in summary only one in 2,000 accidents
11	is more severe than the regulatory hypothetical
12	accidents. Only one accident in 2,000 is worse than
13	that 9 meter drop onto a rigid target.
14	MEMBER BLEY: Just to put this in
15	perspective for me, I could see sliding, a skidding
16	accident somehow or a flip into a bridge abutment or
17	tunnel entrance as a possibility, but it's low in
18	likelihood. The other one would be coming off of a
19	bridge and falling onto hard rock.
20	MR. AMMERMAN: Yes. And, actually, falling
21	off a bridge we assumed a uniform distribution as to
22	impact.
23	MEMBER BLEY: That's fair enough.
24	MR. AMMERMAN: So, yes.
25	MEMBER ARMIJO: If there's a truck
l	I

	84
1	overturns and the cask just tumbles down a
2	mountainside, many impacts, all of them small compared
3	to what
4	MR. AMMERMAN: Right.
5	MEMBER ARMIJO: Have you analyzed multiple
6	impacts?
7	MR. AMMERMAN: We have not but we assumed
8	that those are like you said, they're all small.
9	None of them are going to cause
10	MEMBER ARMIJO: Well, they're small
11	MR. AMMERMAN: Yes, right. So, the impact
12	number is going to be able to absorb that energy
13	because they're all small impacts.
14	MEMBER BLEY: Just for the heck of it, in
15	an accident like that could those limiters, they get
16	dinged a bunch of times, can they actually get knocked
17	off?
18	MR. AMMERMAN: Possible but highly
19	unlikely. You could perhaps postulate an accident
20	(Simultaneous speech.)
21	MR. AMMERMAN: there's a cushion up
22	here, and then you're coming down at an angle and you
23	hit a rock here, and it drives the
24	MEMBER ARMIJO: Yes.
25	MR. AMMERMAN: You can postulate that
	I

(202) 234-4433

	85
1	accident.
2	MEMBER ARMIJO: Yes, I don't know that
3	these are routes that anybody would take, but in the
4	Sierras in the Nevada area where I live
5	MEMBER BLEY: Well, in Utah there's a lot
6	like that
7	(Simultaneous speech.)
8	MEMBER ARMIJO: pretty bad cliffs and
9	things.
10	MEMBER BLEY: Yes.
11	MR. AMMERMAN: And rolling down a slope is
12	not a severe accident though, I think.
13	MEMBER ARMIJO: Bouncing down
14	MEMBER BLEY: A 30-foot bang, a 50-foot
15	bang.
16	MEMBER ARMIJO: You may have all sorts of
17	things you could never
18	MR. AMMERMAN: Exactly, right. So, one of
19	the 2,000 accidents is more severe than your
20	hypothetical accident, but only
21	MEMBER SKILLMAN: Say that again.
22	MR. AMMERMAN: One in 2,000 is more severe
23	than the regulatory accidents. I mean, the 9 meter
24	impact onto a rigid target. But because the
25	conservatism of cask design only one in a billion
I	

```
(202) 234-4433
```

	86
1	accidents is severe enough to cause a release or loss
2	of gamma shielding.
3	MEMBER SKILLMAN: How do you derive the one
4	in 2,000?
5	MR. AMMERMAN: The one in 2,000 comes from
6	the event tree. And looking at, okay, if I'm impacting
7	onto
8	MEMBER BLEY: So, that's got your
9	judgmental distribution factored into it.
10	MR. AMMERMAN: Exactly, yes.
11	(Simultaneous speech.)
12	MR. AMMERMAN: It has the distribution of
13	wayside surfaces, so the difference
14	MEMBER BLEY: Now, that's more that's
15	not completely judgment.
16	MR. AMMERMAN: No, that's data.
17	MEMBER BLEY: That's data.
18	MR. AMMERMAN: That's data. So, by
19	impacting onto soil it takes a much more severe
20	accident than what do you hit most of the time when
21	you go off the road, you know, soil.
22	MEMBER BLEY: Depends where you live.
23	MR. AMMERMAN: In some places you hit rock,
24	and but when you're going across Nebraska, good
25	luck finding a rock.
ļ	I

```
(202) 234-4433
```

	87
1	MEMBER BLEY: It's hard.
2	MR. AMMERMAN: Yes.
3	MEMBER BLEY: And you're going across Utah,
4	and
5	MR. AMMERMAN: So, that's what in that one
6	in 2,000. The one in a billion comes from the finite
7	element analysis saying that you have to have these
8	very severe impacts in order to cause a release. So,
9	what is the event tree that leads to that? And,
10	actually, in the backup slides there's a detail of
11	where that one in a billion comes from.
12	MEMBER BLEY: So, that's starting with one
13	in 2,000 to have any chance of doing this?
14	MR. AMMERMAN: Actually, it's yes. Well,
15	it's starting with assume that you have an
16	accident, and then that the accident is faster than 60
17	miles per hour, and then that the accident is on to a
18	hard target, and that the angle is less than 30
19	degrees.
20	MEMBER BLEY: And that's all in that first
21	one in 2,000, right?
22	MR. AMMERMAN: No, that because it has
23	to be more than 60 miles per hour now. It's not in
24	that one in 2,000.
25	MEMBER BLEY: Oh, the 60 mile an hour isn't
I	

(202) 234-4433

	88
1	any more severe.
2	MR. AMMERMAN: The 60 mile an hour is in
3	- yes, because the one in 2,000 is more than 30
4	miles per hour onto a rigid target.
5	MEMBER BLEY: Oh, okay, because that's the
6	okay.
7	MR. AMMERMAN: Yes, yes.
8	MEMBER BLEY: I'm sorry. Mixed some things
9	up.
10	MR. AMMERMAN: Okay. And then if you have
11	a real cask, an inner welded canister, no release in
12	any accident. You never fail that welded canister.
13	MEMBER BLEY: In anything you both did.
14	MR. AMMERMAN: In any of the accidents we
15	looked at.
16	MEMBER BLEY: Well, what kind of now,
17	that's a never. Now, there's a guy we work with who's
18	just been looking I'm not saying this to pick on
19	you, but been looking at meteorites of different
20	sizes. You're up in numbers that are getting close to
21	meteorites of this size, which would go through all
22	this stuff like nothing.
23	MR. AMMERMAN: Yes, exactly.
24	MEMBER BLEY: So, we've got to be careful
25	with these numbers.
I	I

	89
1	MR. AMMERMAN: In order of probability the
2	sun supernovas. I mean
3	MEMBER BLEY: Well, you aren't there yet.
4	MR. AMMERMAN: Actually
5	MEMBER SCHULTZ: You have to multiply by
6	two, and then you have the meteorite
7	MR. AMMERMAN: It's close. It's real close.
8	The probability of the sun supernovas is something
9	like one in 10 billion. So, it's
10	MEMBER BLEY: Pretty soon you have
11	MR. AMMERMAN: Yes, right.
12	MEMBER ARMIJO: Then you have a number
13	beyond which, you know
14	MEMBER BLEY: It doesn't happen.
15	MEMBER ARMIJO: Yes.
16	MR. AMMERMAN: It's how fine do you want to
17	cut your zero. But when you start cutting it any finer
18	than this you really get in trouble.
19	MEMBER ARMIJO: Yes. You actually
20	MR. AMMERMAN: Not that it matters, but you
21	start
22	MEMBER ARMIJO: It becomes less feasible
23	even though it should be.
24	CHAIR RYAN: You know, I think the message
25	is whether it's the media or the other one in a
I	I

billion, the supernova, the takeaway message is the 1 probability of those events is orders of magnitude to 2 3 model what are important events from a more realistic 4 perspective. And rather than getting sucked in the 5 vortex of solar explosions, I think we ought just kind of -- the takeaway message for me is you have clearly 6 7 identified a range of reasonable accidents. And it's 8 very unlikely to get anything more severe than what 9 you've already told us.

MR. AMMERMAN: Yes, so that 60 mile per 10 hour side impact into a rigid target that can cause 11 damage to the cask and result in seal failure produces 12 a force of 45 million pounds, is equivalent to 115 13 14 mile per hour impact into a concrete roadway or a 15 bridge abutment, so there you have -- and it's 16 equivalent to 153 mile per hour impact into hard soil. 17 So, if it hits soil you never have impacts more than 153 miles per hour, so you're never going to fail the 18 19 package if you hit soil.

20 MEMBER BLEY: What I remember is that your 21 wonderful driving trains full of stuff into your solid 22 walls is generally a much lower impact than this 23 simple drop test.

MR. AMMERMAN: Exactly.

MEMBER BLEY: It isn't spectacular.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

	91
1	MR. AMMERMAN: It's spectacular, you better
2	believe it. Yes.
3	MEMBER SKILLMAN: There is an assumption
4	that is woven through your presentation, and that is
5	that the mechanical closure for the not welded cask,
6	that the mechanical closure is properly fixed. I know
7	of a number of instances where the bolting pattern was
8	missed. The key was not recognized and while the
9	container was snug and tight, it was not truly leak-
10	tight because the bolting allowed the seal plate to be
11	affixed in one segment out on the bolting pattern. We
12	discovered that with dimples on the underside where
13	the key was actually impacted by the torque on the
14	bolt.
15	What is it that assures that your
16	assumptions are sound in terms of the mechanical
17	closure being where it needs to be where you have
18	elastomeric seals engaged for the sealing.
19	MEMBER BLEY: Or have you built in a human
20	error component?
21	MR. AMMERMAN: Somewhat a little bit of
22	both of those things. In the analyses we did, we did
23	not assume that you we had pre-torqued the bolts,
24	so that was a conservatism that we had in our
25	analysis, so that the now, the offset if you have
	1

(202) 234-4433

	92
1	and I don't believe that any of the casks that we
2	had that we looked at have a key way so that any hole
3	pattern is adequate. If you cock the lid one hole over
4	it doesn't matter. They don't have that fixed
5	orientation on them. So, that we did not consider, but
6	we did consider the fact that what if they improperly
7	torqued them? So, we'll just assume they didn't torque
8	them at all. So, that was built into our analysis,
9	that human error. The other human error that you
10	talked about was not, if you had a cask that was
11	MEMBER BLEY: And if they didn't torque
12	them at all what did the results say?
13	MR. AMMERMAN: That's what these analyses
14	are. All of these analyses are untorqued bolts.
15	MEMBER BLEY: Oh, is that right?
16	MR. AMMERMAN: Yes.
17	MEMBER BLEY: All of the cases were opening
18	again?
19	MR. AMMERMAN: Yes.
20	MEMBER ARMIJO: That's hard to believe. I'm
21	sorry, but that's hard to believe. Untorque you
22	just basically finger-tight bolts
23	MEMBER BLEY: But remember within the last
24	year we had a reactor vessel
25	MEMBER ARMIJO: Yes, I know. No, it's hard
	I

(202) 234-4433

(202) 234-4433

	93
1	to believe it wouldn't leak.
2	MEMBER BLEY: Oh, I'm sorry.
3	MEMBER ARMIJO: Yes, I totally believe
4	people can forget to torque the
5	MEMBER BLEY: Okay. I'm sorry, I
6	misunderstood your comment.
7	MR. AMMERMAN: All these casks are
8	subjected to a pre-shipment leak test, so they at
9	least the cask the lids are tight enough that they
10	don't leak because they've been demonstrated by a pre-
11	shipment leak test.
12	MEMBER ARMIJO: But even if they're not
13	leaking, they're not really torqued up to their
14	specified values. And you're saying in these severe
15	impacts they still won't leak until you get over 60
16	miles an hour.
17	MR. AMMERMAN: Right. Well, actually,
18	that's probably not completely true. We assume that
19	the starting place was metal to metal. If you had no
20	torque in the bolt you wouldn't get down to metal to
21	metal on the lid onto the sealing surface.
22	MEMBER BLEY: So, the kind of error we saw
23	in the reactor vessel now, would it have passed a
24	leak test though?
25	MEMBER ARMIJO: It depends on the seal
	I

(202) 234-4433

	94
1	material.
2	MEMBER BLEY: Do they test both inner and
3	outer seals?
4	MR. AMMERMAN: Yes.
5	MEMBER SKILLMAN: Let me ask one more. So,
6	now we've got this cask. It's almost ready to be
7	(Simultaneous speech.)
8	MEMBER SKILLMAN: applied, and one who's
9	standing back looks at it and say it looks okay, but
10	say the nuts are just finger-tight. They weren't
11	torqued down to their sealing value. Is the torquing
12	on those bolts essential for the design of that plate
13	to prevent ovaling the entrance. In other words, is
14	the tightness of those bolts required for the
15	structural integrity of the cask itself should the
16	cask be impacted in its most adverse geometry?
17	MR. AMMERMAN: This is very typical of a
18	lid design that you have an offset in it like this.
19	And that's actually done for primarily one of the
20	main reasons for streaming, so you don't get a
21	streaming path. So, the prevention of ovaling is done
22	by that surface, that lid that
23	MEMBER SKILLMAN: That lid?
24	MR. AMMERMAN: Exactly.
25	MEMBER SKILLMAN: Now, let's say that even
ļ	1

(202) 234-4433

	95
1	if your bolts are finger-tight, and even though the
2	cask might weep or leak, the finger-tight bolts does
3	not defeat the ability to prevent ovaling of the
4	entrant in.
5	MR. AMMERMAN: Yes, correct.
6	MEMBER SKILLMAN: Got it. Okay, thank you.
7	MR. AMMERMAN: Okay.
8	MEMBER BLEY: I don't know if this is the
9	right time to ask, but I suggested that I ask about
10	the RADTRAN and how it's handled to make sure
11	MR. AMMERMAN: Two more chapters.
12	MEMBER BLEY: Okay.
13	MR. AMMERMAN: I'm on Chapter 3 now.
14	MEMBER BLEY: Right.
15	MR. AMMERMAN: I'm sorry, that's
16	(Simultaneous speech.)
17	MR. AMMERMAN:
18	CHAIR RYAN: I just want to crack the whip.
19	I don't want to miss anything.
20	MR. AMMERMAN: Similar to the impact for
21	fires, canister design group to withstand a fire
22	accident, hydro carbon fuel the fire for 30 minutes,
23	generally demonstrated by analysis using a prescribed
24	monitor condition of 800 degrees C. Real fires have
25	temperatures that vary both with time and location,
	I

(202) 234-4433

	96
1	but the average heating is similar to that for that
2	uniform monitor condition, and review requires both
3	the CO and fuel temperatures to stay below failure
4	thresholds. So, just like we have conservatism in the
5	impact analysis, we have conservatism in the fire
6	analysis, and casks will survive a longer than 30-
7	minute fire.
8	We looked at three different fire
9	scenarios all burning for three hours, the first one
10	with the cask engulfed in the fire so that the fire is
11	this orange region. You can't see the cask at all,
12	it's completely engulfed during the fire.
13	MEMBER BLEY: This is an oil fire?
14	MR. AMMERMAN: This is a kerosene fire.
15	MEMBER BLEY: Kerosene fire.
16	MR. AMMERMAN: Jet fuel.
17	MEMBER BLEY: Jet fuel fire.
18	MR. AMMERMAN: In our case where the fire
19	is offset by three meters, so three meters from the
20	edge of the cask at the edge of the fire. That's one
21	rail car width. Or another case where the cask is
22	offset by 18 meters, that's one rail car length.
23	MEMBER BLEY: Let me ask a quick question.
24	The reason you did more than the fully engulfing fire,
25	is it because you might get some kind of differential
ļ	1

(202) 234-4433

	97
1	expansion in this thing if it's not in the middle of
2	the fire?
3	MR. AMMERMAN: No, it's because the fully
4	engulfing fire has a lower probability.
5	MEMBER BLEY: Okay, so you wanted each case
6	to work into the risk assessment.
7	MR. AMMERMAN: Yes, yes.
8	MEMBER BLEY: Okay. Fair enough. You
9	weren't just doing a bounding analysis.
10	MR. AMMERMAN: Correct. Exactly. And it
11	turned out it wouldn't have mattered because the fully
12	engulfing didn't cause a failure either, but actually
13	it does matter a little bit for lead melt because the
14	lead melt is different, and we'll see that.
15	So, as I said, the flame temperature
16	varies both spatially and temporally here in the
17	static view. You can see how it varies spatially, cold
18	for example, underneath the cask especially, but even
19	around the cask above it cooler in this region, hotter
20	in the corners. That's a very typical kind of
21	distribution. We'll see how that goes in time.
22	MEMBER ARMIJO: The maximum temperatures
23	here are about 1300 Centigrade. Is that
24	MR. AMMERMAN: Correct. Yes.
25	MEMBER ARMIJO: Okay. I didn't know it
I	

(202) 234-4433

	98
1	would get that hot.
2	MR. AMMERMAN: So, now you see that as time
3	goes on, even once that fire is fully developed right
4	now, you can see that there's times when it's cooler
5	here, and times it's hotter here in this region right
6	above the cask right in here. You see there's a cool
7	spot, there's a cool spot. So, that 800 degrees C is
8	a pretty good average temperature, but you do get peak
9	temperatures that may be as high as 1300 C.
10	MEMBER BLEY: Not actually on the cask
11	structure itself. It's in the flame
12	MR. AMMERMAN: In the flame, exactly. And
13	the 800 degree is the skin is the surface
14	temperature that's assumed to be, so it's saying it's
15	right at the surface of the cask it's 800.
16	MEMBER BLEY: Anything they carry on
17	railroads that can burn hotter?
18	MR. AMMERMAN: Pretty much in a large fire
19	it doesn't matter what the fuel is. It's how much
20	oxygen you can get in. So, yes, if you carry if you
21	were burning something like rocket fuel that has its
22	own oxygen with it, yes, it can get hotter. But if
23	you're relying on pulling in air to get your oxygen
24	source, doubt it.
25	MEMBER BLEY: What if you have a car full
ļ	I

(202) 234-4433

	99
1	of aluminum that the kerosene sets on fire adjacent to
2	you, does that burn
3	MR. AMMERMAN: Well, if it's part of the
4	aluminum
5	MEMBER BLEY: Well, that's not likely.
6	MR. AMMERMAN: Yes, that but, yes, I
7	mean, you can postulate very severe fire accidents
8	now. So, what happens in that three-hour fire,
9	concentric fire? The peak fuel temperature about 730
10	degrees C, failure threshold is about 750, so it's
11	getting real close to failing the fuel. The seal
12	temperature is about 330 or 340, also pretty close to
13	its failure temperature of 350, so just if we had
14	gone with a four or five-hour fire, this concentric
15	fire, we may have seen failure of the cask in the
16	fire.
17	MEMBER ARMIJO: Why is the fuel running so
18	much hotter than the seal which is closer to the fire?
19	MR. AMMERMAN: Because of decay heat.
20	MEMBER BLEY: Okay. So, it's
21	MR. AMMERMAN: It's starting
22	MEMBER BLEY: They're starting at almost
23	the same temperature. I mean, one is at a little over
24	100 and one is at about 150 it looks like, but it's
25	trapped in okay. But that is reasonable.
I	I

(202) 234-4433

	100
1	MR. AMMERMAN: Yes, because during the fire
2	you can't you don't have any outward path for that
3	decay heat.
4	MEMBER BLEY: So it builds up.
5	MR. AMMERMAN: Yes, it builds up. Exactly.
6	MEMBER ARMIJO: Now these seals are
7	elastomers or are they the stainless steel O-rings?
8	MR. AMMERMAN: These are the metallic O-
9	rings that are typically used in this package.
10	Actually, no, this is the lead cast. The lead cast has
11	elastomer seals.
12	MEMBER ARMIJO: Elastomer seals.
13	MR. AMMERMAN: I think the metallic seals
14	are 500 degrees C is what their limit is.
15	MEMBER ARMIJO: Okay.
16	MEMBER BLEY: Let me go back to what I
17	asked you along time ago because I was on that Academy
18	Committee that did the Going The Distance Report. I
19	thought that somebody told us that either AAR or some
20	agreement between DOE and the railroads said that they
21	wouldn't run spent fuel trains through single track
22	tunnels. And the reason was because I think they
23	argued that the Baltimore tunnel as I remember was a
24	single track tunnel and they couldn't get firefighting
25	equipment inside because of that. Having the extra
Į	I

(202) 234-4433

	101
1	track would have let them run some sort of
2	firefighting equipment in and put that thing out. But
3	that's not there is nothing like that that you're
4	aware of.
5	MR. AMMERMAN: No, I don't believe so.
6	MEMBER BLEY: It could be in a single track
7	tunnel.
8	MR. AMMERMAN: I think it's not possible to
9	avoid single track tunnels because there's a lot of
10	them.
11	MEMBER BLEY: Yes.
12	MR. AMMERMAN: That is by far the most
13	common type of tunnel.
14	MEMBER BLEY: Maybe they said single track
15	tunnels in urban areas.
16	MR. AMMERMAN: Yes.
17	MEMBER BLEY: I guess okay. I was just
18	trying to remember that.
19	MR. AMMERMAN: And, actually, I'm glad that
20	you brought that up. The one of the findings of
21	Going The Distance, that report was that long-duration
22	fires have the possibility of failing casks.
23	MEMBER BLEY: Haven't been shown to
24	MR. AMMERMAN: Yes, yes, exactly.
25	MEMBER BLEY: We were a little more
I	1

(202) 234-4433

102
careful.
MR. AMMERMAN: And I think part of the
reason for that was that the database that was used
for fire durations was not a accident database, it was
a theoretical database, and it was durations of fire
based upon fuel availability, and independent by the
size of fire and the co-location. And what we have
what we found looking at the accident database is
that long duration large co-located fires don't
happen. That 10-hour, 11-hour fire that was included
in the study and included in 6672, those accident
environments don't happen, they never happen. They
cannot happen. And you'll see in the backup slides I
talked about this three-hour fire, what the
probability of this is, and it's something like ten to
the minus 18, this fire. Now, to get even more severe
you're
MEMBER BLEY: How long did the Baltimore
tunnel fire burn?
MR. AMMERMAN: It burned longer than that,
but most of the time it was a smoldering fire, not

high temperature.

MEMBER BLEY: So, it's the long duration high temperature.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. AMMERMAN: It's the long duration high

(202) 234-4433

	103
1	temperature co-located.
2	MEMBER BLEY: Can't be sustained.
3	MR. AMMERMAN: Those three things can't
4	exactly. Yes.
5	MEMBER BLEY: Okay.
6	MEMBER SCHULTZ: So, is there a fire
7	modeling scenario that will support that in terms of
8	a fuel supply?
9	MR. AMMERMAN: The fuel that was used was
10	how fuel is transported in a railroad tank car, so one
11	railroad tank car. We said okay, it's possible that
12	you can have that amount of fuel, highly unlikely, of
13	course, that you can have that amount of fuel, it all
14	gets released from that tank car, and it all ends up
15	in this the pool size is just the right size to
16	fully engulf the cask but not be so large that it
17	you waste that fuel that's away from the cask. And
18	that amount of fuel is enough to burn for three hours.
19	That's where we came up with the three-hour duration.
20	MEMBER SCHULTZ: Thank you.
21	MEMBER BLEY: But you ran a longer case.
22	MR. AMMERMAN: No, three hours is the
23	longest one.
24	MEMBER BLEY: That's the longest one.
25	MR. AMMERMAN: Yes.
ļ	1

(202) 234-4433

	104
1	MEMBER BLEY: Okay, I thought you ran a
2	longer one.
3	MR. AMMERMAN: So, in that three-hour fire
4	what does happen, like I said, you never fail the seal
5	but you do get the lead to melt. And when lead melts,
6	liquid lead is less dense than solid lead, so it
7	expands the region that it's in, the area between the
8	two shells. And then as it resolidifies it shrinks
9	back down and it leaves a gap at the top.
10	MEMBER BLEY: That swelling can't crack
11	anything?
12	MR. AMMERMAN: It could, and the and
13	Sam, those tests that you were talking about earlier,
14	the train running into the rigid surface, well, we did
15	a fire test after that and did melt the lead in that
16	cask, and its expansion actually caused a crack in a
17	weld, but it was a poor QA issue. It was not and
18	now
19	MEMBER BLEY: That happens.
20	MR. AMMERMAN: That happens, exactly.
21	MEMBER BLEY: During construction?
22	MR. AMMERMAN: Yes, during construction of
23	that cask. It was a poor quality weld. It was and
24	I think if Rob Temps, the QA inspector for SFST was
25	here he would bear this out, that the failure the
I	1

(202) 234-4433

	105
1	error in that weld is very likely to go unnoticed
2	today. And this is a cask that was done it was
3	probably fabricated in the '50s or maybe early '60s,
4	and we've come a long way in QA space since that time.
5	CHAIR RYAN: Does it raise any questions in
6	your mind about requalifying these older casks for
7	more uses? You said you couldn't actually inspect this
8	today and probably see it, but I just wonder if you
9	pull that string a little harder.
10	MR. AMMERMAN: Actually, part of the reason
11	that we picked the casks that we picked here is that
12	these were very modern casks. And they if there
13	were to a large transportation these casks aren't
14	ones that are just sitting in somebody's warehouse.
15	They haven't been built yet, so they would be built
16	2010.
17	CHAIR RYAN: All right. So, there's not a
18	lot of them sitting around waiting for
19	MR. AMMERMAN: There's not a backlog.
20	CHAIR RYAN: the design is robust, and
21	a new fabrication won't have some of the flaws of the
22	1950s.
23	MR. AMMERMAN: Yes.
24	CHAIR RYAN: Is that a fair summary?
25	MR. AMMERMAN: That's a fair summary, yes.
I	1

(202) 234-4433

	106
1	CHAIR RYAN: Okay.
2	MEMBER SCHULTZ: Was that manufacturing
3	defect known before the test, or was it
4	MR. AMMERMAN: It was not.
5	MEMBER SCHULTZ: This is why we have a
6	failure there.
7	MR. AMMERMAN: Yes.
8	MEMBER SCHULTZ: That's how it was found.
9	MR. AMMERMAN: Yes.
10	CHAIR RYAN: So, the budget goes up because
11	you've got to build new casks to do these tests, not
12	use old ones.
13	MR. AMMERMAN: Right.
14	CHAIR RYAN: Okay.
15	MR. AMMERMAN: So, in summary for fire
16	accidents no loss of containment, fuel rods not
17	unveiled, reduction in neutron shielding is likely and
18	it's assumed in the certification of the cask so all
19	the cask designs assume that the neutron shield goes
20	away after a fire accident, reduction of gamma shield
21	is possible for very severe fire of lead shielded
22	casks. If it's a concentric fire that fire has to burn
23	longer than 65 minutes. If it's an offset fire that
24	- offset by 10 feet that fire has to burn longer than
25	two and a quarter hours.
ļ	I

(202) 234-4433

	107
1	MEMBER BLEY: I guess that's a worker risk
2	issue on the shielding change, but
3	MR. AMMERMAN: Primarily, yes, exactly.
4	MEMBER BLEY: And a pain in the neck to
5	take care of.
6	MR. AMMERMAN: Yes. You're not going to
7	have any members of the public if you've got a fire
8	burning for a few hours, you're going to evacuate, and
9	people that are close are not going to are going to
10	be the first ones to evacuate. They're going to be
11	gone before and remember that exposure doesn't
12	happen until it cools back down, so not until after
13	the fire is over. And by that time workers are going
14	to come in and they're going to have dosimeters or
15	Geiger counters and they're going to be measuring dose
16	rates. And they'll say hey, this dose rate is too high
17	for us to go in, we're going to bring in a portable
18	shield before they get close.
19	This study did not examine confined fires
20	such as tunnel fires or fires at overpasses, Baltimore
21	tunnel fire, MacArthur Maze fire because they were
22	previously analyzed by other industry studies, and the
23	result of those studies show that those fires have
24	very low consequence.
25	MEMBER BLEY: They couldn't be anywhere
I	I

(202) 234-4433

	108
1	near your fully engulfing fire, could they, in terms
2	of this insult to the
3	MR. AMMERMAN: The result of the worst
4	case assumptions for Baltimore tunnel fire was a
5	little bit more severe. They looked at I think the
6	same cask, the NAC STC cask, and showed that they
7	would get a small release from it, less than
8	regulatory release which maybe two per week, but that
9	they would get some release from that cask. And our
10	study showed no release.
11	MEMBER BLEY: Even though lower they
12	used the actual
13	MR. AMMERMAN: They used the the
14	assumption of this fire environment that occurred, and
15	if the cask would have been as close as it possibly
16	could have been to the trichloroethylene or whatever
17	it was that was burning in that. And that's how that
18	came up with that answer.
19	MEMBER SKILLMAN: Isn't there a design fix
20	for that reduction in shielding? Is there a wrapper or
21	another material that could be in place between the
22	lead and the outer hull or the lead and the inner hull
23	such that there is a built-in capability to address
24	the lead slump on its change in density as it goes
25	through the temperature changes, where there's
ļ	

(202) 234-4433

5 MR. AMMERMAN: Actually, some of them get around that problem by using steel shielding, which 6 7 like the HISTAR cask that we analyzed, steel 8 shielding, it doesn't have that issue. I think the 9 designers don't look at lead melt because they're only 10 required to look at the 30-minute fire, and the 30minute is like -- you need to have a 65-minute fire in 11 order to get -- to start to get lead melt. So, the 12 designers say regulations say 30-minute fire, I get no 13 14 lead melt, I don't have a problem.

Now, if you were to require designers to look for a three-hour fire and maintain some level of shielding after the fire, then they would start thinking of clever ways to avoid that, or else they'll all just use steel cask instead of lead casks.

20 MEMBER SKILLMAN: I mean, it seems that 21 maybe given the potential for aggressive pushback one 22 might say this is fixable for the new fleet of casks, 23 and we do it this way. And you buy -- if you're got 24 guns or you have a safe in your home that's fire rated 25 for three or five hours and 1400 degrees Fahrenheit.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	We know how to do that.
2	MR. AMMERMAN: Yes, and we could do that,
3	but I think that the risks are so small that it's not
4	warranted.
5	MEMBER SKILLMAN: Okay, thank you.
6	MR. AMMERMAN: Okay.
7	MEMBER ARMIJO: Just before you leave that
8	chart.
9	MR. AMMERMAN: Okay.
10	MEMBER ARMIJO: You say the fuel rods do
11	not fail in the fires analyzed. Does that include the
12	three-hour fire?
13	MR. AMMERMAN: That includes the three-hour
14	fire.
15	MEMBER ARMIJO: So, and the reason is that
16	the highest temperature that the fuel going back to
17	your Slide 34.
18	MR. AMMERMAN: Yes.
19	MEMBER ARMIJO: The green curve never
20	exceeds just barely up to 700, and what's it how
21	high would it have to go before you assume the fuel
22	starting to fail?
23	MR. AMMERMAN: 750 is where we assume the
24	seal burst rupture occurred.
25	MEMBER ARMIJO: So, it would be as a result
I	

```
(202) 234-4433
```

	111
1	of pressure stress.
2	MR. AMMERMAN: Yes, it's a combination of
3	two things. One, that the cladding material becomes
4	less strong as the temperature increases and, two,
5	that the internal pressure goes up, so you have those
6	two curves that are approaching each other. The
7	pressure building up and the strength going down, and
8	at about 750 is where those curves cross.
9	MEMBER ARMIJO: Okay.
10	MEMBER SCHULTZ: Is that a side calculation
11	or a computer code calculation?
12	MR. AMMERMAN: That is a reference number.
13	MEMBER SCHULTZ: Okay.
14	MR. AMMERMAN: So, we did not calculate
15	that. We used a reference that said that number.
16	CHAIR RYAN: Where did it come from?
17	MR. AMMERMAN: I think it came from
18	experiments that were done at Oak Ridge.
19	MEMBER ARMIJO: Just like something in a
20	LOCA-type analysis.
21	MR. AMMERMAN: Exactly.
22	CHAIR RYAN: Okay.
23	MEMBER SCHULTZ: And what you've shown
24	here, the lines are the analyses you performed, so
25	that's the peak temperature
I	

(202) 234-4433

	112
1	MR. AMMERMAN: Exactly.
2	MEMBER SCHULTZ: calculated throughout
3	the canister. Thank you.
4	MR. AMMERMAN: Okay, now is your turn. Ask
5	your question.
6	MEMBER BLEY: You already got it.
7	MR. AMMERMAN: So, RADTRAN also looks at
8	accidents, and there are in this study we looked at
9	three different types of accidents. The first case is
10	an accident in which the spent fuel cask is not
11	damaged that John talked about earlier but the
12	shipment is delayed, so this is the extended stop.
13	Second case is an accident that affects the spent fuel
14	cask by causing loss of shielding, so it's a fire of
15	any duration causing a loss of neutron shielding or a
16	fire of sufficient duration to cause loss of gamma
17	shielding, but no release of radioactive material. Oh,
18	and actually there also is the lead slump which falls
19	into that category, as well.
20	MEMBER BLEY: So, after you have the fire
21	you then run RADTRAN to evaluate the dose to people.
22	MR. AMMERMAN: Exactly, yes. And then,
23	finally, the accident that does result in release of
24	radioactive material. So, the statistics for both
25	highway and railway accidents are maintained by the
ļ	I

(202) 234-4433

113 Department of Transportation. The average probability of an accident is about ten to the minus six per kilometer for trucks, and about ten to the minus seven per kilometer for rail cars. And we do our rail accidents in rail car miles, per rail car mile as opposed to per train mile. MEMBER BLEY: Yes, fair enough. MR. AMMERMAN: These actions are categorized using an event tree, and for trucks that tree was developed at Sandia National Laboratories not for this project, but for another project. And for rail the event tree was developed at the Volpe National Transportation Center, DOT's Laboratory. NRC paid for that, well, Also, as under the performance study. MEMBER BLEY: Didn't they already have something like that? Never mind. MR. AMMERMAN: Yes, with that about from the 1970s, so they updated it, yes. This is a sequent of the Volpe event tree for rail, and the most likely way that you get into a severe accident is you have a derailment with no fire. I mean, it doesn't matter if this is a fire, too. You just make this number one,

but that's close enough to one, it doesn't change it.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER BLEY: What do they do in their --

25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(202) 234-4433

	114
1	because most derailments don't even damage anything,
2	so this must be some particular kind of derailment.
3	MR. AMMERMAN: Actually, this is that
4	derailment that doesn't damage anything.
5	MEMBER BLEY: Okay.
6	MR. AMMERMAN: 98 percent of them don't
7	damage anything, exactly.
8	MEMBER BLEY: Okay.
9	MR. AMMERMAN: So, they divided that up
10	into four speed distributions. This is that 50 mile
11	per hour to 70 miles per hour, and this is greater
12	than 70 miles per hour. And then
13	MEMBER BLEY: Off bridge doesn't mean you
14	fall off the bridge
15	MR. AMMERMAN: No.
16	MEMBER BLEY: it means you're not on
17	the bridge when it happens.
18	MR. AMMERMAN: Exactly. It would have been
19	much better if they had called this not on bridge as
20	opposed to off bridge.
21	MEMBER BLEY: That's better. Really
22	struggling with that one.
23	MR. AMMERMAN: And the only ones that could
24	possibly cause damage are these ones that are into
25	slope, or into embankment. Into tunnel you would think
I	I

(202) 234-4433

	115
1	could but really that is you're inside of a tunnel and
2	you hit the side of the tunnel, always a glancing
3	blow. You never get that impact to any degree that you
4	need to have damage to the cask, so that into tunnel
5	one although you would think it could be a severe
6	impact, it's not because of the impact angle.
7	MEMBER BLEY: So, even though the
8	probability is higher it just does no damage.
9	MR. AMMERMAN: Exactly, it does no damage.
10	It skips along the side of the tunnel.
11	MEMBER BLEY: Now, into structure that does
12	damage?
13	MR. AMMERMAN: Into structure does not do
14	damage. That's the most likely
15	MEMBER BLEY: Yes.
16	MR. AMMERMAN: That structure is concrete,
17	so it's not going to and you have to be going more
18	than 120 miles an hour into structure in order to
19	cause damage, so it doesn't happen.
20	MEMBER BLEY: So, into slope or into
21	embankment means you tumble down a hill, Sam's
22	scenario. Is that right?
23	MR. AMMERMAN: Yes. And, actually, what we
24	assume is that we had that triangular distribution so
25	you might run
ļ	I

(202) 234-4433

	116
1	(Simultaneous speech.)
2	MEMBER BLEY: at that point.
3	MR. AMMERMAN: Yes.
4	MEMBER BLEY: Okay.
5	MR. AMMERMAN: Yes. And in that example
6	that's in the backup slides, it's in the back goes
7	through this event tree. And all these numbers are in
8	there along with those probabilities, so you can look
9	at that. That's where it comes from.
10	MEMBER SCHULTZ: Doug, can you help me
11	understand the speed distribution? I mean, you have
12	derailment no fire.
13	MR. AMMERMAN: Yes.
14	MEMBER SCHULTZ: And then there are two
15	speed
16	MR. AMMERMAN: Actually, there are four,
17	but this is chopped off. You don't see the top two
18	which are the first one is less than, I can't
19	remember, 24 maybe kilometers per hour, and then 24 to
20	80 or something like that, maybe it's less than 50,
21	and then 50 to 80.
22	MEMBER SCHULTZ: So, what I'm struggling
23	with and need your help is you have shown higher
24	speeds here.
25	MR. AMMERMAN: Yes.
ļ	I

(202) 234-4433

	117
1	MEMBER SCHULTZ: And you have a derailment,
2	so this is suggesting that for the lower speed
3	categories less than 80 kilometers per hour the
4	likelihood of the speed distribution seems that that's
5	a large chunk of derailments.
6	MR. AMMERMAN: Yes, 94 percent of them are
7	less than 80 kilometers per hour.
8	MEMBER SCHULTZ: Okay.
9	MEMBER BLEY: But the track speed is the
10	track speed for a freight train anywhere around over
11	80 mile an hour?
12	MEMBER SCHULTZ: I'm trying to tie this as
13	derailment.
14	MR. AMMERMAN: This is 80 kilometers per
15	hour.
16	MEMBER BLEY: Oh, that's kilometers per
17	hour. You're right. Okay.
18	MR. AMMERMAN: yes, that's 50 miles per
19	hour.
20	MEMBER BLEY: That's right at track speed
21	for most of the country.
22	MR. AMMERMAN: Yes.
23	MEMBER BLEY: Outside of the city,
24	certainly.
25	MR. AMMERMAN: Yes.
ļ	1

	118
1	MEMBER BLEY: Okay.
2	MR. AMMERMAN: Although, AAR has a I think
3	80 mile per or 50 mile per hour speed limit for
4	spent fuel transport.
5	MEMBER BLEY: Is that right?
6	MR. AMMERMAN: Yes.
7	MEMBER BLEY: Okay.
8	MR. AMMERMAN: So, any time you're going to
9	have any accident that is more than 80 kilometers
10	per hour or 50 miles per hour means it's a runaway.
11	MEMBER BLEY: Right.
12	MR. AMMERMAN: And that's one of the things
13	that we don't take into account in here, is that what
14	is the probability of a runaway on a dedicated rail?
15	Very, very small. We have instead of
16	MEMBER BLEY: Why is it smaller than a
17	regular train.
18	MR. AMMERMAN: Because you have a much
19	lower weight of consist. I mean, you
20	MEMBER BLEY: Even with the spent fuel in
21	it?
22	MR. AMMERMAN: Yes. It's five cars.
23	MEMBER BLEY: Are they limited to five?
24	MR. AMMERMAN: Well, no, but where are you
25	going to get more than that?
	1

```
(202) 234-4433
```

	119
1	MEMBER BLEY: Okay.
2	MR. AMMERMAN: I mean, how much fuel are
3	you going to ship from one reactor?
4	MEMBER BLEY: And is it guaranteed that
5	rail shipments will be dedicated?
6	MR. AMMERMAN: It's not guaranteed
7	MEMBER BLEY: It wasn't the last time I
8	heard.
9	MR. AMMERMAN: Although, Yucca Mountain
10	assumed that they were going to do their own
11	MEMBER BLEY: Yes.
12	MR. AMMERMAN: dedicated rail.
13	MEMBER BLEY: They did but when
14	MR. AMMERMAN: There's no requirement.
15	MEMBER BLEY: But the railroads weren't
16	agreeing that it was.
17	MR. AMMERMAN: And a big part of that is
18	DOE doesn't want to pay the cost
19	(Simultaneous speech.)
20	CHAIR RYAN: That's
21	MEMBER BLEY: Well, it's only moot in the
22	sense that that's an assumption in the analysis. And
23	whether DOE pays it or not, you know, that shifts
24	things around because if you have dedicated trains,
25	they might get held up in places longer than other
I	I

```
(202) 234-4433
```

	120
1	trains because they aren't the railroad's main
2	business is all the other freight.
3	MR. AMMERMAN: Actually, that's one of the
4	big concerns that DOE has, is that because their train
5	has a lower speed limit, they're going to get shifted
6	off to the side very often so fast trains go by,
7	because the railroads, believe it or not, are in
8	business to make money, and they make money by moving
9	stuff, not by having it sit.
10	MEMBER SIEBER: It depends. If you're
11	paying by the hour
12	(Laughter.)
13	MEMBER SIEBER: which special trains
14	pay because you're paying crews by the hour.
15	MR. AMMERMAN: Sure.
16	MEMBER SIEBER: Then it's to their
17	advantage to have a slow train.
18	MR. AMMERMAN: Yes.
19	MEMBER SIEBER: In 1960 the speed limit was
20	35 miles an hour for special trains, so they took a
21	long time to go any distance.
22	MEMBER SCHULTZ: So, what you're saying for
23	derailments this would to validate 93-94 percent of
24	derailments occur at speeds less than 50 miles an
25	hour.
	I

(202) 234-4433

	121
1	MR. AMMERMAN: Yes.
2	MEMBER SCHULTZ: Okay.
3	MR. AMMERMAN: Yes.
4	MEMBER SKILLMAN: If I could, you mentioned
5	the analyses here does not consider a runaway.
6	Supposing it's not a runaway
7	MEMBER BLEY: No, it does.
8	MR. AMMERMAN: It does. So, these accidents
9	are runaways.
10	MEMBER SCHULTZ: Okay. Let's go one step
11	further. It's not a runaway, it's a hostile takeover
12	of the train and someone intends to drive that train
13	to destruction by going full tilt as fast as the
14	locomotive will pull the consist. Is there terrorism
15	factored into this thinking at all?
16	MR. AMMERMAN: No.
17	MEMBER SKILLMAN: Should it be?
18	MR. COOK: Not in this one. This is a kind
19	of constraint to a safety assessment as have the
20	previous studies. Now, there are studies that look at
21	security issues, which that sort of scenario would
22	fall into. But I think we would see, nonetheless, it
23	have very elevated velocities. The results here
24	indicate it's difficult, extremely difficult to get to
25	a release pathway is what we're
	1

(202) 234-4433

	122
1	MEMBER SKILLMAN: Fair enough.
2	MR. AMMERMAN: Essentially you've got to be
3	unless you're going to hit hard rock you've got to
4	be going more than 120 miles per hour. And I don't
5	think you can get that train to go 120 miles per hour.
6	MEMBER BLEY: It would be a pretty clumsy
7	way of
8	MR. AMMERMAN: Not even a hostile takeover
9	if you tried to.
10	MEMBER SCHULTZ: What you're saying though
11	is that this is very good evidence to suggest that
12	that would not be a worthwhile terrorist activity
13	because the
14	MEMBER SKILLMAN: No, there would be better
15	ways
16	MEMBER SCHULTZ: chances of creating a
17	hazardous condition is very small.
18	MEMBER SKILLMAN: Very low, yes.
19	MEMBER SCHULTZ: Thank you.
20	MEMBER BLEY: And they're not talking at
21	all about how these trains are guarded?
22	MEMBER SKILLMAN: Are what?
23	MEMBER BLEY: Guarded.
24	MR. AMMERMAN: Right. Exactly. So, the
25	event trees didn't provide us all the information that
	I

(202) 234-4433

	123
1	we needed for
2	MEMBER BLEY: Did the numbers on there for
3	the accidents come from DOT?
4	MR. AMMERMAN: Yes.
5	MEMBER BLEY: Okay.
6	MR. AMMERMAN: The event tree didn't
7	provide us with all the probabilities that we looked
8	at in the study. For example, the rate of entry does
9	not include target hardness, so we used the
10	distribution from the truck event tree. Neither event
11	tree includes impact angle or orientation so we had to
12	make assumptions on those, and we made a triangular
13	assumption about impact angle and we used a uniform
14	distribution for impact orientation.
15	The truck event tree does not include
16	impact velocity, but since impacts at even the highest
17	velocity we analyzed didn't result in release, we
18	didn't care. No truck accident results in release. And
19	then the rail event tree doesn't divide accidents that
20	are higher than 70 miles per hour, so we assumed that
21	95 percent of them are between 70 and 90, and that 5
22	percent of them were above 90, which was needed for
23	the lead slump dose calculations, because we had more
24	lead slump at 90 than we do at 70, or at 60.
25	So, now let's look at the first case of
I	1

(202) 234-4433

those accidents, accidents without loss of shielding or release. This is the accident like in TMI, that accident that occurred in suburban St. Louis where a guy got stuck on the track and the train T-boned it, and the train sat there for N number of hours. Almost all accidents fall into this category, all but one in a billion.

8 Dose depends on the external dose rate of 9 the cask. We assumed a 10-hour stop time is the 10 average for these type of accidents, very little data to back that up. There's been in the history of 11 transporting spent fuel, I think seven accidents, and 12 what was the time that it took to clean those up? I 13 14 don't have that information. Would it be the same 15 today? Nobody really knows.

MEMBER BLEY: This is probably a security 16 17 issue and you can say you didn't address it or you're not asking. If a dedicated train gets into a accident 18 19 that doesn't damage the train, if a passenger or a freight train does and somebody is killed in a car, 20 they sit there forever while the state police come. 21 But with these dedicated trains, do they sit there or 22 does somebody stay behind and these trains keep going? 23 24 Or is that something you can't address? think that 25 MR. AMMERMAN: Ι the TMI

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	125
1	shipment was a dedicated train, and it sat there for
2	until
3	MEMBER BLEY: It did? Okay.
4	CHAIR RYAN: Did they get any insight from
5	train accidents of all types in terms of the time
6	range? I know it's kind of a little bit of apples and
7	oranges, but you know, I mean, at least the data
8	point says it's no longer than X. You know, no shorter
9	than this, and there's a mean, that at least would
10	give you something to hang your hat on a little bit.
11	MR. AMMERMAN: I think that if you derail
12	a cask car, it's going to sit for a long time because
13	you're going to have to bring the
14	CHAIR RYAN: I don't disagree with you. I'm
15	just saying there's got to be something similar where
16	a car that's got, I don't know, some kind of holder
17	like a cask, maybe it's for some other purpose, tips
18	over, that those on average tend to be four days to
19	clean up. You know, I don't know, but I'm just trying
20	to figure out a way to maybe see if there's a similar
21	kind of data set you could
22	MEMBER BLEY: You just made assumptions
23	here.
24	MR. AMMERMAN: Yes.
25	MEMBER BLEY: AAR must know that kind of
ļ	

(202) 234-4433

	126
1	thing.
2	MR. AMMERMAN: And that 10-hour stop time
3	is really was more based upon truck information. We
4	didn't go and do a detailed look at it, but just
5	MEMBER ARMIJO: Well, in a situation like
6	that, and again the 10-hour you're putting somebody
7	close to the cask, right, for 10 hours
8	MR. AMMERMAN: Exactly.
9	MEMBER ARMIJO: to calculate your dose.
10	But in reality, you you know, there would be
11	police, people would be kept away. And if it's 20
12	hours it probably wouldn't make that much difference
13	until you're ready to move it in the proper way.
14	MR. AMMERMAN: Yes. I think that that's a
15	very good point, and that you're going to either
16	evacuate people because of the other hazards involved
17	with the accident.
18	MEMBER ARMIJO: Sure.
19	MR. AMMERMAN: Or that you're going to say
20	oh, it's not a big deal, and you're going to keep
21	people far enough away that they're not getting dose.
22	You're not going to have people standing up close to
23	the cask. So, with that assumed 10-hour stop time we
24	calculated collective doses using the average rural,
25	suburban, urban populated densities for each route.
	I

(202) 234-4433

	127
1	And the biggest dose was the MEI dose was to an
2	emergency responder, so we assume he's at two meters,
3	and he's getting a dose rate of 10 millirem per hour,
4	so he's at two meters for 10 hours. It's a total of
5	100 millirem. That's the MEI.
6	The collective population dose to nearby
7	residents is on the order of seven times ten to the
8	minus five person-sieverts.
9	MEMBER BLEY: Is that the dose, or is that
10	an expected dose with the probability weighting
11	MR. AMMERMAN: That is a dose risk.
12	MEMBER BLEY: That is the risk. So, that's
13	probably
14	MR. AMMERMAN: Yes, exactly.
15	MEMBER BLEY: And that's true in all your
16	tables. I didn't see anything like a risk or where you
17	have probability versus dose, but you have primarily
18	expected dose.
19	MR. AMMERMAN: Exactly. Exactly, expected
20	dose. Yes, exactly right.
21	MEMBER BLEY: And that's what this is.
22	MR. AMMERMAN: That's that what this is.
23	MEMBER BLEY: So, it isn't really
24	MR. AMMERMAN: And so
25	MEMBER BLEY: It's expected person-sievert.
ļ	I

(202) 234-4433

	128
1	It's not person sieverts.
2	MR. AMMERMAN: Right, yes.
3	CHAIR RYAN: Is collective dose just the
4	individual dose multiplied by some assumed population
5	number or
6	MEMBER BLEY: Times the probability of it
7	happening.
8	MR. AMMERMAN: Right.
9	MEMBER BLEY: That's what I was
10	MR. AMMERMAN: Yes. And it's you know,
11	this is for nearby residents, so they start at 30
12	meters, not at two meters. And out to 800.
13	MEMBER BLEY: So, it's 100, 20, how many
14	people were involved?
15	MR. AMMERMAN: It depends on whether it's
16	in the rural, suburban, or urban population density,
17	so this one is for urban.
18	CHAIR RYAN: And that is how many folks.
19	MR. AMMERMAN: And that's a population
20	density of I think probably about 3,000 persons per
21	kilometer squared. And you've got 800 meters,
22	certainly with a radius of 800 meters is
23	CHAIR RYAN: I'm just looking at one
24	certain number, not the whole how many people are
25	involved in the calculation?
ļ	I

(202) 234-4433

	129
1	MR. AMMERMAN: 3,000.
2	MEMBER BLEY: These are microrems to
3	people.
4	MR. AMMERMAN: Yes.
5	(Simultaneous speech.)
6	MEMBER ARMIJO: That's 3,000 people exposed
7	for 10 hours?
8	MR. AMMERMAN: It's probably less than
9	microrems because it's got the probability mixed in.
10	CHAIR RYAN: That's really less than
11	MR. AMMERMAN: Yes, yes. These people are
12	getting yes.
13	CHAIR RYAN: You had a dose from the
14	accident and seven times ten to the minus three person
15	rem is who cares.
16	MR. AMMERMAN: Exactly. This dose is
17	CHAIR RYAN: A very small number compared
18	to the natural background.
19	MR. AMMERMAN: This dose is frankly less
20	than our routine transport dose in person-sieverts,
21	collective dose.
22	CHAIR RYAN: Okay.
23	MR. AMMERMAN: So, that's a good comparison
24	to make. This one is seven times ten minus five.
25	Remember that number.
I	

	130
1	MEMBER BLEY: It wasn't I mean, it was
2	kind of clear when you think about it, but I think it
3	wasn't clear that it wouldn't be clear to everybody
4	reading the report that when you do these person-
5	sievert risks, that that's got the probability
6	factored in it. Now, if it I think you need
7	something there to say this is the expected dose of
8	risk which is probability times consequence. Chapter
9	6 I think is just not clear in that way.
10	MR. AMMERMAN: We ought to call it dose
11	risk if that's the case as opposed to dose.
12	CHAIR RYAN: Please don't change the units.
13	That will confuse everybody.
14	MR. AMMERMAN: Okay.
15	CHAIR RYAN: Just explain what you're
16	calculating, but use the unit. I mean, Dennis is
17	right.
18	MEMBER BLEY: I think it's not transparent.
19	CHAIR RYAN: That's much better than making
20	up a new unit which nobody can get.
21	MEMBER BLEY: Put it this way, it wasn't
22	obvious to me until I thought about it a little bit.
23	Maybe it's obvious
24	MEMBER ARMIJO: It's probability of the
25	accident. Right?
I	

(202) 234-4433

	131
1	MEMBER BLEY: That's right.
2	MR. AMMERMAN: And maybe that's the thing
3	to do, is just whenever we put that number we say what
4	Sam just said, includes the probability of the
5	accident.
6	MEMBER BLEY: Or you say it real clearly
7	right up front in the chapter, or something.
8	MR. AMMERMAN: Okay, so those are the
9	accidents
10	MEMBER BLEY: Actually, if I can read you
11	the title on one of your charts?
12	MR. AMMERMAN: Sure.
13	MEMBER BLEY: Average Collective Dose is
14	Person-Sieverts, doesn't say "risk."
15	MEMBER SCHULTZ: That's where I was getting
16	confused.
17	MEMBER BLEY: None of the figures say risk.
18	MEMBER SCHULTZ: Estimated dose.
19	MEMBER BLEY: It looks like estimated dose,
20	but I think they all I think they're all your risk
21	numbers. I think they all
22	CHAIR RYAN: And there's nothing
23	MEMBER BLEY: It just isn't there. I mean
24	CHAIR RYAN: Instead of dose saying this is
25	a risk which includes the probability of the event
I	I

(202) 234-4433

	132
1	occurring.
2	MEMBER BLEY: Or if you just say expected
3	dose, and then define that some way.
4	CHAIR RYAN: Yes.
5	MR. AMMERMAN: Yes.
6	MEMBER BLEY: But it isn't what it says
7	despite what you it might in the text but on every
8	presentation of tables and figures I don't think
9	you'll find it.
10	MEMBER SCHULTZ: But expected dose means
11	something to a risk analyst, but
12	MEMBER BLEY: Well, what I was saying is if
13	you use expected dose and then define it clearly in
14	the glossary, whatever. If you put a whole sentence on
15	every figure and table it will start getting tedious.
16	Expected dose means something to a statistician or a
17	risk analyst.
18	MEMBER SCHULTZ: Right, right.
19	MEMBER BLEY: Risk dose means something to
20	you. It's a term
21	MEMBER SCHULTZ: Put it in the glossary.
22	MEMBER BLEY: I don't generally see,
23	and I think whatever you do, if it doesn't just all
24	it says now is average collective dose and that
25	doesn't imply either one of those.
Į	I

(202) 234-4433

	133
1	MEMBER SCHULTZ: I agree.
2	MR. AMMERMAN: Okay. The next type of
3	accident is with loss of gamma shielding. The
4	probability this event is about the same as the one of
5	release, about one in a billion. And the collective
6	dose risk expected dose is ten to the minus three
7	person-sieverts, so now
8	MEMBER BLEY: This is fires?
9	MR. AMMERMAN: No, this could be lead slump
10	from impact, as well.
11	MEMBER BLEY: From impact, as well. But
12	proportion I'm not sure I caught that results. Is
13	it mostly
14	MR. AMMERMAN: Those about the same,
15	actually.
16	MEMBER BLEY: Is that right?
17	MR. AMMERMAN: Yes.
18	MEMBER BLEY: It's a toss up.
19	MR. AMMERMAN: Yes. I think
20	MEMBER BLEY: I didn't get that. It might
21	say that clearly, but I didn't
22	MR. AMMERMAN: Fire is about ten to the
23	minus fifteen, so this number to the significant
24	figures is all from impact.
25	MEMBER BLEY: Yes. And we'll just say when
l	I

(202) 234-4433

	134
1	we toss around these ten to the minus whatever numbers
2	to a lot of people it doesn't mean anything. To other
3	people they think probabilities, which it isn't at
4	all. So, there's it's easy to get even technical
5	people confused if in their field these are used a
6	little differently, so I think being real precise
7	about what these are will really help.
8	CHAIR RYAN: You know, somebody that's not
9	tuned in on the probability aspects of this will look
10	at ten to the minus eleventh person-rem and say how
11	many seconds are fractions of a second background
12	would cause that?
13	MR. AMMERMAN: Yes.
14	CHAIR RYAN: So, you know, without some
15	explanation or at least kind of laying that out, it
16	could I think create more confusion than resolve.
17	(Simultaneous speech.)
18	MEMBER BLEY: And others have shorthand
19	ways to express things in our own field. I think
20	you're caught up in a little of that.
21	CHAIR RYAN: Sure. You know, somebody could
22	interpret that slide so, who cares about these
23	accidents? Why are we worried about them?
24	MR. AMMERMAN: Well, that's the right
25	interpretation.
ļ	1

(202) 234-4433

	135
1	(Laughter.)
2	CHAIR RYAN: But it's not true. It's not we
3	don't care about the radiation impacts from it,
4	perhaps, but we do care about not having the
5	accidents. So, I don't know, it's just it's a very
6	funny thing to put up that small collective dose.
7	MEMBER SCHULTZ: It goes back to the
8	comments that we were discussing earlier, and that is
9	when in presenting it to the public I think it's
10	really important to talk about the unlikely event, the
11	unlikely situation associated with the event of the
12	accident which you've demonstrated. The event of the
13	accident that could cause a problem, and you've done
14	that. But then to separately say and then
15	MEMBER BLEY: If it did.
16	MEMBER SCHULTZ: when that happens,
17	stay away, everyone should stay away because there's
18	a small amount of radioactivity that could be
19	released. And then describe that separately. Combining
20	it here is difficult I think for the public to digest.
21	MEMBER BLEY: Well, and even for me. I
22	mean, there's one thing, the first risk study I saw on
23	a power plant actually did the same kind of thing. It
24	said the average number of the expected number of
25	people killed by this plant is ten to the minus four
	1

(202) 234-4433

	136
1	or something like that, but what does that mean? It
2	means there's a very high probability of zero, and a
3	very small probability of maybe something really bad.
4	And here it's different, there's a very high
5	probability of zero, and a very low probability of
6	something not so bad. And if that doesn't come out
7	when you just see an expected dose, so the idea that
8	the probability and the consequences and here even
9	the consequences in the bad cases aren't that bad. I
10	don't think it sings, you don't get that easily unless
11	you read the whole report and understand everything
12	that's inside of it.
13	MEMBER SCHULTZ: Yes, simplifying that.
14	MEMBER BLEY: So, it's zero chance I
15	mean, a high probability of nothing, a very low
16	probability of something that's not too bad, and it's
17	not even a tiny probability of something really bad.
18	I don't think we have a really bad here.
19	MR. AMMERMAN: There is no really bad.
20	MEMBER BLEY: And making that clear would
21	go a long way, I think. And making it clear in the
22	words, perhaps.
23	(Simultaneous speech.)
24	CHAIR RYAN: essentially sort of
25	explains what Dennis said would very helpful in
I	I

(202) 234-4433

(202) 234-4433

interpreting these results once you consider it. And then kind of lay that out.

3 MEMBER BLEY: The people who understand 4 expected dose or expected fatalities -- and every 5 technical area it's a tiny community of people, and even they misspeak and mix up probabilities or 6 7 frequencies with their doses. So, clarity, and this 8 clarity, it's mostly a very high probability of 9 nothing, and the frequency of all these accidents put 10 together is pretty darned small. And it doesn't without having the risk curve of probability and 11 consequences, it's real hard to get that. So, I think 12 you need to -- you could play with some displays or 13 14 pictures or something to get that concept. Even 15 something like an event tree, although that still doesn't talk to a lot of people, but high probability 16 of nothing, a low probability of an accident, given an 17 accident a very low probability of a consequence, and 18 19 that consequence is still pretty low. Getting that sequence out in front of people would really help 20 communicate what you found. 21 CHAIR RYAN: Maybe we should go through the 22

24 MEMBER BLEY: I've been waiting for this, 25 that's why I --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

rest of the slides and see what else we can --

(202) 234-4433

23

1

2

(202) 234-4433

137

	138
1	(Laughter.)
2	MEMBER BLEY: Because I think it's I
3	think if you give Chapter 6 to 30 different people and
4	ask them to explain to you exactly what's there it
5	might surprise you.
6	MR. AMMERMAN: The other case we looked at
7	is accidents with release, only can happen if you
8	don't have an inner welded canister, and the dose
9	depends on what you're shipping. We assumed nine-year
10	cooled 45 gigawatt-day burnup fuel, and then the
11	exposure pathway. Rod to cask release fraction, cask
12	to environment release fraction, and then the
13	dispersion of that release material.
14	MEMBER ARMIJO: Now, this is strictly an
15	impact kind of analysis. Right?
16	MR. AMMERMAN: This is strictly impact
17	because we don't have any
18	MEMBER ARMIJO: Release with a fire or
19	anything else?
20	MR. AMMERMAN: Yes, because with fires this
21	cask to environment release fraction is zero.
22	MEMBER BLEY: Let me play something by you.
23	Just think of a picture that comes in from the top.
24	You say we have transportation. We have accident and
25	no accident. And this is 100 times more likely, so you
I	

(202) 234-4433

1 have an accident, and then these last three slides, an accident with nothing, something here, and accident 2 3 with something else, and a little bit of -- and how 4 likely these are could be done in terms of how bright 5 or what color they are or something, something to show 6 that you can see this probability versus consequence. 7 And, in fact, that consequence that adds up to an 8 expected dose is pretty -- even if you get this, it's 9 not that bad. It would be the same information you 10 just showed us on the last three or four slides, but in a single picture that conveyed both probability and 11 consequence, leading to an expected dose. Just to me 12 would tell your story. You've done an awful lot of 13 14 work, and it's kind of -- could be -- I think a lot of 15 people can misinterpret it if they read that. I've got 16 to go back and read your public thing again. Maybe you 17 do that there pretty well, but I didn't study that. I looked at the main report. 18 19 MEMBER SCHULTZ: I want to go back and look at that, also, because you're right, Dennis. And

at that, also, because you're right, Dennis. And you've already acknowledged that you have very good stories to describe the evaluation and analysis on each of the pieces. When it's combined together and you derive a very, very tiny number that even engineers can't comprehend or compare to anything,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

139

then it's -- it takes -- it causes an element of perhaps just intellectual confusion as to what we're talking about. But if you step it back and describe each of the pieces, then you've got each -- all of that nailed down.

MEMBER BLEY: When the WASH-1400 guys, Norm 6 7 Rasmussen saw when he went to Congress, the thing they 8 found worked best for them was they wrote out the five 9 factor formula. I forget what it was, but it was probability of the accident, probability of that going 10 to a problem, so they sort -- it took this chain of 11 things going wrong. You've got it here, but if you 12 could put it together in a more coherent story, 13 14 especially where you see how the probabilities drop off, likelihoods drop off, and where you end up, even 15 if you look at the consequence by itself, assume it 16 17 happens, it's not that bad, is a story that tells everything a lot better than a ten to the minus ninth 18 19 person-rem expected dose.

MR. AMMERMAN: Yes.

21 MEMBER BLEY: Or ten to the minus person-22 rem expected dose. Is that bad or is that good? 23 Probably nobody can tell. It looks little, it's just 24 -- I'm sorry to keep harping on that, but I think it's 25 important.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

20

	141
1	MR. AMMERMAN: So, in the release accident,
2	this table shows the release fractions that you get
3	from both the cask to environment, and the rod to
4	cask, and the probability of the accident that
5	produces those. Doses from release are dominated by
6	inhalation, also includes resuspension which is also
7	inhalation dose, cloud shine, so how much you get from
8	the plume that goes over, ground shine, how much you
9	get from the stuff that's still in the ground and the
10	radiation coming off of it, and ingestion. There was
11	a release in a rural area and you're growing tomatoes
12	and then you ate those tomatoes.
13	Because the thermal loft due to the
14	although the temperature of the cask
15	CHAIR RYAN: Just a second on that one. I
16	guess that's one ingestion also occurs when you
17	inhale just as a matter of
18	MR. AMMERMAN: With what?
19	CHAIR RYAN: You ingest something when
20	you inhale something it also gets ingested.
21	MR. AMMERMAN: Yes.
22	CHAIR RYAN: What you mean here is
23	foodstuffs.
24	MR. AMMERMAN: Yes.
25	CHAIR RYAN: Contaminants, so a

142 1 clarification that you're really talking about eating contaminated foodstuffs, which is kind of a different 2 3 animal. MR. AMMERMAN: Yes. 4 5 CHAIR RYAN: I would try and clarify that a little bit. 6 7 MR. AMMERMAN: Yes, yes. 8 CHAIR RYAN: Okay. 9 MR. AMMERMAN: This is digestive tract rate 10 as opposed to --CHAIR RYAN: Yes. 11 MR. AMMERMAN: Yes. 12 CHAIR RYAN: Very good. 13 14 MR. AMMERMAN: Exactly. Because we have 15 decay heat, the fuel is hot, when you get release it's going to go -- it's going to rise. You have some 16 17 buoyancy, and the maximum dose occurs 21 meters down wind from the accident. And an individual located at 18 19 that location gets 160 millirems. 20 CHAIR RYAN: What were the meteorological conditions to get you that far down? 21 AMMERMAN: MR. That Ι think 22 was F stability, and I can't recall what the wind speed is, 23 24 five meters per second, I believe. CHAIR RYAN: So it's hot and windy. I mean 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	it sounds like a very negative assumption, which is
2	fine.
3	MR. AMMERMAN: Yes.
4	CHAIR RYAN: Okay.
5	MR. AMMERMAN: And we actually looked at
6	- also did another assumption and it wasn't terribly
7	different. Kind of the other extreme.
8	CHAIR RYAN: Fair enough.
9	MEMBER ARMIJO: Could you go back to Slide
10	44?
11	MR. AMMERMAN: Yes, sir.
12	MEMBER ARMIJO: On the rod to cask release
13	fractions, you know, I guess the noble gas is about 12
14	percent, and that assumes that a certain fraction of
15	fuel has failed?
16	MR. AMMERMAN: That assumes 100 percent of
17	the fuel has failed.
18	MEMBER ARMIJO: 100 percent of the cladding
19	has failed, but you only release 12 percent?
20	MR. AMMERMAN: Yes, because the rest of
21	that are bound up in interstitial port space.
22	MEMBER ARMIJO: Okay, so this is this
23	100 percent of the plenum volume and the gap is
24	released.
25	MR. AMMERMAN: Yes.

(202) 234-4433

	144
1	MEMBER ARMIJO: Okay. What is this unit
2	release 100 percent of the crud? Crud is a
3	particulate. How is it going to get out of the
4	MR. AMMERMAN: There's particles up above
5	that, too. The crud is on the outside of the rod.
6	MEMBER ARMIJO: Yes.
7	MR. AMMERMAN: So, what we assume is 100
8	percent of the crud spalls off.
9	MEMBER ARMIJO: It stays inside the cask.
10	MR. AMMERMAN: Yes. Oh, that's
11	(Simultaneous speech.)
12	MR. AMMERMAN: The cask to environment is
13	.1 percent. You're right, it all stays inside the
14	cask.
15	MEMBER ARMIJO: Okay.
16	MR. AMMERMAN: Exactly right.
17	MEMBER ARMIJO: That's what you have.
18	MR. AMMERMAN: Yes.
19	MEMBER BLEY: But the particulates, you
20	have almost 1 percent getting out.
21	MR. AMMERMAN: 70 percent getting out.
22	MEMBER BLEY: Oh, 70 percent. Yes, I'm
23	sorry.
24	MR. AMMERMAN: Yes.
25	MEMBER BLEY: I put an extra zero in there
ļ	I

	145
1	when I
2	MR. AMMERMAN: Yes, and that's because they
3	go out with the fission product gases. They're
4	aerosols.
5	MEMBER BLEY: Okay.
6	MR. AMMERMAN: And we have very fast
7	blowdown.
8	MEMBER BLEY: Okay.
9	CHAIR RYAN: They're carried in the
10	MR. AMMERMAN: Yes.
11	MEMBER BLEY: Okay.
12	CHAIR RYAN: So that's bounded by something
13	like 20 microns or so.
14	MR. AMMERMAN: Ten I think.
15	CHAIR RYAN: Ten?
16	MR. AMMERMAN: Yes. So, now the collective
17	dose, ten to the minus twelve person-sieverts. Again,
18	that's expected dose just like so, this is on the
19	same order of magnitude as this one, the loss of gamma
20	shield, ten to the minus thirteen for this, ten to the
21	minus twelve for release.
22	CHAIR RYAN: Just for fun later on I'm
23	going to calculate how many seconds that is for ten to
24	the minus ten person-rem
25	(Laughter.)
I	I

(202) 234-4433

146 1 MR. AMMERMAN: That's not long. So, what's 2 the summary from the accidents? Collective dose risks 3 are very small, the dose risks from release are loss 4 of shielding are negligible compared to the risk, dose 5 risk from that accident that just sits there. It's about seven orders of magnitude lower than the case 6 7 where all we're having is just the radiation coming off the outside of the cask. 8 There's no expectation of release if you 9 have an inner welded canister from either fire or 10 impact. Dose risk from loss of lead shielding is 11 comparable to that from release, and both are very 12 small. And the probability of this accident that 13 14 release or loss of shielding is less than one in a 15 billion given an accident. If you have an accident in about one in a thousand trips, so one in a trillion is 16 17 the probability of a accident that causes release. MR. COOK: Per shipment. 18 19 MR. AMMERMAN: Per shipment, yes. So, every trillion shipments you're going to - you could have an 20 accident. 21 MEMBER BLEY: All of these numbers are in

22 MEMBER BLEY: All of these numbers are in 23 terms of per shipment. They're not --24 MR. AMMERMAN: They're all per shipment. 25 MEMBER BLEY: -- per year or anything like

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	that.
2	MR. AMMERMAN: Yes, everything is per
3	shipment.
4	MEMBER BLEY: Was that clear to everybody
5	else when you read the report?
6	MEMBER ARMIJO: Yes.
7	MEMBER BLEY: Okay.
8	MEMBER ARMIJO: At least I got it.
9	MEMBER BLEY: I'm not sure. I just don't
10	remember. I think it probably was, but I asked the
11	question if it was because I don't remember.
12	MR. AMMERMAN: So, now we're comparing this
13	study to this is Chapter 6 we're into now. How does
14	this study compare to previous risk studies? Routine
15	transportation risks are about the same. Accident
16	risks are much lower. This loss of shielding bar, and
17	it's very difficult to compare a stacked bar chart
18	when you have a log scale on a vertical axis, because
19	this loss of shielding bar down here actually is to
20	scale, but up here, this one you wouldn't even see if
21	it were, because of where it is on that bar chart if
22	it were to scale, so that's why the loss of shielding
23	aren't to scale.
24	The conclusion of 0170 was risks are
25	acceptable. We are now nine orders of magnitude lower,
I	

(202) 234-4433

	148
1	they ought to really be acceptable. Back to the
2	findings slides, and
3	MEMBER SCHULTZ: But just on this piece
4	here on the last slide.
5	MR. AMMERMAN: Yes, sir.
6	MEMBER SCHULTZ: What's the reason for the
7	huge differences here study to study?
8	MR. AMMERMAN: The biggest reason is that
9	0170 assumed that any accident that was extra-
10	regulatory resulted in release. And they actually
11	their event tree said about one in a hundred
12	accidents was extra-regulatory. So, they said you only
13	had to have 100 accidents before you got release. I
14	say you have to have a billion. So, there's seven
15	orders of magnitude right there. And the rest of it
16	comes from a better modeling of what that release is,
17	especially the rod-to-cask release fractions.
18	MR. COOK: And again recalling back in the
19	0170 assessment, that was primarily an engineering
20	judgment analysis, so many conservative assumptions
21	were used since they analyzed it at that time. What
22	these studies have done over time is by using the
23	greater analytical precision that's become available
24	slowly remove some of those conservatisms, so now we
25	have what we think is a more realistic estimate based
I	I

(202) 234-4433

	149
1	on current assessment technology, methodology of
2	today.
3	CHAIR RYAN: So, what was a bounding
4	analysis might have been a really, really, really huge
5	bounding analysis. And that's not really been
6	evaluated until this study itself.
7	MR. COOK: And we have moved again in this
8	study to the certified packages versus casks that were
9	just thought to minimally satisfy regulations
10	previously in previous studies. So, all those are
11	contributing factors.
12	MR. AMMERMAN: We've covered this findings
13	slide before, now you could see what led to those
14	findings. And the general conclusions from SFTRA
15	reconfirms that transport in compliance with the
16	regulations results in very low radiological risks.
17	MEMBER BLEY: Can I ask you a question
18	about that means since NRC regulations only deal with
19	the cask, that essentially says if you use a certified
20	cask, that's all that says.
21	MR. AMMERMAN: That's what it says.
22	MEMBER BLEY: It sounds like it says a
23	whole lot more.
24	MR. AMMERMAN: Well, actually
25	MEMBER BLEY: But we're really talking
I	

(202) 234-4433

	150
1	about DOT regulations, and DOE regulations, and a
2	whole bunch of other regulations.
3	MR. AMMERMAN: And, actually, it does
4	include that because conducted in compliance with
5	regulations also means yes, that you are following
6	those routes that
7	MEMBER BLEY: But it says NRC regulations,
8	which is really only saying use a certified cask.
9	MR. AMMERMAN: Yes.
10	MEMBER BLEY: I think that's all it's
11	saying. Go ahead. You've gotten all those other
12	regulations, I'm just curious. If we violate some of
13	those other regulations, do we get worse accidents?
14	That's just an open-ended question I haven't thought
15	about. Can you make a stronger statement then, what if
16	somebody breaks one of this myriad of regulations, do
17	we get a worse accident?
18	MR. AMMERMAN: We could, or we could get an
19	accident with a more severe consequence.
20	MEMBER BLEY: Can we?
21	MR. AMMERMAN: Let's say instead of taking
22	bypass
23	MEMBER BLEY: You can't get much faster
24	when you crash. You can't get a bigger fire.
25	MR. AMMERMAN: No, but you could perhaps
I	I

(202) 234-4433

	151
1	get a larger exposed population.
2	MEMBER SKILLMAN: You could have a rogue
3	driver going to a different location.
4	MR. AMMERMAN: Yes, or you could have this
5	cask instead of being on the interstate says you know
6	what, I really want to go to Caesar's Palace when I'm
7	going by Las Vegas. I'm going to stop in there and
8	gamble for a few hours, and he's got the cask parked
9	out in the parking lot exposed to people. I mean,
10	that's those are things that
11	MEMBER ARMIJO: You can't really do that.
12	Doesn't he have police escorts?
13	MR. AMMERMAN: Of course.
14	(Simultaneous speech.)
15	MEMBER BLEY: I am just this statement
16	almost the way it is, I mean, it only says a
17	certified cask but, man, it almost says gee, if I
18	don't like the good news of this report, it might say
19	all we have to do is break somebody's regulation,
20	well, we could kill people. None of that is going to
21	happen
22	MEMBER ARMIJO: You'd have to work very
23	hard to do that.
24	MEMBER BLEY: I'm worried that an innocent
25	statement could be taken to imply things well beyond
I	

(202) 234-4433

Í	152
1	what it says. Now, you're right, you could take it
2	into a place it doesn't belong, but even so, if you
3	got by your escort which ain't going to happen for
4	long, still the dosage you get unless people just sit
5	on top of this drinking beer all night
6	MEMBER ARMIJO: That's getting kind of
7	MEMBER BLEY: I'm just worried about the
8	statement and the attacks you'll get. All they have to
9	do is break one of DOT's regulations and we get a much
10	worse accident. I don't think that's true.
11	MEMBER ARMIJO: Those guys are always out
12	there no matter what
13	MEMBER BLEY: Well, they are but why do we
14	set them up for the easy
15	MEMBER ARMIJO: Yes, you should anticipate
16	it and but, you know
17	MEMBER BLEY: Think about it, how you
18	present that part, or how you respond if somebody says
19	because I think what you've shown is the accidents
20	aren't going to be any worse, maybe you can be in a
21	spot where the routine doses could get higher to the
22	general population.
23	MR. AMMERMAN: Exactly, right.
24	MEMBER BLEY: But I think if you can say
25	the accidents won't get worse, it's hard for me to see
	I

	153
1	how they get worse. And it
2	MR. AMMERMAN: No, the accidents
3	MEMBER BLEY: I just I worry about this
4	statement. Go ahead.
5	MR. AMMERMAN: So, given that, then the
6	regulations are adequate to protect public health and
7	safety, and there's no need to change them. What are
8	the stealing a little bit of John's thunder here
9	for the next section on public comments, one of the
10	groups that we had comment on this was NEI. So, an
11	advocacy group, if you will, and one of the concerns
12	that I had when we came up with these conclusions was
13	NRC is over-regulating, that we don't need this amount
14	of safety. We've got more safety than we need. And we
15	did not receive that comment from NEI, which is the
16	group that I would suspect would have had it, so I
17	think that's a very good thing.
18	MEMBER SCHULTZ: These are storage and
19	transportation canisters, so that may have been part
20	of it, I would hope. That these are designed for more
21	than transportation.
22	MR. AMMERMAN: Yes, that's true.
23	MEMBER SCHULTZ: And we're manufacturing
24	them now or will be soon, the designs are approved.
25	And that, of course, is a lot of the engineering and
ļ	I

(202) 234-4433

	154
1	licensing effort that's already in place.
2	MEMBER ARMIJO: That's right, all the costs
3	are sunk.
4	MEMBER SIEBER: It's not true, the current
5	storage casks
6	MEMBER ARMIJO: Plenty of margin.
7	MEMBER SIEBER: transportation casks
8	are
9	MR. AMMERMAN: That's right.
10	CHAIR RYAN: So, I'm going to ask you to
11	maybe finish up your slides and then we'll go around
12	for a last round of questions.
13	MEMBER BLEY: Well, let me sneak one
14	comment in because I did quickly look back at the
15	public summary, which is it's pretty nice. It does a
16	nice overview, gives some nice pictures. Two things
17	about it. One, it doesn't deal with that thing I
18	talked about, making this clear how this breaks down
19	in terms of accidents and where the consequences fall
20	out. It's in terms that we saw before of expected
21	dose, some many represented as person-rems as if they
22	were doses.
23	Two quick comments. The Academy has done
24	that's one place they've done a lot of good work I
25	think on risk perception, and they've interviewed lots
I	1

(202) 234-4433

of people, their studies have, and really looked at how people deal with this stuff. Right in their introduction because of this radioactivity, people understandably have some concerns will be looked on by anybody who doesn't like you as extraordinarily patronizing. Although they said it's understandable would be concerned, delete that word. It will cause you trouble.

9 And the second bullet on summary of 10 results, the radiological risks from accidents in transporting radioactive materials is very small 11 the non-radiological 12 risk involving compared to accidents with large trucks or freights. Well, we put 13 14 radiological risk in terms of expected dose, and we 15 put the risk of other accidents in terms of primarily deaths and maiming accidents. Put them on the same 16 17 bounding, say the risk of death from these is nil compared to the -- something like that. I don't know, 18 19 think everything you've talked about about radiological risk is in terms of expected doses that 20 are extraordinarily small. 21 MEMBER ARMIJO: Yes. 22

23 MEMBER BLEY: And that that kind of risk 24 which is apples is much less than the risk from non-25 radiological things in moving trucks which is really

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

(202) 234-4433

155

	156
1	death, so it's painting a silly comparison. I know
2	that's not what you meant, but there ought to be a way
3	to reword that to make it clear, what you're telling
4	us. There's really no risk of deaths from the
5	radiological side, and we all know what the risk from
6	traffic is, a thousand deaths a year. Go ahead, I'm
7	done.
8	MR. COOK: Okay, so then
9	MR. AMMERMAN: Do you want to switch back
10	or you want to just
11	MR. COOK: No, we've just got these slides.
12	Let's just do it this way. So, as we mentioned
13	earlier, we did publish NUREG-2125, the draft for
14	public comment back in May, and they did receive some
15	comment letters. First one of which was from one of
16	the states requesting an extension to the 60-day
17	comment period. We did consider this, but due to a
18	number of factors including the fact that we lose Dr.
19	Ammerman's services here at the end of the month
20	through the expiration of contract, we really could
21	not extend. Although, when we requested the comments
22	we indicated that comments beyond the 60-day period
23	would be considered to the extent that we could.
24	The next public comment has to deal with
25	accident. You want to talk about that, Doug?
I	I

(202) 234-4433

	157
1	MR. AMMERMAN: Yes, so this was also a
2	State of Nevada comment. And they said that we've
3	under-estimated the potential fire durations and
4	temperatures. That we should have looked at longer
5	fires and more and higher temperature fires. And
6	the draft response to that is that the probability of
7	the most severe accident, severe fire considered here
8	is ten to the minus fourteen. And yes, it's possible
9	to envision a more severe fire accident, you know,
10	instead of having one rail car that dumps all its fuel
11	at the location of the cask, you have two rail cars.
12	That would have even a lower probability, and would
13	not affect the overall risk of spent fuel
14	transportation.
15	As a matter of fact, in order to
16	remember that that one in a billion from impact
17	accidents causes release. In order to have a fire
18	accident that affects the overall outcome of this, I
19	have to be four orders of magnitude more release than
20	I had from that impact accident. So, it had to have a
21	release of 10,000 A2s more than 10,000 A2s of
22	material, which there's no way in a fire you can get
23	that.
24	You got the fire isn't going to destroy
25	the pellet nature of the fuel. You can throw away all
ļ	

(202) 234-4433

	158			
1	the cladding and throw away the cask, you don't get			
2	10,000 A2s of release. But to help address that			
3	comment when you're going to add discussion on the			
4	Caldecott tunnel fire, the Baltimore tunnel fire, and			
5	the MacArthur Maze fire, which is a that one by Bay			
6	Bridge that you were talking about, including their			
7	probabilities have shown it doesn't change the risk			
8	results.			
9	MEMBER BLEY: I think that's a much better			
10	thing than what your ten to the minus fourteenth is			
11	really			
12	MEMBER SCHULTZ: Fly in the ointment.			
13	MEMBER BLEY: Besides, it doesn't have a			
14	- I mean, it's per it's just a number, it doesn't			
15	have units.			
16	MR. AMMERMAN: It's a probability.			
17	MEMBER BLEY: Per shipment.			
18	MR. AMMERMAN: Yes.			
19	MEMBER BLEY: Which makes it a			
20	MR. AMMERMAN: No, actually, it's per			
21	accident.			
22	MEMBER BLEY: Per accident?			
23	MR. AMMERMAN: Yes, the probability given			
24	accident is ten to the minus fourteenth.			
25	MEMBER BLEY: Given the way we modeled it,			
I				

(202) 234-4433

	159
1	I mean, you're running into other stuff that you
2	didn't model. Just getting numbers like that I think
3	gets you into trouble. I wouldn't hang your hat on
4	that. I'd hang your hat on what you told me earlier,
5	that the Baltimore tunnel fire, although it lasted
6	longer, had much lower heat release rates, some
7	details that tell why given your's is more severe, and
8	that sort of thing, I think does you a lot more good.
9	I'll go back. I know for sure the chance
10	of a meteorite hitting your oil car is a lot higher
11	than that. And if you're stopped maybe you have that
12	fire that's orders of magnitude higher than your
13	number.
14	MR. AMMERMAN: Well, and actually
15	MEMBER BLEY: So, it's the way you modeled
16	it that leads you
17	MR. AMMERMAN: Yes.
18	MEMBER BLEY: Which isn't unreasonable,
19	but
20	MR. AMMERMAN: One of the things that I did
21	once upon a time was I looked at the probability of a
22	meteor the size of a meteor crater hitting the cask.
23	MEMBER BLEY: Talk about meteor this size.
24	MR. AMMERMAN: Yes, but I mean even
25	MEMBER BLEY: That's a very, very small
	I

(202) 234-4433

	160	
1	number.	
2	MR. AMMERMAN: It's on the order of this.	
3	It's	
4	MEMBER BLEY: I mean, it's a very, very	
5	small one. Ones like this can do plenty of damage for	
6	you, and they're a hell of a lot higher frequency than	
7	that.	
8	MR. AMMERMAN: Yes.	
9	MEMBER BLEY: Sometimes given your train	
10	sitting on a siding where it might be, and given	
11	there's an oil car next to you, so I'd just stay away	
12	from that. All it can do is generate argument that you	
13	weren't completed or something.	
14	MR. AMMERMAN: One of the comments we got	
15	is that they would like to see, and this is kind of	
16	one of the things that you've talked about, too, is	
17	calibration of the finite element model. Have these	
18	models been compared to test results? And	
19	MEMBER BLEY: But if last question, I'm	
20	sorry. But why did they say you were your frequency	
21	was too low, and your duration too short? Did they	
22	give a basis, or they just said it?	
23	MR. AMMERMAN: Because they have postulated	
24	fires that are more severe. I mean, I just did, too.	
25	I postulated a fire that was twice as severe as the	
Į	I	

(202) 234-4433

	161
1	one that we analyzed.
2	MEMBER BLEY: But your argument that it's
3	real fires, you know, didn't have weren't as
4	severe, and that
5	MR. AMMERMAN: Yes.
6	MEMBER BLEY: you can take a much more
7	severe fire, takes care of it pretty well, I think.
8	MR. AMMERMAN: And part of the reason I
9	think is because the previous risk studies, especially
10	the modal study in 6672 looked at 11-hour fires, and
11	we didn't. And we knew when we decided not to look at
12	those 11-hour fires that we were going to get that
13	comment, because well, you've just thrown away the
14	more severe fires. Why did you do that? Well, we did
15	that on purpose because they don't happen.
16	MEMBER BLEY: But I think your argument
17	that it even fires longer than the one you looked
18	at have happened, but they're much lower
19	MR. AMMERMAN: And, actually, I think
20	that's what the modal study actually looked at,
21	another long duration fire, the Livingston train fire
22	that happened down in Louisiana, burned for I think 20
23	something hours, but it was all spread out. You know,
24	it was a traveling fire that caught this car on fire,
25	and then that caught the next car on fire.
I	I

(202) 234-4433

ĺ	162		
1	MEMBER BLEY: Bad for the train but not bad		
2	for the cask.		
3	MR. AMMERMAN: Not bad for the cask, it was		
4	only location. Exactly.		
5	MEMBER ARMIJO: So, the only places you've		
6	had long-term concentrated fires are these tunnels,		
7	tunnel environments?		
8	MR. AMMERMAN: Yes. I mean, one of the		
9	things that happens in a tunnel, of course, is that		
10	there's no place for the fuel to go the fuel that		
11	leaks out of the car to go. It's confined. And there's		
12	no place for the heat to go, yes.		
13	MEMBER SIEBER: The oxygen supply is also		
14	confined in a tunnel.		
15	MR. AMMERMAN: Except for if the tunnel has		
16	slope, and then it's a chimney.		
17	MEMBER SIEBER: Right.		
18	MR. AMMERMAN: And it sucks air in.		
19	(Simultaneous speech.)		
20	MEMBER SIEBER: It's the railroad standard.		
21	MEMBER ARMIJO: Yes.		
22	MR. AMMERMAN: So, this comment was asking		
23	us to provide more information on the calibration of		
24	the finite element model, so we said that we will		
25	include we do have a reference in Appendix D to		
I	I		

(202) 234-4433

	163
1	comparison of analysis to tests for a large pool fire,
2	and we'll make some references for impact analysis, as
3	well.
4	MR. COOK: And we also got a comment
5	regarding one of the destinations that we selected as
6	an example for SFTRA. And the comment was to perhaps
7	select a different destination. Again, we considered
8	this comment, as well. However, it turns out that
9	there are issues with other transportation routes, as
10	well.
11	Another factor is that the routing code
12	that we used in the study to do our assessment, the
13	WebTRAGIS code was temporarily, I guess you'd say
14	suspended from being supported. And while it's just
15	now being brought back up there are some issues,
16	apparently, with getting it working again, and we
17	understand. So, switching off to other routes is not
18	a very practical resolution at this time, so we intend
19	to repeat the disclaimer that we put in again, that
20	the routes that we selected were just examples. And,
21	again, there's no intention for any actual shipments
22	to be conducted from the originations to the
23	destinations.
24	And the last comment I believe
25	MEMBER SCHULTZ: Perhaps if you clarified
ļ	I

(202) 234-4433

164 1 that Hanford could be an origination point as well as a destination point, it may help. That's all right. 2 3 MR. COOK: Okay. MEMBER SCHULTZ: I understand the point of 4 5 the question, the comment. MR. AMMERMAN: Actually, that was almost an 6 7 answer to that response is that yes, the risks are identical. 8 9 MEMBER SCHULTZ: Yes, exactly. 10 MR. AMMERMAN: Ιf you transport from Hanford to Maine Yankee. 11 MR. COOK: And Doug had already responded 12 to this comment, that we see -- well, I guess we're on 13 14 the risk management. And yes, this is an activity that will be provided as input to consideration of risk-15 informing activities that we need to have in SFT 16 17 regarding spent fuel package certification guidance. And that completes our presentation. 18 19 CHAIR RYAN: Thank you. Any other comments 20 or question? Jack. SIEBER: Ι think the 21 MEMBER No, presentation is consistent with my knowledge 22 and experience for civilian fuel. 23 24 CHAIR RYAN: Very good. Steve? 25 MEMBER SCHULTZ: Ι appreciate the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 presentation and the amount of effort that's gone into the documentation with a variety of stakeholders. And 2 forward 3 it's certainly an advance from the publications in the past and provides a great deal 4 5 more understanding of both the risk and the consequences associated with the risk. 6

7 I would highlight what we've discussed 8 many times in the -- during the morning, and that is 9 whenever one has a figure that's less than even ten to 10 the minus seven, it really is incumbent to try to describe that in -- by breaking down why the number is 11 so low, and describing why each of the pieces is so 12 low. Because once you derive something, even one in a 13 14 billion, there is no conceptual frame of reference for 15 it. And when you get to ten to the minus fourteen, it 16 is just -- there's no really sense talking about it. 17 It's hard to describe it that way, so you need to frame it in terms of it is -- you've got this result 18 19 because this, as Dennis said, it's your five factor formula or whatever needs to be multiplied in order to 20 gather that and derive that number, is as follows, 21 Part A is low, Part B is low, Part C is low. And all 22 of these have to happen together in order to cause an 23 24 effect.

MEMBER BLEY: And they're independent.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

166 1 MEMBER SCHULTZ: And they're independent, 2 describe that. But I encourage, also, that more work I'm thinking, and thought be given to this public 3 4 presentation, whether it be a brochure or perhaps even 5 an augmentation of that appendix because as you look at those results of this report versus previous 6 7 reports, there's a tremendously large difference that 8 has been explained, and needs to be captured going 9 forward. It would be very valuable to be able to 10 present that. And if it's done well here, it can apply to other investigations that are also ongoing at the 11 NRC. 12 CHAIR RYAN: Thank you. Sam? 13 14 MEMBER ARMIJO: Yes, I endorse the prior 15 and Dennis' as well, comments, a nicer way of 16 presenting the important findings of this study, make it easier for the general public to understand the 17 significance. It's a great piece of work. I am glad it 18 19 was performed. I think it's going to have a lot of use by this Agency. 20 What it does show is that historically 21 this Agency and the other agencies that regulate 22 transportation of spent nuclear fuel have been -- have 23 24 done a very good job creating -- requiring actions that created a lot of margin, more margin than maybe 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	167			
1	we realized at the time. And you've just quantified,			
2	you know, how much margin we really have, so I think			
3	it's an excellent piece of work. And thanks for a good			
4	presentation.			
5	CHAIR RYAN: Dick.			
6	MEMBER SKILLMAN: I echo my colleagues. I			
7	would like to build on what Dr. Schultz provided. I'm			
8	wondering if a pictogram, just a picture perhaps of a			
9	flow model that shows the winnowing of the probability			
10	to end up with very low number might not deliver the			
11	real punch. And here's how I come to that.			
12	I recall when we were trying to convince			
13	the public that venting the krypton from TMI 2 was			
14	safe, and when we began the shipping campaign for the			
15	fuel from TMI2, the discussions were almost identical			
16	to these last several hours. But what carried the day			
17	was language at about an eighth grade level, and a			
18	number of pictures. And that was effective.			
19	It's easy for highly trained and educated			
20	scientists to talk about small numbers and flip risk			
21	and probability, but speaking the public doesn't			
22	interpret that as we might interpret that. So, a			
23	pictogram with a very simple breakdown that shows a			
24	very small number may be very useful as the lead-in to			
25	the kind of thing Dr. Schultz was talking about.			
I	1			

(202) 234-4433

My other comment is, I think this parallel roadway automobile being locked in next to the cask needs to be part of the analysis, and explain why criticality is not in there, are two technical items that rise to the top for me. Thank you very much for a thorough presentation.

7 CHAIR RYAN: Okay, thanks, Dick. Dennis? 8 MEMBER BLEY: I, too, compliment you. It's 9 a great presentation, good answers to everything. As far as the risk area, I think this is the best thing 10 I've seen out of NMSS yet. I would hold it up as an 11 example. I think you've done a lot of great work. And 12 you've heard the other stuff I've talked about. But 13 14 thanks for your presentation, thanks for your good 15 work. And if you we can tell the story even better 16 that ought to --

17 CHAIR RYAN: I take Steve's comments and everybody's comments, Dennis' as well, and endorse 18 19 those. It struck me as the conversation was going back and forth of some experiences I had of trying to 20 explain low-level waste and all kinds of cities all 21 over the country. You know, it's a very difficult 22 thing to communicate a very technical topic to a non-23 24 technical or lay audience with varying levels of comprehension and understanding of technical issues. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	169		
1	So, I don't know if you've done this, but it may be to		
2	your advantage to try and get somebody with those		
3	expertise, that expertise to maybe look at how do we		
4	deliver this message in the public arena about this		
5	risk assessment, because it will be of interest in		
6	public arenas. And that's really why we're doing it,		
7	is to really understand the public risk, and then		
8	communicate it. So, having a communications expert who		
9	really understands enough of the technical information		
10	to work on it, or can help you maybe craft it, because		
11	I know that in my own experience that having the		
12	technical knowledge doesn't get the whole job done. I		
13	would explain it in some fabulous way from a technical		
14	perspective, and communicate nothing.		
15	MR. AMMERMAN: Actually, do you know Hank		
16	Jenkins-Smith?		
17	CHAIR RYAN: I do not, no.		
18	MR. AMMERMAN: Actually, he'll be coming to		
19	Sandia on Thursday this week.		
20	CHAIR RYAN: Oh, that's a		
21	MR. AMMERMAN: He can help.		
22	CHAIR RYAN: That will help a lot.		
23	MR. AMMERMAN: He's really talking about		
24	- coming to talk about reactor accidents and public		
25	perception, but I can pigeon hole him a little bit.		
	I		

(202) 234-4433

	170		
1	MEMBER SCHULTZ: And Dr. Weiner is engaged		
2	in this.		
3	CHAIR RYAN: Yes.		
4	MEMBER SCHULTZ: She's still engaged in the		
5	process?		
6	MR. AMMERMAN: Yes.		
7	MEMBER SCHULTZ: She'll be helpful		
8	MEMBER BLEY: Actually, something else you		
9	can do is just get some of your folks who aren't		
10	technical and run it by them. You know, we developed		
11	something I thought was dynamite. We took it down,		
12	showed it to engineers who didn't do risk, they loved		
13	it. We showed it to managers, technical managers, they		
14	loved it. I was so pleased. We ran it by our support		
15	staff at a lunch time seminar, and they said that's		
16	the single most confusing thing I've ever seen.		
17	(Laughter.)		
18	MEMBER BLEY: So, you've got to take some		
19	folks who aren't technical, and let them take a look		
20	and see if it offends them, helps them, or what.		
21	CHAIR RYAN: So, the short message is the		
22	work looks terrific, and now we've got to work on		
23	delivery. So, that's the key thing, I think the		
24	takeaway message. And, again, I want to thank you for		
25	a very thorough briefing. You've all been very		
I	I		

(202) 234-4433

	171			
1	forthcoming and gave us a lot of detailed information			
2	to help us really understand what you've got, and how			
3	well you've got it. And I second Dennis' comments that			
4	it really is a very nice piece of work. And I'm sure			
5	that when you put your hard thought process to			
6	delivering the message of what the work says, it'll be			
7	even better yet. So, thanks very much. Are there any			
8	other questions or comments from the audience, or from			
9	anybody here?			
10	MEMBER BLEY: Do we have a full Committee			
11	on this?			
12	CHAIR RYAN: Yes, we're going to have a			
13	full Committee next time on this, and write a letter,			
14	I'm sure. So, hearing no other comments or questions,			
15	we'll call the Subcommittee being closed and			
16	adjourned. Thank you very much.			
17	(Whereupon, the proceedings went off the			
18	record at 12:01 p.m.)			
19				
20				
21				
22				
23				
24				
25				
I	1			

Spent Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125

Presentation to the Advisory Committee on Reactor Safeguards Subcommittee on Radiation Protection and Nuclear Materials Sept. 18, 2012

Agenda

ltem	Торіс	Presenter(s)	Time
1	Opening Remarks and Objectives	Dr. Michael Ryan, ACRS	8:30 – 8:35 a.m.
2	Draft NUREG-2125 Background	John Cook, NMSS	8:35 – 9:00 a.m.
3	Draft NUREG-2125 Method and Results	Dr. Douglas Ammerman, SNL	9:00 – 10:00 a.m.
4	Break		10:00 – 10:15 a.m.
5	Draft NUREG-2125 Method and Results (continued)	Dr. Douglas Ammerman, SNL	10:15 – 11:15 a.m.
6	Public Comment and Proposed Resolution	John Cook, NMSS Dr. Douglas Ammerman, SNL	11:15 – 11:45 a.m.
7	Committee Discussion	Dr. Ryan, ACRS	11:45 a.m. – 12:00 p.m.
8	Adjourn		12:00 p.m.

Outline

- Background and introduction
- Risk analysis of routine transportation
- Cask response to impact accidents
- Cask response to fire accidents
- Risk analysis of transportation accidents
- Findings and conclusions
- Public comments and draft resolution

SFTRA Research and Review Teams

- NRC Project Manager John Cook
- Sandia National Laboratory Research Team [9/06-9/12]
 - Dr. Douglas Ammerman principal investigator
 - Carlos Lopez thermal
 - Dr. Ruth Weiner risk assessment
- NRC's SFTRA Technical Review Team
 - Dr. Gordon Bjorkman structural
 - Chris Bajwa thermal and overall content
 - Dr. Robert Einziger fuels, source term
 - Dr. Anita Gray health physics
- Oak Ridge National Laboratories External Peer Review Team [9/10-3/12]
 - Matt Feldman
 - Dr. Cecil Parks
 - et al.

SFTRA Purpose and Goals

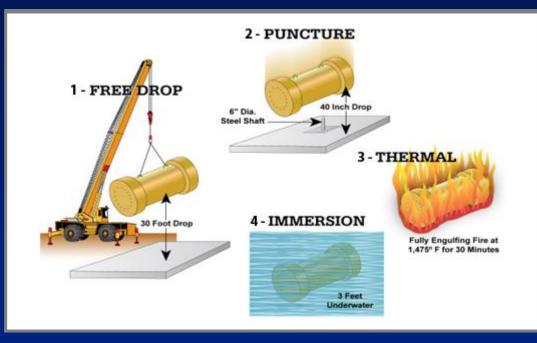
- Continuing review
 - Final Environmental Statement (NUREG-0170, 1977)
 - "Modal Study" (NUREG/CR-4829, 1987)
 - Reexamination of Spent Fuel Shipment Risk Estimates (NUREG/CR-6672, 2000)
- NRC's safety mission
 - Considering public comment, provide updated basis for NRC's safety regulations applicable to spent fuel transportation
- Outreach responsibilities
 - Reassure public regarding spent fuel shipments
 - Basic message: Risks are low, so safety is high
 - Improve public understanding and acceptance of spent fuel shipments
- Potential shipments
 - Significant issue when study began (2006) much less so now
 - Method applicable to future shipments, may need to consider different casks, longterm aging of canisters, and high burn-up fuel
- SFTRA is a generic SNF transportation risk assessment and is not
 - Driven by any external requirement or commitment
 - An EIS or major federal action
 - Required for any licensing action, nor does it contain any regulatory proposals
 - An analysis of transport security

SFTRA Basic Methods

- Radiological impacts of spent nuclear fuel (SNF) shipments
 - Routine conditions
 - Determine doses to various populations from cask during routine transport
 - Accident conditions
 - Perform finite element analysis of cask response to impact and thermal accident conditions
 - Use "event trees" developed by U.S. DOT to estimate probabilities of accident conditions
- Use RADTRAN to calculate routine doses and accident dose risks for representative truck and rail shipments
- Approach similar to that in NUREG-0170 and NUREG/CR-6672

SFTRA Findings

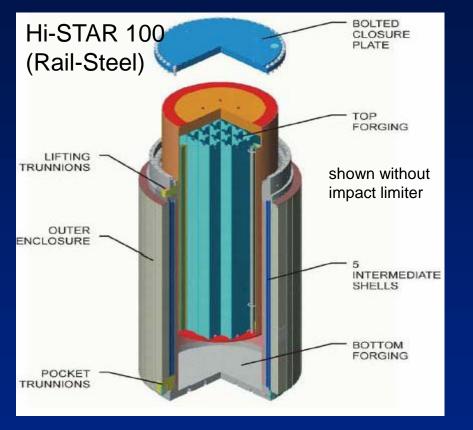
- The collective dose risks from routine transportation are very small. These doses are about four to five orders of magnitude less than collective background radiation dose over the same time period and exposed population as the shipment.
- There was little variation in the risks per kilometer over the routes analyzed.
- Radioactive material would not be released in an accident if the fuel is contained in an inner welded canister inside the cask.
- Only rail casks without inner welded canisters would release radioactive material, and only then in exceptionally severe accidents.
 - If there were an accident during a spent fuel shipment, there is less than one in a billion chance the accident would result in a release of radioactive material.
 - If there were a release of radioactive material in a spent fuel shipment accident, the dose to the maximum exposed individual would be non-fatal.


How did this study differ from previous NRC risk studies?

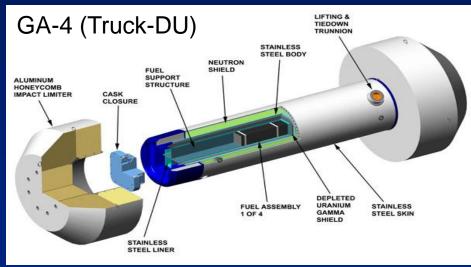
- This study utilized certified casks instead of generic casks.
- This study used updated accident event trees instead of relying on accident data from the 1970s.
- This study performed detailed 3D finite element analyses of the thermal events.
- This study used more detailed finite element models for the impact events.
- This study considered the accidents that do not damage the cask as long-duration stops.

Use of certified casks

- Prior generic risk assessments have used generic casks.
- This assessment uses casks that have been certified to meet the requirements of 10 CFR Part 71.


Casks selected

- The Holtec HI-STAR 100, a steel-shielded rail cask transported with an inner welded canister
- The NAC STC, a lead-shielded rail cask transported with direct loaded fuel or with an inner welded canister
- The GA-4, a DU shielded truck cask
- These selections encompassed all the gamma shielding types, both common modes of transport, the use of inner canisters, three different cask vendors, and modern casks that could be used in any future largescale transportation campaign



NAC-STC (Rail-Lead)

Cask illustrations

- Each cask represents a type (Rail-Lead, Rail-Steel, Truck-DU)
- Casks of the same type would perform similarly

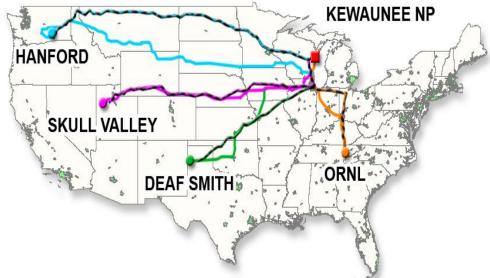
Investigated example routes

 Example routes do not represent current or planned transportation campaigns

- WebTRAGIS routing code determines rail and highway routes and exposed populations
- Rail casks only by rail (no heavy haul or barge), truck casks by legal weight truck (no overweight truck or rail) 12

Report Structure and Format

- Audience
 - Public, state and tribal governments, elected officials, federal agencies, industry, and media
- Graded structure and content
 - Executive Summary and Public Summary all audiences
 - Main body text informed public, science media
 - Appendices industry, other federal agencies
- Electronic and printed versions
 - NRC ADAMS Accession Number: ML12125A218
 - Printed Draft NUREG in black and white only (CD inside back cover contains color version)
 Einal NUREG in full color
 - Final NUREG in full color


External radiation from casks

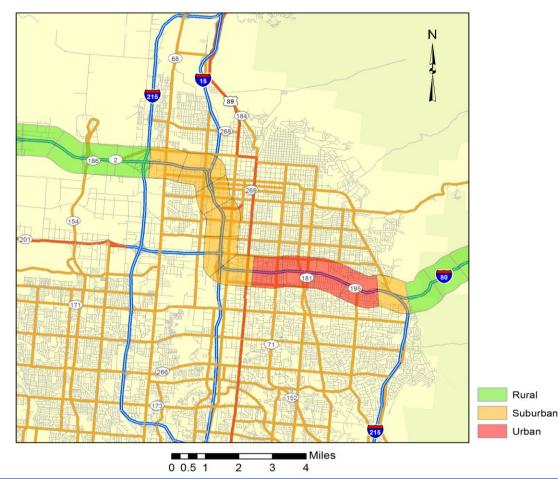
- The maximum permitted dose rate is 10⁻⁴ Sv/hour at 2 meters from the cask, or about 1.4 x 10⁻⁴ Sv/hour at 1 meter (input to RADTRAN).
- The external dose rate at one meter from each of the casks was the maximum value from its Safety Analysis Report, 1.03 x 10⁻⁴ Sv/hour for the HI-STAR 100 and 1.4 x 10⁻⁴ Sv/hour for the other casks.
- The total dose to each receptor is calculated by RADTRAN.

Example Routes

Kewaunee NP Routes

Maine Yankee NP Routes

These routes represent a variety of route lengths and populations. They include the eastern and western states, and crosscountry routes.


The routes studied

- The destinations include
 - two proposed repository sites (Deaf Smith, TX, and Hanford, WA)
 - the proposed private fuel storage facility (Skull Valley, UT)
 - ORNL
- SFTRA's road and rail routes span many states and thousands of miles through rural, suburban, and urban areas across the country, and are adequate to represent other routes.
- No SNF shipments are planned from any of SFTRA's points of origin to any SFTRA destination.

Routine Conditions: Truck Route Segments

I-80 Corridor Salt Lake City

WebTRAGIS was used to determine the urban, suburban, and rural segment population densities and lengths on a state-by-state basis.

Factors affecting routine doses

• Exposure time

- Speed of the vehicle
- Stop times and number of stops
- Number of inspections
- Number of people exposed
 - Population density
 - Traffic density
 - Number of people per vehicle
- Dose
 - Shielding provided by housing
 - 0% for rural, 13% for suburban, 98% for urban
 - Distance from cask at stops

Types of exposed populations

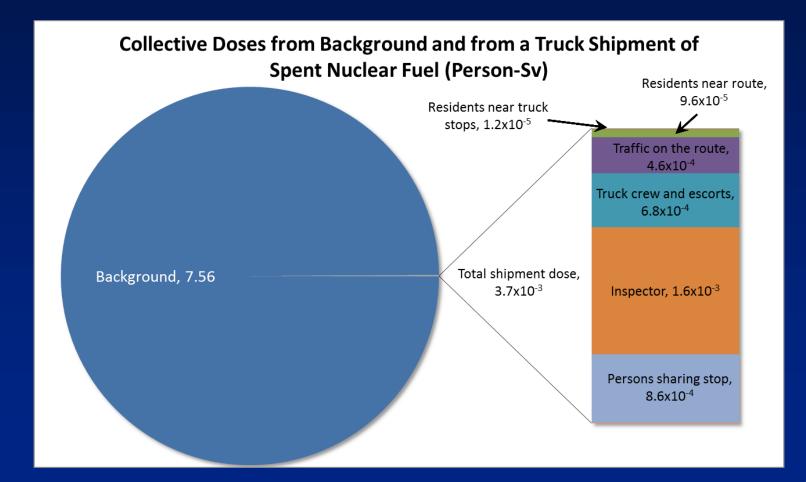
- Residents along the route
- Occupants of vehicles sharing the route
- Residents near stops
- People sharing the stop
- Crew of the transport vehicle (truck or train)
- Inspectors

Maximally Exposed Individual (MEI)

- A member of the public who is at a distance of 30 meters from the route.
- Vehicle is moving at 24 kph for both truck and rail.

Cask (mode)	Dose, Sv (rem)
Rail-Lead (rail)	5.7x10 ⁻⁹ (5.7x10 ⁻⁷)
Rail-Steel (rail)	4.3x10 ⁻⁹ (4.3x10 ⁻⁷)
Truck-DU (truck)	6.7x10 ⁻⁹ (6.7x10 ⁻⁷)

 These doses are about the same as 1 minute of average background: 6.9×10⁻⁹ Sv.


Sample Collective Doses for Routine Truck Transportation

Origin	Destination	Residents Along Route	Occupants of Vehicles Sharing Route	Residents Near Stop	Persons Sharing Stop	Crew/ Truck Stop Worker	Total
MAINE YANKEE	ORNL	9.6x10 ⁻⁵	4.6x10 ⁻⁴	1.2x10 ⁻⁵	8.6x10 ⁻⁴	6.8x10 ⁻⁴	2.1x10 ⁻³
	Deaf Smith	1.4x10 ⁻⁴	7.3x10 ⁻⁴	1.8x10 ⁻⁵	9.2x10 ⁻⁴	1.4x10 ⁻³	3.2x10 ⁻³
	Hanford	1.2x10 ⁻⁴	8.3x10 ⁻⁴	1.4x10 ⁻⁵	1.3x10 ⁻³	1.9x10 ⁻³	4.2x10 ⁻³
	Skull Valley	1.1x10 ⁻⁴	7.0x10 ⁻⁴	1.4x10 ⁻⁵	1.1x10 ⁻³	1.6x10 ⁻³	3.5x10 ⁻³

Total Collective Dose (Person-Sv)

Results from Routine Transportation: Example for Maine Yankee to ORNL truck shipment

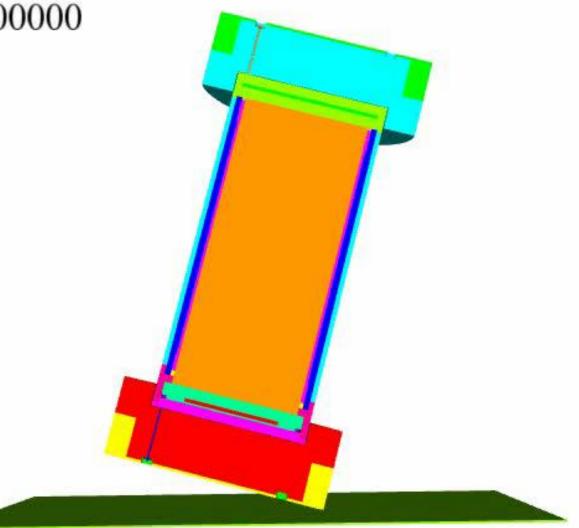
Routine transportation summary

- Individual and collective doses are calculated for a single shipment and are very small.
- Maximum individual doses are comparable to background doses.
- Collective doses from routine transportation are orders of magnitude less than the collective background dose.

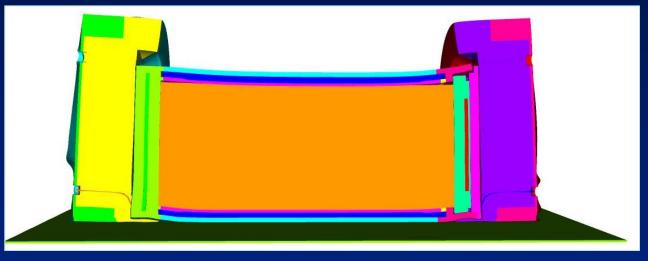
Response to regulatory impacts

- Casks are required to withstand a free fall from 9 meters (impact velocity of 48 kph) onto a flat, essentially unyielding, target in the most damaging orientation.
- The NRC requires conservative approaches in demonstrating the casks withstand this impact.
 - Materials
 - Material properties
 - Allowable stresses
- This assures the cask will survive more severe impacts.

Finite element analyses of casks

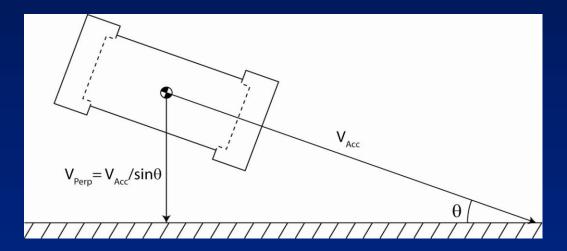

- The response of the two rail casks studied to impacts of 48, 97, 145, and 193 kph (30, 60, 90, 120 mph) onto rigid targets.
- The responses were determined using the nonlinear transient dynamics explicit finite element code PRESTO.
- In the cask models, the fuel region was treated as a homogenized mass.
- The response of the truck cask was inferred based on finite element calculations carried out for other projects.

Rail-lead cask impact analysis


- Deformed s rail-lead cas the 120 mpl a rigid targe corner orier
- No leak-pat there is no i contents
- Lead slump a loss of ga shielding in assessment

Time = 0.00000

- Side orientation 90 mph impact onto a rigid target
- Only cask and orientation resulting in a leak-path
 - no leak-path if fuel is loaded in an inner welded canister



- Side orientation 60 mph impact onto a rigid target
 - No leak path, but
 - The risk assessment assumes impacts into hard rock (5%) above 50 mph result in a leak-path
- Side orientation impacts at any recorded accident velocity onto targets softer than hard rock do not result in a leak-path

Affect of impact angle

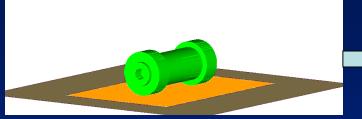
Angle	V _{Acc} so V _{perp} = 97 kph (60 mph)	Probability
0 - 10	556 (345)	0.2000
10 - 20	282 (175)	0.1778
20 - 30	193 (120)	0.1556
30 - 40	150 (93)	0.1333
40 - 50	126 (78)	0.1111
50 - 60	111 (69)	0.0889
60 - 70	103 (64)	0.0667
70 - 80	98 (61)	0.0444
80 - 90	97 (60)	0.0222

Impact accident summary

- Only 1 in 2000 accidents is more severe than the regulatory hypothetical accident.
- Due to conservatisms in cask design, only 1 in a billion accidents is severe enough to cause release or loss of gamma shielding.
- A rail cask with an inner welded canister results in no release.
- An impact speed onto a rigid target greater than 60 mph is required to cause seal failure in a rail cask.

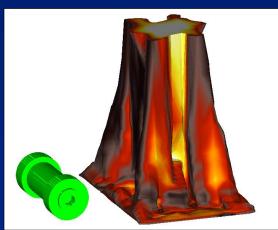
Impact accident summary (continued)

- A 60 mph side impact onto a rigid target
 - produces a force of 45 million pounds
 - is equivalent to a 115 mph impact onto a concrete roadway or abutment
 - is equivalent to a 153 mph impact onto hard soil
- For impacts onto rock that is hard enough to be able to resist these large forces, impacts at angles less than 30 degrees require a speed of more than 120 mph to be equivalent.


Response to regulatory fires

- Casks are required to withstand a fully-engulfing hydrocarbon fuel fire for 30 minutes.
- Generally demonstrated by analysis using a prescribed boundary condition of 800°C.
- Real fires have temperatures that vary with both time and location – but the average heating is similar to that from the uniform thermal boundary condition.
- Regulatory review requires seal temperatures and fuel temperatures stay below their failure thresholds.

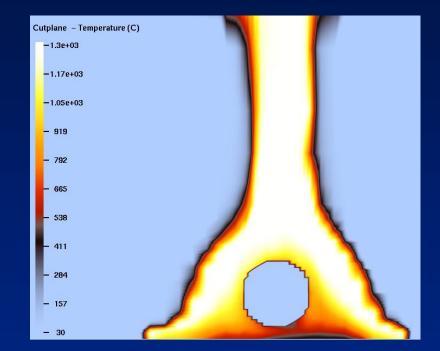
Fire cases analyzed for rail casks


All pools are 46 ft x 29.5 ft and burn for 3 hours

Cask in the middle of flammable liquid fuel pool region (shown in orange) before the fire starts

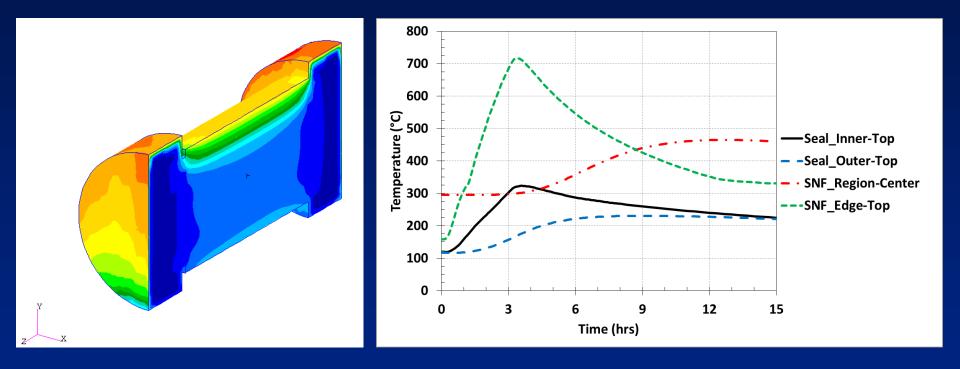
Fire engulfing the cask

Cask offset from the flammable liquid fuel pool by 3 meters (10 feet)



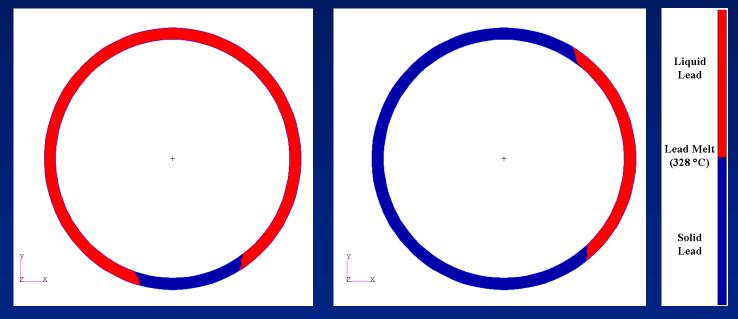
Cask offset from the flammable liquid fuel pool by 18 meters (60 feet)

Flame temperatures



Fully engulfing pool fires have temperature variations both spatially and temporally.

Rail-lead cask fire accident After 3-hour concentric fire:



- Seal temperature is below its failure temperature of 350°C.
- Spent fuel temperature is below the rod-burst temperature of 750°C.

Lead melt

When lead melts it expands and deforms the lead cavity. When it solidifies, it shrinks, leaving a gap.

Concentric fire

3m offset fire

Fire accident summary

- No cask loses containment in the fires analyzed.
- The fuel rods do not fail in the fires analyzed.
- Reduction in neutron shielding is likely for many fires (this is assumed in the certification of the casks).
- Reduction in gamma shielding is possible for very severe fires with lead shielded casks.
 - exposure to a concentric fire that burns longer than 65 minutes
 - exposure to a fire offset by 10 feet that burns longer than 2.25 hours
- Confined fires, such as tunnel fires or fires under overpasses, were not analyzed because other NRC studies have evaluated these environments.

Types of accidents and incidents

- Accidents in which the spent fuel cask is not damaged or affected, but the shipment is delayed
- Accidents in which the spent fuel cask is affected
 - Accidents resulting in loss of neutron or gamma shielding, but no release of radioactive material
 - Accidents resulting in release of radioactive material

Probabilities of all accident types

- Highway and railroad accident statistics are maintained by DOT's Bureau of Transportation Statistics.
- The average probability of an accident is
 - 1.9 x 10⁻⁶ per km for heavy trucks (3.1 x 10⁻⁶ per mi)
 - 1.1 x 10⁻⁷ per km for railcars (1.8 x 10⁻⁷ per mi)
- Accident severities are categorized using an event tree with conditional probabilities.
 - For trucks, the event tree was developed at Sandia National Laboratories.
 - For rail, the event tree was developed at the Volpe National Transportation Systems Center.

Accident Conditions: U.S. DOT Rail Accident Event Tree Segment

Rail Event Tree					
ACCIDENT		SPEED DISTRIBUTION		SURFACE STRUCK	PROBABILITY
	Derailment no fire: 0.9846			Into slope: 0.0011	4.76e-5
				Embankment: 0.0004	1.73e-5
			Off bridge: 0.9887	Into structure: 0.0077	0.000333
		80-113 kph collision: 0.06043		Into tunnel: 0.00801	0.000347
				Other: 0.9828	0.04252
			On bridge: 0.0113		0.00049
				Into slope: 0.0011	3.95e-8
				Embankment: 0.0004	1.43e-8
			Off bridge: 0.9887	Into structure: 0.0077	2.76e-7
		>113 kph collision: 5.01e-5		Into tunnel: 0.00801	2.87e-7
				Other: 0.9828	3.53e-5
Derailment: 0.7355			On bridge: 0.0113		4.10e-7

Additional probabilities included in analyses

- The rail event tree does not include target hardness, so the distribution from the truck event tree was used.
- Neither event tree includes impact angle or orientation, so conservative engineering judgments of angle and orientation distributions were assumed.
- The truck event tree does not include impact velocity, but since impacts at even the highest velocity analyzed did not result in release, this was not needed.
- The rail event tree does not divide accident speeds greater than 113 kph (70 mph), so it is assumed that 95% of them are between 113 and 145 kph (90 mph), and 5% are above 145 kph (needed for lead slump dose risk calculations).

Accidents without loss of shielding or release

- Almost all accidents will fall into this category.
- Dose depends on the external dose rate of the cask.
- A 10-hour stop time is assumed for all accidents of this type.
- Collective doses are calculated using the average rural, suburban, and urban population densities for each route.
- 10 hour dose to an emergency responder at a 2 meter distance from the cask is ~0.001 Sv (100 mrem).
- Collective population dose risk to nearby residents is ~7 x 10⁻⁵ person-Sv (7 x 10⁻³ person-rem).

Accidents with loss of gamma shielding but no release

- Less than one in a billion impact accidents is severe enough to cause a loss of lead gamma shielding resulting in a dose rate greater than the regulatory post-accident dose rate.
- Because these accidents are so rare, the collective dose risk is much smaller than that from the no loss of shielding case, about 10⁻¹³ person-Sv (10⁻¹¹ person-rem).

Accidents with release

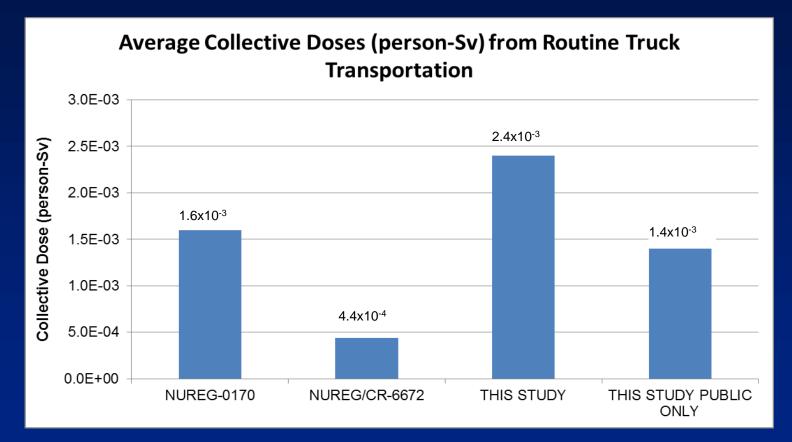
- Only rail casks without an inner welded canister have release.
- Dose depends on
 - the inventory (quantity and physical form), assumed in this study to be the maximum the casks are certified to transport (9-year cooled 45 GWD/MTU burn-up).
 - the exposure pathway, which includes rod-to-cask release fraction, cask-to-environment release fraction, and dispersion

Release fractions

	Cask Orientation	Side	Side	
	Rigid Target Impact Speed, kph (mph)	193 (120)	145 (90)	
	Seal	elastomer	elastomer	
Cask to Environment Release Fraction	Gas	0.80	0.80	
	Particles	0.70	0.70	
	Volatiles	0.50	0.50	
	CRUD	0.001	0.001	
Rod to Cask Release Fraction	Gas	0.12	0.12	
	Particles	4.8x10 ⁻⁶	4.8x10 ⁻⁶	
	Volatiles	3.0x10⁻⁵	3.0x10 ⁻⁵	
	CRUD	1.0	1.0	
	Conditional Probability	1.79x10 ⁻¹¹	3.40x10 ⁻¹⁰	

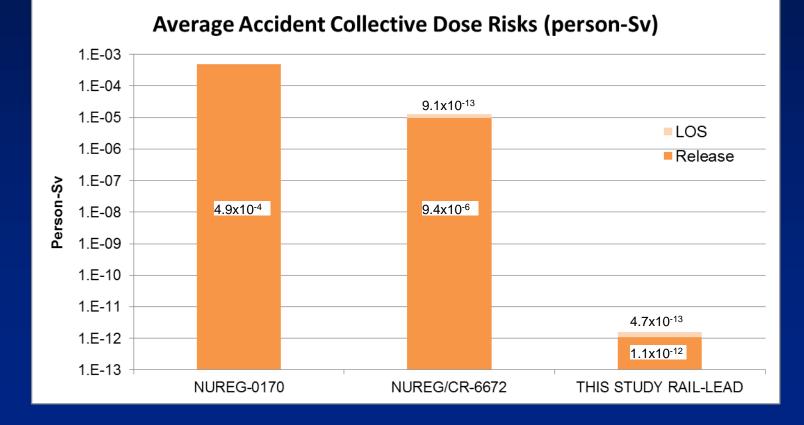
Doses from release

- Dominated by inhalation
- Includes resuspension, cloudshine, groundshine, and ingestion
- Because of thermal loft due to the elevated temperature of the cask interior, the maximum dose occurs 21 meters downwind from the accident.
- Maximum individual dose to a hypothetical person at this location is 1.6 Sv (160 mrem).
- Collective dose risk is 10⁻¹² person-Sv (10⁻¹⁰ personrem).



Accident risk summary

- The overall collective dose risks are very small.
- The collective dose risks for the two types of extra-regulatory accidents (accidents involving a release of radioactive material and loss-of-lead-shielding accidents) are negligible compared to the risk from a no-release, no-loss-of-shielding accident.
- There is no expectation of release from spent fuel shipped in inner welded canisters from any impact or fire accident analyzed.
- The collective dose risk from loss of lead shielding is comparable to the collective dose risk from a release, both are very small.
- These accidents occur with extremely low probability (less than one in a billion accidents).


Routine Transportation Results Comparison:

Accident Results Comparison:

Accident collective dose risks from release and loss of gamma shielding (LOS) accidents. The LOS bars are not to scale.

SFTRA Findings

- The collective dose risks from routine transportation are very small. These doses are about four to five orders of magnitude less than collective background radiation dose over the same time period and exposed population as the shipment.
- There was little variation in the risks per kilometer over the routes analyzed.
- Radioactive material would not be released in an accident if the fuel is contained in an inner welded canister inside the cask.
- Only rail casks without inner welded canisters would release radioactive material, and only then in exceptionally severe accidents.
 - If there were an accident during a spent fuel shipment, there is less than one in a billion chance the accident would result in a release of radioactive material.
 - If there were a release of radioactive material in a spent fuel shipment accident, the dose to the maximum exposed individual would be non-fatal.

SFTRA Conclusions

- This study reconfirms that estimated radiological risks from spent fuel transportation *conducted in compliance* with NRC regulations are low, in fact generally less than previous estimates, which were already low.
- Accordingly, for spent fuel transportation, the regulations for transportation of radioactive material are adequate to protect public health and safety.
- No changes are needed to the regulations for spent fuel transportation.

Draft NUREG-2125 published for comment

- Federal Register Notice: **77 FR 28406**, May 14, 2012
- ADAMS Accession Number for Draft NUREG-2125 : ML12125A218
- Public comment period closed on July 15, 2012
- Comments received from
 - The State of Nevada
 - The State of Oregon
 - Western Interstate Energy Board
 - Nuclear Energy Institute

Comment: 60 day comment period is inadequate/extension request

- Draft response
 - Given the nature of the subject, the staff considered granting the extension request. However, in considering various factors, including contract expiration date, the staff felt that the comment period could not be extended. Furthermore, the Federal Register notice states that comments received after 60 days will be considered if it is practical to do so.
- No changes to Draft NUREG-2125

Comment: Accident scenarios underestimate potential fire durations and temperatures

- Draft response
 - The probability, given an accident, of the most severe fire considered in DRAFT NUREG-2125 is 10⁻¹⁴ as explained in Section E.3.1.2. While it is possible to envision a more severe fire accident; such events would have an even lower probability and would not affect the overall risk of spent fuel transportation unless they had a release of more than 10,000 A₂, which is not feasible.
- Changes to Draft NUREG-2125
 - Add discussion on Caldecott and Baltimore Tunnel Fires and MacArthur Maze Fire, including their probabilities, and show it does not change the risk results.

Comment: Calibration of finite element models

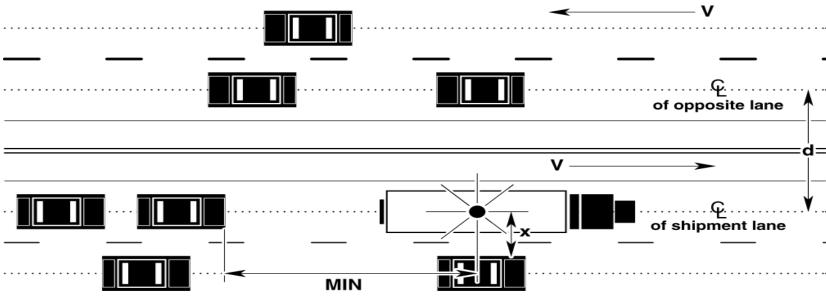
- Draft response
 - The report provides an example of a comparison between finite element analysis and test results for a large fire test in Appendix D. Similar comparisons have been made for regulatory and extra-regulatory impact analyses. There have been many physical tests on casks and cask components that have been compared to finite element predictions of the tests. Many spent fuel casks are certified by a combination of testing and analysis, where the testing is used to validate the finite element analysis.
- Changes to Draft NUREG-2125
 - References on comparison between test and analyses for impact analyses will be added to the report.

Hanford should not be an example destination

- Draft response
 - Transportation risk assessments require designation of shipment points of origination and destinations. Currently, there are no planned spent fuel shipping campaigns. DRAFT NUREG-2125's shipment points of origination and destination were selected to illustrate long-haul geographic diversity. We believe the disclaimer "The routes shown are for illustrative purposes only, and no SNF shipments are planned from any of these points of origination to any of these destinations" makes this clear. While other origination/destination pairs are possible, the DRAFT NUREG-2125 pairs are adequate for the stated purposes of the study. Also, the report makes clear that DRAFT NUREG-2125 is a generic spent fuel transportation risk assessment, and is not intended as a facility- or site-specific environmental assessment.
- Changes to Draft NUREG-2125
 - Repeat existing DRAFT NUREG-2125 disclaimer at least once in chapter 2, chapter 5, chapter 6, appendices B, E, and F

Comment: Results should be used to risk inform 10 CFR Part 71

- Draft response
 - NUREG-2125 will be available for consideration in NRC's risk management activities.
- No changes to Draft NUREG-2125


United States Nuclear Regulatory Commission

Protecting People and the Environment

Back-up Slides

RADTRAN model for occupants of other vehicles



Legend
V - Traffic velocity
d - Distance fromRAM vehicle to traffic in opposite direction
X - Distance from RAM vehicle to passing vehicle
MIN - Minimum following distance

Example Routes (continued)

Indian Point NP Routes

Idaho National Laboratory Routes

INL included as an origin because spent fuel is stored there.