Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactors Safeguards Reliability and PRA Subcommittee
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, July 26, 2012

Work Order No.: NRC-1783

Pages 1-292

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	RELIABILITY AND PRA SUBCOMMITTEE
8	+ + + +
9	THURSDAY, JULY 26, 2012
10	+ + + +
11	ROCKVILLE, MARYLAND
12	+ + + +
13	The Subcommittee met at the Nuclear
14	Regulatory Commission, Two White Flint North, Room
15	T2B1, 11545 Rockville Pike, at 8:30 a.m., John W.
16	Stetkar, Chairman, presiding.
17	COMMITTEE MEMBERS:
18	JOHN W. STETKAR, Chairman
19	J. SAM ARMIJO, Member
20	DENNIS C. BLEY, Member
21	HAROLD B. RAY, Member
22	JOY REMPE, Member
23	MICHAEL T. RYAN, Member
24	STEPHEN P. SCHULTZ, Member
25	WILLIAM J. SHACK, Member
	I

1	NRC STAFF PRESENT:
2	JOHN LAI, Designated Federal Official
3	HARRY BARRETT, NRR
4	BENJAMIN BEASLEY, NRR
5	STEPHEN DINSMORE, NRR
6	JOSEPH GLITTER, NRR
7	ALEX KLEIN, NRR
8	PAUL LAIN, NRR
9	
10	ALSO PRESENT:
11	PAUL AMICO, SAIC
12	FRANCISCO JOGLAR, Hughes Associates*
13	JEFF JULIUS, Scientech
14	ANIL JULKA, NextEra Energy
15	BOB KALANTARI, EPM*
16	MICHAEL KAMMER, SCANA
17	TED KULCZYCKY, NextEra Energy
18	GERALD A. LOIGNON, JR., SCANA
19	DAN MacDOUGALL, DC Cook
20	BIJAN NAJAFI, SAIC
21	VINNY RUBANO, NextEra Energy
22	MARK SCHAIRER, EPM
23	LAURA SWENZINSKI, NextEra Energy
24	KIANG ZEE, ERIN Engineering
25	*Present via telephone
I	

2

	3
1	TABLE OF CONTENTS
2	Opening Remarks - J. Stetkar, ACRS 4
3	NFPA 805 LAR Reviews 8
4	DC Cook Presentations 54
5	Break 68
6	DC Cook Presentations (continued)68
7	Lunch 148
8	Duane Arnold Presentations 149
9	Break 233
10	VC Summer Presentations 234
11	Meeting Adjourned 292
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
Į	I

	4
1	PROCEEDINGS
2	8:29 a.m.
3	CHAIRMAN STETKAR: The meeting will now
4	come to order. This is a meeting of the Advisory
5	Committee on Reactor Safeguards, Reliability and PRA
6	Subcommittee. I'm John Stetkar, chairman of the
7	Subcommittee meeting.
8	ACRS members in attendance are Sam Armijo,
9	Steve Schultz, Harold Ray, Mike Rayn, Bill Shack, Joy
10	Rempe. And we will be joined by Dennis Bley later in
11	the morning. Jon Lai of the ACRS staff is the
12	Designated Federal Official for this meeting.
13	The purpose of the meeting is for the
14	Subcommittee to hear the technical findings of
15	licensees' fire protection program transition to NFPA
16	805. We'll hear presentations from three licensees,
17	the nuclear industry and the NRC staff.
18	There will be a phone bridge line. To
19	preclude interruption in the meeting, the phone will
20	be placed in listen-in mode during presentations and
21	committee discussions. We have received no written
22	comments or request for time to make oral statements
23	from members of the public regarding today's meeting.
24	The entire meeting will be open to public attendance.
25	The Subcommittee will gather information,
I	1

(202) 234-4433

	5
1	analyze relevant issues and facts to formulate
2	proposed positions and actions as appropriate for
3	deliberation by the full committee.
4	The rules for participation in today's
5	meeting have been announced as part of the notice of
6	this meeting previously published in the Federal
7	Register.
8	A transcript of the meeting is being kept
9	and will be made available as stated in the Federal
10	Register Notice. Therefore, we request that
11	participants in this meeting use the microphones
12	located throughout the meeting room when addressing
13	the Subcommittee.
14	The participants should first identify
15	themselves and speak with sufficient clarity and
16	volume so that they may be readily heard.
17	Before we start, I have a few
18	administrative things to take care of. First of all,
19	I'd like to really express our appreciation to the
20	staff, the industry and the licensees for supporting
21	this meeting.
22	We know that everybody is really, really
23	busy with this whole NFPA 805 transition process and
24	we really appreciate your taking your time out. We
25	know how much, they have not issued an SER. They will
	I

(202) 234-4433

	6
1	not issue an SER until their review is complete.
2	They have issued RAIs. They're working
3	through the RAI resolution process. So, please keep
4	that in mind when you ask questions, because this is
5	not - we are not reviewing a formal staff product
6	here. And in that sense, I suspect we will have
7	several technical questions that will come up during
8	the meeting.
9	I'd like to emphasize the fact that those
10	questions are intended for us to improve our
11	understanding of specific technical issues and how
12	they're being addressed both in the staff's review and
13	in terms of the, perhaps, licensees' responses to RAIs
14	or particular methods that they're using to address
15	specific issues that come up.
16	It's certainly not our intent for any of
17	our questions to precipitate further staff RAIs, and
18	let me just leave it that way. This is for a briefing
19	of our subcommittee, and I don't know how else to put
20	it.
21	And if the members would kind of, you
22	know, keep that in mind a little bit, because it is a
23	bit - we don't normally get involved at this stage in
24	the process. So, it's a bit dangerous in that nature
25	that things that we say may be misinterpreted.
ļ	I

(202) 234-4433

	7
1	One other thing, the meeting is completely
2	open. There may be questions that tread upon areas of
3	proprietary information, either data, perhaps
4	proprietary methods that may be used by some of the
5	licensees. I don't know if that's the case.
6	And certainly some of the information in
7	the License Amendment Requests is classified as
8	sensitive information from the point of details of
9	plant layouts and things like that.
10	So, if we delve into any of those areas,
11	I'd ask either the staff, and in particular any of the
12	licensees, to alert us to the fact that we're going
13	over the borderline between publically-available
14	information and something that may be proprietary or
15	sensitive.
16	We can close the meeting if necessary if
17	the Subcommittee members feel that it's necessary to
18	go into details in those areas. It's a little bit
19	difficult, but we can do it. Let's just keep that in
20	mind.
21	So, I'd ask for help again from the
22	licensees. If you think we're getting into
23	particularly sensitive areas or details that you don't
24	want on the public record, please alert us to that.
25	And as a final comment, at the moment, we
I	I

(202) 234-4433

	8
1	have no intent at least at the current stage of the
2	process, to have a full committee briefing on this
3	topic.
4	I suspect at the end of the meeting
5	depending on how the discussions go, we'll discuss
6	among ourselves whether we feel that it's necessary to
7	bring it to the full committee.
8	I personally don't particularly want to do
9	that. It's again another exercise in bringing
10	everybody, you know, to the full committee meeting and
11	an interruption in everybody's normal workday, but
12	we'll see how the discussions go.
13	And with that, we'll now proceed with the
14	meeting. And I call upon Joe Glitter to begin.
15	Joe.
16	MR. GLITTER: Okay. Thank you, Dr.
17	Stetkar.
18	Good morning. My name is Joe Glitter.
19	I'm the Director of the Division of Risk Assessment at
20	NRR.
21	Here with me to my right is Alex Klein.
22	And behind me - and Alex is the Chief of the Fire
23	Protection Branch. And behind me is Ben Beasley who
24	is the Acting Chief of the PRA Licensing Branch.
25	Presenting at the head of the table are
Į	I

(202) 234-4433

	9
1	Steve Dinsmore, Paul Lain and Harry Barrett. Steve,
2	Paul and Harry are some of the senior technical
3	reviewers that are working on this project. We have
4	other technical reviewers and contractors in the
5	audience today as well.
6	Over the next couple of days you're going
7	to be hearing from the staff and industry about the
8	successes and the challenges associated with the NFPA
9	805 reviews.
10	And while the complexity and sheer volume
11	of these reviews may seem daunting, I personally am
12	encouraged by the professionalism, teamwork and
13	dedication that the NRC NFP 805 team has demonstrated
14	knowing that their efforts are tied to meaningful and
15	prudence in fire safety.
16	So, that's all I had to say for an opening
17	comment. And with that, I'll turn it over to the
18	presenters.
19	MR. LAIN: Okay, I'll kick us off then.
20	My name is Paul Lain. I've been working
21	with NFPA 805 for over ten years through the
22	rulemaking and through the pilots.
23	I would like to - this is what we're going
24	to go over today. I would like to spend 30 seconds on
25	a quick look on program status. Mr. Stetkar said he
ļ	I

(202) 234-4433

	10
1	didn't want to have too much programmatic-type
2	information.
3	Then, we're going to walk through sort of
4	our process, the acceptance review, some audits and
5	RAIs on some of our observations. Then, a few then
6	a short summary at the end. So, let's go ahead and
7	get started.
8	Here's a - we'll do a 30-second snapshot.
9	We've got ten License Amendment Requests under review.
10	Four of them right now are into their second rounds of
11	RAIS. Two of them are in their first rounds.
12	We've done our audits on six, the first
13	six. The seventh and eighth are - right now they've
14	given us supplemental information for the acceptance
15	reviews.
16	And then the last two have come in
17	recently and they're under their initial acceptance
18	review.
19	And then we have another one at the end of
20	this month, ANO1, and then four more at the end of
21	September.
22	Then we'll start with Steve talking about
23	PRA.
24	(Laughter.)
25	MR. LAIN: Unless there are any questions.
I	

(202) 234-4433

	11
1	MEMBER SHACK: Somewhere there was a slide
2	or something with a comment on it about we didn't want
3	to repeat the ANO experience.
4	Is there something particularly difficult
5	about that acceptance review or - it seemed a little
6	late in the game to have fundamental difficulties.
7	MR. LAIN: We're not sure which slide that
8	is.
9	MEMBER SHACK: Oh, okay. I think it was
10	from the June 27th public meeting.
11	MR. LAIN: Okay, Alex was going to -
12	MR. KLEIN: Yes, if I could, this is Alex
13	Klein. I think this mic is on.
14	If I could respond to that, we go through
15	and I think we'll talk about that maybe a little bit
16	more. We have a process in place where we go
17	determine whether or not the licensee submittal is
18	complete and sufficient for our technical review.
19	And in the case of ANO Unit 2 submittal,
20	there were some deficiencies that we've identified in
21	the License Amendment Request. We did have two public
22	meetings with the licensee to discuss the need for
23	additional supplementary information in order to make
24	their License Amendment Request more complete for the
25	staff to actually start their review.
l	I

(202) 234-4433

	12
1	So, I think that's what you might be
2	referring to.
3	MEMBER SHACK: Thank you.
4	MR. DINSMORE: Well, I see that brings me
5	right into my slide. My name is Steve Dinsmore. I'm
6	a Senior Risk and Reliability Analyst in the PRA
7	licensing branch. I've been there for about 16 or 17
8	years.
9	I'm actually not a real fire PRA guy. I'm
10	more of a general PRA guy. The real fire PRA
11	engineers are Ray Gallucci and J.S. Hyslop, who are
12	both here. So, if you get into really detailed,
13	technical questions, I'm going to wave around and try
14	to get them up here. And our contractor is Garill.
15	I see Garill is back there from PNNL.
16	I'm going to give you an overview of how
17	this stuff works and some medium level of detail about
18	what we're coming up with.
19	So, the first slide here talks about
20	acceptance reviews. As Alex said when a submittal
21	comes in, the first thing we do is a real quick review
22	to see if it contains sufficient information to
23	complete our review, which really means to start it,
24	but that's the way the wording is.
25	So, we do that and we do it fairly
	1

(202) 234-4433

	13
1	quickly. And we come back to the licensee and we
2	either say we accept the thing for review, or we don't
3	accept the way it is, but you can supplement, or we
4	don't accept it, period, and you have to resubmit,
5	which is unpleasant for everybody.
6	So, in the six or seven - I think we
7	accepted six so far. And what I've got on this slide
8	is just a little bit of information of the original or
9	the initial acceptance review results that we've come
10	up with in order to try to get these things to be more
11	complete.
12	The first one is Reg 1.200 compliance
13	paths. I guess you all know that we require the PRA
14	to have been reviewed against Reg Guide 1.200. And if
15	it has not been, then we actually will not accept the
16	thing for review.
17	If a PRA comes in or if one of these
18	submittals comes in and says we've got an internal
19	events peer review in 2010 and we've got another fire
20	peer review in 2011, that pretty much is very simple
21	and straightforward.
22	Unfortunately, there's also a path since
23	these peer reviews have been going on for 10 or 12
24	years and the guidance or the detail guidance has
25	changed, we developed a path to keep them consistent

(202) 234-4433

	14
1	without having to redo the peer reviews. And a number
2	of them have been following those paths and they can
3	be fairly complicated to understand exactly how the
4	path that they chose makes them consistent with the
5	current Reg Guide 1.200.
6	So, we've been going back in a couple
7	cases and saying, can you explain a little more about
8	your gap assessments, your self-assessments and how
9	you got there? So, that's one of the first things
10	that we've been looking at.
11	The second one, incomplete total risk and
12	change in risk information as I guess most of you also
13	- if I say something you don't recall, please let me
14	know.
15	But most of you probably know if your
16	increase in CDF is between 10 to the minus six and 10
17	to the minus five, we need to know your total CDF.
18	The LAR template had a statement in there,
19	well, our total CDF is less than 10 to the minus five
20	and LERF is less than 10 to the minus six. Some
21	licensees interpret that literally, and so they came
22	in with their submittal and they gave us that
23	statement.
24	And we said, no, no, we need your estimate
25	mostly because it convinces us that you have actually
I	1

(202) 234-4433

	15
1	done all this work to the extent that you come up with
2	an estimate.
3	That's actually been a fairly simple one
4	to deal with. Everybody realizes what's going on.
5	So, that's kind of passed.
6	This next one is probably the source of
7	much discussion over the next couple days. We
8	sometimes go back and ask them, can you complete,
9	identify relevant sources and model uncertainty?
10	Model uncertainty, I've got two bullets
11	here. Unreviewed methods, which are methods that the
12	staff has not yet seen that they've reviewed.
13	Now, the key - I'll keep going. Key
14	assumptions are alternate reasonable assumptions which
15	could impact the results being used, and the
16	consequence of using these different assumptions may
17	affect the decision.
18	And for both of those types of things that
19	the licensee have done in their analysis, we request
20	a sensitivity study. So, they can do unreviewed
21	methods, they can do key assumptions that maybe we
22	wouldn't agree with, but they need to provide us with
23	a sensitivity study before we start our review.
24	That's also caused some consternation
25	because the sensitivity studies can be difficult to
I	1

(202) 234-4433

	16
1	do. And the acceptance review is a pretty short time
2	fuses, but we're working through that.
3	I guess ANO2 actually we asked them to do
4	some sensitivity studies that were very time-
5	consuming. So, that's one of the difficulties that
6	we've been running across.
7	CHAIRMAN STETKAR: Steve, on those
8	sensitivity studies, and I see you have a slide coming
9	up a little bit more on fire modeling, so I wasn't
10	going to ask, but are those sensitivity studies done
11	by varying parametric values within the constraints of
12	the model that they use, or are they sensitivity
13	studies that compare - if it's a modeling issue, is it
14	a sensitivity study that compares a set of fixed
15	parameters from the model they use by comparison to
16	another model, for example, that might have full V&V?
17	MR. DINSMORE: Thank you for that question.
18	CHAIRMAN STETKAR: You're welcome.
19	MR. DINSMORE: If the model - if we've
20	already accepted the model, then the sensitivity study
21	is a parametric study on how you applied it to your
22	plant.
23	If we haven't accepted the model, we've
24	been requesting that they - the sensitivity study use
25	an accepted model.
ļ	I

(202) 234-4433

	17
1	CHAIRMAN STETKAR: Okay.
2	MR. DINSMORE: And we were doing that
3	because it makes the reviews much more effective and
4	quick since we really didn't want to review these new
5	methods in the LAR reviews. And we try to avoid that
6	as much as possible. Unfortunately, there's a lot of
7	them coming up in these reviews.
8	So, if we can compare - if we can start
9	off by knowing what the effect of using their new
10	model is compared to an old one, we can move along
11	much quicker. So, those are the two different types.
12	CHAIRMAN STETKAR: Okay, and that helps.
13	In the - and tell me to be quiet if we're
14	going to address it later. I'm trying to look ahead,
15	but particularly interested in applications that have
16	used models, you know, correlations, whatever you want
17	to call them, that are not part of the V&V suite that
18	has been accepted in NUREG-1824 anyway.
19	Have you seen - and I know you're early in
20	the review process. So, you haven't seen a lot of
21	submittals. And at least from the three that I've
22	looked at, I've noted that there are, let me just say,
23	deviations among those three in terms of approaches
24	that are taken.
25	You mentioned that you don't want to get
	I

(202) 234-4433

	18
1	into a process of essentially reviewing specific
2	models that have been used.
3	Have you seen any type of tendency for a
4	large number of applicants to use a specific model or
5	a suite of models that are outside of the set of five
6	from NUREG-1824 such that it may be worthwhile to
7	actually take a focused look at those, or are they
8	sort of scattered?
9	As I said, it might be not a fair question
10	because you -
11	MR. DINSMORE: I think I'll give an answer
12	and somebody else might want to chime in. I think
13	that there is a tendency to group so that there are -
14	it's not like there's 30 different methods.
15	There's five different methods that are
16	being applied in different places. So, it is kind of
17	grouped.
18	CHAIRMAN STETKAR: It's probably grouped
19	according to contractors, I suspect. Okay.
20	MR. BARRETT: Yes, one thing I'd like to
21	point out is - this is Harry Barrett, senior fire
22	protection engineer.
23	I'd like to point out that in the vast
24	majority of cases, they're all using five V&V fire
25	models. What they're changing is the assumptions that
I	I

(202) 234-4433

	19
1	go into the front end of that.
2	For instance, electrical cabinet heat
3	release rates, 6850 has certain 75th percentile, 98th
4	percentile numbers. They're varying the numbers that
5	they're using in their model somewhat based on their
6	assumptions, and that's getting different results than
7	you would get if you used 6850, but they are using a
8	verified model when they do it.
9	CHAIRMAN STETKAR: So, they're using the
10	fundamental correlation. They're just varying the
11	input parameter accordingly, okay.
12	Thanks, that helps a lot because that's
13	different than taking the -
14	MR. BARRETT: I think there's a few - I
15	think detector activation is one that I didn't think
16	it got V&V'd and they're using that. And they end up
17	having to come up with some other justifications for
18	that, but the vast majority of them are all V&V codes
19	or correlations.
20	CHAIRMAN STETKAR: You're not seeing
21	somebody come in with here's Joe's Corner Grocery
22	Store plume
23	MR. BARRETT: Yes, we haven't
24	CHAIRMAN STETKAR: correlation or
25	something like that.
I	1

	20
1	MR. BARRETT: No.
2	CHAIRMAN STETKAR: Okay.
3	MR. BEASLEY: This is Ben Beasley, acting
4	branch chief of PRA licensing.
5	So, just the way you asked the question,
6	I want to make the point that we are willing to review
7	the methods.
8	CHAIRMAN STETKAR: Sure.
9	MR. BEASLEY: Our preference is to not do
10	it through the LAR process, but to do it in a separate
11	-
12	CHAIRMAN STETKAR: No, I understand. I was
13	just trying to get a sense that if out of the, you
14	know, eight or so that you're sort of in process so
15	far, plus the two pilot plants, if you saw a large
16	number of them all using some, you know, I'll call it
17	Joe's Corner Grocery Store, you know, correlation or
18	something like that, it might be more efficient to
19	actually take a little time and look at that. That's
20	the sense that I was trying to get.
21	And that's from what Harry said, I don't
22	get that sense. So, that's good. Thanks.
23	MR. LAIN: As I mentioned, you're reviewing
24	both the internal events and the fire PRA. So, this is
25	not just with the fire PRA.
l	I

(202) 234-4433

	21
1	MR. DINSMORE: Yes, that was on my RAI
2	slide.
3	MR. LAIN: Oh, I'm sorry. I'm taking away
4	your thunder. We'll let Harry talk for a little bit.
5	MR. BARRETT: Okay. In the middle of the
6	acceptance review, what we basically do is look at the
7	details in the LAR and make sure that we have enough
8	information to start the review and essentially the
9	information we would need to write the safety
10	evaluation from an amount of information.
11	If we find holes in this application where
12	we don't have enough information, then we would end up
13	asking for supplemental information submitted to us on
14	the docket.
15	So, we get into some fairly detailed
16	information when we end up doing this. Things like
17	whether or not they've identified all the variations
18	from deterministic requirements.
19	We had one licensee that ended up doing a
20	control room analysis where they didn't actually tell
21	us all of the VFDRs in the control room, which are
22	variations from deterministic requirements.
23	It's kind of hard for us to end up judging
24	whether or not they did the job right if we don't even
25	know that they have identified all of the components
ļ	

(202) 234-4433

	22
1	that were damaged in the control room, you know.
2	They gave us the statement that, well, we
3	don't have a shutdown panel. So, we have one VFDR for
4	the control room.
5	That's kind of a problem. One of the ANO
6	issues was the fact that they did their control room
7	analysis, and what they submitted to us was so
8	simplistic that we couldn't make sense out of exactly
9	what they did.
10	In that case, it's kind of hard for us to
11	accept the license amendment if what they've given us
12	on the docket doesn't give us enough information to
13	actually explain how the analysis was done.
14	A second issue that we get into when we
15	look at these is if they're doing modifications, if
16	they don't explain what those modifications are or
17	they say, we may do this or we may do that or we may
18	do something else that will bring the risk down
19	equivalently, they haven't actually decided what
20	they're going to do. So, they're not telling us what
21	they're asking our approval on.
22	So, we can't end up doing an acceptable
23	review if we don't know exactly what they're asking
24	for.
25	So, the acceptance review is basically to

(202) 234-4433

	23
1	look at in total the license amendment and decide
2	whether or not they've given us sufficient information
3	for us to actually do the review.
4	So, we can get to a very high level of
5	detail in the acceptance review, but typically we
6	don't.
7	CHAIRMAN STETKAR: Harry, in those details,
8	I mean, I've actually read now through three of these
9	things, generally there is summary information in the
10	LAR supported by, I guess, you know, stacks of more
11	detailed technical reports.
12	MR. BARRETT: Yes, absolutely.
13	CHAIRMAN STETKAR: Are those technical
14	reports submitted to you, or are they just available
15	for audit?
16	MR. BARRETT: Well, we've been doing -
17	CHAIRMAN STETKAR: So, for example -
18	MR. BARRETT: We started a policy with the
19	pilots and we've been following it through with all of
20	the licensees so far, is they give us a SharePoint
21	site once we accept their license amendment.
22	CHAIRMAN STETKAR: Okay.
23	MR. BARRETT: On that SharePoint site will
24	be the PRA calculations, the nuclear safety capability
25	assessment, the non-power ops review, you know, the
Į	1

(202) 234-4433

	24
1	monitoring program.
2	All of the detailed procedures and
3	calculations and stuff that we would need to look at
4	as backup information to understand exactly how they
5	did that, is on the SharePoint site.
6	And then when we do the audit, we also go
7	in and we actually look at hard copies and talk to
8	them.
9	CHAIRMAN STETKAR: Okay.
10	MR. BARRETT: When I go on to the next
11	slide, we'll talk about that a little bit.
12	CHAIRMAN STETKAR: But you do have at your
13	fingertips then their -
14	MR. BARRETT: Not at the acceptance review
15	stage.
16	CHAIRMAN STETKAR: Not at the - okay.
17	MR. BARRETT: Acceptance review is -
18	CHAIRMAN STETKAR: Not at the acceptance.
19	MR. BARRETT: just looking at what -
20	CHAIRMAN STETKAR: Sure, okay.
21	MR. BARRETT: they put on the docket.
22	CHAIRMAN STETKAR: I'm sorry, okay.
23	MR. BARRETT: And it's very important
24	because it has to be the stuff that's on the docket,
25	because that's what we have to refer to in the safety
Į	1

(202) 234-4433

	25
1	evaluation.
2	There may be many tiers of information
3	that are below that, that we wouldn't necessarily
4	refer to directly in the safety evaluation to
5	understand how they did it, but we're actually looking
6	at whether or not it's on the docket and we have
7	sufficient information to write the SE from.
8	CHAIRMAN STETKAR: So, at the acceptance
9	review, for example, for the modifications, you'd be
10	limited to only the information that's in Attachment
11	S. And if that doesn't -
12	MR. BARRETT Well, yeah, in many cases it's
13	Attachment S. And it's also Attachment C, which
14	defines what the actual problem is.
15	CHAIRMAN STETKAR: Yes, yes.
16	MR. BARRETT: Then you look at Attachment
17	C and you look at Attachment S, and then possibly
18	Attachment G to see whether or not recovery actions
19	fit into that.
20	CHAIRMAN STETKAR: I was just thinking in
21	terms of details of proposed modifications, you know.
22	MR. BARRETT: Right.
23	CHAIRMAN STETKAR: That's one of the items
24	that you mentioned.
25	MR. LAIN: That's something else we would
I	I

(202) 234-4433

	26
1	also do is take a look at some of the things don't
2	rise to the level of acceptance review, some of the
3	things we can take care of during the RAI.
4	So, a lot of RAIs kind of get identified
5	and they're filling the smaller holes versus the
6	larger ones we can fit in.
7	MR. BARRETT: Yes, and some of the
8	acceptance reviews actually get into things like
9	programmatic issues.
10	The first couple of non-pilots said that
11	they made a promissory thing that they would finish
12	their monitoring program during implementation and the
13	details were kind of fuzzy.
14	So, there was a FAQ that was in process.
15	And once that FAQ got approved, then everybody just
16	used that FAQ as the structure of what they were
17	asking for. So, we kind of solved that problem.
18	But the acceptance review gets into a lot
19	of different things. And for such a short review, it
20	is very intense, obviously. It's supposed to be a
21	tenth of the overall License Amendment Review.
22	And when you're talking about hundreds of
23	hours, even an acceptance review can get to be pretty
24	intense.
25	Next slide.
I	I

	27
1	MEMBER SHACK: Just on that SharePoint
2	thing, there was some comment about the SharePoint
3	that you could use that's subject to some sort of
4	limitations.
5	Those limitations are that you can't use
6	that information as part of the conclusion that -
7	MR. BARRETT: Well, there's several
8	different limitations that we place on the SharePoint.
9	One, we can't download or print the
10	information. In other words, we can view it, but we
11	don't take it in-house. That's so that we don't end
12	up having a large volume of material that we would be
13	FOIA-able with, you know.
14	It's licensee's information. We're
15	looking at it as if we were at an audit. We don't
16	bring it back with us. It's their information.
17	Review it. It's just like being on an audit.
18	The information that's on the SharePoint
19	is also background information, but it's not to be
20	referenced in the SE.
21	If there's something that we see there
22	that we actually need for our conclusion, we would
23	have to ask an RAI and ask them to submit it on the
24	docket.
25	Next slide. When we go in for an audit,
l	

(202) 234-4433

	28
1	it's quite a process, actually. We bring a pretty
2	good size team in anywhere from, I'd say, six to 12
3	people. And many of them have actually had more than
4	that because they had observers that were trying to
5	learn the process.
6	It's a multi-disciplinary team kind of
7	similar to a peer review that reviews a typical PRA.
8	We've got fire protection people, fire modeling
9	people, PRAs, safe shutdown people. And we end up
10	looking at the whole scope of what the licensee has
11	done.
12	We typically ask them to give us a
13	presentation on how they've done various aspects of
14	it, because all the contractors have a slightly
15	different process that they use.
16	So, we typically end up having maybe a
17	day, full day of presentations so that they can show
18	us exactly how they did it, how their software works,
19	you know. And we'll talk a little bit about the
20	details of that because there's some concerns with the
21	level of; one, contractor us, and; two, the
22	sophistication of some of the databases and the
23	information that they're using.
24	But anyway, we end up, you know, having a
25	very intense one-week visit with the licensee. We do
I	1

(202) 234-4433

	29
1	walkdowns and we actually get into detailed one-on-one
2	discussions with their experts to find out all the
3	details of what they're doing.
4	And we actually in the walkdown, sometimes
5	see some things that we wouldn't have expected, you
6	know.
7	One walkdown we ended up seeing that the
8	fire modeling had not addressed some of the
9	combustible insulation on the pipes, you know. That's
10	the kind of thing when you're on the walkdown you'll
11	say, well, geez, that's polyurethane.
12	(Laughter.)
13	MR. BARRETT: So, you know, it's quite a
14	process. And we end up, for instance, many of the
15	licensees have integrated databases for their safe
16	shutdown cable and routing programs, the safe shutdown
17	analysis, and then that links up to the PRA.
18	Typically we want to end up knowing how
19	are you going to control this now and in the future as
20	far as configuration management? Because now any time
21	anybody comes in that does a design change, you got a
22	potential challenge to your whole analysis because
23	you're now rerouting cables and changing whether or
24	not something is in the zone of influence for ignition
25	source.
ļ	I

(202) 234-4433

	30
1	So, we end up getting into fairly good
2	detail talking about those kinds of things in the
3	audit to understand that.
4	That's typically not something you're
5	going to see in the LAR, but it is important from an
6	understanding of the process standpoint.
7	We typically end up going into great
8	detail talking about fire modeling, how they're
9	dealing with V&V, which models they're using, what
10	assumptions they are using.
11	In the walkdowns, typically the fire
12	modelers will end up taking notes and looking at
13	specific issues that they might want to ask about,
14	ventilation concerns, that type of thing, how
15	suppression is addressed.
16	And so, all of this ends up forming the
17	basis of where the RAIs come from. We do these
18	walkdowns and discussions with the licensees and then
19	we have questions. And then from those questions we
20	end up writing the RAIs, which are then submitted to
21	the licensee and asked to respond to.
22	It's a very intense week. A lot of
23	discussions back and forth. And in many cases, the
24	staff actually does a good job of explaining why we
25	need information. And the licensee actually
l	I

(202) 234-4433

31 1 understands better after the audit when we come in and 2 say, well, we need to know this because. And that We got a lot 3 ends up being a benefit to both sides. 4 of positive feedback from people saying that the 5 audits are beneficial. They also talk about program quality. 6 7 Things like were people fully qualified to do the analysis that they were doing and did they follow the 8 limitations of use, were they within the range of the 9 V&V models and those kinds of things. 10 A lot of discussion about all those topics. 11 the audit ends up being a very 12 So, beneficial thing overall for the whole thing. 13 14 Next page. 15 MR. LAIN: We'll let Steve jump in on PRA RAIs. 16 17 MR. DINSMORE: Okay. As Paul mentioned earlier, we're doing reviews of internal events and 18 19 external events. 20 The fire PRAs, they're done mostly by imposing the fire failed components onto the internal 21 They don't usually go on start a fire and 22 events PRA. try to figure out the whole scenario. They look at a 23 24 fire, they see what failed, they go to their PRA and they failed it. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	And so, there is a lot of dependence on
2	that internal events PRA which we hadn't really
3	expected, but which we're dealing with.
4	CHAIRMAN STETKAR: Steve, why didn't you
5	expect that?
6	(Laughter.)
7	MR. DINSMORE: Well, I guess personally we
8	did risk-informed ISI and that one you go and you
9	actually fail your pipe and you come up with all your
10	scenarios.
11	So, the internal events PRA is used more
12	as a source of information whereas in this case you go
13	in the - you don't really figure out the whole
14	scenario. You figure out what failed and you impose
15	it on your internal events PRA.
16	CHAIRMAN STETKAR: Right.
17	MR. DINSMORE: Well, okay.
18	CHAIRMAN STETKAR: I guess I would be
19	surprised if - are people actually developing
20	different fire PRA models? I mean, have you seen any
21	of those?
22	MR. DINSMORE: You might - they're probably
23	better off answering that.
24	CHAIRMAN STETKAR: Okay.
25	MR. DINSMORE: I know that they -
I	

	33
1	CHAIRMAN STETKAR: I'll wait.
2	MR. DINSMORE: Okay.
3	(Laughter.)
4	MR. DINSMORE: This makes the quality of
5	the internal events model equally important to the
6	fires.
7	And the internal events as I mentioned
8	earlier, that the peer review started in the late
9	1990s. And they've gone through this complicated
10	process.
11	And we've eventually decided that the only
12	way you can delete a finding or F&O from the
13	consideration is if you have a new peer review that
14	doesn't include it. So, they can't delete themselves.
15	So, we always request as I said during
16	this NUREG review, at this point we're requesting the
17	whole set of F&Os and findings that you had to date,
18	and how you resolved them.
19	So, a number of the RAIs are actually -
20	they submit this stuff and then a lot of times the
21	resolution will be essentially we fix this. And
22	they'll immediately get an RAI, please tell us how you
23	fixed it.
24	So, there's a fair number of RAIs that are
25	coming out that are dealing with the quality of the

(202) 234-4433

	34
1	PRAs.
2	CHAIRMAN STETKAR: Let me ask you because
3	I kind of waded through some of that stuff, but only
4	in the LARs, let me take a hypothetical case that I
5	built an internal events PRA model sometime late `90s
6	and I had some sort of peer review done on that in
7	2002, let's say.
8	And that peer review raised some F&Os and,
9	you know, maybe I addressed them, maybe I didn't,
10	because I haven't had any risk-informed licensing
11	applications in my particular site. So, I had no real
12	incentive to do that.
13	And now I'm going to use the PRA to risk-
14	inform my NFPA 805 transition. And I have another
15	peer review done of that model enhanced to take the
16	fire PRA input, the fire damage input or however you
17	want to characterize it. And that's done in, let's
18	say, 2010.
19	Are you telling me that the second peer
20	review doesn't subsume the quality of the internal
21	events PRA as it existed in 2010 so that you have to
22	look at that 2002 peer review separately from the 2010
23	peer review?
24	MR. DINSMORE: Well, the question
25	illustrates -
Į	1

(202) 234-4433

	35
1	CHAIRMAN STETKAR: Or is it not that
2	simple?
3	MR. DINSMORE: Well, the question
4	illustrates the difficulty we're having following this
5	complicated task. I guess I got a little lost.
6	CHAIRMAN STETKAR: Well -
7	MR. DINSMORE: They could do something
8	called a focused-scope peer review. If they did a
9	peer review in 1995 and then they fix some models to
10	do their fire PRA, they could do a focused-scope peer
11	review on those elements that they fixed.
12	It's kind of similarly defined in the ASME
13	standard. And if they do that, then they - and that
14	focused-scope peer review reviews against that piece
15	of the standard, then the old F&Os can -
16	CHAIRMAN STETKAR: Can still be open.
17	MR. DINSMORE: No, no, they go away.
18	CHAIRMAN STETKAR: Oh, okay, okay.
19	MR. DINSMORE: But if they just come in and
20	review and say, did we fix those right, that's not a
21	focused-scope peer review. That would just be a self-
22	assessment and the old F&Os would not go away.
23	But then when they came in and told us,
24	well, we fixed these, then they would have a good
25	description of why they were fixed.
I	

(202) 234-4433

	36
1	Did I answer - I wasn't quite sure that
2	was the question.
3	CHAIRMAN STETKAR: I'm not sure it was
4	either, but we're going to hear about peer reviews
5	tomorrow. So - I think we're going to hear about peer
6	reviews tomorrow. At least it's on the agenda. So,
7	maybe we'll be able to understand it a little bit
8	better.
9	MR. DINSMORE: Okay. So, there are a fair
10	amount of RAIs that deal with peer review results, and
11	some of those are difficult to deal with as well.
12	This detailed documentation on the
13	SharePoint in the subsequent audits, it actually
14	allows us to look - take a much closer look at
15	significant scenarios in great detail that we usually
16	don't - haven't been doing that. But in this case, we
17	do because of the effect of the submittals.
18	So, then we end up with a fair number of
19	RAIs talking about, well, you know, you had recovery
20	action for fires which failed bus 1A, well, couldn't
21	fine them for 1B. What's the difference?
22	And so, there are quite a number of RAIs
23	dealing with the details of the - the scenarios that
24	they're coming up with.
25	There's another one about, well, there was
I	

(202) 234-4433

	37
1	no transient combustibles postulated in this corner of
2	the control spreading room, and there are two trains
3	in that corner. Why aren't they transient
4	combustibles in that corner?
5	And actually a lot of those real detailed
6	RAIs have kind of worked their way into some questions
7	about the methods. So, we've started in the last
8	couple of submittals, we've started issuing generic
9	RAIs and this one about the transient combustibles is
10	a good example.
11	So, now we're starting to ask, well, how
12	do you place transient combustibles within a fire
13	area? Because, again, we noticed from the detailed
14	analyses that there was - I think that NUREG-6850 says
15	you need to identify pinch points and put the fire in
16	there.
17	And so, this is one of those examples of
18	where there's a method that they don't exactly -
19	they're not following 6850. And so, we'll ask them to
20	do a sensitivity study to - and of course that's
21	difficult because they have to go back in the room and
22	redo. So, the sensitivity studies are not that
23	simple, but we effectively need them to be able to
24	continue quickly.
25	So, there's a fair amount of generic RAIs
ļ	

(202) 234-4433

	38
1	asking directly how did you do something.
2	CHAIRMAN STETKAR: Steve, in those areas -
3	I know the staff has a continuing dialogue, or I
4	assume there's a continuing dialogue between the staff
5	and the industry.
6	In those types of generic areas where -
7	transient combustibles you just mentioned, for
8	example, are you getting the message out to the other
9	applicants that there might be ways that they can
10	structure the models to make the process more
11	efficient? I mean, their process and your process
12	more efficient.
13	In many cases, you know, trying to make
14	the model perfect might not necessarily be - it might
15	not be necessary to try to make the model perfect, you
16	know.
17	If you put the transient combustible in
18	the worst place in the beginning, it can still show,
19	you know, have a problem. That makes everybody's life
20	easier, but my question is more what type of dialogue
21	do you have if you are finding kind of generic issues
22	in several submittals like the one you just raised.
23	MR. LAIN: There is a number of dialogues.
24	I'm kind of looking at Alex to see -
25	MR. KLEIN: I was going to cover that in
I	

(202) 234-4433

	39
1	the last slide.
2	CHAIRMAN STETKAR: Were you? Okay.
3	MR. KLEIN: Well, I think at a high level,
4	to answer your questions, is that the staff, yes. We
5	hold very frequent - actually, almost on a - well, we
6	do on a monthly basis, we do a little communication
7	with the licensees.
8	I'm stealing some of the thunder from
9	Paul, but they do keep track of the RAIs. In fact, I
10	think not at the last monthly FAQ meeting, but I think
11	the one before that we did go over a matrix of RAIs
12	that the licensees had been keeping track of.
13	And in addition to that, we periodically
14	hold public meetings. For example, Dr. Shack
15	mentioned I think the June meeting. That was a fairly
16	largely attended meeting between the staff and the
17	industry to go over some of our observations that
18	we've noted thus far with both the acceptance reviews,
19	our audits and so forth.
20	So, yes, I mean, that communication
21	continues, and it will continue in the future. There
22	are other meetings that we hold. Our division
23	director, Joe Glitter, holds monthly NEI-NRC
24	management - senior management interface meetings that
25	are public.
I	1

(202) 234-4433

	40
1	Joe also contacts on a bimonthly basis,
2	each of the licensees that have an accepted License
3	Amendment Request in house for review. So, there's
4	that constant communication going on there.
5	CHAIRMAN STETKAR: That helps. You know,
6	the FAQ process has become pretty well formalized, but
7	that's generally initiated from the industry.
8	So, I'm assuming the industry -
9	MR. BARRETT: Not always. One of the
10	things I was going to point out was -
11	CHAIRMAN STETKAR: Have you guys actually
12	initiated some?
13	MR. BARRETT: In this particular instance
14	talking about the combustibles, transient
15	combustibles, we initiated a FAQ -
16	CHAIRMAN STETKAR: Okay.
17	MR. BARRETT: - to show a method that we
18	agree with -
19	CHAIRMAN STETKAR: Oh, okay. Good.
20	MR. BARRETT: - that we're proposing for
21	the industry to look at. So, sometimes we end up
22	looking at one of the methods that licensees use and
23	we try to put that out for everybody to use.
24	And so in that particular instance, we
25	have a FAQ that's currently in front of the task force
ļ	I

(202) 234-4433

	41
1	that we had initiated.
2	CHAIRMAN STETKAR: Okay, good. Thanks.
3	MR. DINSMORE: Well, I was finished with
4	the PRA RAIS.
5	MR. BARRETT: Okay, fire modeling RAIs.
6	For the first review of a given consultant group,
7	let's say, we typically will end up asking for input
8	files for the models that they've done and do
9	confirmatory analysis.
10	We've done that for several of the
11	licensees. We did it for Cook. We did it for Duane
12	Arnold just to get an idea of what results we would
13	see and exactly what assumptions that they made.
14	We get into discussions about uncertainty,
15	how they deal with uncertainty. There's RAIs that
16	says, you know, identify what uncertainty you have in
17	your fire models and exactly how did you address that
18	in your decision making. That's a typical RAI.
19	We end up having quality issues with V&V.
20	How do you deal with a V&V? Some of the aspects of
21	their calculations are maybe either outside the range
22	that was validated.
23	A good example would be that I think one
24	of the licensees used CFAST. And the dimensions of
25	the room that were qualified, they had one that was
ļ	I

(202) 234-4433

	42
1	just slightly out of that and said, all right, how can
2	you tell us that this is now V&V when you're outside
3	the V&V dimensions of what the software is meant to
4	be.
5	Those are the typical kinds of questions
6	that the fire modeling guys will end up asking the
7	licensees from an RAI standpoint.
8	Nuclear safety capability assessment, all
9	kinds of different questions, you know. We end up
10	getting into looking at from a deterministic
11	standpoint, we try to understand exactly how they're
12	complying with the regulations.
13	And in many cases based on what's in the
14	LAR, we either can't make sense out of that or it's
15	inconsistent between either one attachment or another.
16	You end up really having to look at the
17	Attachment C which is the fire area review, Attachment
18	G which is the recovery action review, Attachment S
19	which is your modifications, and then Attachment ${ t W}$
20	which kind of sums it altogether.
21	And if you look at all of those and
22	between them it doesn't make sense, then RAIs come out
23	of that and say, all right, guys, what are you doing?
24	We don't understand how you got this answer. A lot of
25	RAIs come out of that.
ļ	

(202) 234-4433

	43
1	One of the things that when we get into
2	the baseline program, 0402 has gotten several
3	different avenues for you to end up showing that you
4	meet the deterministic - or I should say the
5	fundamental program attributes.
6	You can either comply directly with 805,
7	you can comply with clarification which would mean -
8	or should mean that you're really meeting the
9	requirement, but let's say it's a different type of
10	document that it's in, different type of paper.
11	What we're finding is some licensees are
12	using compliance and clarification to actually ask for
13	approval for deviation, which is not proper. And so,
14	we found a few of those and sent back RAIs that says,
15	you know, if you want to do this, you really have to
16	do a performance-based request and give us all the
17	information that is required for that under C27 of
18	50.48 [©] .
19	Some licensees end up referring to their
20	Appendix R program in their comparison to the nuclear
21	safety performance criteria, which is not proper
22	anymore.
23	Now that they're no longer an Appendix R
24	plant, they shouldn't be using that as any part of
25	their justification for meeting the nuclear safety
ļ	

(202) 234-4433

	44
1	performance criteria. So, that's been kind of a
2	generic RAI.
3	Based on comments from the ACRS when we
4	ended up doing the Reg Guide, we ended up endorsing
5	Rev 2 of NEI 0001. There were some minor nuances with
6	Rev 2.
7	Licensees - first couple of licensees that
8	came in did not have any kind of gap assessment or
9	addressing any of the technical concerns in Rev 2.
10	So, that ended up becoming a generic RAI.
11	There have been some of these that came up
12	in the first couple of non-pilots that we're working
13	through with template changes with 0402, which is
14	good. The process if working. We're identifying
15	concerns. They're making changes in the template and
16	now we're seeing that they're being resolved.
17	The last licensee that we ended up
18	receiving in, Nine Mile, ended up catching a lot of
19	that and they're fixing it in their amendment. So,
20	the process is actually working pretty good that way.
21	One thing that is kind of a concern is
22	that we're seeing a general trend of putting less
23	information in the B3 Table or actually Attachment C.
24	In the pilots, for example, the Harris
25	plant gave us very detailed information on a VFDR
I	I

(202) 234-4433

	45
1	level and says this VFDR has a cable and that cable is
2	not in a zone of influence of a risk-significant
3	ignition source.
4	What we're getting from the non-pilots now
5	is the risk is acceptable for the room. There's no
6	details as to why, okay. We have to go down in the
7	lower tier documents and actually understand how that
8	happened versus having it in the LAR and laid out for
9	us on a VFDR basis.
10	Well, this one is within a zone of
11	influence. So, we're either protecting it or doing a
12	modification, you know.
13	The level of information as provided in
14	the Harris submittal is much higher than what we're
15	seeing in these non-pilots, which is making us have to
16	go to a much lower level in their SharePoint
17	information.
18	And in many cases, causes us to ask more
19	RAIS. Because once you get to that level of detail,
20	you have more questions.
21	So, that's kind of a difference in
22	philosophy in what the licensees have given us. And
23	I think you're seeing the results of that and we're
24	generating more RAIs because we're having to look at
25	more detailed information.
ļ	1

(202) 234-4433

	46
1	Some fire brigade issues. For instance,
2	I think one of the licensees ended up wanting to -
3	well, almost all licensees have an administrative
4	requirement that if you're down a man, you have two
5	hours to get somebody in.
6	That's pretty much a standard tech spec
7	thing and that was one of the issues that we ended up
8	putting into a FAQ to try to get that so that
9	everybody would do it the same way. First couple we
10	didn't have that.
11	So, just give you an idea of the kinds of
12	things that we're seeing and what we're asking.
13	MEMBER SCHULTZ: Harry, it seems like
14	there's some pretty fundamental lessons learned that
15	you've described as you've gone through that slide.
16	And you indicated that as the submittals
17	have gone forward, then it doesn't sound like those
18	lessons in fact have been learned if what the reaction
19	has been is less information in submittals,
20	requirements by the staff to do more digging.
21	And I'm a little concerned about the
22	solution being asking more RAIs as a result of this
23	less information that's being presented.
24	Alex, you talked about the meetings that
25	are being held. These upper level lessons learned,
ļ	

(202) 234-4433

	47
1	are they being covered, driven home by the staff to
2	help to assure that the submittals coming in are -
3	MR. KLEIN: Yes.
4	MEMBER SCHULTZ: going to be addressing
5	these issues?
6	MR. KLEIN: Yes, I think that over the last
7	few public communications we've had with licensees,
8	the examples I think that Harry has brought forward -
9	maybe not all of them, Harry can correct me if I'm
10	wrong, but many of these issues we've discussed with
11	licensees.
12	Now, I think what is important to
13	recognize is - and what we're seeing is because of the
14	submittal dates the way we've got them staggered right
15	now, is that the last few that have gotten in-house
16	may not have caught up yet with these lessons learned
17	because of the timing of it.
18	As Harry mentioned, we're still in the
19	middle of the LIC-109 acceptance review for Nine Mile,
20	but our initial observations are that they seem to be
21	addressing a lot of the lessons that we brought
22	forward in past communications.
23	But that's only one data point at this
24	point. So, we're hopefully - we're cautiously
25	optimistic that future licensees will note what has
I	I

(202) 234-4433

	48
1	occurred already, will have enough time to address
2	these lessons learned going forward.
3	We'll have more knowledge by the end of
4	September when additional licensees have come in. I
5	think there were four that are due by the end of
6	September.
7	MEMBER SCHULTZ: Thank you.
8	MR. RAY: Let me interject a question here
9	that has been on my mind over the last few
10	discussions.
11	There's a tremendous amount of detail.
12	You've been going into it and how you have to dig down
13	to find the information sometimes.
14	How is that handled from a standpoint of,
15	I'll call it, compliance stability or five, 10 years
16	down the road? Who knows what went into these
17	assessments later so that a change would trigger a
18	reassessment or -
19	MR. BARRETT: Well, actually that's one of
20	the questions that we've had from a quality standpoint
21	is that the vast majority of these analysis are done
22	by contractors and the transfer of knowledge is a
23	question.
24	Because once the contractors leave, the
25	licensee needs to do modifications and pull new
	I

(202) 234-4433

49 1 cables. They've got to have somebody that understands the databases and the software that's used to end up 2 3 doing this analysis. And they need to maintain the 4 analysis up to date. 5 We don't want to have another Appendix R where people spend \$10 million doing an Appendix R 6 7 study and then put it on the shelf and ignore it for 8 ten years, and then find that their plant is no 9 longer, you know, even close to what the analysis 10 shows, you know. 805 has a very rigid requirement that this 11 has got to be a living analysis and they need to end 12 up having qualified people to maintain the analysis, 13 14 you know, real time. 15 So, we've had numerous questions about 16 that and there's RAIs out there. It's just tell us 17 how you're going to end up maintaining this going forward and make sure that the right people with the 18

right qualifications are available to make sure, youknow, your analysis is valid.

21 MEMBER RAY: Well, you know, we get into 22 sometimes really religious debates over applying 50.59 23 to changes in the licensing basis, for example.

24 Well, this is another world that is very 25 similar to that, but I don't know what the rules are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	50
1	or how they've ever expected to be -
2	MR. BARRETT: Well, from -
3	MEMBER RAY: implemented.
4	MR. BARRETT: From a process standpoint, I
5	think there is - I won't say it's rigid guidance, but
6	there's some fairly good guidance in 0402 and in the
7	Reg Guide as to exactly how that's supposed to be
8	carried forward.
9	Plant change evaluations are the vehicle
10	that you use to assess whether or not a change to the
11	fire protection program ends up being allowable or
12	not.
13	MEMBER RAY: Well, is it a part of 50.59,
14	or is it -
15	MR. BARRETT: No, no.
16	MEMBER RAY: It's parallel to it though,
17	right?
18	MR. BARRETT: It's
19	MEMBER RAY: Functionally it's the same.
20	MR. BARRETT:parallel only in the fact
21	that it's self-approval. It's actually done through
22	a license condition and is similar to the current fire
23	protection license condition in that licensees can
24	make changes so long as it's within the bounds of the
25	license condition.
I	I

(202) 234-4433

	51
1	And the license condition for fire
2	protection allows them various different avenues that
3	they can end up assessing whether or not their change
4	adversely impacts the fire protection program.
5	MR. KLEIN: I think your question is an
6	important one. And I think that we recognize it as
7	important. I think that's why, you know, you've heard
8	Harry's response. And even at the senior management
9	level we've had conversations with the individual
10	licensees. I've mentioned the bimonthly phone calls
11	that we hold.
12	We reemphasize the need for having
13	qualified folks on their staffs so that this stays a
14	very viable program moving forward.
15	When we're at the audits, we do sit down
16	with their senior management to emphasize that same
17	point. And I think in terms of communication, you
18	know, the staff here is trying very hard to make sure
19	that that message gets across to the licensees.
20	MEMBER RAY: Well, I'm sure you are and it
21	probably is being done effectively. But, you know,
22	five, ten years go by and it's hard for these things
23	to stay in place unless there's something that causes
24	that to happen.
25	Okay, that's enough. I won't pursue it
I	I

(202) 234-4433

ĺ	52
1	further at this point.
2	MR. LAIN: Okay, we'll move on to the
3	summary slide. I think so there's two sort of
4	distinct processes going on here. We're staying
5	within our process to review License Amendment
6	Reviews. It's our LIC-101 process and we pretty much
7	have discussed all the ins and outs with that.
8	But also, Alex discussed a little bit
9	about our continued work with the stakeholders. Just
10	a few other things besides our monthly FAQ meetings
11	and our monthly management meetings is that we do hold
12	periodic workshops.
13	There is straining that Research puts on,
14	on NUREG/CR-6850 that we - is in our user's need with
15	research. We also do attend the NEI Fire Protection
16	Forum and give plenty of presentations there. So,
17	we're continuing to try to work on these issues.
18	We are, I think, reviewing right now the
19	LAR template for industry and looking at revisions to
20	NEI-0402, which is the implementation guidance that
21	our reg guide endorses.
22	And then also the EPRI unreviewed analysis
23	method, also we're working with that.
24	MR. KLEIN: Can I just clarify something
25	that Paul just said?
	I

(202) 234-4433

	53
1	MR. LAIN: Yes.
2	MR. KLEIN: Paul, in terms of the license
3	amendment template with the licensees -
4	MR. LAIN: The LAR template?
5	MR. KLEIN: The LAR template. We have not
6	received a submittal yet from the industry on that.
7	MR. LAIN: Oh, okay.
8	MR. KLEIN: But we're certainly aware that
9	they're working on it and that the staff is ready and
10	prepared to work with the industry on that.
11	MR. LAIN: Any other questions? I think
12	we've got 30 seconds left.
13	CHAIRMAN STETKAR: Actually, you have five
14	minutes and 30 seconds.
15	(Laughter.)
16	CHAIRMAN STETKAR: Anything from the staff?
17	Anyone?
18	(No response.)
19	CHAIRMAN STETKAR: Thank you very much.
20	Summarized a lot of information in a good amount of
21	time. So, we really appreciate that.
22	According to the agenda, we're scheduled
23	for a break. Even as an old guy, it's a little bit
24	early for a break for me.
25	So, I think what I'll do with DC Cook's
I	

(202) 234-4433

	54
1	agreement is ask DC Cook to come up and start their
2	presentation. And unfortunately, we'll break in the
3	middle of it to keep the continuity going here,
4	because it's just a little early, I think.
5	(Pause.)
6	(Discussion off the record.)
7	MR. MacDOUGALL: Before we get started just
8	for information purposes, we do have handouts over on
9	the table over there. And one of them is the full
10	slides, and there was a second set where we had some
11	examples of some transient fire modeling that we did
12	and some fixed fire modeling. So, make sure you get
13	both.
14	CHAIRMAN STETKAR: The fire modeling slides
15	are public?
16	MR. MacDOUGALL: Yes.
17	CHAIRMAN STETKAR: Okay, just to make sure,
18	because they will be put on the record and included
19	with the meeting records.
20	MR. MacDOUGALL: Good morning. My name is
21	Dan MacDougall and I'm the NFPA 805 project manager
22	for DC Cook nuclear plant.
23	First, we'd like to express our
24	appreciation on behalf of AEP and DC Cook for the
25	opportunity to speak with ACRS, the staff once again
	I

(202) 234-4433

	55
1	and our industry peers and work with them on these
2	presentations. It's an opportunity for you to see our
3	challenges and an overview of our project and where
4	we're at. And I can't emphasize enough what a
5	complex, iterative, intrusive process this is.
6	It's been a lot of work for everybody and
7	it's taken enormous amount administry participation
8	and rhetoric with the staff and our peers and I
9	appreciate the opportunity.
10	That being said, the complexity behind
11	this, I have some guests with me today representing DC
12	Cook.
13	Our vice president of site support
14	services, Mike Carlson is with us. Our regulatory
15	affairs manager is sitting up here today.
16	With respect to the presentation itself,
17	I will be doing the first eight slides on an overview
18	of the station, how we're set up. Give you an idea
19	how we safely shut down the plant in a fire event,
20	alternate shutdown, some pinch points with risk.
21	Mark Schairer will be discussing about six
22	slides, eight slides on fire modeling. Detailed fire
23	modeling. We'll have a couple examples of challenges
24	we're having with transient ignition sources and some
25	fixed sources to walk through. And then Jeff Julius
ļ	I

(202) 234-4433

	56
1	with Scientech will be presenting about nine slides on
2	PRA.
3	Just for information purposes, it's a
4	total of 29 slides. Last night we did a dry run again
5	and we did some questioning attitude-type things and
6	we ran like an hour and a half, roughly.
7	So, just for time I don't -
8	CHAIRMAN STETKAR: You can't control this
9	group. So, just plunge on and we'll finish.
10	MR. MacDOUGALL: First time evolution for
11	me with ACRS, this information.
12	CHAIRMAN STETKAR: yes.
13	MR. MacDOUGALL: Presentation overview.
14	I'm going to give you some background about DC Cook
15	and the features of the station itself that impacted
16	the PRA.
17	We will give you a quick summary of our
18	transition of 805. Originally where we were headed
19	with it, why we transitioned, what our original
20	intent, our goals were.
21	Then our development of the PRA and the
22	challenges of hitting the regulatory guidance
23	initially.
24	And then RAIs as they came through, our
25	LAR submittal challenges with that. Our LAR submittal
I	

(202) 234-4433

	57
1	challenges with RAIs. Review of uncertainty, the
2	challenges in that area.
3	And then kind of cover what Harry talked
4	about later in his slides on the implementation
5	challenges we're seeing at the station as we get
6	closer to getting our SE. Like I said, probably about
7	an hour and a half is what we've seen, but it's up to
8	you.
9	DC Cook plant features, we are located in
10	Bridgeman, Michigan. Beautiful southwest Michigan.
11	Wine country. If anybody likes to visit that area
12	this time of year, it's great.
13	We have two units. Total of 2150
14	megawatts, approximately. We're a four-loop
15	Westinghouse PWR with ice condenser containments,
16	which kind of presented some challenges in our PRA.
17	The ultimate heat sink is Lake Michigan.
18	All plant cooling is direct lake water heat exchange.
19	Alternate shutdown relies on other unit systems for
20	pump fluid services. For example, full alternate
21	shutdown we cross-tie CVCS, CCW, ESW aux feedwater and
22	ESW needed.
23	We do have a dedicated fire brigade that
24	is independent from the operations staff. So, in our
25	time feasibility validation, our fire brigade and fire
I	I

(202) 234-4433

	58
1	fighting activities are separate from our ability to
2	safely shut down our independent staffing from the
3	control room. The fire brigade does not credit any
4	safe shutdown strategies.
5	We do not have a dedicated remote shutdown
6	panel. So, we didn't meet the guidance for a primary
7	control station on that. So, that impacted risk. We
8	do have local indication panels, LSI panels that
9	provide indication only.
10	CHAIRMAN STETKAR: Dan, you said the fire
11	brigade is not credited in any of the safe shutdown
12	strategies. That's deterministically.
13	Does the risk-informed part of the
14	transition account for fire brigade suppression?
15	MR. MacDOUGALL: And response time.
16	CHAIRMAN STETKAR: It does, okay.
17	MR. MacDOUGALL: You are correct, yes.
18	CHAIRMAN STETKAR: Thanks.
19	MR. MacDOUGALL: Picked up in the
20	monitoring program also.
21	Originally in 2005, we established goals
22	for the transition. The objective adopting NFPA 805
23	was to adopt a risk-informed fire protection program.
24	Specifically, we were looking for a little more
25	realism and full burnout in Appendix R. Full area
Į	1

(202) 234-4433

	59
1	burnout. And notably we have multiple hot standby
2	manual actions close to five, 600. And 2200 cold
3	shutdown actions.
4	So, we were looking to get more realistic
5	and basically quantify our margin and our risk and
6	become safer.
7	Other part of that was we were trying to
8	be responsive to the NRC industry request for people
9	to transition. For stations to adopt NFPA 805 and our
10	executive management team decided to do that. So,
11	that was another big driver. Obviously, it takes
12	their support from business case.
13	And we want to provide a more
14	understandable licensing basis. The intent of that is
15	a lot of our documentation and our exemptions, SERs,
16	go way back into the early '80s, late '70s.
17	And to be perfectly honest, it's hard to
18	go back and find a lot of that paper and make sure
19	it's even valid for today's standards.
20	And we just - there were multiple SERs,
21	multiple exemptions and it was a difficult maintenance
22	issue for us as far as a licensing basis to maintain.
23	So, we were hoping to go back and
24	reconstitute all that, which we have. We have been
25	successful in that arena.
Į	I

(202) 234-4433

There were some business case issues we were hoping for or looking at, actually. Reduced fire protection test and maintenance cost. We've seen a huge paradigm shift with respect to suppression systems. On what used to be TRM-related is now no longer with significant.

And our non-TRM systems have become risk significant for us. For example, turbine building suppression and detection. Where before really availability and reliability wasn't tracked formally because we were focused on our PRM regulatory systems and compliance.

A big discussion there is we've got close to 40 CO2 systems, automatic CO2 systems. And in the risk-informed performance-based arena, I think we're down to eight is that number that are really risk significant. And 36 of those 40 are currently in our TRM. And all eight of them are in our TRM.

We've got close to almost 600 emergency light, fixed emergency light battery packs. Three to four heads on each one. Over 2200 heads that we maintain.

Not all of those are Appendix R related.
Roughly a third, but almost, I'd say, in head space as
far as not just pack heads, close to a thousand lamps

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

	61
1	that we're maintaining. And eight-hour discharge
2	testing. And we'd hoped with the no longer the
3	requirement for fixed lighting, that we could use the
4	hands-free lighting to gain some margin there.
5	And then reducing fire barriers through
6	consolidation of analysis areas and fire domes whereas
7	the old BTP three-hour-rated barriers now even into
8	our new fire analysis area is different only one
9	different, actually, but the fire zones we had hoped
10	to reduce are our barrier maintenance.
11	One significant achievement was our
12	reduction in manual operator - OMAs and our new
13	recovery actions. Our feasibility study right now
14	shows 157 recovery actions that are both time critical
15	and defense in depth that we've evaluated and done
16	feasibility on that our - in our RAI response plus the
17	600 hot standby actions we had on our Appendix R. And
18	of course no cold shutdown actions in 805 space.
19	Background on the station and where we're
20	at in our LAR submittal, we did follow the 0402
21	template in our submittal. We did have to issue one
22	supplement because we did not include our aggregate
23	CDF and delta LERF from our base PRA in our LAR
24	submittal. So, we did issue a supplement September
25	2nd to forward that to the staff.
ļ	

(202) 234-4433

	62
1	We did have some questions come up during
2	the LIC review, but no showstoppers. And it was
3	acceptable.
4	We did use our base PRA applied during the
5	development of the FREs, which are included in
6	Attachment W of the LAR, which we'll discuss in the
7	next two slides just to give you background on the
8	FREs and the FSAs purely from the perspective of both
9	the maintenance and implementation, and then the rigor
10	that we had to put in our analysis.
11	To date, we've received a total of 39
12	RAIS. Multiple subparts. So, roughly that comes to
13	78. 60 percent of those are PRA related. Of that 60
14	percent, ten percent are fire modeling V&V-type
15	questions.
16	FYI. Subsequent to 39 RAIs, we got six
17	separate RAIs on radioactive release that we responded
18	to. And those had multiple subparts primarily
19	concerned with more detailed analysis and
20	quantification of capacity of sumps, suppression
21	system, manual suppression, that type of thing. Those
22	turned to be somewhat of a challenge, which we'll
23	discuss later.
24	And we did have a site visit in December
25	of 2011 that proved to be very productive to discuss

(202) 234-4433

1 fire modeling where the staff came down, Mr. Lain, Alex and several of the contractors. And we literally 2 3 did a hand-over-fist walkdown of the station and spent 4 a solid week going through both our main control room 5 fire modeling calculations, our main control room ventilation equipment room fire modeling calculations 6 7 and four kV switchgear rooms. 8 And it was very intrusive and we have 9 responded to those and there was learnings for both And we found issues we did enter 10 sides out of that. into our corrective action program and fixed them to 11 12 respond to them. And actually just informally I'll say that 13 14 process worked very well. We were able to write the 15 CR, get - or the corrective action document, get it in 16 process, get the calc revived, fix our inputs and keep 17 moving forward. The next two slides are just a guick 18 19 overview of our FREs and our fire safety analysis because they provide a lot of the basis for our 20 program and where PRA fits in, and later on some of 21 22 our challenges. The fire risk evaluations were used to 23 24 determine delta risk between the complaint plant and NFP 805 post-transition plant. We documented delta 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

63

	64
1	and core damage frequency and LERF.
2	We had over 260 VFDR risk evaluations
3	using 500 and 900 - or using 900 fire PRA scenarios.
4	157 of those required either defense in depth or -
5	required recovery actions to resolve.
6	CHAIRMAN STETKAR: Dan - Jeff, are you
7	going to talk a little bit - explain a little bit more
8	about how those 260 VFDRs map into what are
9	characterized as 900 PRA scenarios?
10	MR. JULIUS: No, we -
11	CHAIRMAN STETKAR: The reason I ask is
12	we're going to be hearing from three different
13	licensees. And I at least as I went through the
14	different applications, had a sense that the use of
15	the PRA models might be - there may be different uses
16	of the PRA models. Let me just put it that way.
17	I might be wrong, but I want to make sure
18	that I understand, you know, how each of the licensees
19	have used the models to drive those scenarios.
20	MR. JULIUS: No, we don't have a further
21	slide or evaluation. So, this will be -
22	CHAIRMAN STETKAR: Well, I'll wait until
23	you come up then and ask you this.
24	MR. JULIUS: Okay.
25	CHAIRMAN STETKAR: We're going to take a
ļ	I

(202) 234-4433

	65
1	break so you can think a little bit about it, but
2	thanks.
3	MR. MacDOUGALL: In the end, it was based
4	on Reg Guide 1.205 and 1.174 requirements. And then
5	at the end we did meet the 1.174 risk assessment
6	guidelines and we'll present the specific numbers to
7	you later and show you we're on CDF for delta risk on
8	Unit 1. We're close. We're on the bubble there and
9	we'll discuss that in detail. Challenge, that
10	specific challenge.
11	Our FSA is more of the old fire hazard
12	analysis portion. We had a total of 57 fire areas
13	that we did FSAs on both deterministically and then
14	document some of the performance-based criteria.
15	The FSA is described by fire protection
16	systems and features. Our NSCA compliance strategies
17	discusses the VFDRs and what recovery actions are
18	associated with them.
19	Our fire PRA FRE risk results, and then
20	expands on some programs that are implementation items
21	right now, radioactive release review, NPO Monitoring
22	and defense in depth. That's just an FYI for later
23	for when we get to a later slide.
24	In our License Amendment Request we have
25	several implementation items. As far as hardware
I	1

(202) 234-4433

	66
1	modifications go, we've got approximately MOVs. We
2	have to do 92-18 modifications too.
3	We've got fuse replacements that we've
4	identified as a result of our coordination study. We
5	do have four systems - two systems that we have to -
6	to get the risk down, there are currently manual CO2
7	systems that we have to change to automatic.
8	CHAIRMAN STETKAR: Can you tell us what
9	areas -
10	MR. MacDOUGALL: Switchgear area.
11	CHAIRMAN STETKAR: Switchgear?
12	MR. MacDOUGALL: Yes.
13	Early on in the transition, 2009 I believe
14	it was, we took enforcement discretion because we
15	found a 250 full DC cable running in one of the other
16	four K units and we had to change that to automatic.
17	And this is the area right outside the MCC room. So,
18	the same complex, basically.
19	We do have some procedural implementation
20	items. And that's - well, we've got multiple
21	transient combustible control and combustible free
22	zone hot work free zones that we've got to get
23	proceduralized and marked in the station and roll that
24	out.
25	And then of course our monitoring and NPO
	I

(202) 234-4433

	67
1	programs we've got to get our expert panel together,
2	prioritize our monitoring process. And then our NOP
3	identify, which we're working on these now is we've
4	got a table that identifies the pinch points. And
5	we've got to get with operations and the outage
6	management group and see what compensatory actions
7	we're going to institute in outage periods as a result
8	of NPO.
9	And that's a real paradigm shift for them
10	for us to step in the outage management schedule.
11	CHAIRMAN STETKAR: Let me ask Jeff again,
12	are you going to talk a little bit about whether or
13	not you used any risk insights for NPO modes?
14	MR. JULIUS: No, we hadn't planned to.
15	CHAIRMAN STETKAR: Okay.
16	MR. MacDOUGALL: That completes my portion
17	of the presentation, and now we'll continue with -
18	CHAIRMAN STETKAR: Actually, now as an old
19	guy, this is, I think, an appropriate time to take a
20	break.
21	So, let's take a 15-minute break and we'll
22	reconvene at 10:05.
23	(Whereupon, the above-entitled matter
24	went off the record at 9:49 a.m. and resumed at 11:04
25	a.m.)
I	I

(202) 234-4433

```
(202) 234-4433
```

	68
1	CHAIRMAN STETKAR: Okay. Let's reconvene.
2	I hope you all had an enjoyable hour. I know it was
3	good for me.
4	In terms of time and schedule here, I
5	think what we'll do is we'll let DC Cook finish up.
6	I'm assuming that will happen - let's shoot for no
7	later than 12:30.
8	We'll then break for lunch and I'll be
9	generous. I'll give you 45 minutes for lunch. We'll
10	reconvene at 1:15.
11	And then we'll plan to go until no later
12	than 6:00. I want to make sure we get enough time
13	allocated for the two presentations this afternoon.
14	Since VC Summer is last up on the agenda,
15	I don't know - do we have people from Summer here? Is
16	that going to cause any problems with flight schedules
17	for you?
18	(Off-record discussion.)
19	CHAIRMAN STETKAR: Okay, good. Okay. So,
20	let's do that. And with that, we're back in session.
21	And, Dan, pick up wherever you were.
22	MR. MacDOUGALL: Okay. Looking at the
23	slides, we were on Slide Number 9, fire PRA Peer
24	Review. On the agenda, it puts us about a third of
25	the way through.
ļ	I

(202) 234-4433

	69
1	CHAIRMAN STETKAR: That's okay. We'll be
2	okay.
3	MR. MacDOUGALL: And Jeff Julius from
4	Scientech will pick up that portion of it.
5	MR. JULIUS: Good morning. So, we're going
6	to start with the overview of the fire PRA peer
7	review, and then the fire PRA results followed by the
8	discussion of the technical challenges.
9	We conducted our peer review in October
10	2009. It was done by the PWR Owners Group. As Steve
11	Dinsmore had mentioned, the fire PRA was built from
12	the internal events PRA.
13	There's no significant or showstopper type
14	of findings. We had 61 F&Os, 36 suggestions and 25
15	findings. And all the impacts were resolved and
16	documented as part of the LAR attachment V.
17	The PRA Owners Group indicated that
18	overall the fire PRA quality was found to be very good
19	and many of the elements being performed at that
20	state-of-the-art level.
21	The peer review process provided a good
22	independent look at the model and basis and the
23	findings and comments were - gave us some good
24	insights of things that we needed to address before
25	applying the model to the fire risk evaluations.
l	I

(202) 234-4433

	70
1	The summary. So, this is kind of an
2	overview of where I'm going with this was that the
3	fire PRA results for Cook reflect and complement the
4	deterministic defense in depth approach. And in that
5	respect, the insights aren't surprising.
6	The fire PRA results are in many cases,
7	influenced significantly by conservative data and
8	modeling. And you'll see in the upcoming slides, we
9	do account for the uncertainty in the analysis and in
10	the transition, including the conservatism.
11	The insight or the thing I want to
12	emphasize here is that we looked at the different
13	pieces and including the uncertainty, and we're trying
14	to make sure that the plant changes we make whether
15	they're procedure changes or hardware changes, are not
16	based solely on the calculated CDF. It's what's the
17	drivers behind there.
18	So, we've got an additional slide where
19	we'll further talk about that, but overall it's a
20	success story. And based on the efforts of many, the
21	plant, the industry and the NRC, we've come a long
22	way, but we've still got a critical evaluation of the
23	results is essential to ensure the PRA results are
24	properly understood and characterized.
25	This is somewhat akin to the IPE era where
I	1

(202) 234-4433

	71
1	we got to the end of the IPEs and then we, you know,
2	worked to further refine and reduce and make the
3	models more robust.
4	So, in that respect, there are efforts
5	underway for the NFPA 805 fire PRAs to be enhanced for
6	future use in risk in management and risk-informed
7	activities. And continued data and methods
8	enhancements are needed, and EPRI is supporting those
9	types of activities.
10	CHAIRMAN STETKAR: Jeff, you'll have to
11	excuse my ignorance because, unfortunately, the ACRS
12	was not involved in either of the pilot plant SERs or
13	the review. So, we're not as familiar, perhaps, as we
14	should be with some of the technical details or how
15	the process works.
16	I tried to look through your slides and I
17	didn't see anything on it, but I thought I'd ask you
18	and perhaps somebody else can help. There are a large
19	number of - and I always forget what they're called.
20	The four Es, existing engineering equivalency
21	evaluations that are cited in the application.
22	And in many cases, their evaluations to
23	justify equivalency of a fire barrier or separation
24	for an equivalent time or something like that.
25	How do those interface with the PRA, or do
I	I

(202) 234-4433

	72
1	they? Because in some fire areas, they're used for
2	justification for deterministic resolution of a fire
3	area because you have an equivalent fire barrier or
4	adequate separation or coverage on suppression systems
5	and that sort of thing.
6	But I noticed in many cases for fire areas
7	that you have used the PRA, if you go to Appendix C
8	they're interleaved for different VFDRs. Also account
9	for the engineering whatever they're called. The
10	four Es.
11	So, I was curious do they affect the PRA
12	modeling? How do you use them when you develop the
13	PRA models for those fire areas?
14	MR. JULIUS: That's a good question. One
15	we hadn't really talked about. Mark, would you -
16	MR. SCHAIRER: Yes, I mean, I guess we can
17	in general terms, those quad Es, you know, engineering
18	equivalency evaluations are generally applied to the
19	deterministic requirements for fire barriers. And
20	they kind of fall into two categories adequate for the
21	hazard or functional equivalent. And they apply
22	really to Chapter 3 of NFP 805 for the most part.
23	The one that you kind of zeroed in on is
24	the fire barriers if there's a fire barrier that may
25	have, you know, less than adequate seal or a door that
	1

(202) 234-4433

	73
1	may not be rated to the barrier, you know.
2	That may come into play partially in maybe
3	plant partitioning where we evaluate the adequacy of
4	the plant partitioning elements.
5	CHAIRMAN STETKAR: Okay. Let's follow up
6	on that.
7	Do you then in the PRA when you define
8	your fire area boundaries, account, you know,
9	essentially take credit for that quad E conclusion?
10	MR. SCHAIRER: Yes.
11	CHAIRMAN STETKAR: You do.
12	MR. SCHAIRER: Right.
13	CHAIRMAN STETKAR: Okay.
14	MR. SCHAIRER: It's part of our assessment
15	of the fire barrier -
16	CHAIRMAN STETKAR: It becomes a rated fire
17	barrier in the sense of -
18	MR. SCHAIRER: Right.
19	CHAIRMAN STETKAR: defining your fire
20	areas.
21	MR. SCHAIRER: It may not be three-hour
22	rated, but it's shown to be adequate for the -
23	CHAIRMAN STETKAR: What about the - and I'm
24	trying to skim through things here because
25	unfortunately I get confused among the three things
	I

(202) 234-4433

	74
1	that I've read.
2	What about things like equivalent
3	protection of cables, one-hour fire ratings and things
4	like that? Do you also account for that in the PRA as
5	-
6	MR. JULIUS: Generally, I think they were
7	counted for when we looked at the development of the
8	VFDR because most of ours were cable separation issues
9	and we didn't have any of the -
10	CHAIRMAN STETKAR: So, you didn't have any
11	of the equivalent wrap or something?
12	MR. JULIUS: None that I can recall.
13	CHAIRMAN STETKAR: I'll ask somebody else.
14	As I said, I'm trying to skim through things.
15	MR. JULIUS: Yes.
16	CHAIRMAN STETKAR: But the message is you
17	do account for them if necessary to either define a
18	boundary for a fire area or adequate separation.
19	MR. JULIUS: That's right. And I'm sure it
20	would have come up during - in the development of the
21	FRE, we had a multi-disciplinary or team approach.
22	So, when we talk about an area, we had the
23	fire safety evaluation and we start with the area
24	characteristics and the fire protection features of
25	the area.
I	I

(202) 234-4433

75 And we discuss all the, you know, any of 1 2 the factors like that that were associated with the 3 area and the VFDRs and then how we were going to 4 capture those in risk assessments. 5 CHAIRMAN STETKAR: Have you used fire 6 modeling to justify any of the engineering 7 equivalents? 8 MR. JULIUS: No, no. CHAIRMAN STETKAR: You haven't. 9 10 MR. JULIUS: No. CHAIRMAN STETKAR: They're all based -11 MR. SCHAIRER: And I'll just touch upon one 12 The fire barrier being one example, 13 other example. 14 and another one is there are some engineering evals 15 for, say, lack of full area suppression. Those would not get rolled into the PRA as 16 17 an assumption. Because when we do fire modeling, we're doing field walkdowns to really assess where the 18 19 suppression is. So, we will - that's an example where it would not be included in the PRA. 20 CHAIRMAN STETKAR: Okay, okay. 21 Thanks. Dan, have you had many questions from the 22 staff on the engineering equivalency evaluations? 23 24 MR. MacDOUGALL: As far as RAIs, yes, we 25 have.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	CHAIRMAN STETKAR: You have, okay.
2	MR. MacDOUGALL: Not several. We have had
3	some.
4	CHAIRMAN STETKAR: Thanks, that helps.
5	Because I wasn't quite sure how those two efforts
6	dovetailed. And I would - I quite honestly didn't
7	appreciate the number of those engineering evaluations
8	that were performed to support, you know, the entire
9	License Amendment Request until we dug into it.
10	Because as I said, we've not really
11	addressed one of these before. So, thanks, that
12	helps.
13	MEMBER SCHULTZ: Jeff, are you going to get
14	into more detail related to the uncertainty analysis
15	and the comment that's in that slide that
16	MR. JULIUS: Yes.
17	MEMBER SCHULTZ: the results can be
18	reduced? Is that an example you say they can be
19	reduced, or is this an activity that's been applied in
20	this case, the result of which is a reduction of a
21	factor of five to ten?
22	MR. JULIUS: We've done a fair effort in
23	this case and in several sensitivities, as well as
24	parametric data on certainty. I've got a separate
25	slide that speaks to that. So, I'm sure that will be
l	I

(202) 234-4433

	77
1	an interesting topic.
2	MEMBER SCHULTZ: Thank you.
3	MR. JULIUS: In general, the fire PRA model
4	attributes, the model, success criteria, the random
5	failure probabilities come from the foundation PRA,
6	which is the internal events PRA.
7	We followed NUREG-6850 and Supplement 1.
8	And all the approved NEI frequently asked questions
9	have been incorporated.
10	There is a separate PRA model for each
11	unit, and the overall plant site has 57 analysis
12	areas. And one of the interesting parts, some of the
13	analysis area had cables for both units. So, when we
14	got to those areas, we calculated impact to both Unit
15	1 and to Unit 2.
16	Then we sum the CDF and LERF and the delta
17	CDF and delta LERF was calculated in for each analysis
18	area.
19	The ice condenser containment was more
20	limited for LERF than other PWR containment designs
21	and it did contribute - we added a couple of recovery
22	actions specifically to address LERF and to make sure
23	our overall LERF numbers were down.
24	But typically, the core damage frequency
25	was the determining factor for the - or the limiting
I	I

(202) 234-4433

	78
1	factor for the risk metrics in an individual area.
2	MEMBER SCHULTZ: I'm sorry, you're talking
3	about the absolute value of LERF, or the delta?
4	MR. JULIUS: I'm talking in general both.
5	We use these recovery actions in general to bring the
6	absolute value down.
7	The delta LERF, an interesting piece is
8	that because the former licensing basis, the LERF
9	wasn't part of - there's not a variance for
10	deterministic requirements associated with LERF. And
11	so, the delta LERF was not affected then by those
12	actions.
13	MEMBER SCHULTZ: Okay, thanks.
14	CHAIRMAN STETKAR: One way of thinking of
15	it.
16	MR. JULIUS: Well, we did make sure we
17	captured that insight. We were taking care of LERF
18	and not just saying there's no variance, no problem.
19	In terms of the risk metrics, the table on
20	the top shows the fire CDF and the delta CDF, and the
21	LERF and delta LERF for each unit as presented in the
22	LAR. And then the follow-on question about how does
23	that fire relate - fire contributions relate to the
24	overall CDF and internal events and seismic.
25	And so, you can see the 3.55E-5 from Unit
	I

(202) 234-4433

	79
1	1. That's a factor of three or four higher than the
2	internal events CDF. And the total core damage
3	frequency from all hazards at Unit 1 is 5.2E-5.
4	And you see where the four-and-a-half to
5	5E-5 CDF for Unit 1 and Unit 2 from all hazards and
6	LERF 7E-6 in Unit 1 and 6E-6 at Unit 2.
7	The interesting thing of note as Dan
8	mentioned earlier, the delta CDF were below the 1E-5
9	limit, but not a whole lot below.
10	So, we've got in terms of the margin or to
11	the limits anyway, the CDF and LERF we have a fair
12	margin. And then we're fairly tight on the delta CDF.
13	In terms of the contributors to these,
14	it's interesting on the two slides, one on the top
15	areas and one on the top scenarios.
16	The top 16 areas for Unit 1 contribute to
17	greater than 95 percent of the risk. And it's roughly
18	the same number also for Unit 2.
19	Out of the slide, you can see the
20	different contributions in the - after the first three
21	areas, it drops off and to the - each area is less
22	than 10 percent.
23	Of note, the turbine building and the yard
24	there while they contribute 20 percent and 11 percent,
25	so almost a third of the total fire CDF, there are no
ļ	

(202) 234-4433

	80
1	variances from deterministic requirements in there.
2	And so, there we stop the quantification
3	at the whole fire zone burnout and we don't have
4	detailed fire scenarios. That's an area where in the
5	future we'll probably look to do some further
6	refinement of the model. That's an example where
7	there's different levels of detail in different pieces
8	of the model.
9	CHAIRMAN STETKAR: That was just your own
10	choice. You didn't want to spend any more time.
11	MR. JULIUS: We were at 4E-5 total fire -
12	CHAIRMAN STETKAR: Some of the conservatism
13	in your results is just you didn't want to spend any
14	more time.
15	MR. JULIUS: Well, because we were focusing
16	our time on the -
17	CHAIRMAN STETKAR: I understand.
18	MR. JULIUS: But you're right. We stopped,
19	yes.
20	CHAIRMAN STETKAR: And that's - anybody
21	who's done these things knows how they're done.
22	That's how they're done.
23	I'm assuming that's from loss of - fire-
24	induced loss of offsite power, is it?
25	MR. JULIUS: That's correct.
I	I

(202) 234-4433

	81
1	CHAIRMAN STETKAR: Are you going to talk a
2	little bit about some of these areas, or were you
3	planning to do that, or no?
4	MR. JULIUS: We have some other areas that
5	come up when we get to the specific examples on some
6	of the -
7	CHAIRMAN STETKAR: Okay.
8	MR. JULIUS: technical challenges.
9	CHAIRMAN STETKAR: Going to talk about the
10	control room, or not?
11	MR. JULIUS: No, we had not planned - we're
12	showing the cable spreading room and that's got some
13	analogies because it invokes some of the same actions.
14	But, you know, are you talking about the
15	fire modeling on the control room?
16	CHAIRMAN STETKAR: It was just a little
17	surprising because you don't - we'll hear later that
18	some licensees have invoked the primary control
19	station notion, and you've not done that in this PRA,
20	right? I mean, other than the main control room.
21	But fires that affect the main control
22	room, you don't relocate to a primary control station
23	where the operators are perfect.
24	MR. JULIUS: That's correct.
25	CHAIRMAN STETKAR: And that's why I was a
I	1

(202) 234-4433

	82
1	little bit surprised that the control room with the
2	relatively large number of recovery actions that you
3	have is a relatively small percentage of the total.
4	It must mean that you did a heck of a lot
5	of work on it.
6	MR. JULIUS: We did a heck of a lot of work
7	on it. We do have some other areas that are leading
8	to this similar type of actions that have a higher
9	frequency.
10	CHAIRMAN STETKAR: Okay. Then I'll wait.
11	Okay.
12	MEMBER SCHULTZ: Jeff, these results - I'm
13	just going to keep coming back to the conservatisms in
14	the models.
15	MR. JULIUS: Yes.
16	MEMBER SCHULTZ: So, this set of results,
17	does it reflect what was obtained with conservative
18	fire modeling, or after you've gone through and done
19	the sensitivity analyses and made changes to provide
20	more, whatever you want to call it, better estimate
21	models.
22	MR. JULIUS: Generally, it's with the
23	conservatism in the modeling and that we'll see in
24	later slides, I mean, we did the first pass we did
25	full zone whole room burn-up. And then when we
ļ	

(202) 234-4433

	83
1	started developing the areas where we did the fire
2	modeling, did individual scenarios, we first
3	quantified them at the 98th percentile heat release
4	rates and reasoned it the T square growth model.
5	And then as you get to the top risk
6	significant areas, the standard has you go and develop
7	at least a two point model. But even the two point
8	model that we use is typically the 98th percentile and
9	the 75th percentile.
10	So, part of the concern is capturing the
11	whole range of fires, you know, from the small fires
12	to the bigger fires.
13	And so, as John mentioned when we got to
14	the point where we had developed the model
15	sufficiently to meet the risk acceptance criteria, you
16	know, we stopped and did the submittal.
17	And so, then we're getting questions from
18	the NRC and from internal we are still learning and
19	looking at this model in terms of what's the
20	sensitivity to the ignition frequencies, what's the
21	sensitivity to the spurious actuation probabilities
22	associated with the control power transformers, what's
23	the sensitivity maybe to some of your limitations in
24	your internal events PRA that you hadn't addressed?
25	So, we've done a series of five
I	I

(202) 234-4433

	84
1	sensitivity analyses and the parametric data on
2	certainty to further probe and look at these, as well
3	as the integrated results. You're looking at the
4	importance of the areas and the importance of the
5	actions.
6	CHAIRMAN STETKAR: Are you going to talk
7	more about uncertainty?
8	MR. JULIUS: I have one slide that -
9	CHAIRMAN STETKAR: Okay. I'll wait.
10	MR. JULIUS: It's towards the end here.
11	So, let's go through the results and then
12	we'll hit each of the technical challenges and then
13	try to build this cumulative picture because we're
14	trying to identify where - that's one of our
15	challenges related to the conservatisms.
16	As the top scenarios, so on an area basis
17	the turbine building and the yard weren't at the top
18	on the scenario basis. They saw loss of offsite power
19	in the yard and the turbine buildings that are two of
20	the top four. Electrical cabinet fires contribute to
21	a lot. And that's the 4kV bux 1B and the T11A and
22	T11D again failing offsite power.
23	The interesting point here, so we have
24	these losses of offsite power electrical challenges
25	that would like to RCP seal LOCA.
	I

(202) 234-4433

	85
1	We have a CVCS cross-tie and originally
2	the internal events PRA hadn't done success criteria
3	to use the cross-tie to mitigate a LOCA.
4	So, they expanded and redid additional
5	success criteria analyses with amp and said that, you
6	know, the more likely RCP scenarios are the smaller
7	break sizes. But the really big break, the CVCS
8	cross-tie doesn't provide sufficient flow. But for
9	the smaller break sizes, we were able to use the CVCS
10	cross-tie to mitigate the RCP seal LOCA.
11	CHAIRMAN STETKAR: Did you partition them
12	in the - use the Westinghouse model for the range of
13	break sizes or -
14	MR. JULIUS: Yes, it was the Westinghouse
15	model for the break sizes.
16	CHAIRMAN STETKAR: It partitioned the break
17	sizes in your model?
18	MR. JULIUS: It's based on functional
19	impact.
20	CHAIRMAN STETKAR: Okay. And you said you
21	didn't - did you go back and do that in the internal
22	events also?
23	MR. JULIUS: We haven't fed that back into
24	the internal events model yet.
25	MEMBER BLEY: Is the use of the cross-tie
I	I

(202) 234-4433

	86
1	procedure wholly supported?
2	MR. JULIUS: Oh, yes. That's part of the
3	plant safe shutdown strategies.
4	The risk significant contributors come
5	from the cable vaults and rooms with the electrical
6	cabinets that are impacting both trains at the same
7	unit.
8	So, this plant is a little different than
9	some in terms of the - many plants have within a unit
10	a Train A and Train B with separation here.
11	We've had several areas where both trains
12	at the same unit are affected and the other unit works
13	as the safe shutdown path so that these inter-system
14	cross-ties effectively reduce risk and require
15	refinement of success criteria. But they also
16	required it's based on some feedback from the peer
17	review.
18	The peer review commented, hey, wait a
19	minute. Your Unit 2 modeling impact on Unit 1 was
20	maybe a F&O Level C from the internal events. But
21	since it's become so important in your fire PRA, you
22	need to address this.
23	So, that was one of the findings in the
24	things that we fixed before doing the fire risk
25	evaluation.
	1

(202) 234-4433

	87
1	In terms of looking at the recovery
2	actions, we were following closely NUREG-1921 and the
3	fire HRA approach there. And we followed that in our
4	development of our recovery actions.
5	We followed 6850 and we have no unapproved
6	methods. We had some discussion with the NRC about
7	the data that was used or the data limitations. And
8	so, we've had questions on how much credit we can give
9	to the combustible free zones and the hot work
10	restrictions especially on those transient fires in
11	the critical areas.
12	We basically put transient fires
13	everywhere and it's just the size of the fire and the
14	impact.
15	So, this is one where Harry had mentioned
16	there's a FAQ 12-0064, and we've provided comments and
17	feedback back to the staff on that.
18	CHAIRMAN STETKAR: Your fire allocation
19	report just to demonstrate, I mean, I'm assuming you
20	had a rationale about how you distributed transient
21	fires.
22	MR. JULIUS: Yes. Yeah, we have, I mean,
23	we follow the weighting process and then we - we did
24	pick one of the - between the hot maintenance
25	occupancy and storage, we had a value less than one,
l	1

(202) 234-4433

	88
1	but the sum of all of them was at least one.
2	CHAIRMAN STETKAR: That would be good.
3	MR. JULIUS: I guess I want to distinguish
4	one slide to capture the fire development tasks. So,
5	these were the first tasks to develop the base fire
6	PRA model and the data and to get ready for
7	quantification.
8	And mostly these were straightforward
9	tasks. And as you'll see in the next slide, really
10	the challenges started to come during the
11	quantification or the roll-up of all this input.
12	So, the 6850 tasks are listed there by
13	their 6850 task number. And the first five there
14	weren't many challenges.
15	The ignition frequency wasn't technically
16	challenging from actually conducting the work or
17	following 6850. It was more then the overall numbers
18	that we were seeing at the end.
19	I've got two separate slides. One on
20	ignition frequencies and one on the circuit failure
21	likelihoods. I'll further explain those.
22	And the reason why the numbering doesn't
23	follow sequentially with the 6850 is because all the
24	quantification then is lumped onto the next slide.
25	So, our primary fire PRA technical
I	I

(202) 234-4433

	89
1	challenges can be really summarized into these three
2	areas.
3	One, the first technical challenge - and
4	these were somewhat chronologically introduced. So,
5	in 2009 we're getting ready for the fire PRA peer
6	review.
7	We had trouble or we had extra effort or
8	it wasn't intuitively obvious that the plant total
9	fire PRA CDF was below 1E-4.
10	And so, we came into this thinking, well,
11	maybe we had maybe ten areas and maybe ten scenario
12	are within an area. So, maybe a hundred total
13	scenarios we were going to have to do to get
14	reasonable results.
15	And as you saw from the earlier slide, we
16	wound up modeling almost a thousand. So, we went from
17	a hundred to a thousand.
18	We did additional fire modeling. We took
19	the ignition frequencies from 6850 and we went to the
20	FAQ-48 ignition frequencies.
21	CHAIRMAN STETKAR: Jeff, only because I
22	haven't looked at FAQ-48 in a long time and I didn't
23	have time to -
24	MR. JULIUS: 6850 Supplement 1.
25	CHAIRMAN STETKAR: Those are mostly high-
I	I

(202) 234-4433

	90
1	energy arcing faults and buses, weren't they?
2	MR. JULIUS: No, they -
3	CHAIRMAN STETKAR: Were there -
4	MR. JULIUS: Some of them went down, but
5	some of them went up.
6	CHAIRMAN STETKAR: Yes, okay.
7	MR. JULIUS: They didn't all just go down.
8	CHAIRMAN STETKAR: Okay, okay.
9	MR. JULIUS: From a primary effort there
10	was additional fire modeling, and then focusing on
11	getting more than one train for good risk results in
12	terms of the mitigation. Just one train alone or one
13	train with a diesel, lots of offsite power scenarios
14	that you had.
15	If you have the random failures, the
16	diesel failed to run for 24 hours, it makes that
17	relatively unreliable.
18	And so to get good, overall numbers, we
19	had to get some additional either non-safety
20	equipment, or to, you know, further refine the
21	scenario.
22	CHAIRMAN STETKAR: Are there power cross-
23	ties from the other unit and things like that?
24	MR. JULIUS: No, no, we don't have -
25	CHAIRMAN STETKAR: So, for example, in the
I	I

(202) 234-4433

	91
1	diesel, let's follow up on it. What do you mean by
2	one train plus for -
3	MR. JULIUS: Well, we have relatively - we
4	expanded the offsite power modeling because initially
5	from the internal events PRA you have pretty much as
6	the point estimate initiator.
7	And then through the component selection
8	process we went back to certain breakers and we
9	expanded the impact so that if the fire was coming in
10	and we knew there are certain cables, but still it was
11	a relatively crude model.
12	Okay, if this cable gets hit, it's going
13	to be a guaranteed loss of offsite power to one unit
14	or both units.
15	And then we had - as we further got into
16	it we'd say, well, you know, that's a control power
17	and it really goes over to this function. Is that
18	really going to have that impact, or is it - well, we
19	still have that as one of the conservatisms.
20	So, fire-induced failure we don't recover
21	offsite power. It's gone for the mission time.
22	CHAIRMAN STETKAR: I mean, that's not -
23	I've seen burned cables. That's not necessarily what
24	I would consider conservative.
25	MR. JULIUS: Well, that's right. But in

(202) 234-4433

	92
1	terms of the - if you look at the - is this the main
2	power cable, the control power cable or could you go
3	out and do something given this particular cable
4	failure.
5	CHAIRMAN STETKAR: Okay.
6	MR. JULIUS: We started out with the first
7	cut if that cable is touched, you know, all offsite
8	power is lost.
9	CHAIRMAN STETKAR: Okay.
10	MR. JULIUS: So, we got the - in 2009 for
11	the peer review, we got the fire CDF - total fire CDF
12	below 1E-4.
13	CHAIRMAN STETKAR: That's a big drop, as
14	you know, as you start getting to smaller numbers. A
15	decade difference is a huge difference -
16	MR. JULIUS: That's right.
17	CHAIRMAN STETKAR: in those small
18	numbers.
19	Between the first and second bullets, what
20	helped you the most in that decade?
21	MR. JULIUS: Well, the difference there
22	between the two, the 1E-4 and the 1E-5, the second one
23	is a delta CDF. So, the first one was a total CDF.
24	CHAIRMAN STETKAR: Oh, I'm sorry. Never
25	mind. I didn't see that delta. I'm sorry.
ļ	I

(202) 234-4433

	93
1	MR. JULIUS: But you're right. I mean,
2	essentially you're right because we were even in the
3	first one, we start out above 1E-4 and we got it down
4	to the 1E-5. So, there was that decade drop.
5	And the primary emphasis there was on the
6	additional fire modeling. That's where -
7	CHAIRMAN STETKAR: Additional - the fire
8	modeling.
9	MR. JULIUS: We started out with maybe
10	expecting hundreds of scenarios, and we had to go to
11	a thousand.
12	CHAIRMAN STETKAR: Okay. But that's fire
13	modeling in terms of - I want to try to be clear.
14	People use the term "fire modeling" quite loosely.
15	And we just had quite a bit of discussion with the
16	staff on the NUREG on fire modeling.
17	When I think of fire modeling, I think of
18	FIVE, FDT, CFAST. Is that the type of fire modeling
19	that you're talking about, or are you talking about
20	more finely subdividing the fire scenarios in the
21	fault trees or event trees or whatever you -
22	MR. JULIUS: Really, all the above.
23	CHAIRMAN STETKAR: All the above.
24	MR. DINSMORE: Yes, you're right. Using
25	the fire modeling tools like FDS, CFAST, is a specific
I	

(202) 234-4433

	94
1	part of fire modeling to define your -
2	CHAIRMAN STETKAR: It's something like, you
3	know, going from the 6850 sort of recommended values,
4	to something you might get out of FIVE, to something
5	that you might get out of CFAST or progressive,
6	typically refinements in that notion of fire modeling.
7	Another notion of fire modeling is
8	something that Jeff was talking about, or I'd call it
9	modeling, subdividing different sizes of reactor
10	coolant pump seal LOCAs, which had nothing to do with
11	the fire and assigning different success criteria so
12	that you can wring out a little bit more frequency.
13	MR. JULIUS: Well, we want -
14	CHAIRMAN STETKAR: And that's not fire - I
15	don't consider the second fire modeling. That's more
16	realistic and -
17	MR. JULIUS: That was like fire PRA
18	modeling.
19	So, within the activity here we did both
20	the fire PRA modeling requirements, but we did
21	extensive real fire modeling where you see in this
22	later slide the fire modeling is going from a more
23	crude or a broader impact to individual sources and
24	targets.
25	CHAIRMAN STETKAR: Okay, okay. Thanks.
	I

(202) 234-4433

	95
1	MR. JULIUS: So, then our next
2	quantification hurdle was on the delta CDF and getting
3	the deal CDF below 1E-5.
4	We addressed the peer review findings and
5	the idea here was that the plant had a pretty good
6	program, it was a good plant going in, and we were
7	trying to do the transition without doing extensive
8	plant modifications.
9	And the third area as was brought up, is
10	the challenge with some of the uncertainty
11	considerations. So, each of the next couple slides
12	then develop further each of these three technical
13	challenges.
14	MEMBER SCHULTZ: In terms of results, the
15	PRA peer review F&Os, did they seem to drive the
16	results up or down?
17	In other words, did the peer review
18	identify as many improvements to the models that would
19	benefit the result or -
20	MR. JULIUS: It was a mixed bag. I mean,
21	there was - many of them were documentation. There
22	weren't as many modeling changes. There were some on
23	the fire modeling where - or some places where we had
24	the unknown cable types, for example, where we the
25	treatment of whether the thermoplastic or thermoset
ļ	I

(202) 234-4433

	96
1	we further went in and did some refinements, but it
2	was a mixed bag.
3	MEMBER SCHULTZ: And some were neutral in
4	proving the documentation and supporting requirements
5	associated with the analysis.
6	MR. JULIUS: That's right.
7	MEMBER SCHULTZ: Okay, thank you.
8	MALE PARTICIPANT: We didn't see any
9	significant impacts.
10	MR. JULIUS: Now, there was a good one -
11	there was one - a couple we were concerned about.
12	There was one from Kiang Zee where we had, you know,
13	if a component has multiple cables and it was the
14	mapping of the multiple cables to the component.
15	And when we first had done the mapping, we
16	had looked at the spurious impact that fire damage on
17	each of these cables. But when to the PRA code, it
18	didn't do any sorting or check. It just picked, you
19	know, whatever the top failure mode is.
20	And so, the top failure mode could be a
21	0.03 and then the third one down could be a 0.3. And
22	so, we did - we said, hey, we were worried about that
23	one. And it turned out either the numbers or the
24	cables, that didn't have as big an impact as we
25	thought.
	I

(202) 234-4433

	97
1	We had to go back in and map to make sure
2	that the multiple cables were treated properly in
3	their mapping to the components.
4	In terms of ignition frequencies, I think
5	this one is fairly straightforward. So, we started
6	with the first set of ignition frequencies from NUREG-
7	6850. And then we took the results from FAQ-48.
8	And in addition to FAQ-48 besides it says
9	you can use these lower numbers, but in your
10	application you need to do sensitivities for ones that
11	have a high alpha factor.
12	So, we had done that as part of our
13	License Amendment Request and the required
14	sensitivities showed that they didn't change our
15	decision making. We still were within the risk limits
16	and within the delta risk limits.
17	There's work still being done on the
18	initiating vent frequency. And the ones we're
19	wrestling with and you hear the discussion on more
20	recently is the transients.
21	And the size of the fire and what kind of
22	credit can be taken for the precautions and the worth
23	of eliminating hot-work free or transient combustible
24	free zones. So, that's the interchange with the NRC
25	staff on FAQ-1264.
	I

(202) 234-4433

	98
1	Another example of the effect of the fire
2	- or transient fire suppression of personnel in the
3	area who may have caused the fire in the first place.
4	Well, effectively that's rolled into the
5	data. But if the plant was doing some practice or
6	procedure, you know, add some additional people, would
7	that further change it or not. And right now we
8	haven't reflected anything in change.
9	And the last bullet there is there's no
10	distinction in the data between running and standby
11	components. One of the first areas we quantified,
12	Analysis Area 1, that's the RHR and the containment
13	spray pump room. And the initiating event frequencies
14	for those pumps were the same as an operating
15	component cooling water pump or a zirc water pump.
16	Okay. The next couple of slides I'm going
17	to let Mark Schairer introduce and this is the
18	development of the fire modeling.
19	And so, we did this full zone burn-up, but
20	then we further developed the fire growth trees and
21	the fire damage states.
22	So, Mark.
23	MR. SCHAIRER: Right, thanks, Jeff.
24	Yes, so this task here is really the
25	beginning here of fire modeling. And the first step
ļ	I

(202) 234-4433

	99
1	is to start to break down the whole-room burn-up
2	assumption into individual fire scenarios.
3	And our goal going into it was to try to
4	keep it simple, because we understood the long-term
5	configuration control that the plant would have to
6	face as we, you know, got into a more complex method.
7	So, initially we set out with a fire
8	growth tree which kind of mapped out the different
9	fire damage states.
10	CHAIRMAN STETKAR: Mark, can I interrupt
11	you for just a second?
12	MR. SCHAIRER: Sure.
13	CHAIRMAN STETKAR: Because Jeff mentioned
14	something that I wanted to ask him about. It's one of
15	those things where you give me an example and then
16	I'll come back at you.
17	Fire area AA-1 was screened out based on
18	the deterministic approach. So, you didn't model that
19	area in the PRA. So, I'm not sure what you're talking
20	about in terms of fire frequencies.
21	What I wanted to ask you - and I
22	understand why it screens out for a full power model,
23	because there's nothing in there that basically
24	affects your full power model.
25	How did you treat it for low-power and
	I

(202) 234-4433

	100
1	shutdown modes, non-power operation modes, since it
2	does have both RHR pumps in it?
3	Did you quantify it?
4	MR. JULIUS: Well, it wasn't quantified
5	with the fire PRA, but it did go into the pinch point
6	analysis for the cables.
7	CHAIRMAN STETKAR: Okay.
8	MR. MacDOUGALL: We kind of basically
9	identified the key safety functions required in -
10	CHAIRMAN STETKAR: Yes, I understand. I
11	know how you treated that. I was just curious because
12	it -
13	MR. JULIUS: And actually back to that, in
14	terms of the quantification for the PRA even though it
15	made the transition deterministically, initially that
16	first challenge to get the areas below the 1E-4, it
17	was - again, because of some of the relative
18	conservative factors, we assumed the fire in there
19	would lead to reactor trip and then we had a wider
20	influence before we did - we wound end up doing some
21	fire modeling to just reduce the overall fire CDF in
22	that area.
23	CHAIRMAN STETKAR: Because of a reactor
24	trip - well, probably would lead to a manual reactor
25	trip since you're losing both of your trains of safety
	I

(202) 234-4433

	101
1	systems. So, the tech specs would require you to shut
2	down anyway.
3	MR. JULIUS: At the whole zone burn-up
4	level, right, right.
5	CHAIRMAN STETKAR: But that's - okay. I'm
6	sorry, Mark. Thanks.
7	MR. SCHAIRER: No problem.
8	CHAIRMAN STETKAR: It was a question as I
9	was skimming through Attachment C, originally wanted
10	to ask you about the shutdown notion of it. Because
11	as I said, I can understand - I don't know the whole
12	history of how you got to why it was, you know,
13	disposed or dispositioned as a deterministic criteria.
14	And then when you mentioned the quantified things, I
15	was curious.
16	Thank you.
17	MR. SCHAIRER: Okay. So, on the fire
18	growth trees depending on the complexity of the
19	scenario, we could dive into these different aspects
20	of fire modeling.
21	Of course their initial frequency being
22	the initiating event. And then as necessary, roll in
23	different heat release rates.
24	As Jeff mentioned, we began with looking
25	at the 98th percentile. And if we could live with
	I

	102
1	that, that was where we stopped. If we had to dig
2	deeper into the next group of heat release rates, we
3	would do that to try to refine the zone of influence.
4	So, that would be the severity factor
5	application of 6850. Then of course all this was
6	captured with fire modeling tools and we basically
7	documented this in various other workbooks or Excel,
8	basically tools that could capture some of this
9	information that wasn't provided by the FDS or CFAST
10	or one of those other -
11	CHAIRMAN STETKAR: Well, I'll let you
12	finish this slide and then -
13	MR. SCHAIRER: Yes, I'll just cover
14	detection/suppression is also, you know, on the onset
15	of the fire scenario we may have looked as a
16	sensitivity, can we live without
17	detection/suppression.
18	And then, again, trying to keep it simple,
19	but ultimately we rolled in quite a bit of suppression
20	where we had to gain some CDF margin.
21	CHAIRMAN STETKAR: In Attachment J, did you
22	use FDS?
23	MR. SCHAIRER: Yes.
24	CHAIRMAN STETKAR: You did?
25	MR. SCHAIRER: We used it -
	I

	103
1	CHAIRMAN STETKAR: Why? Okay, tell me why
2	and where did you have to use it? How much did it buy
3	you, if anything?
4	MR. SCHAIRER: Yes, we used it in six
5	compartments for specific reasons to analyze hot gas
6	layer timing. We wanted to get a better handle on
7	exactly how we could roll in, say, ventilation
8	aspects.
9	There were some unique - there was a
10	damper - one of the barriers has a series of fire
11	dampers that we wanted to roll that into the model.
12	The FDTs don't allow you to analyze things
13	over time and then bring into these ventilation
14	aspects. So, that was one part of it.
15	The other reason is we did a generic study
16	across all the areas that could have a hot gas
17	layer/plume interaction. And that's one of the
18	limitations of the NUREG-1805 hot gas air models is
19	they don't have the ability to roll that in.
20	You can make a gross assumption that you
21	can add the hot gas layer temperature to, say, a
22	plume, but we felt that was overly conservative. So,
23	we used FDS to look at that interaction.
24	CHAIRMAN STETKAR: And CFAST didn't buy you
25	enough?
ļ	I

(202) 234-4433

	104
1	MR. SCHAIRER: The CFAST does not provide
2	a plume temperature that we can - that was V&V'd
3	anyway.
4	CHAIRMAN STETKAR: Oh, okay, that was
5	V&V'd.
6	MR. SCHAIRER: Yes. So, we used FDS for
7	that purpose.
8	CHAIRMAN STETKAR: Okay. Because my - of
9	the three we looked at, I think you're the only ones
10	who used FDS. And it's - I've never used it, but I've
11	heard it's - it will take some time.
12	MR. SCHAIRER: Yeah, it takes a little more
13	energy and time to set it up. And just to run it on
14	the computer can take days to weeks.
15	CHAIRMAN STETKAR: Just out of curiosity
16	from your experience, was it worth the effort, I mean,
17	in terms of the benefit?
18	MR. SCHAIRER: Yes, absolutely.
19	CHAIRMAN STETKAR: It was?
20	MR. SCHAIRER: I mean, we had no other way
21	to look at those unique kind of challenges with the
22	fire modeling without making gross conservative
23	assumptions that, okay, we have -
24	CHAIRMAN STETKAR: No, but I mean the delta
25	in terms of delta damage or however you want to
I	I

(202) 234-4433

	105
1	measure it from the gross assumptions that you'd have
2	to make compared to the more refined assumptions was
3	worth that modeling effort?
4	MR. SCHAIRER: Yes, we believe so. It got
5	us to where we needed to be, I think.
6	CHAIRMAN STETKAR: Well, that's worth the
7	effort then, I guess.
8	MR. SCHAIRER: Yes, main control room was
9	done with CFAST for -
10	CHAIRMAN STETKAR: Oh, it was?
11	MR. SCHAIRER: control room abandonment
12	analysis.
13	CHAIRMAN STETKAR: That was CFAST though.
14	MR. SCHAIRER: Yes.
15	CHAIRMAN STETKAR: CFAST.
16	MR. SCHAIRER: So -
17	CHAIRMAN STETKAR: That's probably okay
18	then. Just out of curiosity, you said you met six
19	areas you looked at using FDS or -
20	MR. SCHAIRER: Right. So, the control
21	room, HVAC rooms, both the 600-volt MCC rooms and then
22	I think two of the 4kV switchgear rooms.
23	CHAIRMAN STETKAR: Okay. Thanks.
24	MR. SCHAIRER: So, our focus was to use
25	primarily the V&V'd models. And these were within
Į	I

(202) 234-4433

	106
1	NUREG-1824 for the most part. However, there are some
2	in NUREG-6850, which I would call empirical
3	correlations maybe that aren't part of that suite of
4	models that were V&V'd.
5	So, this has been kind of - part of the
6	subject of the RAIs is to demonstrate that they are
7	used within their validation ranges.
8	I heard you kind of label it as, I think,
9	Joe's Grocery Store. They're not that type of model.
10	We're using still, you know, models that are published
11	in the Society of Fire Protection Engineering
12	Handbook. And they've got other studies outside of
13	the 1824 experimental series that we're pointing to
14	there.
15	So, I think Harry mentioned one of them
16	which is the detection correlation not V&V'd.
17	CHAIRMAN STETKAR: Are you pretty well on
18	track with the staff in terms of getting, you know,
19	recognizing where you are in the exchange process
20	here, getting resolution of the use of those models?
21	MR. SCHAIRER: Well, we've responded to
22	their questions and I don't think we've received full
23	feedback yet.
24	CHAIRMAN STETKAR: Okay.
25	MR. SCHAIRER: I can't -
I	

(202) 234-4433

	107
1	CHAIRMAN STETKAR: Have you received -
2	again, part of this I'm trying to understand technical
3	issues, but also areas where there might be
4	impediments on both sides.
5	Have you received any just blatant
6	feedback that, no, you absolutely cannot use that
7	model?
8	MR. SCHAIRER: No, we have not gotten that
9	level of feedback. It's really provided additional
10	justification for using this particular model.
11	We felt that at the time when we used it,
12	we understood all the models required, you know, 805
13	required V&V, but not necessarily limited to what was
14	in 1824.
15	CHAIRMAN STETKAR: Sure.
16	MR. SCHAIRER: So, I mean, quite a few of
17	the models within 1805 are not in 1824.
18	CHAIRMAN STETKAR: Yes.
19	MR. SCHAIRER: So, it was a challenge, no
20	question, to make sure we were comfortable with using
21	those models.
22	CHAIRMAN STETKAR: What types of
23	applications did you find that you needed to use the
24	other models for?
25	Can you generalize? I mean, you know, is
l	I

(202) 234-4433

	108
1	it cables? Is it cabinet fires? Is it -
2	MR. SCHAIRER: Yeah, some of them are like
3	the 6850, you know, fire propagation empirical rule
4	set where we, you know, you often hear the five, four,
5	three, two, one method.
6	That, to me, is a - kind of a fire model
7	that we definitely used across many of the scenarios,
8	but CHRISTIFIRE and FLASHCAT ended up being what we
9	thought was the verification or validation of that
10	model.
11	So, again, that's not in 1824, but it did
12	have a testing complete for that.
13	CHAIRMAN STETKAR: Okay.
14	MR. SCHAIRER: So, that's one of them.
15	Yeah, we listed them all in Attachment J as you have
16	there.
17	CHAIRMAN STETKAR: Yes.
18	MR. SCHAIRER: And they're not always
19	pointed to 1824.
20	CHAIRMAN STETKAR: No, that's right.
21	That's why I was asking. You have a good list there.
22	MR. SCHAIRER: Okay.
23	MR. MacDOUGALL: Just to respond to one
24	question on feedback from the staff was during our
25	fire modeling investigation we did, in our CFAST model
I	I

(202) 234-4433

	109
1	there was an issue identified where - a partitioning
2	issue.
3	It wasn't against using CFAST itself, but
4	it was an error we had in the calculation. We had to
5	go back and revise the calculation and clean it up
6	because it was a showstopper.
7	Although it was insignificant to the
8	results, we submitted incorrect information. We made
9	a mistake.
10	CHAIRMAN STETKAR: Yes, that happens.
11	MR. SCHAIRER: So, the 57 fire areas across
12	both units, 18 of those ended up transitioning
13	deterministically. So, basically whole room burn-up.
14	39 of those were performance based. And in all cases
15	we followed the 4242 methodology.
16	CHAIRMAN STETKAR: That's what I was going
17	to ask, because we're going to hear from another
18	applicant who distinguishes 4241 from 4242. And they
19	call it, you know, they're both sort of performance-
20	based. One is risk-informed performance-based. The
21	other one is just using fire models.
22	And you did not - you always use the PRA
23	model when you talk performance.
24	MR. SCHAIRER: 4242, correct.
25	CHAIRMAN STETKAR: Okay.
ļ	I

(202) 234-4433

	110
1	MR. SCHAIRER: 4241 would be the maximum
2	expected fire -
3	CHAIRMAN STETKAR: Right.
4	MR. SCHAIRER: We did not do that.
5	CHAIRMAN STETKAR: You did not do that.
6	MR. SCHAIRER: Right.
7	CHAIRMAN STETKAR: Just out of curiosity,
8	was it more expedient to use the PRA model? I mean,
9	you know, because you're using the fire - what I call
10	fire model, CFAST or FDS or whatever, in both kinds of
11	applications to get a zone of influence in one or
12	something like that.
13	MR. SCHAIRER: Yes, 4241 we just learned
14	early on it wasn't going to work because you basically
15	have to show the fire, you know, the VFDR cable
16	survives the fire. That's to the maximum expected
17	fire. And then the limiting fire scenario has to show
18	margin.
19	CHAIRMAN STETKAR: Yes.
20	MR. SCHAIRER: And we were not going to be
21	able to succeed in all the fire areas using that
22	methodology.
23	CHAIRMAN STETKAR: Okay.
24	MR. SCHAIRER: So, that's why we went to
25	4242.
I	I

(202) 234-4433

	111
1	CHAIRMAN STETKAR: Okay. Thanks.
2	MR. SCHAIRER: We did follow 6850
3	methodology. Task 11 is the really - Chapter 11 is on
4	fire modeling and then various, you know, appendices
5	within 6850 and the FAQs that related to the PRA that
6	have since rolled into Supplement 1. And then we did
7	follow the fire PRA standard. Jeff touched upon the
8	peer review results.
9	Our fire models were developed for
10	scenarios specific to ignition sources. So, we didn't
11	do generic fire modeling across many scenarios. We
12	walked down each individual fire source, looked at the
13	specific cables that were impacted. Fire growth was
14	done for any scenario where it needed to be, and that
15	was also specific.
16	So, we ended up with about 900 individual
17	fire scenarios.
18	CHAIRMAN STETKAR: This is an area I asked
19	Jeff earlier. How did this exchange work? You said
20	you developed scenarios for input to the fire PRA.
21	MR. SCHAIRER: Right.
22	CHAIRMAN STETKAR: In fire PRAs that I've
23	done in the past. they use the PRA and say, look, you
24	fire modelers go tweak this thing and subdivide this
25	because I need to get something over here.
I	I

(202) 234-4433

	112
1	It sounds like you took a different
2	approach that you - did you go into an area and say
3	this is a problem area from the first cut in the PRA
4	and I'm now going to do a complete fire modeling of
5	this area and then feed back into the PRA?
6	MR. SCHAIRER: Essentially, yes. We went
7	into any fire area that didn't screen out in the first
8	phase.
9	Now, we're going to - again, we're trying
10	to use a tiered approach where, you know, we're not
11	going to do multi heat release rates. I'm not saying
12	we need to, but we do a 98th percentile heat release
13	rate, identify - everything is done at a cable level.
14	We need to use raceways to identify them out in the
15	field. So, cables and conduit.
16	We would load that into our cable raceway
17	software and we'd have a unique scenario, unique
18	scenario ID. The logics within the software would
19	translate the cables into what equipment where it
20	could be logically failed based on that cable.
21	CHAIRMAN STETKAR: Okay.
22	MR. SCHAIRER: That would then be generated
23	into what we call a Level 1 failure report, which
24	would be transmitted over to Jeff's group. And then
25	he would - he would basically take the equipment from
ļ	I

(202) 234-4433

	113
1	there and map that to his basic event.
2	MEMBER BLEY: Let me ask John's question a
3	little differently.
4	If you had it to do all over again, would
5	you do it the same way, or would you see ways to get
6	nearly to the same place with less effort?
7	MR. SCHAIRER: Interesting question.
8	Yes, I think given the approach we've
9	taken and the lessons learned, you know, we'd still
10	follow a similar approach.
11	MEMBER BLEY: Okay.
12	MR. JULIUS: The only additional comment I
13	have, and this is kind of spread across a couple
14	plants, is that typically the scoping or the general
15	severity may be applied like in a Task 8 in terms of
16	a 6850 task.
17	We had tried that a couple times and we
18	were getting maybe a 20 percent or 40 percent
19	reduction. And as you commented on the earlier slide,
20	we were looking for an order of magnitude reduction.
21	So, we kind of skipped that, but where we
22	are seeing that coming back into play at the end or
23	current stage is - and we had a list of a hundred
24	different areas and then we did the detailed fire
25	modeling on these and they went down to the various
I	

(202) 234-4433

	114
1	levels. Some of them went down, way down. And others
2	were - and the ones that are now in the middle are
3	coming across and you've got a stairwell that has a
4	steam generator blowdown cable in it and, you know,
5	you're saying that's right in between two areas where
6	you did detailed fire modeling on it.
7	And we're looking back at those now and
8	doing some refinement.
9	CHAIRMAN STETKAR: Well, that's what a
10	little bit, you know, when you were talking about the
11	overall results you said, well, the turbine building
12	and the yard are excessively conservative because we
13	treated them all as a single area, burned them all up
14	and, gee, they contribute 20 percent as the turbine
15	building.
16	And yet, it sounds like in many other
17	areas you did extensive fire modeling where you said,
18	you know, you looked at some of the results and they
19	went way, way down. Well, maybe they didn't need to
20	go that far down.
21	And I think, you know, what Dennis and I
22	are asking, is there a more balanced exchange possible
23	between the PRA modeling process and the fire
24	modeling, if I'll call it that, process that would
25	more, you know, give you a more balanced evaluation

(202) 234-4433

across the whole plant, you know, rather than getting very, very detailed in some locations that initially show up very high. And then discovering after you've really find tuned those that other things that you haven't looked at are still really, really conservative, but you decide to stop because you met your numerical targets.

8 MR. JULIUS: In general as Mark said --9 that's a good question. We generally haven't been 10 because we've been responding to the questions about 11 the different contributors and an opportunity to go 12 back and do the review or the mining to say what would 13 be a more balanced approach, I think.

14 CHAIRMAN STETKAR: Yes, I mean, I think 15 part of the reason for this subcommittee meeting is 16 that we've heard a lot of concerns both from the staff 17 and from industry about conservatisms and a tremendous 18 amount of effort to do these analyses.

And I think we're trying to understand from a technical perspective, what are the sources of those concerns?

Are they numerical? Is it counting cables? Is it doing FDS-type, you know, 500 FDS-type calculations? You know, where are they?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MEMBER BLEY: Is it fully inherent in the

(202) 234-4433

25

1

2

3

4

5

6

7

	116
1	problem, or is there some way around some of that?
2	MR. JULIUS: Some of those we did know
3	ahead of time and it's like, well, these are the top
4	ones and we're going to - well, we need to get, you
5	know, there's this time schedule. We're going to do
6	all these and not do - just chip away at it.
7	Because we were concerned early on in the
8	process that some of these like the sculpting
9	approach. Okay, you go in there and you're just kind
10	of chipping away at the results.
11	And it's just like, you know, that's not
12	getting us there. So, okay, let's bring out a bigger
13	tool.
14	CHAIRMAN STETKAR: Okay. Thanks.
15	MR. SCHAIRER: All right. We've already
16	touched on some of this. This is really again
17	mentioning the tiered approach where the first cut was
18	conservative. And as we needed to, we drilled down.
19	Time to damage calculation was coming too late.
20	The first set of scenarios would assume
21	damage virtually at time zero. So, we didn't credit
22	fire brigade response or anything like that.
23	But as we got more complex, we would take
24	detailed measurements in the field of the cables and
25	figure out the exact time to damage and roll in
I	I

(202) 234-4433

	117
1	suppression timing.
2	But a challenge with that was, you know,
3	the cable damage was often limited by the spatial
4	knowledge of those cables. So, we had drawings -
5	raceway drawings that we could work with.
6	However, as is common, you know, conduit
7	is field routed. So, we couldn't rely on the drawings
8	extensively for that purpose. The trays were pretty
9	good.
10	But out in the field, too, you were
11	challenged with being able to visually put your eyes
12	on everything. So, again, that led to conservative.
13	If we can prove that it was outside the
14	zone of influence, we had to, you know, include it in
15	our damage set.
16	So, what we ended up doing was focusing
17	the effort on really the risk drivers in the
18	scenarios. And that required coordination between the
19	fire modeling and PRA group to take a look at, all
20	right, we're not going to, you know, some zones may
21	have had 400 cables. We're only going to look at
22	these maybe 50 that are really driving the risk. So,
23	we're going to take a hit and basically assume all the
24	other are failed each time.
25	And then the engineering effort of going
I	

(202) 234-4433

	118
1	in to figuring out where those cables are help to
2	focus that scope. So, that was one of the things that
3	helped us work around that issue.
4	CHAIRMAN STETKAR: Dan or Mark, this
5	obviously is a very resource-intensive effort, the
6	whole process, as you've learned.
7	Do you have any estimate what fraction of
8	those resources were required for basic cable tracing?
9	Because that's necessary for both the deterministic
10	and the risk-informed approach.
11	MR. SCHAIRER: Yes, I mean, I can't
12	possibly maybe give it on a fraction, but a good
13	portion of the fire modeling effort is not, like you
14	say, working with FDS and tools. It's taking the
15	results of the fire models and then going out and
16	applying that to what cables are affected, and that is
17	a huge effort.
18	CHAIRMAN STETKAR: Did you have a pretty
19	good cable routing database going in, or did you have
20	to develop that?
21	MR. MacDOUGALL: We did.
22	CHAIRMAN STETKAR: You did.
23	MR. MacDOUGALL: And actually we had a good
24	- we rolled into EdisonSAFE. We had had our Appendix
25	R database, and then we rolled it over to EdisonSAFE
ļ	

(202) 234-4433

	119
1	and then kept it. And so, we were fortunate in that
2	respect.
3	MR. JULIUS: But anyway, it supplemented
4	with the PRA insights in Task 2. So, the additional
5	LERF components are -
6	CHAIRMAN STETKAR: You had those in.
7	MR. JULIUS: Right.
8	MR. SCHAIRER: Yes, cable to raceway was
9	good, cable to fire zone. But once we got down to
10	like unique scenarios in the room, that's where we had
11	- that was a challenge.
12	CHAIRMAN STETKAR: Okay.
13	MR. SCHAIRER: So, as we found that we
14	needed to basically do a lot of complex fire modeling
15	because of the number of areas where we had to do it
16	to get the - we did a lot, you know, we did 39 areas,
17	basically.
18	And kind of touching upon your point once
19	you leave the arena of whole room damage and you're
20	going into fire scenarios, you need to do them all, in
21	may opinion. Because unless you can show that a
22	certain part of the room does not have any cables you
23	need to worry about, you know, you're stepping through
24	and trying to put geometrical spatial relationships.
25	You don't know what scenarios to focus on
	I

(202) 234-4433

	120
1	until you do that effort. So, even some of the areas
2	that were lower down on the list once they broke into
3	that fire modeling list, that was quite a bit of
4	effort.
5	MR. JULIUS: You can do that a little bit
6	with the transients where the, you know, move those
7	areas around more than, I mean, the fixed sources.
8	CHAIRMAN STETKAR: Fixed sources are fixed
9	sources.
10	MR. SCHAIRER: So, the level of detail in
11	the fire modeling also varied by location depending on
12	the VFDRs.
13	So, initially we set out supporting the
14	fire PRA and getting the CDF down. But as we got into
15	fire risk evaluations, then the new focus turned to
16	some of the VFDR cables and that resulted in
17	additional fire modeling to go back and look at those.
18	Because the first cut may have, you know,
19	grouped targets into scenarios where now we had to go
20	back and look at individual cables, maybe, and pick
21	those out.
22	So, again, the cable routing detail was an
23	issue, but ultimately we were able to get that done.
24	It probably took us almost 12 months to get through
25	the VFDR for a review process with multiple, you know,
l	I

(202) 234-4433

	121
1	we'd meet, decide which cables to go after, come back
2	and there might be a new group to go after because,
3	you know, the fire modeling results don't always come
4	back with, hey, everything is fine.
5	MR. JULIUS: And just to expand upon that
6	as to your first question, you asked about the 260
7	VFDRs and the 900 scenarios. So, I mean, we developed
8	the set of fire scenarios as far as getting the
9	overall fire PRA CDF. And as Mark said, we went in
10	and took each VFDR and you went in and did an
11	evaluation. And, you know, was that sufficient level
12	of detail and information to disposition that VFDR, or
13	do we have to do some additional fire modeling?
14	It was that maybe we'd lump that VFDR,
15	maybe we had to revise the min set or protect it so we
16	can get some, you know, walk down the particular
17	cables associated with that VFDR.
18	So, there were additional model
19	refinements that were done and actually that FRE
20	process of looking at those areas was insightful
21	because the initial fire PRA kind of did things
22	globally, and then you're looking at specific areas
23	and specific issues.
24	CHAIRMAN STETKAR: Thanks.
25	MR. SCHAIRER: The last bullet here really
I	I

(202) 234-4433

	122
1	touches upon the fire PRA quantification of the
2	scenarios. And we talked a little bit about that, but
3	it's relatively automated straightforward process of
4	once we identify the cables to going back on these
5	iterative approaches.
6	Ultimately, the result is a refined damage
7	set and now the PRA model would re-quantify the CCDP
8	for that.
9	Okay. So, some of you have the second
10	handout. And that's really I just wanted to - we
11	wanted to share a couple kind of unique challenges we
12	face with the fire modeling that didn't necessarily
13	fall into the regular fire modeling toolbox that we
14	had.
15	The first example is a transient fire in
16	the main control room cable vault. And that is a
17	normally locked hatch. You can see the picture there.
18	To gain entry there, it's actually in the control room
19	corridor and requires operations approval. And a fire
20	brigade member actually stand there while you're in
21	the room.
22	But using the 6850 methodology we used,
23	you know, assigned maintenance storage, so we had a
24	transient fire. The challenge was if you see the top
25	right photograph, unscheduled raceways.
ļ	1

(202) 234-4433

	123
1	So, we did that -
2	CHAIRMAN STETKAR: Or for those of us who
3	done this, the typical rat's nest.
4	MR. SCHAIRER: Yes, rat's nest.
5	CHAIRMAN STETKAR: That's a good one.
6	MR. SCHAIRER: So, the bottom right corner
7	photo, there are a few trays in there which we could
8	break out and basically use to assign it a different
9	scenario.
10	But when we did that, we realized quickly
11	that CCP was driven by the unscheduled cable. So, we
12	didn't - we weren't able to use our typical transient
13	methodology which was to break up the room, because
14	there was no difference between one side of the room
15	and the other.
16	The second page kind of shows you the
17	whole room. What we ended up doing was just - there's
18	just one big transient scenario.
19	CHAIRMAN STETKAR: On the handout.
20	MR. SCHAIRER: On the handout, yeah. The
21	second page there.
22	MR. MacDOUGALL: On the back side of the
23	handout.
24	MR. SCHAIRER: So, typically you'd see a
25	room. This would be chopped up into maybe 10 to 20
Į	I

(202) 234-4433

	124
1	scenarios where we could focus on pinch points. Not
2	be able to do that in this case.
3	There is suppression in the room.
4	CHAIRMAN STETKAR: Ah, there you go.
5	Thanks.
6	MR. SCHAIRER: I think there's a couple
7	suppression systems. We ended up modeling the Halon
8	suppression system. And what we ended up doing there
9	was calculating the time to detection, time to
10	suppression. And then crediting the trays that were
11	covered with the delay. According to 6850, you had
12	some delay rules there.
13	But again, that provided minimal benefit.
14	The end state was really driven by the unscheduled
15	raceways.
16	So, just as an example on Page 3, you
17	know, again this is the kind of Excel spreadsheet we
18	use to apportion transient scenarios across a floor
19	area.
20	And if there were 20 scenarios, we could
21	break up the frequency by that weighting factor.
22	Again, we've got one line in this room.
23	The next page is really the quantification
24	summary. And then the fire event tree is a typical
25	fire event tree for a transient where we do credit
ļ	I

(202) 234-4433

	125
1	suppression if possible and even manual fire brigade
2	response for 20 minutes.
3	So, we were not able to really exercise
4	all the fire modeling tools that we had generally
5	applied to other areas. And the ultimate solution was
6	to provide these fractional occupancy storage and
7	maintenance factors which Jeff touched upon earlier.
8	And that, in our opinion, got the risk
9	down to more realistic where, you know, we could then
10	quantify that CDF based on that.
11	CHAIRMAN STETKAR: And ultimately all your
12	fractions do finally add up to one depending on how
13	you move things around.
14	MR. JULIUS: That's right. We didn't make
15	any 0.01 or 0.1 percent.
16	CHAIRMAN STETKAR: Okay.
17	MR. SCHAIRER: Yeah, we didn't do any - I
18	mean, we preserved the plant-wide frequency for all
19	the -
20	CHAIRMAN STETKAR: yeah, I mean, that's
21	good.
22	MR. SCHAIRER: Second scenario here is a
23	fixed source scenario. And this is a 250-volt DC
24	lighting distribution panels on the wall of the - this
25	is a 600-volt MCC room.
I	

(202) 234-4433

	126
1	And what you see here is something that
2	looks close to what might be well sealed and robustly
3	secured, but it doesn't quite meet the FAQ-42
4	discussion.
5	So, there are some, you know, minor gaps
6	in the walls. So, there's possibility for the fire to
7	get out.
8	So, that basically rendered us to do a
9	fully developed fire for that. Each of these panels
10	has a riser coming into the top of it with exposed
11	cable.
12	So, we could not apply a severity factor
13	to secondary combustibles which we normally do,
14	because there is no distance between the source and
15	the combustible.
16	All these panels are up against the wall.
17	We're required to multiply the heat release rate by
18	two for the wall corner effects.
19	And essentially what happens is each of
20	these panels will spread up into the riser and there's
21	trays above it that you can't see in this picture.
22	And the resulting heat release rate leads to whole hot
23	gas layer temperatures for thermoplastic cable, which
24	essentially meant whole room damage at the time of
25	that analysis.
ļ	I

(202) 234-4433

	127
1	So, that was the challenge with each of
2	these seemingly harmless cabinets, which they all led
3	to whole room damage.
4	You can see on the fire growth tree here,
5	they're right around 20 minutes. So, we could apply
6	fire brigade response using the fire brigade
7	methodology.
8	But ultimately the solution was, all
9	right, we had to differentiate between what was
10	thermoplastic and what was thermoset so that we could
11	gain - we didn't quite reach 300 - and I'm talking
12	degrees Celsius here. We didn't quite reach the
13	thermoset temperature.
14	So, that was an extensive cable material
15	impact review.
16	CHAIRMAN STETKAR: Is that with the 98th
17	percentile heat release rates from those cabinet
18	fires?
19	MR. SCHAIRER: It didn't make a difference
20	because any of the fires would lead to the riser, and
21	then in the cable trays.
22	CHAIRMAN STETKAR: Oh.
23	MR. SCHAIRER: And that dominated the heat
24	release rate. Combustible you have, but the cable
25	trays, you can see there's about six trays involved.
ļ	l

(202) 234-4433

	128
1	And they quickly dominate the fire.
2	CHAIRMAN STETKAR: Okay.
3	MR. SCHAIRER: And there's no severity
4	factor on
5	(Simultaneous speaking.)
6	CHAIRMAN STETKAR: Yes.
7	MR. SCHAIRER: So, that was, as I
8	mentioned, extensive. We went through each cable,
9	figured out what the jacketing and insulation were
10	classified as thermoset, thermoplastic. I think the
11	report ended up being about 6,000 pages.
12	And for each fire area we had by tray, by
13	conduit, what we could apply. We did a multi-zone of
14	influence here. So, you've got thermoset zone of
15	influence, thermoplastic zone of influence.
16	So, that was a challenge we met. That's
17	how we ultimately, you know, we were able to gain at
18	least some CDF reduction with that methodology.
19	CHAIRMAN STETKAR: Did you get enough for
20	6,000 pages?
21	MR. SCHAIRER: That remains to be seen.
22	CHAIRMAN STETKAR: Some of the sense of the
23	questioning here is have you - in conclusion, do you
24	feel that you did in some sense way too much in some
25	areas for the purpose of this particular licensing
I	I

(202) 234-4433

	129
1	application?
2	In that sense, you know, 6,000 pages of
3	records for every cable jacketing material insulation
4	is a heck of a lot of information. And if you, you
5	know, if you needed to generate that to get 9.0
6	whatever the heck it is times 10 to the minus six
7	delta CDF, that's fine. It was worth the effort.
8	If you didn't need to do that, that's also
9	information, you know, in terms of lessons to be
10	learned going forward about - it's too late for you
11	guys, but other folks coming into the mill over the
12	next year or so might - maybe they've done it already,
13	maybe they haven't.
14	MR. JULIUS: The experience, as Mark
15	expressed earlier, most of these requirements were
16	needed to make the numbers.
17	MR. SCHAIRER: Yes.
18	MR. JULIUS: We didn't have many -
19	MR. SCHAIRER: I mean, the alternate is to
20	assume everything is thermoplastic. And I don't have
21	any, you know, sure answer for what the CDF would be,
22	but it would not be -
23	CHAIRMAN STETKAR: It would be higher.
24	MR. SCHAIRER: Yeah, definitely be higher
25	and, you know, using thermoplastic affects everything.
ļ	I

(202) 234-4433

	130
1	It affects the heat release rate, the spread rates, as
2	well as the damage time.
3	MR. JULIUS: Well, the other option he's
4	asking about is say it's a lower voltage and we
5	treated them as ventilated, but to do some things that
6	get them into the non-ventilated lower voltage -
7	CHAIRMAN STETKAR: I think might be a
8	different way to skin the cat.
9	MR. JULIUS: Yes.
10	Well, the next slide then transitions back
11	to the fire PRA. So, we have these fire damage states
12	and you can see between the selection of the heat
13	release rates and the T-square, the growth model and
14	the fire damage state frequency accounts for
15	suppression. And so, the ignition frequency is
16	developing to the point to being a large damaging
17	fire.
18	And then they're coming in and we found
19	that some of the - even the deterministically
20	compliant areas can't have a higher than anticipated
21	CDF due to the conservative fire damage state
22	frequency combined with the unreliability.
23	The example being the bottom line there
24	where you were limited to a safety train powered by a
25	diesel generator for 24 hours getting a good PRA
Į	

(202) 234-4433

	131
1	result was a challenge.
2	And you can see for the lower ones,
3	sometimes we look into maybe non-safety train
4	equipment supplementing them.
5	CHAIRMAN STETKAR: It's not necessarily -
6	I have to be real careful about time here, but, you
7	know, just saying an area is deterministically
8	compliant, doesn't mean that its risk is zero.
9	In fact, it's not surprising that
10	deterministically compliant areas have higher risk
11	than other areas.
12	Deterministically compliant is just an
13	artifice. So, you know, saying that it's excessively
14	conservative because it had a relatively high risk
15	because it was deterministically compliant, isn't
16	necessarily surprising.
17	MR. JULIUS: No, no, we're not saying it's
18	excessively conservative in that case. We're saying
19	again we had to take some of the conservatisms and the
20	damage state frequency was leading into that.
21	Many of these fire damage state scenarios
22	that we have are fires progressing so fast that we're
23	not getting much credit, if any, for suppressions.
24	So, you go to additional things.
25	So, you're coming into that and some of
ļ	

	132
1	your fire protection features aren't being recognized
2	or reflected in the damage state frequency. And
3	because of that, then it's not surprising that -
4	CHAIRMAN STETKAR: That part as well.
5	MR. JULIUS: Right.
6	The circuit fire likelihood was an
7	interesting challenge in that we followed the 6850
8	process and developed the cables. And we got to the
9	point of the highest single spurious cable likelihood
10	probability was used following the FAQ-47.
11	We assigned - both the spurious close and
12	spurious open were both assigned the same probability.
13	And generally these were in the 0.3 range or below.
14	And in some of the sensitivities, we had them up to -
15	double it to a 0.6.
16	And there, you know, crediting a 0.6 for
17	spurious closing and a 0.6 for spurious opening, we
18	get a limit to total failure probability to one.
19	Those numbers being the 0.3 or the 0.6,
20	you start getting into the challenge with the rare
21	event approximation and the impact. And so, we had
22	some conservatism in the model initially in terms of
23	not addressing the rare event approximation.
24	And when we did one of the sensitivities,
25	we went further and looked to take that out to get a
I	I

(202) 234-4433

	133
1	truer measure of that so we weren't having some of
2	these conservatisms propagate.
3	MEMBER BLEY: Make sure I understood. When
4	you had these high probabilities, you abandoned the
5	rare event approximation and did the real calculation.
6	Is that what you said?
7	MR. JULIUS: No, in general - we kept it
8	and generally there was the affected one cable or
9	maybe one valve in the AFW. And the other valves -
10	there's other randoms and other things in there. So,
11	there wasn't like we had cut sets that had, you know,
12	4.6s or 4.3s in them.
13	So, in our initial cut, we kept the rare
14	event approximation and we knew we were living on the
15	edge in terms of the impact of the CDF.
16	MEMBER BLEY: Off the top, you don't have
17	an idea of how much overestimate you have because of
18	that, I assume, if you didn't do any -
19	MR. JULIUS: That's right. We haven't
20	evaluated that.
21	MEMBER BLEY: Any time you get over 0.1,
22	you're going to have some.
23	MR. JULIUS: That's correct.
24	MEMBER BLEY: Okay.
25	MR. JULIUS: Okay. Here's the slide where
ļ	I

(202) 234-4433

1 I talk about the fire PRA uncertainty. And as we've come up to this point, we've talked about potential 2 conservatisms or conservatisms in the 6850 approach 3 4 regarding the higher ignition frequencies, the 5 spurious actuation probabilities, the heat release rates in the fire growth model. 6 7 We do - we're looking at a balanced 8 approach at this and we do recognize that there's -9 well, I guess the comment I want to make first on the 10 ignition frequencies and the spurious actuation, for example, some of these are explicit and you could 11 maybe treat with data. The ignition frequencies, you 12 know, it's easier to do a sensitivity if these are 13 14 facts scaled up or down. 15 Some of the things are implicit like the 16 heat release rates and the fire growth model to say 17 that you've got a lower heat release rate and what's the difference in the damage set. That's not just 18 19 something that's easily scalable within the model. CHAIRMAN STETKAR: It's not easily scalable 20 within what model? 21 Well, in 22 MR. JULIUS: the existing conditional core damage probability cut sets that we 23 24 had in terms of working with an equation because the equations are developed based on the fire damage set. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

134

	135
1	But if the fire damage set changed, you'd have to go
2	out and make sure you had the raceway mapping and the
3	zone of influence.
4	And so to get that additional data set,
5	just dropping the heat release rate wasn't something
6	you cranked in.
7	We did some of that with the three point
8	models, didn't we, Mark, in one or two areas?
9	MR. SCHAIRER: Right.
10	MR. JULIUS: And how was that done? You
11	just - when you evaluated at the 50th percentile heat
12	release rate -
13	MR. SCHAIRER: Yes, it wasn't always like
14	a specific severity factor. It may have been
15	dependent on the dimensional -
16	CHAIRMAN STETKAR: You didn't do anything
17	like take the full uncertainty distribution for the
18	heat release rate and propagate it through the - if
19	you're just using an algebraic correlation, it's kind
20	of brainless to do it.
21	When you have a conditional probability of
22	damage over the whole range of the heat release rate,
23	do you feed that in? It's either damaged, or it's not
24	if you're looking at plume temperature or plant height
25	or something like that.
I	I

(202) 234-4433

136 1 MR. SCHAIRER: That's why we measure the distance to the target we were interested in. 2 3 CHAIRMAN STETKAR: But, I mean, that's 4 known. 5 MR. SCHAIRER: We use the qamma distribution to figure out the severity factor, right. 6 7 6850 provides the gamma distribution for the heat 8 release rate. 9 CHAIRMAN STETKAR: Right. 10 MR. SCHAIRER: So, we would use that. CHAIRMAN STETKAR: But you didn't -11 MR. SCHAIRER: The one area where we did do 12 what you're mentioning is -13 14 MEMBER BLEY: I didn't understand what you 15 I thought you just said you did use the just said. 16 gamma distribution. 17 MR. SCHAIRER: To identify - yes, we worked backwards. 18 19 MEMBER BLEY: Oh, and then you picked a point off it. 20 MR. SCHAIRER: Identified the distance to 21 the target, the heat release that were required for 22 damage, and then used the gamma to look up that heat 23 24 release rate severity factor. MEMBER BLEY: Do you have any wild idea how 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	137
1	conservative you are because of not using the whole
2	distribution?
3	MR. SCHAIRER: Jeff.
4	MEMBER BLEY: Might be worth just a couple
5	hand calcs just to see for yourself one time.
6	MR. SCHAIRER: No, at this point we haven't
7	done that.
8	MEMBER BLEY: Okay. Might be a lot.
9	MR. SCHAIRER: Yes.
10	MR. JULIUS: That's what I'm saying. We're
11	looking at some of these where the - and also these
12	aren't - some of the distribution - I'll take the
13	spurious actuation failure probabilities. I mean,
14	with a value of the 0.3 or the 0.6, these are going to
15	be relatively skewed.
16	You're already at the high end. And so,
17	to say it's an error factor of five, you know, you're
18	not going to go - you're limited to one on the high
19	end and then - so, they've got unique distributions
20	associated with some of these elements.
21	CHAIRMAN STETKAR: But there are
22	distributions.
23	MR. JULIUS: And there are distributions,
24	true.
25	So, we did a thorough, though,
	I

	138
1	identification of sources of modeling and uncertainty.
2	And that was commented on in the peer review. That
3	was a good job there.
4	And in the sources, we also identified
5	through the HRA process, you know, recognizing that
6	the operator response, environments with either
7	degraded instrumentation or multiple spurious cable
8	failures, you know, the methods were limited. And we
9	could use the methods in NUREG-1921, but recognizing
10	that the operator response could be higher or lower.
11	So, when we got to the end, we looked at
12	the importance tables of the operator actions and
13	looked at the areas where we had higher risk
14	achievement worse and risk reduction to double-check
15	the HRA modeling in those areas.
16	CHAIRMAN STETKAR: Jeff - well, I'm going
17	to run a little bit longer. That's okay.
18	MR. JULIUS: We've only got two more
19	slides.
20	CHAIRMAN STETKAR: Yes, I wanted to ask -
21	one of the things I noticed and things I'm a little
22	sensitive to, there were, I believe, for control room
23	fires some recovery actions where you had people go
24	de-energize - I think they were characterized as
25	panels in the control room, and I was curious is it
	I

(202) 234-4433

	139
1	actually de-energizing a whole panel section?
2	MR. JULIUS: For individual -
3	CHAIRMAN STETKAR: And you brought up
4	human reliability and I was curious how you factored
5	that back into, you know, did you look at what else
6	was on those panels and how that might affect
7	integrated -
8	MR. JULIUS: In terms of the hardware
9	operability given the impact of doing that?
10	CHAIRMAN STETKAR: Not the hardware. It's
11	how it affected the people in the control room. I'm
12	assuming these are scenarios where the operators
13	remain in the control room.
14	MR. JULIUS: Generally the ones that were
15	in the control room were these that were leading to
16	the control room abandonment. We didn't further
17	distinguish -
18	CHAIRMAN STETKAR: Oh, okay.
19	MR. JULIUS: It was quantified as a single
20	panel, but we -
21	CHAIRMAN STETKAR: Oh. So, they're de-
22	energizing the panel just to get rid of a hot short or
23	something like that, but still responding -
24	MR. JULIUS: The large in the shutdown.
25	CHAIRMAN STETKAR: That, I didn't
ļ	1

(202) 234-4433

	140
1	understand. Thanks.
2	MR. JULIUS: That's all right.
3	CHAIRMAN STETKAR: Then my question is
4	irrelevant.
5	MR. JULIUS: Okay. Then the key point I
6	want to make on this slide is that we're using the PRA
7	as an input to the risk-informed decision making.
8	And in the Reg Guide 1.174 guidance or the
9	risk acceptance criteria, it's to account for the
10	quantification and meet the risk acceptance criteria
11	and account for uncertainties.
12	So, the way we accounted for uncertainties
13	was to identify the key sources and to develop error
14	factors and to develop an estimate of parametric data
15	uncertainty.
16	We did get an RAI. We had questions that
17	we haven't done the rigorous statistical propagation.
18	And we're doing that as a separate site calculation.
19	But the sensitivity cases that we did, we
20	did five sensitivity cases with ignition frequencies,
21	the transient weighting factors, impact of internal
22	events PRA, quality issues, circuit failure likelihood
23	and RWST level indicators. And then we have an
24	estimation of the parametric data uncertainty.
25	And with each of those cases, not only the

(202) 234-4433

	141
1	point estimate, but the point estimate and the
2	increased CDF, we looked at the increased CDF/LERF,
3	delta CDF and delta LERF. And we've met all the risk
4	acceptance criteria for CDF and LERF and delta LERF
5	for both units.
6	For one unit, for the parametric data
7	uncertainty on the delta CDF for Unit 1, we are a
8	little above the limit. And so, we're making the
9	argument that we've addressed the sources of
10	uncertainty and that now given that information, what
11	do we do about it?
12	So, since it's the delta CDF, to quantify
13	in the uncertainty in the delta CDF is a little more
14	of a challenge because there you typically had two
15	separate Boolean equations and you're taking the
16	arithmetic difference. And now you're saying, well,
17	what's the uncertainty in this arithmetic difference?
18	Well, the approach we've taken is that the
19	ignition frequencies and the spurious actuation
20	probabilities, you know, would affect both the
21	compliant plant and the post-transition plant. And
22	the biggest difference in the two where they're
23	affecting the delta risk is the recovery actions.
24	So, in terms of managing or controlling
25	the uncertainties, we've got - we're looking at these

(202) 234-4433

recovery actions. And when we first did a couple of sensitivity studies, for example, we exceeded the Unit 2 1 delta CDF limits. And by applying one additional recovery action, we were able to revise our recovery action list and keep within the delta CDF limits or within all the limits. 6

7 And so, now we still have activities in 8 the implementation phase to improve the procedures, 9 improve the training. And so, we have a follow-up in 10 implementation phase to redo the HRA and to redo the fire PRA calculation to make sure that the actions 11 we've taken to change the procedures and change the 12 training will help keep not only the point estimates 13 14 in the CDF and the LERF down, but also the delta CDF 15 and delta LERF.

So, we're challenged in doing some of the 16 17 parametric uncertainty in the delta risk primarily. And that the - and then the question is, what do you 18 19 do once you have that?

And so, we try to translate that back into 20 actionable or things that the plant can address in 21 terms of the procedures and the training or maybe 22 additional engineering analyses. For example, the 23 24 success criteria maybe to change the timeline.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

So, from that perspective, we've addressed

(202) 234-4433

25

1

3

4

5

	143
1	the Reg Guide 1.177 concerns and met the guidance for
2	not only accounting for the risk, but then the
3	treatment of uncertainty in the fire PRA.
4	I'm sure there's some questions.
5	CHAIRMAN STETKAR: I quite honestly didn't
6	follow that whole discussion. But because of the time
7	-
8	MR. JULIUS: There was a lot packed in
9	there.
10	CHAIRMAN STETKAR: There was. And I think
11	because of the time constraints, we probably have to
12	move on.
13	MEMBER BLEY: Just one short question. You
14	talked about areas where you're going to make
15	improvements.
16	Is there a schedule on -
17	MR. JULIUS: The areas where we're making
18	improvements are, I mean, the procedures and the
19	training implementation, that's part of the
20	implementation phase.
21	MEMBER BLEY: Okay.
22	MR. JULIUS: So, there is a schedule on
23	that.
24	I guess one of the higher levels maybe
25	basically understood technical challenges, was that
I	

(202) 234-4433

144 1 especially in the peer review process, was that peer reviews typically on the as-built, as-operated plant, 2 3 and we're developing the analysis for the post-4 transition plant. 5 So, this is a plant of the future in some respects with regard to the procedures and the 6 7 training. Some of the procedures -8 CHAIRMAN STETKAR: Procedures in HRA, 9 that's certainly the case. 10 MR. JULIUS: That's right. CHAIRMAN STETKAR: At least you're not 11 posing any substantial hardware modification to sites 12 as-built, as-operated in that sense. 13 MR. JULIUS: But even like the recovery 14 15 action that - these MOV - the 92.18 valves, I mean, if 16 we were taking credit for recovery action and go and 17 operate a valve, that you wanted to ensure that the hardware operability supported that recovery action. 18 19 I'll turn the floor back over to Dan to talk about some of the implementation challenges. 20 MR. MacDOUGALL: I'll be quick. 21 These implementation challenges 22 are basically what we're seeing now and today, and then as 23 24 we move into the implementation phase. And they're somewhat consistent with what the pilot saw and very 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

consistent with what Harry discussed earlier today with respect to we're taking and trying to find availability data on non-TRM systems that are now risk significant that support - all of this is in support of all our assumptions and analysis that we did to try and maintain that moving forward. Configuration management right now is

9 getting more and more difficult because we have a LAR 9 sitting out, we've got modifications coming through. 10 Some of them are quite major and we're still trying to 11 be safe today.

And for a single-unit utility - or dualunit, single nuclear station utility without the luxury of a corporate staff or backup, we are heavily - the point being we're heavily relying on contract staff. I mean, we are. And our bench strength.

We've been unfortunate and we've had three positions that were primaries working Appendix R that either got transferred out, left the company or unforeseen events.

And we did have some bench strength, but now we're trying to rebuild that back up as well as we're growing. So, that's a real challenge.

24 CHAIRMAN STETKAR: That's important. As 25 Harold mentioned, you know, it's - back in the flurry

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	of activities when all the original internal events
2	PRAs were being done, you naturally rely on
3	contractors because they've got the people, they've
4	got the expertise.
5	But if you don't develop your own in-house
6	staff to take ownership over the PRA model or, in this
7	case not only the PRA model, but all of the supporting
8	information, you've in trouble because eventually
9	these two guys are going to drive into a tree
10	someplace and that's a problem.
11	(Laughter.)
12	MR. MacDOUGALL: In summary, most
13	challenges were data conservative, were data
14	limitations. We simply couldn't find it and we had to
15	be conservative.
16	As we forward in implementation, some
17	paradigm shifts are going on at the station and the
18	guys are trying to understand beyond core damage LERF
19	actions, recovery actions. That's new news. And the
20	NPO getting with the outage folks and saying that, you
21	know, we got to do this.
22	And then of course as we discussed,
23	configuration management right now is a real
24	challenge.
25	We're not in the change evaluation process
ļ	I

(202) 234-4433

	147
1	yet. We're making changes to a LAR that's pending
2	approval. We've got modifications coming through.
3	I will say this: without the industry
4	participation and the networking we've done as a
5	single station, everybody, the committee working
6	together, the staff working with us, the visits,
7	that's been - it's almost been a challenge to make all
8	the meetings and take the learnings and read the facts
9	and it's been complex, and I want to thank you for the
10	opportunity.
11	MEMBER SCHULTZ: Dan, just one question on
12	the last slide. You mentioned you're obviously
13	setting up a program for all the implementation
14	challenges.
15	Over what time frame does your current
16	program - does that envision?
17	MR. MacDOUGALL: We're looking at June of
18	2013. Between now and 2013.
19	MEMBER SCHULTZ: 11 months on through with
20	- still with interactions with the staff ongoing.
21	MR. MacDOUGALL: Yes.
22	MEMBER SCHULTZ: Okay. Thank you.
23	MR. MacDOUGALL: That's unvalidated, that
24	schedule, if I remember correctly. He's smiling. My
25	reg affairs manager is looking at me.
Į	

(202) 234-4433

	148
1	Thank you for asking. that was off the
2	cuff. End of presentation then for us.
3	CHAIRMAN STETKAR: Well, thank you very,
4	very much. That was an awful lot of material into a
5	challenging time slot.
6	Any of the members have any more questions
7	for DC Cook folks?
8	MR. LAI: Can I say one thing?
9	CHAIRMAN STETKAR: You may.
10	MR. LAI: Can you give me the supplemental
11	sheets that I can put in the records?
12	CHAIRMAN STETKAR: And with that, we will
13	recess for lunch and we'll reconvene at 1:15.
14	(Whereupon, the above-entitled matter went
15	off the record at 12:37 p.m. and resumed at 1:15 p.m.)
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

	149
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	1:15 p.m.
3	CHAIRMAN STETKAR: We are back in session
4	and we're going to hear from Duane Arnold. Whoever
5	wants to take it.
6	Anil.
7	MR. JULKA: Okay, I'll start then.
8	My name is Anil Julka. I'm the PRA
9	manager for Next Era Fleet. Vinny Rubano is with me
10	here. He's the program manager for NFP 805. And we
11	also have - we're going to keep this at a - we
12	developed this at a very high level, but we do have
13	our contractors who worked on it here.
14	Kiang Zee from ERIN, and also people from
15	Kleinsorg Group are here in case we need any
16	information on fire modeling. And even licensing,
17	Laura, is here and another person.
18	What we're going to cover is we're going
19	to give you the background of Duane Arnold. It was
20	the first BWR, as you know, as a non-pilot we submit
21	not too many BWRs were really transitioning to NFP
22	805.
23	As part of our big fleet, we have eight
24	plants with five sites. And this is the only BWR we
25	have. So, seven of the plants are transitioning, with
I	I

(202) 234-4433

150 1 one plant not transitioning to. We're just incorporating the, you know, MSOs there. 2 So, Duane 3 Arnold is the only BWR and we are transitioning. 4 I'm going to give you the background. Risk 5 reduction history, I think that plays an important role when we do the fire PRA, you know, what the 6 7 internal events history has been. 8 So, there was tremendous amount of work 9 done there as well. So, we're going to kind of 10 highlight that what type of things were done and what improvements we made while we were doing that, which 11 did help us when we did the fire PRA. 12 PRA peer reviews, I think, 13 John, you 14 talked about that earlier, peer reviews and how they 15 impact that. And we're going to talk a little bit about peer reviews and how, you know, things were 16 17 transitioning at the same time while we were trying to comply with Reg Guide 1.200f2 at the same time. That 18 19 did pose some challenges for us, and I think maybe other sites as well. 20 New analysis methods, we did use two 21 methods outside of 6850 not really defined in 6850. 22 So, there was lot of discussion. Lot of our 23 24 discussions at NRC staff during the review, RAI responses and stuff. We will talk about that, which 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	two were there and why we use them.
2	We'll talk a little bit about HRA
3	methodology. What type of sensitivity we use for the
4	fire model.
5	And then I think we what we did was we
6	developed, you know, said - we said, okay, let's see
7	what can we gain from all of this from fire PRAs.
8	So, we tried to make up a list ranking,
9	you know, see what is the high risk ranking areas for
10	us and see what insights we can gain from it.
11	There is tremendous amount of work done.
12	That's why we need to really look at it from a big
13	picture perspective. What does it really tell us?
14	So, we'll show you what that, you know, told us which
15	areas were the highest risk areas.
16	So, what risk insight and modifications,
17	there were really very few as compared to a PWR. Like
18	I said, in our fleet we are working on other PWRs as
19	well and they are getting much more involved, a lot
20	more modifications needed to get to the compliance
21	arena as opposed to a BWR which is very nominal.
22	Site overview, it's approximately six
23	miles northwest of Cedar Rapids. It's a General
24	Electric NSSS and turbine. Bechtel was the original
25	constructor. It's Mark 1 containment. 630 megawatts
	I

(202) 234-4433

	152
1	electric. And it's been a good plant.
2	This shows the Cedar River which is, you
3	know, the ultimate heat sink. And we got the forced
4	draft cooling towers. This is just to give you a
5	perspective where the plant is.
6	Now, one thing which is important to note
7	here is we started doing Reg Guide 1.200 Rev 2 upgrade
8	for internal events and we started the fire PRA at the
9	same time. So, that was a real big challenge for us.
10	Internal events peer review was done
11	before we had really completed all the Reg Guide 1.200
12	improvements - Rev 2, I mean. Rev 2 was not really
13	issued at that time.
14	So, as a result, that kind of interfaced
15	with, you know, getting us to go back and forth
16	between the fire model and the PRA model, revising
17	both models at the same time.
18	The peer review, again for the fire PRA
19	peer review was also done up front in 2010. That was
20	like two years before. So, that is another challenge
21	that a lot of sites did that. We did fire PRA peer
22	reviews not before we were really completed with it or
23	at the point where we were pretty much done as opposed
24	to, you know, really methodology was set at that time,
25	but really we did not have quantification in a lot of
Į	I

(202) 234-4433

	153
1	the results.
2	So, that did challenge, you know, as far
3	as later on responding to findings, and ultimately
4	RAIS.
5	So, what we did was internal events, like
6	I said, we did that a long time before we really had
7	the complete compliance for Reg Guide 1.200 Rev 2.
8	So, what we did was focused peer review.
9	And I think Steve Dinsmore mentioned that
10	this morning that, you know, they need some sort of a
11	justification that if you have a lot of findings.
12	So, we had quite a few findings. So, what
13	we want to do was narrow that down. So, we knew that
14	based on the industry looking at pilots and some other
15	plants, the RAIs were kind of directly proportional to
16	number of findings people had.
17	So, although we had fixed those findings,
18	we wanted to make sure that they were appropriately
19	incorporated. And in areas where we had - there were
20	too many findings in one element, one supporting
21	requirement, what we did was we looked at the entire
22	element. And I think that was consistent with what
23	NRC's expectations were at that time when we were
24	talking about the peer reviews.
25	The LAR was submitted in August 2011. And
ļ	1

(202) 234-4433

1 we touched base this morning about the audit. We had in December last year. It was very 2 the audit 3 comprehensive audit. In fact, this is the first one 4 we have seen which was that detailed. We went through 5 a lot of details which we don't normally do with other 6 applications. 7 We had about 120 total RAIs to respond to, Which is significant amount of effort 8 which we did. 9 They were separated between two areas. for us. One 10 was 60 days, and 90 days. And we did submit all of them on time. 11 And there was a second audit which was 12 done in May of 2012 which was mostly with fire 13 14 modeling. It was not as comprehensive as the first 15 one, but this one was like, you know, just two 16 inspectors coming as opposed to 12 people in the 17 initial audit. And in June, we had that fire modeling walkdown. 18 19 So, this is kind of the timeline of the history and right now I think we are waiting for, you 20 know, the resolution of the RAIs and SER is supposed 21 to be due next year sometime. I believe next year in 22 June time frame. 23 24 So, I said we started both at the same It's been a challenge to keep both of these 25 time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	updated at the same time. So, at certain point we had
2	to make a call saying, okay, this is the frozen model
3	now and we're not going to update fire PRA along with
4	the revision to the internal events.
5	So, in this case like you see the 1.200
6	focused peer review, when that was done we said, okay,
7	that will be the model used for fire PRA.
8	So, although we did a significant
9	reduction as you see further on, that is not in our
10	fire PRA model at this time. That was again the
11	modeling change and the procedure change for RHR
12	cross-tie valve. And I will go over that, what that
13	was, but this shows kind of the history of internal
14	events changes.
15	You have a question, John?
16	CHAIRMAN STETKAR: Yes, I do a little bit.
17	The sense that I'm getting is that now
18	your so-called fire PRA model is fundamentally somehow
19	different than your so-called internal events PRA
20	model.
21	So, you have two different models?
22	MR. JULKA: That's correct.
23	Now, also we have to also think about the
24	fire PRA model is including all the modifications.
25	So, our internal events model is as-built, as-operated
Į	I

(202) 234-4433

	156
1	plant right now. So, those two are inherently
2	different.
3	CHAIRMAN STETKAR: What I'm concerned
4	about, are any of the conclusions or modifications
5	whether they're hardware modifications or procedural
6	modifications in your fire PRA model, could they be
7	influenced one way or the other by - if the fires were
8	evaluated in the context of your as-built, as-operated
9	internal event PRA model?
10	In other words, are you in danger of
11	making the wrong kinds of decisions from your fire PRA
12	especially considering this rather dramatic change,
13	you know, between April 2010 and June of last year in
14	the internal events model?
15	MR. JULKA: No, our plan is to for during
16	the implementation phase, make them combined together.
17	CHAIRMAN STETKAR: I understand that.
18	Have you, I mean, after all, these are PRA
19	models. And if you have a PRA model in place - okay.
20	I was going to say it's not our role to question about
21	how easy changes might be, but it's a bit troubling to
22	see things diverging.
23	MR. JULKA: Uh-huh, uh-huh.
24	CHAIRMAN STETKAR: Especially in the
25	context of major changes that may or may not affect
ļ	I

(202) 234-4433

	157
1	conclusions from the fire modeling exercise. I mean,
2	I have no idea.
3	MR. JULKA: Right, right.
4	MEMBER BLEY: Could you help me understand
5	a little what it means to have two different models?
6	I thought you started with the internal
7	events model as of last year; is that right? And then
8	you made the fire-related changes to that, but it's
9	actually got that same - everything else of that
10	original model is still there; is that right?
11	MR. JULKA: But except for the last change.
12	Like I said, that was done after we -
13	MEMBER BLEY: Oh, that was done afterwards.
14	Okay. So, you got the model before that.
15	MR. JULKA: Right.
16	MEMBER BLEY: So, you have to when you
17	merge them together, you've got to adopt these changes
18	and then the fire mod changes in.
19	MR. RUBANO: The fire PRA model is built on
20	the Rev 5 delta internal events PRA model and not the
21	Rev 6 internal events model.
22	So, you're right. So, any changes that
23	were created between five delta and six have to be
24	incorporated into the fire side before we can combine
25	the models and to keep it as one consistent set.
l	1

(202) 234-4433

	158
1	MEMBER BLEY: I assume that's pretty clean
2	and you know how to do that.
3	MR. JULKA: We know how to do that and we
4	do have a plan schedule laid out for implementation of
5	NFP 805 where we will, you know, finally carry only
6	one model forward.
7	All right. We are finding that with other
8	sites, too, you have to kind of make the call where do
9	you say, okay, this is the model, so fire PRA people
10	can start working on it.
11	Once we continuously keep changing it, I
12	think it changes all the numbers and we have to revise
13	that and then it becomes a very cumbersome effort.
14	CHAIRMAN STETKAR: I mean, there's one
15	school of thought that says there is the PRA model.
16	The PRA model evaluates LOCAs, it evaluates losses of
17	offsite power, it evaluates loss of feedwater
18	transient, it evaluates fires in this room, it
19	evaluates fires out in that corridor, but it is the
20	PRA model.
21	And indeed when you, you know, you have to
22	have a model of record especially for a licensing
23	submittal, certainly. But it's an evolving model, but
24	it's only a single evolving model. It's not multiple,
25	different models.
	I

(202) 234-4433

	159
1	MR. JULKA: Right. I agree. Yes, we need
2	to bring it together.
3	CHAIRMAN STETKAR: So be it. Again, the
4	only concern would be is if any changes between 5D and
5	6 might affect the conclusions from the fire PRA model
6	either positively or negatively in terms of reordering
7	importance of specific fire areas in the plant or - I
8	know you don't have any formal recovery actions at the
9	moment.
10	MR. JULKA: Right.
11	CHAIRMAN STETKAR: Identifying other needs,
12	for example, is always a concern, but at least we
13	understand where you are.
14	MR. JULKA: Okay.
15	MR. RUBANO: But that's, I mean, to further
16	that point, every utility, every site that's
17	transitioning to NFP 805 has the same problem because
18	we had to draw a line in the sand.
19	But in addition to that as was stated this
20	morning and we'll tell you again this afternoon, is
21	that the fire PRA supporting NFP 805 is a forward-
22	looking model, it has the modifications incorporated,
23	whereas the internal events model is an as-built, as-
24	operated plant.
25	So, there's an inherent difference and it
ļ	I

(202) 234-4433

	160
1	won't come together until the modifications and
2	changes that are scheduled for 805 are actually done.
3	And then the models can be brought together.
4	CHAIRMAN STETKAR: Okay.
5	MR. JULKA: But I think I see your point.
6	You're saying if you're making changes now
7	CHAIRMAN STETKAR: I mean, quite honestly
8	
9	MR. JULKA: how are we going to see the
10	difference between the two.
11	CHAIRMAN STETKAR: if you were talking
12	about the difference from 5A to 5B to 5C since this is
13	kind of a, you know, those are essentially no
14	different. Those are fine tuning.
15	MR. JULKA: Pretty much the same, yes.
16	CHAIRMAN STETKAR: 5D to 6 looks like some
17	sort of fundamental major change in the model.
18	MR. JULKA: Yes.
19	CHAIRMAN STETKAR: And I hope you
20	understand whether or not that might affect the
21	results of the fire -
22	MR. JULKA: It helps.
23	CHAIRMAN STETKAR: It would help?
24	MR. JULKA: It would help. Yeah, that we
25	do know.
	I

(202) 234-4433

	161
1	I'll show you what the change - on this
2	page, I have that. And what that is, is a cross-tie
3	to RHR system. You know, it spread from one division,
4	but we did not have credit in the system for allowing
5	recovery for operators to be manually able to align
6	that to that evaluation.
7	So, that itself gave us a tremendous
8	benefit once we have recovery on that valve to be able
9	to use both sides of RHR system. So, that was the
10	main -
11	CHAIRMAN STETKAR: Would that help you much
12	in suppression pool cooling for your fire PRA?
13	MR. JULKA: Yes.
14	So, like I said, internal events was done
15	on December. And we had 57 SRs which were not met,
16	and 66 findings for F&Os.
17	We did a focused peer review because we
18	had done a lot of work between 2007 and 2011. We had
19	incorporated all the changes. And so, we did a
20	focused peer review and then we finally came up with
21	12 F&Os which were remaining, which the peer review
22	team felt that they were not completely closed out.
23	So, that was a big, you know, significant
24	effort for us to get there and we did not want to go
25	into, you know, have NFP 805 submittal done with that
ļ	I

(202) 234-4433

	162
1	many internal events finding.
2	And we had a similar number of findings
3	for the fire PRA which was done by the PWR OG. 89
4	findings which were again, like I said, that was done
5	before we were really completely done quantification,
6	before we completely had all the solutions, what we
7	were going to do.
8	And the RAIs ranged from, you know, you
9	got complete PRA evaluations, quantified results
10	versus, you know, documentation.
11	CHAIRMAN STETKAR: Okay. I have to ask why
12	did you have the peer review done at that stage in
13	your PRA model development?
14	MR. RUBANO: Basically it was schedule
15	pressure. So, as 805 has developed, we've had
16	different regulatory deadlines when we've had to be
17	done.
18	So, based on what we thought the deadline
19	was going to be at that time, that's when we scheduled
20	the peer review.
21	And in addition, there was a lot of people
22	doing peer reviews and you really had to grab a peer
23	review window pretty early to ensure that you actually
24	had the coverage to get the peer review. So, purely
25	schedule pressure-type stuff.
I	I

(202) 234-4433

	163
1	If I had to do it again, I'd move the peer
2	review all the way out to the end.
3	CHAIRMAN STETKAR: I suspect people have
4	gotten that message. But I've heard some of that
5	undercurrent in the peer review process, and I wanted
6	to - that's why I asked to get your -
7	MR. RUBANO: All of my sites have had
8	similar problems. Their peer reviews were done very
9	early. And, in fact, at Turkey Point we did a second
10	full-scope peer review because the first one was so
11	early.
12	MR. JULKA: And had a lot of findings.
13	CHAIRMAN STETKAR: Well, naturally. I
14	mean, it's not surprising.
15	MR. JULKA: And we found out that, you
16	know, if you really look at it, you know, taking away
17	not ultimately hundred percent, but most of the
18	findings, they are directly proportional to number of
19	RAIs we got.
20	Now, I'm going to have, I guess, two, I
21	think it was called, methods in the morning. We gave
22	it a new name. New analysis methods. It looks a
23	little bit better.
24	So, I'm going to have Vinny go through
25	which ones we used and -
I	

(202) 234-4433

	164
1	MR. RUBANO: Okay. So, at Duane Arnold we
2	applied at the time of the application, there were two
3	analysis methods that are not 6850 compliant or don't
4	follow the exact guidance 6850.
5	One was a hot work cable spreading room
6	pre-initiator, and I'll talk a lot about that one, and
7	then a transient heat release rate and we used a
8	reduced transient heat release rate.
9	Since that time, the transient heat
10	release rate and the placement of transients has been
11	a lot of discussion with the industry and the
12	regulators over that subject.
13	And DC Cook pointed out this morning that
14	we're still discussing the amount of credit you get
15	for hot work controls and transient controls leading
16	to the ability to use either a reduced placement or a
17	reduced heat release rate for a transient.
18	So, that's sort of still a work in
19	progress even though we did use it. And we've gotten
20	several RAIs, we've responded to the RAIs. We're
21	waiting for a response to that, to our response, but
22	that is a - I would call it sort of a generic topic.
23	CHAIRMAN STETKAR: When you say the
24	transient heat release rate, we'll come back to this
25	notion of uncertainty distributions, do you mean that
	1

(202) 234-4433

Í	165
1	the value that you used is lower than the 98th
2	percentile transient heat release rate in 6850, or did
3	you use -
4	MR. RUBANO: That is correct.
5	CHAIRMAN STETKAR: - an entirely different
6	uncertainty distribution?
7	MR. RUBANO: No, we used a reduced heat
8	release rate from the 98th percentile that's in NUREG-
9	6850.
10	CHAIRMAN STETKAR: But did you use a
11	different heat release rate uncertainty distribution,
12	or did you just pick another number off the 6850
13	curve?
14	MR. JULKA: Do you want to answer that,
15	Kiang?
16	MR. ZEE: Yes, let me clarify a little bit.
17	CHAIRMAN STETKAR: You have to identify
18	yourself.
19	MR. ZEE: This is Kiang Zee with ERIN
20	Engineering.
21	Where it all really came from is - and I'm
22	going to go with a little bit of detail so you can
23	understand the context.
24	When we got to this requirement to deal
25	with transient ignition sources, transient frequency
I	1

(202) 234-4433

	166
1	and so forth, we went and looked at what the required
2	treatment was. And the tests that formed the basis
3	for distribution function in 6850, are a series of
4	industry tests where general occupancy trash, I guess
5	I will call it, burning trash bags, form the basis of
6	it.
7	If we went back and looked at the industry
8	events which were counted to generate the frequency of
9	the event we were evaluating, what we found was the
10	events were actually what we would better characterize
11	as transient ignition sources.
12	Generally speaking, they were not burning
13	trash bags, but instead they were miscellaneous, small
14	ignition sources which did not occur in sufficient
15	frequency to warn its own bin. So, they were
16	generally grouped into a bin called "transient fires."
17	So, my characterization is that treatment
18	is actually transient ignition sources, it's not
19	transient combustible fires.
20	So, what we wound up doing was we made the
21	connection between transient ignition sources and we
22	went looking for another - a heat release rate
23	distribution function in 6850 that we thought might be
24	representative for transient ignition sources, and
25	what we found is there is a bin in 6850 for motor
ļ	I

(202) 234-4433

	167
1	fires. And that motor fire bin would be applicable
2	for any electric motor fire generally regardless of
3	size.
4	So, we made the logical connection that
5	that would probably be a better representation for a
6	distribution function for transient ignition sources.
7	Going a little bit deeper, some of the
8	events that were counted that were used to generate
9	this transient fire frequency involved things such as
10	space heaters reaching end of life and smoking,
11	catching fire. Extension cords catching on fire.
12	Little work lamps catching on fire, things like that.
13	So, we felt the natural connection was
14	connected to the distribution function for electric
15	motor fires.
16	And so in that context, the heat release
17	rate value that was used was the 98th percentile heat
18	release rate for that distribution function, the
19	electric motor fire bin.
20	CHAIRMAN STETKAR: Okay. Well, at least we
21	know what you did.
22	What we're trying to understand here is -
23	obviously there's an ongoing dialogue between you and
24	the staff over these things. And as I mentioned this
25	morning, the purpose of the subcommittee meting is for
I	

(202) 234-4433

	168
1	us to understand technical issues that have arisen
2	over these three different applications and how those
3	issues are being addressed.
4	MR. RUBANO: So, on that, just to go a
5	little further on that, that was the original logic
6	that they used to develop that heat release rate
7	distribution for -
8	CHAIRMAN STETKAR: They've used the motor
9	heat release rate distribution for transient -
10	MR. RUBANO: But since that time, it's sort
11	of evolved to a larger question of how much credit you
12	get for specific transient controls like DC Cook this
13	morning discussed transient free zones or stricter
14	controls.
15	So, can I, you know, is there a method or
16	is there a logic to apply that lower heat release rate
17	for special areas that have special controls versus
18	the general area which may have the larger heat
19	release rate or - so, that's an ongoing discussion
20	right now.
21	CHAIRMAN STETKAR: But that's sort of two
22	different issues.
23	MR. RUBANO: Right.
24	CHAIRMAN STETKAR: One is control of things
25	that you call transients, the other is given, you
I	

(202) 234-4433

169 1 know, given the ignition to this pile of paper here, what sort of heat release rate do you get from that 2 paper or trash bags 3 burning pile of or canvas 4 coveralls or whatever is in that pile. 5 MEMBER SCHULTZ: Vinny, in terms of 6 sequence, these new methods were in place in the methodology prior to the industry peer review of the 7 fire PRA? 8 9 MR. RUBANO: Yes, they were. 10 MEMBER SCHULTZ: And were there any particular industry comments related to them in the 11 PRA? 12 RUBANO: Yes, we did - they were 13 MR. 14 findings. 15 MEMBER SCHULTZ: Findings, okay. 16 MR. JULKA: I think they were -- it's just 17 the policy that if, you know --MEMBER SCHULTZ: It's a matter of course. 18 19 MR. JULKA: Yes, if they find it, but not necessarily every time. I think they may talk 20 tomorrow more about it on how they do that, but they 21 were listed here as findings. 22 MR. RUBANO: Correct me if I'm wrong, 23 24 Kianq, but the transient heat release rate was submitted to the EPRI panel for review; 25 is that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	correct?
2	MR. ZEE: That is correct.
3	CHAIRMAN STETKAR: I think we understand -
4	or at least I understand what you did.
5	(Laughter.)
6	MR. RUBANO: Okay. So, the first one -
7	really the first one we list is the hot work cable
8	spreading room pre-initiator. We'll show you a
9	picture of the entrance to the cable spread room at
10	Duane Arnold.
11	The cable spread room at Duane Arnold is
12	sort of a special room. It truly is a cable spread
13	room. There is nothing in there but cables. It has
14	a total flooding CO2 system to protect it. And it has
15	very restricted access.
16	So, it requires operations' permission to
17	even go in the room. And, in fact, the card reader at
18	the door of that room has an elevated access
19	requirement so that you have to go talk to security,
20	too, to get temporary elevated access to even get
21	through the door.
22	So, based on that we came up with
23	basically an adjustment because 6850 really has no
24	real adjustment for that.
25	And this is very similar to the issue
I	1

(202) 234-4433

Í	171
1	that's in FAQ-64 now about the influence factors of,
2	you know, all the areas where transients are really
3	difficult and hot work fires and things like that are
4	really difficult to happen because of either the
5	controls or the difficulty of getting there or things
6	like that that some credit - we should be able to get
7	some credit for areas that are special.
8	As I said before, it's a highly restricted
9	area. You do need control room operator permission to
10	get in there. You usually need security permission to
11	get in there.
12	There is really nothing in the cable
13	spread room that requires hot work. As I said,
14	there's only the cables in there. In fact, there's
15	not even instruments in there. So, there's not even
16	technicians going in to do calibrations and stuff like
17	that. So, it's basically all by itself.
18	If we had to do hot work in that room for
19	whatever oddball reason that would come up, that would
20	be a very specialized evolution that would require
21	lots of controls and lots of precaution.
22	So, it's not something that you would just
23	send a bunch of people out in the plant and say, hey,
24	go start grinding on this thing and put up a new
25	support or something like that.

(202) 234-4433

	172
1	That would be pretty rare and would have
2	very special controls.
3	CHAIRMAN STETKAR: Do you work in there
4	during shutdown?
5	MR. RUBANO: Even during shutdown there's
6	very little work in that area.
7	If we had a - if we pulled a new cable or
8	something, it probably wouldn't even involve hot work.
9	I mean, there's lots of spare capacity cable trays and
10	stuff like that.
11	We put a 0.01 pre-initiator in there
12	basically for potential failure of administrative
13	controls. As the PRA guys always tell me, they don't
14	like zero. So, there's always some possibility that
15	something is not going to go right.
16	We did actually do a sensitivity on that
17	and we've determined that through that sensitivity,
18	that the 0.01 factor is relatively conservative and is
19	appropriate. There's nothing - it's not - it doesn't
20	really change the results very much at all.
21	CHAIRMAN STETKAR: I'm sorry, if you
22	increased it to one, how much would it affect the
23	results?
24	MR. RUBANO: Well, so, one, you would end
25	up with the full frequency distribution for hot work
Į	I

(202) 234-4433

	173
1	in there and we didn't go that far, but the difficulty
2	in going that far is that you would have to go and do
3	all the scenarios and put the locations of the fires
4	and it's a relatively big analysis.
5	The cable spread room at Duane Arnold is
6	mostly one division. It has one small corner that has
7	the second division.
8	So, even considering that, you would not -
9	the results would not be significantly different
10	because you - the default for most of the fires in
11	that room, the default would be single-train shutdown,
12	you know, potentially relying on the diesel. And that
13	drives the risk number regardless of how you got
14	there.
15	MEMBER RAY: Could you describe what the
16	administrative controls are just generally that you
17	were relying on?
18	MR. RUBANO: The administrative controls in
19	this room is that this room is normally not accessed
20	during operation. In fact, it's usually not - there's
21	the entrance right there.
22	It's card-reader-controlled. The card
23	reader has a higher level of access so that it's, you
24	know, very few people on the site actually have access
25	to that room on a normal basis.
Į	I

(202) 234-4433

	174
1	To get in that room, you have to talk to
2	security to get an elevated access on your key card
3	and you need operations' permission. Operations has
4	to get a clearance to allow you in the room. It's a
5	big deal to get in that room.
6	MEMBER RAY: Is that because of this fire
7	concern, or for other reasons?
8	MR. RUBANO: That's for other reasons.
9	MR. JULKA: Other reasons.
10	MR. RUBANO: It's a CO2 area.
11	CHAIRMAN STETKAR: It's a CO2. They don't
12	want people dying.
13	MR. RUBANO: So, we don't want people in
14	there.
15	MEMBER RAY: Yeah, okay. I'm just trying
16	to understand what the -
17	MR. RUBANO: And in reality, I mean, when
18	you go in the room, the first part of the room you can
19	move around. But to get to some of the areas, you
20	really have to work hard to get to those areas.
21	If you were in that area and the CO2
22	system would get off, you would not get out. So, as
23	a result, we don't allow people in there.
24	CHAIRMAN STETKAR: I just - I want to ask
25	a little bit about this, because it does have - is it
l	I

(202) 234-4433

	175
1	an automatic CO2 system, or is it -
2	MR. RUBANO: It's an automatic CO2 system.
3	CHAIRMAN STETKAR: Automatic CO2.
4	I guess, you know, why the concern about
5	transient combustibles? You have an automatic
6	detection and suppression system and you couldn't put
7	out the fires fast enough if they happened in there?
8	MR. RUBANO: 6850 basically would drive you
9	to a relatively large fire. The suppression system is
10	not super fast. So, some damage would occur before
11	the suppression system actuated. So, when you go put
12	all those pieces together, it drives you down this
13	risk path.
14	Now, part of it stems from the original
15	Appendix R-type assumptions. So, if you took a full
16	room burn-out, you have mostly one division, but there
17	is a little piece of the second division there. So,
18	you would have big problems.
19	So, if you have any fires that drive you
20	in that direction, the risk goes up. That's an
21	automatic kick-you-over-the-edge-type situation.
22	CHAIRMAN STETKAR: I understand, but
23	that's, you know. We heard 900 fire scenarios from
24	fire modeling from DC Cook to address those types of
25	issues.
I	I

(202) 234-4433

176 1 MR. RUBANO: There are at least 500 scenarios at Duane Arnold. It's not - fire modeling 2 3 scenarios like you had talked about basically are 4 taking the frequency and breaking it up into smaller 5 and smaller pieces throughout. And not every part of that frequency results in that significant damage. 6 7 The problem you have is that we've 8 generated a mountain of data with just what we have 9 now to do that on an extensive basis. You keep 10 generating more and more data that you have to keep configuration control over. 11 It's a balancing act of how much effort 12 you want to put in to do that versus how much effort 13 14 it's going to be to maintain that going forward. And that's a real concern of ours that the 15 more data we generate, the harder it's going to be to 16 17 maintain this going forward. CHAIRMAN STETKAR: That's certainly true. 18 19 RUBANO: So, we'd like to take big MR. swipes and big things that it's hard to - it's hard to 20 make the configuration control difficult. 21 As far as the restriction in this room, 22 this room's got restrictions for all kinds of reasons. 23 24 So, it's going to be restricted. It's not something that's going to change. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	And because of the CO2 system, it's
2	basically restricted during non-power operations also
3	unless you really have to go in there.
4	MR. JULKA: Which is rare.
5	MR. RUBANO: And it's rare. And if we do
6	got to go work in there, that's a special occasion.
7	We'd have to do - there would be all kinds of pre-
8	planning and stuff that had to be done to do that.
9	So, it's not something we'd casually just go and do.
10	This is also the room where the NRC
11	questioned about the placement of the transient fire.
12	So, the part with the second division is back in the
13	back. You have to crawl underneath a bunch of cable
14	trays to get there. It's really difficult to get to.
15	It's hard to get in the room to begin
16	with, but then to get to that particular area is very
17	hard. So, we did put a transient back there to answer
18	the RAI.
19	When they had done the analysis on the
20	cable spread room, they had taken a bounding CCDP on
21	the cable spread room. And the damage from that
22	transient in that location is no worse than the
23	bounding CCDP that we had already used the analysis.
24	So, essentially there's no result in the end.
25	MR. JULKA: We already talked about this.
ļ	I

(202) 234-4433

	178
1	Do we need to talk anymore on this?
2	MR. RUBANO: So, at Duane Arnold, the only
3	other factor - at Duane Arnold, only one percent of
4	the CDF/LERF values are transient fires. And that's
5	probably due to the fact that it's a BWR. It has very
6	large fire zones. It's very hard to -
7	CHAIRMAN STETKAR: That's what I noticed.
8	You only have a handful of fire areas.
9	MR. RUBANO: Yes.
10	MR. JULKA: 13 or 14, I think.
11	CHAIRMAN STETKAR: Yes. Well, I said
12	handful. A small number.
13	MR. RUBANO: So, the reactor building is
14	four-by-four. It's like it's tremendous size areas.
15	All right. The smallest fire areas are the switchgear
16	rooms. They're basically all by themselves, but the
17	areas are typically very large. Even with the large
18	fire areas, Duane Arnold has very good separation.
19	So, even within the reactor building which
20	is each floor or each two floors is a single fire
21	area, there's enough separation between the divisions
22	that you can't get a fire that does significant damage
23	to both divisions at the same time.
24	So, that's the - that's really an
25	advantage of a BWR. BWRs are naturally better suited
I	I

(202) 234-4433

	179
1	for that.
2	I couldn't make the same statement about
3	the one percent for - my PWR is certainly more than
4	one percent for transient fires. So, this is - Duane
5	Arnold is a unique case.
6	We did go back and use - looked for
7	specific areas where a larger fire would make a
8	significant difference in the target set. And there
9	was very few, because the areas are so big and the
10	ceilings are high.
11	So, unless you - and almost impossible to
12	form a hot gas layer. So, unless you're directly in
13	the plume, you don't see much damage from those fires.
14	CHAIRMAN STETKAR: Given the fact that your
15	fire core damage frequencies are relatively low -
16	well, I won't ask that.
17	MR. RUBANO: Anything else on that?
18	MR. JULKA: I think we already touched base
19	on that, that the models are out of synch at this
20	point. And there are certain changes which are not in
21	the internal as well as the external.
22	Right now we do not have any of the B.5.b
23	type in our model, internal or fire at this point in
24	time. Although some sites are trying to include that
25	at this time, we have not done that as yet because of
I	

(202) 234-4433

	180
1	certain things have to be met before we use that as
2	far as having it in the maintenance rule or places
3	like that.
4	So, we are not at that point where we have
5	utilized. So, that will be something which we'll be
6	thinking about in the future. These three items, I
7	think they're going to give us a good amount of
8	benefit as far as risk impact.
9	(Discussion off the record.)
10	MR. JULKA: Sensitivity analysis, I think
11	we touched base this morning. We did do a sensitivity
12	analysis on several of the areas.
13	Kiang Zee, you want to offer any more
14	detail on the sensitivity assumptions?
15	MR. ZEE: I guess if this were an analysis
16	for a different plant, this discussion might be a lot
17	more interesting, but it is a little bit of a
18	softball.
19	Duane Arnold because of all the issues
20	that Vinny mentioned, happens to be a pretty well-
21	behaving plant with respect to having to do fire PIA
22	on it.
23	Desensitivity studies are pretty much
24	parametric things that can be simply propagated
25	through the analysis. So, unless there's something
ļ	1

(202) 234-4433

	181
1	specific you want to explore, I don't know that
2	desensitivity studies are necessarily - are going to
3	provide a tremendous insight into anything in
4	particular.
5	CHAIRMAN STETKAR: And, Kiang, you did
6	propagate all of the parametric uncertainties through
7	the model, or did you not?
8	MR. LEE: Well, be careful now. We
9	propagated the uncertainties parametrically that we
10	can do mathematically with the tools that were
11	available.
12	Now, I say this carefully, because in an
13	earlier discussion I got an impression from where you
14	wanted to go with this.
15	So, as an example, if I wanted to deal
16	with the entire heat release rate distribution
17	function, for example, and wanted to do uncertainty
18	there, what would happen is I would have to run that
19	part of the uncertainty analysis. And the results of
20	that fire model with that set of uncertainty would get
21	mapped to, if you will, a set of discretized results
22	of the damage factor.
23	Because I could play as much as I want
24	within the distribution function. But until I change
25	the definition of the damage vector or damage set that

(202) 234-4433

Í	182
1	that fire causes, I don't have a calculable change in
2	my CCDP solution.
3	So, conceptually you can think about it in
4	the sense of fire modeling leads to a damage set which
5	leads to a flag file that I want to propagate to a
6	quantification. And until the definition of that flag
7	file changes, there's really nothing to put in, in a
8	continuous function.
9	So, it becomes a little difficult to try
10	to integrate the two uncertainty analyses because
11	they're actually detached and you have to actually
12	intercept that uncertainty analysis and insert in that
13	different solution to the CCDP model and then switch
14	over and continue the uncertainty analysis, and switch
15	again when you get to the next one. And while it can
16	be done and it practically it can be done, but it
17	can't practically be done.
18	If I want to take my half, I wanted to do
19	this and you sent me away, I might be able to come
20	back in six months and give you the solution for one
21	fire area, but I would have to intercept that
22	uncertainty analysis with each time the flag file has
23	to change.
24	CHAIRMAN STETKAR: Okay. I hear what
25	you're saying. I hear what you're saying.
I	

(202) 234-4433

	183
1	MR. ZEE: It conceptually can be done.
2	CHAIRMAN STETKAR: Yes, it can be done.
3	And people have done it. And it doesn't take six
4	months to do. That's all I'm saying.
5	If you think about how to do it, it
6	doesn't take six months to do. But you have to want
7	to think about how to do it.
8	MR. RUBANO: So, a couple of things that
9	are mentioned on this slide, I want to point out the
10	second bullet there, potential impact to switchgear
11	room modifications to provide additional source of AC
12	power.
13	What you'll see in the next couple slides
14	is the fact that the switchgear rooms account for the
15	majority of the risk at Duane Arnold. And it's
16	basically similar to what DC Cook described this
17	morning on loss of offsite power and then relying on
18	a single diesel. And then the diesel reliability
19	terms and the out-of-service time for maintenance,
20	stuff like that becomes a driver for the risk.
21	So, we actually thought about - we looked
22	at what we could do to reduce risk in those rooms.
23	And those rooms are very sensitive to this.
24	The problem is, is that it's tough to
25	define a solution to that if cable trays aren't across

(202) 234-4433

	184
1	the top of the switchgear. For some of the fire bins,
2	we could come up with some protection. But the ones
3	that are particularly difficult, the high-energy
4	arcing faults, it's tough to define how much
5	protection you really need to protect some of that
6	stuff in that situation.
7	So, how to get that benefit is a little
8	bit of a concern being able to convince everybody that
9	that particular shield, that design or something like
10	that would actually pass those requirements.
11	So, that's the difficulty in that. It's
12	a big driver in risk. Those areas are in fact
13	deterministic. So, you know, there's no - it didn't
14	drive delta CDF. It just drove CDF and LERF.
15	CHAIRMAN STETKAR: And you said high-energy
16	arcing faults are driving the switchgear rooms. Did
17	I understand that right?
18	MR. RUBANO: That's one of the scenarios
19	that's driving the switchgear rooms.
20	CHAIRMAN STETKAR: Okay.
21	MR. RUBANO: There's several scenarios.
22	All the bins that involve the fires from the
23	switchgear drive the results in the switchgear rooms.
24	CHAIRMAN STETKAR: Yes.
25	MR. RUBANO: There are potential solutions
I	1

(202) 234-4433

	185
1	to some of those fires.
2	CHAIRMAN STETKAR: Some of the smaller
3	ones.
4	MR. RUBANO: Some of the smaller ones. But
5	the high-energy arcing fault, basically there's no
6	good solution to that right now.
7	CHAIRMAN STETKAR: Right. As demonstrated
8	by a few fires we've had in real plants.
9	(Laughter.)
10	MR. JULKA: So, in order to understand that
11	we said, let's draw total picture. What does it look
12	like? Sit back and see what does it look like from
13	fire?
14	So, this is the picture which we are
15	getting for the entire hazard distribution for the
16	site. And I think looking at other sites, we are
17	pretty much getting the same information on a - this
18	is a BWR. So, PWRs are pretty much getting even worse
19	than this right now. We're saying over 90 percent of
20	the risk is driven by fire.
21	Now, like I said, we have some
22	improvements to make, which we will be, but they are
23	incremental. They are not really big picture. I
24	think if you're going to do something, we got to look
25	at it, see what can be done.
	I

(202) 234-4433

	186
1	It's like we've talked to all the PRA
2	analysts, we're looking back and saying, well,
3	something is not right about this picture.
4	CHAIRMAN STETKAR: Why is something not
5	right about that picture?
6	MR. JULKA: Is that true that based on the
7	industry data, is fire driving the majority of the
8	risk? We're questioning ourselves. Is this true, or
9	is it not true?
10	MR. RUBANO: My original thoughts back in
11	the beginning of like 2005 time frame, was that fire
12	risk was going to be on the same order of magnitude as
13	the internal events risk.
14	And what we're finding now, right now with
15	the existing numbers we have, is that fire risk is
16	considerably larger than that, and some of it may be
17	where we stopped the analysis.
18	MR. JULKA: yes, I think that's -
19	MR. RUBANO: And as I said before, we've
20	generated a mountain of data. We're trying to prevent
21	generating a second mountain of data to make that fire
22	risk section go down.
23	MR. JULKA: And I think like we were
24	talking earlier, you know, we stopped at a certain
25	point when the risk numbers were, you know,
ļ	1

(202) 234-4433

	187
1	acceptable.
2	CHAIRMAN STETKAR: Go back to your Slide
3	Number 7.
4	MEMBER BLEY: You're about where internal
5	events used to be.
6	MR. RUBANO: Right.
7	CHAIRMAN STETKAR: So, back to - and you
8	haven't incorporated those changes into this model.
9	MR. JULKA: Right.
10	CHAIRMAN STETKAR: Nor have you thought
11	ever in your life about how you might focus plant
12	improvements, procedure - either hardware
13	modifications, procedure modifications, whatever, on
14	fire.
15	MR. JULKA: Right, right.
16	CHAIRMAN STETKAR: Because you've never had
17	these insights.
18	MR. JULKA: Uh-huh.
19	CHAIRMAN STETKAR: So -
20	MR. JULKA: Yes, as we gain insights, I
21	think it's going to, you know. Yeah, you are right.
22	That's where we started out when we did the IPE and
23	IPEEEs, you know, in the late '90s.
24	We have come significant ways from where
25	we were based on the insights we have gained.
	I

(202) 234-4433

	188
1	(Discussion off the record.)
2	CHAIRMAN STETKAR: It's, you know, people
3	say, well, I don't believe the fire risk is this high.
4	This picture here, this red picture, is basically your
5	understanding of what the fire risk is based on the
6	analyses you've done to date.
7	MR. JULKA: Yes.
8	CHAIRMAN STETKAR: And if there are
9	conservatisms left in those analyses, they can be
10	addressed.
11	MR. JULKA: Yes.
12	CHAIRMAN STETKAR: If there are some real
13	issues like high-energy arcing - if, for example,
14	high-energy arcing faults in switchgear rooms are
15	driving this, there may not be much to, you know,
16	there's some elements of probably realism here. Some
17	elements of conservatism.
18	MR. JULKA: Yes, there are some insights we
19	get from the analysis, definitely. You know, in the
20	historical data up until now, what we have been doing
21	is for significant determination process.
22	We take the internal events. We double it
23	saying this is our total risk. Can we do that
24	anymore? Probably not.
25	So, that's where we are. So, what we
Į	I

(202) 234-4433

	189
1	wanted to do was further look at it, you know. We do
2	this full-panel chart, we call it. We do that for
3	internal events for ops people to look at.
4	And one of the fellows who is there, Ted,
5	he came up with the idea, hey, let's look at full-
6	panel chart for this and see what does it show us.
7	So, this shows that essential switchgear
8	room, you know, Div 1 and Div 2, they contribute most
9	of the risk.
10	CHAIRMAN STETKAR: I'm going to ask you a
11	little bit about this, actually. Dug in a little and
12	you might need some help.
13	The - I'm terrible with colors. The CRS,
14	CR, CB, HVAC, the three percent wedge in the upper
15	left-hand corner from - that includes the cable room -
16	MR. RUBANO: Cable spread room.
17	CHAIRMAN STETKAR: Cable spread -
18	MR. RUBANO: Control room.
19	CHAIRMAN STETKAR: Basically fire area CB1.
20	MR. RUBANO: That's correct. It's CB1.
21	CHAIRMAN STETKAR: In your analyses, you do
22	have a - I've forgotten what you call it. Your
23	alternate shutdown.
24	MR. RUBANO: Remote shutdown panel.
25	CHAIRMAN STETKAR: Yes, remote shutdown
	I

(202) 234-4433

	190
1	panel.
2	That, in the PRA model, essentially for -
3	is it all fires in there people relocate to the remote
4	shutdown panel the way they're treated?
5	MR. RUBANO: No.
6	CHAIRMAN STETKAR: No?
7	MR. RUBANO: So, there's several things we
8	did for the control room. For the control room, we
9	did the required abandonment criteria based on
10	habitability. So, density and/or smoke and whatever
11	else, heat. So, you've got a set of you have to leave
12	the control room.
13	Then we came across a couple of panel
14	fires within the control room that if you left the
15	control room or had to leave the control room because
16	of that panel fire, there's a low likelihood that even
17	if you successfully got to the remote shutdown panel,
18	that you actually could mitigate the consequences of
19	that fire because the damage would be too quick, too
20	soon. By the time you got there, you could not gain
21	enough control, all right?
22	Some of those panel fires were more
23	successful - you would be more successful in the
24	control room because you had more equipment still
25	available in the control room than on the remote
I	

(202) 234-4433

	191
1	shutdown panel.
2	So, all those cases were considered.
3	CHAIRMAN STETKAR: Okay.
4	MR. RUBANO: All right. So, there are some
5	panels where essentially leaving the control room -
6	the CCDP is one. There's essentially no recovery.
7	CHAIRMAN STETKAR: Okay.
8	MR. RUBANO: If you had to leave for that
9	panel - if you left for that panel, the probability of
10	success is very, very low.
11	CHAIRMAN STETKAR: Okay, okay.
12	But for the action when the operators did
13	abandon the control room and go to the remote shutdown
14	panel, in the PRA they were guaranteed to be
15	successful; is that right?
16	MR. RUBANO: No.
17	CHAIRMAN STETKAR: No? You assigned an
18	HEP?
19	MR. RUBANO: We actually assigned a
20	surrogate which we did backup. So, in the industry
21	floating around for a long time has been a CCDP of 0.1
22	for abandoning the control room and using the remote
23	shutdown panel.
24	So, we went and actually looked at the
25	actions. And if we did real calculations for HEPs,

(202) 234-4433

	192
1	we'd come up with a number that is considerably less
2	than 0.1. And we used 0.1 as a bounding factor.
3	CHAIRMAN STETKAR: 90 percent success.
4	MR. RUBANO: Right.
5	CHAIRMAN STETKAR: I was -
6	MR. RUBANO: And at Duane Arnold, it's
7	reasonable at Duane Arnold because the remote shutdown
8	panel is relatively well-equipped and the normal
9	isolate switches are relatively easy.
10	It's not exotic as some of the other
11	places are.
12	CHAIRMAN STETKAR: Let me ask you - I was
13	thinking about this. I used to work in a plant and
14	I've seen a few older plants that have backfit - your
15	remote shutdown panel was backfit, right? It wasn't
16	built when you built the plant.
17	I didn't see any fire scenarios in the -
18	I know the remote shutdown panel is someplace out in
19	the reactor building. I couldn't figure out exactly
20	where it was, because I couldn't. I couldn't find any
21	fire scenarios that seem to affect the remote shutdown
22	panel.
23	Is the remote shutdown panel at Duane
24	Arnold - in some older plants, what they did is they
25	installed a remote shutdown panel basically in series
ļ	1

(202) 234-4433

	193
1	with the control room.
2	Control signals start at the control room
3	and went to the remote shutdown panel and went to the
4	cabinets or motor control centers or switchgear or
5	wherever they were going such that if you had to
6	abandon the control room, you basically cut the tie
7	from the control room and controlled from the remote
8	shutdown panels.
9	In other plants, the remote shutdown panel
10	is effectively in parallel with the control room such
11	that you have to actually enable the remote shutdown
12	panel.
13	MR. RUBANO: It's a mix, but mostly the hot
14	shutdown panel is wrong plant. Remote shutdown
15	panel is mostly de-energized. So, it's mostly in
16	parallel.
17	CHAIRMAN STETKAR: Okay, okay.
18	MR. RUBANO: And I know what you're talking
19	about. So, if you have a -
20	CHAIRMAN STETKAR: If you have a fire at
21	the remote shutdown panel, it's worse than the main
22	control room because you can't do anything.
23	MR. RUBANO: Right, right. I have - one of
24	my sites has that problem.
25	CHAIRMAN STETKAR: Duane Arnold isn't -
I	1

(202) 234-4433

	194
1	MR. RUBANO: No.
2	CHAIRMAN STETKAR: Okay.
3	MR. RUBANO: But one of my sites has that
4	problem. The remote shutdown panel turns out to be a
5	pretty significant scenario.
6	CHAIRMAN STETKAR: Yes, okay. Thanks.
7	MR. JULKA: Then I guess we needed to get -
8	say, okay, essential switchgear room dominates the
9	risk. Why is that?
10	So, we started looking at all the cut
11	sets.
12	CHAIRMAN STETKAR: Let me - I'm sorry.
13	MR. JULKA: No, that's fine.
14	(Discussion off the record.)
15	CHAIRMAN STETKAR: One thing I was trying
16	to understand - do you have a separate slide that
17	you're going to talk about the control room, or are we
18	done with the control room?
19	MR. JULKA: No, we didn't have specific
20	slide on the control room.
21	MR. RUBANO: The only thing we're talking
22	about a control room is the modification we're making
23	for detection.
24	CHAIRMAN STETKAR: Let me ask this then.
25	And I may have misinterpreted what I was reading. I
ļ	1

(202) 234-4433

	195
1	thought that I read that in fire area CB1 there were
2	systems and trains of systems that were not credited
3	in the PRA analysis.
4	And in particular, I thought that I read
5	that Division 1 AC electric power was not credited.
6	In other words, that you assumed Division 1 AC
7	electric power was guaranteed to be failed for all
8	fires in fire area CB1.
9	Is that true, or was I misreading
10	something?
11	MR. RUBANO: I don't think that's true.
12	CHAIRMAN STETKAR: Okay.
13	MR. RUBANO: The cable spread room in
14	particular is mostly Division 1.
15	CHAIRMAN STETKAR: Yes.
16	MR. RUBANO: So, fires in there would tend
17	to disable all of Division 1, but that's not a - we
18	did not make that a universal assumption. It actually
19	had to be the consequence of the scenario.
20	CHAIRMAN STETKAR: Okay, okay. Thanks.
21	All I was reading was Attachment C. And a lot of
22	times, you know, it's kind of abbreviated information.
23	MR. RUBANO: Yes.
24	CHAIRMAN STETKAR: So, thanks. That helps.
25	Again, what I'm trying to do at least some
Į	I

(202) 234-4433

196 1 of the questions I'm asking, is to try to understand from these three different applications are there any 2 3 kind of shortcuts or simplifications or kind of hold-4 overs from Appendix R think, if you will, that are 5 being pulled over into the PRA models either simplifying assumptions or something that might make 6 7 the PRA results more conservative, but simplify the 8 models. 9 MR. RUBANO: Well, one of - I mean, one of 10 the common things that - and we haven't said much about that at Duane Arnold, but DC Cook talked about 11 the conditional circuit failure probabilities this 12 Same issue at Duane Arnold. 13 morning. 14 So, we basically when you first do your 15 cable mapping, basically you got a component, you got 16 cables. Okay, if I damage those cables, the component 17 does the wrong thing, right? You can go back and you can get more 18 19 sophisticated. You could still put a conditional probability of actually getting that state in based on 20 that cable. You can take a closer look at what the 21 cable actually does to that component's function and 22 things like that. But again, first cut is I damaged 23 24 the cable, component is bad. And you typically don't go past there 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	unless you really have to. Again, you start - we have
2	concerns about configuration management and stuff like
3	that going forward.
4	Because if I take a particular cable and
5	they say it's got a conditional damage probability
6	because it's this and that and because it only does
7	this function on the component and if I change the
8	circuit around, now I have to worry about all those
9	assumptions again. It sort of locks me into now I
10	have to make sure that they actually fail that same
11	way each time.
12	CHAIRMAN STETKAR: Yes.
13	MR. RUBANO: We use it when we have to, but
14	we typically do not start that way.
15	CHAIRMAN STETKAR: Yes, okay.
16	MR. JULKA: So, then we want to understand,
17	I guess, what are the further insights into this, what
18	is this chart telling us?
19	And what we found out was that essential
20	switchgear room, we already talked about it, was the
21	dominant scenario of the LOOP, like I think DC Cook
22	talked about earlier, due to fire with opposite
23	standby diesel generator in maintenance.
24	So, we see that 46 percent of the risk is
25	driven when I come to the maintenance. These
ļ	I

(202) 234-4433

	198
1	scenarios involve the loss of offsite power. And due
2	to fire damage opposite diesel as in maintenance, that
3	contributes too.
4	So, I think we haven't really fully
5	evaluated, okay, well, you know, how do we - what do
6	we do about it? I think it's something we can do
7	something with it. It's risk insight which is coming
8	to us. What do we do with it? I think we still have
9	to think about it a little more on how we evaluate
10	this.
11	But it does show us that, you know, there
12	is consistent - separation is there in the plant based
13	on, you know, things we have seen so far. And the top
14	contributors are diesel. We expected that. River
15	water which is our ultimate heat sink, and service
16	water maintenance dominates, you know, maintenance
17	dominates. I guess that's the key thing we found out.
18	CHAIRMAN STETKAR: What does your internal
19	- your internal events PRA results show similar
20	combinations. I mean, you know, there are no internal
21	- well, I have to be careful, but -
22	MR. JULKA: Pretty much. Pretty much.
23	CHAIRMAN STETKAR: for loss of offsite
24	power, combinations of diesel maintenance and hardware
25	failure.
ļ	I

(202) 234-4433

	199
1	MR. JULKA: SBO, station blackout.
2	MR. RUBANO: But the resulting risk is much
3	lower because to
4	CHAIRMAN STETKAR: True.
5	MR. RUBANO: You have a single diesel in
6	maintenance. The other one is available that may have
7	a failure.
8	CHAIRMAN STETKAR: Right.
9	MR. RUBANO: But now you got the rate of
10	failure probability combined with the maintenance
11	term.
12	CHAIRMAN STETKAR: Sure.
13	MR. RUBANO: Where the failure of the first
14	train is essentially set to one by the fire.
15	CHAIRMAN STETKAR: That's why fires are so
16	interesting.
17	MR. JULKA: So, yes, you know, it shows us
18	that separation does exist in cables. Usually we
19	didn't expect that based on the older plant. A lot of
20	the plants are having issues with cable separations.
21	And I know we are, but other PWRs tremendous problem
22	with cable separation.
23	MEMBER BLEY: I've just been stewing over
24	your cable spreading room. The reason I'm stewing is
25	because even though you say these are a lot bigger
	I

(202) 234-4433

	200
1	than your internal events, these are really small
2	numbers. They are.
3	So, if once every ten years you do hot
4	work in that cable spreading room, and I would guess
5	you would tag out the CO2 system if you're going to
6	send a guy in there to do hot work -
7	MR. RUBANO: Yes.
8	MR. JULKA: Definitely.
9	MEMBER BLEY: you might be talking
10	about numbers right in the same ballpark, you know.
11	All your reasoning sounded good until you look at the
12	numbers we're comparing it to, and I'm not so sure
13	it's a reasonable thing to pitch it.
14	And I know you don't want to leave the CO2
15	on when a guy goes in there. At least I wouldn't want
16	to be the guy.
17	CHAIRMAN STETKAR: Not with that size door,
18	you wouldn't.
19	(Laughter.)
20	(Discussion off the record.)
21	MR. JULKA: There will be firewatch there.
22	MEMBER BLEY: There would be a fire watch
23	there.
24	MR. JULKA: There will be fire watch.
25	MR. RUBANO: In addition, the way they tag
I	I

(202) 234-4433

	201
1	out the CO2 systems, they'll put it to manual. So,
2	even if we were to have a fire there and we got
3	everybody out, we could actually -
4	MEMBER BLEY: Close the door and pop it,
5	yes. Okay. It was just nagging at me since you
6	talked about it.
7	MR. RUBANO: It's not a total disablement
8	of the system. It's just -
9	MEMBER BLEY: These small numbers trick us
10	sometimes because they're a lot smaller than our
11	everyday experience.
12	MR. JULKA: So, like we said, you know, if
13	you combine them both right now, fire does dominate
14	the way it is right now. So, yes, John, we may make
15	changes in the future or improve it.
16	And also if you look at it, 6850 was
17	developed a long time ago. And I think industry is
18	learning more. So, as we go along, I think things
19	will be updated in the future.
20	CHAIRMAN STETKAR: You did look at multi-
21	compartment fires?
22	MR. JULKA: Yes.
23	CHAIRMAN STETKAR: Okay. I mean, the way
24	you defined your fire areas, you probably didn't have
25	many multi-compartment fires.
ļ	I

(202) 234-4433

	202
1	MR. RUBANO: I mean, I said this before,
2	the smallest fire areas are the switchgear rooms and
3	battery rooms, stuff like that, but those rooms are
4	basically totally enclosed. So, the battery
5	reliability is very good.
6	MR. JULKA: We're going to talk about some
7	modifications.
8	MR. RUBANO: Modifications. So, we have
9	essentially just two modifications that we have
10	proposed at Duane Arnold.
11	The first one is incipient detection in
12	the main control room, and I know some of the staff
13	doesn't like the name incipient detection, it's a very
14	early warning system, but essentially the same thing,
15	and emergency service water circuit modification, and
16	I'll just tell you about the service water
17	modification first.
18	It's basically just adding some fuses to
19	the circuit to prevent the circuit from being taken
20	out by a fire in the turbine building. That's just
21	the way the cables are run. We're just going to get
22	rid of the problem by putting a couple fuses in. So,
23	we just got rid of that problem.
24	Incipient detection in the control room,
25	so there was challenges. We came across challenges,
I	1

(202) 234-4433

	203
1	as I said before, between getting to the ultimate
2	shutdown capability that we have versus what some of
3	the multiple spurious combinations that we could come
4	up with in the control room specifically like the SRV
5	control panel and stuff like that.
6	So, the GE analysis that was originally
7	done for Duane Arnold had a certain number of SRVs
8	opening, had so much time to get isolation switches on
9	the way to the remote shutdown panel. So, the
10	isolating, you've got the remote shutdown panel, now
11	you have control.
12	When you take a hard look at that, as I
13	said before, if all those valves were to open, getting
14	to those isolation switches and then getting to the
15	remote shutdown panel, you may not have enough
16	equipment left to mitigate the consequences of that
17	particular event.
18	And we found several panels in the control
19	room with similar type situations where the amount of
20	equipment lost could put the plant in a very bad
21	position and not as easily recoverable from the remote
22	shutdown panel as you would think it would be.
23	So, what we're doing - what we did for
24	that is to basically put this detection system - we're
25	putting this detection system in those panels to
ļ	

(202) 234-4433

	204
1	ensure that we don't get that panel fire that
2	encompasses the panel.
3	This also reduces the fraction of fires
4	that would cause control room abandonment. By
5	catching the fire in an incipient stage, you lower the
6	probability that the fire will grow to a size that
7	would cause the control room to be abandoned.
8	There was an RAI on this. We were
9	challenged by the staff on the credit we took for the
10	incipient detection. We based it on the fact it was
11	on incipient detection.
12	It was pointed out to us that that fact
13	was based on non-control room locations. So, some of
14	the prompt suppression credit that is in the FAQ
15	shouldn't be applied for the control room, because the
16	control room is continuously manned.
17	So, we went back and we did an event tree
18	type of analysis to show that the factors we use even
19	when you take that credit out of there for that prompt
20	suppression is still within the bounds that we have
21	done in our original analysis and that we had
22	submitted that response in the RAI.
23	We haven't heard back on that discussion
24	yet. I'm sure we'll have more discussion on that
25	going forward.
I	

(202) 234-4433

1 The industry is working on a FAQ to put 2 forth the logic for how much credit you can get for a control room incipient detection system, and also how 3 4 much credit you can get for an area-wide incipient 5 detection. Right now the FAQ only encompasses low-6 7 voltage cabinets, in-cabinet detection and we're 8 trying to expand that to control room cabinets and 9 area wide. We believe incipient detection is a very 10 qood safety improvement. It's a much better detection 11 system than the detection system we have. 12 It will detect a lot of equipment failures 13 14 at a very early stage and allow you to essentially 15 prevent the bad consequences. CHAIRMAN STETKAR: I understand there's 16 17 some evidence that works pretty well in cabinets. You mentioned area wide. 18 19 MR. RUBANO: Yes. CHAIRMAN STETKAR: Has any testing been 20 done about how effective it is for a larger -21 MR. RUBANO: it is used area-wide in other 22 industries. Obviously, we'd have to go and look, 23 24 figure out how to credit that here. One of my plants actually has an area-wide 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	206
1	system. We actually use it in lieu of the detection
2	system that was there, because the detection system
3	there did not meet code.
4	Very difficult area to make it meet code
5	because of the beam pockets. It's relatively high-
6	radiation area, scaffolding. It would be very
7	difficult.
8	We put that system in and, let me tell
9	you, it picks up an awful lot of stuff.
10	MR. JULKA: It does. I think Canadians use
11	it and they're very happy with that system. And
12	Calvert has it in the intake structure area. And Nine
13	Mile, too, installed it then for the feedwater area.
14	CHAIRMAN STETKAR: I've seen it put in.
15	I'm sure they have it cabinet-specific.
16	MR. RUBANO: Right.
17	CHAIRMAN STETKAR: In the main control
18	room, you're only going to selectively install it in
19	the most risk-significant panels, or are you going to
20	-
21	MR. RUBANO: It's selected panels. And I
22	believe it's basically the risk-significant panels,
23	plus one adjacent to each - we're still working on the
24	exact details of that, but the purpose is to make sure
25	that we have some defense for fires that if they were
l	I

(202) 234-4433

	207
1	to develop in those particular areas, the risk to core
2	damage is pretty high and there's not a lot of things
3	you can do to mitigate that.
4	CHAIRMAN STETKAR: One last question. That
5	third sub-bullet where you say "full credit for
6	incipient detection was challenged by the NRC," when
7	I see words like "full credit," numbers like zero come
8	to mind or 100 percent.
9	MR. RUBANO: No, no, this is the full
10	credit that was in the FAQ. So, the FAQ said you can
11	multiply the frequency by this much, and they
12	challenged it. No, you can't. It's got to be less
13	than that.
14	CHAIRMAN STETKAR: Okay. So, there was
15	still come chance that it didn't -
16	MR. RUBANO: Oh, yes.
17	CHAIRMAN STETKAR: Okay.
18	MR. RUBANO: There's two issues in there -
19	there's a whole host of issues of why the system won't
20	fail. One, the system itself has a reliability. Two,
21	even if the system alarms, you know, someone responds
22	and doesn't find it, you know.
23	Three, even if they do, they don't get the
24	fire out, you know. There's a whole host of things.
25	CHAIRMAN STETKAR: But your model had -
I	I

(202) 234-4433

	208
1	MR. RUBANO: Right.
2	CHAIRMAN STETKAR: that stuff in it.
3	MR. JULKA: So, those are the only two
4	mods. I guess it's something that you will not hear
5	in any PWRs.
6	CHAIRMAN STETKAR: I think we heard one
7	this morning that had zero.
8	MR. RUBANO: No, they got a bunch of - DC
9	Cook?
10	CHAIRMAN STETKAR: DC Cook.
11	MR. RUBANO: No, they're modifying some
12	valves. A bunch of valves.
13	(Discussion off the record.)
14	MR. RUBANO: None of my other PWRs have
15	those, are going to get away with a few mods.
16	MR. JULKA: So, this just says that, you
17	know, the Kleinsorg Group and ERIN Engineering did the
18	fire PRA development.
19	CHAIRMAN STETKAR: Anil, there was -
20	MR. JULKA: Modifications?
21	CHAIRMAN STETKAR: No, the fire PRA.
22	MR. JULKA: Okay.
23	CHAIRMAN STETKAR: Somewhere, and I can't
24	find my reference right now, there was reference made
25	to a couple of different codes that I think were cited
I	I

(202) 234-4433

	209
1	as EPRI codes. Fran something or other.
2	MR. RUBANO: FRANK.
3	MR. JULKA: FRANK.
4	CHAIRMAN STETKAR: FRANK.
5	MR. RUBANO: Yes.
6	CHAIRMAN STETKAR: I don't know what FRANK
7	is. I've never - is that -
8	MR. RUBANO: That's the -
9	CHAIRMAN STETKAR: Is that a preprocessor
10	or a post-processor?
11	MR. RUBANO: No, that sits on top of CAFTA.
12	MR. JULKA: Quantification -
13	MR. RUBANO: Pulls the CCDPs out of CAFTA
14	to do the -
15	MR. JULKA: It's just a quantification -
16	MR. RUBANO: It's a quantification
17	essentially.
18	MR. JULKA: Helps with the quantification.
19	CHAIRMAN STETKAR: Okay.
20	MR. JULKA: It's EPRI tool.
21	CHAIRMAN STETKAR: Okay.
22	MR. JULKA: In fact, we made up another one
23	now, FRANX. We're going to be going to that probably
24	very soon.
25	CHAIRMAN STETKAR: Okay.
I	

	210
1	MR. RUBANO: FRANK has some limitations.
2	CHAIRMAN STETKAR: All codes have
3	limitations.
4	MR. RUBANO: And FRANX, which is - it's the
5	newer version, had some bugs. Probably those have
6	been worked out and it does - it has better
7	capabilities, but the data transfer is not - does not
8	just flop the data over into the next program. So, it
9	takes some thought to make the transfer.
10	CHAIRMAN STETKAR: Okay.
11	MR. RUBANO: So, as Anil was saying, fire
12	PRA was developed by ERIN Engineering. They were part
13	of a - they were subcontracted as part of a bigger
14	transition contract and that basically supplements in-
15	house resources.
16	We do not have the in-house resources and
17	did not have in-house resources capable of doing this
18	type of work.
19	A fire PRA from scratch is a very time-
20	consuming effort. And our experience is that it's a
21	much larger effort than originally thought because -
22	well, again, you run through with the first cut and
23	the numbers don't look the way you want them to look,
24	and then you start going back and refining it.
25	And every time you refine it, you're
l	I

(202) 234-4433

	211
1	adding another layer of detail to where you are and it
2	gets to be a very big animal very quick.
3	So, the fire PRA did use the current safe
4	shutdown analysis as input. This is a little bit
5	different than some people. Some people using the
6	current fire PRA, some people have redone their safe
7	shutdown analysis either as a precursor to going into
8	NFP 805, or as part of NFP 805.
9	Duane Arnold used the real existing safe
10	shutdown analysis as input because that - we did a
11	sampling of that analysis, and the analysis was pretty
12	solid. So, we could use that information.
13	And we - part of that is to make sure that
14	the PRA model modeled failures that were in the safe
15	shutdown analysis.
16	So, one of the difficulties you have when
17	you base the fire PRA based on the internal events
18	PRA, is that fire can cause failures that the internal
19	events PRA never sees. So, we've had to go back to
20	the internal events PRA, put stuff in there so the
21	fire PRA could properly quantify what some of those
22	failures are.
23	And that turns out especially when we were
24	doing the 1.200 upgrade at the same time. Lot of
25	moving parts.

(202) 234-4433

	212
1	CHAIRMAN STETKAR: That'S one of the
2	reasons for my initial question about diverging
3	models.
4	MR. RUBANO: That is a concern. We're
5	working hard to make sure that we know what the
6	differences are and keeping track of that, but that is
7	a concern.
8	We put it all back together again, and we
9	could have another surprise.
10	MR. JULKA: That will be our priority in
11	the implementation, make sure we do that.
12	MR. RUBANO: Duane Arnold is in a
13	relatively good position in that respect, because the
14	modifications are not exotic and they're not very long
15	term. So, the time frame is shorter than some other
16	utilities, other sites.
17	I know my other sites, they have a much
18	longer window for some of the modifications. So, the
19	internal events model won't catch up to the fire model
20	for several years, because we've got to wait for those
21	modifications to be complete.
22	CHAIRMAN STETKAR: I still like to think of
23	one PRA model that has evaluated a bunch of stuff.
24	Some better than other things.
25	MR. RUBANO: We would like to keep it that
Į	I

(202) 234-4433

	213
1	way, too, but it's difficult right now. There's a lot
2	of moving pieces.
3	And we did the teamwork pretty well. We
4	got some good cooperation between the PRA analysts and
5	the safe shutdown analysts. They worked pretty
6	closely together trying to understand why the PRA
7	wasn't telling us sometimes the same thing the safe
8	shutdown analysis was or vice versa.
9	So, we were able to work through a lot of
10	those issues and we feel that we've captured all the
11	information.
12	Challenges, all right. So, MSO list. The
13	infamous MSO list is being updated at the same time as
14	the review is being performed.
15	So, we performed an expert panel based on
16	the MSO list that existed at the time. Came up with
17	stuff we had to change in the PRA model. Came up with
18	stuff we had to change in the safe shutdown analysis.
19	Cranked in all those changes and the MSO list was
20	revised. In fact, it was revised twice since the time
21	we did the analysis. We'll probably have to go back
22	and do some of that stuff again.
23	CHAIRMAN STETKAR: When did you have your
24	final expert panel MSO evaluation in calendar time?
25	MR. RUBANO: 2010.
I	

(202) 234-4433

	214
1	CHAIRMAN STETKAR: Two years ago.
2	MR. RUBANO: And we had to go back and do
3	sort of a gap analysis for the latest revision to make
4	sure we captured everything.
5	MR. JULKA: PWR OG.
6	MR. RUBANO: PWR OG maintains that list.
7	CHAIRMAN STETKAR: I know they've updated
8	the MSO list in the last couple -
9	MR. RUBANO: Yes, PWR OG has updated that
10	list also.
11	CHAIRMAN STETKAR: Right. But what I was
12	asking is, you have not reconvened another expert
13	panel for Duane Arnold to look at that updated list.
14	MR. RUBANO: No, we basically looked at the
15	differences between the old list and the new list and
16	the gaps.
17	The changes were not that significant so
18	that we'd have to do the process again.
19	CHAIRMAN STETKAR: Okay.
20	MR. RUBANO: Again, it's a judgment call.
21	And if you added one MSO or one item to it or
22	something like that, it's not - convening the expert
23	panel doesn't gain you anything. If they did a
24	dramatic revision, then you would have to reconvene
25	the panel and start again.

(202) 234-4433

	215
1	CHAIRMAN STETKAR: Okay.
2	MR. RUBANO: The review process for the
3	analysis methods was certainly more involved than
4	envisioned.
5	When EPRI first started down with that
6	review panel, they were talking about an 11 or a 13-
7	week schedule for getting it done end to end, and none
8	of them even came close to that schedule.
9	CHAIRMAN STETKAR: I guess I had a
10	question, you know, as I was going through whatever it
11	is, Attachment J, I think, that lists the different
12	fire models that are used at least among the three
13	that we're discussing today, your list was much, much
14	longer in terms of NAMs, if you call them, compared to
15	either of the other sites.
16	And one of the questions that I had going
17	in was, why? I mean, why did you feel that it was
18	necessary to use different tweaks on correlations that
19	are used in, you know, FIVE or FDT or CFAST or things
20	like that, you know?
21	MR. RUBANO: Excellent question.
22	So, what's not - hasn't been expressed
23	here is that - is the fire modeling that underlies the
24	fire PRA at Duane Arnold, right?
25	So, the control room had the traditional
I	1

(202) 234-4433

	216
1	CFAST model to determine optical density and things
2	like that for the control room.
3	The remainder of the plant was done using
4	a generic fire model and treatment. Basically, a pre-
5	solved set of - for each bin a - if you want to call
6	it a damage footprint, but a zone of influence for
7	each bin that's in 6850.
8	So, for an electrical cabinet with a heat
9	release rate of whatever that number is, all right,
10	the - and that treatment considers both qualified
11	cable and unqualified cable. Actually, thermoset and
12	thermoplastic is the proper term, all right.
13	So, when the PRA analyst goes - does a
14	walkdown, he has basically a checklist with that
15	information and says, okay, so if I have an electrical
16	cabinet that is not well sealed, all right, and I have
17	thermoplastic cable, all right, the zone of influence
18	for this fire is so many feet above and so many feet
19	to the side and one of my targets within that area,
20	all right.
21	There are limitations to that, because
22	that's based on a host of correlations and CFAST runs
23	and things like that, that put a bound around that
24	whole thing.
25	And that's why there's a lot of that stuff
I	1

(202) 234-4433

	217
1	in there, because those form the boundaries of that
2	analysis.
3	CHAIRMAN STETKAR: But I guess my question
4	is that couldn't you have done the same thing, or am
5	I misinterpreting perhaps that list?
6	Rather than saying, well, this correlation
7	was documented in a certain contractor report, rather
8	than using either the same correlation or a slightly
9	different version of that correlation that's
10	documented in FIVE or FDTS, you know, that had already
11	been going through the V&V process.
12	I mean, you still have to do the
13	calculation -
14	MR. RUBANO: Right, right.
15	CHAIRMAN STETKAR: whether you use this
16	tool or this tool.
17	MR. RUBANO: That methodology that was used
18	at Duane Arnold was originally developed for Oconee.
19	That's where it started.
20	In fact, that was submitted to the staff.
21	That general fire tree was submitted to the staff as
22	a separate document.
23	CHAIRMAN STETKAR: Again, we're at a bit of
24	a disadvantage here because we haven't -
25	MR. RUBANO: No, I understand.
	I

(202) 234-4433

	218
1	CHAIRMAN STETKAR: formally seen the
2	Oconee or Shearon Harris submittals. So, I mean,
3	we've seen them, but not seen them.
4	MR. RUBANO: And we've used that same
5	treatment generically at two of our other sites. So,
6	it's not a Duane Arnold-specific analysis.
7	CHAIRMAN STETKAR: With the same suite of -
8	MR. RUBANO: Yes.
9	CHAIRMAN STETKAR: tools, okay.
10	MR. RUBANO: So, it's basically a common
11	set of tools which we basically can transport from
12	site to site to site.
13	CHAIRMAN STETKAR: Okay.
14	MR. RUBANO: All right. So, the bounds in
15	there are a little bit wider, little bit slightly
16	different in order to try to encompass the
17	possibilities.
18	The questions we got from the staff - the
19	fire modeling group that reviewed it at Duane Arnold
20	liked the information. In fact, they thought it was
21	very well done.
22	The biggest comments we got from the staff
23	was not how did you come up with that information. It
24	was how did the PRA analyst actually use it in the
25	field? Did he understand the limitations that were
l	I

(202) 234-4433

	219
1	built into that treatment?
2	CHAIRMAN STETKAR: Right.
3	MR. RUBANO: That treatment says you can
4	use it as long as the room size is no bigger than
5	this, no smaller than that, no wider than, you know.
6	Did the PRA analyst actually go out and
7	say, well, this room doesn't fit this, so I shouldn't
8	use it here? That's the questions we really got from
9	the staff.
10	CHAIRMAN STETKAR: Okay.
11	MR. RUBANO: And we went back a couple of
12	times now with actually the author of those documents
13	with the PRA staff to ensure ourselves that we in fact
14	captured all the limits and the analyst actually
15	applied it the right way.
16	There's multiple ways you can attack this,
17	all right? So, you can have the PRA guys doing PRA
18	work and the fire modeler doing fire modeling work and
19	then transmitting information that way.
20	CHAIRMAN STETKAR: I've heard that.
21	MR. RUBANO: You can have PRA guys doing
22	walkdowns and developing the scenarios themselves with
23	the fire modeling dividing the input there. There's
24	multiple ways to attack it.
25	It's a tool to help simplify walkdowns and
I	I

(202) 234-4433

1gathering information and what's in the box. So, that2helps us with a little bit of configuration control3going forward, because that box size which is somewhat4conservative is not highly dependent on everything5that's in that room, because it's generic enough that6it fits multiple places.7So, I don't have to worry about if I8change something small in that room, am I really9impacting the whole analysis?10The more exacting the analysis gets, the11more you have to be conservative with configuration12management going forward.13So, this was an attempt to not burden14ourselves with that going forward. It was a little15bit different.16CHAIRMAN STETKAR: Yes, I was going to -17that helps a little bit at least understand. Thanks.18MR. RUBANO: So, as we said before, the19process for reviewing the analysis methods was a lot20more involved than envisioned. The schedule took a21lot longer.22The panel had lots of comments, changed23lots of things, you know. So, again, every time they24would change something, we'd have to go back and25shuffle things around to see what we could do to		220
 going forward, because that box size which is somewhat conservative is not highly dependent on everything that's in that room, because it's generic enough that it fits multiple places. So, I don't have to worry about if I change something small in that room, am I really impacting the whole analysis? The more exacting the analysis gets, the more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	1	gathering information and what's in the box. So, that
 conservative is not highly dependent on everything that's in that room, because it's generic enough that it fits multiple places. So, I don't have to worry about if I change something small in that room, am I really impacting the whole analysis? The more exacting the analysis gets, the more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	2	helps us with a little bit of configuration control
 that's in that room, because it's generic enough that it fits multiple places. So, I don't have to worry about if I change something small in that room, am I really impacting the whole analysis? The more exacting the analysis gets, the more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	3	going forward, because that box size which is somewhat
 it fits multiple places. So, I don't have to worry about if I change something small in that room, am I really impacting the whole analysis? The more exacting the analysis gets, the more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	4	conservative is not highly dependent on everything
7So, I don't have to worry about if I8change something small in that room, am I really9impacting the whole analysis?10The more exacting the analysis gets, the11more you have to be conservative with configuration12management going forward.13So, this was an attempt to not burden14ourselves with that going forward. It was a little15bit different.16CHAIRMAN STETKAR: Yes, I was going to -17that helps a little bit at least understand. Thanks.18MR. RUBANO: So, as we said before, the19process for reviewing the analysis methods was a lot20more involved than envisioned. The schedule took a21Iot longer.22The panel had lots of comments, changed23lots of things, you know. So, again, every time they24would change something, we'd have to go back and	5	that's in that room, because it's generic enough that
 change something small in that room, am I really impacting the whole analysis? The more exacting the analysis gets, the more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	6	it fits multiple places.
 9 impacting the whole analysis? 10 The more exacting the analysis gets, the 11 more you have to be conservative with configuration 12 management going forward. 13 So, this was an attempt to not burden 14 ourselves with that going forward. It was a little 15 bit different. 16 CHAIRMAN STETKAR: Yes, I was going to - 17 that helps a little bit at least understand. Thanks. 18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and 	7	So, I don't have to worry about if I
10The more exacting the analysis gets, the11more you have to be conservative with configuration12management going forward.13So, this was an attempt to not burden14ourselves with that going forward. It was a little15bit different.16CHAIRMAN STETKAR: Yes, I was going to -17that helps a little bit at least understand. Thanks.18MR. RUBANO: So, as we said before, the19process for reviewing the analysis methods was a lot20more involved than envisioned. The schedule took a21lot longer.22The panel had lots of comments, changed23lots of things, you know. So, again, every time they24would change something, we'd have to go back and	8	change something small in that room, am I really
more you have to be conservative with configuration management going forward. So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and	9	impacting the whole analysis?
12 management going forward. 13 So, this was an attempt to not burden 14 ourselves with that going forward. It was a little 15 bit different. 16 CHAIRMAN STETKAR: Yes, I was going to - 17 that helps a little bit at least understand. Thanks. 18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	10	The more exacting the analysis gets, the
 So, this was an attempt to not burden ourselves with that going forward. It was a little bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and 	11	more you have to be conservative with configuration
14 ourselves with that going forward. It was a little 15 bit different. 16 CHAIRMAN STETKAR: Yes, I was going to - 17 that helps a little bit at least understand. Thanks. 18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	12	management going forward.
bit different. CHAIRMAN STETKAR: Yes, I was going to - that helps a little bit at least understand. Thanks. MR. RUBANO: So, as we said before, the process for reviewing the analysis methods was a lot more involved than envisioned. The schedule took a lot longer. The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and	13	So, this was an attempt to not burden
16 CHAIRMAN STETKAR: Yes, I was going to - 17 that helps a little bit at least understand. Thanks. 18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	14	ourselves with that going forward. It was a little
17 that helps a little bit at least understand. Thanks. 18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	15	bit different.
18 MR. RUBANO: So, as we said before, the 19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	16	CHAIRMAN STETKAR: Yes, I was going to -
19 process for reviewing the analysis methods was a lot 20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	17	that helps a little bit at least understand. Thanks.
<pre>20 more involved than envisioned. The schedule took a 21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and</pre>	18	MR. RUBANO: So, as we said before, the
21 lot longer. 22 The panel had lots of comments, changed 23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	19	process for reviewing the analysis methods was a lot
The panel had lots of comments, changed lots of things, you know. So, again, every time they would change something, we'd have to go back and	20	more involved than envisioned. The schedule took a
23 lots of things, you know. So, again, every time they 24 would change something, we'd have to go back and	21	lot longer.
24 would change something, we'd have to go back and	22	The panel had lots of comments, changed
	23	lots of things, you know. So, again, every time they
25 shuffle things around to see what we could do to	24	would change something, we'd have to go back and
	25	shuffle things around to see what we could do to

(202) 234-4433

	221
1	encompass that.
2	We've got some NRC staff disagreeing with
3	some of the conclusions. So, it sort of puts you in
4	a funny place sometimes when you use that.
5	Here you got a group of experts that say,
6	hey, it's okay to do this. And then the NRC says,
7	well, we're not really sure. We're maybe not going to
8	accept this. It puts you in a little bit of a box you
9	got to be careful of.
10	So, the responses to peer review findings
11	required more rigor than previous submittals. That's
12	something that Anil had mentioned that we were
13	surprised at the depth of the questions on the peer
14	review response findings. It appeared to be a lot
15	more depth than we had originally expected from this
16	type of application. So, it was challenging.
17	CHAIRMAN STETKAR: Sounds like you got a
18	good peer review.
19	(Laughter.)
20	MR. JULKA: Yes, normally for risk-informed
21	applications what we do is only identify open items,
22	open findings, not findings we have closed.
23	MR. RUBANO: We identified them all.
24	So, we had made a comment before about the
25	concurrent Reg Guide 1.200 internal events update and
I	

(202) 234-4433

	222
1	the fire PRA development was - helped provide
2	integrated results.
3	So, even though the models have some
4	divergence, they're really not that bad because they
5	were really, really developed together, but again gave
6	us some difficulties in coordination. Now, we had a
7	lot of moving parts.
8	So, the fire guys are like, hey, you know,
9	Anil, I need to get this into the internal events
10	model because I have no place to put that damage. And
11	the internal events guy says, well, I'm changing that
12	part of the tree right now. Can you add - it was
13	quite a coordination challenge.
14	MR. JULKA: And it came at the same time.
15	Reg Guide 1.200 Rev 2 came at the same time. So,
16	everybody in the industry was really going after that
17	at the same time we started developing the fire PRA.
18	CHAIRMAN STETKAR: Does Duane Arnold have
19	any other risk-informed applications in-house right
20	now?
21	MR. JULKA: We have - voluntary
22	applications, we only have the 5 bravo.
23	CHAIRMAN STETKAR: Okay.
24	MR. JULKA: But, you know, we have ISI,
25	risk-informed ISI and, you know.
Ĩ	

(202) 234-4433

	223
1	CHAIRMAN STETKAR: Yes, but, I mean, that's
2	less sensitive to the models.
3	MR. JULKA: Yes, right. So, the only one
4	is 5 bravo. We have not done the 4 bravo as yet.
5	That will be the next one, but that does need the fire
6	PRA for 4 bravo.
7	So, we have not applied for 5069 as yet,
8	but that's in the plan.
9	MR. RUBANO: Okay, implementation
10	challenges. Right now we believe the fire PRA is very
11	conservative. Some of it is due to the fact that we
12	stopped where we stopped, some of it is due to the
13	factors that go into 6850, some of it's due to the way
14	we handled some of that stuff.
15	Regardless of how we got there, we have
16	more work to do to make it more realistic.
17	CHAIRMAN STETKAR: And you didn't quantify
18	uncertainties, propagate uncertainties through. So,
19	you believe it's conservative, but you're not sure how
20	conservative it might be.
21	MR. RUBANO: That's one of the problems.
22	If I could put my finger on it saying that's the spot,
23	you know, that's what I need, you can't.
24	When you examine everything that goes into
25	this piece by piece, each piece looks reasonable.
	I

(202) 234-4433

	224
1	Each piece doesn't look like it's out of whack or has
2	anything like that.
3	But when you put them altogether and you
4	get a result, you look at it and you say, well, you
5	know, what is it trying to tell me?
6	We believe that the insights are valid.
7	So, the insight we have that the switchgear room is
8	the high risk and it's due to loss of offsite power
9	with the opposite diesel in maintenance, that's a real
10	insight.
11	We think the whole set of numbers is
12	probably a little bit too high, but what it's telling
13	us as far as what the real risk in the plant, is
14	probably true.
15	CHAIRMAN STETKAR: That's an important
16	conclusion. I'm glad to hear you say that.
17	MR. JULKA: And like you said, John, you
18	know, we started with internal events high. I think
19	that's a very good point. And where we are now, you
20	know, it's order of magnitude improvement since we
21	started.
22	MR. RUBANO: But as a result right now, the
23	fire PRA numbers are very large compared to internal
24	events, and we're not planning on using those as part
25	of the upcoming maintenance rule (a)4 modification.
I	

(202) 234-4433

	225
1	We're not using the fire PRA for that because it would
2	basically swamp the internal events and you would see
3	nothing but fire risk when you try to do something
4	like that, which would actually tend to mask internal
5	events and events changes due to a maintenance item.
6	You wouldn't see it on the internal
7	events, because the fire would be the only thing that
8	would show up. So, that's not - they really don't
9	want to do it that way.
10	As said before, most of the work was
11	performed by consultants. Technology transfer is
12	going to be a challenge. It's going to be a challenge
13	in two ways. One, we got to learn. And, two, we have
14	to have the staff. Right now the staff is going to be
15	stretched pretty thin.
16	We have two models, keeping them up to
17	date. And until we get them together, is also going
18	to stretch the staff further.
19	We have implemented, I would call it,
20	crude intermediate configuration control to make sure
21	that we're not doing anything in the plant that would
22	invalidate our application, but it's not the full-
23	blown change evaluation type process yet. We're still
24	working on that. And that's going to come together at
25	about the same time as we get the SE.
Į	

(202) 234-4433

	226
1	MEMBER SCHULTZ: Vinny, what leads it to
2	become an effort that's greater than envisioned? What
3	was missed?
4	Is it the magnitude of the evaluation, all
5	the different pieces that have to be addressed, or
6	what in particular makes it that -
7	MR. RUBANO: It's -
8	MEMBER SCHULTZ: so much larger?
9	MR. RUBANO: I don't think anybody will
10	recognize that when we first cranked through this
11	stuff, that the results we got were - when we looked
12	at them we said, well, this can't be right. There's
13	got to be something else wrong. And it caused us to
14	go back and look at it again and again and again doing
15	more and more refinements. It's not as simple as it
16	seems on the surface.
17	Just like DC Cook said, you started off
18	with a couple scenarios. And then as you look at the
19	numbers, you're like, well, I can't live with that
20	number. So, you crank in some more scenarios. You
21	crank in some more conditional probabilities on
22	failure probabilities of cables, you know. You crank
23	in better fire modeling to see if I can not damage so
24	much stuff. And it evolves over time and it becomes
25	very big.
ļ	

(202) 234-4433

	227
1	It's much - the data that's behind the
2	fire PRA is much larger than the data that's behind
3	the internal events PRA. And I think utility sites
4	and groups were structured, you know, based on how
5	hard or how much time it takes to do an internal
6	events PRA and how much hard is it to update it and
7	how do we keep that data going?
8	And when we got to the fire side, we
9	discovered that that concept is wrong. It's not even
10	close.
11	MEMBER SCHULTZ: Okay.
12	MR. RUBANO: And just keeping track of all
13	the scenarios - so, if I have to - if I put a new
14	cable in the plant - example this morning, put a new
15	cable in the plant. Do I impact any of the scenarios?
16	Well, to determine that, I have to know
17	where all the scenarios are, and there's a lot of
18	them. That's something the design side of the house
19	is going to have to learn how to look up and how to
20	find out.
21	MEMBER RAY: Have you given any thought to
22	how the NRC would oversee this from an ROP standpoint?
23	MR. RUBANO: Yes. So, there is a new
24	inspection procedure out for the triennial that was
25	piloted at Shearon Harris this year, I believe.
	I

(202) 234-4433

	228
1	This year, Harry?
2	MR. BARRETT: Yes.
3	MR. RUBANO: This year and I think it was
4	pretty successful. We probably have more work to do
5	on it.
6	Shearon Harris, I mean, I think one of the
7	reasons why it was successful at Shearon Harris is
8	because a lot of people paid attention to it because
9	it was new.
10	But ten years down the road when it
11	becomes routine, we may find some bumps in the road
12	because we don't have, you know, not everybody is
13	paying attention.
14	So, I mean, I have that concern that how
15	are we going to expect this in the future? How are we
16	going to control it on both sides of the house?
17	MR. JULKA: But it's expected to be part of
18	the inspection, I guess, qualified inspections people.
19	And NRC does triennial -
20	MEMBER RAY: Well, it's become a lot more
21	sophisticated with this change.
22	MR. JULKA: Right, uh-huh.
23	MEMBER RAY: At least first reaction is.
24	MR. JULKA: So, I presume they will need
25	more people other than fire, like PRA people coming
	I

(202) 234-4433

	229
1	along with that.
2	So, I think some of the stuff we have
3	already talked about. Lessons learned, in summary, is
4	upgraded internal events. We'll have to incorporate,
5	like we said, implementation plan. We'll have to
6	incorporate the rest of them.
7	We did get some risk insights, positive
8	risk insights for looking at, like we said, 46 percent
9	of the risk from maintenance, which is something we
10	can do about as far as going forward.
11	I think we need to talk about this new
12	analysis method. It's something I think as an
13	industry we need to look at. What is the process
14	going to be going forward?
15	Because as we move forward, are we going
16	to find things we can do better? Better evaluations,
17	you know. NFP 6850 was developed in early 2000. It's
18	significant time lapse since then. So, I think we're
19	going to learn more of industry. There's more data
20	gathering going on. I think the industry is going to
21	learn more.
22	Further improvements in testing is going
23	on at the same time. So, I think we're going to learn
24	so much more. So, it will be good to develop a
25	process whether it's a revision to 6850 or some
I	I

(202) 234-4433

	230
1	process to evaluate these changes in an expedited
2	manner so people can use it, people who have not done
3	it as yet, or even us that will like to improve.
4	John, like you mentioned, you know, we've
5	got to have significant improvement in where we are as
6	far as fire risk estimates are.
7	Next year, Vinny talked about it, (a)4
8	implementation has to be done for all sites. And it
9	does not have to be the quantitative model. People
10	are using qualitative right now and NEI is engaged in
11	industry process to see how that's going to be done
12	and there's some pilots going on.
13	So, even for Duane Arnold will not be
14	using the model as we have right now. It will just be
15	used for NFP 805 application at this point. So, we
16	are developing a qualitative - or going to
17	qualitative. That's going to be next year.
18	Again, we talked about conservatisms, but
19	some of it might be where we stopped, like you said,
20	John. We did not - I'm not sure we're going to have
21	the resources at this point to even go and refine it
22	any further. Everybody has moved on to other things.
23	Now, it's a matter of just keeping it up.
24	A lot of the work in the entire industry
25	since there was a large amount of work and millions of
ļ	I

(202) 234-4433

	231
1	hours, it was done by contracted staff with the
2	overview by the utilities.
3	We understand that. We are hiring people
4	right now and training them in fire PRA. We have
5	hired two people already. We have added to our
6	corporate staff. We don't know how many more we're
7	going to need, but right now looking at pilot plants,
8	they have not made many changes to their fire PRA
9	since they implemented it couple years ago.
10	So, it's estimated that not too many
11	changes, modifications coming in the plants will be
12	impacting fire PRAs that much because, you know, major
13	modifications are not really that common anymore after
14	this set of modifications.
15	(Laughter.)
16	MR. JULKA: Fukushima will be coming up,
17	initiatives they're driving a lot of. We do not have
18	any of those at any of our sites. That's something I
19	think we need to look at it in the future. That can
20	drive the risk down and it is there.
21	So, I know in the past there was a concern
22	whether people will be able to find equipment,
23	affordable equipment whether it's battery chargers or
24	a new diesel. Everybody did buy a diesel, you know,
25	as part of the Fukushima activities going forward.
	I

(202) 234-4433

	232
1	So, we have to - those are the things I
2	think we have to look at and see how we incorporate
3	those into our fire PRA and internal events, for that
4	matter.
5	CHAIRMAN STETKAR: For PRA.
6	MR. JULKA: I hear you.
7	That's it. That's all we have, unless you
8	guys have any questions.
9	CHAIRMAN STETKAR: I don't.
10	Any of the members?
11	MALE PARTICIPANT: Nothing.
12	CHAIRMAN STETKAR: Thank you, and you're
13	getting us back on schedule. So, that was good. And,
14	again, I really appreciate your coming here. I know
15	it took a lot of effort to put this presentation
16	together and I do really appreciate that.
17	What I'd like to do before we take a
18	break, I was originally planning to open up the bridge
19	line after each of the three presentations to see if
20	we had any comments or questions from anyone who's on
21	the bridge line.
22	I failed to do that at lunch because of
23	the strange events of the morning. So, I'd like to
24	open up the bridge line right now to accommodate
25	people who perhaps don't want to sit around until six
ļ	

(202) 234-4433

	233
1	o'clock out there.
2	If there's anyone out there, could you
3	just do us a favor and say a word so we have
4	confirmation that the bridge line is indeed open. We
5	have no other way of knowing that.
6	MR. KALANTARI: This is Bob Kalantari from
7	EPM.
8	CHAIRMAN STETKAR: Thank you, Bob.
9	Now, is there anyone out there who has
10	either any comments or questions on either the DC Cook
11	presentation or Duane Arnold?
12	(No response.)
13	CHAIRMAN STETKAR: Hearing none, I will
14	assume that there aren't any.
15	Is there anybody in the room here, member
16	of the public, anybody? If not, what we'll do is re-
17	close the bridge line, and then we'll open it up again
18	at the end of the Virgil Summer presentation.
19	And we will recess until - I'm going to be
20	generous - 3:15.
21	(Whereupon, the above-entitled matter
22	went off the record at 2:54 p.m. and resumed at 3:18
23	p.m.)
24	CHAIRMAN STETKAR: We're back in session
25	and we'll hear from Virgil Summer.
ļ	

(202) 234-4433

	234
1	MR. KAMMER: Good afternoon. My name is
2	Mike Kammer. I'm the NFP 805 project manager for VC
3	Summer nuclear station up in Jenkinsville, South
4	Carolina. A very well-populated area.
5	I've got Gerald Loignon with me. Gerald
6	is the PRA supervisor and he'll be talking to the fire
7	PRA technical issues, which is the subject of our
8	discussion today.
9	Just to give you a little bit of
10	background, the VC Summer station is nominal 1,000
11	megawatt electric three-loop Westinghouse pressurized
12	water reactor.
13	Our LAR was submitted in November 2011 for
14	NFP 805. Our NRC onsite review was conducted in June
15	of 2012.
16	We did have similar observations with
17	regard to our cable spreading room that Vinny had.
18	It's a very - just noting similarities with some of
19	the previous discussions. Very limited application,
20	very limited access. We took a little bit different
21	approach, but we'll talk about that in a little bit.
22	The other thing I noted in the earlier
23	presentations, people were talking about 800 to a
24	thousand scenarios. We ended up with about 1500
25	scenarios at our station, fire scenarios, in doing our
ļ	1

(202) 234-4433

235
calculations.
Little background about VC Summer station,
with our Appendix R analysis we were kind of termed as
a self-induced station blackout plant. So, we kind of
focused on shutting down the plant on bravo train and
taking equipment away from operations that they may be
able to utilize during shutdown, but that's not the
way our original Appendix R analysis was built.
We had many operator manual actions in the
plan. And we had also one really good benefit. We
had a cable routing database that existed and we knew
where cables actually existed in the plant. There was
no assumptions, there was no unknowns with regard to
cable routing. And we took advantage of that in doing
the NSCA analysis, non-power operations analysis and
also the fire PRA analysis. And we built upon that to
move forward into the NFP 805 analysis.
As far as our project goals for 805, it's
not only just the transition to 805. That's one of
the goals. And transition within the bounds of the
rules of engagement with regard to 805, namely 6850
and the other requirements of NFP 805, but we also
wanted to eliminate the SISBO strategy, which we did.
Along with eliminating the SISBO strategy,
it comes along with a little bit of complication. It

(202) 234-4433

(202) 234-4433

was that we didn't transition Appendix R. We didn't transition our existing analysis. We more or less started from scratch, and I'll talk about that in a second.

5 One of the goals is that we want to 6 eliminate as many operator manual actions as we could 7 at the station. We saw that as an operator challenge 8 and that was one of the goals going into the project 9 to see what we could do to accomplish that.

We wanted to maximize the usage of our existing tools. Again, I mentioned the routing database that we had and knowing where the circuits are is a great benefit to the 805 analysis.

14 The other goal that I had for our 15 contractors was we want to stay within the box of 16 We don't want to step outside and draw a lot of 6850. 17 attention to a lot of issues that maybe some other utilities are experiencing. And we thought that was 18 19 good strategy and we kind of adhered to that а strategy at VC Summer station. 20

21 Real quick, our approach to NFP 805, we 22 started with a clean sheet of paper. We didn't take 23 any assumptions. We didn't drag any baggage from our 24 Appendix R analysis forward. We started from scratch, 25 okay, including looking at critical safety factors,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	237
1	safety functions, developing our models, looking at
2	our circuit analysis. We started from scratch.
3	We looked at this as a fresh, clean plant.
4	Nothing we're going to do to kind of destroy what
5	we're going to take forward into the future.
6	We didn't credit some of our fire
7	protection features in doing these fire PRA analysis,
8	and also the NSCA analysis first pass through. And
9	when I say that, you know, there's some discussion
10	about taking credit for fire wraps and unqualified
11	fire wraps.
12	The way we approached the analysis was
13	those fire wraps don't exist. Even though they may
14	exist in the field, let's see what happens if we don't
15	take credit for those. And we'll add those features
16	and take credit for those features as we're doing the
17	analysis. And kind of build that into the analysis on
18	an as-needed basis to resolve deterministic issues or
19	resolve fire PRA issues.
20	So, then we start defining what's required
21	for VC Summer station to be compliant with these
22	commitments going forward.
23	CHAIRMAN STETKAR: Mike
24	MR. KAMMER: Yes.
25	CHAIRMAN STETKAR: since you mentioned
I	1

(202) 234-4433

	238
1	it, and I was going to ask you later, and I don't know
2	whether you have a slide for it or not. I doubt it.
3	As I was going through Attachment C for a
4	number of fire areas, statements to the nature of
5	automatic suppression systems exist in several of the
6	fire zones in this fire area. However, they were not
7	credited in the fire PRA.
8	Is that true? The fire PRA doesn't take
9	credit for existing automatic suppression systems?
10	MR. KAMMER: Based on a given fire area if
11	they didn't take credit for it - they may exist in
12	that area, but they didn't take credit for it to get
13	the PRA number for that area, whatever that area is.
14	CHAIRMAN STETKAR: Hm, okay. Again, I'm
15	trying to understand. You have people talk about
16	conservatism in PRA models and - okay, but that's
17	true. You did not -
18	MR. KAMMER: It's a little less
19	conservative if you really think about it.
20	CHAIRMAN STETKAR: Huh?
21	MR. KAMMER: It's more challenging for the
22	station.
23	MR. LOIGNON: And conservatism isn't always
24	equally bad in one place or another. So, if I'm in a
25	room where the components don't impact my CDF and even

(202) 234-4433

	239
1	though I've got a sprinkler system there, it doesn't
2	really matter to CDF space.
3	So, if I'm not crediting it in 805 space,
4	then I don't need to maintain it and surveil it and
5	all of that good stuff. It reduces the scope of my
6	program for monitoring.
7	MR. KAMMER: That wasn't one of our
8	original goals. It was just a matter of let's see
9	what impacts those features have on the CDF numbers.
10	CHAIRMAN STETKAR: Okay, thanks.
11	MR. KAMMER: One of the other things we
12	took in our approach is we wanted to test the waters
13	on doing performance-based fire modeling, and we did
14	that also.
15	So, a couple areas we tried to do 4241,
16	Section 4241 of NFP 805.
17	CHAIRMAN STETKAR: Are you going to talk a
18	little bit about that?
19	MR. KAMMER: We'll talk briefly to that.
20	It's part of the presentation.
21	CHAIRMAN STETKAR: Yes, okay.
22	MR. KAMMER: So, again, I just want to give
23	you a little bit of framework, where we came from and
24	where we started out, before we get into the fire PRA
25	and trying to resolve some of the deterministic
ļ	I

(202) 234-4433

	240
1	challenges we had in the plant after we went through
2	the NSCA analysis.
3	Okay, any questions to start off with?
4	(No response.)
5	MR. KAMMER: Okay, Gerald.
6	MR. LOIGNON: When we were first asked to
7	talk, it was bout fire PRA technical issues. So,
8	these are the five things I think I wanted to talk a
9	little bit about. There's probably a lot more we
10	could talk about and we'll talk about each one of
11	these bullets individually.
12	But in our discussion with the staff and
13	John in particular, there were a couple other things
14	he wanted - or I thought might be of interest to you.
15	So, insights that we might have found through the
16	project, the performance-based fire modeling we'll
17	talk about in a little bit, plant mods and then
18	implementation challenges. So, they're not really
19	fire PRA per se, but we'll talk about them at the end.
20	One of our biggest challenges at least
21	initially was what piece of software do you use. And
22	we chose to use FRANX as a quantification tool. I was
23	involved in the IPEEE fire model and we used FRANK
24	back then with X in it. And FRANX has basically got
25	them merged together.
ļ	I

(202) 234-4433

	241
1	And back in that day, early '90s, we
2	couldn't make FRANX work. It had some - we ended up
3	doing all of the scenarios one at a time by hand in
4	the background without a nice tool to automate it.
5	And so I said, you know, we ought to go
6	look and see what EPRI's got and make sure it will
7	work and see what's going on there.
8	And the reason I wanted to use it was
9	because it was supposed to be designed to work with
10	CAFTA, which my base model is in, and it had some
11	applications where I know I'm probably going to end up
12	in the seismic world. So, I might as well figure out
13	how to use it because I've got another tool or another
14	model I'm going to have to build with lots of
15	scenarios.
16	And so, I needed to get familiar with it
17	and be able to use it. So, that's kind of why we
18	chose FRANX as a tool.
19	CHAIRMAN STETKAR: Gerald?
20	MR. LOIGNON: Yes, sir.
21	CHAIRMAN STETKAR: Kind of little side
22	conversations out in the hallway. Will FRANX support
23	quantification of uncertainty, actual propagation of
24	uncertainty distributions through the results?
25	MR. LOIGNON: It's supposed to. Let me get
I	I

(202) 234-4433

	242
1	to my next slide here.
2	CHAIRMAN STETKAR: Okay, I'm sorry.
3	MR. LOIGNON: It says I have issues.
4	(Laughter.)
5	CHAIRMAN STETKAR: Never mind.
6	MR. LOIGNON: When we started, FRANX was in
7	the beta version of 4.0. And the earlier versions we
8	already knew weren't going to do what we needed to do.
9	They weren't robust enough.
10	So, we decided there was an earlier
11	version of FRANK with X in it that might have done it.
12	And we said, you know, we might as well go with the
13	latest tool.
14	So, as we built the model and started
15	progressing and we get more and more scenarios, it
16	eventually overcame the limits of the software. It
17	can't handle 1500 scenarios.
18	When I did my tree, it's a single top tree
19	and I did mutually exclusives at the very top of the
20	tree, so I've got this mandate that says here's all my
21	cut sets - my failure sets, but it's not this. Not
22	mutually exclusive.
23	Well, it didn't like that mandate at all.
24	So, I ended up having to push it down a level. I'm
25	not sure why or what was going on in there. But
I	I

(202) 234-4433

	243
1	working with EPRI if you pushed it down a level, it
2	was okay. So, we ended up just putting another layer
3	in there to move that mandate down. But, you know,
4	working through those errors or issues, it just takes
5	a while.
6	My mutually exclusive file is pretty
7	large. And usually there's only three or more or less
8	things that are in there. So, A and B not in
9	maintenance at the same time.
10	Well, when FRANX comes in there it sets a
11	lot of things to tree and prunes the tree. My
12	mutually exclusive all of a sudden becomes a single
13	event. That's not a good thing either.
14	So, you got to go look for those and you
15	can get runs and there are zero cut sets, because
16	mutually exclusive made them all go away.
17	We couldn't - QRECOVER wouldn't work for
18	a long time. We had to work a long time with EPRI to
19	get the recovery file to work.
20	The way our basic names were structured,
21	FRANX didn't like that. So, we ended up having to
22	expand the basic names.
23	And there were issues with checking and
24	un-checking things. So, if I'm doing a what-if
25	scenario or if I'm inputting a file that says, these
ļ	I

(202) 234-4433

	244
1	are the impacts, I can go in there and un-check them
2	and see is this going to help me a lot? Should I
3	protect that cable?
4	We had issues with trying to make those
5	kind of things work.
6	MEMBER BLEY: In the end, were you able to
7	resolve these issues?
8	MR. LOIGNON: Most of them we got resolved.
9	It took us a lot of time working with EPRI
10	to make things work. I still cannot do a one top
11	model with the version of FRANX that I have.
12	They are now at 4.1. I'm still at 4.0.
13	4.1 supposedly can't handle all 1500 cut sets or
14	scenarios. I don't know yet because some of the
15	things I had to do in 4.0 as work-arounds, don't work
16	in 4.1.
17	So, I've got to go undo some of my work-
18	arounds so that I can make my transition and figure
19	that part out. I haven't done that part yet.
20	So, because I can't run all 1500 scenarios
21	in one big pass, I end up with multiple cut set groups
22	that I can't merge together because I've got different
23	basic event values in the same basic event name. And
24	so, I can't really propagate uncertainties.
25	So, technically I got a problem. It's a
l	I

(202) 234-4433

	245
1	big manual work-around.
2	CHAIRMAN STETKAR: I mean, these are all
3	things that - I'm not familiar with FRANX. I'm not a
4	CAFTA user. So, these are all things that sound -
5	make me feel a bit uneasy.
6	What are the real benefits of FRANX?
7	MR. LOIGNON: What is the supposed benefit?
8	(Laughter.)
9	MR. LOIGNON: I can import all of my
10	scenarios into one file and crank through all of them
11	at one time.
12	CHAIRMAN STETKAR: Which is different -
13	MR. LOIGNON: And I get one big cut set
14	file that I can do importances and propagation and
15	that kind of thing.
16	CHAIRMAN STETKAR: Forget FRANX. FRANX is
17	something that interfaces with CAFTA.
18	MR. LOIGNON: Right.
19	CHAIRMAN STETKAR: If you just run a CAFTA
20	model, don't you get the same cut sets that you can -
21	MR. LOIGNON: One scenario at a time.
22	I've got a fire with an initiating event,
23	and that fire has consequences on these cables mapped
24	to those basic events. I can put that in there and
25	crank it to - turn the crank. That's one scenario.
I	I

(202) 234-4433

	246
1	I can't tell it 1500 different
2	combinations.
3	CHAIRMAN STETKAR: Oh, you cant.
4	MR. LOIGNON: Not at one time.
5	CHAIRMAN STETKAR: Okay.
6	MR. LOIGNON: Not easily anyway.
7	CHAIRMAN STETKAR: Thanks.
8	MR. LOIGNON: CAFTA is a small event tree-
9	large fault tree combination. And so, when I start
10	trying to parse initiators into different scenarios,
11	I basically have to have 1500 initiators.
12	Okay. The mitigating strategy. Since
13	we're moving away from SISBO to a non-SISBO strategy
14	keeping both trains available, that's basically a
15	culture change and a big change in whole philosophy on
16	what we're doing. So like Mike said, we basically had
17	to just set aside Appendix R and start from scratch.
18	6850, though, in the 805 process is
19	assuming I'm taking my current strategy and just
20	migrating it over.
21	So, when it's looking at delta risks for
22	me to do a delta risk of where I am, I'd have to have
23	an Appendix R model, which is SISBO, plus I'd have to
24	have my 805 model.
25	And we didn't see any benefit in trying to
I	I

(202) 234-4433

	247
1	do two PRA models to get a delta risk. So, we worked
2	with the industry and NRC and we went through an FAQ
3	and said, okay, you don't have to do that current
4	plant model. Just do a compliant 805.
5	CHAIRMAN STETKAR: Which, you know,
6	depending on how you read -
7	MR. LOIGNON: It's the intent.
8	CHAIRMAN STETKAR: 805 is the intent of
9	-
10	MR. LOIGNON: Is the intent.
11	CHAIRMAN STETKAR: that anyway.
12	MR. LOIGNON: But when you read the text,
13	that's not the way I would have tried to impose it.
14	CHAIRMAN STETKAR: Yes.
15	MR. LOIGNON: So, we made sure it was clear
16	that was good enough.
17	MEMBER BLEY: You'll probably tell me
18	later, but did you have to make hardware changes in
19	the plant to get rid of SISBO?
20	MR. LOIGNON: No, not to get rid of SISBO.
21	MEMBER BLEY: Okay.
22	MR. LOIGNON: Now, there were probably some
23	hardware changes that I'm going to make as a result of
24	moving away from SISBO.
25	MEMBER BLEY: Well, maybe that's what I
I	I

(202) 234-4433

ĺ	248
1	meant.
2	MR. LOIGNON: Well, then, yes, there are
3	some that I'm doing.
4	MEMBER BLEY: But you'll talk about those
5	in a bit?
6	MR. LOIGNON: Yes, we'll talk about those.
7	MEMBER BLEY: Okay.
8	MR. LOIGNON: But specifically it's because
9	MSOs and hot shorts don't happen when I de-energize
10	the train. So, there are some things, but mostly it's
11	cable wraps and rerouting
12	MEMBER BLEY: Okay.
13	MR. LOIGNON: for things that I would
14	have de-energized under the old strategy that I leave
15	hot under the current strategy.
16	My HRA also because this is almost like a
17	new plant, so my HRA had to make assumptions about
18	procedures and techniques that just don't exist right
19	now. And we have them conceptualized, but there's not
20	a real procedure written out for them.
21	So, we had to make some assumptions which
22	I think are well-founded, but we'll have to - we have
23	a step later on in the process that says, go validate
24	that step that is still - that does the way you
25	modeled it. So, we've actually already talked about
I	

(202) 234-4433

	249
1	this. This is the resolutions for it.
2	We do have a change management plan. It's
3	a pretty detailed plan of how we're going to get from
4	where we are to the new strategy. It includes
5	procedures and training.
6	Some of our modifications, and we'll talk
7	about those in a little bit more detail, are to
8	mitigate deterministic requirements or because of this
9	change in strategy that I need to do. Others are just
10	so that I can reduce my overall CDF to 1.17 for
11	considerations. And so, I can make the transition in
12	strategy without those being completed.
13	Cable location data. As Mike alluded, we
14	had a database. And in this case, this is not a
15	hindrance to us. This was a great benefit to us. And
16	so, I wanted to point it out.
17	Our database is three-dimensional down to
18	every cable that leaves and enters the cable tray. I
19	have a note at that location.
20	So, I don't have to walk the plant down
21	except to validate, you know, spot check my queries.
22	I can query by volume and I know every cable that
23	enters and leaves that volume.
24	MEMBER BLEY: And this was used during
25	construction.
l	I

(202) 234-4433

	250
1	MR. LOIGNON: Well, it was built on
2	construction.
3	CHAIRMAN STETKAR: And it's kept up to
4	date.
5	MR. LOIGNON: It's been kept up to date.
6	MR. KAMMER: Part of our design process is
7	to manage that information.
8	MR. LOIGNON: So, that's already in our
9	change management process. It's a living database.
10	It's in our change management plan. So, I mean, it's
11	part of our ECR or engineering change request.
12	So, every time we do a mod, do I have to
13	in fact update this database? It's already in our
14	process. It's second nature now.
15	So, we built on that and expanded it. So,
16	okay, well, this cable is tied to this component,
17	which is a PRA component. It's got these failure
18	modes and it's got - this is tied to this basic event
19	in my PRA model. We just put all of that in there and
20	tied it also to the NSCA model.
21	So, now when I want to come back and I'm
22	doing a modification, I go look at that database and
23	it's just a matter of pulling out another query, push
24	it into FRANX, turn the crank and I know what the
25	change in CDF is - well, it's not quite that simple,
I	I

(202) 234-4433

	251
1	but it's almost that simple.
2	CHAIRMAN STETKAR: The point is to be
3	generating any cut sets, right?
4	MR. LOIGNON: Right.
5	MR. KAMMER: One of the bigger benefits if
6	you kind of think about it from a fire modeling
7	standpoint, you pick a fire anyplace in the plant.
8	And we've picked all these scenarios and we put a fire
9	at that location. We pick coordinates in the plant
10	that say, give me all the circuits that are impacted
11	from here to the ceiling. And we can pull that
12	information out and run it through FRANX.
13	CHAIRMAN STETKAR: That's better than I've
14	seen.
15	(Laughter.)
16	MR. KAMMER: We'll run it through the NSCA
17	model from a deterministic standpoint and see if I
18	have any hits in that area or that zone of influence.
19	Let's put it that way. So, that was a tremendous
20	help.
21	The downside of that is you have to have
22	accurate data in that database. And there was some
23	missing - there were some holes in data that we had to
24	fill to follow that approach and philosophy.
25	So, what was a - we would call it a
I	1

(202) 234-4433

challenge was to fill all those holes and gaps to make 1 2 everything work true to the analysis that we set up. 3 MR. LOIGNON: So, we had to expand this 4 database, expand the reports. And so, there are 5 regular software kind of V&V controls that had to go 6 into that part of the project. And like I said, it's 7 tied to the NCSA and the PRA and the non-power 8 operations analyses. 9 Conduits weren't quite as well done in 10 that database. So, we did have to do a fair amount of field walkdowns to validate conduit. We had drawings 11 for them. So, I mean, it's not like we didn't know 12 It was a matter of transferring that 13 where they were. 14 data into the database. 15 it is single So, it became the _ repository for all of that data, all our design data. 16 And I've got another one for the fire modeling data 17 with extracts from both of those that feed into FRANX. 18 19 So, you just turn the crank. There's not a lot of manual inputting of data. 20 Methods, like Mike said, one of the things 21 that we decided to do was basically stay within the 22 box of 6850. And a lot of that had to do with - we 23 24 were relatively earl, but it didn't look like there was a lot of easy ways to get things approved that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

252

	253
1	were different or variations. So, we basically said
2	we didn't want to fight that battle.
3	So, we're still watching what's going on
4	with things like heat release rates and influence
5	factors and circuit power transformers. And we did
6	take credit for those in our LAR. So, we understand
7	we're going to end up having to do a revision for that
8	when it's finally resolved.
9	We are primarily kerite cable. So, we did
10	have to figure out how we were going to handle that.
11	We consider it damaged at thermoplastic, but we
12	consider it thermoset for propagation and flame spread
13	and that kind of stuff. So, we treat it both ways
14	depending on what it is we're looking for.
15	And that became - that was the way we
16	ended up resolving that with the regulators. So, that
17	path we took turned out to be the correct path, but we
18	knew there was some risk when we started down that
19	path that we wouldn't end up there with the
20	regulators, but we did.
21	Unknown cable qualifications. Early in
22	the game we probably had about ten percent of our
23	cable we weren't sure what it was. We're down to less
24	than three percent now. So, we're treating everything
25	as kerite and we've done some sensitivity looks that
ļ	I

(202) 234-4433

	254
1	said even that three percent is just not going to
2	change your insights or your consequences. So, we're
3	pretty comfortable with that. That was one of those
4	unknowns that might have had a problem earlier.
5	And, again, resolution is we're just
6	following what's going on with the industry. As
7	things get resolved if we can take advantage of
8	something that might be able to reduce our risk,
9	we'll, you know, or at least our calculated risk,
10	we'll go back and modify our modeling and take a
11	benefit for those when we can.
12	Some of them will probably - may turn out
13	to be things that might make our risk go up and we'll
14	accommodate those too.
15	CHAIRMAN STETKAR: Again, when I - I've
16	come to think of fire models as things like FIVE and
17	FDS and CAFTA.
18	MR. LOIGNON: Yes, I do the same.
19	CHAIRMAN STETKAR: Okay. I notice if I
20	recall correctly, you use FDTS, the 1805, and CAFTA,
21	is that right, as far as your tools?
22	MR. KAMMER: CFAST.
23	CHAIRMAN STETKAR: I'm sorry, CAFTA is the
24	-
25	MR. LOIGNON: Yes, CFAST.
ļ	I

(202) 234-4433

	255
1	(Discussion off the record.)
2	MR. LOIGNON: CFAST and 1805; is that
3	right?
4	MR. LOIGNON: I don't think we actually
5	ever applied FDS anywhere though.
6	MR. KAMMER: We did not apply -
7	CHAIRMAN STETKAR: No, not FDS. FDTS.
8	Do you use CFAST for everything?
9	MR. LOIGNON: Or even simpler.
10	CHAIRMAN STETKAR: Or even simpler.
11	MR. KAMMER: We did some simplifying
12	walkdown information with FDT tools and that was about
13	it.
14	CHAIRMAN STETKAR: So, that's -
15	MR. NAJAFI: I think what -
16	CHAIRMAN STETKAR: You have to identify
17	yourself so we got you on the -
18	MR. NAJAFI: Bijan Najafi, SAIC.
19	What you're referring to is FDT.
20	CHAIRMAN STETKAR: FDT.
21	MR. NAJAFI: NUREG-1805. And that is the
22	simple model Mike is referring to, but it's been used
23	for many of the fire modeling as 1805, simple
24	Heskestad equations and things like that.
25	CHAIRMAN STETKAR: Yes, and you did use
	1

(202) 234-4433

	256
1	that.
2	MR. KAMMER: We did use that.
3	MR. NAJAFI: Yes, that's the main use.
4	There are CFAST in certain cases to calculate hot gas
5	layer, control room evacuation, things like that.
6	CHAIRMAN STETKAR: So, just to make sure I
7	understand, it's mostly algebraic - empirical
8	correlations with some application of CFAST.
9	MR. NAJAFI: Correct. We didn't do
10	anything any more exotic than that.
11	CHAIRMAN STETKAR: Okay. What I wanted to
12	ask is, you know, you've been through the process now.
13	We've heard kind of two other presentations today.
14	One with miles of control room where they felt they
15	needed to go all the way to the computational fluid
16	dynamics.
17	MR. NAJAFI: Right, we didn't go there.
18	CHAIRMAN STETKAR: Another application that
19	used - let me call it as far as - and licensee can
20	correct me if I'm wrong, a different suite of
21	empirical correlations that have some similarities and
22	perhaps some differences to the tools that are in FDTS
23	or in FIVE.
24	And you guys just sort of took the more
25	straight-line approach -
	I

(202) 234-4433

	257
1	MR. NAJAFI: We took the cookbook and we
2	put in - stayed with the recipe.
3	MR. KAMMER: We stayed within the box that
4	was defined.
5	CHAIRMAN STETKAR: Now, how upset are you
6	about using that approach? Did it cause you any
7	problems?
8	MR. KAMMER: We have solutions.
9	CHAIRMAN STETKAR: Okay.
10	MR. KAMMER: We have solution documentation
11	and try to operate within the parameters.
12	CHAIRMAN STETKAR: I'm trying to - because
13	we hear a lot of things about this fire modeling about
14	how difficult it is, about not verification and
15	validation of certain models, of conservatisms, and
16	yours is sort of the simplest approach that I can
17	think about in terms of application of those models.
18	Do you think it's because of a particular
19	- that the configuration of your plant, or did you
20	have to actually struggle with really complex
21	geometries, but the simple tools were good enough for
22	you?
23	MR. LOIGNON: I think most of our
24	geometries were pretty simple. So, I don't think we
25	had any particular outliers in that regard.
	I

(202) 234-4433

	258
1	I'm the PRA guy, not the fire modeling
2	guy. So, let me tell you what my impression is. My
3	impression is that the methodology in 6850 is pretty
4	conservative, which is different than I do anything
5	else in PRA space. I do best estimates.
6	So, I look at this one as a different
7	animal just from that perspective, but I follow the
8	cookbook. And if the cookbook tells me I got a
9	problem, I figure out how to fix it.
10	I might be able to fix it by doing a more
11	rigorous CFAST. I might have had to go to something
12	greater than that. We were prepared to, but we didn't
13	use that. We chose something else instead.
14	We may have wrapped something. I may have
15	changed a procedure or looked for an operator action,
16	which we did not do, but those are two things that
17	were in my toolbox.
18	I could have done a PRA delta risk that
19	said it's okay to leave it, which we did some of
20	those.
21	So, we looked at what tools were available
22	in 6850 and used whichever one we felt most
23	appropriate for that particular issue, but we stayed
24	within the confines of 6850.
25	Do I think that's conservative? Yes, I
I	1

(202) 234-4433

	259
1	do.
2	Do I have a real technical basis for that?
3	No, I'm not the fire PRA guy - I mean the fire
4	modeling guy.
5	But from my discussions with those who
6	are, I think those methods are very conservative. And
7	so, I am concerned about how I am going to treat this
8	number compared to other numbers in the future. I'm
9	not sure how I'm going to do that part.
10	But did we follow the cookbook? Yes.
11	Were there tools there? Yes.
12	Were they the best tools? I couldn't tell
13	you.
14	MR. KAMMER: There are some parameters we
15	did challenge. We also went back and took a look at
16	those with regard to, say, height of rooms versus
17	floor area, those type of things and using the models.
18	And went back and challenged those to make sure that
19	we're not on the non-conservative side. And
20	documented that, too, as part of our documentation
21	package.
22	So, we weren't exactly clean between the
23	goalposts in every case, but we did take a look at
24	those and make sure that we're doing the right thing,
25	is really the bottom line.
I	I

(202) 234-4433

	260
1	CHAIRMAN STETKAR: Thanks.
2	MR. LOIGNON: And I guess we've actually
3	already talked about whether you want to call them
4	improved methods or alternate methods or whatever.
5	And you'll probably have some more discussion tomorrow
6	about the fire methods panel, but it seems to me that
7	there was a high level of justification done in the
8	discussions that were in that panel. There was a lot
9	of challenging of each other, from what I've heard
10	about it anyway, to reach a consensus. It took them
11	a long time.
12	And again as an almost disinterested third
13	party, but not quite disinterested, I'm still the PRA
14	guy. I'm a little bit distant from some of this
15	stuff.
16	It seems to me that the NRC is treating
17	this a lot different than they do the rest of PRA
18	applications in that if I'm doing a PRA application
19	anywhere else, I'm free to choose my own methodology,
20	use it and defend it.
21	Usually if I can go in there and say do a
22	sensitivity study and say, this really isn't a big
23	deal in the results, nobody questions it anymore.
24	Here, I'm being told this is the
25	methodology. Use it or, you know, here's the
ļ	

(202) 234-4433

	261
1	cookbook. If you deviate from the cookbook, you got
2	to defend it whether it's important or not. And
3	that's a lot different at least philosophically to me.
4	So, it puts different controls on my
5	program and process that I didn't have to consider
6	before. So, it's just a different animal in my point
7	of view.
8	Can we work with it? Yes.
9	Do we necessarily like it? Probably not
10	always, but we can work with it.
11	So, we're just following the resolution of
12	the issues as they come out and work timely enough for
13	us to use many of them. Because like Mike says, we're
14	a pretty conservative utility. We like to stay pretty
15	close to the cookbook.
16	We're not going to go out there and spend
17	lots of dollars to try and argue with somebody else
18	over a process.
19	But as the things get resolved, we'll have
20	to look and see, well, is this good, bad, indifferent,
21	is it important enough for me to go back and update to
22	that new methodology?
23	Insights. I've got them kind of separated
24	into surprises versus others. Considering the vintage
25	of our plant, there were a few deterministic open
ļ	

(202) 234-4433

	262
1	items. So, I thought that was pretty amazing from my
2	point of view.
3	Three things that kind of jumped out at me
4	when I was thinking about this was, it was we have -
5	7.2kV is our top level switchgear. It's a great big
6	ol' breaker. It's got a nice anti-pump circuit,
7	because it doesn't like to sit there opening and
8	closing. So, somebody built that into it.
9	And when we were doing circuit analysis
10	for those, we figured out that you can actually bypass
11	that and there are remote failures that will make that
12	kind of just keep re-closing. You can't turn it off.
13	Water reactor coolant pumps are 7 kV. So,
14	I had to postulate those because I could not turn off
15	a reactor coolant pump in certain fire scenarios.
16	That's not a good thing.
17	CHAIRMAN STETKAR: That's not a good thing.
18	MR. LOIGNON: So, that was a surprise. I
19	never would have thought that I could do that when
20	that remote - I mean it had pump circuits interval to
21	the breaker. I never would have thought to look for
22	that. So, it was a surprise to me.
23	When we do IPEEE since we're blacking out
24	things, that kind of makes all the failures go away.
25	So, we actually found some failures that would prevent
I	

(202) 234-4433

263 us from energizing both buses at the same time from 1 offsite power. And I didn't expect to find that 2 3 either. And then some failure combinations -4 5 CHAIRMAN STETKAR: Is that because of cross-tie logic and stuff, or is it -6 7 MR. LOIGNON: No, it's just the cable 8 routing. 9 Oh, cable CHAIRMAN STETKAR: routing. 10 Okay. MR. LOIGNON: Yes, we run offsite power 11 from both offsite circuits in a place where they T 12 together so I can get to both buses. 13 14 CHAIRMAN STETKAR: Okay. MR. LOIGNON: It's primarily in the turbine 15 16 building where you're trying to get into the buildings. 17 And then we had disconnect switches from 18 19 Appendix R where I could divorce the controls from 20 outside and still be able to run the plant. We found some holes in the way some of those were designed. 21 CHAIRMAN STETKAR: As long as you brought 22 that up - I have to remember to keep each one of these 23 24 straight. Did you characterize all of your operator actions as recovery actions, or did you -25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	MR. LOIGNON: Mike said one of the
2	objectives was to reduce operator actions.
3	CHAIRMAN STETKAR: Well, I -
4	MR. LOIGNON: So, what I'm getting ready to
5	say it -
6	CHAIRMAN STETKAR: Given whatever inventory
7	there are -
8	MR. LOIGNON: I have no remote operator
9	actions if I am staying in the control room.
10	CHAIRMAN STETKAR: That's true.
11	MR. LOIGNON: None. So, all of my operator
12	actions are really associated with leaving the control
13	room, going to the remote shutdown panel which has
14	fewer controls.
15	And therefore if I go there, I do have to
16	send operators to do some remote operations, but
17	they're pretty limited.
18	MEMBER BLEY: I'm just curious. How did
19	you handle that first failure mode? It seems to me
20	many different things could happen if you start
21	cycling that big ol' breaker.
22	MR. LOIGNON: Yes, they can.
23	MEMBER BLEY: Including it could blow up or
24	you might get some overload somewhere else opening the
25	circuit.
l	I

(202) 234-4433

	265
1	What did you do with it?
2	MR. LOIGNON: We're protecting the
3	circuits.
4	MEMBER BLEY: Okay. You're fixing that
5	one.
6	MR. LOIGNON: We're fixing that.
7	MR. KAMMER: Some of the challenges we have
8	as some pretty easy fixes is protect the circuit from
9	the effects of fire in certain areas or certain zones
10	of the plant.
11	Part of our - if you look at our enclosure
12	chart, is basically just to identify all those impacts
13	regardless of what they're impacting downstream. It's
14	just saying here's my vulnerability in this area.
15	So, that's some of the insights you get
16	from doing the NSCA analysis.
17	MR. LOIGNON: Other insights. Kind of like
18	everybody else when you start doing this, you use a
19	more conservative, easier to do type modeling and you
20	get all these rooms up here that are risk significant,
21	got CCDPs in one and whatever.
22	Then you start beating them down a few at
23	a time. And when you run out of time, money or your
24	number is as good as you want to get it, you stop.
25	The second most risk significant area in
ļ	

(202) 234-4433

	266
1	my plant basically turns out to be a hallway with a
2	motor control center.
3	Wouldn't have expected that to be that way
4	not based on what I did in previous IPEEE stuff, but
5	it's just a matter of do I want to go spend modeling
6	and make that number go down.
7	The initiating events that are 95 percent
8	of my CDF are dominated by consequential LOCAs,
9	reactor coolant pump seal LOCAs. And about half of
10	them are remote shutdown control room evacuation
11	scenarios, which is kind of what you would have
12	expected from the IPEEE.
13	MR. KAMMER: When Vinny was talking about
14	control room, cable spreading room, access areas,
15	those are the types of areas we're talking about too.
16	There is very little work, not a normally
17	occupied area, suppression system. In our case, it's
18	pre-action sprinkler systems. Detection throughout
19	the whole area. It's just not a highly-traveled area,
20	but that's - those are some of our highest risk
21	contributors.
22	MR. KAMMER: Some of those areas are
23	actually dominated by transients because there's no
24	real fixed ignition sources. So, they're transients
25	and you're saying, does this really make sense?
I	I

(202) 234-4433

	267
1	So, that's one of those things that makes
2	me believe some of the fire modelers are saying this
3	is conservative.
4	MR. LOIGNON: But even for the transient
5	fires, maybe Vinny took a different approach, we said
6	317 kilowatts is our fire regardless of where it's at.
7	We didn't take a non-crude method in that case.
8	Do you have another question before we go
9	on?
10	CHAIRMAN STETKAR: I do. You mentioned
11	control room evacuation.
12	I had a question as I was going through
13	Attachment C and I was trying to look to where I have
14	the reference here for a second. And this holds for
15	a couple different fires. I wanted to ask you
16	something.
17	In one of the fire areas, and again stop
18	me if I get too detailed for a variety of reasons, let
19	me just say there's a couple of cable spreading areas
20	where as I read through Attachment C, there are words
21	in there that say things like, due to a potential
22	control room evacuation for this fire scenario,
23	recovery actions are credited for alternate shutdown
24	capability.
25	What does that mean in practice? I mean,
ļ	I

(202) 234-4433

	268
1	what did - I read those words, but then I don't see
2	recovery actions.
3	Was control room evacuation modeled for
4	fires in that area, or was - it was?
5	MR. KAMMER: Actually, in all actuality
6	with VC Summer, we have four areas of the plant where
7	we're going to be transitioning out of the control
8	room. Those areas are control room, the upper cable
9	spreading room, the relay room and the lower cable
10	spreading room. We have cross-divisional trains of
11	circuits through those areas.
12	So, when we talk about recovery actions
13	when you say no manual action, outside of those four
14	areas we've eliminated all those manual actions in the
15	plant.
16	CHAIRMAN STETKAR: Okay.
17	MR. KAMMER: If we had a fire in those four
18	areas, there's a decision process we'd have to go
19	through to make a conscious decision to evacuate the
20	control room to go to alternate shutdown because of
21	the potential risk.
22	CHAIRMAN STETKAR: How did you treat that
23	in the PRA? Did you just assume that the control room
24	would be evacuated, or did you -
25	MR. LOIGNON: No, we did some modeling and
I	

(202) 234-4433

	269
1	like in the control room itself -
2	CHAIRMAN STETKAR: No, I understand the
3	control room. I know how people do that. You
4	mentioned that you use -
5	MR. LOIGNON: Even the others we did some -
6	we did some different transient fires in different
7	places and different sizes and determined whether or
8	not they were propagated to a point where we thought
9	we'd lose -
10	CHAIRMAN STETKAR: And what criteria did
11	you use for abandoning the control room, because it's
12	not - it's not visibility or habitability. It's
13	something else, right?
14	MR. KAMMER: I would say there is a certain
15	decision process you have to make with regard to
16	recognizing you could be losing control of the plant.
17	And that's up to the shift supervisor given the
18	complete information that's coming to him.
19	Plus taking a wrong decision, either
20	venting too early or too late, that's one of the
21	challenges that we have with regard to rewriting our
22	procedures and making sure we're making the right
23	decision consistently throughout.
24	CHAIRMAN STETKAR: What I'm trying to do is
25	understand how you actually treated that in the PRA,
ļ	I

(202) 234-4433

	270
1	because I understand CFAST. You said you use CFAST
2	for the main control room. And there's some criteria
3	in 6850 about visibility and habitability requirements
4	where you assume if you reach those conditions, people
5	will evacuate, but these other areas are different
6	from that.
7	MR. KAMMER: We didn't treat those other
8	areas any different than any other area of the plant
9	with regard to fire modeling or fire PRA scenario,
10	development, failures and losses, but it's just a
11	matter - what you're asking is.
12	MR. LOIGNON: Let me let Paul answer that.
13	The question is outside of the control room when the
14	other three areas we have control room abandonment,
15	what did we use for the criteria that said
16	abandonment?
17	So, we - all of them are control room
18	abandonment scenarios.
19	MR. AMICO: Yes, the criteria -
20	CHAIRMAN STETKAR: You have to -
21	MR. AMICO: Oh, Paul Amico, SAIC.
22	So, for the criteria the way the procedure
23	is written, it refers to shift manager discretion
24	based on a loss of control of the plant. A belief
25	that he can no longer shut down from the control room.
I	I

(202) 234-4433

	271
1	Now, it doesn't matter whether the fire is
2	in the control room. It says for these four areas, if
3	there are fire in these four areas that cannot be
4	controlled and they believe they have lost control
5	from the control room, then they would abandon at
6	shift manager discretion.
7	The way we modeled that is there's a
8	likelihood that they will fail to abandon when they
9	should. Also, there is a likelihood that they may
10	abandon when they should not for every scenario that
11	takes place in these four areas.
12	So, that's the way we modeled it to make
13	sure -
14	CHAIRMAN STETKAR: Okay, that's what I was
15	looking for.
16	MR. AMICO: Yes.
17	CHAIRMAN STETKAR: It wasn't just a switch
18	that you presumed that they abandoned.
19	MR. AMICO: No, no. There was a
20	probability of failure to abandon, and there was a
21	probability they abandoned when it wasn't necessary
22	for all scenarios in those four areas.
23	CHAIRMAN STETKAR: Okay.
24	MR. LOIGNON: That's actually a carryover
25	from our IPEEE model. We actually did that back then.
	I

	272
1	CHAIRMAN STETKAR: Okay. Thank you.
2	MR. KAMMER: Okay. Briefly talk about
3	performance-based fire modeling. We saw this as a
4	tool and actually a onetime shot to really kind of
5	roll this out as an option to resolve open items in
6	certain areas.
7	We picked a couple areas in the plant to
8	see if we could utilize this tool, and basically it
9	comes down to using the rules out of 805, defining
10	your limiting fire scenario and maximum expected fire
11	scenario and making sure you had margin between the
12	two that you're not going to damage the equipment and
13	cables that might be in proximity to that fire
14	location where that fire location is.
15	The four areas we picked in the plant were
16	three control building cable chases that are adjacent
17	to control room, okay, and one air handling cooling
18	unit.
19	I will make one mention that we tried it
20	in another area and it didn't work. So, what I will
21	tell you is this tool isn't good for any place you
22	want to use in the plant. I mean, it's going to be
23	configuration-specific. Obviously the tools do have
24	some limitations, but we did find that we could be
25	successful.
ļ	I

(202) 234-4433

	273
1	And really, it comes down to you really
2	got to manage the fire itself in some regards whether
3	it's a fuel package size or even a fire location. And
4	that's the way we kind of ended up in those specific
5	areas.
6	Again, one of the implications there is
7	the more assumptions you have in your analysis, you've
8	got to translate that information into actual
9	application if you're going to try to manage the fire
10	location and size.
11	And you do that normally through transient
12	combustible controls or storage area requests or
13	anything else that's going on in the plant too. So,
14	it's consistent with the way we kind of manage fuel
15	packages today.
16	CHAIRMAN STETKAR: And I was trying to - I
17	was listening to what you're saying. And as I was
18	going through the Attachment C, I was trying to
19	understand was there - let me ask the question this
20	way: Did you actively think about whether it was more
21	beneficial to take the 4241 performance-based approach
22	for, let's say, this room versus the PRA model, 4242
23	approach for this room, or did you just do it
24	intuitively?
25	You know, because, for example, there are
Į	1

(202) 234-4433

	274
1	many component failure modes if I look at the
2	inventory of equipment in this room where you applied
3	the fire modeling, let's say, the 4241.
4	In many other locations you made the
5	determination, well, I have to use the PRA model to
6	address those, you know. Obviously that's a
7	simplification because it's whatever else is going on
8	in the area.
9	You're the only one of the three who used
10	the performance-based fire modeling, the 4241. And I
11	was curious what kind of rationale went into those
12	selections.
13	MR. KAMMER: If you kind of took a look at
14	the model itself, we kind of wanted to, number one,
15	exercise the model and see if we could utilize that
16	possibly in future applications. Don't know.
17	But at the same time, the areas that we
18	picked didn't have a lot of ignition sources, so we
19	were kind of bound to transients for the most part in
20	these particular areas.
21	We looked at a couple factors as, you
22	know, some that could be viewed as being challenging
23	because we had cable trays in these areas.
24	So, we're trying to look at certain
25	factors that may come into play utilizing this tool.
I	I

(202) 234-4433

	275
1	And I think we were successful. It remains to be seen
2	after staff reviews of our applications, but could we
3	have used the fire PRA? Probably.
4	CHAIRMAN STETKAR: Well, you certainly
5	could have used the fire PRA. I was trying to
6	understand what the decision process was for a given
7	fire area to take one approach versus another.
8	MR. KAMMER: If you think about it, you
9	have - when we went through - after we went through
10	our NSCA analysis, we had kind of drew up a long
11	laundry list of options or tools to resolve the open
12	items that came out of the NSCA.
13	The fire PRA when we made our first pass,
14	wasn't even available at the time. They were still
15	working on developing. So, you're running parallel
16	paths trying to create solutions.
17	So, we came up with a number of different
18	areas, kind of solution sets for these open items.
19	And this one we said, why don't we give this a whirl
20	and see if we can make this work.
21	We come back later on and some of the
22	deterministic solutions we turn into fire PRA
23	solutions instead.
24	So, to us, it was just another tool in the
25	toolbox to resolve open issues. And at the same time
I	

(202) 234-4433

	276
1	from a project standpoint, from a station standpoint,
2	we looked at it as here's a tool that might be useful
3	in the future. Not a lot of people are going to be
4	trying to utilize it. And we felt that if you're
5	going to get into your license, now is the time to do
6	it. Now or never.
7	So, we opted for the effort to make it
8	work and we think we've shown it can work. It's just
9	a matter of where and how we apply it in the future if
10	we choose to use it again.
11	CHAIRMAN STETKAR: Okay, thanks.
12	MR. LOIGNON: Well, we can look at the
13	modifications that we're going to have to implement.
14	Like I said, some of them are there to resolve
15	deterministic issues. And some of them are there just
16	to reduce overall CDF.
17	CHAIRMAN STETKAR: Before - I'm sorry,
18	Gerald.
19	MR. LOIGNON: Yes.
20	CHAIRMAN STETKAR: Before you start, I had
21	one other question on things in Attachment C, and only
22	I'm trying to get my hands around words in some
23	places.
24	There were several entries there that say
25	things like for an alternate shutdown scenario, the
ļ	I

(202) 234-4433

	277
1	following action has been evaluated in the fire PRA
2	and is not required to prevent core damage.
3	And in the location that I pulled out, one
4	example of that is locally start the emergency diesel
5	generator. Another one is locally energize a
6	switchgear at the bus, but those are not actions that
7	are identified in Attachment G.
8	So, what does all that mean? Were they
9	things you thought about? Are they actually in the
10	PRA? Are they things that you put in the model and
11	turned off or - I was trying to understand what they
12	were or what they aren't.
13	MR. LOIGNON: That's why we have to look at
14	it a little bit more myself for me to answer that one
15	right off the top of my head.
16	CHAIRMAN STETKAR: It's, you know, all I
17	have is the brief summaries. And that kind of phrase
18	appears in quite a few places and I just had no idea
19	what that meant.
20	MR. LOIGNON: Well, right now I'm not sure
21	I do either.
22	CHAIRMAN STETKAR: Okay.
23	MR. LOIGNON: But I could get back to you.
24	CHAIRMAN STETKAR: I'd appreciate - well,
25	but the key is they're not in the PRA model at all.
I	I

(202) 234-4433

	278
1	MR. LOIGNON: Yes.
2	CHAIRMAN STETKAR: Okay.
3	MEMBER SCHULTZ: Gerald, before you start
4	on this section -
5	MR. LOIGNON: Sure.
6	MEMBER SCHULTZ: with respect to the
7	plant modification process, you've got the fire PRA
8	and you've got, admittedly, fire modeling methods that
9	are conservative that you've chosen to use throughout.
10	So, when we get to making choices of plant
11	modification to reduce CDF, how do you know that in a
12	relative sense you're making the right choices given
13	that you've got the conservative fire modeling
14	techniques that are in place versus best estimate or
15	better estimate?
16	MR. LOIGNON: I think because of those
17	choices, some of these deterministic ones we probably
18	are going things we may not have to do.
19	But do I know which ones they are? No.
20	MR. KAMMER: One of the things recognized
21	as part of the project is you could always go back and
22	iterate, fine tune and tweak, but you're not getting
23	to the end and making this whole process converge.
24	And there are some tough choices.
25	Obviously there are some probably features that we
ļ	I

(202) 234-4433

	279
1	what Gerald said is true - we may not need to protect.
2	But at the same time if we do protect it, it
3	eliminates that issue from a deterministic standpoint
4	and we'll just keep moving on type of thing.
5	So, we've had to make some tough
6	decisions. Do we have to go back and justify every
7	one of those, you know, hindsight is always 20/20.
8	MEMBER SCHULTZ: You might not be making
9	the very best decision, but you're making a decision
10	that -
11	MR. KAMMER: We think we're making a
12	conservative decision based on the information we had
13	at the time.
14	MR. LOIGNON: We're certainly making a safe
15	decision, but there are things that we probably
16	wouldn't have to do if we spent money to do a more
17	best estimate kind of an analysis. But then I have to
18	also figure out what is it going to cost me in
19	regulatory space to make that fly.
20	And we said it's just not worth the effort
21	and the time required given the schedule that we're
22	trying to do. It's just cheaper to wrap it. I'm
23	already wrapping stuff anyway. So, the incremental
24	costs may or may not be that high. We just don't
25	know.
I	I

(202) 234-4433

	280
1	MEMBER BLEY: I think - correct me if I'm
2	wrong. I think 6850 invites you to do uncertainty
3	analysis and I suspect that deals directly with almost
4	all those areas you've talked about as being
5	conservative in the approach.
6	MR. LOIGNON: And in some cases, I can do
7	sensitivities. I can't do - easily, I can't do
8	uncertainties.
9	MEMBER BLEY: I don't know quite what you
10	mean by easily, but -
11	MR. LOIGNON: Because of the way FRANX had
12	to make me do things in pieces, parts, it's a long -
13	MEMBER BLEY: So, it's the code you're
14	using that -
15	(Simultaneous speaking.)
16	CHAIRMAN STETKAR: The hammer that you're
17	using wont' saw this board all that well.
18	MR. LOIGNON: That's right.
19	For me, it's a long, arduous, manual
20	process to go in and merge all of that stuff together
21	so that I can propagate the list.
22	MEMBER BLEY: It's a shame to be
23	constrained by your tools.
24	MR. LOIGNON: Yes, it is.
25	Ten years ago we were constrained by tools
ļ	I

(202) 234-4433

	281
1	in internal events. The tools have gotten better.
2	We're just further behind the curve in fire modeling
3	tools.
4	MR. KAMMER: One of the reasons we picked
5	the tools we did was not only to achieve the goal of
6	the project, but also to manage it forward. How can
7	we make it easier to manage forward?
8	So, there's pluses and minuses for every
9	decision you make.
10	MEMBER BLEY: I guess it bothers me a
11	little to hear people say they do PRA with best
12	estimate. To me, that means best estimate includes
13	the uncertainty.
14	If you just pick a point off your
15	uncertainty card and call that the most likely one
16	from all you've done in risk assessment, the rest of
17	us say there are cases where the tail of the
18	distribution drives the risk.
19	So, just picking a spot in the middle can
20	really be deceptive.
21	MR. LOIGNON: It can.
22	MEMBER BLEY: So, to me when I hear I want
23	to do best estimate, it's saying with uncertainty, and
24	I'm sensing that that's not what you mean.
25	MR. LOIGNON: No, that is. I agree with
	I

(202) 234-4433

	282
1	you. I understand the point and I do agree with it.
2	MEMBER SCHULTZ: That's what I hear you
3	would like to do, but the tool doesn't lend itself to
4	that at this point.
5	MR. LOIGNON: Yeah, I definitely understand
6	you do have to take that into consideration and
7	account.
8	CHAIRMAN STETKAR: FRANX is just the set of
9	and things, right? You have a cut set, A and B and C.
10	MR. LOIGNON: What FRANX does it takes
11	input and changes your PRA, your CAFTA model, turns
12	the crank. And then it says, okay, what's the next
13	set of input? And it changes the model again and
14	turns the crank and adds the cut sets together.
15	So, if I tell it I've got a scenario in
16	the turbine building and these are the three things
17	that are impacted, it says, okay, I got this fire, it
18	comes at this frequency, and here's the basic events
19	that are impacted. It fails those and cranks out a
20	number.
21	CHAIRMAN STETKAR: Just a number.
22	MR. LOIGNON: Just gives you the cut sets,
23	but it gives you the total number for that scenario
24	with these cut sets.
25	CHAIRMAN STETKAR: Okay, but it does give
I	I

(202) 234-4433

	283
1	you cut sets.
2	MR. LOIGNON: It does give you cut sets.
3	It's running whatever solution engine you have.
4	CHAIRMAN STETKAR: A cut set is basically
5	an algebraic expression.
6	MR. LOIGNON: Yes, it is.
7	CHAIRMAN STETKAR: Okay.
8	MR. LOIGNON: But it has a name and a
9	value.
10	CHAIRMAN STETKAR: Sure.
11	MR. LOIGNON: It doesn't have the same
12	value for the same name in all of those times that
13	FRANX runs it.
14	So, when I merge it together, I've got the
15	same name with multiple values and now that makes my
16	math all hosed up.
17	CHAIRMAN STETKAR: Yes.
18	MR. LOIGNON: That's the issue.
19	CHAIRMAN STETKAR: That's the issue.
20	MR. LOIGNON: As long as it's doing it all
21	by itself and doing all 1500, it takes care of that.
22	But when I say I do 600 in this group and 600 in that
23	group and I try and merge those into 1200, they are
24	not consistent.
25	CHAIRMAN STETKAR: Okay.
I	

	284
1	MR. LOIGNON: So, I've got to go through
2	all 1200 scenarios and all the thousands of cut sets
3	and make sure that the basic events get all
4	straightened up.
5	CHAIRMAN STETKAR: Okay. All right.
6	MR. LOIGNON: So, mods. From my point of
7	view, they fall into two categories. I'm resolving
8	deterministic issues, or I'm just lowering CDF.
9	Deterministic ones fall in the categories
10	of some system feature improvements like I got a
11	sprinkler system that didn't quite cover the whole
12	fire zone. I'm going to extend it out five more feet
13	so that I can take credit for it over there.
14	Circuit and tubing protection is basically
15	fire wrapping and barrier work. That scenario I told
16	you about where I can remove power from both ESF buses
17	from offsite power, we're rerouting some of that cable
18	to make that go away.
19	The disconnect switches where we found
20	some holes in the logic the way they were designed
21	initially, we're fixing those, and some communication
22	enhancements.
23	MR. KAMMER: Let me make a comment. You
24	said the way it was designed initially. Actually,
25	we're taking different failure modes out of NEI-0001.
l	I

(202) 234-4433

	285
1	MR. LOIGNON: That's true.
2	MR. KAMMER: And found some insights that
3	we didn't -
4	MR. LOIGNON: We didn't know we were -
5	MR. KAMMER: have back in Appendix R
6	days.
7	MR. LOIGNON: That's true.
8	(Discussion off the record.)
9	MR. LOIGNON: Rev 1 was available at the
10	time, but we were working toward Rev 2 information.
11	We had the experts available to us.
12	CHAIRMAN STETKAR: So, I mischaracterized
13	that. I apologize.
14	MR. LOIGNON: For CDF reductions, we're
15	committing to do reactor coolant pump seal
16	replacements that are - whether we use the
17	Westinghouse shutdown seal or a different seal, but
18	something that will address consequential LOCAs.
19	Incipient detection in the relay room
20	cabinets. An alternate seal injection system which is
21	actually almost installed right now. Should be
22	installed before we get to our refueling outage this
23	fall.
24	And auto start on the instrument air
25	compressor. We have a diesel-driven compressor that
	I

(202) 234-4433

	286
1	we have to manually start now. We're going to put an
2	auto start on that.
3	And those really weren't being driven by
4	VFDRs or anything like that. It's just they do have
5	some significant risk reduction and just help in
6	general.
7	CHAIRMAN STETKAR: And all of these are -
8	you've included them in the PRA models.
9	MR. LOIGNON: Yes, they are included in our
10	model. So, just like the other utilities, I do have
11	two models that I'm trying to merge together.
12	So, I've got my current at-power model
13	that I use right now in E00S and (a)4 space, and I've
14	got one that I have at the end of my transition from
15	SISBO to 805. And that model includes all of these
16	mods.
17	So, as I get the -
18	CHAIRMAN STETKAR: But the only difference
19	is if I can think of those as a serial progression -
20	MR. LOIGNON: Exactly.
21	CHAIRMAN STETKAR: they're not - from
22	what I heard with Duane Arnold -
23	MR. LOIGNON: Yes.
24	CHAIRMAN STETKAR: it's more of a
25	parallel serial.
ļ	1

	287
1	MR. LOIGNON: Right, mine is a serial
2	progression. If there are other mods that happen,
3	I'll put it in both places.
4	CHAIRMAN STETKAR: Yes, okay.
5	So, you've actually committed to some
6	substantial capital costs for these modifications.
7	MR. LOIGNON: Yes. The alternate seal
8	injection mod was actually in process before we even
9	made the LAR submittal, but we included it just so we
10	could show the numbers right. We took credit for it
11	for the number part.
12	CHAIRMAN STETKAR: Were you doing that also
13	for internal events?
14	MR. LOIGNON: Yes.
15	CHAIRMAN STETKAR: Okay.
16	MR. LOIGNON: Like I said, it's being
17	installed now and the model will be updated. Right
18	after it goes operational, it will be updated.
19	It was being driven before 805 because of
20	MSPI margin concerns. So, that's really what was
21	driving it to start with.
22	Reactor coolant pump seal replacement has
23	been on our radar screen for quite some time. So,
24	we're going to do something about it now.
25	MEMBER SCHULTZ: Independent of this
ļ	

(202) 234-4433

	288
1	project.
2	MR. LOIGNON: Yes. It's been on our radar
3	screen for a while. Just we weren't sure which way we
4	wanted to go. I think we finally came to a
5	conclusion, but we're going to install it in the next
6	couple outages.
7	MEMBER SCHULTZ: You mentioned earlier,
8	Gerald, that with regard to what are the typical
9	deterministic modifications, that you are doing those
10	in selected areas where they'll make the most
11	difference based upon the 805 work, things like the
12	circuit tubing protection, wrapping.
13	MR. LOIGNON: We have specific circuits
14	that we want to wrap that we're doing, yes. And
15	they're basically because of deviations from
16	separation criteria or whenever that weren't apparent
17	before when we were doing Appendix R, because we de-
18	energized them.
19	MEMBER SCHULTZ: Okay, thank you.
20	MR. LOIGNON: Implementation challenges,
21	ours are similar to everybody else's. Maybe a little
22	bit more in some respects because of the change in
23	philosophy. The knowledge transfer from the vendor
24	did most of the work.
25	We did a pretty good job, I think, of
I	I

(202) 234-4433

	289
1	shadowing the vendor. So, when they were doing the
2	PRA model, we were watching what they were doing.
3	They came and trained us. We made sure we know how to
4	do it.
5	In fact, we are running the model now as
6	part of our plant modification control. I am running
7	two programs. I have an Appendix R program and an 805
8	program.
9	Appendix R they don't talk to me about too
10	much. But when it comes to 805, I am in the process.
11	They don't do mods without talking to me.
12	It used to be, you know, you want to put
13	a cable, I didn't care. You want to touch a cable?
14	I didn't, you know, we're talking a fair amount of
15	work for me to say I like it or not and we're in the
16	process.
17	So, just like they're updating the
18	database, they come and make sure that they talk to
19	the PRA guys and it's okay.
20	Because we're doing that operational
21	response strategy change, there's a lot more procedure
22	revisions for us, I think, in those. Our FEPs are
23	basically going to be thrown away and be replaced.
24	Fire free plans have a little bit more
25	insights. We put some insights in them from IPEEE,
I	I

(202) 234-4433

	290
1	but they're slightly different now because we're
2	keeping both trains alive.
3	The configuration management part of it we
4	actually hadn't implemented, like I said. So, we've
5	done some changes to our administrative programs and
6	modification space to make sure that 805 concerns are
7	captured right up front.
8	And we'll keep even during the transition
9	that's going to be a couple years, we'll keep all the
10	data on the fire stuff up to date.
11	MEMBER SCHULTZ: Gerald, who's the owner of
12	that program?
13	MR. LOIGNON: Design Engineering owns the
14	configuration management part. But PRA is
15	specifically in their procedure, in their checklist.
16	They can't go without us. Even though we're not part
17	of design for Summer station, we're in their
18	procedure.
19	MEMBER SCHULTZ: Okay, thank you.
20	MR. LOIGNON: The physical modifications,
21	we obviously made some assumptions about what they
22	were going to look like when we modeled them.
23	So, as they model them, we'll go back and
24	make sure that we did it correctly or, you know, tweak
25	on it if we have to.
I	

(202) 234-4433

	291
1	There's a lot of things going on in the
2	industry now that are keeping us busy. So, there's
3	just lots on our plate to distract us and we need to
4	make sure we keep our eye on it and get it done.
5	And that might be the end of it.
6	(Discussion off the record.)
7	CHAIRMAN STETKAR: Thank you. Any other
8	members have any comments, any questions?
9	(No response.)
10	CHAIRMAN STETKAR: Well, thank you very,
11	very much. That was a good summary and you've
12	miraculously returned us to even ahead of schedule.
13	So, I don't know what to do.
14	(Laughter.)
15	CHAIRMAN STETKAR: I can stand here and
16	talk for an hour. You know I can do that.
17	(Discussion off the record.)
18	CHAIRMAN STETKAR: What I would like to do
19	is one last time open up the bridge line and see if
20	there are any comments from anyone out there.
21	While we're getting that done, is there
22	anybody in the room that has anything to offer? I'm
23	hearing clicks up there. Just again would somebody
24	out there wherever you are, just say something so we
25	can confirm that we have the bridge line open?
ļ	I

(202) 234-4433

	292
1	Anybody?
2	MR. JOGLAR: This is Francisco Joglar from
3	Hughes Associates.
4	CHAIRMAN STETKAR: Thank you, Francisco.
5	I appreciate that. You'd think we'd have some better
6	way of doing this, but we don't.
7	Now that we know it's open, is there
8	anyone on the bridge line who has any comments or
9	questions regarding the Summer presentation?
10	(No response.)
11	CHAIRMAN STETKAR: Okay. Hearing nothing,
12	no comments or questions from any of the other member,
13	again while we're on the record, I really do want to
14	again thank all of - especially the licensees bringing
15	all the people you brought, expertise to answer
16	questions.
17	It was, I think, certainly very useful for
18	us and we really appreciate the effort you put into
19	this. And I think we had a good discussion. And with
20	that, we will recess until tomorrow morning.
21	(Whereupon, the above-entitled matter went
22	off the record at 4:26 p.m.)
23	
24	
25	
I	

Stephen Dinsmore, Sr. Risk Analysis Engineer
PRA Licensing Branch
Harold Barrett, PE Sr. Fire Protection Engineer
Paul Lain, PE Sr. Fire Protection Engineer
Fire Protection Branch
Division of Risk Assessment
Office of Nuclear Reactor Regulation

NRC Staff Observations on NFPA 805 LAR Reviews

Technical Findings on NFPA 805 Transition

ACRS Reliability and PRA Subcommittee Brief

July 26 & 27, 2012

Protecting People and the Environment

Topics for Discussion

- Program Status
- LAR Acceptance Reviews
- Site Audit Observations
- RAIs & RAI Responses
- Summary

NFPA 805 Program Status

Protecting People and the Environment

LAR Submittals	LAR Review Status
1. D. C. Cook 1 & 2	SE & RAI Development (2 nd Round)
2. Duane Arnold	SE & RAI Development (2 nd Round)
3. Callaway	SE & RAI Development (2 nd Round)
4. Fort Calhoun	SE & RAI Development (2 nd Round)
5. V. C. Summer	Awaiting RAI Responses & SE Development
6. Waterford 3	Awaiting RAI Responses & SE Development
7. Arkansas Nuclear One 2	Reviewing LAR Supplemental Information
8. Cooper	Reviewing LAR Supplemental Information
9. Nine Mile Point 1	LAR Acceptance Review
10. Turkey Point 3 & 4	LAR Acceptance Review
11. Arkansas Nuclear One 1	LAR due 8/31/12
Brunswick, Beaver Valley, Farley, & Prairie Island	LARs are due 9/30/12

LAR Acceptance Reviews

- PRA Supplement Requests
 - -RG 1.200 Compliance Paths
 - Incomplete Total Risk & Change in Risk Information
 - Not Identifying Relevant Sources of Model Uncertainty
 - Unreviewed Methods
 - Key Assumptions
 - Not Providing Required Sensitivity Study Results

LAR Acceptance Reviews (cont.)

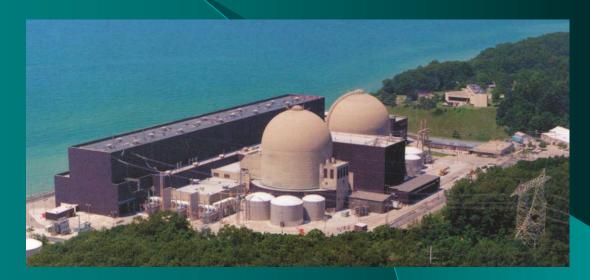
- Fire Modeling Observations

 Deviations from Accepted Methods
 Quality Issues
- Other Observations
 - -Programmatic
 - -Nuclear Safety Criteria Assessment
 - -Fire Protection Program

Site Audit Observations

- Information Integration During Analysis
- Fire Modeling
- Program Quality after Transition

RAIs & Responses


- PRA RAIs
- Fire Modeling RAIs
- Nuclear Safety Criteria Assessment
- Fire Protection Baseline Program

- The Staff will continue the License Amendment Review Process (LIC-101) to resolve site specific issues.
- The Staff will continue to work with stakeholders to resolve generic issues so future applicants can incorporate the necessary information.

Donald C. Cook Nuclear Plant NFPA 805 LAR Insights & Issues

Project Team Lead: Dan MacDougall – NFPA 805 Project

Presentation Overview

DC Cook Features NFPA 805 Transition Project Summary

- > NFPA 805 Transition Objectives
- LAR Development, RAIs and Implementation
- Fire PRA Overview & Results
- Fire PRA Technical Challenges
 - Ignition Frequencies
 - Fire Modeling
 - Spurious Actuation Failure Probabilities
- Uncertainty
- Implementation Challenges
- Summary

DC Cook Plant Features

- Two units, Total ~2150 Mwe, 4-loop Westinghouse PWRs with Ice Condenser Containments
- Ultimate heat sink is Lake Michigan.
- All plant cooling is direct lake water heat exchange.
- Alternate shutdown relies on other unit systems for pumped fluid services.
- Dedicated Fire Brigade is independent of operations shift staffing, not credited for safe shutdown strategy

Transition Objectives

November 2005 study established goals for the transition.

Objectives of Adopting NFPA 805:

- > Adopt a Risk Informed Fire Protection Program
- Respond to NRC Industry Request for Transition to NFPA 805
- Provide for an understandable Licensing Basis
- Reduce Fire Protection Test and Maintenance Costs
 - > Reducing suppression systems
 - > Reducing emergency lighting
 - Reducing Fire-Rated Barriers
- > Reduce Operator Manual Actions

LAR Submittal

Used the NEI 04-02 LAR Template

- Submitted July 1, 2011, Supplement 1 issued Sept. 2, 2011 to include specific plant risk values.
- Some questions but no issues during LIC-109 review
- Fire PRA applied during the development of Fire Risk Evaluations (LAR Attachment W)
- Total 39 RAIs (~60% PRA & fire modeling related)
- 6 Separate Rad Release related RAIs
- Site Fire Modeling Evaluation, resulted in formal response to 11 questions
- Site audits were valuable meetings for the NRC & reviewers to discuss & understand the CNP approach

Fire Risk Evaluations

- Determined Delta Risk between Compliant Plant and NFPA 805 Post-Transition Plant
 - Delta in Core Damage Frequency
 - Delta in Large Early Release Frequency
- Over 260 VFDR Risk Evaluations using the 900 Fire PRA scenarios
- Based on RG 1.205 & RG 1.174 requirements for 805 transition & risk-informed PRA applications
- Cumulative delta-CDF & cumulative delta-LERF compared to RG 1.174 risk acceptance limits
- Close to the limit on acceptable delta-risk increase

Fire Safety Analysis

▶ 57 FSAs Document Each Fire Area Summary of deterministic/design and risk insights Fire Protection Systems and Features > NSCA Compliance Strategy > VFDRs and Recovery Actions > Fire PRA Risk Evaluation Results > Radioactive Release Review NPO Compliance Review Monitoring Program Input > Defense-In-Depth and Safety Margin Review

NFPA 805 Implementation

Modifications and Implementation Items

- MOV IN 92-18 Mods
- Conversion of CO2 Systems from Manual to Automatic
- Transient Combustibles Control with Combustible Free Zones (CFZ)
- Fuse Replacement Coordination Study Deficiencies
- Develop Monitoring and NPO Programs
- Update Procedures and Other Documentation
- Training After Receipt of NRC SE

Fire PRA Peer Review

Fire PRA Peer Review - October, 2009

- Conducted by the PWR OG
- Fire PRA built from the Internal Events PRA
- No Significant Findings
- 61 F&Os 36 Suggestions, 25 Findings All Impacts Resolved

PWROG Indicated That Overall, the Fire PRA Quality was Found to be Very Good with Many Elements Being Performed at the State-of-the-Art Level

Fire PRA Peer Review process provided a good, independent look at the CNP model and basis

Fire PRA Summary

- Fire PRA Results <u>Reflect & Complement</u> D-I-D Approach ➤ Insights are Not Surprising
- Fire PRA Results, in Many Cases, are Influenced Significantly by Conservative Data and Modeling
- Need to account for uncertainty, including conservatism:
 - > Do not make changes based on overly conservative results.
 - Formal uncertainty analysis can reduce calculated results by factor of 5 to 10.
- Based on the Efforts of Many (Plant, Industry and NRC) we have come a long way, *but*
 - Critical Evaluation of Results is Essential to Ensure PRA Results are Properly Understood and Characterized
 - "NFPA 805 Fire PRAs" will need to be enhanced for use in Risk management and other Risk Informed Activities
 - Continued Data and Methods Enhancements are needed

10

Fire PRA Model Attributes

Plant model, success criteria, random failure probabilities are based on the Internal Events PRA.
Follows NUREG/CR-6850, with Supplement 1.
Approved NEI-FAQ's have been incorporated.
There is a separate fire PRA model for each unit.
Overall plant site includes 57 analysis areas (AA)
Some AA have cables for both units
CDF & LERF (ΔCDF & ΔLERF) for each unit is calculated for each AA.

Ice Condenser Containment is more limiting for LERF than other PWR containment designs.

Fire PRA Results-Risk Metrics

Unit	Fire CDF (per year)	NFPA 805 Delta-CDF (per year)	Fire LERF (per year)	NFPA 805 Delta-LERF (per year)
Unit 1	3.55E-5	9.01E-6	3.43E-6	6.85E-7
Unit 2	2.86E-5	8.46E-6	2.23E-6	5.97E-7
Internal Ev Fire CDF Seismic C Total CDF		<u>Unit</u> 1.322E- 3.55E- 3.17E- 5.2E-	 -05/yr -05/yr	<u>Unit 2</u> 1.323E-05/yr 2.86E-05/yr 3.17E-06/yr 4.5E-05/yr
Internal Ex Fire LERF Seismic L Total LER	ERF	2.701E 3.43E 9.82E 7.1E	-06/yr	2.700E-06/yr 2.23E-06/yr 9.82E-07/yr 5.9E-06/yr

Fire PRA Results-Top Areas

Unit 1 Fire PRA

- Top 16 areas contribute >95% of the fire risk
- Top 10 areas (each area between 7.5E-6/yr & 1E-6/yr CDF):
 - 21% Unit 1 4kV AB Switchgear Room (El. 609'-6")
 - 20% Turbine Building
 - 11% Yard
 - 7% U1 Engr Safety System & MCC Room (El. 609'-6")
 - 7% U1 Control Rm Cable Vault & HSD Panel (El. 624' & 633')
 - 6% U1 ESW Pump Area & U1/U2 Basement MCC (El. 591' & 575')
 - 5% U1 Containment
 - 4% U1 Swgr Rm Cable Vault & Aux Cable Vault (El. 626' & 621')
 - 4% U1/U2 Aux Bldg & Fuel Handling Area (El. 609', 633' & 650')
 - 3% U1 Control Room (El. 633')

Fire PRA Results–U1 Top Scenarios

Fire in Yard causes Loss of Offsite Power to both Units

- Fire damage is limited to the offsite power supply
- EDG failures lead to Station Blackout
- 4kV Bus 1B Fire fails Train B power & Offsite Power
 - Train A EDG random failures lead to loss of RCP seal cooling
 - Fail to locally trip RCP leads to seal LOCA
 - LOCA too big to mitigate via CVCS cross-tie
- 4kV Bus T11A Fire same scenario as Bus 1B
- Turbine Bldg Fire Damages to AC Power
 - Random failures lead to Station Blackout
 - Failure to cross-tie AFW & CVCS leads to core damage
- Bus T11D High Energy Arcing Fault
 - Fire fails AC power to both safety trains, losing RCP seal cooling
 - Fail to locally trip RCP (fire fails control power) leads to seal LOCA
 - LOCA too big to mitigate via CVCS cross-tie

Fire PRA Results Insights

Risk Significant Contributors
– Cable vaults and rooms with 600V buses that impact both trains at the same unit (demanding cross-ties)

Inter-unit system cross-ties effectively reduce risk – Required refinement of success criteria

Recovery Actions credited (Draft NUREG-1921 used)

Combustible Free Zones & Hot Work Restrictions minimized effects of transient fires in critical areas

Fire PRA Model Development

- First tasks of NUREG/CR-6850 developed the base fire PRA model and data
- Mostly straight-forward tasks, but some challenges
- Fire PRA Model Input development (by task number)
 - 1: Plant Boundary Definition and Partitioning (PP)
 - 2: Component Selection (ES)
 - 3: Cable Selection (CS)
 - 4: Qualitative Screening (QLS, not used at DC Cook)
 - 5: Fire-Induced Risk Model (PRM)
 - 6: Ignition Frequencies (IGN)
 - 9 & 10: Circuit Failure & Circuit Failure Likelihood (CF)

Fire PRA Technical Challenges

- 1st-Reducing total Fire PRA CDF below 1E-4/yr
 - ~ 2009, prior to Fire PRA Peer Review
 - Ignition frequencies shifted from NUREG/CR-6850 to FAQ-0048 Initiating Event Frequencies (IEFs)
 - Additional fire modeling needed
 - Need 1 train+ for good risk results (see #26)
- 2nd-Ensure LAR Delta-CDF below 1E-5/yr
 - ~ 2010 for LAR supporting analyses
 - Address Fire PRA Peer Review F&Os
 - Transition with as few plant modifications as possible
- 3rd-Uncertainty Considerations

Fire Ignition Frequency

- Based on NUREG/CR-6850 methods
 - First developed a set of IEFs from NUREG/CR-6850
 - Then developed a set of IEFs from FAQ-0048
 - Current results use FAQ-0048 IEFs (NUREG/CR-6850 Supplement 1)

IEF data still conservative for some contributors:

- Crude rules for frequency & size of transient fires in an area when all precautions have been taken to eliminate them reduces worth of hotwork free and transient combustible free zones (FAQ-0064).
- Effect on transient fire suppression of personnel in the area who may have caused the fire in the first place (such as during maintenance or hotwork).
- No distinction between running & standby components

Fire Growth Trees

Complex Development & Quantification of Fire Damage States (FDS)

- Developing Ignition Frequencies into Cable Damage (and thus SSC Damage)
- > Fire Growth Trees address:
 - > Frequency of the Ignition Source
 - > Progression to Reactor Trip (assumed)
 - > Fire Progression to Targets, which includes:
 - Propagation & Severity Factors
 - ➤Captured via Fire Modeling
 - ► Includes Detection and Suppression

> Fire Modeling is the key to Fire Damage States

Fire Modeling

► Used Verified & Validated (V&V'd) Fire Models ▶ 57 Total Plant Fire Areas >18 Deterministic (evaluated at whole room burn-up) \geq 39 Performance Based (evaluated with fire models) Process followed NUREG/CR-6850 and the **Fire PRA Standard** Fire models developed scenarios consisting of specific ignition sources & targets Developed over 900 scenarios as input to Fire PRA quantification

Fire Modeling (cont'd)

First cut done with conservative data:
Published Heat Release Rate, taken at 98%
T-square growth model
Produces time to damage, governs failure probabilities for suppression
Associated target (cable) damage often limited by spatial knowledge of cable raceways
Sometimes multiple raceways high in the overhead, so

- initially assume all are affected
- If CDF after first cut is too high, Fire PRA provides information of "minimum protected set" of cables, and walkdowns conducted to identify their location

Fire Damage State

- Complex Development & Quantification of Fire Damage States (FDS)
 - Analysis of Individual Fires with Fire Modeling is Needed for Many Areas
 - Level of Detail in Fire Modeling & associated SSC Impacts varies by Fire Location (Level of Effort Issue)
 - Iterative Process unless All Locations with NSCA SSCs are Modeled in Detail,
 - > But not all cable routing known in detail
 - Summation of Results for Areas with Smaller CDF Results can Create Unrealistic Overall Calculated Results and thus Many Areas Typically Need Refinement.

PRA Modeling

Straightforward for quantifying fire damaged data sets

Transient Source Fire Modeling Example

Fixed Source Fire Modeling Example

FPRA Insights into Mitigation

Deterministically compliant areas can have Higher than Anticipated Calculated CDFs due to Conservative Fire Damage State Frequencies combined with Unreliability/Unavailability of Undamaged Mitigating SSCs

Mitigating Equipment	CCDP	PRA Risk Metric Results
Redundant Safety Trains, Non-Safety Train, & OSP Available	1E-4 to 1E-5	Good PRA Result
Redundant Safety Trains, and OSP Available	1E-3 to 1E-4	Good PRA Result
Redundant Safety Trains Available but without OSP	1E-2 to 1E-3	Good PRA Result Depends on Fire Damage State (FDS) Frequency
Safety Train with OSP Available	~1E-2	Good PRA Result Requires Very Low FDS Frequency
Safety Train Powered by EDG	~1E-1	A Good PRA Result is a Challenge

Circuit Failure Likelihood

- Detailed circuit analysis was performed on the risk significant components from the First Quantification (Task 7)
 - Cables that could cause spurious actuation
 - Note whether internal or external faults required
- In quantification process, probability for spurious actuation was assigned based on whether selected cables were involved in fire scenario
- Highest single spurious likelihood probability was used (FAQ-08-0047)
- Spurious open Spurious close & spurious open were both assigned same probability.
- Issue large spurious actuation probabilities
 - Challenge the rare event approximation
 - Total sum of all failure states should not exceed 1

Fire PRA Uncertainty

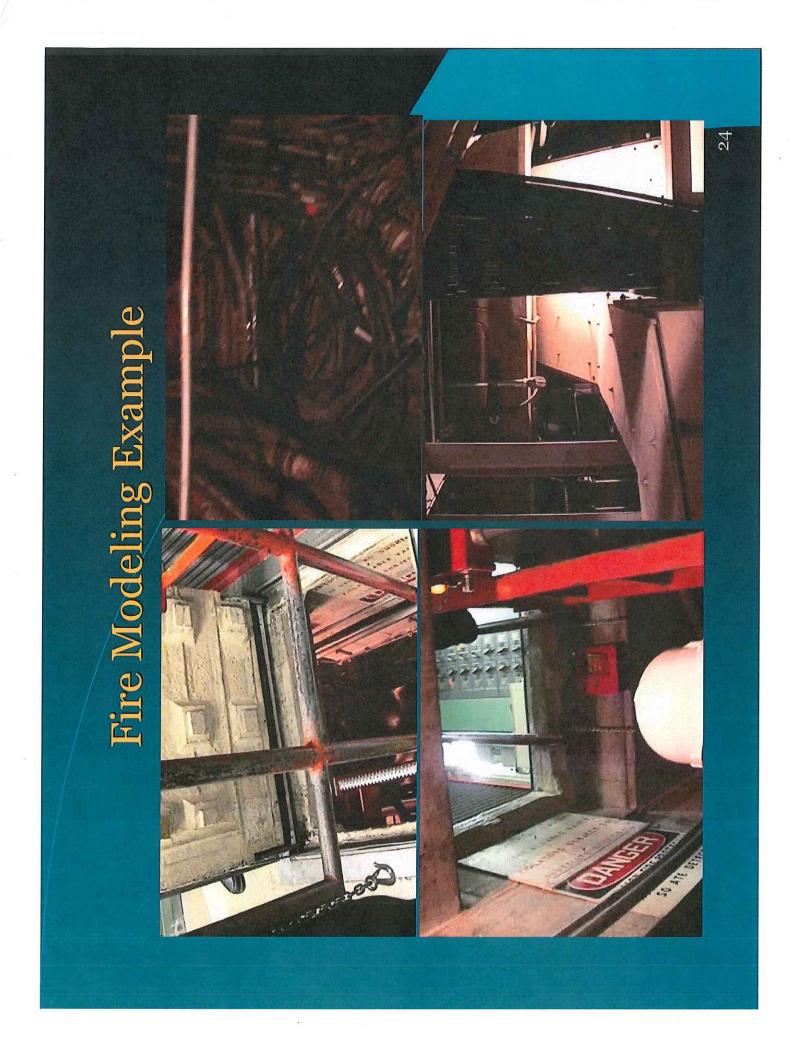
- Many conservatisms in NUREG/CR-6850 Approach
 - > Ignition Frequencies
 - Spurious Actuation failure probabilities
 - > Heat Release Rates & Fire Growth Model
- Also potential non-conservatisms
 - > Operator response with degraded instrumentation & spurious cable failures

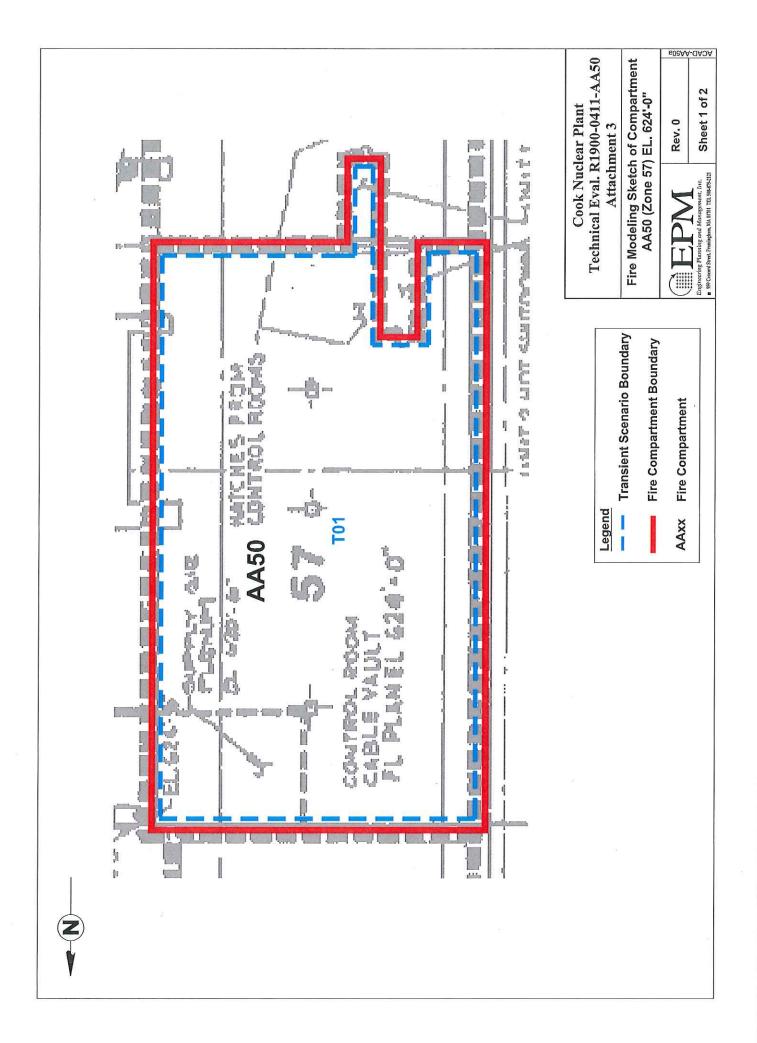
Parametric data uncertainty addressed by estimation instead of rigorous statistical propagation

No value-added insights from statistical propagation as modeling assumptions dominate (e.g., fire modeling)

Implementation Challenges

Paradigm Shifts


- Non-TRM Systems Risk Significant
- Configuration Management (currently two programs)
- Industry Participation
- Qualification (Single Nuclear Plant Utility)
- Qualitative 86-10 vice Change Evaluation
- Recovery/Compensatory Actions (LERF/NPO)
- Training (Ops, Engr., Outage Management, Work Control, Fire Brigade, etc.)


CNP NFPA 805 Summary

NFPA 805 LAR submitted 6/29/2011
Most Challenges were data conservatisms or data limitations (regulatory guidance, fire modeling & unknown cable locations)

Paradigm Shifts (risk informed performance based)

Configuration Management (RAI responses, FAQ/NEI 04-02 changes, two programs, qualifications)

Transient Fire Quantification		I				c cables.	damage. ne 57.
Cook Nuclear Plant Fire Area AA50 - Technical Evaluation R1900-0411-AA50 Attachment 7: Transient Quantification Rev. 0	Cook Nuclear Plant	AASD	Transient Quantification		Only regular solid transient fires are postulated in this room. The 98th percentile heat release rate for transients is 317 kW.	All uncovered trays and condults are failed before suppression occurs. Successful suppression at 4 minutes prevents failure to thermoplastic cables.	If suppression fails after 20 minutes, a transient fire will spread to surrounding combustbles to create a hot gas layer and cause whole room damage. The fire risk quantification below is to credit automatic suppression in order to limit taget damage for a the transient fire scenarios in Fire Zone 57,
Cook Nuclear Plant Fire Area AA50 - Technical Evaluation Attachment 7: Transient Quantification Rev. 0	Plant	Fire Area	Ignition Source	Description of Fire Scenario	Only regular solid transient fires a	All uncovered trays and condults :	If suppression fails after 20 minuti The fire risk quantification below i

Fire Modeling Input Parameters	star the supplicity and	No. Contraction	Fire Ignition Frequency and PRA Input Data
98th Percentile HRR (kW)	317		Influence factor
Damage temperature (°C)	330	Bin 5	Cable fire caused by welding and cutting
Amblent temperature ("C)	25	Bin 6	Transient fires caused by welding and cutting
Damage heat flux (kW/m ²)	1	Bin 7	Transients
Radiative heat release rate fraction	0.4		Total Transient (Bin 6 + Bin 7):
Fire elevation (ft)	2.00		
Fire diameter (ft)	2.26		Room CCDP (from FPRA Summary Sheet) =
			Room CLERP (from FPRA Summary Sheet) =

From FAQ-08-0050 Reference

Lambda (Mean) Bin 5 0.188 Bin 6 0.188 Bin 7 0.126

 Time to Det (Min)

 Bin 5
 0

 Bin 7
 15

 Manual Det
 15

2.00E+00

Damage
HO
ŭ
Whole
Assuming'
Quantification /
Transient

bor Area	Scenario Floor Area	Scenario Floor Area
Area (12) Wg Distance (11) Condition (140) SF (111) Prs Prs Free, A R (12) Wg Distance (11) Condition (140) SF (111) Prs Prs Free, A R	Wg Distance (M) Condition (MN) SF (min) Wg Distance (M) Condition (MN) SF (min) Prs	Area (ft2) Wg Distance (ft) Condition (kW) SF (min)
2) Wg Distance (tt) Conticien ((W) SF (min) Pns	lo Floor Area Shortest Target Fire Critical Damage Area (12) Wg Distance (11) Contilion (100) SF (min) Pris	lo Floor Area Shortest Target Fire Critical Damage Area (12) Wg Distance (11) Contilion (100) SF (min) Pris
2) Wg Distance (ft) Conticien ((W) SF (min) Pro-	lo Floor Area Area (12) Wg Distance (10) Conticion (100) SF Canage Area (12) Wg Distance (10) Conticion (100) SF Canage Pris	lo Floor Area Area (12) Wg Distance (10) Conticion (100) SF Continge Pris
2) Wg Shortast Target Fire Critical Q Distance (11) Condition (144) SF	lo Floor Area Area (12) Wg Shortest Target Fire Critical Q Area (12) Wg Distance (11) Condition (14V) SF	lo Floor Area Area Area Area (12) Wg Distance (11) Condition (140) SF
22) Wg Distance (1) Condition (14V)	lo Floor Area Area (12) Wg Distance (11) Condition (100)	lo Floor Area Shortest Target Area (12) Wg Distance (11) Condition (100)
2) Wg Distance (1) Condition	lo Floor Area Area (12) Wg Distance (11) Condition	lo Floor Area Area (ft2) Wg Distance (ft) Condition
2) Wg Distance (1) Condition	lo Floor Area Area (ft2) Wg Distance (ft) Condition	lo Floor Area Area (ft2) Wg Distance (ft) Condition
6M (2)	lo Floor Area Area (ft2) Wg	lo Floor Area Area (ft2) Wg
2 2	lo Floor Area Area (f2)	lo Floor Area Area (f2)
oor Area Area (ft2)	0 Floo	0 Floo
	Scenario FI Width (ft)	Scenario Fl Length (ft) Width (ft)
Location Factor Length (tt)	Location Factor	

*
4410
55)
(Zone
Area
Total

	3.00E+00
	3.00E+00
	Total CDF

Scenario Description able fires caused by welding and Transient fire encompassing all of Fire Zone 57.

EMM - 7/24/2009 ARB - 7/28/2009

Prepared: Reviewed:

Г

Transient Quantification v1.8

AA50 Transient Fire Model Rev. 0.xls

Page 1 of 1

Cook Nuclear Plant Fire Area AA50 - Technical Evaluation R1900-0411-AA50 Attachment 9: Fire Event Tree Rev. 0

Fire Event Tree

EMM - 7/24/2009 ARB - 7/28/2009

Prepared: Reviewed:

Plant	Cook Nuclear Plant	
Fire Area	AASO	
Ignition Source	Transient Fires	
Description of Fire Scenario		
All uncovered trays and conduits are fai	lied before suppression occurs. Successful suppression at 4 minutes prevents failure to thermoplastic cables,	

if suppression fails after 20 minutes, a transient fire will spread to surrounding combustibles to create a hot gas layer and cause whole nom damage. The fire event tree and fire risk quantification is to creat automatic suppression in order to limit target damage for a the transient fire scenarios in Fire Zone 57.

Multiple fire damage states are analyzed to credit suppression at 4 minutes. This zone contains thermoplastic raceways and crediting suppression at 4 minutes provides benefit by imiting damage to thermoplastic cables, industry guidance indicates that tray enclosures on thermoplastic cables. Industry guidance that tray enclosures on thermoplastic cables undirected that tray enclosures on thermoplastic cables. Industry guidance

The fire will be detected by the nearest smoke detector in 11 seconds once the fire reaches 27 KW. The fire reaches 27 KW in 2.4 minutes (Attachment 6 f² growth with the peak occuring at 8 minutes).

The 4 minute delay to damage provided by the tray covers is assumed to be sufficient to bound all potentially challenging fire sizes including fires smaller than 27kW that may not activate suppression.

The time to automatic suppression is rounded to 4 minutes (2.6 minutes for detection plus a 50 second delay time pre-discharge).

utomatic detection is required to activate the Halon system.

Manual detection is assumed to occur at 15-minutes. When the suppression system is unavailable, a fire watch is present and prompt detection is credited.

Detailed Fire Modeling Risk Quantification - Scenario Specific

Scenario	Total Trans Free	Wg	SF	Pns	CCDP	CDF	CLERP	LERF	Description of Damaged Targets and Associated Components
3in5	1.00E+00	n/a	n/a	n/a	1.00E+00	n/a	1.00E+00	n/a	Worst Single Tray (TO BE DETERMINED)
AA50.57-T01	and water and the	1.00E+00	1.00E+00	1.00E+00	1.00E+00	2.00E+00	1.00E+00	2.00E+00	Attachment 8. Target Impacts, lists the damage for this scenario

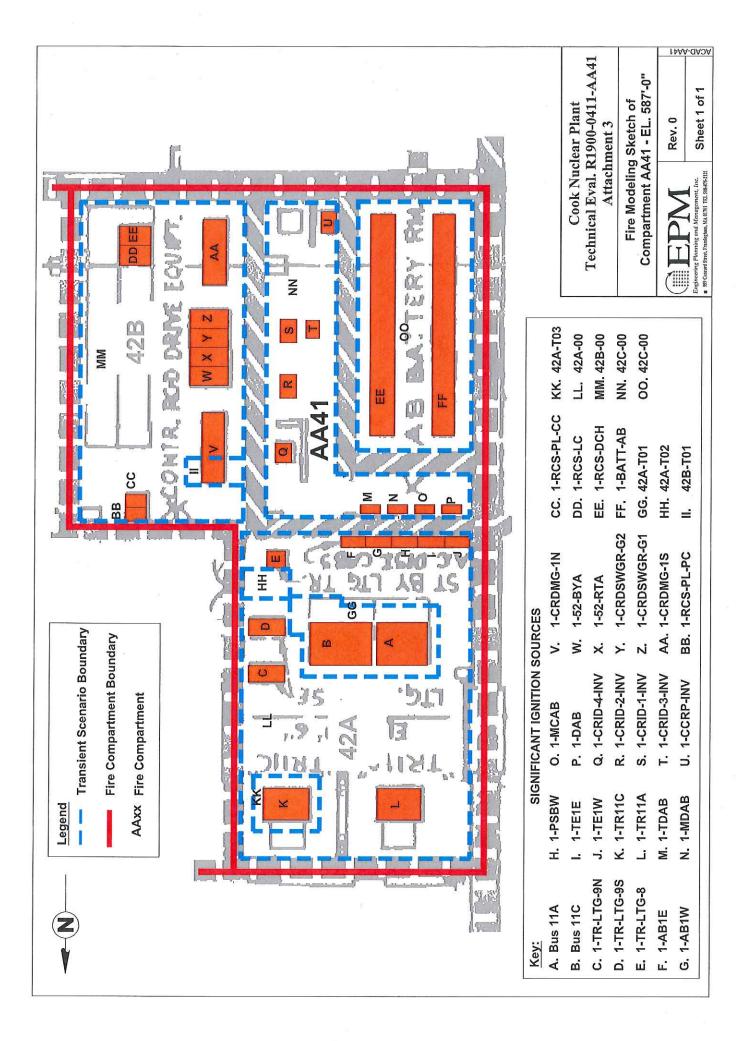
2.00E+00	Data	1.00E-02	5.00E-02	1.00E-02	5.00E-02	1.00E-02
2.00E+00	Fire Protection System	Suppression Unavailability:	Suppression Unreliability :	Linked Detection Unavailability:	Detection Unreliability:	Unlinked Detection Unavailability:
1,00E+00						Γ
	stection)	27	10	4.D	104	
Total	FDT 10 Inputs (De	HRR of Fire [KW]	Radial Distance [ft]	Height Above Fuel [ft]	Tamb ("F]	

unisanidan min universa ai olilit	present.
Time to Auto Detection (ionization detector):	2,6 min
Time to Prompt Manual Detection:	0.0 min
Time to Manual Detection:	15.0 min
Fire Brigade Response:	0.0 min
Time to Suppression:	4.0 min
Lambda (Mean) Prompt Detection Succeeds:	0.188
Lambda (Mean) Prompt Detection Fails:	0.126

FDT 10 Results (Detection) Activation Time [sec] 11

Cook Nuclear Plant Fire Area AA50 - Technical Evaluation R1900-0411-AA50 Attachment 8: Fire Event Tree Rev. 0

Fire Event Tree


Fire Event Tree for General Transients (Bin 7): Tree Applies to Fire Zones 57

5 8		System	AL HURST AND	Promp		Succession of the second	Automatic	e		Manual				
AD (emote) MD 20 20 End State 8.415-01 PDS1 2.415-01 PDS1 4.575-01 2.315-02 PDS2 PDS2 5.335-01 5.345-01 5.245-02 PDS2	Severity Factor Available Detec Suppr	Available Detec	Detec		Suppr		Suppr	Smoke Detection	Sec.	Fire Brigade or befo	Kesponse at ore, min			
SFX hus End State 8.45F.01 P031 4.67E.01 2.31E.02 5.33E.01 2.31E.02 5.33E.01 2.64E.02 5.33E.01 5.26E.03 4.71E.03 4.71E.03	FS PD 4.00				4.00		AS	AD (smoke)	MD	20	20			
6.41E-01 EDS1 4.67E-01 2.31E-02 FDS2 5.33E-01 2.64E-02 FDS3 5.33E-01 5.23E-03 FDS4												SF x Pns	End State	Description of End State
4.87E-01 2.34E-02 FDS2 5.33E-01 2.64E-02 PDS3 5.33E-01 5.28E-03 PDS4						- 1						0.410.04	EDe4	Arthornetic environment of the terretic descent of the second s
4.67E-01 2.31E-02 FDS2 5.33E-01 2.64E-02 PDS2 5.33E-01 5.26E-03 PDS4	1.00E+00 9.90E-01	9.90E-01					9.50E-01					8.4 IC-UI	1001	Automatic suppression is succession. No targets damaged after 4 minutes.
4.67E-01 2.31E-02 FDS2 5.33E-01 2.64E-02 #1583 5.33E-01 5.29E-03 FDS4														
2.64E-02 (1958) 5.29E-03 (1954) 4.71E-03 (1958)							5.00E-02			4.67E-01	10	2.31E-02	FDS2	Automatic suppression fails, manual suppression is successful, All thermoplastic caples are damaged, however theremoset cables are not damaged and whole room damage is prevented.
FDS4										5.33E-01		2.64E-02	FIDES	Automatic suppression faits, manual suppression is unsuccessful. Whole room damage occurs.
FDS4												and and a second second		Arthursday and determine and any arthur arthur and arthur arthur arthur arthur arthur arthur arthur arthur arth
552	1.00E-02 1.00E+00 5.29E-01	1.00E+00		5.29E-01	19E-01							5.29E-03	FDS4	Automate suppression and detection systems are unavailater. Frompt detection and prompt suppression are successful. Damage is prevented to all protected cables.
244													and the second second	
	4.71E-01	4.71E-01	4.71E-01	4.71E-01	16-01							4.71E-03	88C	Automade suppression and detection systems are unavaliable. Prompt detection is successful and prompt suppression is unsuccessful. Whide room damage occurs.

Detailed Fire Modeling Risk Quantification

FDS	Time (m)	Damaged Targets and Associated Components	SAFE scenario ID	(Task 6) A	SF x Pns	CCDP	CDF	CLERP	LERF
FDS1/4	4	All unprotected cables within ZOI.	AA50.57-T01-S4		9.46E-01				
FDS2	20	All unprotected cables within ZOI as well as all thermoplastic cables.	AA50,57-T01-S20	1.00E+00	2.31E-02		Refer to Fin.	Refer to Final Quantification	
	21	Whole room damage.	Whole room damage		3.11F-02				

Compartment: AA41 Fire Scenario: AA41.42C-5 Ignition Source: 1-MCAB Description: 250VC Dist Panel MDCAB												2								
:ce:			Fire Zone:		42C		Ignition Source	urce	0	SI English	lish									
:e:							Width [m]/[in]:	16		0.91 36	alde O	Cable Ouelifeedian.		Ouclifton	At	Attribute:				
Π							Depth [m]/[in]:	문	0	0.30 12				244	٨	Vertical Sections:	s: 1			
	nel MDCAB						Fire Elevation [m]/[in]:	sn [m]/[in]:	N			Fire location factor			Ē	Intervening Combs?:				
Description of Fire Scenario							Fire Diameter [m]/[in]:	er [m]/[in]:	0		and AdaC	Cable Bundles.		4 C	Ó	Open or Closed Doors:	Doors: Closed	ed		
A fire starts in 1-MCAB and burns for 40 minutes.	for 40 minutes.						Nominal Le	Nominal Length [m]/[in]:		0.51 20.00		Capito dallaca.		010	Ds	Damage Criteria	TS I	TP SS		
Cable trays 1EI-C93 drops directly down into the ignition source and ignites in one minute after being exposed to	down into the ig	phition source	e and ignites ir	n one minute	after being ex	posed to	Nominal W	Nominal Width [m]/[in]:				ACUVE TAR			i F	Temperature ["C]-	330			
remperatures in excess of 915-F (NUKEG 6630 Table H-5). Cable fray TEL-U3 and TEL-U1 run vertically into adioining cabinets which are located directly adiacent to 1-MCAB. These travs are exposed to a radiant heat fliv	nuked 6850 18	able H-5). Ca	AB These trav	s are expose	I run vertically	heat flux	Nominal Fi	Nominal Fire Diameter (m)/(in)·				Radiative HRK Itaction.		4.O	H	Heat Elvix IN//m81	8 1	8 e		
greater than 18 kW/m² and ignite after 1 minute (NUREG 6850 Table H-7 and H-8).	after 1 minute (N	IUREG 6850	Table H-7 and	4 H-8).			-		÷	5						ימר ו ותע (עאגו	2 - -			
Cable tray 1EI-C94 is located direct	ctly above 1EI-D	3 and approx	ximately 18 inc	ches from 1-N	ACAB. The tra	ly is also		Compartment Parameters		English	45			SI En	English Col	Compartment Material:		Concrete	SI English	ish
exposed to a radiant near nux greater than to kwim- and ignites after 1 minute (NUKEG 65ט rapie H-r/). After the listed cable travs ionite. the fire grows after one minute which causes a heat flux of 11KW/m² which nonits	he fire grows afte	er one minute	es arrer 1 minu e which cause	s a heat flux	of 11KW/m ² w	-/). /hich occurs	00000	Ambient Temperature [C]/[F]:	CJ/[F]: 32	6	Vent Wi	/ent Width [m]/[ft]:	-	0.91 3.0		ermal Conduct	Thermal Conductivity [kW/mK]:	0.0016	16	
4' away from the fire. This heat flux causes cable tray 1EM-C118 to fail in 19 minutes (NUREG 5850 Table H-7).	k causes cable tr	ray 1EM-C11	8 to fail in 19 r	minutes (NUI	REG 6850 Ta	ble H-7).	Room Width [m]/[ft]:	։[ա]/[պ]։	ι. Υ	3.7 12.0	Vent Art	Vent Area [m²]/[ft²]:	· · · · · · · · · · · · · · · · · · ·	1.95 21	21.0 Dei	Density [kg/m ^a]:		2400		
Cable tray 1EM-D9 contains thermoplastic cables and is also located 4' away from the fire. This tray fails at 4	hoplastic cables	and is also lo	ocated 4' away	r from the fire	. This tray fail	s at 4	Room Length [m]/[ft]:	th [m]/[ft]:	1	13.4 44.0	Compar	Compartment Surface		221 23	2378 Wa	Wall Thickness [m]/[ft]:	[#]/[#]:	0.30	1.0	
							Room Height [m]/[ft]:	nt [m]/[ft]:	ы С	3.7 12.0	Bounda	Boundary Area [m²]/[ft²];	il:		Spi	Specific heat [kJ/kg]:	/ka]:	0.75		
							Vent Heigh	Vent Height from Floor [m]/[ft]:			Specific	Specific Heat of Air (kJ/kg):		-	, er	at transfer co	Heat transfer coefficient [kW/m [*] -K]:			
							Vent Height [m]/[ft]:	:[m]/[ft]:			Ambien Flow Ra	Ambient Air Density [kg/m³]: Flow Rate [kg/sec]/[cfm]:		1.16 4.206 770	7700 (From HVAC	(From Plant HVAC Drawings)	_			
Fire Spread			Vertical Separation		-	Directions F	ire Soread						8	П	Time (Minutes)	(S				
Type Source		Unit	33	h (in)	th (in)		Rate (in/min)	Units	(min)	Uuration (min)	8	۴	IJ	10	20	30	40 50	60	75	85
	-	Cabinet	A	-		N/A N	N/A	1.00	1.000	1 0	0	-	37	147	211					0
50 i 88 i					12	1	2.13	1.00	-	75	0	25	43	65	109				24	178
					144	1	0.71	12.00	-	75	0	240	245	251	262					47
				12	20	1	0.71	1.67	-	75	0	33	38	4	56				47	47
					12	-	0.71	1.00	•••••	75	0	20	25	31	42					47
Cable Tray 1EM-D9	25 25 25		00	2	64 Q	- ·	2.13	1.00	4	75	0 0	0 0	29	52 -	96 7	140	185 178	178	178	178
					21	-	17.0	1.00	19	12	0	D	D	D	21					47
				L		Total	Total HRR (kW):				•	320	416	588	298	171	859 554	544	544	544
						Flame	Flame Height (ft):				0.00	5.82	6.69	7.96	9.25	9.09	9.58 7.73	3 7.66	7.66	7.66
				7	Thermoset Zone	_	; (¥):				0.00	10.41	11.78	13.81	15.85	15.60 1	16.38 13.43	3 13.33	3 13.33	13.33
				0	or innuence	Plume	Plume Radius (ft):				0.37	1.85	2.05	2.36	2.66	2.63	2.74 2.30	0 2.29	-	2.29
						Cellin	Ceiling Jet (ft):				0.00	3.45	4.49	6.35	8.62	8.32	9.28 5.98	5.88	5.88	5.88
						Flame	Flame Radiation (ft):				0.00	3.16	3.60	4.28	4.99	4.90	5.17 4.15	5 4.12	4.12	4.12
					HGL	Hot G	Hot Gas Layer Temperature (NV - MQH) (°C)	perature (N	/ - MQH) ("	0		94	129	169	220	228	254 204	1 207	213	217
						Hot G	Gas Layer Temperature (CC - NV - Beyler) (°C)	perature (Ct	C - NV - Be	/ler) (°C)		47	78	125	211	245	306 230	0 245	271	286
				2.5		Hot G	Gas Layer Temperature (FV - FPA) (°C)	perature (FV	/ - FPA) (°C			61	79	101	129	134	148 120	122	125	127
				2		Hot G	Gas Layer Temperature (FV - D and B) (°C)	perature (F)	/ - D and B,	(°C)		45	64	89	125	131	150 111	113	116	118
				2	Thermoplastic		· (ft)	140 - 140 A			00.0	13.77	15.52	18.10	20.70	20.38 2	21.38 17.62	2 17.49	9 17.49	17.49
				N	Zone of Influence		Plume Radius (ft)				0.29	1.97	2.19	2.51	2.84	2.80	2.92 2.45	5 2.43	2.43	2.43
						Ceilin	Ceiling Jet (ft)				0.00	7.80	10.16	14.36	19.48	18.81 2	20.97 13.51		-	
						Flame	Flame Radiation				0.00	4.27	4.87	5.79	6.75	6.63	7.00 5.62	5.57	5.57	5.57

and the second second second

Attachment 6

Revision 0

Page 25 of 29

Correction

DAEC Fire PRA - NFPA 805 July 26-27, 2012

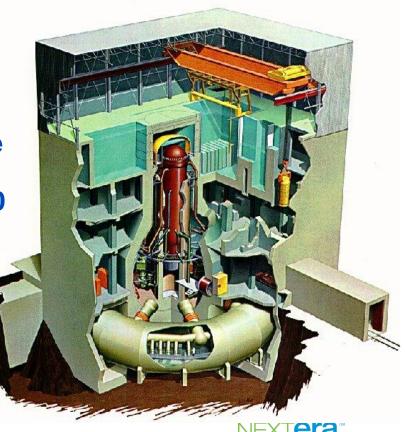
NEXT ERA ENERGY REPRESENTATIVES

Anil Julka [presenter] Vinny Rubano [presenter] Laura Swenzinski Ted Kulczycky Kiang Zee

Nuclear Reliability and Risk Manager – Corporate NFPA 805 Engineering Manager - Corporate Nuclear Licensing - DAEC Nuclear Staff Engineer – PRA – Corporate ERIN Engineering - PRA

TOPICS

- Background
- Risk Reduction History
- Risk Reduction Improvements
- PRA Peer Reviews
- New Analysis Methods (NAM)
- HRA
- Fire Model Sensitivity
- DAEC Hazard Risk Distribution
- Fire PRA Risk Insights
- Modifications
- Summary


Prevention

Detection

Correction

SITE OVERVIEW

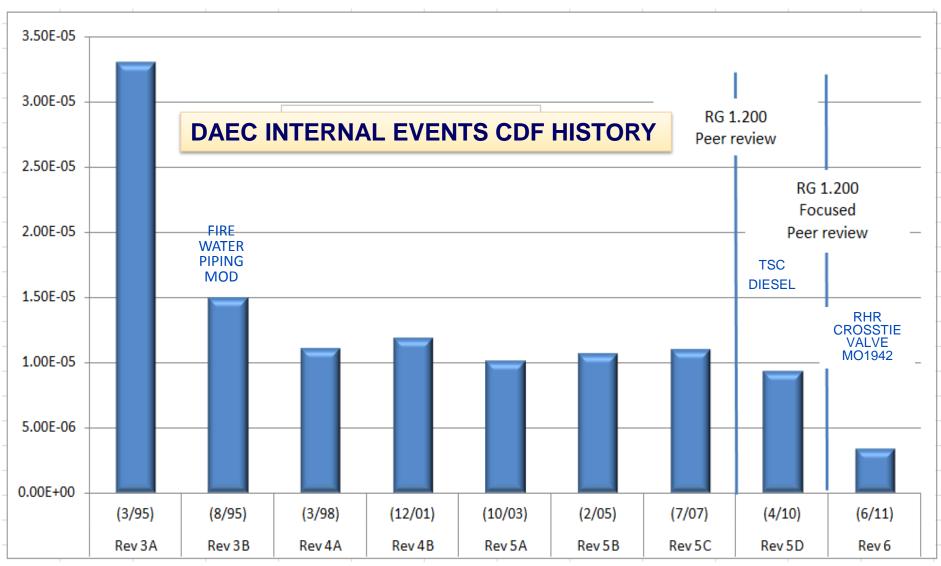
- Approximately 6 miles NW of Cedar Rapids, Iowa
- General Electric (NSSS & Turbine Generator)
- Bechtel (AE and Constructor)
- BWR- Mark I Containment
- 1912 MWt Thermal Power; ~ 630 MWe
- Staff Complement: approximately 650

Cedar River is ultimate heat sink and water makeup source

Approximately 6 miles NW of Cedar Rapids, Iowa

Forced draft cooling towers for condenser cooling

FIRE PRA TIMELINE


- RG 1.200 rev 2 upgrade for Internal Events PRA and Fire PRA developed concurrently – started 2007
- Project Milestones:
 - Internal Events Peer Review – Dec 2007 – Fire PRA Peer Review – Jun 2010 - Mar 2011 Internal Events Focused Peer Review - Aug 2011 – LAR submitted – Initial NRC LAR Audit - Dec 2011 – RAI's rec'd – 120 RAIs - Feb 2012 – Apr 2012 – 60 day RAI responses submitted 90 day RAI responses submitted – May 2012 NRC Fire Modeling Audit – May 2012 NRC Fire Modeling Questions/Walkdown – June 2012

Detection

Prevention

Correction

Note: RHR Crosstie credit not included in Fire PRA - will be updated post LAR

Key PRA Driven Risk Reduction Improvements

FIRE WATER PIPING

Fire water piping configuration changed in the Control Building HVAC room to eliminate possibility of flood water propagation to essential switchgear rooms.

TSC DIESEL

AOP-301.1 upgraded to direct alignment of TSC Diesel Generator to battery chargers to extend battery life in the event of a station blackout.

RHR SERVICE WATER CROSSTIE TO RHR SYSTEM

Procedures upgraded to direct operators to manually open RHRSW crosstie valve to the RHR system MO1942 in the event Division 1 power to the valve is unavailable. Implemented July 2011. [*Not credited in the FPRA*]

Prevention

Detection

Correction

PRA PEER REVIEW HISTORY

INTERNAL EVENTS

Initial Peer Review - Dec 2007

- ➢ 57 SRs Not Met
- ➢ 66 Findings

Focused Peer review - March 2011

- 4 SRs Not Met
- 12 Findings

FIRE PRA

New Analysis Methods (NAM)

Two NAMs Applied:

- 1. Hot Work Cable Spreading Room (CSR) Pre-initiator
- 2. Transient Heat Release Rate (HRR)

Hot Work Cable Spreading Room (CSR) Pre-initiator

- NUREG/CR 6850 Hot Work Methods :
 - Adjusts for frequency and manual suppression,
 - No adjustments for procedural controls.
- DAEC CSR:
 - Highly restricted area controlled by the control room operators.
 - Nothing is in the CSR that requires hot work
 - CSR hot work would NOT be authorized without detailed planning, analysis and compensatory actions.
- Hot Work Pre-Initiator adjusted. Credited CSR procedural controls by applying an HEP of 0.01 to all scenarios involving cable fires caused by welding and cutting.
- Sensitivity performed in response to an RAI. Result was that applying 0.01 factor was conservative but acceptable estimate for application.
- CSR hot work scenario is not associated with any VFDR's

Note that door says NO ENTRY and requires prior approval required by operations. Shortened door is due to ductwork above the door.

Transient Heat Release Rate (HRR)

- NUREG/CR 6850 based on testing of transient combustibles and measurement of fire characteristics
- No guidance on reasonable measures to mitigate
- 69KW vs. 317KW used. Walkdowns provided input to estimate HRR for motor fires.
- 1% of CDF/LERF are Transient fires. Sensitivity showed that larger value results in CDF/LERF change of no more than 1%
- Industry data has not found that large (317KW) fires happen the data shows most are much smaller.

Key Modeling Improvements – Planned -- Current Conservatisms --

Fire PRA does not implement this risk important action:

MO1942 RHRSW CROSS TIE VALVE. MO1942 must be opened to allow RHRSW alternate low pressure RPV injection. However no credit is given to manually opening this valve w/o AC power [e.g. if lost due to fire]. Credited in post FPRA internal events model – significant impact on reducing CDF and addressing modeling uncertainty.

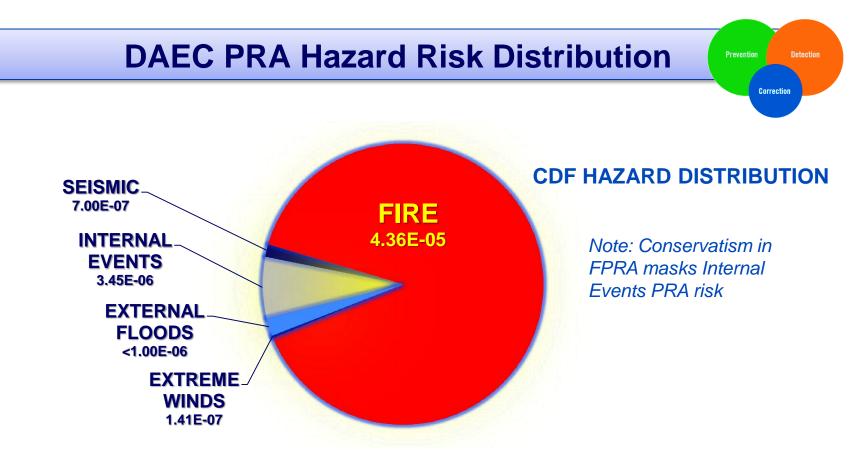
Internal Events and Fire PRA do not implement the following risk important actions:

EMERGENCY SRV OPERATION USING PORTABLE DC POWER. Procedures provide guidance to depressurize the RPV using SRVs when normal DC power is unavailable or when operation from the Control Room and/or the Remote Shutdown Panel is not available. This procedure is NOT credited in Internal Events PRA or Fire PRA.

CONTAINMENT VENTING DURING SBO. DAEC procedures provide detailed direction for venting PC given an unavailable pneumatic supply – can be used during SBO but is NOT credited in the internal events model. The procedure provides direction for using compressed air or nitrogen bottles to allow operating valves required for venting.

PORTABLE DIESEL FIRE PUMP. Procedures provide instructions for using the portable diesel fire pump. B5b action is not credited in the internal events model

FIRE MODEL SENSITIVITY


Sensitivity Analysis Performed these Assumptions:

- Use of NUREG/CR 6850 fire ignition frequency
- Potential impact of switchgear room modifications to provide additional source of AC power
- Application of circuit failure mode conditional probability
- Treatment of assumed cable routing (unknown locations)
- Use of refined HRR for general transient fires

Prevention

Correction

	Internal Events	Seismic	Fire	Extreme Winds	External Floods
CDF	3.45E-6	7.0E-7	4.36E-05	1.41E-7	< 1E-6
LERF	1.21E-6		1.59E-05		

Note: Values for each hazard were updated at different time frames:

- Fire CDF/LERF is <u>not</u> based on most current Internal Events model –LAR was submitted prior to latest internal events update.
- External Floods and Extreme Winds CDF values are from the original IPEEE submittal.
- Seismic CDF value is based on a post IPEEE update.

DAEC FIRE PRA Model [July 2012]

DAEC - Key FIRE PRA Results

CDF %

8.0%

5.7%

2.8%

2.0%

1.6%

1.6%

1.5%

1.2%

1.1%

0.8%

CDF %

5.0%

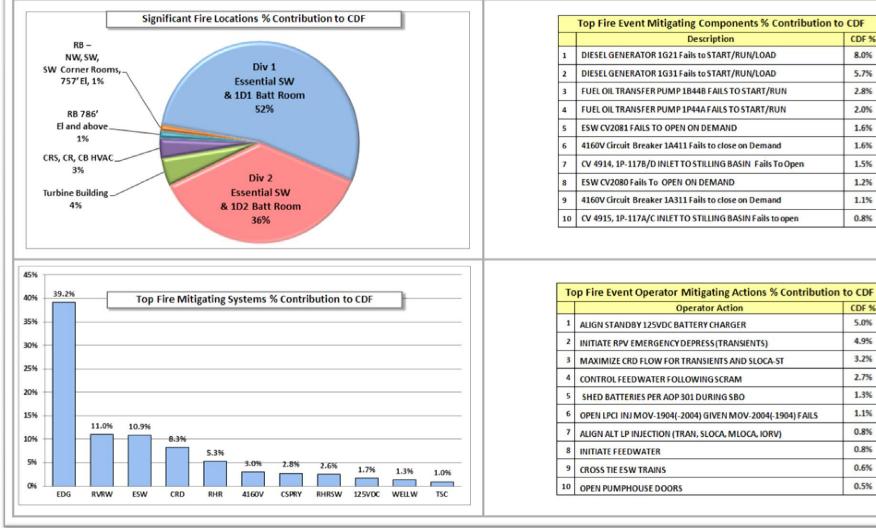
4.9%

3.2%

2.7%

1.3%

1.1%

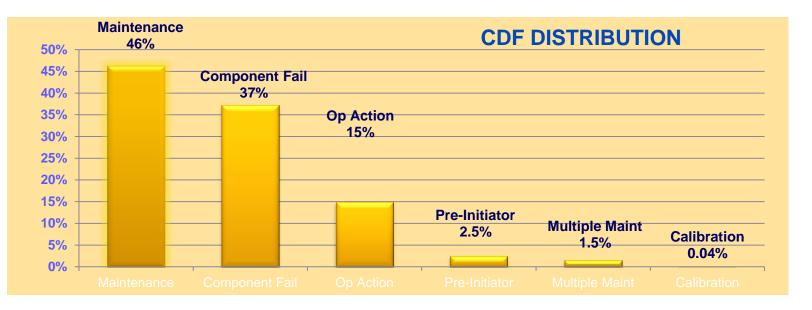

0.8%

0.8%

0.6%

0.5%

Core Damage Frequency (CDF) = 4.36E-05 /yr Large Early Release Frequency (LERF) = 1.59-05 /vr



Fire Risk Insights

Essential Switchgear Room Fires Dominate Risk.

- ✓ Dominant scenarios are LOOP due to fire with opposite standby diesel generator in maintenance.
- ✓ EDG, River Water, and Service Water maintenance dominate top cutsets.
- ✓ Maintenance unavailability contributes to ~46% of the Fire Risk

Fire Risk Insights

Prevention Detection Correction

(continued)

- Fire PRA indicates sufficient separation exists between divisional cables and equipment, consistent with fire safe shutdown analysis.
- Multi compartment fire is a small contributor to fire risk
- When combined with internal events, fire dominates:
 - Internal Events CDF = 3.45E-6
 - ➢ Fire PRA CDF = 4.36E-5

Modifications

Incipient detection in Main Control Room

- Mitigate potential multiple spurious actuation challenges to the current alternate shutdown capability (ASC) design and procedures
- Mitigate challenges to potential loss of ASC in several control room panels
- Full credit for incipient detection was challenged by the NRC. Performed sensitivity and results were acceptable.

• Emergency Service Water Circuit Modification

 Postulated fire in turbine building has a potential to impact both trains of emergency service water

Detection

Correction

Prevention

Fire PRA Development

- Fire PRA developed by ERIN Engineering
 - Subcontract as part of larger NFPA 805 transition contract
 - Supplements in-house resources
- Fire PRA utilized the current safe shutdown analysis as input
 - Ensured PRA modeled failures that the SSA identified
 - Developed team work between contracted PRA resources and utility expertise

Developmental Challenges

- MSO list was being updated at the same time review was being performed.
- Review process for NAMs is more involved than envisioned
- Responses to peer review findings required more rigor than previous submittals.
- While the concurrent R. G. 1.200 internal events update and fire PRA development helped provide an integrated result, there are difficulties with coordination.

Prevention

Detection

Correction

Implementation Challenges

- Fire PRA is very conservative.
- Fire PRA CDF/LERF is large compared to internal events.
- Inability to use as calculated for upcoming maintenance rule requirement for online risk management
- Most of the work performed by consultants, as such technology transfer will be a greater effort than envisioned.
- Keeping Internal Events PRA and Fire PRA updates aligned will stretch the ability and resources of the current PRA staffs.
- The amount of data developed is well beyond what was originally envisioned – concerns for future data maintenance

SUMMARY

- Upgraded internal events model used for Fire PRA; further improvements to be incorporated prior to implementation.
- Risk insights have led to safety improvements.
- Need to streamline the approval process for NAM
- Fire PRA in its current form cannot be integrated with internal events and applied for maintenance rule implementation in 2013. Conservative bias in the Fire PRA will overshadow Internal Events Risk.
- Eliminate compounding conservatism to allow "apples-to-apples" comparison to other hazards and internal events. Conservatisms will complicate risk-informed decisions.
- Implementation will be challenging due to major work done by contractors with limited availability of in-house staff for turnover due to other high priority projects, e.g. necessary upgrades and updates, Fukushima initiatives, etc.

Detection

NRC ACRS Meeting Reliability and PRA Subcommittee Rockville MD July 26, 2012

VC Summer NFPA805 Project FPRA Technical Issues

Gerald A. Loignon, Jr., PRA Supervisor Michael Kammer, NFPA 805 Project Manager

Fire PRA Technical Issues

- Quantification Software
- Mitigation strategy change
- Cable location data
- Fire PRA: Fire Modeling Methods
- Improved Fire PRA Methods: Slow progress

Other Project Issues

- Insights
- Performance Based Fire Modeling
- Plant Modifications
- Implementation Challenges

Quantification Software

Quantification Platform: FRANX

- Base PRA model uses CAFTA/EOOS
- Desire: Single top fire model
 - Combines cutsets for risk ranking and HRA dependency analysis
- Future Utilization
 - EOOS
 - Internal Flooding and Seismic PRA models

Software Challenges

FRANX issues

 Software: Initially the only functional version was a beta of 4.0

Challenges:

- Unable to quantify all (~1500) scenarios in one pass
- Could not handle NAND gate at top of tree (used for mutually exclusive logic)
- Single events sometimes turned mutually exclusive logic true
- QRECOVER would not function
- Basic event names had to be expanded
- Problems "un-checking" components

Software Challenges: Status

Resolutions

- Early feedback to assist EPRI in development of software fixes
- Devise workarounds
- Deferral of One Top Model

Future Direction

Implement FRANX version 4.1

Mitigation Strategy Change

Challenges

- Industry Guidance assumes the existing shutdown strategy is being transitioned
- ▲ risk of current SISBO strategy to the new NFPA 805 strategy would require two new FPRA models
- HRA: Required assumptions regarding Operations procedures that have not yet been developed

Mitigation Strategy Change

Resolutions

- HRA insights provided to Operations Procedure writers for consistency during procedure development
- Separate Change Management Plan to coordinate:
 - Final Procedure development/ issuance
 - Modifications implementation
 - Operations Training

Cable Location Data

Background

- Comprehensive cable routing database with three dimensional coordinate data at nodes where cables enter/exit trays
- Project Decision: Manage all NFPA805 Cable information within the common cable routing database (Long Term CM)

Challenge

- Software Version did not support NFPA805 Development/Data Migration
- Missing Data to support Fire PRA Analysis

Cable Location Data

Resolution

- Cable routing software development and V&V
- Incorporate data fields to support NSCA, Fire PRA and NPO Analysis
- Define, develop and correct as built data to support circuit analysis (e.g. Conduit)

Benefits

- Single repository for all station cable information
- Same tool historically used by Engineering personnel
- Direct inputs for NFPA805 software packages

Fire PRA: Fire Modeling Methods

Challenges

- Untimely Fire Methods Review Panel Decisions
- 6850 guidance artificially increases Transient Combustible Importance
 - HRR vs. frequency mismatch
 - Influence Factor [FAQ 12-0064]
- Circuits with Control Power Transformers
 - Nearing consensus [LAR revision]
- Kerite cable
- Unknown cable qualification
- Electrical Cabinet Peak HRR

Fire PRA: Fire Modeling Methods

Resolution

- VCSNS FirePRA development followed issued industry guidance
- Finished Fire PRA Analysis in 2010 without benefit of new methods
- Monitoring industry movement/RAI on issues
 - Control Power Transformers
 - Kerite cable
 - Flammable liquid spill fires
 - Electrical Cabinet Peak HRR

Slow Progress: Improved Fire PRA Methods

Background

- The Fire Methods Review Panel was established to review/approve new Fire PRA methods through a consensus process
- Peer review per RG 1.200 determines that, as implemented, the methods meet the requirements of the standard

Slow Progress: Improved Fire PRA Methods

Challenges

- The high level of technical justification required for the Fire Methods Review Panel to reach consensus takes a very long time
- NRC endorsement/rejection also takes time and adds considerable uncertainty
- NRC endorsement at this point in the PRA model development process is inconsistent with previous applications of PRA in risk-informed regulation

Resolution

- VC Summer Fire PRA analysis follows NUREG 6850 without benefit of the new methods
- Monitoring for future impacts v.c. summer nuclear station

Surprise Insights

Summary

 Considering the plant vintage, there were few significant deterministic requirement open items

Circuit Analysis

- 7.2 kV circuit breaker anti-pump logic, contained within the breaker itself, could be defeated by a specific remote short circuit
- Failures that could prevent energizing the 7.2 kV ESF busses from both the 115kv and 230kv off-site power sources
- Failure combinations could impact Control Room Evacuation isolation switches

Other Insights

Risk Insights

- The second most risk significant area of the plant is a hallway with a nearby Motor Control Center, and overhead cable trays
- "Fire Initiating Events Representing 95% of the Calculated Fire Risk (CDF)"
 - Loss of RCP Seal Cooling events resulting in a consequential small LOCA is the most common scenario
 - 27 of the 50 scenarios involve fires in alternate shutdown areas [Restricted Access/ Online work]

Performance Based Fire Modeling

Application

- Tool to disposition deterministic analysis open items
- Conservatively calculate a limiting scenario and maximum expected scenario,
 - Evaluate the margin between the two to ensure that it is sufficient to bound the uncertainty
- Four fire areas
 - Three control building cable chases
 - One air handler/cooling unit area [B SWBP]

V.C. SUMMER NUCLEAR STATION

Performance Based Fire Modeling

Insights/Controls

- Not for every area of the plant [Room configuration]
- May be forced to manage the fire itself
 - Fuel Package Size/Heat Release Rate
 - Fire Location
- Workable solution within defined analysis boundaries

Plant Modifications

Support Shutdown Strategy/New Analysis

- Resolve deterministic issues
- Reduce CDF

Typical Deterministic Modifications

- Fire protection system feature improvements
- Circuit/ tubing protection
- 7kV ESF bus feed reroute (TB Fire)
- CR Disconnect switch rework
- Communication enhancements

Plant Modifications

Core Damage Frequency Reductions

- RCP seal replacement
- Incipient detection (Control Complex)
- Alternate seal injection system
- Diesel driven instrument air compressor auto start

Implementation Challenges

Station Challenges

- Shift in "Operational Response" strategy
- Knowledge transfer from vendors to plant personnel
- Transition requires extensive documentation updates (e.g. Administrative Controls, Response Procedures, Fire Pre-Plans, Configuration Management)
- Physical modifications required assumptions about final design that will have to be "trued-up"
- Competing priorities/ demands for staff attention/resources