Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards 594th Meeting - Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, May 10, 2012

Work Order No.: NRC-1610

Pages 1-338

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	594 TH MEETING
5	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
6	(ACRS)
7	OPEN SESSION
8	+ + + +
9	THURSDAY
10	MAY 10, 2012
11	+ + + +
12	ROCKVILLE, MARYLAND
13	+ + + +
14	The Advisory Committee met at the Nuclear
15	Regulatory Commission, Two White Flint North, Room
16	T2B3, 11545 Rockville Pike, at 8:30 a.m., J. Sam
17	Armijo, Chairman, presiding.
18	COMMITTEE MEMBERS PRESENT:
19	J. SAM ARMIJO, Chairman
20	JOHN W. STETKAR, Vice Chairman
21	HAROLD B. RAY, Member-at-Large
22	SAID ABDEL-KHALIK, Member
23	SANJOY BANERJEE, Member
24	DENNIS C. BLEY, Member
25	CHARLES H. BROWN, JR. Member
ļ	I

		2
1	MICHAEL L. CORRADINI, Member	
2	DANA A. POWERS, Member	
3	JOY REMPE, Member	
4	MICHAEL T. RYAN, Member	
5	STEPHEN P. SCHULTZ, Member	
6	WILLIAM J. SHACK, Member	
7	JOHN D. SIEBER, Member	
8	GORDON R. SKILLMAN, Member	
9		
10	NRC STAFF PRESENT:	
11	KATHY WEAVER, Designated Federal Official	
12	DOUG BROADDUS, NRR/DORL	
13	PAUL CLIFFORD, NRR/DSS*	
14	ED FULLER, RES	
15	JENNIFER GALL, NRR	
16	TINA GHOSH, RES	
17	KATHY GIBSON, RES/DSA	
18	ANNE-MARIE GRADY, NRO	
19	ALLEN G. HOWE, NRR/DORL	
20	DAVID JAFFE, NRO	
21	SHANLAI LU, NRO/DSRA	
22	SAMUEL MIRANDA, NRR	
23	TRACY J. ORF, NRR/DORL	
24	MATTHEW PANICKER, NRR	
25	BEN PARKS, NRR	
ļ	1	

		3
1	ERIC REICHELT, NRO/DE	
2	JASON SCHAPEROW, RES	
3	JOHN SEGALA, NRO	
4	DAVID TERAO, NRO/DE	
5	GETACHEW TESFAYE, NRO	
6	ANTHONY ULSES, NRR	
7	WEIDONG WANG, ACRS Staff	
8		
9	ALSO PRESENT:	
10	RICH ANDERSON, FPL	
11	BERT DUNN, AREVA	
12	STEVE FLUIT, B&W	
13	DARRELL GARDNER, AREVA	
14	RUDY GIL, FPL	
15	STEVE HALE, FPL	
16	JACK HOFFMAN, FPL	
17	TODD HORTON, FPL	
18	JAY KABADI, FPL	
19	PRABHAT KRISHNASWAMI, Engineering Mechanics	
20	Corporation (Emc2)	
21	BRIAN MCINTYRE, AREVA	
22	NITINKUMAR PANDYA, AREVA	
23	SHIH-HSIUNG SHANN, AREVA	
24	TIM STACK, AREVA	
25	PAVAN THALLAPRAGADA, AREVA	
I	1	

		4
1	SEBASTIEN THOMAS, UniStar/EDF	
2	CHRIS WASIK, FPL	
3	KEITH WICHMAN, Engineering Mechanics	
4	Corporation (Emc2)	
5	DENNIS WILLIFORD, AREVA	
6		
7	*Participating via teleconference	
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	1	

	5
1	TABLE OF CONTENTS
2	Page
3	Opening Remarks and Objectives 6
4	US EPR DC Application FSAR 7
5	Chapter 3, 9, 14, 19
6	(Closed Session)
7	US EPR DC SER with Open Items
8	for Chapter 3, 9, 14, 19
9	State of the Art Reactor Consequence
10	Analyis
11	St. Lucie Unit 1 Extended Power Uprate
12	Application
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
l	I

	6
1	PROCEEDINGS
2	8:30 a.m.
3	CHAIRMAN ARMIJO: Good morning. This
4	meeting will now come to order. This is the first day
5	of the 594th Meeting of the Advisory Committee on
6	Reactor Safeguards. During today's meeting, the
7	Committee will consider the following: US EPR spent
8	fuel cask transfer facility; selected chapters of the
9	Safety Evaluation Report with open items associated
10	with the US EPR Design Certification Application;
11	state-of-the-art reactor consequence analysis project;
12	and St. Lucie One Extended Power Uprate application.
13	The meeting is being conducted in
14	accordance with the provisions of the Federal Advisory
15	Committee Act. Ms. Kathy Weaver is the Designated
16	Federal Official for the initial portion of the
17	meeting.
18	We have received no written comments or
19	requests for time to make oral statements from members
20	of the public regarding today's sessions. There will
21	be a phone bridge line. To preclude interruptions of
22	the meeting, the phone will be placed in a listen-in
23	mode during the presentations and Committee
24	discussions.
25	A transcript of portions of the meeting is

	7
1	being kept and it is requested that the speakers use
2	one of the microphones, identify themselves and speak
3	with sufficient clarity and volume so that they can be
4	readily heard.
5	We'll open the meeting with the first
6	topic and that is the US EPR Spent Fuel Cask Transfer
7	Facility and I'll turn that over to Dr. Dana Powers.
8	MEMBER POWERS: Thank you, Mr. Chairman.
9	Mr. Chairman, as you and the members are aware we're
10	going through the design certification for the EPR.
11	That, of course, is looking at a paper reactor. We
12	get lots of drawings. Seldom do we get a chance to
13	look at actual hardware.
14	In our last subcommittee meeting, we got
15	a chance to see pictures of hardware and things that
16	actually work and whatnot. And it was so delighted.
17	I said we've got to share this with the full
18	Committee.
19	And so today we're going to begin our
20	discussions on looking at some actual hardware
21	connected with the spent fuel cask transfer facility
22	for the device. Some of this material is proprietary.
23	And so do we want to close the meeting right now or do
24	we want to do it in a separated section?
25	MR. GARDNER: Dr. Powers, I would propose
ļ	

(202) 234-4433

	8
1	that we get through the initial part which is
2	nonproprietary. But as we get into it we're pleased
3	to have an EDF representative here. They consider
4	that material proprietary, operating experience, and
5	they've got some other pictures that I think would be
6	beneficial to the members.
7	MEMBER POWERS: Okay. So, at some point,
8	you will just tell us when we need to close it and
9	then we will close that portion of the meeting.
10	CHAIRMAN ARMIJO: Yes.
11	MEMBER POWERS: At any reason, this is an
12	information part of the briefing for our benefit and
13	education and whatnot. After the break, we'll move
14	into the EPR more formalized presentation.
15	At this point, unless any of the Members
16	of the Subcommittee have additional comments to make,
17	I would propose we turn it over to Darrell Gardner and
18	let us see some real honest-to-God hardware.
19	MR. GARDNER: Very well. Well, thank you.
20	Once again as always we're certainly pleased to
21	present before the Committee. This morning this is
22	a technical presentation from AREVA. I have myself,
23	Pavan Thallapragada and Nitin Pandya will be
24	presenting information about the undercask spent fuel
25	transfer facility. We are also pleased to have a
I	

(202) 234-4433

	9
1	representative from UniStar/EDF, Sebastien Thomas,
2	that can share with us some operating experience that
3	they've had in Europe.
4	With that, I'll turn it over to Pavan.
5	MR. THALLAPRAGADA: Good morning. My name
6	is Pavan Thallapragada. I've been with AREVA for
7	about 11 years. I'm a manager of Nuclear Island
8	Systems Engineering. I've been involved with the
9	design activities of the undercask transfer facility
10	for the past couple of years.
11	On my left is Nitin Pandya.
12	MR. PANDYA: I'm Nitin Pandya. I work
13	with AREVA since last five years from 2007 as a
14	advisory engineering in component engineering
15	department. I have a bachelors in mechanical
16	engineering from India University.
17	And I started working for nuclear power
18	projects for design and construction back in 1988
19	working with India and Indian government nuclear power
20	program. Then I have worked with the Indian
21	government nuclear power program, with Atomic Energy
22	of Canada Ltd. And then I moved to AREVA in 2007.
23	And since them I'm working as an advisory engineer.
24	MEMBER POWERS: Very good.
25	MR. THALLAPRAGADA: We are ready to start
l	I

(202) 234-4433

our presentation. Go ahead.

1

2

3

4

5

6

7

8

The first, the second slide, is the overview of the US EPR fuel host storage and handling system. It is very similar to the current operating PWR plants reactor building/fuel building, fuel transfer facility between the reactor building and the fuel building and the underwater storage cracks that is similar to the plants.

Slide three, this is again an overview of 9 10 the system. It's very similar to current operating On the left hand side is the fuel building. 11 plants. You will notice that the fuel pool and the cask 12 loading pool are separated from the main fuel storage 13 14 pool with two gates, a slot gate and a swivel gate. 15 The new fuel storage is on the top left-hand side On the right-hand side is the reactor 16 corner. 17 building and its associated pools.

18 MEMBER SKILLMAN: Let's go back to slide 19 two please just for a second. The fuel transfer 20 facility, the horizontal blue lines.

MR. THALLAPRAGADA: Yes. MEMBER SKILLMAN: Show I think the upenders and the transfer rails. And my question is are those operated with pulleys and hoists or are those operated with hydraulics?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

11 1 MR. PANDYA: This fuel transfer facility 2 is being operated by a conveyer mechanism. It is not 3 like pulleys which is being used in many of the 4 nuclear plants in the U.S. This is sort of a conveyer So transfer has a conveyor mechanism inside 5 system. it and the fuel assembly will be placed on that 6 7 conveyor. And then it will be transported from one 8 end to other. 9 MEMBER SKILLMAN: And what moves it 10 through the --There is a motor, motor and 11 MR. PANDYA: The motors are on the wall of the pit and 12 the rope. that will drive this conveyor mechanism. So it's sort 13 14 of like a pulley hanging on the top and that rope goes in and then like this. 15 MEMBER SKILLMAN: So it's a mechanical 16 17 conveyor with a pulley and a steel rope. MR. PANDYA: Right. 18 19 MEMBER SKILLMAN: Okay. Thank you. 20 MR. PANDYA: I would like to confirm that again after this meeting. Just give me a minute. 21 22 MEMBER SKILLMAN: Yes. My real question is whether or not it's mechanical. That is with the 23 24 motor, pulleys and stainless steel cable or --MR. PANDYA: Yes, it is mechanical. 25 It is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	not hydraulic.
2	MEMBER SKILLMAN: It's not hydraulic.
3	Okay. That's all I needed. Thank you.
4	MR. PANDYA: Okay.
5	MR. THALLAPRAGADA: Next slide please.
6	This is the under pit of spent fuel cask transfer
7	facility, a schematic of a drawing of how the facility
8	looks like. This is what is unique of what we are
9	trying to present today. This is the first kind in
10	the U.S. It comes from the design The basic design
11	comes from plants in France. Sixteen plants or so
12	have this system operating there and we would like to
13	describe which design features in the later slides.
14	Next slide please. This is a fuel
15	building layout in the middle of the spent fuel pool.
16	On the left-hand side is the cask loading pit. And on
17	the bottom left-hand corner of the cask loading pit is
18	the penetration through which the fuel is actually
19	transferred from the storage racks into the cask.
20	This is a section view of the fuel
21	building. The dark blue structure on the left-hand
22	side bottom corner is the spent fuel cask transfer
23	machine. In the middle roughly is the spent fuel pool
24	with the fuel storage racks indicated and the green
25	rectangles are intended to indicate the fuel
I	

(202) 234-4433

	13
1	assemblies themselves.
2	The spent fuel cask transfer facility
3	itself mainly consists of three major components. I'm
4	on slide seven. I'm sorry. The spent fuel cask
5	transfer machine, the cask loading pit penetration
6	assembly and the fluid and pneumatic systems
7	associated with the facility.
8	Major operations of the facility are
9	conducted at four stations: the lifting station which
10	is really outside the fuel building and there are
11	three stations within the fuel building, namely,
12	handling station, biological lid handling station and
13	the penetration station.
14	Slide eight. The spent fuel cask transfer
15	machine is a trolley essentially which moves on rails.
16	The main purpose is to carry the casks in a vertical
17	position from the lifting station through the three
18	work stations and the loading. And the safety-related
19	function is part of the fluid boundary structural
20	support when the cask is loaded with the penetration
21	assembly.
22	On slide nine, there are a couple of
23	pictures on the left-hand side. It is a picture of
24	the cask transfer machine. I can send out some CAD
25	exploded drawings. By ten, the penetration assembly
	1

(202) 234-4433

	14
1	is an opening in the cask loading pit that allows for
2	cask loading.
3	It does this majorly at the upper cover
4	which is on the bottom of the cask loading pit, the
5	penetration itself and its assembly and the lower
6	cover at the lower end of the penetration. The main
7	purpose is to provide a leak-tight connection between
8	the cask loading pit and the internal cavity of the
9	cask.
10	And this is on slide 11 a CAD model of the
11	penetration assembly.
12	CHAIRMAN ARMIJO: Now is that a unique new
13	design or is that something that's pretty much
14	evolutionary, that penetration assembly?
15	MR. THALLAPRAGADA: It is pretty much of
16	evolutionary, the design as it exists in the French
17	plants, about 16 plants or so. It's unique to the
18	U.S., but not unique Right.
19	MEMBER CORRADINI: Maybe it's going to be
20	Oh, I see. It's going to be later. I'm still
21	trying to figure out the protocol on how this is going
22	to work. That you're going to tell us later.
23	MR. THALLAPRAGADA: Yes.
24	MEMBER CORRADINI: Okay.
25	MR. THALLAPRAGADA: Yes, we have a slide
I	I

(202) 234-4433

	15
1	on the operations.
2	MEMBER CORRADINI: Okay. Thank you.
3	MR. THALLAPRAGADA: Slide 12, this is how
4	It's a rendering of how the cask end up with the
5	penetration assembly looks like.
6	MEMBER ABDEL-KHALIK: So from a seismic
7	loading standpoint, would the bellows represent the
8	sort of most vulnerable point as far as leakage?
9	MR. THALLAPRAGADA: Yes, that would be
10	because Yes, that would be.
11	MEMBER ABDEL-KHALIK: And sort of can they
12	be redesigned for site-specific seismic hazard
13	conditions?
14	MR. THALLAPRAGADA: I would guess so.
15	Yes. I mean I would
16	MR. GARDNER: Let me follow up on this.
17	I'm not sure I understand your question. It's part of
18	the design certification that there's going to be a
19	standard design seismic specter to all components that
20	are part of a standard design. So to answer your
21	question if a specific site had a seismic profile that
22	was different from the standard design profile,
23	meaning it exceeded it in some areas, then of course
24	you could qualify the component to that different
25	profile. Otherwise, they would be qualified to the
	I

(202) 234-4433

	16
1	same standard profile.
2	MR. PANDYA: I would like to add something
3	on your initial question about the vulnerability of
4	the bellow. As far as this design is concerned, there
5	is no really any vulnerable component because this
6	cask transfer machine is anchored to the building
7	wall. So vulnerability
8	MEMBER ABDEL-KHALIK: That's not the
9	point. I'm concerned about leakage and a path that
10	would allow the entire pool to be drained.
11	MR. PANDYA: But the load is not
12	transferred to the bellow. The load is transferred to
13	the side wall and the floor.
14	MEMBER ABDEL-KHALIK: Well, there is a
15	hard connection between the bellows and the structure.
16	MR. PANDYA: No, there is no hard
17	connection. The bellow is just hanging and pulled
18	back.
19	MEMBER ABDEL-KHALIK: Okay. I guess
20	without the details it's kind of hard to tell.
21	MR. PANDYA: Yes.
22	MEMBER ABDEL-KHALIK: Okay.
23	MR. PANDYA: Sorry about that.
24	CHAIRMAN ARMIJO: Is that a single bellows
25	or is that kind of a double bellows?
I	

(202) 234-4433

	17
1	MR. PANDYA: Yes, it is a two-wall
2	bellows.
3	CHAIRMAN ARMIJO: A two-wall bellows.
4	MR. PANDYA: Dual-wall bellows. But, yes,
5	we can have that picture of the general layout
6	parameters and you can explain that first so that it
7	will be more clear.
8	MR. THALLAPRAGADA: Okay.
9	MEMBER BLEY: We'd like to see that, but
10	could you go back to slide 6? Should you get a leak
11	in that bellows, should the plant get a leak in it, it
12	looks like you can drain down to reasonably close to
13	the spent fuel unless there's a barrier there. Can
14	you explain that? Or would it come down right to what
15	looks like a couple feet above the spent fuel?
16	MR. GARDNER: We have a slide coming on
17	that if you would allow us to
18	MEMBER BLEY: That will show the whole
19	pool arrangement? Okay.
20	MR. GARDNER: And discuss the draindown.
21	MEMBER BLEY: Super. I'll wait. Thank
22	you. What's been the history with these seals? Have
23	you had any leaks in France with this kind of seal
24	arrangement?
25	MR. GARDNER: That's the discussion that
I	I

(202) 234-4433

	18
1	we had that EDF would like to close.
2	MEMBER STETKAR: That's why he's here.
3	MEMBER BLEY: Good enough. I'll just lean
4	back and wait. Thank you.
5	MR. GARDNER: That's why he's here.
6	MEMBER POWERS: They're way ahead of you,
7	Dennis. They've got this thing covered.
8	MR. THALLAPRAGADA: We can talk a little
9	bit about the operation of this.
10	MR. PANDYA: That would be nice.
11	MR. THALLAPRAGADA: Just go back a one
12	more, two more, slides. That's good.
13	This is the machine when it's at the
14	lifting station. This is where essentially the cask
15	comes from a horizontal position on the trailer where
16	it's made vertical and placed on the transfer machine.
17	Next slide please.
18	MEMBER CORRADINI: So this is how it goes
19	in and goes out. So is the plan or the experience
20	such that you start horizontal, lift it, put it on,
21	fill it, lift it, put it back horizontal and ship it
22	offsite?
23	MR. THOMAS: That is correct.
24	MEMBER CORRADINI: Okay. And does it
25	store then horizontally where you currently have it?

(202) 234-4433

	19
1	MR. THALLAPRAGADA: In France?
2	MEMBER CORRADINI: Yes.
3	MR. THOMAS: We don't store them. We send
4	to La Hague for reprocessing.
5	MEMBER CORRADINI: Yes, but there is some
6	queue that builds. So when the queue builds is it
7	sitting there horizontal or is it vertical? When it's
8	sitting in the hog waiting to be processed is it
9	horizontally stored or vertically stored?
10	MR. THOMAS: When it's on the train or
11	MEMBER CORRADINI: When it's back at La
12	Hague ready to be processed.
13	MR. GARDNER: When you take it to La
14	Hague, I think that you empty the canister and put
15	them in the pools there at La Hague.
16	MEMBER CORRADINI: Oh. All right. I
17	didn't appreciate that.
18	MR. THOMAS: Yes.
19	MEMBER CORRADINI: So you don't store it
20	in the cask. The cask is only for transport, not for
21	storage at La Hague. Okay. Thank you very much.
22	MEMBER ABDEL-KHALIK: So when does the
23	cask draining evacuation and helium filling take
24	place?
25	MR. THALLAPRAGADA: One more slide we will
I	I

(202) 234-4433

	20
1	deliver that report. This slide is essentially to
2	show that the machine is load from directly out of the
3	fuel building. This is the main slide which talks a
4	little bit more about the operations.
5	The cask comes through the loading hall
6	door. Do you want to show the loading hall door?
7	Just show it on the picture. The cask essentially
8	Yes, that's the loading hall door. It comes from the
9	loading hall and the first station is the handling
10	opening station. That's where the cask essentially is
11	filled. It connected to the electrical and hydraulic
12	sectors in the loading hall. That's the first
13	station.
14	And it moves from the handling opening
15	station to the biological lid handling station. And
16	the biological lid handling station the biological lid
17	is raised up using the device up there. And it's
18	placed on the cask transformation outside.
19	From the second station, it goes to the
20	third station which is the penetration station where
21	the lower coat of the penetration will have been
22	opened up, placed on the left-hand side of the
23	machine. And docketing mechanism goes up, grabs the
24	penetration assembly and brings it down a few inches,
25	10 inches or so. And it's lowered. Essentially the
	I

(202) 234-4433

	21
1	cask is docked with a penetration assembly.
2	MEMBER STETKAR: Pavan.
3	MR. THALLAPRAGADA: Yes, sir.
4	MEMBER STETKAR: Recommendation. Slow
5	down because about ten of these people in this room
6	have never seen this before. And you need to kind of
7	walk through this process a little bit more slowly
8	because it's something they've never seen before. So
9	if you back to the loading hall door and stop in each
10	of the handling sessions and explain a little bit more
11	what's done there I think it might help some of the
12	other members. We're okay for time.
13	MR. GARDNER: Yes, and I just want to add
14	a comment, too, for the Members' benefit. We've shown
15	the trolley in only two locations. It's actually
16	stopping as it moves. Okay. We couldn't really show
17	it on this print.
18	MEMBER SKILLMAN: How many fuel assemblies
19	are in the cask fleet?
20	MR. THALLAPRAGADA: It depends on the cask
21	design. The casks as designed can hold multiple fuel
22	assemblies. There are designs out there which have in
23	Europe 12 assemblies and some which have 32
24	assemblies.
25	MEMBER SKILLMAN: Well, for the design
1	1

(202) 234-4433

	22
1	certification how many fuel assemblies should the
2	Committee consider are in that cask with new fuel?
3	How many new fuel assemblies would you communicate
4	would be brought into the facility with this system?
5	MR. GARDNER: It would just be spent fuel
6	leaving.
7	MEMBER SKILLMAN: Okay. Thank you.
8	MR. PANDYA: You're welcome.
9	MR. GARDNER: Yes. I was just going to
10	answer your question. In the design certification, a
11	specific canister design is not part of the standard
12	design because that's going to be a purchase component
13	and to be certified under different part of rules,
14	Part 52. However, the staff has requested that we'd
15	be able to demonstrate at least one assembly can be
16	removed from the facility.
17	CHAIRMAN ARMIJO: I give you that
18	MR. GARDNER: It would be an assembly
19	canister for the purposes of sizing parts if you will.
20	CHAIRMAN ARMIJO: But this penetration
21	assembly, that's part of the certified design.
22	MR. GARDNER: Yes.
23	CHAIRMAN ARMIJO: That's kind of a
24	standard thing.
25	MR. GARDNER: Yes, sir.
	I

	23
1	CHAIRMAN ARMIJO: Okay.
2	MEMBER CORRADINI: I want to make sure I
3	I have a bunch of little questions. So the big
4	question is that if you wanted to you could fill it
5	with 13.
6	MEMBER SKILLMAN: That's what I think they
7	just said.
8	MR. PANDYA: Twelve assemblies.
9	MR. GARDNER: It's based around that kind
10	of a design. But the canister designed could make
11	something that would fit this that may hold 14.
12	MEMBER CORRADINI: That's fine. But a
13	baker's dozen. Okay.
14	MR. PANDYA: And your question is very
15	valid, but it is not part of our design certification.
16	When later on, we would like to use a MOX fuel
17	assembly, at that time this facility can be used. But
18	it is out of way.
19	MEMBER CORRADINI: Okay.
20	MR. PANDYA: It's been part of our
21	discussions.
22	MEMBER CORRADINI: So just one
23	clarification. Let's just use your example. I hadn't
24	thought of that example, but that's a good one with
25	AREVA and such. So if you went MOX you would have to

(202) 234-4433

24 1 then do some sort of certification of the change of what's in it which would change the potential numbers. 2 3 And that would be up to whoever is customizing the 4 base certified canister. 5 MR. PANDYA: That's correct. But that's not part of our design. Just for knowledge to share. 6 7 MEMBER ABDEL-KHALIK: So it is up to the 8 cask vendor to make sure that their cask would 9 interface with your machine. 10 MR. GARDNER: Yes. That's absolutely right. 11 MR. PANDYA: There are requirements in MR. GARDNER: 12 the design certification that will be imposed on that 13 14 to ensure that the cask that's provided meets those 15 requirements to interface with the structure. MEMBER ABDEL-KHALIK: And that interface 16 17 requires some physical geometry requirements to match your sort of leak assembly. 18 19 MR. GARDNER: Correct. 20 MR. PANDYA: That's right. MEMBER ABDEL-KHALIK: Is that an 21 unreasonable sort of demand on current cask vendors? 22 Are you excluding people out of the market? 23 24 MR. GARDNER: They're doing this in Europe 25 with cask vendors. So it's just a matter of designing

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	25
1	the cask to operate with it. I guess to answer your
2	question is there a current canister in the U.S.
3	license to work with the answer is no because this
4	facility
5	MEMBER ABDEL-KHALIK: That's the heart of
6	my question.
7	MR. GARDNER: No one is. All vendors are
8	on the same footing in the U.S. market.
9	MR. THALLAPRAGADA: I'll go once more on
10	this.
11	MEMBER STETKAR: I'm sorry. Only in
12	probably the biological lid handling station where you
13	explain where the lid is taken off and where it's
14	I think would help a couple of people.
15	MR. THALLAPRAGADA: The cask transfer
16	machine when it comes under the biological lid
17	station. The biological lid lifting device
18	essentially the yellow structure in the figure comes
19	down and that's what we're trying to show with those
20	two It comes down. It turns around and essentially
21	locks the lid on top of the cask, the biological lid.
22	And the cask transfer machine moves from
23	biological lid handling station to under the
24	penetration station. When it is under the penetration
25	station the lid handling device essentially lines up
I	1

(202) 234-4433

	26
1	with the receptacle back from the lift handling lid.
2	At that point, the handling station device
3	comes down, presses the lid on the machine and goes
4	back. So that's essentially how the biological lid is
5	handled.
6	CHAIRMAN ARMIJO: You have x, y and z
7	motions to get everything lined up just right to get
8	everything to fit or.
9	MR. PANDYA: Yes. X and Y motions.
10	CHAIRMAN ARMIJO: And Z and then something
11	comes down.
12	MR. PANDYA: Z motion is already taken
13	care of when you align the cask on the machine outside
14	the fuel building. So at that point Z motion is taken
15	care of. When it is properly fully aligned, we have
16	a very good system. There are locations X, Y in that
17	direction. Then only the cask will go by the machine
18	to the loading hall. So they will not go up and down.
19	MEMBER REMPE: Where is the helium
20	penetration put in?
21	MEMBER CORRADINI: If I could just broaden
22	her question. So going in that's in the cask. It's
23	empty full of just essentially air or it already has
24	an inert gas. You lift it up under the biological lid
25	thing. You open it up, shift it under six. You fill
Į	I

(202) 234-4433

	27
1	it. It's filled with water. Then where do you get
2	rid of the water?
3	MEMBER REMPE: Do you put helium in?
4	MR. THALLAPRAGADA: Yes, after loading.
5	Right you're asking about
6	MR. PANDYA: Yes, before loading the cask
7	is filled with demineralized water.
8	MEMBER REMPE: Okay.
9	MR. PANDYA: And then it will be loaded to
10	the biological lid station and then the cover will be
11	lifted. Then I go to the previous slide to the number
12	six position and full assembly will dropped.
13	Everything is done. Again, the DM water will be
14	drained and gas will be prepared before the shipment.
15	MEMBER REMPE: And so after six is where
16	you put helium in.
17	MR. PANDYA: Yes, that's the After six,
18	yes. After six it will start going back in reverse.
19	MR. THALLAPRAGADA: The motion is
20	reversed. It comes to the loading hall to the
21	handling opening station and then the cask is empty.
22	You put in You fill up the cask. You move onto the
23	cask
24	MEMBER BROWN: That's where you put the
25	water in.
I	1

(202) 234-4433

	28
1	MR. PANDYA: Yes. At handling.
2	MR. GARDNER: At the handling station,
3	handling opening station.
4	MR. THALLAPRAGADA: And the process
5	reverses back. Again at the handling opening station
6	you drain the water and fill it up and take it out of
7	the loading hall.
8	MEMBER REMPE: Okay. Thank you.
9	MEMBER BROWN: I'm totally lost. I
10	watched this in the Subcommittee meeting and I thought
11	I understood it. And I'm back to square one now.
12	Where is the handling opening When it first comes
13	in, it has a lid on it and it's empty. There's
14	nothing in it. It's bare.
15	So you move it to the handling opening
16	station. Then you take the lid off. How do you get
17	water into it if you don't take the lid off?
18	MR. PANDYA: Actually, this cask has a
19	penetration connector with it.
20	MEMBER BROWN: You fill it with water with
21	the lid on.
22	MR. PANDYA: Yes. That's correct.
23	MEMBER BROWN: With the biological lid on.
24	MR. PANDYA: Yes. Actually, the cask has
25	two lids. We are talking about two lids. One is a
ļ	I

(202) 234-4433

	29
1	biological lid and another is a cask cover lid which
2	is coming on the top of the cask which has nothing to
3	do with the shielding and that kind of stuff. So in
4	handling opening, we will take out the top cover of
5	the cask. There is a biological lid still on the
6	cask.
7	MEMBER BROWN: Got it.
8	MR. PANDYA: But the cask has penetration
9	at its peak, and through those penetration piping it
10	will be filled with water, demineralized water. And
11	then those penetration will be sealed and then the
12	cask will move to second station, biological lid
13	lifting station.
14	MEMBER BROWN: But you don't put the cover
15	back on yet.
16	MR. THALLAPRAGADA: No, no.
17	MEMBER BROWN: Okay.
18	MR. THALLAPRAGADA: And that will be the
19	last thing when
20	MEMBER BROWN: All right. I got that now.
21	MR. THALLAPRAGADA: Okay.
22	MEMBER RYAN: So during this back and
23	forth and I guess over time is the potential for
24	contamination on the track of this machine in that
25	whole floor. What's your contamination control and
	I

(202) 234-4433

	30
1	countermeasures plan? How are you going to maintain
2	that as a fairly, well-controlled radiological
3	environment?
4	MR. THALLAPRAGADA: The contamination
5	When it's under the penetration station, there are
6	radiological shields.
7	MEMBER RYAN: I'm not talking about
8	external gamma radiation. I'm talking about
9	contaminated water.
10	MR. GARDNER: Leakage.
11	MEMBER RYAN: Leakage.
12	MR. THALLAPRAGADA: Yes, we may have it.
13	MEMBER RYAN: Will have it.
14	MR. THALLAPRAGADA: The loading hall is
15	closed during these operations.
16	MEMBER RYAN: Right.
17	MR. THALLAPRAGADA: And that is the
18	loading hall is leak tight. So there is no transfer
19	of air or any contamination outside the building.
20	MEMBER RYAN: I'm thinking more about
21	contaminated water, not contaminated air. These casks
22	in use over time don't stay clean. They have
23	contamination. Right?
24	MR. PANDYA: Yes. Absolutely right.
25	MEMBER RYAN: Okay. So you're going to be
l	

(202) 234-4433

	31
1	using the casks over and over again and it will have
2	a buildup of contamination. Correct? And there's
3	just no way that this space is not going to have
4	contamination control questions that raise up over
5	time. I'm just trying to understand how you can trust
6	that.
7	MR. PANDYA: Actually this cask is being
8	prepared outside of the fuel building and it will
9	undergo the contamination check also. So we will
10	receive a fresh cask.
11	MEMBER RYAN: That's not my question. I
12	understand you're going to mark. I want to know about
13	what you're going to do about contamination should it
14	arise. How are you going to handle it when it arises?
15	MR. PANDYA: Yes, that's correct. First
16	of all, we have to send the cask to the
17	decontamination facility of the plant where it will
18	get decontaminated. And then the internal surface is
19	fine. And we started the process of coming into the
20	loading hall. And during the process if something got
21	leaked through these connections, then it will
22	definitely be in the loading hall and we have to deal
23	with it as you are dealing with any other contaminated
24	process water handling system.
25	MEMBER RYAN: That's a very general

(202) 234-4433

	32
1	answer.
2	MR. GARDNER: We may not have the right
3	people here today.
4	MEMBER RYAN: Okay.
5	MR. GARDNER: We'll try to get you a
6	specific answer for that.
7	MEMBER SCHULTZ: Perhaps information
8	related to that decontamination process would be
9	helpful.
10	MR. THALLAPRAGADA: Yes.
11	MEMBER ABDEL-KHALIK: While loading is in
12	progress, the cask is full of demineralized water. Is
13	that correct?
14	MR. THALLAPRAGADA: Yes.
15	MEMBER ABDEL-KHALIK: But does that impose
16	any constraints on your criticality assessments?
17	MR. PANDYA: Actually, the cask vendor,
18	cask designer, will qualify the cask based on the
19	number of fuel assemblies and they will decide through
20	required spacing. And all if it is filled with the DM
21	water, all those will be taken into cask and design.
22	So casks will be qualifies for that kind of
23	conditions.
24	CHAIRMAN ARMIJO: It's not borated.
25	MR. PANDYA: When we start the process,
I	I

(202) 234-4433

	33
1	this penetration, this particular space, will be
2	filled with the borated water. But only the cask
3	filling, which is done at the handling opening, that
4	will be with the DM water. And then when it is hooked
5	up over here, then there will be some mingling with
6	the DM water and boric acid water, borated water.
7	MEMBER ABDEL-KHALIK: But you have to do
8	the analysis for
9	MR. PANDYA: Yes.
10	MEMBER SKILLMAN: When you described that
11	the cask may be provided by different vendors, what
12	I'm now envisioning is a cask within a structural
13	cylinder and the structural cylinder is locked into
14	the building by the pinions and trunnions that you
15	indicate on the far right-hand corner.
16	To what extent is the variation in the
17	cask design a risk factor for seismic movement? If
18	that cask I'm going to suggest 120 inches in diameter,
19	three and a half meters, if one cask vendor is three
20	and a half meters plus or minus a centimeter to what
21	extent is that difference in the cask geometry a risk
22	factor for the bellow seal?
23	MR. THALLAPRAGADA: There are pinions on
24	the transfer machine which essentially lock the cask
25	to the machine. There are two on the bottom and two
ļ	I

(202) 234-4433

ĺ	34
1	on the top. So were the tolerances of the casks a
2	little bit off, it would still be locked to the
3	machine.
4	MEMBER SKILLMAN: How does the cask lock
5	if it's within a structural cylinder independent from
6	the cask?
7	MR. GARDNER: I think I understand what
8	you're saying. If they had to overpack, the cask
9	vendor is going to have build it, that's going to be
10	a requirement. It would be a rigid
11	MR. PANDYA: I would like to throw some
12	light in to answer that to what Darrell has mentioned
13	and I also would like to throw some more light that
14	this particular facility will be designed for not only
15	one cask. It will be designed for whatever number of
16	casks we decide. Like Europe has designed this
17	facility for two casks and two different casks can be
18	handled by this facility.
19	This facility has trunnions coming with
20	this facility. So those trunnions can come closer,
21	away, up and down, that kind of stuff. But as far as
22	this cask top surface is concerned, this surface and
23	the distance between the bellow, that should remain
24	the same for whatever cask we use.
25	MR. GARDNER: So it wouldn't be an
I	I

(202) 234-4433

	35
1	acceptable cask if it didn't meet that specification.
2	MR. THALLAPRAGADA: Yes.
3	MEMBER SKILLMAN: Thank you. I would like
4	to go back to the question I asked earlier. In the
5	Subcommittee I asked about new fuel and for some
6	reason what I took away from the Subcommittee meeting
7	was that all fuel enters the plant through this cask
8	and all fuel exits the plant through this cask.
9	What I learned this morning is the new
10	fuel has a different path into the plant. Would you
11	explain that please?
12	MR. THALLAPRAGADA: This facility is only
13	for removing fuel from the plant.
14	MEMBER SKILLMAN: Only spent fuel.
15	MR. THALLAPRAGADA: This spent fuel cask
16	transfer machine the whole structure is. Now new fuel
17	comes through the loading hall and again I'm not an
18	expert at this. I'm just trying to remember what I
19	know. It comes through the loading hall and it goes
20	up by the handling opening station. The crane comes
21	down, pulls the new fuel up, and takes it to the new
22	fuel storage area.
23	MEMBER SKILLMAN: Okay. I stand
24	corrected. I must have misinterpreted what I heard a
25	couple weeks ago.
ļ	I

(202) 234-4433

	36
1	MR. THALLAPRAGADA: Sorry about that. The
2	loading hall is used. I think that's where the
3	confusion is.
4	MEMBER SKILLMAN: And this is a 241 fuel
5	assembly core, correct?
6	MR. THALLAPRAGADA: Yes.
7	MEMBER SKILLMAN: Okay. Thank you.
8	MR. THALLAPRAGADA: If there are no
9	questions, we'll go to the next slide, slide 16
10	please. Here we talk about the design features to
11	prevent draindown. The machine, the loading hall,
12	it's a very tightly packed loading hall if you will.
13	There's not much space. And we have one to show in the
14	closed portion.
15	But for it to move, for things to move
16	along, it's very closely tight with tight tolerances.
17	There are anti-seismic devices, guide rails and
18	brakes.
19	MEMBER SHACK: When you say tight
20	tolerances, what do you mean?
21	MR. THALLAPRAGADA: Tolerances is the
22	wrong phrase. The gap between the machine and the
23	loading hall essentially. It's not like me sitting in
24	this hall.
25	MEMBER SHACK: But what is the gap? Can
ļ	1

(202) 234-4433

	37
1	you give me a measurement?
2	CHAIRMAN ARMIJO: A human being sneaking
3	between.
4	MR. PANDYA: We can provide it, but not at
5	this time.
6	MR. THALLAPRAGADA: Yes.
7	MR. PANDYA: We can provide the number if
8	you want more detail.
9	MEMBER SHACK: I mean, is it centimeters
10	or millimeters?
11	MR. GARDNER: I think we have a picture to
12	show you. You can see it.
13	MEMBER SHACK: Okay.
14	CHAIRMAN ARMIJO: It's tight.
15	MR. GARDNER: It's very small.
16	MR. THALLAPRAGADA: There are seismic
17	devices, guide rails and brakes that would prevent
18	essentially this machine from moving too much. All
19	the fuel boundary components and support elements are
20	all Seismic Category 1 design.
21	The valves and piping are Seismic Category
22	1 Quality Group C. There are double barriers, there
23	are two sets of seals. The bellows are double walls.
24	There is an upper and lower penetration cover. Both
25	of them are leak tight. And the spent fuel pool
I	

```
(202) 234-4433
```

	38
1	itself is isolated by two sets of gates.
2	MEMBER ABDEL-KHALIK: Is human access
3	possible under any circumstances when this machine is
4	inside the loading hall?
5	MR. THALLAPRAGADA: Yes. And I would say
6	yes because all of these have a manual override, if
7	you will, the brakes or whatnot. If one were to If
8	there was a case when one want to go and enter inside
9	the hall and have a position to manually override the
10	brakes and what not, one could do it.
11	MEMBER ABDEL-KHALIK: So if the gap is
12	I don't know what the gap is, centimeters or How do
13	people get in there?
14	MR. THALLAPRAGADA: The gap at the closest
15	location is in centimeters, not really wide.
16	MR. GARDNER: But maybe we're not totally
17	understanding your question. The gap -
18	MEMBER ABDEL-KHALIK: I mean, if this were
19	an emergency, you say you have human override, manual
20	override. People have to get in the loading hall.
21	MR. THALLAPRAGADA: This is a picture of
22	it.
23	MEMBER ABDEL-KHALIK: Oh, I see.
24	MR. THALLAPRAGADA: So at the top here you
25	are seeing that's where the guide rails are.
ļ	I

(202) 234-4433

	39
1	MR. PANDYA: This EDF picture will be very
2	useful.
3	MR. THALLAPRAGADA: There the gap But
4	humans can walk around here and do whatever is
5	necessary.
6	MEMBER ABDEL-KHALIK: Okay.
7	MR. PANDYA: I would like to add that this
8	facility is remotely operated. However, the operator
9	is allowed at any point of time to carry out any
10	emergency actions if it is required because of some
11	malfunction. And because of that this facility has
12	enough radiation shielding provided around the
13	penetration so that the horizontal plate, which is for
14	radiation shielding will become closed and we close
15	the gap. And the space between the upper surface,
16	also matching surface of the cask and the ceiling is
17	so tight that the chances of radiation streaming are
18	reduced and the particular radiation requirement in
19	the loading hall will be maintained as per the
20	regulation.
21	Those kind of shielding arrangements you
22	can see on the EDF picture later on. It can give a
23	better idea how close that facility is, and is there
24	any possibility of radiation streaming, that kind of
25	stuff.
	I

(202) 234-4433

ĺ	40
1	MEMBER BLEY: When you say per the
2	regulation, do you mean for continuous manning for
3	people being there?
4	MR. PANDYA: No, not for continuous
5	manning. But the radiation will be certified if an
6	operator has to enter into the loading hall for a
7	short period of time and what all the doses he or she
8	will get. That will be within limit.
9	MEMBER BLEY: Okay.
10	MR. PANDYA: And we have those numbers
11	also in our radiation chapter.
12	MEMBER RYAN: Is there a specific criteria
13	so many millisieverts per hour for so much time of
14	entry or something like that that we can hear?
15	MR. PANDYA: Yes, we have those numbers.
16	MEMBER RYAN: Or general concepts about
17	radiation protection. Some numerical values would be
18	very helpful to understand.
19	MR. GARDNER: They're in Chapter 11. I
20	don't know that we have those this minute.
21	MEMBER RYAN: Okay.
22	MR. GARDNER: But in Chapter 11. But in
23	normal operation this would be a low radiation. But
24	obviously
25	MEMBER RYAN: One person's low is another
	I

	41
1	one's medium and another one's high.
2	MR. GARDNER: Those numbers are defined in
3	Chapter 11.
4	MEMBER RYAN: Okay. I'll look it up.
5	Thank you.
6	MR. THALLAPRAGADA: Next slide please.
7	The detection features, there's leakage monitoring
8	between the double leakage barriers, between the
9	seams, between the inner and outer walls of the
10	bellows. There are level sensors in the pool
11	compartments, in the spent fuel pool, in cask loading
12	pit. And there are indicators in the main control
13	room of the valves themselves.
14	CHAIRMAN ARMIJO: So to make sure I
15	understand. If you have leakage from let's say the
16	interior bellows, do you have leak detection in the
17	gap the interior bellow and the exterior bellow?
18	MR. PANDYA: Yes.
19	CHAIRMAN ARMIJO: Okay. So you would
20	know.
21	MR. PANDYA: Yes.
22	CHAIRMAN ARMIJO: These are big bellows.
23	MR. PANDYA: Yes. Around six feet
24	diameter.
25	CHAIRMAN ARMIJO: And how much Well,
I	I

(202) 234-4433

ĺ	42
1	you obviously have operating experience. Have you had
2	Well, I guess I'm asking the same question Dennis
3	did. I had some unfortunate experience with bellows.
4	That was long ago, but Okay. I'll wait.
5	MR. THALLAPRAGADA: We looked at a few
6	beyond design basis scenarios. Such we looked the
7	limiting conditions. We looked at walls. When you
8	have double seal failures, both seams failing all the
9	way through, essentially just disintegrating. And
10	there's a leakage and water leaking out.
11	The scenario of what seals are assumed to
12	fail, the cask loading pit gates are open to the spent
13	fuel pool and there is We have makeup water, 400
14	gallons per minute. The leak rate is 390 gallons per
15	minute. So we could make it up.
16	The scenarios we had we would see at that
17	point mitigation would be as we close the swivel gate
18	and we've done some calculations. It can be done
19	within 30 minutes very easily. Or the other option
20	would be to close the upper cover penetration assembly
21	depending upon there is assembly in the cask loading
22	pit. We put it back into the fuel pool and close the
23	upper cover.
24	And both these scenarios essentially in 30
25	minutes time we can calculated that the spent fuel

(202) 234-4433

	43
1	pool particularly is about one foot or so. And the
2	loading hall has floor drains which kind of also
3	solves some of the questions you had last time which
4	can rid the water to our retention pit at the bottom
5	of the fuel building. So all that water Maybe that
6	answers kind of your question, too is contained in
7	the retention pit.
8	MEMBER SKILLMAN: What is the basis of the
9	390 gallons per minute please?
10	MR. THALLAPRAGADA: We perform the
11	calculation assuming the entire seal 360 degrees is
12	lost.
13	MR. GARDNER: Looking at the gap. The gap
14	all the way around and this is open. How much water
15	could you get through it?
16	MR. THALLAPRAGADA: That is double seals.
17	MR. GARDNER: Double seal all around.
18	MR. THALLAPRAGADA: Both seals.
19	MEMBER SKILLMAN: And is that the maximum
20	gap that can be assumed?
21	MR. PANDYA: Yes, that's correct.
22	Basically, when there is no seal, the surface will be
23	open like this. And we have water head pressure. So
24	how much water will seep out of that gap? And that was
25	a maximum gap because on this gap there's a seal. So
l	

(202) 234-4433

44 1 we each covers that gap. So now there is no seals. MEMBER SKILLMAN: So it's the maximum 2 hydrostatic head on that greatest area. 3 4 MR. PANDYA: Yes. 5 MEMBER SKILLMAN: So it's Q equals AV and 6 the head is the --Thank you. 7 MEMBER STETKAR: Just for clarity for the Committee would you go back to slide 12 please. 8 And 9 could you point to the seal that you actually did that 10 analysis for on this slide? MR. THALLAPRAGADA: The big one. 11 MEMBER STETKAR: Thank you. 12 Is that the one? 13 MR. THALLAPRAGADA: 14 MEMBER STETKAR: It's actually not that --15 It's actually at the top. 16 MR. THALLAPRAGADA: The top of the cask loading. 17 MEMBER STETKAR: It's not the bellows. 18 19 It's the little O-ring seals that you see up there. That's the gap. Is that correct? 20 MEMBER BROWN: Do you mean on the cover? 21 MEMBER STETKAR: 22 Yes. MEMBER BLEY: Right below the cover. 23 24 Well, there are two different --MEMBER STETKAR: Not below the cover. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	45
1	It's between the yellow and the purple thing I
2	believe.
3	MEMBER BLEY: Oh, that one.
4	MEMBER STETKAR: I mean, they're the same.
5	But just for clarity in terms of the leakage area that
6	they used for that calculation.
7	MEMBER ABDEL-KHALIK: So the gap is only
8	a few mils. Is that right?
9	MEMBER STETKAR: Yes.
10	MR. GARDNER: The assumption here is that
11	you are in the fuel handling operation. But otherwise
12	it would just be draining water. It's just a big
13	mess. But you're in fuel handling. Everything is
14	locked in place. The covers are open. So everything
15	The bellows are lowered. You're connected. That's
16	the scenario because that's the position you would be
17	in or otherwise you wouldn't be moving any fuel.
18	There would be no event here other than water.
19	MEMBER ABDEL-KHALIK: And there is some
20	kind of O-ring seal.
21	MR. GARDNER: Yes.
22	MEMBER ABDEL-KHALIK: And that's what's
23	assumed to fail and it's only going to be Even
24	though it's six feet in diameter the height is how
25	high?
ļ	I

(202) 234-4433

	46
1	MEMBER BROWN: Where's your little
2	pointer? Which O-ring is it?
3	MEMBER ABDEL-KHALIK: Less than that. A
4	millimeter.
5	MR. THALLAPRAGADA: Yes, it's in
6	millimeters. I can't recall the actual number. Yes,
7	that's the
8	MEMBER ABDEL-KHALIK: That's why you get
9	only 390 GPM leakage rate.
10	MR. THALLAPRAGADA: Yes.
11	MEMBER ABDEL-KHALIK: So the possibility
12	of a bellows failure has not been considered at all.
13	MR. GARDNER: We don't consider that a
14	credible scenario since it's seismically designed and
15	there's two of them. As we said before, the design
16	precludes it with double seals, double bellows, double
17	gates.
18	MEMBER BLEY: Is there some kind of
19	monitoring between the two bellows?
20	MR. THALLAPRAGADA: Yes. There's a leak
21	detection. Can we go to that slide?
22	MR. GARDNER: Fifteen maybe? Seventeen.
23	MR. THALLAPRAGADA: Seventeen. That is
24	one thing within the two walls of the bellows.
25	MR. GARDNER: And the stuff that's where
I	I

(202) 234-4433

	47
1	you start the handling operation.
2	MR. THALLAPRAGADA: And here on slide 19
3	we have a slide on the operating history of this
4	facility.
5	MEMBER BLEY: We're already done with his
6	presentation at this point.
7	MR. GARDNER: Yes.
8	MEMBER BLEY: I think he's got this
9	covered.
10	MEMBER ABDEL-KHALIK: And the process is
11	such that during the cask loading operation there is
12	only one assembly in that subpart of the pool right
13	above the cask. Is that right?
14	MR. THALLAPRAGADA: That's correct.
15	MEMBER ABDEL-KHALIK: And that assembly is
16	always held by a crane during the entire process.
17	MR. THALLAPRAGADA: That is correct.
18	MEMBER ABDEL-KHALIK: So if you have this
19	postulated accident and that part of the pool starts
20	draining
21	MR. THALLAPRAGADA: Yes.
22	MEMBER ABDEL-KHALIK: would any part of
23	the assembly be uncovered?
24	MR. GARDNER: That was the scenario we
25	discussed on page 18. If you flip back, we talked
I	I

```
(202) 234-4433
```

	48
1	about what we would do. You would move it back into
2	the pool.
3	MR. THALLAPRAGADA: The idea is Yes, if
4	we have If a leakage is detected, you move the
5	assembly back into the pool a fuel rack if need be
6	or into the cask.
7	MEMBER ABDEL-KHALIK: How long before that
8	one spent fuel assembly that's in that part of the
9	pool begins to uncover? How much time does the
10	operator have before they have to move the thing back
11	to the pool?
12	MR. THALLAPRAGADA: What we calculated is
13	within 30 minutes we could do any of these operations
14	we talked about putting it back. And in 30 minutes
15	you lose about one foot of water. So this assembly
16	will be covered well with water the whole time.
17	MEMBER ABDEL-KHALIK: Okay. Thank you.
18	MR. THALLAPRAGADA: So I think at this
19	point
20	CHAIRMAN ARMIJO: Before you go do that,
21	when you're not loading a cask how is this cover and
22	equipment below the pool You know, when everything
23	got out of the way and you're closed up, how do you
24	make sure you don't just have a leak when you're not
25	loading fuel? Now what's The cover, I just see the
ļ	I

(202) 234-4433

	49
1	cover. But I don't see what makes a seal, a second
2	seal, when the cask isn't there.
3	MR. THALLAPRAGADA: The cover. There's a
4	top. Pink rectangle top says that's the upper cover.
5	It has seals. It covers. That's the design.
6	CHAIRMAN ARMIJO: Right. I see the O-
7	rings and things like that.
8	MR. THALLAPRAGADA: All right. And when
9	there is not a cask docked to this facility there is
10	a bottom cover, a similar bottom cover, at the bottom
11	where essentially we have postulated the leak.
12	There's a cover there which is again designed to hold
13	the entire head even if the upper cover were to fail.
14	CHAIRMAN ARMIJO: But if that happened
15	would all the load on the bellows supporting the
16	water?
17	MR. THALLAPRAGADA: No, the bellows at any
18	point are not
19	CHAIRMAN ARMIJO: Not carrying load.
20	MR. THALLAPRAGADA: carrying load.
21	CHAIRMAN ARMIJO: Okay. Thank you.
22	MR. GARDNER: You may see in this picture.
23	MEMBER BLEY: Until you said that, I was
24	almost with you.
25	MR. PANDYA: When the bellows are not
	I

(202) 234-4433

	50
1	used, then the bellow will be compressed back to that
2	upper level with the spindles. These spindles will
3	take it back to the upper level. So there is no load
4	in the bellow. And then there will be a bottom cover
5	placed over here. So we will be having a top cover at
6	this point and then there will be a bottom cover at
7	this point.
8	CHAIRMAN ARMIJO: And that's put in with
9	your machine.
10	MR. PANDYA: Yes, that's right.
11	Absolutely yes.
12	MEMBER BLEY: There's one place I'm still
13	having a little trouble seeing and it's either between
14	your figure nine or 14 I think. You talked about how
15	the cask was anchored. And I can see how it's
16	anchored to those heavy I-beams that are part of the
17	trolley arrangement. How is Especially along the
18	axis of the tracks, how is it anchored so as to
19	preclude any motion?
20	MR. THALLAPRAGADA: On the right-hand side
21	of the figure, you see number two. The two indicates
22	there are anti-seismic devices. There are essentially
23	pins that go into the loading hall. There are holes
24	in the loading hall where these pins would go at every
25	loading station when it's under the handling station
Į	I

(202) 234-4433

	51
1	or biological station.
2	MR. GARDNER: It would anchor itself.
3	MR. THALLAPRAGADA: It would anchor
4	itself, yes.
5	MEMBER BLEY: Now in the picture I see
6	them perpendicular to the axis of the track.
7	MR. THALLAPRAGADA: Yes.
8	MEMBER BLEY: Along the axis of the track
9	is there another similar pinning arrangement somehow?
10	MR. THALLAPRAGADA: No. There are brakes
11	on the wheels.
12	MEMBER BLEY: What kind of brakes that are
13	on the wheels?
14	MR. PANDYA: We have electric brakes on
15	the motor and we have pneumatic brakes. So we have
16	two kinds.
17	MEMBER BLEY: There is no physical block
18	you put down that's anchored to the floor.
19	MR. PANDYA: No.
20	MEMBER BLEY: What keeps the motor brakes
21	What if you don't have power and you're getting
22	MR. PANDYA: The brakes are designed in
23	such a way that if the power is off the brakes will be
24	engaged.
25	MEMBER BLEY: Okay.
I	I

	52
1	MR. PANDYA: So the brakes can be open
2	only when we have power. If the power goes off
3	MEMBER BLEY: And the brakes How have
4	you qualified the brakes for seismic?
5	MR. PANDYA: The brakes are
6	MEMBER BLEY: The braking power, sharing
7	that whole mass those brakes under seismic excitation.
8	MR. THALLAPRAGADA: No, the pins are, they
9	
10	MEMBER BLEY: They prevent motion this
11	way. But the tracks are going this way.
12	MR. THALLAPRAGADA: Both ways.
13	MEMBER BLEY: Oh, both ways. That's what
14	I asked.
15	MR. THALLAPRAGADA: They are both ways.
16	MEMBER BLEY: There are pins going the
17	other way, too.
18	MR. THALLAPRAGADA: There are pins.
19	MEMBER BLEY: So they are taking care of
20	me this way. Now they're taking care of me forward
21	and they're qualified for that.
22	MR. THALLAPRAGADA: Yes.
23	MEMBER BLEY: That braking motion that
24	would tend to break those pins. They're qualified.
25	CHAIRMAN ARMIJO: We're kind of running a
	I

(202) 234-4433

	53
1	little short on time.
2	MEMBER BLEY: Go ahead.
3	CHAIRMAN ARMIJO: I think it's important
4	to get to the closed session to see what the real
5	MEMBER BLEY: Okay. Sorry.
6	MEMBER POWERS: Yes, we'll have closed at
7	this point.
8	CHAIRMAN ARMIJO: I don't know if I have
9	bring the hammer
10	MEMBER POWERS: We're now in closed,
11	Kathy.
12	MS. WEAVER: Yes. If we have any members
13	of the public or visitors here today, you don't have
14	clearance or need to know, I need to ask you to step
15	outside during this period of the meeting.
16	CHAIRMAN ARMIJO: And the bridge line,
17	Kathy.
18	MS. WEAVER: Theron, can you cut down the
19	bridge line please?
20	CHAIRMAN ARMIJO: Off the record.
21	(Whereupon, the above-entitled matter went
22	off the record at 9:29 a.m.)
23	CHAIRMAN ARMIJO: We're back in open
24	session and the next topic will also be chaired by Dr.
25	Powers.
I	

```
(202) 234-4433
```

	54
1	MEMBER POWERS: Thank you, Mr. Chairman.
2	We are back to the certification of the EPR design.
3	And again what we're doing here is looking at the SER
4	with open items and judging whether we can pass that
5	on to page five of the process.
6	Before we get involved in our discussions
7	here I think, John, you had some comments you wanted
8	to make with respect to the discussion we had earlier
9	on the spent fuel handling system.
10	MR. SEGALA: Yes. Hi, this is John
11	Segala, the Chief of the Licensing Branch and NRO. I
12	have the EPR Design Center.
13	I just wanted to say that the staff has
14	been reviewing this cask loading design over the last
15	several years. We have visited the Cattenom plant in
16	France. We went there and looked at the facility.
17	We have also through international
18	cooperation with other regulators met with the French
19	regulator, the UK, and have talked about their review
20	issues from a regulator perspective and have shared
21	our issues. And the staff has gone through this
22	design and has asked many of the similar questions
23	that both the Subcommittee and the Full Committee
24	asked. And we're also interfacing with the COL
25	applicant s looking at further down the road of how
ļ	I

(202) 234-4433

	55
1	all this is going to fit together.
2	I just wanted to provide that quick
3	overview since we didn't have a full presentation on
4	this topic.
5	MEMBER POWERS: Thank you, John.
6	As is our custom, what we are actually
7	examining is the SER, but we will have presentations
8	by both the Applicant and the Staff on the subject.
9	To begin our discussions, I would like to ask Getachew
10	Tesfaye to give us some opening comments.
11	MR. TESFAYE: Thank you, Dr. Powers. Good
12	morning. My name is Getachew Tesfaye. I'm the NRC
13	EPR Design Certification Project Manager.
14	As I customarily do, for the record I
15	would like to give you a summary of our ACRS
16	activities to date. Staff has completed its
17	presentation of the first three review of the design
18	certification application. That is a safety violation
19	for those open items to ACR EPR Subcommittee.
20	A chapter-by-chapter presentation of the
21	safety violation report of those open items began on
22	November 3, 2009 and concluded on February 23, 2012.
23	On April 8, 2010, we briefed the ACRS Full Committee
24	on the seven chapters that were completed through
25	March 2010. These are chapters 2, 4, 5, 8, 12 and 17.
I	I

(202) 234-4433

	56
1	On April 21, 2010, we received a letter
2	from the ACRS Full Committee Chairman on these seven
3	chapters. The letter stated ACRS has not identified
4	any issues that merited further discussion. On May
5	27, 2010, the Staff submitted its reply to ACRS.
6	And on March 8 of this year we briefed the
7	ACRS Full Committee on chapter 6, 7, 11, 13, 15, 16
8	and 18. On March 15, 2012, we received a letter from
9	ACRS Full Committee Chair on these seven chapters.
10	The March 15 letter included for additional issues
11	that the Committee recommended the Staff should
12	address as part of the open item resolution.
13	On April 24, 2012, the Staff submitted its
14	reply to ACRS's March 15 letter describing how it
15	plans to address the four additional ACRS issues.
16	Today we will brief the Full Committee on
17	the remaining four chapters. Those are chapters 3, 9,
18	14 and 19. And thank you very much.
19	MEMBER POWERS: Thank you. At this point,
20	first, do members have any questions on that summary?
21	Mr. Brown?
22	MEMBER BROWN: You say you submitted a
23	letter response on the chapters 6, 7, etc. comments
24	that we had in the letter.
25	MR. TESFAYE: That's correct. Yes.
I	I

(202) 234-4433

	57
1	MEMBER BROWN: I didn't see it.
2	MEMBER POWERS: You will get to see that
3	for the June meeting.
4	MEMBER BROWN: June Full Committee?
5	MEMBER POWERS: Yes.
6	MEMBER BROWN: Since I'll be out of town
7	for three weeks up until then that's going to make it
8	pretty tight for resolution.
9	MEMBER SIEBER: That was the plan.
10	MEMBER POWERS: It's a pretty simple
11	resolution.
12	MEMBER BROWN: If we all agree, then the
13	answer is straightforward. I just wanted to say I
14	hadn't seen anything. I wanted to make sure that my
15	email address had not been lost.
16	MEMBER POWERS: We keep trying, but
17	unfortunately it pops up all the time.
18	(Laughter.)
19	Once you get things out on the internet you just never
20	get rid of them diligently though we have tried.
21	At this point, I would like to turn the
22	discussions over to Mr. Gardner who will make the
23	Applicant's presentation concerning the four chapters
24	and the discussion.
25	MR. GARDNER: Thank you, Dr. Powers. Mr.
I	I

(202) 234-4433

	58
1	Chairman. This presentation today as Getachew
2	mentioned would conclude our phase III presentations
3	for the chapters. So we certainly are very excited to
4	have reached this milestone.
5	MEMBER POWERS: Let's be careful here and
6	say you hope that it will.
7	MR. GARDNER: Certainly we trust that it
8	will. Today we have Tim Stack as our principal
9	presenter. He will be supported with Matt Miller and
10	Brian McIntyre and myself. And I don't really have
11	any other opening remarks. I think we covered those
12	earlier and I'll just turn it over to Tim to get
13	started.
14	MR. STACK: Thanks, Darrell. Again as
15	Darrell indicated, I'm Tim Stack from AREVA. And I'll
16	be giving the presentation today.
17	Move on to slide two, as far as the
18	outline for this, we're going to do the same outline
19	as we've done in the previous Full ACRS Committee
20	meetings.
21	We'll give an overview of the design. In
22	principle, this overview is the exact same one we saw
23	in March of this year. It's also basically the same
24	thing we saw in April of 2010. So we'll kind of try
25	to go through that a little more quickly.
l	I

(202) 234-4433

	59
1	Obviously, if you'll have questions on
2	specific items, you'll stop me I'm sure. But we'll go
3	through that at a fairly fast pace. And then we'll go
4	through the specific chapters and some highlights on
5	the specific four chapters for 3, 9, 14 and 19.
6	One other item that we will cover as a
7	part of this is during the Full ACRS Committee meeting
8	for Calvert Cliffs, there were at least two questions
9	that were asked that were being redirected back to
10	AREVA. We'll cover those as we go through our
11	presentation today.
12	One was related to looking at whether we
13	were designed for mixed core. The other was related
14	to treatment of the EDS and what is accredited for and
15	why is it there. So we'll cover that as we go through
16	this today. One was reverse flow on a three pump
17	operation. And on the reverse flow on the three pump
18	operation we've received those questions and we will
19	be answering those separately from this.
20	MR. GARDNER: Thank you.
21	MR. STACK: Okay. So when you look at the
22	EPR design objectives again this is a large
23	evolutionary plant. It's built on years of operating
24	experience. The main goal was improved economics and
25	improved safety. Those are both critical to our
ļ	I

(202) 234-4433

	60
1	customers, relative to the economics.
2	We were aiming at a reduction in power
3	generation costs of ten percent as well as a design
4	for a 60 year design life and for safety. You can see
5	them listed in some of the main points, increased
6	margins, increased redundancy, reduction in core
7	damage frequency as well as severe accident design
8	features.
9	When you look at the major features in the
10	plant, it's good to look at them in the context of how
11	are we doing them right now and how is the EPR
12	different. In some cases it's very similar. In some
13	cases it's quite different.
14	From the nuclear realm, again it's a
15	proven four loop design, typical of many operating
16	plants in the U.S. and abroad. Four train safety
17	systems. Most of the operating plants have two
18	trains. A double containment. Most of the operating
19	plants have a single containment.
20	An in-containment refueling water storage
21	tank. Typically in the operating plants you're going
22	to see outside containment, RWSTs or BWSTs. The main
23	advantage of that is eliminating the operator action
24	to swap over to sump.
25	Severe accident mitigation design features
ļ	I

(202) 234-4433

	61
1	versus not having them included in the operating
2	fleet. Separate safety buildings versus having a
3	consolidated nuclear aux building.
4	An advanced control room design. A
5	digital control room and control systems versus an
6	analog set of control systems.
7	From the electrical side, looking at a
8	full load rejection for shedding house load versus a
9	partial load rejection on the operating fleet. Four
10	EDGs versus typically two EDGs. As well as two
11	smaller diverse SBO diesel generators versus typically
12	one that we would see on the operating fleet.
13	And from the same characteristic
14	standpoint, designing the plant for airplane crash
15	protection from the start and explosion pressure
16	waves. Again, we see this as fully reflecting the
17	operating experience in the 21st century from the U.S.
18	as well as from Europe.
19	MEMBER SIEBER: Your reactor coolant pumps
20	are standard pumps with seals as opposed to canned
21	motor pumps.
22	MR. STACK: Yes, sir.
23	MEMBER SIEBER: How long will the seals
24	last in the blackout condition?
25	MR. STACK: We have The seals are
I	I

(202) 234-4433

	62
1	basically a standard type of seal where you look at a
2	mechanical seal that has three stages. And then there
3	is a stand steel seal behind it. The stand steel seal
4	and package has been qualified for the SBO duration
5	for the EPR. That's eight hours.
6	MEMBER SIEBER: Okay. That's without
7	cooling.
8	MR. STACK: Yes, sir.
9	MEMBER SIEBER: Okay.
10	MR. STACK: That's no seal injection, no
11	thermal barrier cooling.
12	MEMBER SIEBER: Now your double
13	containment is actually a single containment that's a
14	steel liner with concrete shell and the space between
15	it.
16	MR. STACK: Yes.
17	MEMBER SIEBER: And the shell's purpose is
18	to provide radiation protection, whereas the liner is
19	the pressure containment. Is that correct?
20	MR. STACK: As far as the let me jump
21	down for a moment if I may. When you look at these
22	and again on the I'll point to it sooner or later
23	or not. All right. The brown we're looking at the
24	containment. We have a steel liner here. Here's the
25	pressure vessel for containment. And we talk about
I	

(202) 234-4433

	63
1	having a second containment. We're looking at our
2	shield structure here. The annulus is a filtered
3	vented annulus.
4	MEMBER SIEBER: Right.
5	MR. STACK: So the containment itself
6	looks an awful lot for example like Bellafont.
7	MEMBER SIEBER: Or Davis-Besse.
8	MR. STACK: Well, the difference from
9	Davis-Besse is in Davis-Besse you'll have just a steel
10	containment without
11	MEMBER SIEBER: Without the concrete,
12	right.
13	MR. STACK: without the concrete.
14	MEMBER SIEBER: Got it.
15	MEMBER SHACK: And this is a steel liner.
16	It's not a steel containment.
17	MR. STACK: Yes, Davis-Besse is just the
18	steel containment.
19	MEMBER SIEBER: That was
20	MEMBER SHACK: A free-standing.
21	MR. STACK: Free-standing steel
22	containment.
23	MEMBER SIEBER: Right. You're right.
24	MR. STACK: As well as some of the ice
25	condensers that are free-standing containment with a
I	I

	64
1	standoff missile shield.
2	MEMBER SIEBER: Watts Bar.
3	MEMBER CORRADINI: The two Westinghouses
4	are also steel, Point Beach and Kewaunee.
5	MR. STACK: I'm not sure. So we'll slide
6	back to slide number five again for a moment. And
7	again when you look at the general arrangement of the
8	NSSS it's a very conventional four loop design, again
9	multiple years of operating experience. One of the key
10	changes thought is that we've increased volumes in the
11	primary and the secondary to slow down the operator
12	response, the overall response time.
13	In general, when you're looking at this
14	plant for design basis accidents, we're taking no
15	credit for operator action before 30 minutes from
16	inside the control room, no credit for operator action
17	outside the control room for the design basis
18	accidents for an hour. So we're really pushing back
19	from some of the operating action times you see on the
20	operating fleet.
21	Again as far as the arrangement is
22	concerned, you have reactor vessel in the center, four
23	U-tube steam generators, four reactor coolant pumps,
24	again with mechanical seals and one pressurizer.
25	Next up we show again our N+2 concept, the
	I

(202) 234-4433

	65
1	US EPR. I'll get you oriented here again. What we
2	have is the reactor building in the center. Down on
3	the bottom here, we have the fuel building. Then we
4	have safeguards one, two, three and four.
5	And when we look at the N+2 concept what
6	we have we'll assume we have a single failure in train
7	one. We'll assume train two had preventive
8	maintenance going on. We'll assume that we have a
9	postulated accident that affects the train three
10	safeguards.
11	So, for example, I have an injection line
12	break in the ECCS system. And then the accident
13	mitigating feature would be provided with the four
14	train.
15	In this arrangement, you have to energize
16	two trains. In this case, it would be trains three
17	and four. And because you don't know which You do
18	not know. The injection lines aren't cross-connected
19	for this purpose. You don't know which loop has the
20	accident or has the initiating event in it.
21	So we would energize two diesels. And
22	that would be the general accident mitigating
23	arrangement for it. I will also mention though
24	because we've energized two diesels we take credit for
25	whatever equipment they power that's not affected by
ļ	

(202) 234-4433

	66
1	the initiating event.
2	For example, when we break the injection
3	line and I'll look at it from the standpoint of low
4	pressure injection it will defeat the ECCS functions.
5	But it would not defeat the RHR removal function,
6	remove the heat from the sump. And we'll show that on
7	a later figure. So again we have two diesels being
8	energized and that's what we're crediting.
9	MEMBER SIEBER: Do you need two diesels or
10	could you get by with one?
11	MR. STACK: For the limiting design basis
12	accidents we need two.
13	MEMBER SIEBER: Okay.
14	MR. STACK: When we look at this picture,
15	we look at the main safety systems. Safety injections
16	compromised of medium head safety injection, a
17	combined low head safety injection, an RHR and then
18	accumulators. So we'll run through those briefly.
19	You'll see the MHSI here. It's taking
20	suction from the IRWST, pumping back into the cold
21	leg. We have next a combined RHR and LHSI. So we
22	have here where we're taking suction again from the
23	IRSWT, LHSI with an RHR heat exchanger right behind
24	it. That RHR heat exchanger is cooled with component
25	cooling water. And it's initially aligned for the
	l

(202) 234-4433

	67
1	cold leg.
2	And then what's going to happen after an
3	hour into a LOCA, it will be realigned to the hot leg
4	to provide hot leg injection. We also have
5	accumulators that are in here that are standard from
6	what you've seen on typical PWRs. Those are also
7	connected to the cold legs. And that's basically a
8	pretty standard architecture for an ECCS system.
9	Next up we move to the IRWST again in
10	containment. Sorry.
11	MEMBER CORRADINI: Can I ask a question?
12	I'm not on the Subcommittee. So probably I'm sure you
13	brought this up. So there's no high head injection.
14	MR. STACK: Yes, sir. That's correct.
15	MEMBER CORRADINI: But since it's a normal
16	Well, since I remember it as a normal PWR, you
17	would have to have charging flow. So in the plants
18	I'm familiar with you have at least three charging
19	pumps, one positive displacement, a couple of
20	centrifugals. Those centrifugals in this case can't
21	make up decay heat levels or they just don't exist in
22	this design.
23	MR. STACK: There are CVCS pumps like you
24	would see. Typically if you stop back and you looked
25	at

(202) 234-4433

	68
1	MEMBER CORRADINI: Right. Those are what
2	I'm thinking about.
3	MR. STACK: Yes, typically what you would
4	find I'm sorry. My background is mainly through
5	the B&W plants. They have two types of designs. They
6	have one type of design where you have three
7	centrifugal high, high head safety injection and make-
8	up pumps or CVCS pumps and they serve both functions.
9	MEMBER CORRADINI: Right. Exactly.
10	MR. STACK: And that's typically in the
11	B&W fleet what you'd find at most of the plants,
12	Oconee, ANO I, Crystal River 3.
13	Alternatively you would have a design
14	where you'd have a high, high head make-up pump that's
15	not providing a safety injection function. And then
16	you would have a medium head safety injection pump.
17	So it's more of a split system.
18	MEMBER CORRADINI: And that's what we have
19	
20	MR. STACK: And that's what we have here
21	and that's in fact what they have at Davis-Besse, for
22	example. So again the arrangement we have here
23	conceptually you can think of it that way. Again
24	medium head safety injection, safety related.
25	MEMBER CORRADINI: Okay.
Į	I

(202) 234-4433

	69
1	MR. STACK: Okay?
2	MEMBER CORRADINI: That helps. Thank you
3	very much.
4	MR. STACK: You're welcome. So back to
5	this what we have here inside in the containment we
6	have our IRWST and I'll get my pointer sooner or
7	later and when you look at the IRWST it's nominally
8	about 500,000 gallons. It's 1700 ppm in rich boron in
9	the IRWST.
10	So the concentration compared to the
11	operating fleet is a little low. Typically you're
12	seeing the operating fleet 2,000, a little bit above
13	2,000 ppm.
14	So then on here and we haven't really
15	discussed this much in the past, the extra borating
16	system that's not shown on here. So in addition we
17	have an extra borating system. And that is safety
18	related. It's a two train system.
19	For the extra borating system, there are
20	two tanks. They're nominally 7500 gallons each. And
21	they're at 7,000 ppm. So compared to the operating
22	plants they're more like a chemical addition system
23	that you would see in the operating plants except for
24	here they're safety related.
25	MEMBER CORRADINI: So they're like a BIT
ļ	I

(202) 234-4433

	70
1	in the old but not pumped.
2	MR. STACK: These are pumped.
3	MEMBER CORRADINI: Okay. So it's like a
4	BIT, boron injection tanks the old, old systems I
5	remember.
6	MR. STACK: But this is actually You're
7	having This is not just a pressurized tank that's
8	injecting. This is a positive displacement pumped
9	injection system.
10	MEMBER CORRADINI: Okay.
11	MR. STACK: They're about 50 gpm for each
12	of the pumps. There are two pumps that are safety
13	related. They're EDG backed. They're alternately fed
14	on power. Again about 7,000 ppm.
15	MEMBER BLEY: Which accidents require
16	those?
17	MR. STACK: Okay. These are relied on for
18	steam generator tube rupture as well as safety grade
19	cold safe shutdown. When we're looking at borating up
20	to get to our shutdown margins, we're crediting it for
21	safety grade cold shutdown as well as tube rupture.
22	MEMBER SIEBER: What's the solution
23	temperature have to be for 7,000 ppm boron?
24	MR. STACK: We can look. It's pretty
25	typical to what you would see on the The 7,000 ppm

(202) 234-4433

	71
1	is pretty typical of the operating.
2	MEMBER SIEBER: Yes, it's around 100
3	degrees or something like that.
4	MR. STACK: It's higher than that. We'll
5	look that number up for you.
6	MEMBER SIEBER: How do you keep it hot?
7	MR. STACK: Yes, you have to keep it hot.
8	That's correct.
9	MEMBER SIEBER: How do you do it?
10	MR. STACK: How do you keep it hot? These
11	are I'll go back and look at it. I'll confirm
12	whether or not we have any heat tracing. The
13	buildings these are housed in are all safety grade
14	buildings that are maintained at temperature.
15	MEMBER SIEBER: Yes, but that's part of
16	your emergency equipment that has to be functional
17	during an accident because that's an accident
18	mitigation.
19	MR. STACK: Understood.
20	MEMBER SIEBER: Yes, I'm curious. That's
21	pretty hot.
22	MR. STACK: So basically that's what
23	There was one question again related to the EDS and
24	what we use it for and again in particular it's used
25	on tube ruptures as well as safety grade cold
I	I

(202) 234-4433

	72
1	shutdown. It's not used for standard LOCA mitigation.
2	The other thing we have in the design in
3	train four we have a severe accident heat removal
4	system which is a nonsafety related containment spray
5	if you wish. And in that system what it's doing is
6	it's providing active cooling of the corium that you
7	would have. And I'll show a picture of that a bit
8	later as well as providing active depressurization of
9	the containment.
10	MEMBER CORRADINI: So this is a separate
11	The SAHRS is not a piggyback in any of the other
12	green and orange. It's a separate system for the core
13	retention device and for containment spray.
14	MR. STACK: Yes. It's taking suction from
15	the IRWST.
16	MEMBER CORRADINI: The same water source.
17	MR. STACK: Same water source.
18	MEMBER CORRADINI: Okay. But different
19	pumping system.
20	MR. STACK: Yes.
21	MEMBER CORRADINI: Okay.
22	MEMBER ABDEL-KHALIK: Which legs do the
23	borating systems inject into?
24	MR. STACK: All four. The pumps at the
25	discharge of the pump they divide and go Each pump
I	I

	73
1	divides and goes to cold legs.
2	MEMBER CORRADINI: I guess this is maybe
3	the wrong time. But just a question. So if it has to
4	be heated and this is for a steam generator tube
5	rupture only though. Maybe that's the answer.
6	MR. STACK: For the EBS it's being relied
7	upon for safety grade cold safe shutdown as well.
8	MEMBER CORRADINI: Okay. Thank you.
9	MEMBER STETKAR: I can help you out. In
10	the DCD, it says it's designed without heat tracing.
11	MR. STACK: That's what I remember. Thank
12	you, John.
13	MEMBER STETKAR: You're welcome.
14	MR. STACK: So that's an overview of the
15	main safety systems on the primary side. We'll move
16	over to the secondary side.
17	What you see on the secondary side is
18	again is we have suction from an emergency feedwater
19	storage tank. Each one of those. And these are
20	housed in the safeguards buildings per building. We
21	have suction there to a pump. The pump injects to
22	steam generator. The generator goes to the discharge.
23	There is an MSIV. Upstream of the MSIV
24	you have two 25 percent spring loaded safeties and
25	then you have a 50 percent safety grade main steam
	I

(202) 234-4433

1 relief train. On the main steam relief train, it's contributing in part on making the MHSI pumps work 2 3 because in this point you have safety grade secondary 4 side depressurization where you initiate a partial cooldown when you have an SI actuation. 5 So you basically lower the secondary side pressure such that 6 7 the MHSI pumps is capable of injecting into the core. 8 MEMBER CORRADINI: So this is so-called 9 crash cooling ability. MR. STACK: I don't know that I would term 10 it a crash cooling capability. Normally when I think 11 of a term like that you're looking at taking the plant 12 very, very, very far down in pressure. 13 14 MEMBER CORRADINI: Okay. But the plan is 15 to take it from operating pressure down to below 16 discharge head of the --17 MR. STACK: This is taking you down to about -- I'll look up the number. It's about 840 18 19 pounds. MEMBER CORRADINI: The discharge head of 20 the MHSIs are like 1500. 21 22 MR. STACK: Yes. MR. STACK: So we're taking the secondary 23 24 pressure --MEMBER BANERJEE: Programmed cooldown, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

74

	75
1	Mike.
2	MEMBER CORRADINI: I'm sorry. Programmed
3	cooldown. I apologize.
4	MR. STACK: So we're taking And the
5	number is about 840 psia. And you're going down at
6	about 180 degrees per hour.
7	MEMBER CORRADINI: Okay.
8	MR. STACK: This is a feature also that
9	has been used on the German plants previously. This
10	isn't something new worldwide. Features like this are
11	also being looked at when we are talking Mr.
12	Skillman and I were talking before this on some of the
13	extended power uprates and you're looking at some of
14	the operating fleet that are looking at using safety
15	grade secondary side to pressurization to support them
16	in their power uprates.
17	MEMBER BANERJEE: I think that concern has
18	always been that you'll get an extended period of
19	refluxing for small breaks.
20	MEMBER SIEBER: Right.
21	MEMBER BANERJEE: And whether there is
22	Now they have designed their hot legs so they don't
23	flood in refluxing.
24	MEMBER CORRADINI: Again? I'm sorry.
25	MEMBER BANERJEE: I'll go into it offline
I	·

(202) 234-4433

	76
1	with you in detail.
2	MEMBER CORRADINI: Thank you, Professor
3	Banerjee.
4	MEMBER RAY: Do you keep the bubble on the
5	pressurizer?
6	MR. STACK: For?
7	MEMBER RAY: The secondary side. The
8	cooldown using the secondary side depressurization.
9	MR. STACK: Yes, you do and Well, for
10	the Typically when you're looking at this, you're
11	going to be using it again to support. For that
12	depressurization action, you're supporting the LOCA
13	events.
14	So when we look at this, it's activated
15	for a LOCA event where you have this programmed
16	partial cooldown. For a tube rupture you're going to
17	raise the pressure in the effected generator. So
18	again you have a safety grade relief valve that allows
19	you to adjust pressure in it. And in those cases
20	again whether or not you hold the level You've got
21	to hold the level in the pressurizer depends on where
22	the break is and how it goes.
23	Obviously, if you had a large break you're
24	not going to hold level in the pressurizer. So it
25	really depends on the LOCA that you have itself. For
Į	

(202) 234-4433

	77
1	cooldown events where I'm trying to do safety grade
2	cooldown you would maintain pressurizer level for
3	standard cooldown.
4	MEMBER RAY: And you're naturally
5	circulating.
6	MR. STACK: If I'm in a natural circ
7	condition.
8	MEMBER RAY: Well, I mean for a small
9	break like a tube rupture or
10	MR. STACK: And again if I didn't have
11	offsite power, yes.
12	MEMBER RAY: But if you had offsite power
13	you'd keep the reactor coolant pumps running.
14	MR. STACK: Actually, I would like to go
15	back and doublecheck that relative to there is an
16	automatic pump trip on this plant. For the tube
17	ruptures, my recollection is that the automatic pump
18	trip is not actuated.
19	MEMBER RAY: Well, for a small enough
20	break I would think that's true. But if you're coming
21	down to this safety injection pressure that you're
22	trying to get down to, I'd be surprised if the reactor
23	coolant pumps are running. So I would assume you were
24	using natural circulation. That's my question.
25	MR. STACK: Yes. What's happened We
ļ	I

(202) 234-4433

	78
1	can look back into our safety analysis on that.
2	Typically it's usually desired to keep the RCPs
3	running if you can typically in the past. But it's
4	been in the limiting case analyzed to not have the
5	RCPs running.
6	MEMBER RAY: Okay. But it's a simple
7	question about are they running at the pressure that
8	you're trying to get down to. That's where I'm trying
9	to get with my question. You're reducing primary
10	coolant system pressure down to the point where you
11	can get flow through the safety injection train.
12	MR. STACK: That's correct.
13	MEMBER RAY: Okay. And I'm just asking a
14	question if the reactor coolant pumps are running at
15	that point.
16	MR. STACK: In a limiting case they're
17	not.
18	MEMBER RAY: I would think not. So I
19	would assume that I'm just asking questions about
20	things like transferring a bubble to the head and
21	stuff like that when you don't know what the primary
22	coolant flow is in the accident sequence. I thought
23	that was where some of the other questions were going.
24	MEMBER CORRADINI: You know more than I.
25	MEMBER RAY: All right. You'd better go
I	I

(202) 234-4433

	79
1	on.
2	MEMBER ABDEL-KHALIK: Could you find out
3	what the reactor coolant pump trip criteria are for
4	this plant?
5	MR. STACK: As far as the automatic trip?
6	MEMBER ABDEL-KHALIK: No, manual. In the
7	POPs what the operators are instructed to do in the
8	event of a LOCA.
9	MR. STACK: Well, again let's back up.
10	One of the comments I made earlier was that we have no
11	manual operator action for 30 minutes for the design
12	basis accidents. So the operator is not required to
13	manually trip the pumps. I mean in most of the
14	operating plants you have a two or three minutes
15	automatic or manual operator action to trip the pumps.
16	And you don't have it on this plant.
17	MEMBER ABDEL-KHALIK: So what would be the
18	automatic reactor coolant pump trip criteria then?
19	MR. STACK: Okay. We can get the criteria
20	for that. But it's defined in chapter seven.
21	(Off the record discussion.)
22	Okay. We can We'll be happy to read
23	that back in. But it's captured in the FSAR what the
24	trip criteria are.
25	MR. STACK: So where were we? When you
ļ	I

look at the plant though, the emergency feedwater pumps are motor driven. They're EDG backed and two of the four of them are SBO backed. In addition, there is interconnecting piping on the suction and discharge side of the emergency feedwater system that allow you to cross connect the suction sources as well as the discharges.

8 Back to our picture on the containment 9 again, what we see on the containment is a post tension concrete containment with a steel liner that's 10 shown in brown. We have an outer wall that's made of 11 reinforced concrete again that's providing airplane 12 crash protection as well as protection against other 13 14 hazards like tornado, missiles, for example, and as 15 well as external explosions you may have. And as we mentioned earlier, it's a filtered vent annulus that's 16 17 providing safety grade dose management for the plant.

In followup we'll go a little further on 18 19 the external hazards and you had the picture in mind. The overall strategy for protection against external 20 hazards in the EPR is kind of a blended approach. 21 What you see in the buildings in blue is we have the 22 reactor building in the center, the fuel building and 23 24 safequards two and three. And the main control room 25 and the remote shutdown station are housed in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

safeguards two and three.

1

2

3

4

5

6

7

Each of those is housed with a shield building. So there's a shield building not only over the containment but over these safeguards buildings as well as the fuel building. So those are protected from an airplane crash if you wish by those shield structures.

Separately from that the buildings you see 8 in gray are protected by physical separation. 9 So safequards one and four as well as the EDGs here one 10 and two on this side and three and four on this side 11 as well as the UHS towers one and two here and three 12 and four here are protected by physical separation as 13 14 well as the intervening containment in the safeguards 15 buildings between them keep them physically to 16 separated and protected.

The other buildings that are shown in white on here that include the turbine building, the switch gear building, the access building, the nuclear auxiliary building and the radwaste building, those are not protected from these hazards, these airplane crash hazards.

23 Moving onto severe accident mitigation 24 features, these are features that were put in largely 25 to address the phenomenon from SECY 9016. What the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

EPR contains as far as mitigating systems, there's a 1 high pressure core melt to pressurization system 2 3 that's comprised of two trains. They're powered from 4 trains one and four. There are two valves in series. It's all manually actuated. Our goal is to get the 5 6 RCS pressure below 200 pounds to prevent direct 7 containment heating.

8 There is also an ex-vessel melt 9 stabilization, conditioning and cooling system. And 10 what we're trying to do is stabilize the core exvessel first and then get it poured into the core 11 catcher if you wish where it will be ultimately 12 cooled. 13

And that will take us to our third phase of this. There is a long-term cooling system. It's the same severe accident heat removal system I showed on the earlier slide. That's going to provide cooling of the corium in this area as well as spray back into the containment.

20 And then finally there are -- We control 21 hydrogen concentration. This is a large dry 22 containment.

I will mention and I think we discussed at the last one that it was a two zone containment that we actuate open such that it converts into a single

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	zone containment. And it's about 2.8 million cubic
2	feet. So it's rather large. Not quite as big as a
3	Bellafonte, but it is larger than a Callaway. But
4	it's effectively a large dry containment.
5	We have passive autocatalytic recombiners
6	inside containment to manage hydrogen content.
7	MEMBER CORRADINI: Have they been designed
8	as a placement yet? Has the design proceeded to
9	detail enough so that they understand where they want
10	to put these things inside containment?
11	MR. STACK: We've chosen the nominal
12	number and they've generally been located. I'm not
13	sure about final design locations of the PARs at this
14	point. As far as the equipment itself, these have
15	been used in Europe for a number of years.
16	MEMBER CORRADINI: I was under the
17	impression that the PANDA facility and PSI is being
18	used to test some of these for AREVA if I've got the
19	right technology. Or maybe I'm confused about
20	technologies.
21	MEMBER POWERS: I'm certainly not aware of
22	PANDA doing any work on these. It strikes me that the
23	
24	MEMBER CORRADINI: Mainly the cabinet
25	placement within a structure about mixing. But that's

(202) 234-4433

	84
1	what I was
2	MEMBER POWERS: No. I would think that if
3	there's any work going on with that it's being done at
4	Thai.
5	MEMBER CORRADINI: Where?
6	MEMBER POWERS: Thai.
7	MEMBER CORRADINI: Okay. The one in
8	MEMBER POWERS: But to my mind, what the
9	issue on PAR location now comes out of Fukushima is we
10	have evidence of flame acceleration over relatively
11	short distances which I find remarkable. And now does
12	that change your thinking about PAR location or not?
13	And I don't know that answer to that and we may not
14	know the answer until we get in and look at the
15	reactor buildings at Fukushima.
16	But I mean where I had difficulties now
17	understanding the strategies on igniter location
18	doesn't really have anything to do with PARs. It's
19	just where you would ignite things under Station
20	Blackout accidents is this apparent flame accelerator
21	or detonation over relatively short scales relative to
22	what my thinking was based on turbulence induced flame
23	accelerator.
24	MEMBER CORRADINI: The only reason I ask
25	the question is I guess I should have asked it this
I	

(202) 234-4433

	85
1	way. With the PARs system that you guys have in the
2	concept design, is there an upper limit you want to be
3	able to keep the concentration below?
4	MR. STACK: Yes.
5	MEMBER CORRADINI: What is that?
6	MR. STACK: It's the
7	MEMBER CORRADINI: That's alright. If
8	you've got it later, we can just do it then.
9	MR. STACK: Well, I don't have it later.
10	We can look up the number. But we're keeping it below
11	the typical combustion limits that you would normally
12	have.
13	MEMBER POWERS: They're really trying to
14	keep it below four percent.
15	MEMBER CORRADINI: Four percent.
16	MEMBER POWERS: Yes.
17	MEMBER REMPE: There may be calculations
18	to estimate where areas of concern are.
19	MEMBER POWERS: Yes.
20	MEMBER BANERJEE: What's the LFL? Two
21	percent or?
22	MR. STACK: It's around four. The overall
23	number is time with 100 percent cladding oxidation.
24	MEMBER BANERJEE: For the LFL?
25	MEMBER POWERS: I mean, LFLs and things
I	I

(202) 234-4433

	86
1	like that depends on what direction you're going on in
2	and things like that and what the containment
3	atmosphere temperature is. What I tend to worry about
4	is the ability to downward propagate which is nine
5	percent at room temperature and it goes down to zero
6	at 500 degrees Kelvin.
7	MEMBER CORRADINI: That's alright.
8	MEMBER POWERS: But I mean what you
9	usually worry about on PARs is where they've linked
10	and that's very low temperature.
11	MEMBER CORRADINI: The concept I won't
12	because again this is probably all discussed
13	somewhere. But the concept is to have these well-
14	placed enough so that with some concept of the mixing
15	you keep the average concentration below that limit
16	you just mentioned.
17	MEMBER POWERS: Yes. The containment is
18	robust. And it will I mean these large
19	containments will tolerate pretty good pops. So it's
20	not crucial. I don't even think the PARs are called
21	out as safety.
22	MEMBER CORRADINI: Okay. Thank you. That
23	helps me enough. I'm fine.
24	MR. STACK: In summary, we'll go to where
25	are we now in the DC application. Again what you see
ļ	

(202) 234-4433

	87
1	is that it's a US EPR is an evolutionary active plant
2	design. Again, we've used improvement analytical
3	methodologies and the FSAR is consistent with key NRC
4	guidance documents, in particular, the SRP.
5	Exemptions and exceptions have been
6	minimized. And we haven't taken any credit for RTNSS
7	as a part of the design as part of the license.
8	With that, that closes out again
9	background section. We'll move into the chapters.
10	And the chapter discussion of these is just going to
11	follow at 80,000 feet. What are the topics that are
12	covered and it's just right out of the FSAR. And then
13	some of the key highlights.
14	Again, for chapter three, again design of
15	SSCEs, systems, structures, components, equipment.
16	And again you're looking at the standard set. There
17	is nothing added to these. So the topics for this
18	plant.
19	When you look at the key items of
20	interest, we looked at these basically from the
21	standpoint of let's start at overall what affects the
22	site first predominantly and then let's get into some
23	of the more details inside the plant.
24	Some of the main points out of this, the
25	EPR is designed to have external flood protection
ļ	1

(202) 234-4433

	88
1	where we use a dry site concept. In this the site
2	platform level or grade level arranged above the
3	maximum level for design basis flooding, that's
4	consistent with pretty much all of the other ALWRs
5	were licensed. It comes out of the EPRI ALWR
6	requirements. In this we're keeping the max flooding
7	level at least one foot below grade in the limit as
8	far as the way what's required in the license.
9	When we move to seismic design bases, the
10	plant has been designed with
11	MEMBER SHACK: What's your flood margin?
12	MR. STACK: The flood margin is dependent
13	on site specifics.
14	MEMBER SHACK: So vital equipment is how
15	much higher than this?
16	MR. STACK: Okay. So when you look at the
17	design right now, the design again uses what we'll
18	term the dry site concept. If we went and sealed the
19	doors and we made all the doors at grade level flood
20	proof, the first time we would get into trouble was
21	when we would hit an air intake into the buildings
22	whether it's an EDG or a fresh air intake for HDAC.
23	The lowest elevation above grade is about
24	39 feet above grade for the air intakes. So there is
25	a minimum number of doors at grade and the air intakes
Į	

(202) 234-4433

(202) 234-4433

	89
1	are elevated for this plant.
2	MEMBER CORRADINI: And the base design
3	requires water-tight doors.
4	MR. STACK: The base design does not
5	require water-tight doors. Typically what would
6	happen is our COL applicants will have to confirm that
7	they have adequate flood protection when they do their
8	chapter 19 evaluation of external hazards.
9	If someone, for example, cited this at a
10	location where it was very close to the flood plain,
11	then they would typically go and say "We're going to
12	install flood proof or we're going to install leak
13	tight doors at grade level to provide that level of
14	protection." But that would be dealt with on a site
15	specific basis.
16	Moving onto seismic design, the seismic
17	design is designed at a 0.3 g peak ground
18	acceleration. We're using a European utility
19	requirement spectral shape. We've also added to that
20	a high frequency control motion at 0.2 g horizontal
21	and 0.18 g vertical to that. And the plant is being
22	designed for a range of soft, medium, hard rock sites.
23	So we have a pretty broad envelope as well
24	as a pretty robust set of spectra to consider. And
25	then the last point we mentioned earlier that we have
I	1

(202) 234-4433

	90
1	the reactor building safeguards two and three in the
2	fuel building that are designed with a reinforced
3	concrete shield building.
4	Again that's providing protection against
5	missiles including large commercial aircraft. It's
6	also providing the standard GDC 2 protection that you
7	would expect.
8	Moving into one of the other items of
9	interest in these, when you develop a certified design
10	one of the issues comes to what's an essentially
11	complete design particularly as it relates to cybil.
12	And to demonstrate that we have an essentially
13	complete design for the US EPR we're required to look
14	at critical sections and evaluate and design critical
15	sections in the plant.
16	AREVA used a three step methodology to
17	identify which critical sections do we want to look
18	at. And that included a qualitative part. Does the
19	structure support some qualitative safety function,
20	for example, providing a barrier to radioactive
21	release. So, for example, on that you say I need to
22	look at the containment.
23	Alternatively, we also looked at
24	quantitative criteria where we looked at the finite
25	element model. We looked at highly stressful
	I

(202) 234-4433

	91
1	locations and say, "These are highly stressful
2	locations that we should analyze for critical
3	sections."
4	And then there was a third supplemental
5	criteria that was really aimed at maintaining a
6	balanced representation of critical sections of the
7	plant. In total, we're looking at 36 critical
8	sections that encompass the Cat 1 structures for the
9	US EPR.
10	MEMBER SKILLMAN: Tim, before you go on,
11	in the status report about 120 pages of comments,
12	approximately 10 percent of those, about 12 pages, are
13	pages that focus on compliance with Reg. Guide 1.29
14	SSCs. And they're riddled between safety related and
15	important to safety.
16	And when you talk about components what
17	comes to my mind is where are you or where is AREVA in
18	resolving the safety related and important to safety
19	and those with augmented quality structure, systems
20	and components in conformance with Reg. Guide 1.29?
21	This is a riddle that's gone on for years
22	and years. There has always been confusion. But the
23	number of pages of comments leads me to believe that
24	there is a turbulence under this issue for this
25	application.
	I

(202) 234-4433

	92
1	MR. STACK: I don't know if turbulence is
2	a word I'd use. I would say right now there is an
3	open item to clarify out the classification process in
4	Section 3.2 of how it's applied to address the
5	important to safety question. It appears as though
6	there are multiple open items. Not just one. There
7	are numerous open items.
8	MR. STACK: Could be more than one. I'll
9	say that there's an RAI.
10	MR. GARDNER: Many of those RAIs have been
11	resolved. There is a few questions that are still
12	open, but we're submitting a revision to that section.
13	But I would say that part of the discussion that got
14	added was that those things that meet the definition
15	of 50.2 and then those things that are deemed risk
16	significant under the RAP program, identify those
17	things of being important to provide protection if
18	seismic shows up.
19	The other thing if you're talking about
20	1.29 specifically from seismic, I mean is that the
21	question you're asking?
22	MEMBER SKILLMAN: To me seismic is a piece
23	of it. It's really the categorization in ensuring
24	that what's going to be design certification that the
25	final categorization of these structures, systems and
ļ	I

(202) 234-4433

	93
1	components meet the regulation so that we're not
2	sitting in this room three or four years from now
3	saying "Gee whiz, we botched that because we didn't
4	require conformance with well-known regulation."
5	MR. GARDNER: I think that we would say
6	that we do comply. I guess maybe we would explore the
7	seismic piece because I'm not sure with the 1.29 the
8	question you're asking. But we don't credit anything
9	unless it's been seismically qualified. Say, in terms
10	of the RAP program and the PRA where we're looking at
11	these things that have some risk significance and
12	importance to safety, if it's not been designed
13	seismic then it's simply assumed it failed. It's just
14	not credited.
15	And that's maybe the easiest way I can
16	help explain. So for things that are designated as
17	safety related or seismic category one or two, then
18	there's a credit for performance. If not
19	MEMBER STETKAR: Darrell, you have to be
20	a little bit careful about referencing the PRA because
21	you don't have a seismic PRA. You only have a seismic
22	margin.
23	MR. GARDNER: Seismic margin is PRA.
24	MEMBER SKILLMAN: It is not assumed to
25	fail because seismic events are not modeled in the

(202) 234-4433

	94
1	PRA. Just a clarification.
2	MR. GARDNER: But simply no credit would
3	be given if it weren't designed for seismic. In other
4	words, the safety case is based on those things for
5	which we have specifically designed a function.
6	MEMBER SKILLMAN: Maybe I'll follow up on
7	this with the staff. It leaves me ill at ease that
8	there seem to be so many RAIs and open questions in
9	compliance with Reg. Guide 1.29. And as it turns out
10	Reg. Guide 1.29 applies to all of the smaller
11	components in the plant to the classification system.
12	So if there is in my mind a burden of
13	questions my first question to myself is what's going
14	on here. Why is this so complex? And it becomes more
15	confusing when the titles of important safety and
16	safety related that are not synonymous are being
17	challenged by the staff. So I find this
18	disconcerting.
19	MR. GARDNER: And maybe I'll try to
20	address that only briefly but there is an open item
21	two. I think part of those open items was a lack of
22	clarity on our part in describing how that
23	classification system worked which we are improving
24	and we submitted some material for the staff review
25	that we've gotten feedback on. So I think we're
	I

(202) 234-4433

	95
1	converging on that. Not all the answers are in yet.
2	They're still as I recall a couple of open questions.
3	MEMBER SKILLMAN: Did I hear you say this
4	is work in progress? It's not settled yet. We're
5	still working on.
6	MR. GARDNER: Not so much that it's
7	indecisive. We simply have not just answered all of
8	the questions yet because where we're allocating
9	resources to work on them. Not because we don't know
10	the answer. We just haven't answered those questions.
11	MEMBER SKILLMAN: It's a work in progress.
12	MR. GARDNER: Work in progress, yes.
13	MEMBER SKILLMAN: Okay. Thank you.
14	MR. STACK: Okay. Now we'll move into
15	more into the competent level of chapter three. And
16	there are three items of interest we put in here deal
17	with first leak before break where we've have a leak
18	before break for the reactor coolant main loop, the
19	pressurizer surge line and the main steam lines inside
20	containment. Those are using NUREG 1061 as well as
21	the SRP as guidance for how those are done.
22	The staff will be covering some detail on
23	what they've done as confirmatory analysis. I won't
24	spend much more time on that yet.
25	MEMBER SHACK: Your piping design is then
l	I

(202) 234-4433

	96
1	finalized enough that you could actually do this. Or
2	is this a commitment to design these leak before
3	break?
4	MR. STACK: I'm not sure I understand your
5	question.
6	MEMBER SHACK: Do you have a piping
7	geometry that you've demonstrated to meet the leak
8	before break criterion or you're just saying that when
9	you've had the final design you will design it so that
10	it meets leak before break?
11	MEMBER SIEBER: Due to commitment or fast.
12	MR. STACK: I would say two things. One,
13	I will get back to you. The second thing is my
14	understanding is we've established the critical break
15	locations for the
16	MEMBER SHACK: Okay. So you haven't done
17	this, but you've done the structural one that you've
18	done enough of the design with these critical
19	sections.
20	MR. STACK: The things that we're
21	crediting.
22	MEMBER SHACK: The things that you're
23	crediting, okay. So it's a critical sections approach
24	rather than a final design. But it's more than a
25	commitment because you've got the critical section.
I	I

(202) 234-4433

	97
1	MR. STACK: Now other piping is not
2	designed. But the reactor coolant loop piping we've
3	done the design necessary to answer these kinds of
4	worst critical break locations.
5	MEMBER SHACK: That's fine.
6	MR. STACK: Next up we had on jet
7	impingement and pipe whip effects. In this one in
8	particular there were nonconservatisms that were
9	identified in the ANS 58.2 methodology. As a result
10	of that, AREVA submitted a proprietary methodology for
11	dealing with the external loading effects for the jet
12	impingement, unsteadiness, resonance and jet
13	reflection. That's a proprietary report that again
14	that AREVA has submitted.
15	MEMBER SHACK: Is it still being reviewed?
16	MR. STACK: Darrell, has the review been
17	completed on the
18	MR. STACK: 10.318.
19	MR. STACK: I thought it was ongoing, but
20	10.318.
21	MEMBER SHACK: We'll eventually see that
22	in some fashion or the EPR subcommittee will see that
23	in some fashion eventually.
24	MR. GARDNER: That's correct. There are
25	still open questions that are being resolved. There's
ļ	I

(202) 234-4433

	98
1	an open item there.
2	MR. STACK: And then finally thank you.
3	On the in-service test program, it's a fully described
4	program in the SAR and one key point from these is it
5	includes provisions for full flow testing the pumps
6	and valves.
7	We'll move onto the chapter nine. And in
8	general when we got into chapter nine, most of the
9	systems you see in this, HVAC systems, water systems,
10	are pretty typical of what you would see in an
11	operating plant.
12	So just when we looked at the cooling
13	water systems we just wanted to get an 80,000 foot
14	overview of how they worked. And what you see in this
15	is we start here in the CCW system, component cooling
16	water. Sorry. Component cooling water, essential
17	service water, ultimate heat sync, generator, safety
18	chilled water system.
19	So we'll start on the component cooling
20	water system. Typically you're looking at removing
21	heat from nuclear island loads. These could be things
22	like RCP thermal barrier coolers or RHR heat
23	exchangers. It's also removing heat and this is in
24	trains two and three from the safety chilled water
25	system. In trains one and four, those safety chilled
	I

(202) 234-4433

	99
1	water chillers are air cooled.
2	Here we're using chilled water to cool our
3	HVAC loads. And again that's safety related in this
4	case. And we just have a closed loop for the CCW
5	pump. It circulates that back to a CCW heat
6	exchanger. And that's transferring heat to the
7	essential service water system.
8	And the essential service water system,
9	it's going to take suction from a basin of a
10	mechanical draft cooling tower, UHS basin. And then
11	it's going to pump it and it's going to cool primarily
12	two loads. The CCW heat exchanger and then it's
13	providing direct cooling for the emergency diesel
14	generators.
15	And then that's going back to a UHS tower.
16	These are mechanical draft, induced mechanical draft
17	cooling towers, that have all the appropriate missile
18	protection, etc. GDC 2 protection that they need.
19	And that's the general train.
20	MEMBER SIEBER: There are separate cooling
21	towers from the main unit cooling tower.
22	MR. STACK: Yes, they are.
23	MEMBER SIEBER: And how much head and flow
24	do you need to operate them at the right heat exchange
25	rates? How big are the emergency service water pumps?
ļ	

(202) 234-4433

	100
1	MR. STACK: Okay. We'll get to that
2	number in a second.
3	MEMBER SIEBER: Okay.
4	MR. STACK: But that's as far as the
5	safety grade cooling chain that's the safety grade
6	cooling chain that we see for the US EPR.
7	MEMBER SKILLMAN: Let me ask this about
8	the safety grade chilled water system. How common is
9	it to have a safety grade refrigeration compressor,
10	safety grade refrigeration heat exchanger and safety
11	grade whatever the refrigerant is that you're using?
12	How common are these?
13	MR. STACK: Common in which regard?
14	MEMBER SKILLMAN: I recall years ago
15	having extreme difficulty getting safety grade
16	refrigeration equipment. And here you are. This
17	design is depending upon this safety grade chilled
18	water system to cool seals and other critical
19	functions.
20	So that suggests to me that the equipment
21	that's in the safety grade chilled water system will
22	be a complex of components that are themselves safety
23	grade. They're going to be seismic 1, QA 1. They're
24	going to have a whole Appendix B to 10 CFR 50 program
25	associated with them.
Į	I

(202) 234-4433

	101
1	MR. STACK: That's correct.
2	MEMBER SKILLMAN: So how common is this
3	equipment? Where do you get it?
4	MR. STACK: In most of this I mean some of
5	the designs we see in this we are adopting our design
6	from Europe. But as far as given in the United
7	States, we've seen equipment qualified, safety grade
8	cooling systems like this qualified, in the past. And
9	it would have to in fact be qualified for this
10	application and just as you said it would have to meet
11	all the Appendix B requirements to accomplish that.
12	MEMBER SIEBER: These are not
13	refrigeration systems. These are just heat
14	exchangers. Right?
15	MR. STACK: This is just a heat exchanger.
16	MEMBER SIEBER: Right. It's commonly
17	qualified.
18	MR. STACK: The heat exchanger is very
19	common. The chillers themselves is more of a question
20	on the safety The chillers themselves are less
21	common especially in the United States.
22	MEMBER SIEBER: Right.
23	MR. STACK: But in fact
24	MEMBER SIEBER: These are mechanical
25	chillers.
I	

```
(202) 234-4433
```

	102
1	MR. STACK: Yes.
2	MEMBER SIEBER: Okay. For the
3	refrigerant.
4	MR. STACK: Yes.
5	MR. GARDNER: The plant's licensed now for
6	the big chillers in their air conditioning systems.
7	MEMBER SIEBER: Right.
8	MR. STACK: It's not necessarily that
9	common. But people have done it before.
10	MR. GARDNER: In terms of air
11	conditioning, aux building, safety grade ventilation
12	with safety related chillers.
13	MEMBER SKILLMAN: Thank you. Okay.
14	MR. STACK: The flow rate 19,300 gpm per
15	ESW.
16	We'll move onto fuel handling and storage.
17	Just some of the key points. The first one is we just
18	covered the spent fuel cask transfer facility design
19	in the previous discussion which I didn't have the
20	pleasure to present. I'm very disappointed with that.
21	(Laughter.)
22	Next up on the fuel rack modules.
23	Basically our design is based on it's covered in a
24	technical report, TN Rack .0101, which details the
25	overall modules and methodology. It's based on our
	I

(202) 234-4433

	103
1	dry cask and our transportation cask designs that
2	we've used in the past.
3	In those we have over 40 years of
4	experience with doing those through TransNuclear. And
5	it's building on that experience for this application.
6	And then finally we wanted to cover spent
7	fuel pool cooling and makeup. For spent fuel pool
8	cooling first, one of the things that's kind of unique
9	about the US EPR is that that safety grade spent fuel
10	pool cooling. So you have fully redundant safety
11	grade cooling of spent fuel.
12	So that's in two trains. Each train has
13	two safety related pumps and one heat exchanger that
14	are providing cooling for the spent fuel pool.
15	Separately from that, for makeup, there is
16	a EDT backed seismic Cat 1 makeup pump that takes
17	suction from two transfer canals inside the spent fuel
18	pool. They are both seismically qualified. And
19	that's the normal method.
20	And then there's a backup method that
21	relies on the seismic Cat 1 IRWST as the approved
22	method for how we're going to provide makeup. And
23	that's per the SRP and one of the Reg. Guides. I
24	forget the number that indicate that's an acceptable
25	way to provide makeup. So that's basically when you
I	1

(202) 234-4433

	104
1	look at the design that's what's included in the US
2	ERP.
3	MEMBER SIEBER: The IRWST are the ones in
4	containment, right?
5	MR. STACK: Yes. I would also mention
6	that there are also other methods beyond this that are
7	also available. Demin water storage tank is 600,000
8	gallons. That's not seismic. There are a number of
9	other seismically and non-seismically qualified
10	sources that we can use for this.
11	MEMBER SIEBER: Okay.
12	MR. STACK: We'll move onto chapter 14.
13	MEMBER BLEY: So if you're using the IRWST
14	as a backup, if you're using it as a backup, what kind
15	of requirements will have you on what volume you have
16	to save in there for the core should you ever need it?
17	MR. STACK: And again when we look at the
18	normal backup and we look at spent fuel pool makeup,
19	there are probably four or five or six different ways
20	we can provide makeup for the pool. Again, some are
21	seismically qualified.
22	MEMBER BLEY: But if you should, not you,
23	but if the guys running the plant should go to the
24	RWST
25	MR. STACK: Okay.
I	

(202) 234-4433

	105
1	MEMBER BLEY: what kind of
2	administrative requirements or automatic requirements
3	will maintain whatever needs to be maintained for the
4	core?
5	MR. STACK: And at this point in time
6	we've not established formal limits on that.
7	Ultimately, those will be in the EOP though.
8	MR. GARDNER: Well, the tech specs. The
9	tech specs have a limit. So I think the short answer
10	to your question is you couldn't drop it below your
11	tech spec minimum required volume for the RWST.
12	MR. STACK: Or you may have to use another
13	source. Again, the IRWST is credited source. But
14	there are other more preferred sources.
15	MEMBER BLEY: I just get a little nervous
16	of having not source be a credited source to go
17	somewhere else.
18	MEMBER SIEBER: Yes. One of the issues is
19	there aren't very many borated sources and I presume
20	you want to meet some minimum boron concentration in
21	your makeup or at least limit the amount of makeup
22	water you use in a spent fuel pool leak so that the
23	pool boron concentration is not below some minimum
24	value.
25	MR. STACK: That's correct. I would also
I	

(202) 234-4433

	106
1	mention that when you look at the Let's talk
2	capacity for a moment. When you look at the sources
3	of water that are used in this, each of them is the
4	seismic Cat 1 sources to the makeup pump, each one is
5	50,000 gallons. It's not an enormous amount of water.
6	These pumps are small. This pump is
7	small. It's a low capacity pump and you're really
8	just making up for evaporation. I mean that's really
9	what the design basis of this safety related makeup
10	is.
11	MEMBER REMPE: Do you have high density
12	racks or have you decided what type of racks you'll
13	have in there?
14	MR. STACK: These are low density racks.
15	MEMBER BLEY: I'm sorry. I'm sitting here
16	thinking about this and I'm thinking of reading an
17	event report one day where they find a gigantic flood
18	where you'd overspilled the pool and your RWST isn't
19	where it ought to be.
20	MR. STACK: Understand.
21	MEMBER BLEY: We move from design to
22	administrative controls to protect that RWST.
23	MR. GARDNER: I'll just make sure because
24	I think we've
25	MEMBER BLEY: I'm thinking of an oddball
I	I

(202) 234-4433

	107
1	event. I'm not thinking of design conditions.
2	MR. GARDNER: Yes, because the source of
3	water for makeup, a credited source, is not the IRWST.
4	MR. STACK: That's correct.
5	MR. GARDNER: We have a source that you
6	would make up from it that is credited that's the
7	normal makeup source that's in excess of the 50,000.
8	MEMBER BLEY: I understand. But you're
9	given guys an opportunity to use water and people in
10	the plant use water not always in the ways designer
11	figured they would.
12	MR. GARDNER: Understood.
13	MEMBER BLEY: I'm just wondering why you
14	rigged it so you can do that with all these other
15	sources that are bound to be good enough. I can just
16	think of once you fall back on administrative controls
17	things happen sometimes. I don't quite get it. As
18	you point out, you've got lots of sources of water.
19	Go ahead.
20	MR. STACK: We'll move onto the initial
21	test program.
22	MR. THALLAPRAGADA: We just want to make
23	one correction. This is Pavan Thallapragada from
24	AREVA. The fuel racks are two kinds. There are high
25	density racks and low density racks in the spent fuel
	I

(202) 234-4433

	108
1	pool.
2	MEMBER REMPE: Thank you.
3	MR. STACK: Okay. Back to the initial
4	test program. I'm sorry. Verification in chapter 14
5	and there are basically two parts to this, the initial
6	test program and ITAAC.
7	And when you look at the first main part
8	in the initial test program we're really trying to
9	demonstrate functionality prior to fuel load. When we
10	break down the initial test program, there really are
11	two parts. There's a pre-operational part that's
12	taking you up to fuel load and then there's the start-
13	up part that's basically taking you to final turnover
14	to the customer.
15	But again in terms of these we're trying
16	to demonstrate functionality. We're also trying to
17	demonstrate the EOPs as well as the tech spec
18	surveillance programs. Trying to confirm any unique
19	US EPR design features. And then cover transient
20	tests that demonstrate the ability to handle plant
21	perturbations.
22	In total, there are 173 pre-operational
23	tests and 49 start-up tests. And the conduct of the
24	overall initial test program is going to be the COL
25	applicant's responsibility.
I	·

(202) 234-4433

	109
1	As far as unique features, and we could
2	cover a variety of these, we decided to chose several
3	here for what we thought would be of interest. And
4	I'll cover a few of these.
5	First, let me mention the fixed self-
6	powered neutron detectors, the SPNDs. The SPNDs as we
7	talked about in our chapter seven discussion are used
8	as a part of the in-core reactor trip for the
9	protection system.
10	I want to come back and before I move on
11	with this to the cold question which that was in the
12	Calvert Cliffs on the mixed core. And US EPR is
13	currently not licensed for mixed core. And that's the
14	current licensing basis of the plant.
15	MEMBER ABDEL-KHALIK: Not licensed.
16	MR. STACK: It's not licensed for mixed
17	core.
18	MEMBER ABDEL-KHALIK: So what was sent to
19	us at the meeting with the COL applicant?
20	MR. STACK: I think and I looked back
21	through transcripts. The staff position on it was
22	correct. They've imposed a restriction in chapter 15
23	that said you can't use mixed cores.
24	As far as the applicant or the licensee
25	down the road, in principle they could always take a
	1

(202) 234-4433

Í	110
1	plant specific license amendment request that would
2	allow them to do a mixed core or something else. So
3	they always have the latitude to do that. The design
4	certification doesn't provide justification for mixed
5	core.
6	MEMBER ABDEL-KHALIK: But if you have a
7	mixed core, I mean is that at all a possibility with
8	an in-core trip system?
9	MR. STACK: At this point in time, we
10	haven't really thought about that as a specific
11	question that we're designing to. And we're not
12	licensing the plant that way at this juncture.
13	MR. STACK: So again we look at the SPND.
14	CHAIRMAN ARMIJO: I've got to ask. Is
15	there a fundamental reason why you're not doing that?
16	(Off the record comment.)
17	I understand that, but I wouldn't
18	(Laughter) that wouldn't give them flexibility to buy
19	
20	MR. GARDNER: I don't think we're saying
21	that it's not capable. I think certainly what we're
22	saying that as part of design certification we aren't
23	requesting or proposing codes and methods to certify
24	use of mixed cores. Certainly it's possible.
25	CHAIRMAN ARMIJO: My question was more

(202) 234-4433

	111
1	towards is there anything, fundamental or technical
2	reason why this reactor couldn't handle it.
3	MR. GARDNER: No.
4	CHAIRMAN ARMIJO: So it's really
5	methodology, licensing.
6	MR. GARDNER: All the licensing process.
7	CHAIRMAN ARMIJO: Okay.
8	MEMBER ABDEL-KHALIK: But being able to
9	detect actual flow distribution within the core when
10	you have a mixed core so that you can reprogram your
11	in-core trip system, that's the complexity, isn't it?
12	MR. GARDNER: I'm not sure I followed
13	that.
14	MEMBER ABDEL-KHALIK: If you have a mixed
15	core, do you know exactly what the flow rate in the
16	various subchannels will be?
17	MR. STACK: I think those are the kinds of
18	questions that would have to be answered as part of
19	that licensing process for
20	MEMBER ABDEL-KHALIK: So right now your
21	in-core detection system would not work if you have a
22	mixed core.
23	MR. STACK: I think we would look at it
24	differently than that.
25	MR. GARDNER: We have not demonstrated
ļ	I

(202) 234-4433

	112
1	that it's an acceptable design for mixed cores. We're
2	not saying it's not possible to demonstrate it. We're
3	simply have not proposed that.
4	MEMBER SCHULTZ: And you may have to
5	address that issue if in the future the AREVA fuel
6	design changes in such fashion to affect assembly
7	flow.
8	MR. GARDNER: Absolutely.
9	MR. STACK: That's correct.
10	MR. STACK: Okay. Just a few. I'll pick
11	out two others from the list. We'll talk just for a
12	moment about the standstill seals. We've had
13	discussion on that. There will be testing of the
14	standstill seals.
15	This portion of the testing of the
16	standstill seals is aimed at proving that it will
17	function. We've already qualified the standstill
18	seals as part of their qualification program. Initial
19	test program is not trying to requalify equipment for
20	some design basis accident. It's just really trying
21	to demonstrate that it works. And that's the focus
22	here is proving functionality.
23	And then on the last one in the partial
24	trip this is showing more of an
25	MEMBER RAY: Wait, wait, wait. You went
ļ	I

(202) 234-4433

	113
1	past natural circulation.
2	MR. STACK: Okay.
3	MEMBER RAY: I've been waiting all this
4	time.
5	MEMBER CORRADINI: Don't let him get too
6	far behind. I'm waiting for the next chapter.
7	MEMBER RAY: I don't want to take up time
8	with a bunch random questions here. Was there nothing
9	you would going to say about natural circulation?
10	MR. STACK: I mean typically it's a pretty
11	typical natural circ test. It's reactor coolant pumps
12	are going to be idle and if we're going to demonstrate
13	adequate natural circulation then I mean it's a
14	pretty standard test. It's pretty typical of what
15	people are doing now when they install new steam
16	generators.
17	MEMBER RAY: Okay. But the problem is if
18	the pressure hangs up you don't get it down and
19	inventory declines and you get the bubble transfers to
20	the head. And the natural circulation stops. It's
21	that sort of a scenario. Or you overcool and it cold
22	traps it and you can't get it restarted again. Those
23	kind of things. But this isn't the place I can go
24	into that.
25	I just take for granted that you use
	I

(202) 234-4433

	114
1	natural circulation under the analyzed accident I
2	guess and it doesn't it's not in your analysis
3	problematic or dependent upon controlling the rate of
4	cooldown or that sort of thing. In other words, you
5	can get the pressure down so that you can make up in
6	before you wind up with a bubble in the head.
7	MR. STACK: Again at this point we don't
8	see it as being problematic. Again I will mention
9	that for EPR right now there are four under
10	construction at OL3, FA3 and two in China in Taishan.
11	And any concerns typically especially on an item like
12	natural circulation, if we did in fact discover a
13	problem in their initial test programs there,
14	obviously we would be transferring that to US EPR.
15	MEMBER RAY: It's for another time.
16	MEMBER SKILLMAN: Let me ask. Where are
17	cobalt-59 SPNDs in service now?
18	MR. STACK: They're used in Europe.
19	MEMBER SKILLMAN: Thank you.
20	MEMBER ABDEL-KHALIK: I guess you were
21	going to check on the reactor coolant pump trip
22	criteria. What I heard was you get reactor coolant
23	pump trip on initiation of SI.
24	MR. STACK: And it was tied to again we
25	looked it up memory is it's tied to SI or
I	I

(202) 234-4433

	115
1	containment isolation and it's SI plus a DP across the
2	pump. We could pull the exact logic, but that's
3	basically what it is.
4	MEMBER ABDEL-KHALIK: So if you have a
5	steam generator tube rupture, would you reach that
6	trip criteria?
7	MR. STACK: What happens on our tube
8	rupture in chapter 15 is the tube rupture progresses
9	so slowly that all the actions are manual. At 30
10	minutes in you don't have any automatic actions. And
11	the actions are all taken manually at 30 minutes in as
12	the event progresses because of the size of the
13	rupture.
14	MEMBER ABDEL-KHALIK: Okay.
15	MR. STACK: So you don't In particular
16	on the tube rupture, you don't get any automatic
17	actions.
18	MEMBER SIEBER: Right.
19	MEMBER ABDEL-KHALIK: It depends on the
20	size of the rupture.
21	MR. STACK: Right.
22	MEMBER SIEBER: Sooner or later you would.
23	MR. STACK: Okay. So the
24	MEMBER RAY: Wait a minute. In saying
25	that you're crediting nonsafety related makeup.
ļ	I

(202) 234-4433

	116
1	MEMBER SIEBER: Right.
2	MR. STACK: As far as in the tube rupture.
3	Yes, initially as they're going on you're crediting.
4	Yes, you are.
5	MEMBER RAY: Yes. All right. So that's
6	a difference. But again this is the place to pursue
7	it.
8	MR. STACK: The last item I will mention
9	here is on the partial trip. So we talked about
10	having 100 percent load rejection. Wait here for a
11	minute.
12	(Off the record discussion.)
13	CHAIRMAN ARMIJO: The chairman is tied up
14	with Should he go on?
15	MEMBER RAY: Say it again.
16	CHAIRMAN ARMIJO: He's waiting to see if
17	you want him to proceed.
18	MEMBER POWERS: Please.
19	MR. STACK: So we'll talk a bit about a
20	partial trip. And a partial trip is where we insert
21	some of control banks on certain conditions. And
22	probably one of the largest of these is we talked
23	about having 100 percent load rejection capability.
24	So is we separate it out on in the transmission system
25	outside of the switch yard what the EPR will do is the
I	

(202) 234-4433

	117
1	load will be transferred in the electrical switchyard
2	to power from the turbine generator output. We will
3	power the in-house loads.
4	And what will be happening here is we will
5	take a partial credit of the reactor which will reduce
6	reactor power to blow 50 percent. And we'll stay
7	synchronized in that case and keeping the balance of
8	the heat removal back on turbine bypass. And then
9	you'll allow the plant to back down in power.
10	In a case like that, it will go much lower
11	than 50 percent power to a stable condition. So
12	basically what the partial trip is doing is it's
13	keeping you synchronized when you can which is
14	desirable when you go through these events.
15	And this is again a fully integrated
16	effects test which is testing the control system as
17	well as all the hardware setpoints to make sure that
18	it does what is claimed to do. Those are really some
19	of the main items on unique features.
20	MEMBER ABDEL-KHALIK: Has that actually
21	been demonstrated before? The condenser back downs?
22	MR. STACK: Have people demonstrated those
23	reactions, yes.
24	MEMBER ABDEL-KHALIK: And mostly to remain
25	online.
ļ	

(202) 234-4433

	118
1	MR. STACK: Yes.
2	MEMBER SIEBER: Yes.
3	MR. STACK: And then finally that
4	basically covers the initial test program. Then we'll
5	cover briefly an ITAAC. ITAAC is pretty standard.
6	The selection criteria are per the SRP 14.3.
7	For the US EPA I will mention there are
8	only design acceptance criteria which are only used in
9	two places. One is on piping design. And the other
10	is on human factors engineering. So there's a small
11	population of applications of DAC for the US EPR
12	design.
13	Okay. So now we get to the terse
14	presentation on PRA. And I could have brought the
15	army of PRA experts here and I'm sure we would have a
16	very interesting discussion for quite some time.
17	Alternatively I'll hit the high notes.
18	MEMBER CORRADINI: Make it short and
19	sweet.
20	MR. STACK: So chapter 19 is going to have
21	the PRA and the severe accident evaluations. And as
22	far as the PRA, generally speaking again what we're
23	trying to do in the PRA is demonstrate that we had a
24	robust design to demonstrate that we met the
25	Commission's quantitative safety goals.

(202) 234-4433

1 And we did a PRA that was commensurate with the design certification and the ASME standards 2 3 on PRA where we have a level one, level two and level 4 three analysis at the appropriate level of detail 5 where we considered a spectrum of events. And again what we were really aiming at here in part is looking 6 7 at -- and our level three was really aimed in large 8 part to support the environmental report and the SAMDA 9 evaluations for this severe accident management design 10 alternatives to see whether design upgrades were appropriate or not and justified. 11 of 12 When look at the scope the you initiating events, again consistent with what 13 vou 14 would expect to see on a design certification we had and at shutdown. 15 internal events at power We considered internal hazards like floods and internal 16 17 fires both at power and at shutdown. And then we considered a high level of external events. 18 19 in particular we did a Here seismic This was looking at a 1.67 X a 20 margins assessment. safe shutdown earthquake. It demonstrated we didn't 21 any significant vulnerabilities. 22 The COL have applicants would have to go and confirm that as a part 23 24 of their work product to make sure that they have that same finding. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

119

And then for the other external events, we have a high level qualitative evaluation that was performed similarly on this. And when we talk about flooding as an example or hurricane winds the COL applicants would have to confirm that they did not have a significant vulnerability. And that would be based on site specific details that they have.

8 As far as the other external hazards, a 9 very, very high level assessment of that. And again 10 we see that in the COL applicants where they've gone and they've evaluated those. As I've looked at those 11 in the past, there were no significant challenges 12 relative to the other external hazards within the COLs 13 14 themselves. But for design certification this is what we've done for the external events. 15

When we looked at the severe accident design features, I mentioned a lot of these earlier. This is really just a kinds of reiteration of this. I was not going to go into a detailed discussion of the severe accident phenomena and what all we've -how all we've analyzed it and what the success criteria were even in the PRA.

23 MEMBER CORRADINI: Can I ask a simple 24 question?

MR. STACK: Please do.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

1

2

3

4

5

6

7

	121
1	MEMBER CORRADINI: So if the core
2	retention device doesn't work, how does it change the
3	LRF numbers?
4	MR. STACK: Off the top of my head I don't
5	have an answer to that. That may in fact have been
6	included as part of our analysis. And we can look at
7	that.
8	MEMBER CORRADINI: Okay. And a
9	subquestion of that is is the core retention devices
10	under or I want to say below grade cooling system
11	subcooled or saturated water as the plan or does it
12	evolve from subcooled to saturated?
13	MR. STACK: My expectation is the latter.
14	MEMBER CORRADINI: Okay. I was guessing
15	that, but I was just curious.
16	MEMBER POWERS: Mike, when you say if the
17	core retention device doesn't work, what is it that
18	doesn't work?
19	MEMBER CORRADINI: If you don't stop it
20	and it's spreading, you get the traditionally
21	guesstimated effect that it starts eating through the
22	concrete base mat.
23	MEMBER POWERS: You would expect that a
24	plant would respond much like an existing large, dry
25	containment building in which case as someone pointed
I	I

(202) 234-4433

	122
1	out to me once that If the worse thing that ever
2	happens to you is a melt concrete interaction in a
3	severe accident you're in really good shape.
4	MEMBER CORRADINI: Thank you, Dr. Powers.
5	I was guessing the LRF would not change. But I was
6	curious if this was considered. Because it came up in
7	our certifications a similar sort of question.
8	MEMBER POWERS: Yes, I mean the things
9	experimentally when we looked at core retention
10	devices the problem is that the kind of a fool's game
11	is if they're passive then what you assure is that
12	your core melt sits at the melting point of whatever
13	your refractory is. And that's typically very hot.
14	And that's fine until you go through it
15	and it does hit the structural concrete. Then it's an
16	inspirational event meant for converting pagans into
17	Christians very quickly.
18	MEMBER CORRADINI: I won't
19	MEMBER POWERS: It's not a passive system.
20	It's an active system. So the failure you must be
21	hypothesizing the failure I would hypothesize is
22	something keeps it from cooling. But again with a
23	large dry containment it's going to respond like a
24	large dry containment. And it's probably less
25	pressurization than you would get when your system
Į	I

(202) 234-4433

	123
1	actually works because you're putting a lot of the
2	heat into decomposing concrete.
3	MEMBER CORRADINI: Here's a question
4	that's going through my mind and then you can store it
5	away. You don't have to deal with it now which is if
6	I'm subcooled water and I somehow lose active cooling
7	can I cool it from below with saturated water or do I
8	end up in this interesting situation and I start
9	failing the retention device and have melt going into
10	subcooled water? That's what I'm struck with in a
11	confined space.
12	MEMBER REMPE: Is there
13	MEMBER POWERS: That, too, is an event
14	that will convert pagans into Christians.
15	MEMBER CORRADINI: That's the conversion
16	event that I'm interested in.
17	MEMBER POWERS: You're talking about the
18	beta experiment.
19	MEMBER REMPE: Isn't there an area and a
20	maximum depth? And as long as you have enough area
21	which I think they do in this containment that
22	MEMBER POWERS: That's their idea to just
23	spread it.
24	MEMBER REMPE: Yes. So I think this is
25	just like adding even more to what they met the
I	1

(202) 234-4433

	124
1	surface area requirement which some of the designs
2	MR. STACK: That's correct. Some of the
3	designs criteria and the area is nominally about
4	the same. Okay.
5	MEMBER CORRADINI: Okay. Thank you. I
6	put it, asked it. I'm done.
7	MR. STACK: Next up and that will get us
8	basically what's the answer. So when we looked at the
9	quantitative results that came out of the PRA looking
10	at core damage frequency and large release fraction
11	and condition of containment failure probability what
12	you saw is basically for the core damage frequency you
13	saw that the shutdown events were about 10 percent of
14	the total for the core damage frequency as well as for
15	the LRF.
16	The numbers as far as these are concerned
17	are the total
18	MEMBER POWERS: I just have to point out
19	that this does not demonstrate you've met the
20	Commission's quantitative safety goal. This
21	demonstrates that you've met the surrogate goals. You
22	have not done the analysis to show that you've met the
23	quantitative safety criteria that the Commission set
24	out.
25	MEMBER BLEY: Just say yes. Just move on.
I	

(202) 234-4433

MR. STACK: Yes. And then finally on the conditional containment failure probability we're seeing 0.5 versus 0.1 for the safety goal. In general we have a robust design. We've informed -- I will mention this.

When you read the SAR and you look at the 6 7 areas where we've looked at making upgrades, we've looked at different things from the PRA where it's 8 9 informed it. But in large part that's looking at what 10 was done in the U.S. What happened overseas years ago was looking at other aspects to the design that was 11 brought to the United States that used PRA to add 12 other features to the design. So it kind of went 13 14 through two evolutions of PRA input as we got to the 15 state we are in right now.

16 So the design was risk informed as it was 17 developed. And we feel we have a very safe design and 18 the PRA has provide useful insights.

19 MEMBER SKILLMAN: Tim, let me ask this I'm reading the status report for safety 20 question. And on page 115 are the words "internal 21 evaluation. fire events contribute to 33 percent of the CDF of 22 Point estimate and mean of the CDF 23 power conditions. 1.8E⁻⁷ per and $2.1E^{-7}$ for 24 are vear the vear respectively." 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

I coupled that with some words back in 1 2 "The EPR fire protection system provides chapter 9. 3 assurance through defense-in-depth philosophy that the 4 Commission's fire protection objectives are 5 satisfied." Then there are a couple of sentences about how that is satisfied. 6 7 My question is this. What is the safety classification of the fire system in the EPR and would 8 9 the contribution be lower if the safety CDF 10 classification of the fire equipment was higher? MR. STACK: Typically when you look at the 11 PRA, the PRA isn't judging the safety classification. 12 MEMBER SKILLMAN: I know that. 13 I'm making 14 the two points independently. One is the comment about the incremental contribution of internal fire 15 events and it's 33 percent of that number in your 16 first column at power $5.3E^{-7}$. One-third of that is 17 internal fire events, 1.8. 18 19 MR. STACK: Okay. MEMBER SKILLMAN: When I read in your 20 chapter 9 about your fire equipment, they are rosy 21 words that have been used since the dawn of time. 22 We've got fire pumps. We've got fire pipes. 23 We've 24 qot nozzles and outlets. We've got spray headers. And we go down to Joe's Garage and buy commercial 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	grade equipment and we put in brass equipment. And
2	that's our fire equipment.
3	What is the safety classification of the
4	fire equipment in the EPR? Is there an upgrade that
5	would give us or would give me confidence that at
6	lease at some level here fire protection equipment in
7	the EPR kind of looks like ECCS equipment? We can
8	I'll have you look that up.
9	MR. STACK: When you're talking about this
10	let me ask you. Are you most concerned about the
11	detection or the suppression?
12	MEMBER SKILLMAN: Suppression. I want to
13	put the fire out and I want to make sure that the
14	equipment that's available does it.
15	MEMBER POWERS: You never get credit for
16	putting the fire out without automatic equipment.
17	MR. STACK: We'll look up the safety class
18	right now for you of the suppression system. I mean
19	I'm sure it's either again Darrell, again it's
20	either going to be nonsafety or NSAQs, one or the
21	other. I suspect, Dennis, AQ. Both can be
22	supplemented grade.
23	MEMBER POWERS: But the argument that you
24	can put the fire out with suppression equipment
25	probably never gets accepted. But you really have to
	I

(202) 234-4433

	128
1	have somebody go in and look.
2	MEMBER SKILLMAN: Got to go fight it.
3	MEMBER POWERS: To get credit for putting
4	the fire out. I mean that's just regulations are
5	couched as though you only get credit for suppression
6	not for actually terminating the event.
7	MR. STACK: Thank you.
8	MEMBER POWERS: I think it would be
9	extremely difficult to persuade somebody that an
10	automatic system would put the fire out and terminate
11	the event without somebody actually going and looking.
12	I mean I just don't know how you could ever persuade
13	anybody of that. And the regulations are casted in
14	that form that somebody has to go look.
15	MEMBER SKILLMAN: I'd reference page 115
16	of the status report please.
17	MEMBER POWERS: Thank you.
18	MR. STACK: So I'll ask. Any other
19	outstanding questions?
20	MEMBER POWERS: Seeing none thank you very
21	much for your 80,000 foot view.
22	MR. GARDNER: Tried to bring you down but
23	_
24	MEMBER POWERS: At this point, we'll turn
25	to the staff.
I	I

	129
1	(Pause.)
2	MR. TESFAYE: Good morning again. I'm
3	Getachew Tesfaye. I'm the Project Manager for EPR
4	Design Certification. Before we get started with the
5	summary of the three chapters that are under review
6	today I'd like to make a correction that was included
7	in the March 15 ACRS letter. I believe that was a
8	question regarding topical report for describing the
9	skilled experiment that supports the assumption of
10	normal flow rate.
11	Actually there is no such topical report.
12	What the staff did was audit the calculation with
13	respect to that and I'd like Dr. Shanlai Lu to explain
14	what they have done.
15	DR. LU: Okay. Shanlai Lu from Reactor
16	Systems and Lead Reviewer on EPR. I think as a
17	calculation that the particular report was audited by
18	the staff three years ago and the testing report of
19	the flow distribution and demonstrated that we can
20	achieve uniform flow. It does not mean perfect
21	uniform flow. But it has some very good uniform for
22	the flow.
23	And the uncertainty of that testing was
24	the fact that into the topical report considered as
25	part of the uncertainty and as DNBR based on that
	1

(202) 234-4433

	130
1	algorithm here. So that's the technical report.
2	We did ask for We did our initial REI
3	after we received the letter from ACRS and then we
4	plan to get that information for you to take a look.
5	And that's and we plan to come back to answer the
6	questions of the three loop operation plus the uniform
7	flow distribution consideration as part of SPND
8	operation there in the algorithm there. I think
9	that's the plan. I think it will be sometime next
10	year when we can come back.
11	MR. TESFAYE: Yes. That was our open item
12	in this review. And again there is no topical report.
13	But if you'd like to take a look at the calculations
14	that supported those assumptions, we can make
15	arrangements for you to review those calcs.
16	All right. With that I guess Thank you,
17	Shanlai.
18	On the slide I have not three but four
19	staff members to support this presentation. We'll
20	concentrate on highlighting confirmatory and
21	independent analysis done by the staff in support of
22	the safety finding for chapters 3, 9, 14 and 19.
23	I'll just go through my normal routine of
24	showing the major milestones. Here again the
25	significant ones are the completion of phase one which
Į	I

(202) 234-4433

	131
1	was back in 2009 and completion of phase two which is
2	this year. And we're going to complete firstly
3	officially in July when we respond to your letter
4	addressing these four chapters that are presented
5	today.
6	This is again a summary of our different
7	phases. Again phase three will be completed once we
8	respond to the ACRS letters on the remaining four
9	chapters.
10	And we are currently in the process of
11	rebaselining the schedule based on the open item
12	response schedule provided by the Applicant, AREVA.
13	And we expect this rebaseline schedule to be issued by
14	the end of May.
15	Review strategy, we've gone through this
16	in the past. Just in summary, there are several
17	preapplication activities including some topical
18	reports and the presentation by the Applicant on
19	unique design features. And I have had several
20	interactions with the Applicant through audits,
21	teleconferences and public meetings. And we are also
22	using for the first time electronic RAI system which
23	facilitated the flow of information between the
24	Applicant and the Staff.
25	And the last one which was critical which
I	I

(202) 234-4433

132 1 is phase discipline as we said in the past we don't We open things until we make sure that the 2 sit on it. 3 open items -- have a clear path forward for the open 4 items. So all the remaining open items I think officially we have close to 520 open items for all 19 5 6 chapters. And every one of them we are confident 7 there is clear path forward for resolution. 8 Now I come to chapter three and here we 9 have a support analysis that will be presented by the 10 staff. And we have 68 open items. A significant open item in this chapter is the detailed analysis on the 11 critical sections. And that is supposed to be 12 submitted to staff in 2013. 13 14 With that, I will introduce Eric. He 15 doesn't have a seat here, but he'll introduce his 16 contractor to present the confirmatory analysis on leak before break. 17 Thank you, Getachew. MR. REICHELT: 18 Good 19 morning. My name is Eric Reichelt. And I'm a Senior Materials Engineer in the Office of New Reactors in 20 the Division of Engineering. I'm the NRC technical 21 reviewer for Section 3.6.3, Leak Before Break Design, 22 for the EPR DCD. 23 24 In February, 2012, the staff provided a presentation to the ACR Subcommittee on the staff's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	133
1	LBB review and confirmatory analysis. We are pleased
2	to be here before the ACRS Full Committee to discuss
3	once again staff's review on leak before break.
4	I'd like to give you a brief overview and
5	introduction on work that was performed for this
6	section. The use of leak before break applications
7	has been utilized in previous design certification
8	applications including their system 80+, AP6000 and
9	the initial AP1000 Rev 15 BCD.
10	It should be pointed out that leak before
11	break is part of a piping design acceptance criteria
12	and is based on preliminary piping design and the use
13	of the bounding leak before break parameters. The LBB
14	approach for new reactors is to use the bounding
15	limits established during the design certification
16	phase and to verify the final as-built design during
17	the construction phase using ITAAC. And this approach
18	has been approved by the Commission in its SRM for
19	SECY 93-087 and which will be discussed by our
20	contractor in more detail.
21	The technical review was performed by
22	Engineering Mechanics Corporation of Columbus, Ohio
23	otherwise known to us to Emc2.
24	At this time, I would like to turn the
25	presentation over to Dr. Prabhat Krishnaswami to
	I

(202) 234-4433

	134
1	discuss the technical review confirmatory analysis and
2	conclusions for section 3.6.3. In addition, we also
3	have Mr. Keith Wichman of Emc2 and David Terao, the
4	Branch Chief of the Component Integrity Branch for
5	additional technical support.
6	Prabhat.
7	DR. KRISHNASWAMI: Good morning,
8	everybody. I'm Prabhat Krishnaswami. And we are
9	contractor to the NRC Engineering Mechanics
10	Corporation of Columbus and we did the confirmatory
11	analysis on section 3.6.3 on leak before break.
12	The regulatory requirements for leak
13	before break come from the general design criteria for
14	in 10 CFR Part 50. And that essentially involves we
15	had to confirm that analysis that was used to exclude
16	from the design basis the dynamic effects associated
17	postulated pipe ruptures.
18	The LBB analysis as defined is quite
19	conservative and it has essentially two safety margins
20	associated with the procedure. It has a safety margin
21	of ten on the leak rate. That is if you have a 0.5
22	gallons per minute leak detection system. The
23	analysis uses five gallons per minute for LBB analysis
24	and a factor of two on the crack size.
25	In relation to a question that Dr. Shack
	I

(202) 234-4433

asked earlier today, there is sufficient information in the FSAR for us to do a detailed and confirmatory analysis on the three lines, the surge line, the main coolant loop and the steam line general properties, loads and so on to do the confirmatory analysis. Next slide please.

7 The three parts of the analysis involve 8 the three bullets there. One is to review the 9 indirect sources of degradation in the pipe and that's 10 the first bullet there to make sure that there is an 11 extremely low probability of cause of pipe rupture.

The second bullet involved a very detailed review of the elastic plastic fracture mechanics procedure that was presented in the FSAR that we did.

And the third bullet involves the two parts of LBB which is the leak rate confirmation, the leak rate versus moment curve, and the second part or the flaw stability analysis. And I'll show that in the next couple of slides in detail.

This is the first part of our confirmatory analysis. It's for the surge line. It's in a critical location, the surge line. What is shown here is a moment versus a crack length curve for a given leak rate of five gallons per minute. So for a given leak rate of five gallons per minute there's a

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

12

13

14

	136
1	combination of moment and crack length that gives you
2	that leak rate.
3	AREVA used their own proprietary software
4	called KRAKFLO to do their analysis of moment versus
5	crack length. And the red triangle there shows their
6	results.
7	SQUIRT is a software code that was
8	developed by the NRC and the contractors in the late
9	`80s. It's been developed and used. And we use the
10	SQUIRT code to confirm their results. And what is
11	shown here is both our results as well as AREVA's
12	results using SQUIRT. As you can tell we were able to
13	confirm the leak, the moment versus crack length
14	curve, very accurately.
15	The second part of the LBB involves the
16	flaw stability analysis. The way AREVA approached it
17	is to present the flaw stability analysis as an ALL
18	diagram which is the allowable load limit diagram for
19	the surge line that is shown here.
20	For this given case, there is a minimum
21	moment which is the X axis and the maximum moment on
22	the Y axis. The minimum moment is essentially the
23	design moment and the straight line is a one-to-one
24	line.
25	The other line there is the bounding line

(202) 234-4433

1 that shows the conservative analysis with the two 2 safety factors, safety factor of leak rate and two on 3 crack size for various values of the applied moment 4 plus the axial load.

5 Emc2 used the same data input and 6 independently confirmed those lines, the bounding 7 lines. And our results are showing there with the 8 yellow dots on the calculation.

9 The area that is bounded between the 10 straight line and the curved line is what is an 11 allowable -- That's the region that is safe with the 12 allowable safety factors. And we confirmed that for 13 this case and other cases that the design is within 14 that bound.

Essentially the two parts we were able to confirm very correctly. The first bullet there says that we concluded that the design specific and piping system basis meets the acceptance criteria.

And there is one open item relating to the coolant loop that we are just about complete the review. You will receive the information requested in the RAI and we're about to conclude and finish that process. That's all I have.

24 MR. TESFAYE: Thank you. That concludes 25 our chapter three presentation. Unless you have other

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	questions to the staff I'll move onto chapter nine.
2	Here in chapter nine we haven't done any independent
3	analysis or confirmatory analysis.
4	There was a total of 63 open items in
5	chapter nine. And the significant ones involve the
6	penetration that was described by AREVA today, the
7	seismic analysis of the penetration. And that's an
8	open item that will be addressed in phase four and
9	phase five of the review.
10	And again we have staff available if you
11	have any questions on the safety violation we have
12	performed.
13	MEMBER SKILLMAN: I do. I have one
14	question that I would like to ask and it has to do
15	with the statement that is made relative to
16	concentration of boron in the pool. Let me read the
17	statement and, Getachew, please choose who might be
18	able to respond to this. Okay.
19	This is what is written on page 71 of the
20	status report. "A concentration of 500 ppm of natural
21	boron will maintain the fuel storage rack K effective
22	less than 0.95 during normal conditions and the fuel
23	storage rack K effective will be less than 0.95 in the
24	limiting credible abnormal condition with a
25	concentration of at least 1100 ppm of natural boron.
ļ	

(202) 234-4433

	139
1	These concentrations are not converted to the
2	concentrations necessary with the use of enriched
3	boron."
4	I am confused with that set of statements.
5	One communicates 500 ppm with a K effective of 0.95 or
6	less. And the other statement is 1100 ppm with the
7	same K effective. Might someone be able to clarify?
8	MR. TESFAYE: Staff members present, do
9	you have an answer? We'll get back to you on that
10	question.
11	MEMBER SKILLMAN: Thank you.
12	MR. TESFAYE: Thank you. Any other
13	questions on chapter nine?
14	(No verbal response.)
15	Chapter 14, of course, we don't have any
16	confirmatory answers for chapter 14. But we've taken
17	a couple of questions from the Subcommittee
18	presentation that we'd like to address today and I
19	have David Jaffe from the Licensing Branch I to
20	address those two questions.
21	Before I do that, there are a total of 33
22	open items. And the significant open items involves
23	the rewriting of the ITAAC to make it more
24	respectable. And we hope to complete that early next
25	year.
Į	I

(202) 234-4433

	140
1	David.
2	MR. JAFFE: Very good. Good afternoon.
3	My name is David Jaffe. I'm a project manager for
4	Chapter 14, Verification Programs. We presented our
5	safety evaluation with open items to the Subcommittee
6	in February. And Vice Chairman Stetkar had two
7	questions for us.
8	The first question relates to Test
9	Abstract 161 which is one of the hot functional tests
10	that confirms among other things the ability of the
11	standstill seal. How did I do? Okay. Great. To
12	limit reactor coolant system leakage in the event that
13	the other seals fail.
14	Just to put this in context, chapter 5
15	describes the reactor coolant pump seals as having the
16	three operational seals and then a fourth standstill
17	seal that's nitrogen pressure-activated and provides
18	metal to metal contact to limit reactor coolant loss
19	in the event that the other seals fail.
20	As far as the Station Blackout is
21	concerned, chapter eight, specifically 8.4, contains
22	the SBO time line. And in that in two minutes the
23	following the SBO the reactor coolant pump seals
24	degrade and fail due to loss of CVCS leak by cooling
25	and also thermal barrier cooling resulting in leakage
I	

(202) 234-4433

	141
1	
2	MEMBER RAY: I'd just direct your
3	attention of everybody to what you just said. It's
4	what I always want to draw attention to to make sure
5	nobody's thoughts are wandering when you say what you
6	just did.
7	MEMBER BROWN: In other words, they break.
8	MEMBER RAY: What?
9	MEMBER BROWN: They break.
10	CHAIRMAN ARMIJO: And they don't last
11	long.
12	MEMBER RAY: In two minutes.
13	MEMBER BROWN: Yes, very quickly.
14	MEMBER RAY: As opposed to other
15	representations we sometimes hear.
16	MEMBER BROWN: Yes.
17	MR. JAFFE: These are elastomers, right.
18	And they very quickly fail. And there's an estimated
19	leakage of about 25 gpm per pump. So somewhat over
20	100 gpm.
21	And then within 15 minutes or so the
22	standstill seal is activated and reduces the leakage
23	to about 0.5 gpm per pump for an overall RCS leakage
24	rate of about 13 gpm.
25	So one of the goals of this particular
	1

```
(202) 234-4433
```

	142
1	test is to see how those seals, the standstill seals,
2	would perform.
3	MR. TESFAYE: That was very good.
4	MR. JAFFE: I'm doing better.
5	MR. TESFAYE: Yes.
6	MR. JAFFE: We're doing better.
7	CHAIRMAN ARMIJO: Just want to make sure
8	I hear you right. When these standstill seals are
9	activated, it reduces the leakage from 25 gpm to 13.
10	Is that what I heard?
11	MR. JAFFE: To 0.5.
12	CHAIRMAN ARMIJO: 0.5, okay.
13	MR. JAFFE: Per pump.
14	CHAIRMAN ARMIJO: Per pump. So they're
15	very They work.
16	MR. JAFFE: Yes, you have nitrogen
17	pressure behind it and it forces it into position and
18	you get good metal-to-metal contact.
19	CHAIRMAN ARMIJO: You don't want to start
20	the pump up with
21	MR. JAFFE: Yes, that's right. That's why
22	it's standstill.
23	MEMBER BROWN: If it's 0.5 times four is
24	two. How do you get 13?
25	MR. JAFFE: From other sources.
I	

```
(202) 234-4433
```

	143
1	MEMBER BROWN: Okay. What are the other
2	sources? Just I need to be enlightened.
3	MR. JAFFE: I don't think I'm prepared to
4	answer that.
5	MEMBER BROWN: Okay. If there are other
6	parts of the plant that leak, I thought just the pump
7	seals were the big leak sources.
8	MEMBER SIEBER: Pump seals is the big one.
9	MEMBER BROWN: Yes.
10	MEMBER SIEBER: Other things leak too,
11	packing glands and so forth. There are certain
12	assumptions.
13	MEMBER BROWN: I'm sorry. My experience
14	is totally welded plants.
15	MEMBER SHACK: And he normally would think
16	a PWR is leaking like 1 gpm.
17	MEMBER BROWN: That just seemed kind of
18	high. If the pumps are the biggest source, that's a
19	lot of other sources to come up to 11 gpm.
20	MEMBER SIEBER: A conservative analysis.
21	MR. STACK: This is Tim Stack from AREVA.
22	When you look at the analysis it's just tech spec
23	leakage. One gpm of unidentified. Ten gpm of
24	identified leakage. So we're assuming we're at tech
25	spec limits and everything else leaking at its limits.
I	I

(202) 234-4433

	144
1	And this is just looking at the balance for the RCPs.
2	MR. JAFFE: Non-specific tech specs.
3	MR. STACK: Yes, it's just up to the tech
4	spec limits.
5	MR. JAFFE: Right. Thank you.
6	MEMBER BROWN: Thank you.
7	MR. JAFFE: You're welcome.
8	Okay. In any event
9	MEMBER SKILLMAN: Let me ask a question
10	please, David.
11	MR. JAFFE: Yes.
12	MEMBER SKILLMAN: You mentioned the words
13	"elastomer seals." And I'm not sure you meant that.
14	My experience is that these are silicon nitride or
15	aluminum oxide. Certainly not elastomer.
16	MR. JAFFE: Right. Thank you.
17	MEMBER SKILLMAN: Yes, sir. Thank you.
18	MR. JAFFE: Okay. The acceptance criteria
19	that we're specifically referring to in test 161 is
20	that the RCPs can be secured one at a time at hot zero
21	power conditions and the reactor coolant pump seal
22	package including the standstill seal can be verified
23	to limit RCS leakage within the design limits. That's
24	the objective.
25	And as far as the question is concerned we
	I

(202) 234-4433

	145
1	were asked as to whether or not that was associated
2	with section 9.3.4.4.1 which is the section that
3	describes the CVCS flow for seal cooling. And we
4	found that the best answer to that is the design
5	criteria from 8.4 and specifically the SBO
6	progression.
7	MEMBER STETKAR: I think one of the
8	questions though is is the test actually going to
9	verify that they maintain that leakage or less but
10	with the eight hour nominal Station Blackout time
11	window. I mean maintaining it for 15 seconds is one
12	thing. Maintaining it for eight hours is something
13	different.
14	MR. JAFFE: All we have at this point and
15	all that we reviewed is an abstract which is a summary
16	of what that will look like. And we would have to
17	wait for the full blown test procedure to get a handle
18	on that.
19	MEMBER STETKAR: Okay.
20	MEMBER BROWN: Is this a vendor test?
21	This is not done in the plant, is it? Is this not
22	part of the initial test program?
23	MR. JAFFE: Yes, it is.
24	MEMBER BROWN: So we actually go blow the
25	seals out and make them fail so that we can test them.
I	1

(202) 234-4433

	146
1	MR. JAFFE: No. I wouldn't think so. As
2	I indicated, I don't have the details of exactly how
3	that this will be accomplished.
4	CHAIRMAN ARMIJO: But that test can be run
5	without damaging the seals?
6	MR. JAFFE: Yes, the way they describe it
7	to us is that they're secured. The pumps are secured
8	one at a time at hot zero power and it's confirmed
9	that the standstill seals limit leakage. It's the
10	general rule right now. We don't have the specific
11	procedure of how that would be accomplished.
12	CHAIRMAN ARMIJO: My question is without
13	damaging the other seals.
14	MR. JAFFE: I'm sure. That would be a
15	very costly demonstration.
16	CHAIRMAN ARMIJO: But we'll have to wait
17	and see. Yes, it would be.
18	MR. JAFFE: The second question we got
19	from Vice Chairman Stetkar had to do with the severe
20	accident ITAAC and specifically with regard to the
21	development of those severe accident ITAAC is there a
22	consistent process for developing the list of
23	equipment to be addressed by the ITAAC and how do you
24	determine what equipment should be on that list.
25	And we reviewed that. And we went back to
ļ	

(202) 234-4433

basics. We took a look at Standard Review Plan 14.3 and in there is a specific process. And it does lead one to first review the Tier 2 analysis including the analysis of fire, floods and severe accidents and shutdown risk. And then to look at what equipment is necessary to ameliorate the consequences of those events.

And we've taken some quotes directly from 9 And we're fairly confident that there is a the SRP. detailed process for that. And you can see the severe accident ITAAC in Section 2.3 of Tier 1. Thank you.

Thank you, Dave. If there 12 MR. TESFAYE: are no other questions on chapter 14 I'm going to move 13 14 onto chapter 19, PRA and Severe Accidents. Here we 15 have a total of 15 open items and the most significant 16 one involve the PRA updates which affects chapter 19 17 and chapter 17. And we expect a response to those open items soon. 18

19 And we also have confirmatory analysis 20 done to support severe accident. And Anne-Marie Grady is here to give us a high level presentation of that 21 confirmatory analysis. And again, I'm sorry. 22 For the severe accident evaluation we have five open items. 23 24 MS. GRADY: Good afternoon. I'm Anne-Marie Grady from DSRA. 25 And I'd like to go over what

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

10

11

	148
1	we did in our confirmatory analysis for severe
2	accident.
3	As you probably all know because you've
4	read the SE, AREVA has analyzed severe accidents using
5	the MAAP analysis program version 4.0.7. They modeled
6	relevant scenarios. That is those that each scenario
7	that has a CDF of greater than E^{-8} .
8	And those particulars were 11 scenarios
9	amount to five of them. One is loss of outside power
10	with seal LOCA. One is a loss of offsite power with
11	a high pressure end state. Another is a loss of
12	offsite power with low pressure end state. A fourth
13	is loss of balance of plant. And the fifth is a small
14	LOCA. So those are the relevant scenarios they've
15	analyzed. They describe how they came up with that in
16	a technical report that we reviewed in 2007-2008 and
17	we agreed with that methodology.
18	Now in our confirmatory calculation we
19	used MELCOR and we also analyzed those five relevant
20	scenarios. Excuse me. MELCOR 1.8.6. And we did a
21	few additional scenarios which are basically
22	variations on the relevant scenarios that AREVA
23	modeled.
24	A couple of the additional scenarios that
25	we looked at were the loss of offsite power with low
l	

(202) 234-4433

	149
1	pressure end state with containment isolation failure.
2	A second one was steam line break inside containment
3	and another was instrument tube failure.
4	Now to make sure that in order to accept
5	the five relevant scenarios and the others we in our
6	confirmatory calculation looked at the five frequently
7	dominated initiators. We considered all of those.
8	We additionally considered the five
9	scenarios with the dominant cut sets. We looked at
10	the highest frequency fission product release
11	categories and the contributors to those. And then we
12	looked at the highest frequency contributors to LRF
13	internal events and satisfied ourselves that with the
14	relevant scenarios and the variations on them that we
15	had covered the important scenarios for severe
16	accidents.
17	MEMBER STETKAR: Anne-Marie, you don't and
18	we're running short on time.
19	MS. GRADY: I'm sorry.
20	MEMBER STETKAR: We're running short on
21	time so I'll try to keep this short. Did you look at
22	any scenarios that might be let's call it interesting
23	but not dominant to see whether or not there were any
24	optimums in their analyses that they'd done?
25	MS. GRADY: Okay. I don't know the answer
	I

(202) 234-4433

	150
1	to that.
2	MEMBER STETKAR: Okay. Thanks.
3	MS. GRADY: Would you like further
4	elaboration?
5	MEMBER STETKAR: No.
6	MS.GRADY: Because the severe accident
7	the safety evaluation analysis was done by Dr. Ed
8	Fuller who was in DSRA at the time. And I am now
9	taking over and closing out his open items and
10	reviewing the reanalysis that's being done by AREVA.
11	But Dr. Fuller perhaps has something to add to your
12	question.
13	DR. FULLER: Yes, I'm Ed Fuller from now
14	the Office of Research. I'm Senior Technical Advisor
15	for Severe Accidents. At the time when we were doing
16	the technical review the idea of the confirmatory
17	assessment was to look at the scenarios that would
18	most likely contribute to risk in severe accidents.
19	And when AREVA did their analyses they had
20	these five general categories that Anne-Marie just
21	went through. We did some variations on some of those
22	and by we I mean it's not just the Office of New
23	Reactors. The work was done by the Office of Research
24	in response to a need that we had. And they had a
25	contractor do the work.
I	

(202) 234-4433

What we did was we looked at what came in, saw what the MELCOR results were compared to the MAAP results. And what we saw was we had generally very good agreement among all the scenarios, particularly for the severe accident progression part. Agreement was not so great for the source term. So it was we thought acceptable enough.

8 Along the course of the way there were 9 additional issues that arose that would fall into the 10 category of those identified by Dr. Stetkar, things that were interesting but not necessarily relevant. 11 looked at those We did some 12 We in two ways. sensitivities on the five cases so that we could cover 13 14 some of those.

15 And, for example, a question was raised 16 what happens if you didn't have any operability of the 17 core melt stabilization system and severe accident So we ran a MELCOR case and heat removal system. 18 19 AREVA had run the MAAP case in response to an RAI we 20 had asked. We ran the case to see what would happen and there were no surprises. You failed the base, but 21 we ran it. 22

And we ran -- When the instrument tube failure issue came up that was identified by Bob Henry we asked AREVA to run those cases with MAAP and we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	152
1	confirmed them with MELCOR. And we had them look more
2	carefully at induced steam generator tube rupture and
3	ran confirmatory cases on induced steam generator tube
4	rupture.
5	So we probably didn't cover everything,
6	but we covered
7	MEMBER STETKAR: A lot more than those
8	postulated.
9	DR. FULLER: what we considered to be
10	the most important.
11	MEMBER STETKAR: Good. Thank you.
12	MS. GRADY: After we had our confirmatory
13	calc done we compared the results and we got as Dr.
14	Fuller just said generally good agreement on various
15	figures of merit such as time to melt plug failure,
16	debris temperature, before melt plug failure.
17	The percent debris retention in the
18	reactor pit was one difference that we identified.
19	MAAP didn't predict that. MELCOR predicted
20	approximately five percent retaining. So we have an
21	outstanding RAI which is an open item on that issue.
22	But in general we've had good agreement with the
23	results.
24	The open items we have five open items.
25	Since we wrote the SER, we've basically looked at
ļ	I

(202) 234-4433

	153
1	several of them. And we have satisfied ourselves
2	based on the responses to RAIs that most of them we
3	are in agreement with now.
4	The ones that we are not is there is five
5	percent left in the reactor vessel. We are waiting
6	for results on that.
7	We are looking at the results of steam
8	generator tube rupture. That's an open item that
9	we're awaiting results from AREVA. And also the
10	design change in the SAHRS/IRWST which we've asked the
11	question about but don't have results yet.
12	Which gets me to my last point which
13	really need to have more opportunity to ask questions
14	on this. Last October AREVA met with us and told us
15	that they have revised our severe accident analysis.
16	They have done it for various reasons. They have made
17	various changes at that time.
18	They gave us a flavor for the preliminary
19	results. They provided us with documentation as to
20	how they went about it and what the changes would be
21	in the model.
22	Based on discussion, the preliminary
23	results this is all oral or through an audit. We have
24	written RAIs asking exactly what they did and what
25	that really does mean now for the severe accident. And
Į	I

(202) 234-4433

	154
1	we are awaiting the results of that.
2	But that RAI is already in the system.
3	I'm sure they're already thinking about it if not
4	working on it. And we expect to be discussing this
5	again.
6	I'm sorry. I forgot a major point. They
7	also revised their PRA. And since they've revised
8	their PRA, anything that came out of that will
9	absolutely be reflected in the reanalysis of the
10	severe accident.
11	MR. TESFAYE: Thank you, Anne-Marie. And
12	again to stress what Anne-Marie said, the open items
13	seen in this SECY evaluation we issued is not the only
14	open items. We issued a open items in phase four.
15	All of them will be closed in phase four and will be
16	presented how they were closed in phase five of our
17	review.
18	Another point I'd like to make is even
19	though I mentioned there are 520 open items, the
20	majority of those open items have already been closed.
21	We are in phase four of the review as we do phase
22	three. So I would say about less than 150 open items
23	still left not closed.
24	That's all we have for chapter 19 unless
25	you have any other questions. I would like to thank
I	1

(202) 234-4433

	155
1	you for giving us this opportunity to review this
2	chapter by chapter. Sometimes our chapter
3	combinations and we've gone through them without any
4	major crisis. So appreciate that and we look forward
5	to your letter on these four chapters.
6	MEMBER POWERS: Again, the only reason it
7	works is because of the discipline you and your staff
8	exercise in bringing the material to us.
9	I will comment that in the course of
10	examining this last batch of materials we did identify
11	an issue that I think needs consideration. It is the
12	way the staff does its environmental qualification of
13	equipment. It really is not pertinent to this
14	particular application. It is a generic issue where
15	they separate out radiolytic and thermal and humidity
16	effects and treat them separately.
17	That is as it's specified in the Reg.
18	Guide. The staff reviewing this and the Applicant had
19	done it following the Regulatory Guide. It's the
20	Regulatory Guide in particular that I think we need to
21	at some point understand better why it is separated.
22	So we need to put that on the agenda.
23	What they've done is exactly as it is
24	prescribed. But the question is should it be done
25	that way. For this particular application, we need to
I	I

(202) 234-4433

	156
1	understand better what kinds of cable insulation
2	they're using and how that affects the post LOCA
3	environment and the acidity.
4	MS. GRADY: And we have an RAI to that
5	affect.
6	MEMBER POWERS: And that will get results.
7	Do any of the members have additional questions?
8	MEMBER ABDEL-KHALIK: I'd like to just
9	point out to a possible inconsistency between what we
10	heard today and what we heard from the COL Applicant
11	regarding the use of mixed cores. And I believe our
12	staff should examine the record for both meetings and
13	see if there is indeed an inconsistency between the
14	statements.
15	MEMBER POWERS: There does seem to be a
16	little confusion on that. But I think it was my
17	impression and correct me if I'm wrong that we got the
18	definitive word here today that they are not designing
19	for mixed cores, not applying for certification with
20	the mixed cores and that indeed the staff has put a
21	restriction that they are not certifying the design
22	for mixed cores. That's my understanding to be the
23	definitive word now.
24	CHAIRMAN ARMIJO: We never design reactors
25	when we first started designing reactors for mixed

(202) 234-4433

	157
1	cores. You designed for GE fuel. But the plants were
2	capable and other fuel suppliers learned how to design
3	their fuel to meet NRC's regulations. So unless there
4	is something fundamental about the equipment, the
5	mechanical design.
6	MEMBER ABDEL-KHALIK: Yes, there is.
7	That's why.
8	CHAIRMAN ARMIJO: Well, I think, Said, it
9	would be good to tell them specifically what you're
10	worried about about the equipment because that will
11	help them focus on it.
12	MEMBER ABDEL-KHALIK: We pointed that out
13	at the last meeting I believe. So I think what we
14	CHAIRMAN ARMIJO: We would want to remind
15	people what that is because I certainly don't remember
16	it.
17	MEMBER POWERS: I think it's been
18	confusing enough between the Subcommittee meeting and
19	the final Committee meeting that I would propose in
20	the letter to acknowledge our understanding which is
21	exactly as I said it to be. And if that's not the
22	case then somebody ought to correct our
23	misunderstanding. Other than that I have nothing. I
24	again say that the phase discipline has been
25	essential. The discipline with which presentations
I	I

(202) 234-4433

	158
1	have been presented to both the Committee and the
2	Subcommittee are admirable. And excellent
3	presentations.
4	I appreciate very much the continuously
5	summarizing for us where we stand. That helps a lot.
6	And with that I'll turn it to you, Mr. Chairman.
7	CHAIRMAN ARMIJO: Okay. Well, we're
8	running behind schedule. We're going to take a break
9	for lunch and we're going to reconvene for SOARCA at
10	1:15 p.m. Off the record.
11	(Off the record at 1:15 p.m.)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	159
1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:14 p.m.)
3	CHAIRMAN ARMIJO: All right. We are ready
4	to start again. The topic is SOARCA, and Dr. Shack
5	will lead us through this.
6	MEMBER POWERS: Mr. Chairman, before we
7	begin, I would like the Committee to know that I am
8	recusing myself because of a corporate conflict here.
9	I am not a I don't work on SOARCA, I haven't had
10	any involvement in it, but because Sandia did some
11	minor fraction of the work, I think it best I
12	(Laughter.)
13	not comment either positively or
14	negatively about this work.
15	CHAIRMAN ARMIJO: Okay. Thank you very
16	much, Dana. Bill?
17	MEMBER SHACK: SOARCA, again, is the
18	State-of-the-Art Reactor Consequence Analysis Project.
19	The major accomplishment since the last time we have
20	reviewed the SOARCA program a few a while ago has
21	been the development of an uncertainty analysis.
22	And I think we will be hard-pressed to do
23	it justice today. We had a Subcommittee meeting back
24	on April 25th where we had the data work on it, but we
25	will try to give a flavor of what they have done to

(202) 234-4433

	160
1	address some of the uncertainties, which are obviously
2	large when you are dealing with something like a
3	severe reactor accident.
4	And with that, I will turn it over to
5	Jason or Tina, whoever is going to start.
6	MR. SCHAPEROW: Yes. We have two short
7	presentations today. The first one is an overview of
8	our baseline analysis work that we started back in the
9	2006 timeframe, and we have now finished. And Tina
10	has a dozen or so slides to go through some
11	additional work that we are doing to look at
12	uncertainty, what we are calling our uncertainty
13	analysis.
14	As Bill mentioned, it's a lot of work.
15	I'm going to do what I can a half a dozen or so
16	slides to kind of go over the whole thing. But
17	like I say, a lot of people worked on this, a lot of
18	folks out at Sandia Randy Gauntt, Casey Wagner,
19	Kyle Ross, Mark Leonard, a lot of people you've heard
20	mentioned over the years; also at the NRC, Charlie
21	Tinkler, myself, Marty Stutzke, Rick Sherry, a huge
22	project.
23	And I would just like to I'm glad that
24	you are all here. Actually, I am glad that you all
25	lived long enough to see the end of this.
I	I

(202) 234-4433

	161
1	(Laughter.)
2	It's not over yet.
3	MEMBER SHACK: We were expecting to have
4	a hundred reactors by this time.
5	(Laughter.)
6	MR. SCHAPEROW: Well, we wanted to be
7	really, really, really detailed. So, and of course we
8	had a hard act to follow. I mean, we had in the
9	'90s the NRC did a lot of work. With SCDAT/RELAP we
10	did a lot of very detailed analysis for station
11	blackouts that I'm sure you have seen over the years.
12	So that is we tried to move it a step forward.
13	Now, we have also thrown in the fission
14	products, you know, and the containment and a lot of
15	other a lot of fission product-related phenomena in
16	particular. That has really been the focus of our
17	project. Not that all of the other stuff wasn't
18	important, and we did build on all of the earlier
19	SCDAP work done out of INEL.
20	Okay. Just to start off, I've got a
21	couple of slides on objectives, approach, and
22	conclusions. Objectives our primary, overarching
23	objective was to develop a body of knowledge on the
24	realistic emphasis "realistic" outcomes of
25	severe reactor accidents.
I	I

(202) 234-4433

	162
1	Some supporting objectives that we had, we
2	did have earlier studies out there such as the 1982
3	siting study, which has been repeatedly cited, and we
4	wanted to be able to update those numbers.
5	Another objective was to incorporate plant
6	changes not reflected in earlier assessments. You
7	know, since perhaps the time of NUREG-1150, a lot of
8	improvements have been made to the reactors over the
9	last let's say 20 years, and we tried to reflect that.
10	Most recently, post-9/11 measures, which
11	we sometimes call B.5.b, we wanted to evaluate those
12	measures through SOARCA, as well as incorporate all of
13	the modeling improvements in both MELCOR and MACCS,
14	emphasis "MELCOR." We've done a lot with MELCOR for
15	the last 20 years.
16	And, finally, we want to be able to use
17	SOARCA to enable us to communicate about severe
18	accidents with the various stakeholders, including
19	other federal agencies, the public, and licensees as
20	well.
21	Approach we are different from earlier
22	studies, severe accidents, in a number of ways.
23	Perhaps first and foremost was our focus on just
24	select scenarios. Because of our attempt to be as
25	realistic as possible and as detailed as possible, it
I	

(202) 234-4433

1 wasn't possible -- it wasn't -- we felt that it was appropriate to focus on the more important scenarios, 2 3 and for that we turned to all of the PRAs that have 4 been done over the last number of years to help us 5 focus on what really should -- what is really important, what should we be analyzing. 6 7 So of course we came out with a bunch of 8 station blackout accidents, a couple of bypass 9 accidents. 10 With regard to details, as I mentioned, of course we have been doing a lot of SCDAP/RELAP 11 12 analyses over the years for station blackouts, 13 particularly to look at the steam generator tube 14 integrity issue. But this time we went further. We 15 took -- we used the MELCOR model, which is a more 16 recent code, and we used that. That also includes all 17 of the fission product phenomena that are needed for consequence analysis. 18 19 So we used MELCOR as an integrated tool. MELCOR integrates all the phenomenology, the physics, 20 the thermodynamics. It integrates the operator 21 Through input, we can tell the code when 22 responses. to turn pumps on and off. It also incorporates system 23 24 response. If the hot leq ruptures, we can rupture the hot leg, introduce the rupture, and then we will 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

163

164 1 depressurize the system. So it is quite integrated. 2 incorporated in MELCOR the recent We 3 physical experiments. Typical example is PHEBUS you 4 always hear a lot about, that we have done a lot of 5 benchmarking of MELCOR against PHEBUS. The ARTIST test, we used those insights to -- for our steam 6 7 generator modeling, and some of the tests from back 8 about 10 years ago or SO back at Sandia on 9 containments, how containments fail. We have that in our model as well. 10 We also had this issue about seismic 11 The ACRS pointed this out early on, that, 12 impacts. hey, if you're doing seismic-induced station blackouts 13 14 you really need to look at how the earthquake is going 15 to affect the evacuation. And we try to -- we factored that in as well. 16 17 And finally, and perhaps most controversial, is what to do about latent cancer risk 18 19 The NRC has -- and just about everybody I estimates. guess relies very heavily on LNT models, linear 20 threshold. We also used other -- a couple of 21 variations on that with a threshold to see, well, what 22 23 difference does it mean, all of this debate over thresholds. 24 Three slides with conclusions, very high 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	level. The first bullet here talks about the B.5.b
2	measures. We ran our MELCOR calculations with
3	everything EOPs, SAMGs, and B.5.b. And we found
4	that, as a result, these accidents could be mitigated
5	in many cases to prevent any core damage at all.
6	But we also ran the MELCOR calculations
7	without the new B.5.b equipment and procedures and
8	to see, well, how would this progress how these
9	station blackouts would progress if they didn't have
10	these diesel-driven pumps that could inject water.
11	And so we ended up with kind of a typical
12	severe accident, with core damage, core degradation,
13	lower head failure, and the rest. We found that these
14	accidents progressed more slowly and released smaller
15	amounts of radiation than our earlier studies.
16	MEMBER CORRADINI: Can I just ask a
17	question? There have been some reports in the popular
18	press that indicated that SOARCA did not do this. But
19	the more I read it, is it just that they are not
20	seeing the unmitigated accidents? Because I was able
21	to pick up the difference, and it seems to me that is
22	an important difference that you basically looked
23	at the models, or the linking of all of the models, in
24	an unmitigated sequence. Right? And you actually saw
25	a big difference in terms of consequences.
l	I

(202) 234-4433

	166
1	MR. SCHAPEROW: That's correct. Some of
2	the controversy has been at further distances out from
3	the plant, like zero to 15 miles, when we do those
4	kinds of risk numbers, risk calculations, that the
5	using the LNT model, I think our predictions were
6	about a factor of three less than the earlier study,
7	the siting the study, and that was pointed out as
8	well.
9	You know, factor of three, you know, this
10	is severe accident analysis, big deal. As far as that
11	one commenter was concerned, those numbers were about
12	the same.
13	But when you look close in, within the EPZ
14	we see a huge difference. It feels like a factor of
15	20 or some, you know, decade or more in consequences.
16	MEMBER CORRADINI: Okay. Thank you.
17	MR. SCHAPEROW: So that is and also,
18	even a factor of three can be a big deal if all you
19	are dealing with is is a return. You know, a lot of
20	that risk is from people returning.
21	MEMBER CORRADINI: The reason I ask is
22	that when I read not the report, but when I read some
23	of the reports from certain places, it seems to miss
24	the fact that the unmitigated as you pointed out,
25	the unmitigated accident scenarios, just with the
I	I

(202) 234-4433

	167
1	change in the modeling, shows a big difference.
2	MR. SCHAPEROW: Yes, yes. We are getting
3	much smaller that is my next slide is we have much
4	smaller releases than the siting study, and a lot of
5	our other we don't have anything that one might
6	consider maybe a large early release. Our releases
7	are much smaller, and this is showing up in the
8	offsite consequence calculation.
9	So these are the releases from the cases
10	without the B.5.b equipment and procedures.
11	MEMBER CORRADINI: Can I try one other
12	question, just so in some sense? So I am going to
13	assume the uncertainty study is going to expose this.
14	But if I started to back up and say, "What things
15	about the integrated linked analysis doesn't give you
16	an SST1 source term?" is it obvious the things that
17	are there, or is it just a multitude of small things?
18	Do you know what I'm asking?
19	MR. SCHAPEROW: Some of the things that
20	lead you to an SST1 or large early release kind of
21	source term are these phenomenological issues that
22	have been raised in earlier PRAs, such as NUREG-1150.
23	One of the issues is high pressure melt ejection
24	leading to direct containment heating.
25	You know, we did a lot of research on
ļ	

(202) 234-4433

	168
1	that, and the ACRS reviewed it over I guess in the
2	'90s, and concluded that that really was not going to
3	happen. We weren't going to see any direct
4	containment heating.
5	So that is one of the reasons we are
6	smaller. The other big issue was alpha mode failure,
7	the vessel head being launched through the containment
8	roof. And, again, we did research on that to
9	demonstrate that that wasn't realistic.
10	So a lot of this thing about, you know,
11	large early releases versus non-early release I think
12	was disposed of by those kinds of research projects
13	over the years.
14	MEMBER CORRADINI: And just my final point
15	is, and if I were to go look at the report, that
16	pretty much there is a way to unravel that to actually
17	see the reasoning.
18	MR. SCHAPEROW: We do discuss this in the
19	report. There is a section dealing with some of the
20	earlier large release mechanisms.
21	MEMBER CORRADINI: Okay.
22	MR. SCHAPEROW: Another thing on these two
23	charts which show the iodine and cesium releases,
24	another thing to note for these cases is that the
25	releases are in addition to being smaller they are
ļ	

(202) 234-4433

	169
1	delayed by a number of hours. Most of these releases
2	don't start until between like 10 and 20 hours.
3	And that delay is important because that
4	would provide additional time for operator actions to
5	mitigate. You know, one would expect that if the
6	operator had, you know, another 10 hours they could do
7	a lot more.
8	MEMBER SKILLMAN: Is that delay or that
9	time difference the result of containments stronger
10	than had originally been analyzed?
11	MR. SCHAPEROW: For Surry, the delay is
12	a lot of it is due to the containment, because a
13	station blackout in Surry would lead to containment
14	overpressure.
15	For Peach Bottom, the release is not
16	perhaps as delayed, because we are seeing containment
17	failure right after lower head failure, as a result of
18	liner melt through.
19	A lot of the delay is just due to the
20	better representation of the reactor. We've got all
21	of the materials now accounted for, all of the
22	structure, all of the steel, all of the fuel. It just
23	takes longer for that stuff to heat up, so there's a
24	lot more thermal mass.
25	For the PWRs, we account for the
ļ	

(202) 234-4433

	170
1	recirculation of the steam and the hydrogen throughout
2	the RCS. That distributes the heat. It's just
3	things are just delayed because of the more detailed
4	phenomenological modeling.
5	MEMBER SKILLMAN: Thank you.
6	MR. SCHAPEROW: And my final chart with
7	overall conclusions of the study is a consequence
8	chart for LNT, based on LNT modeling. This chart
9	shows the predicted latent cancer fatality risk for
10	the EPZ. We chose the EPZ because this is how we
11	typically compare against the NRC safety goal. That
12	is interpreted as within 10 miles of the reactor.
13	So these numbers are quite small with
14	respect to the NRC safety goal, as you can see in the
15	chart.
16	We also included these two green bars on
17	the chart, which are the 1982 siting study for
18	comparison. So those were also below the safety goal,
19	but we are actually quite a ways below them as well.
20	We also included in SOARCA a peer review.
21	The first we had five meetings of the Peer Review
22	Committee. The first meeting was held in July of
23	2009, so this is and the last meeting was held in
24	December of 2011, so about a two and a half year long
25	peer review.
	I

(202) 234-4433

We did have a couple of breaks in there, 2 one of which was the Fukushima accident. The whole project kind of ground to a halt for a little while, but we picked it back up and we finished the peer review.

The peer review was done by a collection 6 7 of 11 independent experts. We had experts in all of 8 the various areas we needed for analysis such as this. 9 We had risk analysis/PRA experts. We had severe 10 accident experts, emergency preparedness, and radiation health effects. 11

Also, I neglected to list that we also had 12 an expert in the field of structural analysis. 13 He 14 reviewed our containment modeling, our earthquake type 15 assumptions in that area.

The reviewers examined the whole project, 16 17 soup to nuts. So we gave them all of the reports. We made lots of briefings to them, they asked lots of 18 19 questions, and we responded with letters and meetings and such. 20

And the report -- they did identify some 21 issues with the report. We tried to fix it up, fix up 22 the study. They also -- some of the reviewers also 23 24 noted the project's strengths as well, and we have endeavored to incorporate the review, and feedback 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

4

5

	172
1	from the review, into the study.
2	About a year ago we had the Fukushima
3	accident happened. And as a result, that caused us to
4	scratch our heads a little bit, and a lot of people
5	said, "Well, you know, how does this report compare to
6	the Fukushima accident? You know, did you do a good
7	job of predicting things? Did things line up right?"
8	The Fukushima accident was a station
9	blackout, and of course that's what we did mostly. We
10	did mostly station blackouts in SOARCA. The first
11	thing that pops out at people is RCIC operation, and
12	HPSI operation for that matter.
13	At the Fukushima reactors, they were able
14	to run the RCIC and HPSI systems for a while, and they
15	didn't have B.5.b procedures. But they knew about
16	HPSI and RCIC, and they used it as best they could.
17	They gerry-rigged it. They I understand they
18	pulled batteries from cars, they got portable
19	generators, they kind of I guess they kind of
20	replicated in some respects some of the stuff that we
21	have on B.5.b on an ad hoc basis.
22	And so our RCIC operation, for our
23	mitigated case we ran RCIC for two days and then said,
24	"Okay. After two days the accident is over." That
25	was our B.5.b case. But without B.5.b, we only ran
I	

(202) 234-4433

1 RCIC for up to five hours. So we don't really have 2 what they have, which was kind of in the middle. They 3 ran it for two days, and then it -- they were unable 4 to keep it going.

5 With regard to hydrogen, of course we all 6 saw the explosions that blew the roof and some of the 7 walls off of the reactor buildings at Fukushima. We 8 do model hydrogen release and combustion in MELCOR. 9 It is a relatively rough model, but it did -- you 10 know, it did predict the release. It did predict the 11 combustion.

We blew open doors, we blew open blowout panels on the top level of the building, and in some cases we blew out the roof, so that we didn't really -- for our SOARCA calculations with these hydrogen combustions, we didn't really see much deposition in the building. So we think that we were kind of aligned with Fukushima in that regard.

19 We did assume a 48-hour truncation. Ιf the accident -- we assumed the accident would be over 20 in 48 hours, something that Fukushima is a little 21 For Unit 2, I think the accident didn't 22 different. even get -- the release didn't even get started for 48 23 24 hours. So a little different thing happened there. Multi-unit risk -- both of the plants we 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

174 1 analyzed were two-unit plants, Surry and Peach Bottom. We assumed the accident happened to a single unit. 2 3 And as we saw in Japan, they had three units with 4 meltdowns. And, finally, there were issues with the 5 spent fuel pool, whether that would also have a 6 7 meltdown. We didn't consider that in SOARCA, but we 8 are doing some work to look at that now under the 9 spent fuel pool scoping study. 10 CHAIRMAN ARMIJO: Jason, you know, the -at the Daini site they had the same seismic and 11 tsunami, not as severe, as at the Daiichi site. And 12 they were very effective in using their emergency 13 14 operating procedures. I mean, they lost a whole bunch 15 of equipment and power, but that might be a data point 16 that you might want to use to look at --17 MR. SCHAPEROW: Yes. CHAIRMAN ARMIJO: -- for the mitigated 18 19 They were flooded, the emergency -- it was situation. Unit 1 that really got badly flooded. You might want 20 to take a look at that. 21 22 MR. SCHAPEROW: Okay. Thank you. So where are we now? Well, we 23 Okav. 24 finished Peach Bottom and Surry, and we had it peer And if you go back and look at the original 25 reviewed.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	project documentation, we were intending to divide up
2	all of the U.S. reactors into eight classes. We were
3	going to do like a station blackout calculation for
4	basically each of the classes, and we were going to
5	run MACCS for each site.
6	We were going to take the station blackout
7	for Surry and put that at North Anna with their
8	population and their EP. We were going to run one
9	calculation for each site for each of the eight types
10	of plants.
11	Now that we've finished Peach Bottom and
12	Surry, we have concluded that we don't this is not
13	necessary. We think that what we have done so far is
14	providing a body of knowledge, it provides updated
15	understanding of severe accidents, and we think that
16	the next logical step is the site Level 3 PRA. And
17	that work is just beginning, and that will continue to
18	add to our understanding of severe accidents.
19	MEMBER CORRADINI: Can I ask you a
20	different question at this point? So are you so
21	could I interpret this to say that you have a base
22	methodology that you have proven out with two plants
23	and selected scenarios? In other words, a
24	Level 2/Level 3 connected methodology.
25	MR. SCHAPEROW: Yes, correct.
I	I

(202) 234-4433

	176
1	MEMBER CORRADINI: That methodology,
2	though, when you exercise it with the uncertainty
3	could have wings to it. That is, you might choose to
4	do other things to check it. Where I'm going with
5	this is, if you have a base methodology, which you
6	then will insert into the Level 3 PRA, it is not
7	simply a turn-the-crank methodology. They are going
8	to need to do calculations apart from it, even in the
9	Level 3 PRA space, because you will have uncertainties
10	that you have to characterize. Is that a fair is
11	that a fair statement?
12	MR. SCHAPEROW: Sure.
13	MEMBER CORRADINI: Okay. I mean, I have
14	examples that I want to bring up, but I just want to
15	make sure that I am understanding the basis. The
16	basis is the methodology can then be, excuse me
17	English, plugged and played within a Level 3
18	structure.
19	MR. SCHAPEROW: I think that some of the
20	IPEs, at least the one that I saw for Surry, tried to
21	do some of that. They have specific MAAP calculations
22	for some of their important sequences. I'm hoping
23	that we will move that way in our site Level 3 PRA.
24	I'm not sure if I don't know if this has all been
25	fully developed, but, you know, there is a whole
I	I

(202) 234-4433

	177
1	question about whether we should use expert
2	elicitation to come up with release fractions or we
3	can do use a code like MELCOR or MAAP to do that.
4	And I think at least from what I have
5	seen, the industry is tending to do that for certain
6	of the more risk-important sequences.
7	MEMBER CORRADINI: Which of those two, to
8	just use MAAP calculations.
9	MR. SCHAPEROW: These MAAP calculations,
10	like for ISLOCA everybody thinks ISLOCA is a big
11	deal, so we'd better pull out MAAP and run a MAAP
12	calc. Instead of going to the experts and asking them
13	what they think their release fractions are, let's run
14	a series of MAAP calculations to look at that. And
15	they have.
16	Now, I don't think they have done anything
17	quite like this where they varied input using random
18	sampling to come up with
19	MEMBER CORRADINI: Let me just give you my
20	example why I have asked the question the way I did,
21	which is, if I think about, can I most at the
22	Subcommittee meeting when I guess it was Randy that
23	showed the SOARCA calculations on station blackout
24	short term and long term, and then just quickly made
25	some comparison to Fukushima, the things that pop in
I	I

(202) 234-4433

1 my head as examples of where the methodology would need augmentation from a modeling standpoint are 2 3 things about in-vessel coolability with uncertainty of 4 when you add water you might actually be coolable in-5 vessel, how the vessel fails, and ex-vessel 6 coolability, which is to me more than just timing and 7 more than just changing a coefficient or changing an 8 exponent. 9 It is saying this model simply cannot do 10 this; go use another model and see what it tells you relative to source term release. That's where I'm 11 going with this. 12 Well, actually, I am kind 13 MR. SCHAPEROW: 14 of wondering if they are not going to use this MELCOR 15 possibly for all three levels of the PRA. MELCOR is This whole idea about, you know, when 16 not limiting. 17 they add water, I mean, that is a Level 1 issue. And I think that is -- MELCOR does -- it cuts across all 18 19 three levels in an integrated fashion, but the issue is, of course, what if you want to analyze, you know, 20 50 different sequences. You know, you are hard-21 pressed to use this -- such a detailed modeling in --22 I'll say it again a 23 MEMBER CORRADINI: 24 different way just to make sure. So let's just run back to 1150 when there wasn't a pristine MELCOR. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

178

	179
1	There was an STP source term code package, there
2	was MELCOR, there were people doing site calculations.
3	My point is, there are certain physical processes that
4	MELCOR cannot model. Therefore, you might have to do
5	another model to estimate the source term rather than
6	going to experts, but actually just have other ways of
7	looking at the same physical processes.
8	Where I am going with this is I would
9	expect in the Level 3 PRA those possibilities have to
10	be considered, so you actually get a full range of the
11	uncertainty.
12	MR. SCHAPEROW: Yes.
13	MEMBER CORRADINI: Okay. That's where I
14	was going. Okay.
15	MEMBER REMPE: And the reason those kind
16	of questions have come up, and will continue to come
17	up probably through this meeting, is that you have
18	said several times throughout the report, and I think
19	in your presentations today, that you are trying to
20	demonstrate a technique that can be used in the
21	Level 3 PRA, and yet there was a limited uncertainty
22	analysis done here for the SOARCA assessment.
23	And if you try and say, "Okay. We
24	demonstrated it works, let's go run with it for the
25	Level 3," I think there are some issues that may need
ļ	I

(202) 234-4433

	180
1	to be considered.
2	MR. SCHAPEROW: Yes. I'm not sure they
3	decided what they are going to use for Level 2 and
4	Level 2 and 3 part of that PRA project. I think
5	that's all up in the air as far as I can tell, but
6	there are some issues, and some of the issues you
7	know, like corium spreading. You know, we've got a
8	very crude and very simple model for corium spreading.
9	You know, that may be a big deal in a
10	Level 3 PRA. They may have to do something to augment
11	that, or maybe hydrogen mixing in the reactor
12	building. That's another you know, there's one
13	volume right now for that whole area from the top of
14	the reactor building.
15	MEMBER CORRADINI: But, I mean, if I take
16	a step back again this is just thinking out loud
17	instead of using experts to actually determine source
18	term, the usefulness of the experts, assuming there
19	are experts, is to essentially ask the question, "What
20	physical processes can't be done within the structured
21	methodology, and, therefore, what are other things
22	that are available? And what should you model?" And
23	then, let the calculations speak for themselves,
24	assuming they are appropriate calculations.
25	MS. GIBSON: We did that in a SOARCA
ļ	1

(202) 234-4433

	181
1	analysis when we found things that were important that
2	we had to go back. And the ISLOCA was an example
3	where we had to update the model so that we could
4	better analyze those things. And there is efforts
5	underway to do code comparisons as more data comes out
6	of Fukushima
7	MEMBER CORRADINI: Right.
8	MS. GIBSON: and identify things that
9	we would information we would like to get out of
10	Fukushima over the years when they start dismantling
11	the plant, so that we can understand some of the
12	phenomena, the bottom head, and things like that.
13	So I think we will continue to update the
14	model as we run into questions like you are bringing
15	up as we go through the Level 3 project, depending on
16	what they are. If there is other tests out there,
17	data, we can use, then we will either update the
18	MELCOR model, or we will come up with some other way
19	to model those phenomena.
20	MEMBER CORRADINI: Thank you very much.
21	MR. SCHAPEROW: Just for time, I will just
22	jump right to the bottom if I could, for time reasons.
23	So we do see a little more work perhaps on
24	the horizon for follow-on for SOARCA. One of the
25	issues that was raised early on in the project was,
I	

(202) 234-4433

1 okay, you are doing Westinghouse with a large dry containment, but what's really interesting is an ice 2 condenser, because those are weak. 3 Those are weaker 4 containments. If you get a station blackout, you 5 could have a hydrogen combustion event, and you could have a much earlier release. 6 7 So we are going to be recommending some 8 limited follow-on research, including analysis of an 9 ice condenser plant. We actually started on one about 10 three years ago, but we discontinued it because we really wanted to get Peach Bottom and Surry done, 11 because we did want everybody to be alive at the end 12 of the project. Just kidding. 13 14 And also, we are going to -- in addition 15 to recommending -- in addition to recommending that, we are also going to provide the Commission with just 16 17 information package, say here is the SOARCA an reports, you know, for your information. And that's 18 19 where we are today. The only other thing we had today was Tina 20 was going to start talking about another piece of work 21 that we have going on under the SOARCA program, the 22 uncertainty analysis. 23 24 MEMBER REMPE: During the Subcommittee meeting, you did mention those reports for the plant-25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

182

	183
1	specific analysis would be updated before they went to
2	the Commissioners. Is that still the plan?
3	MR. SCHAPEROW: That's correct. We
4	actually are making some small changes to the reports.
5	We found errors with a few of the figures. One of the
6	figures had the labels switched on two of the curves.
7	Another figure, the one with the that chart that I
8	showed today with the bars going up, one of those bars
9	was too short. That was in the executive summary.
10	That really hurt.
11	So we have gone back we tried to fix
12	these things, because we really want
13	MEMBER SHACK: Is that in the brochure,
14	too?
15	MR. SCHAPEROW: Before we started SOARCA,
16	I read a report. It was the one on steam generator
17	tube risk. It was put out in 1998. And I went
18	through that thing carefully, carefully. I want to
19	because that was one of our important scenarios.
20	And I found a couple of mistakes in it,
21	and I'm like, we don't want this for SOARCA. I worked
22	on that report, too.
23	(Laughter.)
24	DR. GHOSH: With regard to the bar
25	heights, the relative heights were correct. It's just
I	I

(202) 234-4433

the absolute height was wrong. So the message is still the same, but that will be corrected when we put the reports out.

4 MR. SCHAPEROW: Yes. That's what the steam generator tube risk is reporting. People do go 5 back and, you know, those are kind of -- maybe it will 6 7 be overstating this, but they are a bit of a landmark 8 study. People go back and look -- I've been looking 9 at that for the last dozen or so years, other people 10 that do severe accident research. So I'm hoping that people will look back at this report as well, and they 11 will also be able to use it in that way. 12

Jason, I wanted to 13 VICE CHAIRMAN STETKAR: 14 bring this up. We brought it up in the Subcommittee 15 meeting, and you mentioned at a high level that the 16 SOARCA report looks at, you know, credit for 17 mitigation and then compares unmitigated sequences.

But, indeed, SOARCA takes credit for a subset of operator actions and presumes that they are quaranteed successful.

21 MR. SCHAPEROW: That's correct. And -22 VICE CHAIRMAN STETKAR: And they are not
23 considered part of the mitigated or unmitigated. They
24 are wired into the model.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

MR. SCHAPEROW: The term "mitigated" and

(202) 234-4433

25

1

2

3

	185
	"unmitigated" kind of evolved. Originally, our
	intention was to have a case where we had everything
	thrown in there from soup to nuts, including B.5.b,
	and then we wanted a separate case that we took B.5.b
	out of the picture, so we could show the value of
	B.5.b.
	So our mitigated case is everything thrown
	in that we thought was realistic and that the
	operators would do, and that is our mitigated case.
	And then, the unmitigated case is pull B.5.b out, now
	what happens? Well, now we get core damage and
	releases. That's for those release curves that I
	showed.
	VICE CHAIRMAN STETKAR: But let me
	MR. SCHAPEROW: We labeled them as
	"mitigated" and "unmitigated" now instead of B.5.b.
	VICE CHAIRMAN STETKAR: I understand that.
	I want to focus more on the operator actions that are
	wired in there.
	The Surry ISLOCA I had a chance to
	actually go back and read through their emergency
	procedures, and the Surry ISLOCA let me just
	because of the time here, let me just say I really
	think you should reconsider this assumption that the
	operators are guaranteed to shut off the high pressure
11	

(202) 234-4433

(202) 234-4433

1 injection pumps, which saves them for later make up. And the key operator error is that they 2 3 don't make up to the RWST, because I think those two 4 actions are very, very closely tied together in the 5 procedure. So it is not clear how they can be absolutely perfect on step n and absolutely failed on 6 7 step n+1, for example. 8 MEMBER SHACK: There's another one where 9 you say, "This isn't in the procedures, but they do 10 this anyway." And that is another one of those that, you know, maybe they would, maybe they wouldn't. But, 11 you know, it is somehow assumed already that even --12 VICE CHAIRMAN STETKAR: Well, those are 13 14 some of the things that I would hope would be 15 evaluated, you know, more -- in a more integrated 16 sense in the Level 3 PRA where you would look at how 17 those actions relate to one another and how they might or might not be using the procedures. 18 19 MEMBER CORRADINI: John, if I could just do it in color. You're saying the red bars have those 20 actions buried inside of them. 21 VICE CHAIRMAN STETKAR: The red bars have 22 some actions buried inside of them, because --23 24 MEMBER CORRADINI: Except for B.5.b, no B.5.b. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

186

	187
1	VICE CHAIRMAN STETKAR: That's because of
2	what was defined as a mitigating action. It was
3	associated with a specific subset of equipment.
4	MEMBER SHACK: I mean, you could have done
5	an analysis with B.5.b, with SAMGs, with EOPs, and
6	sort of looked at the credit for each one of them. I
7	mean, it life is too short, but
8	VICE CHAIRMAN STETKAR: But that one in
9	particular, because ISLOCA was kind of invisible on
10	there.
11	MR. SCHAPEROW: I mean, part of the
12	evolution of the project was that I mean, this
13	started right after the Commission said, "Thou shalt
14	have diesel-driven pumps and other ways to inject
15	besides your turbine-driven and your AC-powered
16	systems." So this was kind of one of the reasons
17	one of the objectives of the project was to say,
18	"Well, okay. What does this do for us, you know?
19	Does this solve our problems?"
20	And I think, actually, as a result of
21	Fukushima, I think a lot of people are thinking, yes,
22	it probably does, but we want them to be safe against
23	earthquakes and against flooding. And, you know, make
24	sure you store them in a place so that even though it
25	is good for security events, but also there is that
I	I

(202) 234-4433

	188
1	security safety stuff. You know, you've got to do
2	both.
3	Let me switch over to
4	DR. GHOSH: So for those of you who were
5	at the Subcommittee meeting, this is going to be a
6	higher level, shortened version of what we discussed
7	a couple of weeks ago.
8	So as Jason mentioned, we have follow-on
9	activity which we have started, which is an
10	uncertainty analysis for SOARCA.
11	And if you go to the next slide, just so
12	you know where we are, we are not done yet. We want
13	to come back to the ACRS after we are done, so we
14	don't have final results to share. So what I will be
15	focusing more on is, what are our overall goals and
16	the approach, the parameters that we have selected to
17	study, and then just to give you a status of what
18	preliminary analyses we have done so far and the
19	schedule for finishing.
20	All right. So the next slide, please?
21	So the goals of the uncertainty analysis
22	we basically want to develop some insight into the
23	overall sensitivity of the SOARCA results to
24	uncertainty and inputs.
25	And as you may recall, there are a number
I	I

(202) 234-4433

189 1 of sensitivity analyses that were completed as part of the SOARCA study, but they generally looked at one 2 3 issue at a time. And this is more of an attempt to 4 look at what might be the combined effects of the 5 important uncertainties, not just one sensitivity at So that is kind of why we are doing this. 6 a time. 7 We want to identify what are the most 8 influential input parameters for both releases and the 9 and we would like to be able to consequences, 10 demonstrate how we might go about doing the uncertainty analysis to demonstrate the methodology, 11 because we expect to be doing more of this type of 12 13 consequence analysis on the PRA coming up in the 14 future. And this is kind of the first time we are 15 16 attempting to do something that is as integrated with 17 as many MELCOR parameters as we are attempting right 18 now. 19 Let's go to the next slide. Our approach is to focus on the epistemic 20 uncertainty in the input parameter values. 21 That is state of knowledge uncertainty. 22 the Just as a reminder, the aleatory uncertainty, because of the 23 24 weather, was already treated as part of the SOARCA in the MACCS calculations. And for the 25 study

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	190
1	uncertainty analysis we are handling the weather
2	uncertainty in the same way that we did for the SOARCA
3	study.
4	So what we are adding here is the state of
5	knowledge uncertainty and the input parameters for
6	both MELCOR and MAAP.
7	We are using the Peach Bottom unmitigated
8	long-term station blackout as a first step, so that is
9	the only criteria we are doing at this point.
10	And I'd just make a note, you know,
11	Fukushima happened about a year ago on a plant that is
12	similar to Peach Bottom. And the scenario evolved a
13	little bit differently than what we have laid out for
14	SOARCA. But we made a decision that we wouldn't
15	change our scenario definition based on Fukushima,
16	because then that would fundamentally divorce the
17	uncertainty analysis from the SOARCA study.
18	So what we are planning to do instead is
19	we are developing a separate qualitative discussion,
20	you know, comparing our uncertainty analysis to
21	Fukushima, similar to what the SOARCA study did in the
22	appendix to the main report. So that is planned
23	instead.
24	And as I mentioned, we are looking at the
25	uncertainty and key model inputs for both the MELCOR
Į	I

(202) 234-4433

191 1 parameters, which lead to the source terms, and then parameters, which get us 2 the MACCS to the end 3 consequences. 4 MEMBER SHACK: How much of the model uncertainty do you think you are capturing by looking 5 at these parameters? And, you know, do you need 6 7 somehow to go off and have a separate box to deal with 8 the model uncertainties? 9 DR. GHOSH: I think, you know, that's 10 certainly a very interesting question. And we talked some about it at the Subcommittee meeting. You know, 11 with a lot of the MELCOR parameters, they are kind of 12 almost simulating potential alternate models. 13 They 14 are kind of lumped parameters to try to capture the 15 effects of either different phenomenology or how 16 things might evolve in the reactor. 17 So from that perspective, and varying some of these MELCOR parameters, we are getting at some of 18 19 the potential effects of model uncertainty. MEMBER SHACK: Are you thinking about 20 covering that kind of uncertainty when you consider 21 the ranges of parameters that you are choosing and the 22 distributions? 23 24 DR. GHOSH: I would say to some extent. You know, I guess I didn't mention yet, we are relying 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

very heavily on expert judgment, and these are the experts who have been working with MELCOR for decades, and who actually developed the SOARCA models. And they are very well aware of the experiments that have been done and what data we do have from -- whatever we have from TMI, you know, from the various experiments that have been done.

And because they are the ones who kind of 8 9 developed the MELCOR models, they have in mind what 10 those parameters are meant to represent. So I think from that perspective it just naturally comes into the 11 thinking, because, as I said, some of these parameters 12 are really lumped parameters that are trying to 13 14 represent more physical things. It is not just, you 15 know, like a failure rate as you would have in a 16 Level 1 PRA. So from that standpoint, yes.

But in terms of very explicitly -- for those things that we do have models, we are not addressing model uncertainty in this uncertainty analysis at this time. So the answer is yes and no. Maybe it's not very satisfactory.

I mean, I hope that in the report that we are writing up -- and you have the early version of kind of a snapshot of the early chapters of that report. We are trying to do a better job of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	193
1	explaining, you know, what the parameters represent,
2	so the reader can see, you know, in terms of which
3	model uncertainties might be captured. But we won't
4	be able to address everything.
5	Just as an example for it, like in the
6	MACCS you know, in the MACCS code, you know, we are
7	varying input. And there are models for how
8	atmospheric transport or use a Gaussian plume
9	model, for example. We are not looking at switching
10	that out for an alternate model to see.
11	So, you know, this uncertainty analysis is
12	very much tied to the models that were used in the
13	SOARCA study. And as I said, to the extent that model
14	uncertainty is explored, it is really where those
15	parameters represent some alternate modeling of
16	physical phenomena.
17	MEMBER REMPE: I think during our
18	Subcommittee meeting we talked about the need to
19	document areas where we knew we weren't capturing some
20	of the modeling uncertainty, and it was agreed that to
21	some extent that would be done.
22	And I was at a meeting earlier this week
23	at another forum where there was a discussion about
24	even the way that debris is held up in the core, that
25	there are other models out there, by industry or other
I	I

(202) 234-4433

194 places, where a different type of holdup, rather than 1 the dribbling-down effect. 2 3 And there is limited data to support that, 4 and, you know, a decision is what is in MELCOR -- is 5 what is in MELCOR, and you can do sensitivities on that, and that's fine. But perhaps that type of 6 7 documentation needs to reflect that it is recognized 8 that there is some uncertainty with the amount of data 9 we have, and the other models could predict something 10 substantially different. DR. GHOSH: Yes. Yes. And I think what 11 we are planning right now to -- where we would include 12 that type of discussion is the specific issues that 13 14 have been raised. For example, the Peer Review Committee raised a number of issues. 15 There are a few 16 that were repeated by this Committee, and you just 17 raised another one. I think we are going to address, you know, 18 19 the ones that have been raised. It is hard to promise to address absolutely everything. 20 I mean --MEMBER REMPE: I understand that. 21 DR. GHOSH: -- as I said, we certainly 22 have a great body of experts. I'm not a subject 23 24 matter expert in severe accident phenomenology, but we 25 have a great group of experts. And I think we are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	doing the best to identify what some of the important
2	uncertainties are, and things that we just we know
3	we can't address, but we recognize are important.
4	But we are not going to be able to do
5	everything, so hopefully we will get most of the way
6	there at least as far as important things go.
7	MEMBER BLEY: I don't want to let that
8	because we talked about this at that meeting. And
9	relying on what is brought up by review panels, who
10	look just a little bit, given you have this group of
11	people who are experts on what is there, they are also
12	experts on what they didn't do.
13	And I think, you know, some reflection on
14	where those models and phenomenology might lie that
15	you haven't explored, you really ought to do that
16	internally as well as relying on the outside comments
17	and get that document.
18	DR. GHOSH: Yes, you're right. And maybe
19	if
20	MEMBER BLEY: Or it could be very
21	embarrassing later when
22	DR. GHOSH: Well, maybe it was unfair of
23	me to say that we would only address those things
24	brought up by the external body.
25	MEMBER BLEY: I hope so.
I	

(202) 234-4433

	196
1	DR. GHOSH: But in many cases, you know,
2	the independent review panels have brought up the same
3	issues that our folks were thinking of. But certainly
4	we will internally do that exercise, too.
5	MEMBER SCHULTZ: It sounds like you are
6	headed in this direction. It would seem very useful
7	as to where you are in the project now to set up a
8	documentation structure that would be targeted at
9	capturing these differences that you have already
10	mentioned in the discussion here between what one
11	would call a typical uncertainty study on input
12	parameters and those parameters which we know are
13	reflective of models, model features themselves, but
14	you are trying to do an uncertainty associated with
15	that. And there is unknowns out there that won't be
16	captured in the uncertainty analysis, because you are
17	not you don't have the time and information to
18	explore that.
19	DR. GHOSH: Right, right.
20	MEMBER SCHULTZ: But if you set up that
21	structure, that would allow not only the documentation
22	to be more robust, but it would also I think allow you
23	to capture more information from internal reviews and
24	input as well as from the experts.
25	DR. GHOSH: Yes. Yes, we'll be I think
ļ	I

(202) 234-4433

	197
1	I mentioned in the Subcommittee meeting we are
2	continually improving the documentation, and we are
3	revisiting those early chapters to see that we have
4	weighed it out clearly, so we will we look at that.
5	Okay. Next slide?
6	So our overall approach, essentially we
7	used our the expert team that we have available to
8	us, which again, you know, we have expertise in
9	MELCOR, in MACCS, and these are the folks who actually
10	created the SOARCA models. And we got together with
11	the uncertainty methodology team, and we identified
12	what are the key uncertain input parameters.
13	And the uncertainty in these key input
14	parameters would be propagated in two steps. As you
15	know, we have the MELCOR model to generate the source
16	terms, and then that is to look at the consequences.
17	So we would first generate a set of source
18	terms using the MELCOR model, and then feed those into
19	the MACCS model. And so the MACCS model would take,
20	for example, in one realization one source term from
21	MELCOR and then one sample of all of the uncertain
22	MACCS parameters to spit out one realization.
23	And we are looking at sample sizes of up
24	to 300 for each iteration that we are doing. So we
25	end up with 300 realizations, as we call it, in a
ļ	I

(202) 234-4433

Í	198
1	standard Monte Carlo approach.
2	MEMBER CORRADINI: So this makes total
3	rigorous sense, but from a sensitivity standpoint, if
4	I decided that I would have in-vessel coolability, and
5	it stopped there and I could cool it, that seems to be
6	an outerbound calculation that could be done to see a
7	bound on the result. I mean, I understand all of
8	this. You have distributions in your sample, and you
9	have all of this fun.
10	But if I stop it somewhere, then I stop
11	it, and I actually see a big delta or not a big delta,
12	and I get some sort of information. The same thing
13	with a vessel change in other words, the ones that
14	you can't exercise this rigor with, are you going to
15	do what I will call sensitivities or what I will
16	say single-point calculations? Or is that still to be
17	determined?
18	DR. GHOSH: Right now we have planed a
19	very limited number of sensitivity analyses that I
20	will get to at this end of this.
21	MEMBER CORRADINI: Okay, fine. That's
22	fine. Okay.
23	DR. GHOSH: But just to I think as part
24	of the SOARCA study, they did a lot of those one-off
25	type sensitivity studies to look at individual issues.
I	I

(202) 234-4433

	199
1	And, in fact, a lot of what we are doing here was
2	informed by what turned out to be important versus not
3	in these earlier sensitivity studies. So that is
4	another tool.
5	MR. SCHAPEROW: Also, we are not including
6	anything in this scenario that would stop core damage.
7	And we would need some kind of injection system, and
8	we don't have that. We only have RCIC running for,
9	what, up to, what, 10 hours?
10	DR. GHOSH: After the battery runs out
11	MR. SCHAPEROW: I mean, there is nothing
12	we don't include any operator actions or any other
13	actions that would stop the accident in this scenario.
14	MEMBER CORRADINI: Actually, I wasn't
15	thinking about operator actions. I'm thinking about
16	physical process uncertainties.
17	DR. GHOSH: Right.
18	MR. SCHAPEROW: Got to get water in
19	somehow. That's we are taking that away from it,
20	so we can't
21	DR. GHOSH: Yes, we haven't
22	MR. SCHAPEROW: we can't stop the
23	accident.
24	DR. GHOSH: We haven't fundamentally
25	changed the scenario definition. So the way the
	I

(202) 234-4433

	200
1	scenario is defined for the SOARCA or Peach Bottom are
2	mitigated long term. That is where we are starting
3	from, and then looking at the
4	MR. SCHAPEROW: Unless we ran RCIC for two
5	days, at which point if you say we're done, as we have
6	in previous SOARCAs. But I don't
7	DR. GHOSH: Right.
8	MR. SCHAPEROW: we're not I don't
9	think we're we're not pushing that one that far.
10	We don't
11	DR. GHOSH: Right.
12	MR. SCHAPEROW: That's not
13	MEMBER CORRADINI: Okay.
14	DR. GHOSH: And that's what I yes, and
15	that's what I meant when I said we didn't change our
16	scenario definition after based on Fukushima.
17	We'll have a separate discussion on that.
18	So the results that we are planning to
19	report are essentially an analysis of the source term
20	releases. And cesium and iodine are usually held up
21	as important cesium because cesium tends to
22	dominate the long-term health risks, which is
23	essentially the only consequences that we are seeing;
24	and iodine historically is also of interest.
25	And from the consequence side, we will be
I	I

(202) 234-4433

	201
1	looking at the distribution of the latent cancer
2	fatality risk with three dose threshold models. So
3	LNT and the other two dose threshold models that were
4	used for the SOARCA study.
5	And what we are really trying to get at
6	with this study is to identify what are the most
7	influential uncertain parameters and why. So kind of
8	a description of, you know, what is driving the
9	potential changes in the results? What are the
10	phenomenological insights coming out of that?
11	The tools we are using are pretty standard
12	statistical methods, such as regression analyses as
13	well as scatter plots. And then, we are looking at
14	individual realizations to get the phenomenological
15	insights that we might not get from the standard
16	statistical analyses, to see in different examples
17	what might happen and how that what combinations of
18	things might lead to very different results.
19	MEMBER SKILLMAN: What is it that gives
20	you comfort that the three dose threshold models bound
21	the target of interest?
22	DR. GHOSH: Oh. You know, I don't think
23	the choice of the three dose models was meant to bound
24	the possibilities. I don't know if, Jason, you wanted
25	to

(202) 234-4433

MR. SCHAPEROW: Well, actually, we're including in our distributions -- for each of these three cases we -- for example, for our LNT case, we actually have a distribution on LCF risk factors in the model. So we are going to sample from that. So are not trying to bound it; we are usinq we distribution.

When we go to the background threshold 8 9 assumption, we are going to have a distribution again of cancer risk factors in the model. 10 We are going to sample from the distributions and then run the codes. 11 And as far as the three dose 12 DR. GHOSH: models, we are not sampling those, so we are going to 13 14 be reporting the results of each one separately, much

as was done for the main SOARCA study.

We had toyed with the idea of sampling the dose models, but how do you come up with a way to -it seems to be mixing apples and oranges. So we decided that we would just do three in parallel and report the results.

21 MR. SCHAPEROW: Thank you. Thank you. 22 DR. GHOSH: Sorry. The last bullet -- can 23 you go back? It's an important point. The SOARCA 24 Peer Review Committee Jason talked about was set up 25 for the SOARCA study. But the uncertainty analysis

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

15

203 1 was actually outside of the scope of the Peer Review Committee. 2 3 But we were very interested in getting 4 their guidance, so we solicited their guidance on just what our overall plan was in terms of the approach, 5 6 the methodology, and our parameter choices and 7 distributions. And we were lucky to be able to meet 8 with them a couple of times, and we did update our 9 parameter choices and distributions. 10 We put in some -- really thought seriously possible correlations 11 about and put in some correlations based on peer review feedback. And then 12 we circled back with them on how we adjust their 13 14 comments on the parameters to the distributions this 15 past January. 16 So as I mentioned earlier, our process 17 relies very heavily on expert judgment. And we have a core team of staff from Sandia and the NRC with 18 19 expertise in uncertainty methodology, so probability and statistics. And then, the MELCOR and MACCS 20 modeling for SOARCA specifically, and also MELCOR and 21 MACCS in general. 22 used sort of informal 23 We an expert 24 elicitation approach and an informal PIRT process. So not documented, you know, to the level that it would 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	204
1	be if we did a formal process, but that is roughly,
2	you know, what we were had in mind when we went
3	about this.
4	And the focus was on confirming that the
5	parameters we chose and the representations in terms
6	of the distributions did reflect the key sources of
7	uncertainty, and that we have a defensible technical
8	basis for what we are proposing.
9	And just philosophically, we were our
10	attempt was to obtain contribution of uncertainty from
11	across the spectrum of phenomena that are important in
12	different phases of accident progression and in
13	consequence analysis to get some depth and breadth of
14	coverage rather than focusing very deeply in one area
15	and not so much in others.
16	Yes?
17	MEMBER REMPE: Was there an attempt to
18	have independent parameters?
19	DR. GHOSH: You know, we couldn't. And,
20	you know, that should when we did our first cut
21	maybe about two years ago, the hope was that we could
22	make could come up with a set of independent
23	parameters that would adequately represent key sources
24	of uncertainty, and so on.
25	But in the end, we realized that that is
I	1

(202) 234-4433

	205
1	not really possible. So we do have correlated
2	parameters in there with a definition of how they are
3	correlated, so that the sampling can be done properly.
4	MEMBER REMPE: But maybe this is a
5	documentation issue, but the radial debris relocation
6	time constant, the debris lateral relocation cavity
7	spillover and spreading rate, may all depend on the
8	composition of the debris. Right? I mean, if it's
9	viscous or non-viscous, the temperature, and things
10	like that. And are those dependencies modeled
11	somehow?
12	DR. GHOSH: Those parameters that you
13	mentioned, in particular the in-vessel ones are
14	because there is a solid and a liquid version, I
15	believe.
16	MEMBER REMPE: Right.
17	DR. GHOSH: Those are correlated, and then
18	the ex-vessel ones are correlated with each other.
19	MEMBER REMPE: Based on composition of the
20	material, because, I mean, whether it's ceramic or
21	metallic. And I just was wondering and, again, you
22	don't have to answer today, but those kinds of things
23	I think should be included in the documentation.
24	DR. GHOSH: Mark, are you on the line? I
25	don't know if the line is open.
ļ	I

(202) 234-4433

	206
1	VICE CHAIRMAN STETKAR: Mark may be cut
2	off, muted.
3	DR. GHOSH: Okay. That's okay.
4	VICE CHAIRMAN STETKAR: Knowing Mark, he
5	is screaming at his phone.
6	(Laughter.)
7	MEMBER REMPE: But it just it doesn't
8	have to be answered now, but if it's documented I
9	think it should be or somehow or other it should be
10	documented. And then, about having the same level
11	okay, those debris-spreading ones are fairly high
12	level but consider a lot of things together. And
13	there is documentation in the report saying you have
14	surrogate parameters selected.
15	But then, other cases, I would see
16	something like decay and for the drywell head gap
17	you had three parameters that you sampled on. So you
18	went into the model and picked your parameters. And
19	so I wouldn't have guessed that you tried to have
20	equal level from what I saw in the report, and I don't
21	quite understand that.
22	DR. GHOSH: Okay. Well, I guess maybe
23	when we get to the next slide you will is it the
24	next slide? Yes, let's go to the next slide.
25	Basically, and maybe this gives some idea
I	I

(202) 234-4433

	207
1	we were trying to capture for example, this is
2	the list of the MELCOR in certain parameters, and some
3	of these are one bullet but actually captures multiple
4	parameters. But just see the areas that we cover.
5	The italicized sort of broad areas are
6	ones that we were considering in terms of accident
7	progression and what is happening in the reactor. And
8	that is kind of what we mean by we were trying to
9	look at these different phases or the different
10	phenomena within the reactor and make sure that we
11	were getting at the important phenomena there.
12	So, for example, for sequence issues we
13	know that how long the battery lasts is very
14	important, because that is the one kind of nod we have
15	for how long RCIC is going to end up lasting. You
16	know, it is completely dependent on how long the
17	battery lasts.
18	And then, the SRV stochastic failure rate
19	pretty much determined how the rest of the sequence
20	goes. So that was kind of one area that we looked at.
21	And then, we have you can see the
22	categories the in-vessel accident progression, the
23	ex-vessel, you know, the containment and building
24	behavior, and the fission product releases.
25	It is true that there are an equal number
ļ	I

(202) 234-4433

	208
1	of bullets under each of those. But in terms of the
2	thought process we tried to go through and capture
3	what we thought were the most important.
4	Now, for the drywell head flange
5	parameters that we put in, we actually put those in
6	after Fukushima. Because of the experience at
7	Fukushima, we wanted to take a closer look at, you
8	know, whether that could be something that is
9	important or an alternate, you know, early pathway, or
10	so on.
11	And those three parameters that were
12	described actually gets implemented as a pressure
13	versus, you know, weak area curve. So, really, those
14	three parameters become one input to the model.
15	MEMBER REMPE: Okay. So it looks like
16	they sampled on each one, what I read, but maybe I
17	DR. GHOSH: That's right.
18	MEMBER REMPE: Oh, okay.
19	DR. GHOSH: They did and then generated
20	the curve, which is what is actually put into the
21	MELCOR model.
22	MEMBER REMPE: Okay. So maybe I didn't
23	quite understand the documentation, but maybe it
24	looked like there wasn't a balance across the board.
25	Sometimes broad parameters were selected, and
	I

(202) 234-4433

209 1 sometimes very distinct little inputs to models were selected. 2 And to some extent that 3 DR. GHOSH: Yes. 4 is what we have available with the MELCOR models that 5 we have. I think we talked a little bit about this 6 last time, you know, so it's true that some of them 7 are more surrogate parameters for a lot of different 8 things that are happening. 9 That is kind of where we get into the --10 this parameter might be addressing model uncertainty, too, because there is so much we are putting into this 11 Whereas, with the head bolt one, set of parameters. 12 that is a very specific engineering model that has --13 14 those are physical parameters. 15 So it goes to the level of modeling that we have available in MELCOR, you know, to --16 17 MEMBER REMPE: So documenting will be key. We'll look at DR. GHOSH: Yes. Yes. 18 19 that. On the next page after we describe all of 20 those parameters we have what we actually implement in 21 We have a graph with, you know, the pressure 22 MELCOR. versus area, which is what is in there. But we can 23 24 look at that. So, yes, we just -- so, again, we tried to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

kind of cover the broad areas of accident progression and what is happening in the reactor. So looking at, sorry, the in-vessel accident progression, how in an ex-vessel the containment and building behavior, and the fission product behavior essentially, which I won't go through all of these. We can go to the next one.

8 And then, similarly, for the MACCS 9 MACCS models takes the parameters, source term 10 essentially coming out of the reactor and the models the atmospheric transport and deposition, as well as 11 the emergency planning and response, and then the 12 health effects as well. And we have sample parameters 13 14 for all of those.

15 Just a quick note on the health effects. 16 We did put in the early -- we put in some early health 17 effect parameters and varied them for completeness But we are not getting anything close to any 18 sake. 19 kind of early fatality risk, so that was in there for completeness. But our analysis has really focused on 20 the latent fatality risk, because that is really where 21 we see any kind of possible risk. 22 Next slide, please. 23

24So uncertainty analysis is very much --25MEMBER RAY: Just any kind of health risk

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	211
1	is what you are talking you said any kind of risk,
2	but
3	DR. GHOSH: Sorry.
4	MEMBER RAY: health risk.
5	DR. GHOSH: You're right, any kind of
6	health risk.
7	Uncertainty analysis is very much an
8	interactive process, and we have done multiple MELCOR
9	runs at this point, and I will explain a little bit
10	why.
11	So the first one we did, we implemented
12	all of the parameter distributions exactly as they are
13	laid out in Chapter 4 of the draft report chapters
14	that we gave you where we were modeling the SRV
15	stochastic failure. We have the SRV thermal failure
16	criteria, and what we ended up seeing is that with the
17	distributions as we have them in Chapter 4 that this
18	first case led to a lot of main steam line creep
19	ruptures.
20	And when we reflected on what this means
21	it seemed that we were really modeling a different
22	scenario than what was modeled in the SOARCA best
23	estimate case.
24	So to get a better understanding of what
25	was going on, and just to give you a summary of maybe

(202) 234-4433

something of what was driving that, we were sampling -- when you have SRV thermal failure, we were sampling an open area between zero and one. And we are revisiting that distribution right now, a uniform distribution between zero and one, because it seems that most people think it should be skewed towards full open.

8 So we ran a second case where we kept the 9 SRV thermal failure area open -- opening constant at 10 one, which is fully open, to see, you know, do we get 11 something that is -- that looks more like the SOARCA 12 scenario rather than a main steam line creep rupture 13 scenario, which is kind of a different scenario.

And then, as a third case, we kept the SRV stochastic failure rate constant at the SOARCA value, and then varied all of the other parameters. So to get insights about essentially what is going on and what is driving differences in the results for these different cases.

The preliminary MACCS analyses we have done so far, we only did the MACCS runs for the first combined scenario, and we used only the LNT model so far. And as I mentioned before, we are looking at aleatory uncertainty in the weather the same way as we did for the SOARCA study. And we looked at the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

	213
1	epistemic uncertainty in the parameters as laid out in
2	the draft Chapter 4.
3	So next slide?
4	So just a very, very, very high level
5	summary of the results that we are seeing so far. The
6	cesium release timings and, again, we are
7	concentrating on cesium because that is the key driver
8	for the latent health effects.
9	The cesium release timings are similar to
10	the SOARCA estimate, and the magnitude of release at
11	48 hours is generally slightly higher than the SOARCA
12	estimate, but it is still far below the siting study
13	results.
14	And, you know, one could guess that if you
15	get, for example, a case with a lot of main steam line
16	creep rupture that the SOARCA study, the sensitivity
17	studies that were in there already showed that the
18	cesium total releases would be higher. So we are
19	certainly seeing that with the uncertainty analysis
20	where we have seen quite a few main steam line creep
21	rupture cases.
22	For the MACCS results, the distribution of
23	the risk results for latent cancer fatality risk is
24	similar to what was shown for the SOARCA study, and
25	the early fatality risk is still essentially zero.
	I

(202) 234-4433

1 And I quess the main point here is that, you know, even with cesium releases that are higher 2 coming out of MELCOR, in MACCS a lot of the latent --3 4 the long-term health risk is dominated by people 5 coming back to their homes after they have been 6 evacuated. 7 So in some sense, you know, the 8 habitability criterion or the return criterion has a 9 large effect on what people are allowed to receive. 10 So you really see a sub-linear effect on the MACCS results. 11 MEMBER CORRADINI: So are you going to 12 modify the habitability criteria to see its effect? 13 That is one of our planned 14 DR. GHOSH: 15 sensitivity analyses. We had originally included it 16 as an uncertain parameter, but that is almost a policy 17 decision. You know, the states --MEMBER CORRADINI: It is definitely a 18 19 policy decision. DR. GHOSH: Yes. The state set that 20 criterion, and the states have basically told us what 21 that would be. So it is -- you know, what basis do we 22 have to vary it? 23 24 Now, the one thing is that it is true that if there really were an accident, the states are free 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	215
1	to set a different criterion. But we felt that it was
2	better to explore that sensitivity outside of the
3	integrated uncertainty analysis rather than
4	MEMBER CORRADINI: Well, I wouldn't put a
5	probability distribution on a politician.
6	(Laughter.)
7	DR. GHOSH: Yes. It's a delicate matter.
8	We didn't want to do that.
9	Okay. The next slide?
10	So the uncertainty analysis is very much
11	still in progress. There are a few parameter
12	distributions in the MELCOR model that are currently
13	under revision. I mentioned one of them. We are
14	thinking of changing the SRV thermal failure open area
15	distribution, which is currently uniform zero to one,
16	but we think and we've gotten a lot of
17	feedback that it should be skewed much more towards
18	the fully open or one.
19	We are still looking at the SRV stochastic
20	failure rate distribution, but there continues to be
21	very little data to support that. So we are not
22	completely sure what we might change about that, but
23	we are still looking at that.
24	And then, there are a couple of others we
25	mentioned during the Subcommittee meeting, such as the

	216
1	aerosol parameters, the dynamic agglomeration shape
2	factors, as well as the drywell liner open area. And
3	actually, for that what the the big thing we are
4	looking at is how fast that opening happens, and
5	whether that is physically realistic, and if there is
6	some other way that we could we could model that.
7	This is a good example where we are really
8	getting at a modeling issue rather than it is how
9	MELCOR models, you know, that process. So
10	MEMBER CORRADINI: But I guess since you
11	have picked on that one I was waiting for you to
12	get down to the third bullet, fourth bullet. But
13	since you've picked on that one, I thought in the
14	SOARCA analysis if it is water on the floor, it
15	doesn't fail the line.
16	DR. GHOSH: Yes.
17	MEMBER CORRADINI: Okay. So what
18	conditions would there not be water on the floor?
19	What of the accident sequences is essentially a dry
20	pedestal region? I forget.
21	MR. SCHAPEROW: All of them. The water is
22	leaving the vessel through the SRVs and going through
23	the SRV tailpipe in the suppression pool.
24	MEMBER CORRADINI: And there is no pre-
25	existing water in any of them.
	I

(202) 234-4433

	217
1	MR. SCHAPEROW: No.
2	MEMBER CORRADINI: Okay. So was there
3	pre-existing water in Fukushima? I mean, I'm asking
4	the question because I'm sorry that I keep on
5	linking to something, but it just strikes me we would
6	have seen a dramatic since we had a station
7	blackout, we would have seen a dramatic
8	depressurization low in all three units if I would
9	have seen a drywell failure with a dry with a dry
10	floor.
11	And my impression of all of the
12	calculations is essentially it was a wet floor, which
13	means it didn't fail. Well, it depressurized, but
14	late. Do you see where I'm do you see my thinking
15	process? I'm trying to connect something that
16	happened to what I'm calculating, and I am coming up
17	with an empty set.
18	MR. SCHAPEROW: Yes, I think we are still
19	investigating that particular issue.
20	MEMBER CORRADINI: Because I don't see
21	I guess it gets back to my comment on your suggestion
22	which is how big the hole I don't know it matters
23	how big the hole is. It matters whether there is
24	water or not. If there is water there, then I've got
25	a totally different situation.
ļ	

(202) 234-4433

	218
1	DR. GHOSH: Yes. Actually, this
2	particular issue had to do with and you're right,
3	in the end it is not the size of the hole that it
4	seems that matters, but how fast it opens up.
5	In the MELCOR model that we have huh?
6	MEMBER CORRADINI: I said that's even
7	worse. Nobody is going to know how fast it opens. Is
8	there water there or there's not water there? If
9	there's not water there, you're toast.
10	DR. GHOSH: The reason it was showing up
11	as important in our preliminary analyses is because we
12	varied the liner open area. And when the open area
13	got past a certain threshold amount, because this
14	opening is assumed to open up very quickly in the way
15	that it is modeled, it essentially drew a huge
16	pressure differential and drew wet well water into the
17	drywell, which causes an increase in our source term,
18	because then when that water evaporates that source
19	term is from the wet well is available in the
20	drywell.
21	So that is kind of why we are
22	investigating the issue in terms of how we model
23	things.
24	So we need to finish our parameter
25	importance analyses, the regression analyses on our

(202) 234-4433

	219
1	updated runs, and we will keep looking for interesting
2	phenomenological insights for both MELCOR and with the
3	MACCS, too.
4	Right now we have a handful of separate
5	sensitivity analyses that we are planning. One is on
6	the habitability criterion that we wanted to do
7	separately. The second is the timing of two operator
8	actions in the unmitigated long-term station blackout.
9	As you mentioned in the Subcommittee
10	meeting, there are two actions that are credited. It
11	is the manual depressurization at one hour, and then
12	taking manual control of RCIC at two hours. And we
13	want to see what the effect of varying those two might
14	be.
15	The Peer Review Committee had brought this
16	up as something that we should vary. We had
17	discussions with them, and it was felt that,
18	especially without HRA expertise on our team, that it
19	wouldn't maybe not be the best thing to include that
20	uncertainty as part of the integrated uncertainty
21	analysis, but, rather, we could explore the
22	sensitivity of the results to those timings as a
23	separate sensitivity study.
24	And then, the lower head I guess the
25	possible, you know, other failure mechanisms for the

(202) 234-4433

	220
1	lower head we talked about this at the last
2	Subcommittee, so this is a new bullet we have added.
3	PARTICIPANT: Well done.
4	(Laughter.)
5	DR. GHOSH: You know, we had quite a bit
6	of discussion at the Subcommittee. This is an issue
7	we have thought about before, we have been struggling
8	with for quite a while. The Peer Review Committee had
9	brought it up as well. ACRS brought it up again a
10	couple of weeks ago. So we are in earnest exploring
11	our options on how we might do a sensitivity study for
12	that.
13	MEMBER CORRADINI: If I might just make
14	sure you understand my comments. I agree with three,
15	but three is not just the structural. Three is the
16	coolability in-vessel that would essentially preclude
17	this, as well as if you get this, what are the
18	conditions ex-vessel that the junk falls into?
19	And I am still back to my concern that I
20	in all of the various well, I can't use that as
21	an example. It just strikes me that there is a
22	connection between what is happening in-vessel and
23	potential coolability, and what can happen ex-vessel
24	with potential coolability, that would take you down
25	different paths.
Į	I

(202) 234-4433

	221
1	So they are relatively connected, and at
2	least in this one area of MELCOR I think the analysts
3	themselves would admit that MELCOR makes some
4	relatively large simplifying calculational
5	assumptions.
6	MEMBER REMPE: You're about done with this
7	before you get into schedule, and one of the things we
8	spent some time at the Subcommittee talking about was
9	"best estimate" and the fact that that phrase was used
10	a lot in the report.
11	DR. GHOSH: Yes.
12	MEMBER REMPE: And then, you have an
13	uncertainty analysis. And I actually saw someone talk
14	about you really have an uncertainty distribution on
15	a point estimate. And I think that is what the
16	uncertainty analysis really is, and there is a lot of
17	uncertainties with predicting severe accidents.
18	And I am not sure we have a best estimate
19	with SOARCA. I think we have eliminated the things we
20	know are wrong, because of the increased knowledge
21	about phenomenological or severe accident phenomena.
22	But what is your thoughts about it? Do you think you
23	have a best estimate?
24	MR. SCHAPEROW: This is one of the things
25	actually, this was discussed quite a bit at Peer

(202) 234-4433

222 Review Committee meetings as well. And I think one of our Peer -- actually, the Peer Review Committee chair, she might have expressed it best. She said, "You know, I think that SOARCA is more realistic than the earlier analyses in that there are conservatisms remaining." Core coolability, ex-vessels might be an example, other things. And you're right, they are using the

8 9 phrase "best estimate" as in, okay, we're done, we 10 never have to -- why even bother with uncertainty? MEMBER REMPE: If our models don't predict 11 12 things that we know, then our best estimate was wrong. This is, you know, we 13 MR. SCHAPEROW: 14 anticipate I think fair -- I think it's fair to say we 15 anticipate doing more research like this over the years. MELCOR is a result of, you know, all of the 16 development work that went before, but I think we can 17 -- we will still be working these issues. 18 19 The uncertainty analysis I think is going to provide a lot of additional insight into -- one of 20 the things that maybe hasn't been talked about much is 21 that when you do a sensitivity analysis you take one 22

parameter and you move it over to another spot, and 24 then you rerun the calculation and you get a different 25 answer.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

23

But sometimes if you take one parameter and you move it over here, and you take another parameter and you move it over there, and then you rerun the calculation, you get the answer -- the final answer doesn't move very much. It's that -- because in an integrated model you have this counteracting effects.

8 I'm hoping we are going to see some of 9 I haven't really been as deeply involved in the that. 10 uncertainty analyses as Tina has. I'm hoping we will see some of that in this analysis. And maybe some of 11 these uncertainties that may be uncertain in one area, 12 like, wow, you know, this parameter could vary a lot. 13 14 It may wash out when you put it into a big integral 15 calculation like this. I am hoping we are going to 16 of those insights as well in these qet some calculations. 17

Or maybe on the other hand, if you had a -- maybe even in a big integrated model that will still be an important uncertainty, and we've got to keep looking at that when we do our risk studies and our severe accident studies.

23MEMBER CORRADINI:Can I just ask another24one? Just so we're --

MR. SCHAPEROW: Sure thing.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	224
1	MEMBER CORRADINI: So you had a long-term
2	station blackout and a short-term station blackout,
3	and in none of those the pump seals of the jet pumps
4	of Peach Bottom leaked onto the floor of the drywell?
5	MR. SCHAPEROW: Correct.
6	MEMBER CORRADINI: Astonishing.
7	MR. SCHAPEROW: Pump seal leakage has been
8	an issue in the past for PWRs, and we do model that
9	in
10	MEMBER CORRADINI: But not in these pumps.
11	MR. SCHAPEROW: Never to my knowledge,
12	the severe accident analysis that I have been involved
13	with over the last 15-ish years, the pump seal leakage
14	for BWRs has not been an issue. Maybe it's a new
15	issue, but
16	MEMBER CORRADINI: I'm just thinking back
17	to Fukushima, is where the inventory was going, and
18	one of the things was the pump seals were leaking on
19	the jet pumps.
20	MR. SCHAPEROW: I asked our advisor in
21	this area, Charlie Tinkler, pretty much the same
22	question about six years ago. I said, "We've got pump
23	seal leakage in the PWR. Why are we modeling in the
24	BWR?" I don't remember his exact answer, but it was
25	it hasn't really been an issue, maybe it's a lower

(202) 234-4433

	225
1	pressure pump, a different style of pump.
2	MEMBER SIEBER: Temperature impression.
3	MR. SCHAPEROW: I don't remember the exact
4	answer. I'm sorry, I wish I did. I wish he was here.
5	MEMBER RAY: There ought to be an answer,
6	though, because it's an important question.
7	MR. SCHAPEROW: Yes.
8	MEMBER RAY: I'm not saying the answer is
9	any one thing or another, but there needs to be a good
10	reason.
11	MR. SCHAPEROW: If you end up doing Peach
12	Bottom calculations and Surry calculations side to
13	side, it enables you to compare what we have done in
14	one area and another by different analysts and with
15	different styles of reactors. In a lot of cases, you
16	see the same thing. Core damage starts about the same
17	time, lower head failure is at the same time. It is
18	really quite fascinating to hold the two analyses.
19	But this is one area where we have a
20	little difference in our models, and I'm you're
21	right, this is
22	MEMBER CORRADINI: Because when a lot of
23	us were looking at the accident in Japan, one of the
24	places inventory was being lost, at least it was
25	claimed to be lost, is essentially leakage from the
	I

(202) 234-4433

	226
1	seals. And that is what maybe I'm not I'm not
2	a pump person, so this
3	MEMBER RAY: Well, I'm a pump person, but
4	let's just assume for a second that it's not true,
5	but it is good enough.
6	(Laughter.)
7	VICE CHAIRMAN STETKAR: So you're a
8	consultant.
9	(Laughter.)
10	MEMBER RAY: Let's put it this way, John.
11	Like you, I have run a lot of pumps in my life. Okay?
12	And if you are going to assume the seals
13	don't leak, which may be the right assumption, just
14	have a good reason. That's all.
15	MEMBER SHACK: Charlie Tinkler told me.
16	(Laughter.)
17	MEMBER RAY: And that doesn't surprise me.
18	MEMBER BLEY: If you go back when this
19	first became an issue in the PRAs, which is where it
20	was first raised long ago, there were at least three
21	different types of seals at that time, some of which,
22	due to heatup, led to much larger flows than others
23	which were very different kind of seals, and, you
24	know, some were hydrodynamic seals.
25	And there were various different kinds.
	I

(202) 234-4433

	227
1	The kinds in the BWR and one of the PWRs I forget
2	which one had much lower leak rates. They still
3	could leak. But if you go back to that you might find
4	some good information. And I don't know if anybody
5	has done much on it since then. I haven't seen
6	anything, and that has been quite a long time, the
7	'80s I guess when most of that
8	MEMBER RAY: That's quite a long time ago.
9	MEMBER BLEY: Yes.
10	MEMBER RAY: Well, people have canned
11	rotors for a reason. And it isn't because they like
12	to maintain canned rotor pumps.
13	DR. GHOSH: If I could come back to
14	something Jason was mentioning. You know, one of the
15	things with uncertainty analyses in the past and I
16	think we are also finding with preliminary analyses on
17	this one is that there could be a lot of things that
18	are uncertain in your analysis in terms of inputs and
19	the way you model things.
20	But in the end, it is often really a
21	handful of things that make the biggest difference,
22	and that is kind of what we are trying to get at here.
23	We have done a bunch of single sensitivity analyses
24	for the main study.
25	Now we are trying to integrate the look at
	I

(202) 234-4433

	228
1	a lot of individual issues, you know, which
2	combinations of things can make, you know, an
3	interesting difference in the results. So that is
4	kind of what we were trying to get at, because not
5	everything ends up being important.
6	We have been surprised in both directions,
7	both things we thought were important which looks like
8	it is turning out to be a "no, never mind." And then,
9	things that, you know, we didn't realize could be an
10	issue, kind of like this drywell liner, you know,
11	failure area. The way that it is modeled, you know,
12	it makes a difference. So we are getting surprises in
13	both directions.
14	So the last slide, this is just a schedule
15	of completion for this analysis. We are as Jason
16	mentioned, there is a Commission Memorandum going up
17	in June that forwards the results of this SOARCA
18	study, and that Memo will contain a very short
19	discussion on the status of the UA and our interim
20	conclusions.
21	We expect to have a draft report available
22	in September, and we would like to come back to the
23	ACRS with results maybe in the October timeframe. And
24	we are looking for a letter from the ACRS, if you all
25	wanted to do that, on the final uncertainty analysis.

(202) 234-4433

229 1 And we are aiming to have the final report submitted for publication in the November timeframe. 2 think that's it. Are there any 3 Ι 4 questions? 5 (No response.) MEMBER SHACK: Any more questions from the 6 7 Committee? 8 (No response.) 9 Well, thank you very much for a good 10 presentation. You also got us a little time back. MR. SCHAPEROW: Yes, you did. Amazing. 11 To make up for last time. 12 DR. GHOSH: (Laughter.) 13 14 MEMBER SHACK: Back to you, Mr. Chairman. 15 CHAIRMAN ARMIJO: Okay. Thank you, Bill. 16 I think we are going to take a break now, well, because it's time for a break. So let's take a 17 break until ten of three. 18 19 (Whereupon, the proceedings in the foregoing matter went off the record at 20 2:35 p.m. and went back on the record at 21 2:49 p.m.) 22 CHAIRMAN ARMIJO: We're back on the record, 23 24 and the next topic is St. Lucie 1 Extended Power Uprate. And Dr. Banerjee will lead us through this 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	230
1	briefing.
2	MEMBER BANERJEE: Thanks, Sam. We had a
3	Subcommittee meeting a couple of weeks ago, so we're
4	on a fairly tight schedule to get a letter out this
5	meeting. Nonetheless, I think we can do it. It's a
6	pleasure to introduce Allen Howe who will start the
7	proceedings off.
8	As you know, St. Lucie is one of the first
9	combustion plants that I've dealt with myself here.
10	There were other uprates but I think it was before my
11	time, so it's sort of an interesting experience.
12	Anyway, go ahead, Allen.
13	MR. HOWE: All right, thank you.
14	Good afternoon. I'm Allen Howe. I'm the
15	Deputy Division Director in the Division of Operating
16	Reactor Licensing in the Office of Nuclear Reactor
17	Regulation. I appreciate the opportunity to brief the
18	ACRS today on the St. Lucie extended power uprate
19	application.
20	Today, the NRC staff will address selected
21	areas highlighted as open items from the Subcommittee
22	meeting that happened as you said two weeks ago, or a
23	couple of weeks ago. A couple of these open items
24	include the steam generator U-tube hold-up questions,
25	audit reports on the staff's confirmatory analyses
I	

(202) 234-4433

231 1 usinq FRAPCON, and the disposition of some 2 supplemental LOCA analyses. 3 During the course of our review, the staff 4 had frequent communications with the licensee. These 5 includes conference calls, audits, letters, and also public meetings. We also issued several rounds of 6 7 requests for additional information, and those spanned 8 multiple technical disciplines. 9 believe that this open dialoque We 10 contributed positively to the overall review. And with reqard to the review, I'm very pleased with the 11 thoroughness and the depth of the staff's review. 12 There were a multitude of technical issues that the 13 14 staff interacted on. Those interactions were extensive with the licensee during the course of our review. 15 16 At this point, I'll turn over the meeting 17 to the Project Manager, Tracy Orf, who will introduce the discussions. 18 19 MR. ORF: Thank you, Allen. Good afternoon, and my name is Tracy Orf, I'm the St. Lucie Project 20 Manager in NRR. I'd like to take this opportunity to 21 thank the ACRS members for your effort in reviewing 22 proposed EPU applications in such a short time, as Dr. 23 24 Banerjee said, and especially for Weidong Wang for helping us so much. I also want to express my thanks 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	to the NRC staff for conducting a thorough review of
2	such a complex application, and also providing their
3	support at these meetings.
4	During today's Full Committee meeting you
5	will hear from both the licensee and the NRC staff in
6	providing you with the details of the EPU application.
7	The objective is to provide additional follow-up
8	information relating to the details of the St. Lucie
9	Unit 1 EPU application and provide the status of those
10	open items, as Allen had mentioned earlier.
11	Before we cover the agenda items for
12	today's meeting, I would like to provide some
13	background information related to the proposed EPU. On
14	November 22 nd , 2010 the licensee submitted its license
15	amendment request for St. Lucie Unit 1. The proposed
16	amendment will increase each unit's license for a
17	power level from 2,700 megawatts thermal to 3,020
18	megawatts thermal. This includes a 1.7 percent
19	measurement uncertainty recapture resulting in an 18
20	percent increase from the original licensed thermal
21	power.
22	The staff's method of review was based on
23	Review Standard RS-001 which is NRC's Review Plan for
24	EPUs. As you know, it provides a safety evaluation
25	template, as well as matrices that cover the multiple
	I

(202) 234-4433

	233
1	technical areas that staff is to review. Also, the
2	staff completed several audits, as Allen said earlier,
3	and our RAIs resulted in the licensee responding with
4	over 85 to 90 supplements to the application.
5	During the Subcommittee meeting that was
6	held on April 26 th , there were several requests for
7	information that Dr. Banerjee and the Subcommittee
8	asked us to come back and answer. The ones on the
9	screen right now are the ones that the staff were
10	is going to answer. There's a few others that the
11	licensee will talk about later.
12	First was the U-bend hold-up for water in
13	the steam generator reflooding the core. Dr. Len Ward
14	was going to speak to, but unfortunately he had a
15	prior personal commitment to this, but we also
16	provided some information, some graphs to Dr. Banerjee
17	before the meeting. We also provided the audit reports
18	as Dr. Rempe had requested, and the disposition of the
19	supplemental LOCA analyses we'll hear about later in
20	the discussion.
21	This afternoon the licensee will first
22	provide an introduction which includes an overview of
23	the proposed EPU and a description of their proposed
24	plant modifications. And then the licensee and the NRC
25	staff will each present their presentations on the
I	I

(202) 234-4433

	234
1	safety analysis with additional discussion on the
2	thermal conductivity degradation issue.
3	Unless there are any questions, I'd like
4	to turn the presentation over now to Mr. Rich
5	Anderson. Rich is the Site Vice President for St.
6	Lucie.
7	MR. ANDERSON: Thank you. Okay, good
8	afternoon. My name is Rich Anderson, as Tracy said,
9	and I'm the Site Vice President at St. Lucie. I've
10	been at St. Lucie for about two and a half years now
11	as the Site Vice President. I do want to thank the
12	Committee for the opportunity to speak on FPL
13	representing the extended power uprate for Unit 1.
14	Next slide.
15	With me here today to share information
16	about the St. Lucie extended power uprate are Jack
17	Hoffman, Licensing Manager; Chris Wasik, Licensing
18	Manager, and Jay Kabadi, Nuclear Fuels Manager for St.
19	Lucie. This is a significant undertaking performing
20	this power uprate. It not only increases the licensed
21	power for St. Lucie, but it results in many equipment
22	upgrades that will improve the safety and reliability
23	of the plant, which Jack will discuss later in the
24	presentation. Next slide.
25	St. Lucie is located on Hutchinson Island,
ļ	1

(202) 234-4433

Southeast Fort Pierce, Florida, and is the primary electrical generation source for St. Lucie County. It is a combustion engineering pressurized water reactor nuclear steam supply system. We have a Westinghouse turbine generator with one high-pressure and two lowpressure turbines.

7 The original architectural engineer was 8 Ebasco. Our nuclear fuel supplier is AREVA, and our 9 current electrical gross generation output is 10 approximately 950 megawatts electric.

With regard to some of the key milestones and major equipment replacements for St. Lucie Unit 1, the original operating license was issued in 1976. Due to corrosion issues, the steam generators were replaced in 1998 with B&W Series 67 steam generators.

In 2003, we received a renewal on the operating license for Unit 1 extending the operating license until 2036. In addition, in 2003 a new single failure-proof crane was installed to support our dry fuel storage operations.

During 2005 refueling outage, the reactor vessel head and pressurizer were replaced to address industry issues with Alloy 600. And, finally, we've begun long-term equipment reliability plans which include replacement of the reactor coolant pump motors

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	which will complete by 2015.
2	The original license core thermal power
3	for Unit 1 was 2,560 megawatts thermal. An approximate
4	5-1/2 percent stretch power uprate was approved in
5	1981 which increased the core power level to 2,700
6	megawatts thermal. This was accomplished with
7	relatively few equipment changes or hardware
8	modifications to the plant.
9	The extended power uprate we are
10	discussing today will increase the licensed core
11	thermal power of Unit 1 to 3,020 megawatts thermal.
12	This represents an additional 100 megawatts of clean
13	nuclear generation.
14	Unless there are questions, this completes
15	what I intended to cover, and I'll turn the
16	presentation over to Jack Hoffman.
17	MR. HOFFMAN: Thanks, Rich. Good afternoon.
18	My name is Jack Hoffman, and I'm the Licensing Manager
19	for the St. Lucie Unit 1 Extended Power Uprate
20	Project.
21	As stated earlier by Rich Anderson,
22	Florida Power & Light has submitted a license
23	amendment request to the NRC for an approximate 12
24	percent license core power increase for St. Lucie Unit
25	1. This proposed power increase consists of a 10
Į	I

(202) 234-4433

1 percent uprate from the current power level of 2,700 megawatts, and it also includes a 1.7 percent core 2 power increase as a result of a measurement 3 4 uncertainty recapture. And together, these power 5 increases raise the license core power of St. Lucie 6 Unit 1 to 3,020 megawatts thermal. 7 As part of the upgrade project we 8 performed a grid system impact study to evaluate the 9 impact of the project on the reliability of the 10 electric power grid. That study was performed with the most limiting configuration of both St. Lucie Units 1 11 and 2 at their extended power uprate level, and the 12 results of the grid stimulation -- assimilations 13 14 indicate acceptable grid performance for the most extreme event. Also, the modifications to support 15 16 operation of St. Lucie Unit 1 at the uprated power level are being implemented this year in 2012. 17 During the ACRS Subcommittee meeting back 18 19 in April we received five additional questions from the ACRS Subcommittee members, two of which involve 20 mechanical systems, pressurizer safety valves and 21 potential for reverse flow in a reactor coolant loop, 22 additional 23 also three questions or issues and 24 involving fuel-related analyses. That information was provided to the Subcommittee members shortly after the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	meeting for their review. Next slide.
2	This is a layout of a typical combustion
3	engineering two-loop NSSS, or nuclear steam supply
4	system. As you can see, the NSSS is composed of two
5	steam generators, one in each loop. Each loop also
6	contains one hot leg, two reactor coolants pumps and
7	two associated cold legs. And this configuration is
8	very close to that at St. Lucie Unit 1. Next slide.
9	MEMBER SKILLMAN: Each loop contains what,
10	please?
11	MR. HOFFMAN: Each loops contains one hot
12	leg, one steam generator, two reactor coolant pumps,
13	two cold legs.
14	MEMBER SKILLMAN: Two reactor coolant
15	pumps. I thought you said one.
16	MR. HOFFMAN: Correct.
17	MEMBER SKILLMAN: Okay. Thank you.
18	MR. HOFFMAN: I'm sorry if I did.
19	MEMBER SKILLMAN: Thank you.
20	MR. HOFFMAN: Okay. This next table
21	provides a comparison of the primary and secondary
22	plant parameters for St. Lucie Unit 1. As Rich
23	Anderson noted, St. Lucie Unit 1 was originally
24	licensed in 1976 at a core power level of 2,560
25	megawatts thermal, and an approximate 5-1/2 percent
ļ	I

(202) 234-4433

stretch power uprate was approved and implemented in 1981.

proposed consists of 3 The EPU а 320 4 megawatt thermal core power increase above the current 5 power level of 2,700 megawatts. As part of the project, the fuel-related analyses have taken credit 6 7 for an additional assumed 5,000 gallons per minute per reactor coolant system loop of flow, and that provides 8 9 us additional margin and improves the plant response 10 to postulated events.

Also, proposed cold leq 11 the for а combustion engineering plant, let me preface by saying 12 that CE Units or Combustion Engineering Units operate 13 14 with a constant T-cold, cold leg temperature, and for 15 extended power uprate project the cold leq the temperature is being increased by 2 degrees Fahrenheit 16 17 to a value of 551 degrees. And this temperature was mainly chosen that the EPU operating steam generator 18 19 pressure is close to what we experience today.

Also, a bounding hot leg temperature at 606 degrees Fahrenheit is predicted for the EPU. This EPU hot leg temperature is well below the industry experience for similar pressurized water reactor uprates. And the EPU analyses have concluded that the existing Alloy 600 program is sufficient to manage

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

240 1 potential aging effects at EPU conditions. Next slide. 2 Several EPU modifications as shown on this safety 3 slide have beneficial impact. The first 4 modification I'd like to just mention is the first on 5 the slide, and that's an increase in the safety injection tank design pressure. This change allows St. 6 7 Lucie Unit 1 to increase its operating safety 8 injection tank pressure, and this provides us 9 additional benefits and margin for the small break 10 LOCA event. The last modification the slide 11 on increases 12 the reactor protection system steam generator low-level trip set point to improve the St. 13 14 Lucie Unit plant response risk profile for beyond 15 design basis events. MEMBER STETKAR: Jack, unfortunately I 16 17 didn't have an opportunity to attend the Subcommittee meeting. The third bullet on this online containment 18 19 mini-purge capability, will that be operated continuously? 20 MR. HOFFMAN: No. 21 22 MEMBER STETKAR: Okay. MR. HOFFMAN: That system is intermittently 23 24 operated. And what we did for power uprate is we have 25 current limit of 2.4 psi. That's our maximum а

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	containment pressure, and for margin considerations in
2	our containment analyses we've reduced that to .5, and
3	we provided the plant for with the capability to an
4	automatic system that they can purge at power and
5	maintain that pressure, similar to Unit 2. Unit 2 has
6	a very similar design, and we
7	MEMBER STETKAR: How big are those lines,
8	say about 8-inch or so?
9	MR. HOFFMAN: Dave, that's a 3-inch line?
10	DAVE: A 3-inch line.
11	MEMBER STETKAR: Oh, only 3. Okay, thank
12	you.
13	MR. HOFFMAN: Unit 1, and it's an 8-inch
14	line on Unit 2.
15	MEMBER STETKAR: Thanks.
16	MR. HOFFMAN: Okay? Next slide. For the
17	balance of the plant, a number of changes are being
18	implemented in the steam path. In particular, both the
19	high pressure and low pressure steam paths are being
20	replaced for EPU. Also, a modernized turbine control
21	system is being implemented to replace the existing
22	obsolete turbine control system. And typical of an
23	extended power uprate project, St. Lucie is also
24	replacing the main feedwater pumps, feedwater
25	regulating valve internals, and we've also replaced
I	1

(202) 234-4433

	242
1	our Number 5 high-pressure feedwater heaters. Next
2	slide.
3	Some additional modifications to support
4	power generation are on this slide. Likewise, similar
5	to the feedwater pumps we've replaced the internals of
6	our heater drain pumps and upgraded several heater
7	drain valves, and heater drain valve controls.
8	We also, as part of this uprate project,
9	the uprate team took an opportunity to resolve a
10	number of longstanding low margin issues at St. Lucie
11	Unit 1, one in particular is the replacement of the
12	turbine cooling water heat exchangers. That's been
13	problematic for St. Lucie Unit 1 during the summer
14	months when our ocean water or ultimate heat sync
15	temperatures are elevated, and we've not only replaced
16	those heat exchangers to accommodate the EPU, but
17	we've added an additional approximate 50 percent
18	margin. And, also improved materials and improved
19	cathodic protection system also as part of that
20	modification. Next slide.
21	On the electrical side, the main generator
22	stator is being rewound and the rotor is being
23	replaced, and the main hydrogen pressure is being
24	increased from 60 psi to 75 psi to accommodate the
25	increased generator rating for EPU conditions. One
ļ	I

(202) 234-4433

other modification, again, that I'd like to point out 1 current low margin issue on our 480 volt 2 is а 3 alternating current or AC buses and margin that we 4 have to our degraded voltage relay set points. And we 5 took the initiative with the uprate project to make a number of electrical improvements with the power 6 7 uprate project to substantially improve that margin 8 for the degraded voltage relay set point. 9 Okay. Unless there are any questions for 10 me, I'd like to turn it over to Rudy Gil who will discuss the EPU evaluations performed for the steam 11 generators. 12 MR. GIL: Good afternoon. My name is Rudy 13 14 Gil. I'm the Programs Engineering Manager for FPL. The 15 information presented, I have two slides on the 16 subject, was based on areas of interest that the Subcommittees from ACRS had shown before associated 17 with our efforts for uprates on Point Beach and Turkey 18 19 Point, so I wanted to make sure that those were 20 covered. analysis performed for the 21 The steam generators has demonstrated acceptable tube wear at 22 the proposed uprated conditions. The key acceptance 23 24 parameters shown on this table are satisfied with good include fluid 25 margin. The criteria elastic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

243

	244
1	instability, vortex setting and predicted end-of-life
2	wear. The actual values are included in the license
3	submittal section referenced on this slide. They are
4	considered proprietary by our vendors.
5	One value that I did want to share is the
6	analysis that show that the wear at the U-Bend area
7	increases only slightly. The current projections are
8	12.7 percent wear, and those would increase to 12.9
9	percent, so only a slight change in those numbers.
10	Next slide.
11	As reviewed in the previous slide, the
12	maximum fluid elastic instability velocity ratio is
13	within acceptance criteria, and it is also within
14	current industry experience based on steam generators
15	of the same design that have been functioning without
16	issues. The industry has seen many years of operating
17	experience with no indication of tube vibration
18	problems with steam generators that are comparable to
19	the ones that we have installed on St. Lucie Unit 1.
20	MEMBER BANERJEE: So, if we want to ask any
21	more questions on the steam generator issue, this is
22	the time because the full Committee has not heard this
23	because of their steam generator expert needs to
24	return fairly quickly I understand. So, this is the
25	time to ask if you want to hear more.
	I

(202) 234-4433

	245
1	MEMBER SIEBER: Who manufactured the
2	replacement steam generator?
3	MR. GIL: These are B&W Canada.
4	MEMBER SIEBER: Okay.
5	MEMBER BANERJEE: And they've had very good
6	experience with very few tubes
7	MR. GIL: Yes, just a couple of other
8	points. St. Lucie Unit 1 has been operating very
9	well. We've plugged a total of 14 tubes on Unit 1
10	Alpha, and one tube on 1 Bravo. That was very early
11	on, and the last inspection had nothing. Slight
12	vibration that we had, slight wear, we had it very
13	early on, has fully attenuated.
14	MEMBER SIEBER: Okay. Where in the steam
15	generator were the 14 tubes plugged?
16	MR. GIL: Those were in the U-Bend area.
17	MEMBER SIEBER: Okay. Inside or outside of
18	the bundle?
19	MR. GIL: Oh, the Steve, I don't know if
20	we I don't recall. They were actually in the center
21	on a section.
22	MR. FLUIT: Yes. I'm Steve Fluit from
23	Babcock & Wilcox. Essentially, all the threading
24	indications were within the bundle along one fan bar.
25	MEMBER SIEBER: Oh, okay.
l	I

(202) 234-4433

	246
1	MR. FLUIT: It's a very localized area
2	within the bundle.
3	MEMBER SIEBER: Okay, thank you.
4	MR. GIL: So, it was very, as he said, very
5	localized, so we obviously watch that area especially
6	later on and everything attenuated to have no
7	additional wear.
8	MEMBER SIEBER: So, you do 100 percent
9	examination around that area?
10	MR. GIL: Well, we do when we do the
11	have done our inspections we do 100 percent bobbin
12	inspection for the whole bundle.
13	MR. RAY: After the EPU they're going to
14	have an inspection in less than a cycle length to see
15	I mean, that's really the issue, has it caused any
16	change, because it's trivial so far. The only issue is
17	what change occurs, but they've got an inspection plan
18	to
19	MEMBER BANERJEE: That's about a year.
20	Right?
21	MR. GIL: We've had yes. How long is the
22	cycle?
23	MR. ANDERSON: That would be roughly one
24	year.
25	MR. GIL: About one year, yes. So, it's
ļ	I

(202) 234-4433

	247
1	shorter than the normal cycle, but basically we've had
2	very good results thus far from the calculations the
3	changes we're making. We don't see that really
4	affecting the vibration issues very much. But also
5	very importantly, obviously, is we'll do a full
6	inspection, 100 percent inspection after about a year.
7	And that will really just verify all the
8	MEMBER SIEBER: Is that multi-frequency?
9	MR. GIL: For the analysis, yes.
10	MEMBER SIEBER: Okay.
11	MR. GIL: And as you know, the bobbin
12	program is very good for the wear indications that we
13	would be expecting here.
14	MEMBER SIEBER: Yes, there's others that
15	are have you gone into any more specialized
16	analysis beyond the bobbin coil?
17	MR. GIL: Where necessary. For example,
18	typically when we do exceed these wear indications in
19	order especially early on, in order to make sure we
20	understand them, we'll do the plus point.
21	MEMBER SIEBER: Okay.
22	MR. GIL: And that's a verification tool.
23	The bottom tool for wear indication is fully
24	qualified.
25	MEMBER SIEBER: Yes, the bobbin, sort of a
ļ	1

(202) 234-4433

	248
1	gross measurement compared to some other techniques.
2	MR. GIL: Yes. Compared to the rotating
3	probe.
4	MEMBER SIEBER: Right, rotating
5	MR. GIL: And we have applied that one,
6	also, here just to verify what we had.
7	MEMBER SIEBER: And you wrote that
8	surrounding tubes with rotating pancake probe?
9	MR. GIL: Any tubes that showed any kind of
10	wear, so it was very and actually very limited wear
11	that we'd had.
12	MEMBER SIEBER: Thank you.
13	MEMBER BANERJEE: So, our understanding is
14	that there's still quite a margin to your initiation
15	of fluid elastic instabilities.
16	MR. GIL: Yes, the change is minor from
17	what we had. And I think as we had discussed in the
18	Subcommittee, we also compared the numbers that we
19	have now to other there are about five U.S. units
20	that are right in the same range, some a little bit
21	above it. Also, no issues with wear.
22	MEMBER BANERJEE: Millstone 2 and Calvert
23	Cliffs 1 and 2, if I understand it, the U-Bend area,
24	your kinetic energy is in this case a little bit
25	higher. Right? About 5 percent higher, or a little bit
I	I

(202) 234-4433

	249
1	more?
2	MR. GIL: In those particular let me let
3	Steve
4	MR. RAY: Rho v squared?
5	MR. FLUIT: Yes, that's correct. The rho v
6	squared parameter is slightly higher for St. Lucie
7	under EPU conditions than the other B&W replacement CE
8	steam generators, but the important factor is the
9	fluid elastic instability ratio, and as Rudy said, if
10	we compare that to a number of other B&W replacement
11	steam generators, they're not System 67 replacement
12	steam generators but they have the same design of the
13	main support structure. And these other plants have
14	been operating successfully with fluid elastic
15	instability values very similar to the St. Lucie EPU
16	values, and they have no significant wear.
17	MEMBER BANERJEE: And the support distances
18	are about the same and everything in these steam
19	generators, the other ones that you're talking about?
20	MR. FLUIT: Yes. I mean, the steam
21	generators are different sizes, so the exact support
22	legs will be different, the tube diameters are
23	different, but when you calculate the fluid elastic
24	instability ratio, all of those parameters are being
25	taken into account.
ļ	1

(202) 234-4433

	250
1	MEMBER BANERJEE: What about at Millstone
2	2 and Calvert Cliffs, are they more or less the same
3	steam generators as the one that
4	MR. FLUIT: Yes, they're essentially
5	identical.
6	MEMBER BANERJEE: Identical.
7	MEMBER SIEBER: These are the Alloy 600
8	tubes?
9	MR. RAY: 690.
10	MR. GIL: 690, yes, they're replacement 690
11	units.
12	MEMBER SIEBER: Okay, good.
13	MEMBER BANERJEE: Okay, thank you. Okay,
14	please go ahead.
15	MR. GIL: Okay. Basically, I think that
16	brought it to the end of my presentation, unless there
17	are any further questions. If there aren't, what I'd
18	like to do is introduce Jay Kabadi, who will present
19	the analysis results.
20	MR. KABADI: Good afternoon. My name is Jay
21	Kabadi, I'm Nuclear Fuel Manager for St. Lucie. For
22	EPU for the core design we will offset some of the EPU
23	effects, we reduced the core design limits, both the
24	F delta H, which is the total integrated radial
25	peaking factor, and also for the peak linear heat

(202) 234-4433

	251
1	rate. We did not do any fuel design change for EPU. To
2	get this extra energy corresponding to this higher
3	power we are doing that by combination of the feed
4	enrichment and the batch size, so batch size for EPU
5	is going up from the current cycle designs.
6	The burnable absorber will remain GAD.
7	That's what we have been using for several cycles in
8	the past, and the core loading pattern will follow the
9	same type of strategy.
10	MEMBER BANERJEE: You're supposed to be
11	is this monobloc guide tube
12	MR. KABADI: Right. Right now, monobloc
13	guide tube was not specifically needed for EPU.
14	However, when we did the analysis we covered that from
15	the thermal hydraulic point of view. Right now
16	actually the first cycle for EPU will not have
17	monobloc design. It will still have the standard guide
18	tube design.
19	MEMBER BANERJEE: We're asking for your
20	MR. KABADI: Yes.
21	MEMBER BANERJEE: In your license
22	MR. KABADI: That is correct. That's part
23	of the
24	MEMBER BANERJEE: Right, you're asking
25	MR. KABADI: As part of the EPU, we did
I	I

(202) 234-4433

	252
1	cover that. That is correct.
2	MEMBER SIEBER: Okay. Now, your enrichment
3	has not gone up very much, so that tells me among
4	other things that you're probably loading more fuel
5	assemblies than would otherwise with this kind of core
6	design?
7	MR. KABADI: Yes, that is correct.
8	Typically, our we have been loading enrichment in
9	the range of about 4.2 and something, so now we'll go
10	up slightly, maybe 4.4, 4.5, but upper limit is 4.6,
11	so we could go up to 4.6. The backsides will go up.
12	MEMBER SIEBER: Does that mean that the
13	fuel average burnup at discharge is about the same as
14	it would have been with the older core design?
15	MR. KABADI: That is correct. I think those
16	some will be discharged with the less burner
17	because will be putting more fuel, but other burnup
18	limit is maintained the same as we
19	MEMBER SIEBER: What would be the maximum
20	burnup that you would expect for high-power fuel
21	assembly charge?
22	MR. KABADI: Our peak burnup for ROD is
23	62,000 and we normally design in the range of 60 to
24	61. That does remain about the same. And assembly
25	wise, we stay below 55.
	I

(202) 234-4433

	253
1	MEMBER SIEBER: Okay.
2	MEMBER BANERJEE: That won't change very
3	much compared to
4	MR. KABADI: Yes, that's not going to
5	the limits
6	MEMBER SIEBER: It won't change hardly at
7	all.
8	MR. KABADI: That is correct.
9	MEMBER SIEBER: Okay, thanks.
10	MR. KABADI: Yes. As far as the other
11	nuclear parameters go, shutdown margin and moderator
12	temperature coefficient limits are unchanged for EPU.
13	However, for improving the boron delivery we are
14	increasing the boron concentrations in all the three
15	tanks which are used mainly for the safety analysis.
16	One is the boric acid makeup tank, the refueling water
17	tank, and the safety injection tank. The refueling
18	water tank and safety injection tank borons are
19	increased from 1,720 ppm, which is the current value,
20	to 1,900 ppm.
21	MEMBER SIEBER: Okay.
22	MR. KABADI: Correspondingly, for refueling
23	boron we are increasing that value also to 1,900 ppm.
24	This slide just shows the methodology we
25	use for all the safety analysis. Right now, all the
	I

(202) 234-4433

	254
1	analysis are will follow the S-RELAP5 base
2	methodology, for both non-LOCA and for large and small
3	break LOCA. As far as the DNH and DNB analysis go, we
4	will continue to follow the same method what we are
5	using now, which is XCOBRA-IIIC and HTP correlation
6	for DNB. For the
7	MEMBER BANERJEE: HTP is the
8	MR. KABADI: Yes, HTP is the high thermal
9	performance that's the fuel we have right now and
10	will continue to use.
11	For safety analysis, however, when we did
12	these analyses there were a lot of additional biasing
13	of input parameters were done based on some of the
14	review comments or RAIs registered from the staff. So,
15	the safety analysis is much more conservative than
16	what our current analyses are.
17	Now, this slide shows some of the results
18	of the safety analysis. In the decrease in flow
19	category, both the loss of flow and locked rotor meet
20	the acceptance criteria with adequate margin. In the
21	overheating, loss of load is the limiting event as
22	shown on the slide. We meet the acceptance criteria of
23	2,750 for the ICS pressure, and similarly for main
24	steam system we meet the acceptance criteria of 1,100.
25	Other events in this category are not
I	I

(202) 234-4433

limiting for pressure; however, for EPU we did one extra event which is the feed line break, which we do not have currently in our design basis. And this event is analyzed to show the adequacy of our AFW system to take decay heat out without losing RCS subcooling. And that analysis showed acceptable results.

7 In the old cooling category, steam line 8 break is the limiting event, and we analyzed that both 9 for what is called pre-SCRAM steam line break which is 10 looking for conditions prior to the reactor trip, and 11 a post-SCRAM steam line break. All the reasons we meet 12 the acceptance criteria, and also the limits of any 13 fuel failures that go into the dose analysis.

14 Reactivity additional in this category the 15 events are mainly CEA withdrawal, CEA drop, and CEA 16 ejections. The CEA withdrawal has been analyzed both 17 for RCS pressure, old pressure, and also for DNB, and the analysis showed adequate margin to the limit. CEA 18 19 drop is also analyzed for DNBR. It is not limiting for DNBR, it's much less benign than the loss of flow; 20 however, we analyze that every cycle and that shows 21 acceptable results. 22

23 CEA ejection we have reduced our 24 acceptance criteria for the fuel enthalpy which its 25 current design basis is 280, SRV has 230; however, for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

our analysis we are taking a much lower acceptance criteria of 200 calories per gram.

Other events in the reactivity addition 3 4 category, boron dilution is nothing different than 5 what we see right now since our core design and borons are not changing that significantly, but we meet all 6 7 the criteria for all the modes for boron dilution. 8 However, for these other RCS mass addition, and RC 9 depressurizer, these are the -- some of the new events 10 we have analyzed for review. In the mass addition, the CVCS malfunction or inadvertent SI. This is not in our 11 current design basis, so this is analyzed for EPU to 12 show that the pressurizer does not fill. And that 13 14 shows acceptable results.

In the RCS depressurization we have an inadvertent opening of PRV even for DNB, and that is analyzed also for EPU. However, for EPU we also analyzed that event for pressurizer fuel.

19MEMBER SKILLMAN: What is your pressurizer20volume clean, please?

21MR. KABADI: It's slightly over 1,500 cubic22feet.

MEMBER SKILLMAN: Thank you.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24 MR. KABADI: Yes. This slide shows the 25 small break LOCA results. Our pre-EPU and EPU both

(202) 234-4433

23

1

2

	257
1	follow the Appendix K methodology for the PCD, for EPU
2	it is 1,807, whereas for pre-EPU is it was 1,765.
3	There were several changes done to the both the
4	plant configuration and also to the inputs that help
5	the PCD, tube plugging has been reduced, and the SID,
6	as Jack mentioned before, we raised the operating
7	pressure that help significantly for the small break
8	LOCA.
9	One other thing I just want to highlight,
10	I think in the prior slides we showed results related
11	to the fuel centerline melt, and all those have
12	accounted for the thermal conductivity degradation, so
13	the fuel centerline melt limit which was checked for
14	all the safety analysis, we did account for thermal
15	conductivity degradation.
16	MEMBER BANERJEE: Not in the small break
17	LOCA.
18	MR. KABADI: No, I'm saying the fuel
19	centerline melt category which are the other events
20	which were presented.
21	MEMBER ABDEL-KHALIK: Now, for the large
22	break LOCA you do account for thermal conductivity
23	degradation.
24	MR. KABADI: That is correct.
25	MEMBER ABDEL-KHALIK: And the question was
I	I

(202) 234-4433

	258
1	asked during the Subcommittee meeting as to whether
2	the empirical correction factor that you applied is
3	impacted by the linear heat rate.
4	MR. KABADI: Right. And I think
5	MEMBER ABDEL-KHALIK: And I guess you,
6	AREVA, has provided information showing segregating
7	the data
8	MR. KABADI: That is correct.
9	MEMBER ABDEL-KHALIK: by different
10	ranges of centerline temperature, which is equivalent
11	to segregating the data by linear heat rate. Now, the
12	ranges that are given are for centerline temperatures
13	less than 750k, between 750 and 1,000, and 250 degrees
14	increment.
15	MR. KABADI: That's correct.
16	MEMBER ABDEL-KHALIK: And for the cases
17	where the centerline temperature is relatively high,
18	meaning greater than 1,250k, the data goes only up to
19	30 gigawatt days per metric ton versus a fuel design
20	limit of 62 gigawatt days per ton. So, the question is
21	for the hot spot where you calculate the peak cladding
22	temperature corresponding to this acceptance
23	criterion, how can you justify extrapolating the data
24	that goes only to 30 gigawatt days per ton up to a
25	design limit of 62 gigawatt days per ton?
	1

(202) 234-4433

	259
1	MR. KABADI: Yes. I will have Bert from
2	AREVA respond to that.
3	MR. DUNN: Bert Dunn, AREVA. We're getting
4	close to proprietary information. I don't know where-
5	(Simultaneous speaking.)
6	CHAIRMAN ARMIJO: If necessary, we can
7	close the meeting, if necessary, so you can show the
8	graphs.
9	MR. DUNN: Let's try and work around that.
10	CHAIRMAN ARMIJO: Give us your best answer.
11	MR. DUNN: Okay, thank you. Could you
12	repeat the question just quickly. I think you were
13	saying why isn't there high temperature data at the
14	burnups from 32
15	MEMBER ABDEL-KHALIK: I understand what you
16	did. We had a graph that shows the entire data sets
17	and is not segregated. What you did is segregate the
18	data based on centerline temperature ranges in 250
19	degree increments, which is the same as segregating
20	the data by ranges. And for the data subsets that
21	pertain to high centerline temperatures, the data goes
22	only up to 30 gigawatt days per metric ton.
23	MR. DUNN: That's correct.
24	MEMBER ABDEL-KHALIK: And if that is the
25	case, and if that is the range for which we are
	I

(202) 234-4433

concerned how can we justify extrapolating the data to 62 gigawatt days per ton?

3 MR. DUNN: The data available within the 4 Robotic does not have the data _ _ have hiqh 5 temperature -- I'm sorry, high power data at about 30, 35 gigawatt days per metric ton. So, what we needed to 6 7 do is to normalize our data to the predicted -- I'm 8 sorry, to the measured temperature -- I'm sorry, 9 predicted temperature so that as we go up an hour in 10 temperature for those cases out there, we get an the penalty, if you will, 11 increase in or the adjustment that you're going to make proportionally to 12 the amount of increased power that you're modeling. 13 14 Probably, really the extreme of that would occur at 15 about -- for your -- you've got an onset that would 16 occur at about 45 degradation. I'm not particularly 17 worried about it, or I'm not particularly concerned about any data above 45 or 50 gigawatt days per ton. 18 19 MEMBER ABDEL-KHALIK: But, nevertheless --(Simultaneous speaking.) 20 MEMBER ABDEL-KHALIK: normalizes the data, 21 but the fact remains that you are extrapolating data 22 beyond -- you're extrapolating this empiricism for the 23 24 ranges of centerline temperatures in which you are interested beyond the data which is 30 gigawatt days 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

260

	261
1	per ton.
2	MR. DUNN: That is correct.
3	MEMBER ABDEL-KHALIK: So, the question is
4	how do you justify that? How do you justify that given
5	the fact that it's purely empirical?
6	MR. DUNN: Well, purely empirical, I don't
7	quite understand that.
8	MEMBER ABDEL-KHALIK: Based on data. I
9	mean, you're measuring data and you're fitting a curve
10	to it. And in this case, it would be just simply an
11	extrapolation beyond 30 gigawatt days per ton.
12	MR. DUNN: Again, that's the reason for
13	normalizing it to the predicted temperature so we pick
14	data, and that's
15	MEMBER ABDEL-KHALIK: Whether you normalize
16	it or you do not normalize it, it's still an
17	extrapolation of data beyond 30 gigawatt days per ton.
18	MR. DUNN: It's an extrapolation of data to
19	higher powers for conditions beyond 30 gigawatt days
20	per metric ton, yes, sir. And the I probably need
21	to get to a person more attuned to the codes. I can
22	tell you that the various codes we have looked at do
23	the same thing. If we look at FRAPCON, if we look at
24	and the database for FRAPCON, we look at the other
25	codes, they are all using about the same database.
ļ	

(202) 234-4433

	262
1	MEMBER ABDEL-KHALIK: I'm an engineer. I
2	don't extrapolate data beyond its limits, and if
3	you're extrapolating something beyond 30 gigawatt days
4	per ton and using it all the way up to 63 gigawatt
5	days per ton, I have a question as to the validity of
6	that extrapolation. Bert, it's my
7	MR. DUNN: Yes. I'm going to have to go to
8	Shi-Hsiung or somebody on this.
9	CHAIRMAN ARMIJO: Why don't you go back,
10	and we'll also ask the staff, but it's my
11	understanding that all the data measured thermal
12	conductivity degradation well beyond 30 gigawatt days
13	per ton. So, how you've used it or chosen to use it is
14	something you have to explain. But as far as having
15	data high burnups on the amount of thermal degradation
16	conductivity degradation, that's certainly
17	available. So, somewhere you have to explain that or
18	we'll ask the same questions of the staff.
19	MEMBER BANERJEE: I don't even assume it's
20	available. Let's start with the question, is it
21	available?
22	MEMBER ABDEL-KHALIK: Well, the data that's
23	available for burnups beyond 62 gigawatt days per ton
24	are all low linear heat rate data.
25	MEMBER BANERJEE: I've looked at the curve.
l	

(202) 234-4433

	263
1	MEMBER ABDEL-KHALIK: Right.
2	MEMBER SCHULTZ: And that's because it's
3	difficult to achieve high linear heat generation rates
4	at high burnup.
5	CHAIRMAN ARMIJO: That's right.
6	MEMBER ABDEL-KHALIK: So, if that's the
7	case how do you justify
8	MEMBER SCHULTZ: Both in experiment and in
9	reality.
10	MEMBER ABDEL-KHALIK: that you will get
11	the same kind of degradation if you to operate at
12	these high linear heat rates beyond 30 gigawatt days
13	per ton for which data are available?
14	CHAIRMAN ARMIJO: I think the Haldon
15	well, look, there's data as a function of burnup and
16	then your heat rate where the biggest impact is in
17	thermal degradation is at the lower temperatures, the
18	lower offering temperatures. And then as you get to
19	higher burnup and high power it all tends to converge,
20	the degradation tends to disappear. We've had that
21	presented in the past, but it's not our job to
22	MEMBER BANERJEE: I think we should be
23	asking and I think it's a fair question. Is the
24	degradation that you observed not only a function of
25	burnup but also a function of heat flux in the heat
ļ	I

(202) 234-4433

	264
1	rate or whatever. I mean, it's really up to the
2	applicant to prove, or you've got to prove that it's
3	not. I mean, if they show based on the current data
4	that it's not a function for linear heat rate, then it
5	doesn't matter. But if it is, then I think it's a
6	valid question.
7	CHAIRMAN ARMIJO: I mean, they do
8	MEMBER BANERJEE: You've just got these
9	graphs, so it may have been sent earlier but we didn't
10	get it earlier because of the system of delivery here.
11	MR. DUNN: If I might come back in, we have
12	the one of our co-developers in Richland on the
13	phone, Shi-Hsiung, that would like to try and answer
14	the question.
15	CHAIRMAN ARMIJO: Sure. Go ahead.
16	MR. DUNN: Shi-Hsiung, you may be on mute.
17	MEMBER STETKAR: We'll have to open it up.
18	MEMBER ABDEL-KHALIK: Is there somebody on
19	the line?
20	CHAIRMAN ARMIJO: Tanny just went back to
21	the lines.
22	MR. WANG: There's 18 people on the line.
23	MR. DUNN: Shi-Hsiung, we're not hearing
24	you again, so you're probably wasting your before
25	we go into that, the benchmarks that he provided you
	I

(202) 234-4433

	265
1	are for the entire code prediction, not just for
2	thermal conductivity degradation.
3	MEMBER ABDEL-KHALIK: I mean, you know, I
4	can do the translation going from the errors
5	MR. SHAN: Hello. Yes, Shi-Hsiung is here.
6	CHAIRMAN ARMIJO: Okay, go ahead.
7	MR. SHAN: Yes. When we did the analysis we
8	tried to use all high burnup data but because of fuel
9	rod temperature depends on the gap at high burnup all
10	the gaps are closed. That's the reason you didn't see
11	high temperature data at high burnup. Although lack of
12	that, we have data from theoretical studies based on
13	RODEX4 code which has thermal conductivity
14	degradation, and also NRC's ARTIST code, FRAPCON and
15	the base of FRAPCON thermal conductivity degradation
16	data, the paper published by OFI. If we thought
17	thermal conductivity degradation like the ratio of
18	with and without thermal conductivity degradation
19	versus fuel temperature you can see thermal
20	conductivity degradation is very high, like can be 50
21	percent at 60 megawatt day per KTU and it was
22	decreased while temperature increased to less than 10
23	percent. So, we are fitting the code, I mean RODEX2
24	code to the temperature data and the low temperature.
25	Actually, we evaluated the thermal
I	I

(202) 234-4433

conductivity. In fact, it's more conservative. That means we've got more penalty than try to fitting the data at high temperature, so that's the reason we think although Haldon data is very hard to get high temperature data, but the methodology used here is still conservative because the degradation effect is much higher at low temperature, and it decreases as temperature increases.

9 MEMBER ABDEL-KHALIK: Well, that is not 10 consistent with the data that we have, where if you 11 look at the subset of the data for centerline 12 temperatures below 750K, the percent degradation as 13 indicated by the percent deviation in centerline 14 temperature is actually lower for the data set where 15 the centerline temperature is less than 750 degrees K.

MR. SHAN: This is -- the comparison in the figure is for RODEX2 code without thermal conductivity degradation. I'm talking about it's like a comparison of the thermal conductivity correlation using different codes.

21 MEMBER ABDEL-KHALIK: Okay. In all cases, 22 what is being plotted is measured minus predicted 23 divided by predicted. Is that correct? 24 MR. DUNN: Yes, that's correct.

MEMBER ABDEL-KHALIK: All right. Isn't that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

	267
1	sort of an indication of the extent of thermal
2	conductivity degradation?
3	MR. DUNN: Well, it's a measure of the
4	extent of the performance of the entire code. The code
5	has many aspects that contribute to thermal
6	conductivity degradation, and some aren't bundled.
7	MEMBER ABDEL-KHALIK: Okay. Again, you have
8	different fits for different ranges of temperature.
9	Correct?
10	MR. DUNN: No.
11	MEMBER ABDEL-KHALIK: They're sort of
12	straight line fits for the different
13	MR. DUNN: In the sample that you've got
14	there, yes.
15	MEMBER ABDEL-KHALIK: Correct. Right. And
16	in all cases, these fits are not necessarily of lower
17	slope than the empirical correction factor that you
18	used.
19	MEMBER SHACK: Just let me go one do
20	these plots include the thermal degradation
21	correction, or are these just
22	MR. DUNN: These plots are a comparison of
23	the code's performance. They're benchmarks of the
24	entire code including certain aspects of thermal
25	conductivity degradation such as build up of different
	I

(202) 234-4433

	268
1	isotopes within the fuel, and they don't include some
2	of the others. Thermal conductivity degradation itself
3	as a model is not in the RODEX3 code.
4	MEMBER ABDEL-KHALIK: They just use it as
5	an empirical correction, so they don't have an
6	extractive model for the extent of thermal
7	conductivity degradation. They just see how much the
8	centerline temperature increases and add that as
9	essentially a penalty to corrupt the prediction of the
10	code. And, again, if you look at the correction factor
11	that you use versus the empirical straight line fits
12	in this case for the various temperature ranges, not
13	all these fits have a lower slope than the empirical
14	correlation that you use. So, if I were to extrapolate
15	it is quite possible that the correction factor that
16	I would need would be larger than whatever you used.
17	MR. DUNN: If you were to I'm afraid I'm
18	not quite following you, but are you saying if you
19	were to extrapolate from the high temperature data
20	below 25
21	MEMBER ABDEL-KHALIK: Correct, all the way
22	to 62.
23	MR. DUNN: all the way out to 62?
24	MEMBER ABDEL-KHALIK: Right. Right.
25	MR. DUNN: Well, if I look at 1,750 and

(202) 234-4433

	269
1	1,500 I would say I'm using a higher correction
2	factor. But I don't think I mean, it's not too much
3	of a difference.
4	MEMBER BANERJEE: I think that you're not
5	getting a responsive response to your question.
6	MEMBER ABDEL-KHALIK: No, I'm not. I think
7	the fundamental question is that you're extrapolating
8	data beyond its range. That's the fundamental
9	question. You're using data that goes only up to 30
10	gigawatt days per ton to predict a correction factor
11	up to 62 gigawatt days per ton.
12	MEMBER BANERJEE: I think if you rephrase
13	the question you can say
14	MR. DUNN: No, I'm sorry.
15	MEMBER BANERJEE: Excuse me, let me
16	rephrase the question a little bit. In any of your
17	calculations are you ever in the range where you are
18	extrapolating outside the range of the data that you
19	have shown us here?
20	MEMBER ABDEL-KHALIK: For a given linear
21	heat rate.
22	MEMBER BANERJEE: And let that be on the
23	record. Yes. If you are, say so now because we don't
24	like extrapolation on empirical correlations.
25	MR. KABADI: I think the point here is the

(202) 234-4433

	270
1	data
2	MEMBER BANERJEE: Well, let him answer the
3	question. Are you extrapolating or not?
4	MR. DUNN: Are we if we do high linear
5	heat rates at 45 gigawatt days per metric ton
6	MEMBER BANERJEE: I think we've asked a
7	specific question, within the calculations you have
8	presented to us where you are using this TCD
9	correlation, have you extrapolated outside or not?
10	MR. DUNN: Is your question relative is
11	your question are the calculations presented to you
12	the LOCA calculations?
13	MEMBER BANERJEE: Any calculations you have
14	presented to us.
15	MR. DUNN: The LOCA calculations you cover
16	linear heat rate at beyond 30 gigawatt days per metric
17	ton, which are higher than the data that we've used to
18	benchmark the fuel performance codes to at that
19	MEMBER BANERJEE: So, your answer is yes.
20	MR. DUNN: Now, the uncertainty that we
21	attach will also provide some margin to which you are
22	talking about. This is the bias that we apply, and we
23	consider this to be the best estimate value. And then
24	on top of this there is an uncertainty figured with
25	the standard deviation that of 130 degrees
ļ	1

(202) 234-4433

	271
1	Fahrenheit that can add up to 260 or maybe even a
2	little bit more degrees to the centerline fuel
3	temperature.
4	CHAIRMAN ARMIJO: Okay, the question has
5	been answered.
6	MEMBER BANERJEE: Let's move on.
7	CHAIRMAN ARMIJO: Let's move along.
8	MEMBER BANERJEE: Yes.
9	MEMBER ABDEL-KHALIK: I guess that I
10	think it would be good for us to ask that also of the
11	staff, see why they're satisfied with this situation.
12	MEMBER SIEBER: Actually, this goes on for
13	every reload analysis that's submitted, the same
14	question. So, the staff I think would be best able to
15	tell us how they treat that situation. Thirty
16	thousand, we've been beyond 30,000
17	MEMBER CORRADINI: For a while.
18	MEMBER ABDEL-KHALIK: For a long time.
19	MEMBER CORRADINI: For a long time.
20	MEMBER SIEBER: Yes.
21	MEMBER CORRADINI: This is not just this
22	one case, unless I'm misunderstanding.
23	MEMBER SIEBER: I can remember going beyond
24	30,000 when I was the fuel manager, and that was 30
25	years ago.
ļ	

```
(202) 234-4433
```

	272
1	CHAIRMAN ARMIJO: Okay.
2	MEMBER BANERJEE: But you are not doing a
3	best estimate analysis, you are doing Appendix K, is
4	what I'm saying.
5	MEMBER SCHULTZ: Well, the question is, is
6	in the interim here the model as I understand it is
7	not using the thermal conductivity degradation. It's
8	including a provision for it. And the discussion is
9	how that's being done, and whether that's appropriate
10	conservative, or not.
11	MEMBER BANERJEE: Yes, because it affects
12	the stored energy in the fuel.
13	MEMBER SCHULTZ: Of course.
14	MEMBER SIEBER: And it's most dependent on
15	the conductivity.
16	CHAIRMAN ARMIJO: If we get bogged down on
17	this question, we have to address the whole thing, so
18	let's try to keep this moving.
19	MEMBER BANERJEE: So, let's move on to the
20	next, and we'll clear this up as time goes on.
21	MR. KABADI: Okay. So, this slide shows the
22	results of the large break LOCA. The PCD is 1,667 as
23	presented here, and all the acceptance criteria are
24	met.
25	MEMBER BANERJEE: Yes. One of the things
	I

(202) 234-4433

1 for the Committee to realize here is that there are usually two peaks in the large break LOCA, one is the 2 3 so called blow down peak and the other is the reflux peak. The blow down peak is affected very strongly by 4 5 the stored energy in the fuel. And what you are seeing here is this peak is the blow down peak. And the 6 7 reason the values are so low is in this calculation 8 the reflux peak is lower because they have a lot of 9 emergency core cooling in the system, safety 10 injection. So that's why the reflux peak is --MEMBER CORRADINI: I mean, you're pointing 11 to the first line. Right? 12 MR. KABADI: Yes. 13 14 MEMBER CORRADINI: So there are two things 15 changing. If they went from Appendix K to best 16 estimate it would go down and now they've upgraded and 17 it goes back up. So, we're seeing the effect of two things. 18 19 MEMBER BANERJEE: Yes. Well, the Appendix K was the pre-EPU calculation. 20 MEMBER CORRADINI: Understood. That's what 21 I was trying to understand. 22 MR. KABADI: Okay. I think that completes 23 24 my presentation. CHAIRMAN ARMIJO: Okay. Questions? 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

273

	274
1	MEMBER BANERJEE: So, we'll try to resolve
2	this issue during this if we can.
3	CHAIRMAN ARMIJO: I just want to keep
4	moving. I think we should
5	MEMBER BANERJEE: Thank you very much.
6	CHAIRMAN ARMIJO: People on the phone would
7	you please mute your phones because it's creating a
8	lot of noise here.
9	MR. MIRANDA: Good afternoon. My name is
10	Sam Miranda. I'm a Technical Reviewer in the Reactor
11	Systems Branch, and I have with me Jennifer Gall,
12	another Technical Reviewer in the Reactor Systems
13	Branch, and Matthew Panicker, who is with the Code and
14	Fuel Performance Branch.
15	We're going to talk about the accident
16	analyses and fuel design. I'm going to concentrate on
17	the non-LOCA analyses. Jennifer Gall will talk about
18	the LOCA analyses, and Matthew Panicker will talk
19	about thermal conductivity degradation and fuel
20	performance.
21	I'm not going to go through all of the
22	non-LOCA accident analyses. You've seen that in the
23	safety evaluation report, and the licensee has
24	provided information on that in their presentation to
25	the Subcommittee. I'm just going to talk about a few
Į	1

(202) 234-4433

of the analyses in which issues arose and how those issues were resolved.

The first of these is the feed line break and we also had the mass additional events. There are three here. You will see that there's inadvertent opening of a PORV. This was added as a mass additional event. Normally, this is analyzed as a dissipated operational occurrence that could cause thermal margin degradation, and possibly DNB. And then we had some questions concerning loss of coolant.

So, the feed line break -- our problem 11 with the feed line break in the application was that 12 the licensee had defined this as a cool down event, 13 14 and it could be defined as a cool down event. If you 15 analyze the event with a dry steam blow down it looks a lot like a steam line break, and that is a cool down 16 17 event. And, consequently, the licensee stated that as a cool down event the feed line break is bounded by 18 19 the main steam line break and, therefore, did not do an analysis for the feed line break. 20

And the staff did not accept this approach and we asked the licensee to perform an analysis of the feed line break as a heat up event. It is listed among the heat up events in Reg Guide 1.70, the standard format and content for safety analysis

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

Í	276
1	reports. It's also listed as a heat up event in the
2	Standard Review Plan, Section 15.2.8, which is
3	referenced in Review Standard 001.
4	We did receive an analysis of the feed
5	line break and we audited it on January 30 and 31^{st} of
6	this year, and the results were acceptable. The
7	results showed that there was some cooling maintained
8	in the reactor coolant system throughout the feed line
9	break.
10	The inadvertent actuation of ECCS is the
11	classic mass addition event. It's a spurious signal
12	that actuates ECCS, and possibly could fill the
13	pressurizer. And once having filled the pressurizer
14	pass water through the PORVs. And since the PORVs are
15	not qualified for water relief, once having passed
16	water the PORVs are assumed to stick open. And if they
17	do stick open, this would create a small break LOCA at
18	the top of the pressurizer, and thus we see the
19	progression of an AOO into a more serious event, small
20	break LOCA. And that is not permitted by the ANS
21	acceptance criteria that the licensee has committed to
22	satisfy in their licensing basis.
23	The inadvertent ECCS actuation is not in
24	the St. Lucie licensing basis, and the reason for that
25	is that the shut off head of the SI pumps in the ECCS
	I

(202) 234-4433

277 1 is no capable -- it's lower than the RCS nominal pressure so they cannot pump into the RCS at nominal 2 3 pressure; therefore, they did not provide an analysis. 4 And, normally, this would be an acceptable approach 5 except the licensee also indicated that they have added to the ECCS their charging pumps which are 6 positive displacement pumps. 7 We understand that the charging pumps have 8 9 been there all along, except the licensee had not been 10 taking credit for them in any of the accident analyses. However, they have -- they are in the ECCS 11 and they are actuated when the safety injection signal 12 is generated. 13 14 Therefore, with the positive displacement pumps in the ECCS now the pressurizer can fill and 15 water can be discharged through the PORVs. And, 16 therefore, the analysis should be provided. 17 And this is the acceptance criteria that 18 19 needs to be met. We had issued -- the NRC staff had issued a RIS on this subject in 2005. So, at our 20 request, the licensee has provided an analysis of the 21 inadvertent actuation of ECCS, and have also provided 22 an analysis of the CVCS malfunction. 23 And the CVCS malfunction is the AOO that 24 could occur if, for example, a pressurizer level 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

278
signal becomes faulty and indicates to the CVCS that
pressurizer level is low causing the CVCS flow to
increase, and continued flow from the charging pumps
will eventually fill the pressurizer and pass water
through the PORVs.
The analysis that they provided indicated
that it took almost 11 minutes after the high
pressurizer level alarm to fill the pressurizer, and
11 minutes is considered by the staff to be sufficient
for operator action to turn off the CVCS flow.
MEMBER SKILLMAN: Sam, did the staff
witness the licensee performing the securing of these
pumps at the simulator, by chance? Did you go and
watch the licensee perform this action?
MR. MIRANDA: No, we didn't, but the
licensee provides emergency operating procedures and
time tests these operations. This is a question
this is an RAI that the staff typically asks for this
event. That whatever time is required you need to show
that the analysis is acceptable. The licensee would

have to back that up with time trials at the simulator. But we didn't see that ourselves.

MEMBER SKILLMAN: Thank you.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

24 MEMBER BROWN: How long does it take to get 25 to the alarm level? You've got the time from 11 to --

(202) 234-4433

	279
1	for the alarm until it spills, but how long for
2	normal expecting operating level until it gets the
3	alarm?
4	MR. MIRANDA: It's less than 11 minutes.
5	MR. HORTON: Can I speak here a little bit,
6	please? My name is Todd Horton, FPL. I oversee the
7	operating crews. I spoke this one specifically during
8	the Subcommittee. The alarm comes in on a deviation
9	from a set point for pressurizer level for each power
10	level. We have a calculated pressurizer level set
11	point, and at a deviation of 35 percent that alarm
12	will come in.
13	This particular scenario, inadvertent
14	actuation of emergency core cooling systems is a
15	scenario that's run quite often on the operating
16	crews. We do have a specific abnormal operating
17	procedure specifically to design to address this
18	condition. And the way the scenario would work is we
19	get the alarm on the safety injection actuation. The
20	operating crews are trained to communicate to the
21	whole crew that we have that signal. They enter the
22	abnormal operating procedure, and then they take
23	manual action to secure the charging pumps. The
24	pressurizer level will come in within a few moments to
25	identify that they have that deviation.
I	I

(202) 234-4433

	280
1	MEMBER BROWN: Okay, that still didn't
2	how long from that set point at which you expect it
3	to be until it gets to the alarm level, five minutes?
4	MR. HORTON: No, it's 3 percent which is
5	the charging pumps running are approximately 150
6	gallons per minute for the three pumps, 1 percent
7	pressurizer level is about 66 gallons, so you're
8	talking within just two to three minutes the alarm is
9	coming in.
10	MEMBER BROWN: Okay, two to three minutes.
11	Now, significantly less than 11.
12	MR. HORTON: That's correct.
13	MEMBER BROWN: Okay. Along with the other
14	alarms for safety injection.
15	MR. HORTON: Pardon?
16	MEMBER BROWN: Along with all the other
17	alarms.
18	MR. HORTON: Yes. No, I understand.
19	MEMBER BROWN: Got it.
20	MR. MIRANDA: Yes, I should note that
21	unlike Westinghouse plants, this plant if an
22	inadvertent ECCS signal is generated that does not
23	automatically cause a reactor trip.
24	MEMBER SKILLMAN: Sam, one other question.
25	Can this inadvertent ECCS actuation occur
	I

(202) 234-4433

	281
1	simultaneously with another event that allows the
2	pressurizer to swell such that there could be the
3	swelling in addition to the charging pump inventory?
4	In other words, could there be an under cooling event
5	that accompanies the inadvertent actuation of ECCS
6	where the operators are now facing the swell of the
7	reactor cooling systems pushing the pressurizer level,
8	plus the mass addition that it's coming from the
9	charging pumps?
10	MR. MIRANDA: Are you asking whether two
11	events can occur independently or one event can cause
12	the other?
13	MEMBER SKILLMAN: You tell me.
14	MEMBER POWERS: He's asking about a TMI
15	event.
16	MEMBER SKILLMAN: I'm thinking about that
17	one that you hate to have happen where there's been a
18	some form of an under cooling event, ECCS lights
19	off, but because of the under cooling event now the 10
20	or 11,000 cubic feet in the reactor cooling system are
21	swelling because there's an under cooling event. And,
22	oh by the way, I now have an inadvertent ECCS and I
23	have these charging pumps operating, so I'm now
24	witnessing the swell of the reactor coolant inventory
25	pushing out the pressurizer level, plus I have the
I	

(202) 234-4433

282 1 charging pump inventory. So, I have a double effect, in which case this 11 minutes might be six minutes or 2 3 three minutes. MR. MIRANDA: Okay. I would say that if you 4 5 have an under cooling event, for example a loss of 6 feedwater, that would not be a reason for ECCS 7 actuation. And unless you postulate that you have inadvertent ECCS actuation, I don't see that situation 8 9 occurring. If you have the inadvertent ECCS actuation, 10 now you have two independent events, and we're not talking about an ARO any more. We have -- and it would 11 be outside the design basis. 12 MEMBER SKILLMAN: Thank you. 13 14 MR. MIRANDA: This is another instance 15 where you could have a swell, the inadvertent opening 16 of a PORV, and this looks a little bit like Three Mile 17 Island. We have the inadvertent opening of a PORV which is analyzed in safety analysis reports as a AOO 18 19 that can decrease the RCS inventory, and it also decreases RCS pressure. And the decrease in RCS 20 pressure leads to a degradation in thermal margin, and 21 could possibly lead to fuel damage, DNB. And the 22 analyses extend until the time of reactor trip. And 23 24 the licensee demonstrates with this analysis that

there are features of the reactor protection system

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1 such as the thermal margin low pressure trip or the 2 low pressurizer pressure trip which provide the 3 reactor trip in time to prevent DNB. And that is where 4 the analysis ends.

5 We looked at this analysis and looked at it beyond the time of reactor trip, and noticed that 6 7 as the RCS depressurizes it will eventually lead --8 after the reactor trip it will lead to the actuation 9 of ECCS. This actuation is not spurious. This is 10 intended and it should come -- it's part of the design. And once ECCS is actuated, the pressurizer 11 could fill as a result of that. 12

We have in this case, for example, the 13 14 ECCS would begin to inject with the positive 15 displacement pumps, and as the pressurizer pressure 16 continues to decrease it will drop eventually below 17 the shutoff head on the safety injection pumps, and they will begin to inject. And if the operator does 18 19 nothing about this, the pressurizer will eventually fill. And since the positive displacement pumps are in 20 action here, they will provide enough pressure to open 21 the PORVs and pass water through the PORVs. And now 22 you have a question of whether or not they can meet 23 24 the ANS criterion that prohibits the escalation of an A00 into a more serious event. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	284
1	So, we asked for this analysis, and the
2	licensee stated that if this should occur, if a PORV
3	should open, that the operator will be able to close
4	the PORV very quickly. It's a prompt action, and we've
5	seen it demonstrated for us at a simulator at Turkey
6	Point for another application for the Turkey Point
7	EPU. And in that demonstration, the operator closed
8	the PORV in nine seconds. And if the PORV does not
9	close, then there's also the manual block valve.
10	From the analysis the licensee provided we
11	saw that if there is no operator action the safety
12	injection signal will be generated in less than two
13	minutes, and the pressurizer will fill in less than
14	seven and a half minutes. And then we have what is
15	essentially a small break LOCA at the top of the
16	pressurizer.
17	MEMBER STETKAR: Sam, I'm missing something
18	here. And, again, I have to apologize because I wasn't
19	at the Subcommittee meeting, but if the PORV is stuck
20	open why do I care about pumping open the PORV? I
21	mean, if I have a LOCA already, why do I care about
22	filling the pressurizer and causing a LOCA?
23	MR. MIRANDA: Okay. The sequence is the
24	pumps, in this case the positive displacement pumps,
25	fill the pressurizer and pressurize the RCS
ļ	I

(202) 234-4433

(202) 234-4433

	285
1	MEMBER STETKAR: No, because the PORV is
2	open. That's the first thing that's open. If the
3	operator closes the PORV it's all over. If he leaves
4	doesn't close the PORV, I seem to have a hole in
5	the top of the pressurizer. I don't know why it's
6	why I care about that.
7	MR. MIRANDA: Okay. If the PORV is
8	inadvertently opened and it passes steam, and the
9	operator has the option of closing the PORV, no
10	problems. Once the PORV passes water, he may not be
11	able to close the PORV.
12	MEMBER STETKAR: Got that. So, this would
13	only be a concern if, indeed, the operator closed the
14	PORV?
15	MR. MIRANDA: This would be a concern if
16	the operator does nothing.
17	MEMBER STETKAR: Once it's open, it's open.
18	MR. MIRANDA: It's open.
19	MEMBER STETKAR: Once it's open, it's open.
20	It pretty much doesn't care after that point whether
21	it's passing water or steam unless you're presuming
22	that it suddenly gets smart and decides to close by
23	itself. Once it's open, it's open.
24	MEMBER BLEY: I guess I'm in the same boat.
25	MEMBER STETKAR: It either has to go
Į	1

(202) 234-4433

	286
1	reclose somehow and get pumped open with water.
2	MS. GALL: Well, I think this is being
3	looked at for an AOO not becoming a more serious
4	event.
5	MEMBER BLEY: Where did it become more
6	serious?
7	MEMBER STETKAR: I don't know why it became
8	more serious. I understand the spurious SI one, the
9	previous one. I got all of that.
10	MEMBER BLEY: But this, effectively, even
11	though it's an AOO, it's effectively a small LOCA as
12	soon as it happens, unless it goes closed again.
13	MR. MIRANDA: The difference is the
14	discharge of water versus steam. As long as the PORV
15	is discharging steam, it's an operable PORV. It could
16	get a signal to reclose. If it gets smart, it can
17	reclose, or the operator can close it manually. But
18	once it passes water we don't know we can't assume
19	that the PORV will operate any more. Once it passes
20	water, it's not qualified for water discharge. It's
21	open and stays open, and now the slow break LOCA.
22	MR. HALE: Hi, this is Steve Hale, Florida
23	Power & Light. We need to clarify, this is not a PORV
24	failure. What it is is you have an inadvertent
25	actuation. It pops open all of a sudden, so your
I	1

(202) 234-4433

	287
1	actions are to close the valve. Okay? If you can't
2	close the valve, then you close the block valve. These
3	valves are designed for steam release. They're
4	designed to open when the pressurizer pressure goes up
5	and they relieve steam, so they're designed for that.
6	The progression is if it goes to water relief where
7	the valves are not designed for water relief. And then
8	it's to what Sam is saying, you have essentially a
9	small break LOCA through the top of the pressurizer.
10	MEMBER SHACK: So, he's got 7.5 minutes
11	that the valve will respond to him.
12	MR. HALE: To close the PORV. If he can't
13	close the PORV, then he would close the block valve.
14	MEMBER SHACK: Then after that he can't
15	close it any more.
16	MR. HALE: But the sequences you're looking
17	at under an AOO are like your pressure controller goes
18	haywire, and it causes the valve to pop open, or the
19	valve inadvertently opens which we've never had
20	happen, things of that sort. So, you look at it from
21	an AOO standpoint and you just don't want it to
22	progress to a situation that's worse.
23	MEMBER BLEY: I guess I'm still confused.
24	Once you get to the two minutes and you get the SI,
25	then unless you turn off the SI pumps you're going to
ļ	I

(202) 234-4433

(202) 234-4433

	288
1	
2	MEMBER SIEBER: You're going to keep
3	pumping.
4	MEMBER BLEY: You're going to keep pumping
5	whether that valve goes shut or not. If it goes shut,
6	then you're going to be on the safety valves if you
7	shut the block valve.
8	MR. HALE: Yes, but it falls in line very
9	similarly to the inadvertent SI, as well. You'll have
10	to turn off the SI. Okay? You'll cut go ahead.
11	MR. HORTON: Todd Horton, FPL. You're
12	correct. When the PORV opens and the pressurizer
13	starts to lower RCS pressure you are going to get just
14	like Sam said an actual safety injection. That's not
15	an inadvertent safety actuation. That's a real safety
16	
17	MEMBER STETKAR: It's doing what it ought
18	to do.
19	MR. HORTON: I think what we're really
20	discussing here is a difference in classification in
21	the events. If the operator closes the PORV or
22	isolates the block valve and terminates that event at
23	that point, that's your AOO.
24	MEMBER BLEY: Yes, but he's got to do it
25	before two minutes.
•	·

(202) 234-4433

289 1 MR. HORTON: That's right. Now, I will say 2 this, our operators -- this is an activity that's 3 routinely trained in our simulators. We are a sister 4 plant to Turkey Point. I'm very confident in our 5 performance. We talked about this in detail during our Subcommittee meeting on this specific event. But 6 7 you're correct. What it is is just really a discussion point on the classification event. 8 9 If the PORV opens and you have a steam 10 space release and RCS pressure is lower, and you get a real safety injection actuation, and the plant 11 should respond accordingly. Now, in response to that 12 we would enter our emergency operating procedures and 13 14 we have specific criteria to take control of that 15 safety injection actuation --MEMBER BLEY: That's going to be about 10 16 17 more minutes before you --MR. HORTON: Prior filling the 18 to pressurizer 19 solid --20 MEMBER BLEY: Well, once this comes on if you shut it before water gets there you still don't 21 want the guy turning off SI without going through that 22 procedure. 23 24 MR. HORTON: That's right. MEMBER BLEY: And by then he would have 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	been solid.
2	MR. HORTON: That's right. That is a valid
3	safety injection actuation at that point, and we have
4	specific procedural guidance for that. I think what
5	Sam is alluding to is the inadvertent opening of the
6	PORV. The operator would take the action, close or
7	isolate the PORV and terminate the event.
8	MEMBER BLEY: So, as long as he does it
9	within two minutes
10	(Simultaneous speaking.)
11	MR. HORTON: Once you get a safety
12	injection actuation it's real safety injection
13	actuation event, yes.
14	MR. MIRANDA: That's why we have the two
15	times on the slides. If the operator can act before 10
16	minutes it's very simple. The event is terminated once
17	he closes the PORV.
18	MEMBER BLEY: I've kind of lost the thread.
19	What's the whole point of showing us this?
20	(Laughter.)
21	MEMBER BLEY: Is there some debate here
22	other than what we just got into?
23	MEMBER CORRADINI: I think you caused the
24	debate internally.
25	MR. MIRANDA: Well, we're showing you this

```
(202) 234-4433
```

because this is something that is relatively new. It came up in terms of the review of the accident analyses. We've normally -- traditionally, we have not gone past the point of reactor trip for the inadvertent opening of a PORV. The reactor trips. We're satisfied that there's no DNB, and the accident review and the analysis is over.

8 We looked at it past the point of reactor 9 trip and we saw that since we have depressurization 10 continues, and it will continue until the operator shuts the PORV or closes the block valve. And if the 11 operator does not act quickly enough, he will get a 12 safety injection signal, a valid one. And this can 13 14 lead to opening the PORVs and passing water through 15 them. And this is what we're looking for -- what we 16 have always been looking for in the inadvertent SI 17 actuation. And it turns out that this particular scenario is worse than the inadvertent SI actuation 18 19 because it's less time available.

20 MEMBER ABDEL-KHALIK: I mean, so what? The 21 plant is analyzed for this scenario. 22 MR. ULSES: This is Anthony Ulses, Branch 23 Chief of Reactor Systems. The question here is one of 24 guidance. Our guidance does not address this situation

right now. We discovered this what, a year or two ago,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

	292
1	Sam, so the point is we're working on generic
2	communication to identify this as an event that needs
3	to be addressed in accident analysis. But in the
4	interim, we're asking licensees these questions, and
5	our conclusion based on the results is that we have
6	reasonable assurance that the plant will respond as
7	designed. However, there are some situations where
8	this may not be the case, and we will look into them
9	as they come in front of us.
10	MEMBER BLEY: My last mumble is it's
11	already responded its desire and it's taking care of
12	
13	MR. MIRANDA: We're looking we're in two
14	different dimensions here. We have the real world
15	where the operator closes the block valve, no problem.
16	We had a small break LOCA at the top of the
17	pressurizer. It's an isolable location. The operator
18	closes the block valve, the event is over. That's the
19	real world.
20	In licensing space, he's violating the ANS
21	acceptance criterion. The criterion that they have
22	committed to satisfy in their licensing basis. They
23	were never supposed to get to that point in the first
24	place according to the licensing criteria.
25	(Simultaneous speaking.)
ļ	I

(202) 234-4433

MEMBER BANERJEE: Okay. I think we need to

move on.

1

2

MR. MIRANDA: This is the transient that we 3 4 were talking about. At the audit we covered in detail 5 the feed line break and the inadvertent opening of a power operator relief valve, and the analysis of the 6 7 CVCS malfunction, and we also looked at the loss of 8 electrical load. And this is a question that comes up 9 repeatedly in EPU analysis reviews. This is an over 10 pressure analysis in which the Standard Review Plan specifies that the reactor trip that is credited would 11 come from the second safety grade trip, not the first. 12 And we have verified that St. Lucie has taken credit 13 14 for the second reactor trip, which is a hiqh 15 pressurizer pressure trip. The first reactor trip was 16 low steam generator level trip. That was not а 17 credited. They waited for the high pressurizer pressure trip, and achieved acceptable results which 18 19 is a peak pressure of less than 110 percent of design pressure. And then we also looked at the realistic 20 large break loss of coolant accident that Jennifer 21 Any questions? 22 will cover. MEMBER BANERJEE: That's good, Sam. Let's 23 24 move on.

MS. GALL: I'll be covering our LOCA

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25

	294
1	review. For the large break, the licensee implemented
2	AREVA's EMF-2103, the realistic large break LOCA
3	methodology for PWRs. It's a best estimate code that
4	uses a statistical method based on order statistics to
5	produce an estimate of the upper tolerance for the
6	predicted peak cladding temperature consistent with a
7	high level probability statement in 50.46. It also
8	produces an upper tolerance limit estimate for the
9	maximum LOCA oxidation, as well as the hydrogen
10	generation.
11	As we discussed quite extensively in the
12	Subcommittee meeting, the plant-specific analysis did
13	contain several modeling assumptions that are more
14	reflective of data than the NRC approved model, so
15	they differ slightly from the originally approved EMF-
16	2103.
17	For the small break LOCA, they used EMF-
18	2328. And, again, with the small break LOCA there were
19	analysis and modeling assumptions that were more
20	reflective of data and plant phenomenology than the
21	originally NRC approved evaluation model.
22	Both the small break and large break
23	produced acceptable results with regard to 50.46
24	limits.
25	MEMBER BANERJEE: In the Subcommittee
	I

(202) 234-4433

	295
1	meeting there was some question as to using only 59
2	runs rather than 124, or whatever that number was, if
3	you recall, which means
4	MEMBER SHACK: The approved methodology
5	used 59 runs.
6	MEMBER BANERJEE: Yes, so we accepted it.
7	So, everybody else now uses 124 or something.
8	MS. GALL: They do 59 runs assuming no
9	loop, and 59 assuming a loop.
10	MEMBER SIEBER: 59 is 95
11	MR. ULSES: Actually, Dr. Banerjee, this is
12	Tony Ulses, Branch Chief.
13	MEMBER BANERJEE: Yes.
14	MR. ULSES: I would think that the reason
15	that you're getting that is really that the
16	methodologies, in this case you're referring to
17	another vendor's methodology, but they're asking a
18	fundamentally different well, they're asking a
19	slightly different question
20	MEMBER BANERJEE: It's the same problem,
21	though.
22	MR. ULSES: which leads to a larger set
23	of cases. I don't want to get into proprietary
24	information here.
25	MEMBER BANERJEE: That's also being vague.
ļ	

	296
1	I don't want to speak about it in detail. Anyway, the
2	Subcommittee at the end was okay with it, I think.
3	MEMBER POWERS: One of the I mean, you
4	indicated they used order statistics. So, to some
5	degree some sort of Monte Carlo sampling here of some
6	uncertain variables.
7	MS. GALL: Yes. There's a range of
8	variables that are sampled over the range of the
9	either operating statistics or the tech spec ranges.
10	MEMBER POWERS: And there is so you've
11	looked at these ranges and they're appropriate ranges.
12	MS. GALL: Yes.
13	MEMBER POWERS: Are the variable they're
14	sampling independent?
15	MR. PARKS: Dr. Powers, this is Ben Parks
16	from the NRR staff. I think that the foundation of the
17	methodology is those variables are not independent, so
18	they are sampled randomly sort of provide a
19	representation of how these the different variables
20	behave all at the same time. And that's the point to
21	sample all I think it's about 30 inputs with 59 or
22	however many required cases concurrently.
23	MEMBER POWERS: But if they're not
24	independent, and you don't sample them in a correlated
25	fashion, you're not getting an actual representation
ļ	I

(202) 234-4433

	297
1	of your distribution.
2	MR. PARKS: I'm sorry, could you say that
3	again, please?
4	MEMBER POWERS: If you're sampling them as
5	though they were independent, when in fact they're
6	correlated, then you're not getting an appropriate
7	characterization of the distribution of the uncertain
8	outputs.
9	MR. PARKS: It's not imperfect, certainly.
10	I think the idea is to get a whole bunch of different
11	snapshots with the idea that it's a
12	MEMBER POWERS: You're getting it flat
13	wrong is what you're getting at, and you're vastly
14	underestimating the range of uncertain outputs you
15	will get, because those that go high on you together
16	will produce a result that's either high or low. And
17	those that go low together will produce a result
18	that's either low or high. And the distribution is
19	much wider than what you're actually predicting is my
20	estimation, my guess.
21	MEMBER STETKAR: And if you're assigning a
22	confidence a 95 percent confidence that you're
23	within a certain range of results, you're actually not
24	95 percent confident that you're within a certain
25	range. The range may well extend further than 5
Į	I

(202) 234-4433

	298
1	percent beyond what you're measuring. And that's just
2	a mathematical fact.
3	MR. DUNN: Mr. Chairman, Bert Dunn, AREVA.
4	CHAIRMAN ARMIJO: Yes?
5	MR. DUNN: Could I take a shot at that?
6	CHAIRMAN ARMIJO: Yes, go ahead.
7	MR. DUNN: The parameters are largely
8	independent, and certainly the key and most important
9	parameters such as the heat transfer, the power, the
10	local linear heat rate is that, and sample that. The
11	break flow that's used there, the setting well,
12	those I would say would be the most important ones.
13	The decay heat level, for example, is not sampled in
14	this case, but if it were, it would be independent of
15	the others.
16	CHAIRMAN ARMIJO: Which are the variables
17	that are correlated?
18	MR. DUNN: Excuse me?
19	CHAIRMAN ARMIJO: Some of these variables
20	move in tandem, they're correlated. Which are they?
21	MR. DUNN: Some of the variables are tandem
22	correlated?
23	CHAIRMAN ARMIJO: Yes. I mean, that they
24	move in the same direction at the same time, so
25	they're not independent of each other. And are there
I	I

(202) 234-4433

	299
1	many, and are they important?
2	MEMBER BANERJEE: They're not supposed to
3	be. They're supposed to be independent.
4	CHAIRMAN ARMIJO: Well, I know they're
5	supposed to be, but if they aren't, in the physical
6	world
7	MEMBER BANERJEE: It's like the levels in
8	the accumulator tank or whatever the uncertainty, and
9	this is typically what you do. Right?
10	CHAIRMAN ARMIJO: Well, if they're truly
11	independent then we don't have an issue.
12	MEMBER BANERJEE: They're supposed to be.
13	CHAIRMAN ARMIJO: But they're telling us
14	
15	MEMBER BANERJEE: What we're hearing is a
16	surprise, so tell us where they're correlated.
17	CHAIRMAN ARMIJO: That's my question.
18	MEMBER BANERJEE: Yes. What is correlated?
19	MR. PARKS: Perhaps I was mistaken when I
20	said that they were largely dependent. I think that
21	Bert's answer is more accurate.
22	MR. DUNN: If you look at what the
23	controlling parameters, the local power, the heat
24	transfer you're going to apply, the flow rate out to
25	break, and I mean, that's break size basically. And
ļ	1

(202) 234-4433

	300
1	for this plant it would be the temperature difference
2	between the hot and the cold leg because that sets the
3	flow parameters during blow down which is where the
4	critical or which is where the temperature
5	maximum temperature occurred for the plant. Those are
6	independent.
7	CHAIRMAN ARMIJO: Okay.
8	MR. DUNN: Now, there's about 22 because we
9	froze some of the things in this such as the initial
10	power of the plant was frozen, the decay heat was
11	frozen to a thing. Our normal procedure would have 30
12	parameters sampled, some of those are plant, some of
13	those are phenomenological. And I can get no, I
14	don't want to say that. Those are the ones I mentioned
15	are the ones that I think consider control.
16	Pressurizer level has a small impact. It is sampled.
17	That's one of the ones that's not terribly important.
18	MEMBER POWERS: It's not obvious to me that
19	the flow out to break and the temperature would be
20	independent, but I can be wrong.
21	MEMBER BANERJEE: Well, the flow out of the
22	break could be correlated with the cold leg
23	temperature if it's a cold leg break.
24	MEMBER CORRADINI: But it's mainly the area
25	I would assume is
I	I

(202) 234-4433

	301
1	MEMBER BANERJEE: Mainly the area, which is
2	the well, okay. Let's move on.
3	MS. GALL: So, we started discussing some
4	of the observations we had about the large break.
5	We've identified that it is a blow down PCT, and the
6	break size is one of the largest impacts for PCT.
7	There was also a question during the
8	Subcommittee about the dispersed film boiling heat
9	transfer coefficient, and we looked at the coefficient
10	with respect to the predicted PCT. And there's a
11	fairly wide range of coefficients used, and the
12	limiting cases were not they were varied. They were
13	not clustered over a single point.
14	The small break observations. As the
15	licensee discussed earlier, they made some accumulator
16	pressure adjustments to optimize their small break.
17	The licensee, there was some question at the
18	Subcommittee as to which analysis was going to be the
19	analysis of record. They provided a letter confirming
20	that the May 27 submission would become the analysis
21	of record. And I believe a lot of the loop seal
22	clearing treatment is proprietary, if we want to
23	discuss that.
24	MEMBER BANERJEE: We cleared up that
25	problem now.
ļ	I

(202) 234-4433

	302
1	MS. GALL: Yes.
2	MEMBER BANERJEE: Okay.
3	MS. GALL: The licensee provided an
4	additional response for the loop seal clearing which
5	I think you all have been provided. So, if we need to
6	discuss more specifics there, I think that needs to be
7	in a closed session.
8	MEMBER BANERJEE: Okay. Is there any
9	interest to discuss this amongst the Committee? Of
10	course, the results are sensitive to loop seal
11	clearing, as you would expect.
12	MEMBER POWERS: So, you do the analyses
13	separately for whether the loop seals are in tact or
14	clear?
15	MS. GALL: What they've done is the I
16	don't remember how much is proprietary and how much is
17	not.
18	MEMBER BANERJEE: That's up to you. We can
19	close the meeting if you are interested to pursue it.
20	CHAIRMAN ARMIJO: If a member wants to do
21	that, we'll close it.
22	MEMBER BANERJEE: Certainly.
23	CHAIRMAN ARMIJO: Do you want to pursue it,
24	Dana?
25	MS. GALL: Does AREVA want to take a stab
l	I

	303
1	first?
2	MEMBER POWERS: At an open answer?
3	MEMBER SIEBER: Yes.
4	CHAIRMAN ARMIJO: An open answer, that will
5	work.
6	MR. DUNN: Bert Dunn, again, AREVA. I did
7	not hear Dr. Powers' question exactly, but unless
8	you're going to go into the nitty gritty of how we
9	decide which loop seal clearing pattern to follow, you
10	probably will not get into proprietary area.
11	MEMBER BANERJEE: Why don't you just tell
12	him what the effect of the various loop seal clearing
13	is, and that's just a result, not how you do it
14	precisely.
15	MR. DUNN: Should I take a shot at that?
16	MEMBER BANERJEE: Yes, let's do that.
17	MR. DUNN: Well, the effect of multiple
18	the difference between single loop and two loops
19	clearing on a small break loss of coolant accident can
20	be thought of as 200 to 300 degree affect on the peak
21	cladding temperature, in general. With one plant to
22	another plant different sizes of pipes and stuff like
23	that, that has to be switched over. But the difference
24	between one and two loops clearing is relatively
25	important. The difference between two and three loops
1	

(202) 234-4433

	304
1	clearing is not relatively important. So, what we try
2	to do, or what we do, we don't try, we do is to
3	control to sync the accident evaluation so that only
4	one loop clears, the lower break for a break size
5	that is larger than one we really expect only one loop
6	to clear. So, we've got the decision in there that
7	says okay, we're going to pick a break size where we
8	think one loop will clear. For breaks that are bigger
9	than that, we will make sure we only clear one loop.
10	MEMBER POWERS: I understand what you're
11	doing now.
12	MEMBER BANERJEE: Is that okay?
13	MEMBER POWERS: Yes.
14	MEMBER BANERJEE: All right, thank you.
15	MS. GALL: And then for conclusions, the
16	evaluation models that the licensee implemented, they
17	have addressed concerns the NRC had with those
18	evaluation models to do more to use inputs and
19	models that were more reflective of data than the
20	currently approved versions. And the results
21	demonstrate compliance with 50.46.
22	MR. ULSES: This is Tony Ulses, Branch
23	Chief Reactor Dr. Banerjee, you have a very
24	specific question on the liquid hold-up in the U-
25	tubes. I know we provided you some information.
ļ	I

(202) 234-4433

	305
1	MEMBER BANERJEE: Yes.
2	MR. ULSES: Did that answer your question,
3	or do you
4	MEMBER BANERJEE: Yes.
5	MR. ULSES: have some additional
6	MEMBER BANERJEE: No. I think they answered
7	Len sent me
8	MR. ULSES: Okay. I just want to make sure
9	we answered your question before we move on to the
10	next section.
11	MEMBER BANERJEE: Yes. Just for so the
12	Committee knows, I was concerned about the possibility
13	of flooding. In other words, having liquid held up in
14	the steam generators. Due to the EPU, you get higher
15	steam velocities in the refluxing mode, so I wanted to
16	know what the velocities were, whether they're
17	flooded. And Len did an evaluation and sent me a note,
18	but the Subcommittee can have it if it wishes. It's to
19	do with the Kutateladze correlation which he used, so
20	that it was if there was flooding, it would be for
21	very brief periods for certain break sizes. And the
22	core uncovery was not going to be for any prolonged
23	period based on that. But for any members of the
24	Subcommittee, I'm happy to Weidong can make copies
25	of the email. Weidong also did an independent analysis
I	I

(202) 234-4433

	306
1	of this using some other data. I'm satisfied, don't
2	need any more.
3	MR. PANICKER: This is Matthew Panicker,
4	Nuclear Performance and Core Review Branch of Safety
5	Systems. The last Subcommittee meeting, Paul presented
6	extensive number of slides how TCD affects certain
7	mechanical and thermal aspects of the performance of
8	the fuel. And today present some concurring remarks on
9	the
10	CHAIRMAN ARMIJO: Matthew, you have to
11	speak a little louder
12	MR. PANICKER: TCD. The maximum impact
13	of TCD are on three thermal mechanical performance of
14	the fuel, one is power to melt, fuel centerline
15	temperature, cladding strain or cladding fatigue, and
16	end of life rod internal pressure. Upon the reviewers
17	of the the fuel part reviewer was RAI based on TCD
18	and its affect on all these parameters. AREVA and the
19	licensee has performed analysis, benchmark analysis
20	with RODEX2 which is the original code and which
21	doesn't have TCD with burnup. And, also, the staff
22	performed FRAPCON 3.4 calculations which is a
23	statistical plus it's a code which has got TCD with
24	burnup. And we presented during the Subcommittee
25	meeting that the RODEX the AREVA introduced what we
I	I

(202) 234-4433

	307
1	call augmentation factors or penalty factors for power
2	to melt or fuel centerline max temperature and
3	cladding strain, and both these cases the fuel the
4	same criteria was met.
5	On power to melt temperature, depending on
6	the content of the gadolinium, the certain temperature
7	resided, the range was 450 degrees to 100 degrees
8	depending on 450 degrees Fahrenheit for UO2, pure
9	U02, and 100 degrees Fahrenheit to 8 percent
10	gadolinium content.
11	MEMBER ABDEL-KHALIK: Now, you heard the
12	earlier discussion about these augmentation factors.
13	MR. PANICKER: Yes.
14	MEMBER ABDEL-KHALIK: And by segregating
15	the data for different linear heat rates, we're not
16	sure if these augmentation factors would be applicable
17	at 62 gigawatt days per ton for high linear heat
18	rates. What is your answer to that?
19	MR. PANICKER: What is high linear heat
20	rates. As the fuel burns, as it burns the linear heat
21	rate is not going up.
22	MEMBER ABDEL-KHALIK: Well, okay. For high
23	centerline temperatures, let's say greater than 1,250
24	Kelvin.
25	MR. PANICKER: This goesI just got them
I	I

(202) 234-4433

308 1 and I have not the chance to read -- I don't have the associated --2 3 MR. ULSES: This is Tony Ulses, the Branch 4 Chief of Reactor Systems. Let me just take a stab at 5 the question. If we need to get Paul Clifford on the can tie him in. He's available this 6 phone, we 7 afternoon. Essentially, the staff position on this, 8 and I'm sort of reiterating what I've been -- I've 9 been kind of BlackBerrying back with Paul over the 10 last hour, is that we have several factors going on here. 11 First of all, the AREVA methodology did 12 not take credit for the burn down of the pin as a 13 14 function of exposure. And we also -- looking at the 15 results for the large break LOCA analysis for St. Lucie Unit 1, there is a large margin in acceptance 16 when we look at our FRAPCON 17 criterion. And calculations, and I'm going to kind of repeat what 18 19 Paul told me. It's his position, and if we need to get him on the phone, he can also repeat this, that when 20 we account for thermal conductivity degradation in the 21 FRAPCON models using, obviously, the same database 22 that everybody else has access to, and all of the 23 24 other models that are in FRAPCON, and which are designed to be best estimate models of the relevant 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

phenomena, if we had a large discrepancy in the ability of FRAPCON to make predictions at these higher burnups, it would be demonstrated as some of the other comparisons. In other words, that most likely go awry. And that's the staff's position on why we have that reasonable assurance application of this methodology at the St. Lucie Unit 1 EPU is acceptable at the moment.

9 MEMBER BANERJEE: Let me ask you a question 10 here. The data that's shown there is clearly what is available. That means that high burnups, there isn't 11 any data with high fuel centerline temperatures. 12 That's really what it amounts to. The question really 13 14 is during any of the calculations which are being done 15 are there at high burnups or whatever reason fuel with 16 high centerline temperatures which are being -- as 17 part of the calculation some form of extrapolation is being made on these curve fits. Really, that's the 18 19 issue. Do I make myself clear, or should I repeat the question? 20 MR. ULSES: I understand the question. 21 MEMBER BANERJEE: Yes. 22 MR. ULSES: Let me see if I can put a 23 24 little spin on it. The question, ultimately, is as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

25 analyzed or in reality?

(202) 234-4433

1

2

3

4

5

6

7

8

	310
1	MEMBER BANERJEE: No, as analyzed clearly,
2	because it also in reality, hopefully the analysis
3	and reality correspond to each other in some way.
4	MR. ULSES: I'm going to ask Matt if he can
5	address that, and also perhaps AREVA would have
6	offer some comments on it.
7	MEMBER BANERJEE: So, really what I'm
8	asking, and I think everybody is asking, Said is
9	asking, is in the analysis that has been done, are
10	there high burnup fuels in the analysis, or would
11	there be high burnup fuel as part of the analysis
12	which has a high centerline temperature. So, in that
13	case, we're outside the range of the data. If so, we
14	should simply say that, and say that we've
15	extrapolated. Now, whether it's a good extrapolation
16	or not is a separate matter, but you can at least be
17	honest and say we extrapolated, that's it.
18	MR. ULSES: Actually, I'm going to ask Ben
19	Parks to address the question for LOCA. He was
20	involved in the LOCA analysis in detail. Let me step
21	back here.
22	MR. PARKS: For the large break LOCA
23	calculations they do originally per generically
24	approved EMF-2103 they do a first cycle calculation,
25	and I believe burnup is sampled. We had some issues
ļ	I

(202) 234-4433

when TCD started getting a three letter acronym and becoming an official problem. We asked them to start looking at second cycle fuel. And they do that out to about 20 some gigawatt days per ton, I believe. And it results in, as Bert said earlier, they may postulate high linear heat rate fuel conditions at about 45 gigawatt days per ton total, so there is some extrapolation there.

9 result, the results As а that they 10 provided in the explicit analysis for the second cycle fuel were about 50 degrees lower in PCT due to other 11 effects associated with the second cycle or the 12 13 particular parameters that were that case for the 14 second cycle case set. Is it possible that if you 15 restratified these data and corrected differently that a higher PCT could be predicted, certainly. However, 16 17 this is an interim solution right now, and their predicted PCT is 1,600 and some degrees. It has ample 18 19 margin to regulatory limits, so granted this is the first that I've considered looking at the data the way 20 that Dr. Abdel-Khalik has proposed, but my initial 21 reaction is I think that this application is okay. 22 CHAIRMAN ARMIJO: Well, let me ask it a 23 24 different way. If -- has the staff extrapolated in the AREVA in incorporating the thermal 25 way same as

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	312
1	conductivity degradation data into your analysis code?
2	MR. PARKS: That I'm afraid I can't answer.
3	CHAIRMAN ARMIJO: But, you know, we all
4	start with the same data.
5	MR. PARKS: Right.
6	CHAIRMAN ARMIJO: And we all try to get a
7	temperature. And
8	MEMBER SHACK: Well, the question, though,
9	is if you're extrapolating an empirical fit it's one
10	thing. If you're extrapolating a mechanistic model
11	it's a little different.
12	CHAIRMAN ARMIJO: There's not much
13	mechanistic in thermal conductivity.
14	MEMBER SCHULTZ: Except for LOCA, the
15	staff's analysis has been depending upon the computer
16	codes that have the thermal conductivity degradation
17	incorporated in them. There is no correction factor,
18	augmentation factor, or provision. You're actually
19	using a code. My question is to what extent are we
20	relying upon the staff's analysis versus the
21	licensee's analysis.
22	CHAIRMAN ARMIJO: Well, if they're the
23	same, they get the same results for the same
24	MEMBER SHACK: But if the staff's analysis
25	is basically an empirical correction built into a
I	1

(202) 234-4433

	313
1	computer code, it still has the same problem. If it's
2	a more mechanistic picture, or they somehow adequately
3	accounted for the uncertainties that they've
4	introduced, that's a different thing. I mean, it's a
5	little hard to answer that question
6	CHAIRMAN ARMIJO: They have to answer that.
7	MEMBER SHACK: Absolutely.
8	CHAIRMAN ARMIJO: And the staff has to
9	answer whether theirs is mechanistic when treating
10	thermal conductivity. My guess is
11	MEMBER SHACK: Probably not.
12	CHAIRMAN ARMIJO: I won't guess, but I
13	think the in the real world the question I'd like
14	to ask AREVA and the staff, can you your peak LHGRs or
15	something of the order of 14-7 with a new core
16	kilowatts per foot, and can you have powers in that
17	range, maybe not that high, 12 kilowatts per foot, 11,
18	can you have that at burnups in excess of 30,000?
19	MEMBER BANERJEE: Maybe you can phrase it
20	a little differently, which is
21	CHAIRMAN ARMIJO: Phrase it any way you
22	want.
23	MEMBER BANERJEE: Yes. No, what basically
24	Said is saying, I think this is relevant, is he's
25	saying that there are two effects on thermal
ļ	I

(202) 234-4433

conductivity. One is burnup, the other is temperature. Right? And when you go to these higher heat fluxes you get higher temperatures. Now, all the data that you're seeing here is basically relatively low temperature data at the higher burnups.

Now, if you are doing calculations which 6 7 entail the use of this correlation at higher 8 temperatures, because at the end it's the thermal 9 conductivity as a function of temperature and burnup 10 that you want. I mean, all this is hand waving other than that. Okay? The curve fits here and there, but 11 that's really what you're talking about. So, what this 12 is indicating is that there isn't much data on the 13 14 effect of temperature as well as burnup.

15 Now, if it can be demonstrated that when 16 plot the thermal conductivity versus temperature you 17 with burnup that all burnups sort of converge to -the effect of burnup is reduced as you go higher in 18 19 temperature, then we may be able to buy this, but you have to put it together in that way. And if it isn't, 20 if there's a lot effect of temperature, I mean --21 MEMBER POWERS: You don't have the data to-22 23 24 CHAIRMAN ARMIJO: We've been presented with 25 data --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

314

1

2

3

4

5

	315
1	MEMBER BANERJEE: We don't have the data.
2	CHAIRMAN ARMIJO: just exactly like you
3	asked for in but I'm not sure if it was presented
4	by AREVA or someone else.
5	MEMBER SCHULTZ: We've seen in the
6	presentations of thermal conductivity versus burnup
7	and temperature.
8	CHAIRMAN ARMIJO: Right, we have had those
9	charts showing exactly what you're saying. The thermal
10	conductivity penalty decreases with temperature.
11	MEMBER BANERJEE: If it does, then great.
12	CHAIRMAN ARMIJO: But I think the staff
13	has
14	MEMBER BANERJEE: Have to demonstrate that.
15	Right?
16	CHAIRMAN ARMIJO: Well, the licensee has to
17	demonstrate it.
18	MEMBER BANERJEE: Or whoever, somebody has.
19	CHAIRMAN ARMIJO: The staff has to confirm
20	that it's okay.
21	MR. PANICKER: That's why we added the
22	augmentation factors to the fuel melting temperature
23	for the power to melt the fuel.
24	CHAIRMAN ARMIJO: Well, it's up to the
25	staff, but Paul might be able to
I	I

	316
1	MEMBER CORRADINI: That's what I was going
2	to ask. I was going to say can we get him on the line.
3	CHAIRMAN ARMIJO: If you can, that would be
4	helpful.
5	MR. BROADDUS: Yes, we're calling him right
6	now to get him on the line.
7	MEMBER SIEBER: Well, this not only affects
8	this plant, but it affects every plant.
9	CHAIRMAN ARMIJO: Well, it's generic, sure.
10	MEMBER BANERJEE: The reason also, I talked
11	the tendency of this to deviate with burnup, if I
12	remember reduced as you increased temperature, but I
13	could be wrong. Somebody needs to look at this in a
14	systematic
15	CHAIRMAN ARMIJO: But the driver is linear
16	heat generation rate. And if you just can't get it
17	hot, the thermal conductivity penalty gets smaller,
18	and smaller, and smaller.
19	MEMBER BANERJEE: That's a separate issue,
20	though.
21	CHAIRMAN ARMIJO: No, that's the way
22	MEMBER BANERJEE: Yes, but that's the data.
23	I mean, you couldn't get the data for that reason, but
24	there could be scenarios where you've got situations
25	where the temperature is high and the burnup is high.

(202) 234-4433

	317
1	MEMBER ABDEL-KHALIK: Just for your
2	reference, data for centerline temperature greater
3	than 1,250 Kelvin, which is 1,823 Fahrenheit, anything
4	beyond that doesn't go above 30 gigawatt days per ton.
5	Now, 1,823 degrees Fahrenheit centerline temperature
6	doesn't take 14-1/2 kilowatt per foot to get there for
7	a PWR. It probably corresponds to 10 kilowatt per
8	foot. So, the argument that we're only sampling a very
9	small part of the core where the linear heat rate is
10	very high at these very high burnups doesn't hold up.
11	CHAIRMAN ARMIJO: Well, that was the
12	question, do you are you in that range or not? And
13	that's a question
14	(Simultaneous speaking.)
15	MEMBER SCHULTZ: Achieve that temperature
16	when the gap is open.
17	CHAIRMAN ARMIJO: Right.
18	MEMBER SCHULTZ: Now when you have
19	CHAIRMAN ARMIJO: When you close the gap,
20	those temperatures drop.
21	MEMBER SCHULTZ: a closed gap with high
22	conductivity.
23	MEMBER BANERJEE: Unfortunately, if you
24	look at these curves you could easily bias it and draw
25	lines like that, you know. And this is a position that
I	I

(202) 234-4433

Í	318
1	we took when we were outside the range of the data for
2	MELA+, if you remember. We were not very anxious to
3	extrapolate. So, we need to know how much
4	CHAIRMAN ARMIJO: Remember the
5	temperatures in a fuel rod is affected by a lot more
6	than the thermal conductivity of the pellet. And
7	that's what Steve is trying to tell us. As you get to
8	burnup you've got a lot of things going on. And that's
9	why I think we need to get Paul on the line.
10	MR. MIRANDA: And that's why the
11	experimental data is not where you might like it to
12	be. It's the fuel rods that are in the experimental
13	facility don't go to high temperatures because the
14	conductance of the gap is very high.
15	MR. CLIFFORD: Hello, Paul Clifford.
16	MR. MIRANDA: Hey, this is Sam Miranda, and
17	the entire ACRS calling you.
18	MR. CLIFFORD: Hello, everybody.
19	MR. MIRANDA: We have some questions for
20	you.
21	CHAIRMAN ARMIJO: I would just like to ask
22	in the sense that the staff has confirmed or accepted
23	the AREVA analysis for fuel temperature as affected by
24	thermal conductivity degradation, and Said has raised
25	an issue of whether that is valid in view of the fact
	1

(202) 234-4433

1 that there's very little thermal conductivity data or 2 hardly any at high powers for high burnup fuel. And question 3 the then is are you deliberately or 4 inadvertently extrapolating way beyond your database 5 in coming to the conclusion that it's acceptable? And maybe that's -- you may want to rephrase it, but the 6 7 bottom line is, is the approach taken by AREVA in 8 incorporating the effects of thermal conductivity 9 degradation okay, and why does the staff conclude 10 that? MEMBER ABDEL-KHALIK: Paul, let me be a 11 little more specific. For centerline temperatures 12 above 1,250 Kelvin, which is 1,823 F, there are no 13 14 data for this augmentation factor, no data that would 15 support the evaluation of the augmentation factor for burnups beyond 30 gigawatt days per ton. And that 16 means that if your fuel design limit is 62 --17 if you're authorizing them to have a fuel design limit of 18 19 62 gigawatt days per metric ton, that implies that you're extrapolating way beyond the database. And the 20 then would the empirical fit 21 question of the augmentation factor which is by and large based on low 22 linear heat rate data in that range of burnup be 23

> applicable for high linear heat rate conditions? MR. CLIFFORD: I understand the question.

> > NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

25

(202) 234-4433

319

	320
1	I guess I'd first like to summarize my review, and
2	then we'll get on to specific questions. Can everybody
3	hear me?
4	CHAIRMAN ARMIJO: Yes.
5	MR. CLIFFORD: Okay, great. You know, we've
6	been looking we're in the process of going through
7	our review of the augmentation factors that AREVA
8	developed, and we've done an audit of their
9	calculations that we've run from preliminary numbers,
10	and we have a certain level of comfort. Of course,
11	that review continues, and over the next six months
12	we'll be doing more of an in-depth review of the
13	augmentation factors and issuing basically, issuing
14	acceptance of those augmentation factors on a generic
15	basis. And as I mentioned in the Subcommittee, any
16	changes to those augmentation factors that occurs
17	between now and the end of the year will be
18	incorporated in St. Lucie 1.
19	We also ran some St. Lucie 1 specific
20	FRAPCON cases, so we have another level of assurance
21	that the fuel rod design for St. Lucie 1 meets its
22	design requirements based upon our confirmation
23	calculations. With respect to the question at hand,
24	yes, I understand certainly if you drive a rod really
25	hard at the end of life at high burnup you're going to
ļ	I

(202) 234-4433

1 get more fission gas release. It's going to have different centerline temperatures, thermal 2 3 conductivity is going to come into play, but the data is what the data is. And we really expect that fuel 4 5 rods above 30 gigawatt days are going to be operating at extremely high temperatures. We really don't. So, 6 there is a limitation on the data, I agree. We have 7 8 FRAPCON for all the data we have at hand, and if there 9 were some unusual phenomena that would creep in at 10 very high linear heat rates and at very high burnups that weren't captured by the data that affects 11 centerline temperature, then that would also creep 12 into other predictions for which we have a lot more 13 14 data. Like, for instance, fission gas release, there's 15 a very extensive database on fission gas release. And 16 we're all turning to that, so FRAPCON and all the 17 modern codes are turning to that also. So, if our thermal conductivity models were somehow off as a 18 19 result of a lack of data, then that would have affected our fission gas release model, so we would 20 have seen it there. 21 CHAIRMAN ARMIJO: And cladding strain. 22 MR. CLIFFORD: And we're just not seeing 23 24 it. 25 MEMBER CORRADINI: May Ι ask Paul а

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

321

322

say in terms of your summary, can I just reverse it? What I think you're saying is it's almost mutually exclusive to have high linear heat rate, and high temperature at the end of burnup life. Rather, you would essentially evolve to low linear heat rate and lower temperatures because the thing you can't drive the rod that hard. Am I misunderstanding?

9 CLIFFORD: That's correct. MR. You're 10 depleting your U235, so the rod power tends to go down. In addition, the -- for BWRs there's a specific 11 12 tech spec on linear heat rate as a function of burnup that's based on fuel mechanical design, specifically 13 14 a rod internal pressure calculation. For PWRs, there's 15 not an explicit COLA or tech spec, but there's a 16 reload design checklist value where you have linear 17 heat rate limits as a function of burnup that they develop fuel management to. And those limits clearly 18 19 show -- basically, the meat of the curve is around 28 or 30 gigawatt days, and that drops substantially from 20 that point forward. 21

MEMBER BANERJEE: Paul, can you give us 22 some numerical values as to how much they drop to? 23 24 MR. CLIFFORD: I could certainly provide 25 that to you.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

	323
1	MEMBER BANERJEE: That would be helpful.
2	MR. CLIFFORD: I'm just trying to think off
3	the top of my head where we would have shown you that.
4	It's unfortunate, I have one in front of me that we're
5	going to be showing you for St. Lucie 2.
6	CHAIRMAN ARMIJO: That won't help.
7	MEMBER BANERJEE: But any indication
8	qualitatively would help. Obviously, if over 30
9	megawatt days per ton, or 30,000, or whatever gigawatt
10	days, then if the linear heat rate is half that or
11	something of what it is at the beginning of life, that
12	would a useful thing to know.
13	MR. CLIFFORD: Right. It would be
14	consider it I mean, the numbers would be roughly
15	13.2 kilowatts per foot at around 30, and then
16	dropping all the way down to 7 kilowatts per foot.
17	MEMBER ABDEL-KHALIK: Well, at 13 kilowatt
18	per foot, I can imagine a centerline temperature much
19	greater than 1,800 F.
20	MR. CLIFFORD: Well, that's an unusual
21	let me think. That's kind of a bounding case where
22	you're trying to provide fuel management flexibility.
23	As soon as you come up with a bounding allowable rod
24	power history that doesn't mean you're ever going to
25	have a rod that gets there.
I	I

(202) 234-4433

	324
1	MEMBER ABDEL-KHALIK: Well, it all has to
2	fit together. If you're setting a limit of roughly 13
3	kilowatt per foot at 30 gigawatt days per ton, and you
4	look at the centerline temperature, it will be greater
5	than the range for which there is thermal conductivity
6	degradation data, namely, 1,823 Fahrenheit.
7	MR. CLIFFORD: That might be so, yes.
8	MEMBER SHACK: But maybe we are distorting
9	I mean, we're looking at errors in your plots. And
10	if we look at the total conductivity as a function of
11	burnup and temperature, what we see is that the effect
12	of burnup decreases as temperature increases, so that
13	although we can't predict it as well, the effect isn't
14	as large.
15	MEMBER BANERJEE: That's the question I was
16	asking.
17	MEMBER SHACK: Yes.
18	CHAIRMAN ARMIJO: Well, that's a chart that
19	Paul may be looking at, but we've received it, but the
20	effect as a function of burnup is
21	MEMBER BANERJEE: We received it, but I
22	don't recall it.
23	MEMBER SHACK: I've got an illustration of
24	it in front of me.
25	MEMBER ABDEL-KHALIK: But that's a cartoon.
ļ	I

	325
1	We don't have data to support that graph.
2	MEMBER SHACK: I think that overall trend
3	is supported by the data.
4	MR. CLIFFORD: When you're looking at end
5	of life, second cycle, third cycle design criteria,
6	you're not really looking at that centerline melt
7	during an AOO, because that's going to occur in the
8	highest power
9	MEMBER ABDEL-KHALIK: We're not looking at
10	that.
11	MR. CLIFFORD: What you're looking for
12	there is your end of life criteria is really rod
13	internal pressure, which is driven by void volume and
14	driven by fission gas release. And as I mentioned,
15	these codes are tuned specifically to capture the
16	fission gas release and the void volumes, so even if
17	it kind of goes back to the argument we had with
18	when we were talking about Turkey Point. I don't know
19	if you remember, that the thermal conductivity model
20	was incorrect at high burnup, but it had been tuned to
21	an extent to the high burnup fission gas release
22	database. So, even if the conductivity was wrong, it
23	was artificially compensated for by the fission gas
24	release model. So, at the end of the day it was able
25	to actively predict the fission gas release and the
Į	I

(202) 234-4433

	326
1	void volume, and then the end of life rod internal
2	pressure factor.
3	CHAIRMAN ARMIJO: So, if you look at the
4	totality of the data that you have, you're not running
5	beyond your database. But in the case of thermal
6	conductivity data, it's clear, there is no data at
7	these very high burnups, and high linear heat
8	generation rates.
9	MEMBER SCHULTZ: But experimental rods
10	operate like power reactor rods.
11	CHAIRMAN ARMIJO: Yes, that's and the
12	reason is they
13	MEMBER SCHULTZ: That's why the data isn't
14	showing it.
15	CHAIRMAN ARMIJO: Yes. Okay. Well, we've
16	had a good discussion.
17	MEMBER BANERJEE: Paul, would it be useful
18	if you could send us or email the information you have
19	about you said in the linear heat rate where it is
20	typically, and what the linear heat rates are. Is it
21	around 30,000?
22	MR. CLIFFORD: Well, I'm trying to think.
23	MEMBER BANERJEE: There's a point of
24	inflection I think, that's the word
25	MR. CLIFFORD: Right, the point of
	I

(202) 234-4433

	327
1	inflection I mean, the meat of the curve for PWRs
2	are generally around 30 to 32 gigawatt days, and it's
3	generally around 13.2 to 13.4 kilowatts a foot. And
4	then it drops down to 6-1/2 to 7 kilowatts a foot by
5	end of life.
6	MEMBER BANERJEE: Okay.
7	MR. CLIFFORD: But in real life, I mean, if
8	you look at the limiting rods and some of these fuel
9	performance methodologies you actually do a survey,
10	and you find the worst three or four hundred rods, and
11	you calculate say rod internal pressure throughout its
12	life. So, it may be more advantageous to see what the
13	actual maximum rod power histories are, as opposed to
14	what some bounding
15	MEMBER BANERJEE: Right. Do you have any of
16	that information?
17	MR. CLIFFORD: Just bits and pieces from
18	what I've been doing. I mean, I've got some actual rod
19	power histories from Calvert Cliffs, I think from
20	Turkey Point. I'm trying to remember if I have any for
21	St. Lucie 1. I'd have to look.
22	MEMBER BANERJEE: Okay. Well, I think we've
23	taken this as far as we can go right now.
24	MEMBER SIEBER: Right.
25	MEMBER BANERJEE: So, thanks very much for
ļ	

	328
1	your help, Paul, and we're going to move on.
2	MEMBER ABDEL-KHALIK: Just as a point of
3	interest, I mean, if you look at data for the range of
4	centerline temperatures between 1,250 and 1,500 Kelvin
5	at 30 gigawatt days per ton, this augmentation factor
6	empirical fit is about .1. The data shows values that
7	.1 plus or minus .1. And if that's the case, if I
8	instead of just going an empirical fit in the middle
9	of the data draw a limit line above the data, that
10	empirical augmentation can be as much as twice
11	whatever the empirical value that's added.
12	MR. CLIFFORD: Well, this might be a good
13	discussion you know, we're still reviewing this
14	topical report. And, as I mentioned at the last
15	Subcommittee meeting, we're still seeing significant
16	differences between FRAPCON and the RODEX2 rod
17	internal pressure calculations. So, there might be
18	something here where we'll discover it as we go
19	further into the review.
20	CHAIRMAN ARMIJO: Paul, in effect, you
21	don't in FRAPCON when you introduced the thermal
22	conductivity degradation corrections, you didn't use
23	augmentation factors. You incorporated it in some
24	other way, but it's still the same database. And why
25	if we're using FRAPCON to check the AREVA, how can
ļ	I

(202) 234-4433

	329
1	we conclude that you're right, and they're wrong, or
2	both of you are wrong?
3	MR. KABADI: This is Jay Kabadi from FPL.
4	I just want to clarify one thing. The plots which
5	we've been looking on these different temperature
6	versus burnup, those are not the ones which are used
7	for the fuel design. If you look at some of the plots
8	we presented for TCD for fuel design, that used a
9	bounding line which goes all the way on top of all the
10	data, which is the Haldon data. This one for LOCA. The
11	one which is being discussed now, the plots we do a
12	split between different kilowatt per foot.
13	MEMBER ABDEL-KHALIK: That's our concern,
14	the initial stored energy in the fuel and its impact
15	on the
16	MR. KABADI: Correct. For large break LOCA,
17	that's correct. Right. But when we talk about the
18	augmentation factors which were used for the fuel
19	design, that feed was done way about all the Haldon
20	data.
21	MEMBER BANERJEE: Well, I guess the
22	question is if you took the upper bound of this data
23	for large break LOCA, what would your stored energy
24	be, rather than drawing a line through it? Would it be
25	just a little bit more? You know, we can't do this at
ļ	I

(202) 234-4433

	330
1	the back of the envelope.
2	MEMBER SIEBER: Don't have the data.
3	MEMBER BANERJEE: So, that's the issue.
4	MR. DUNN: Dr. Banerjee, Bert Dunn, again.
5	I just wanted to remind the people that we do add an
6	uncertainty in addition to this augmentation factor.
7	MEMBER BANERJEE: Okay, tell us what you do
8	there. How much of an uncertainty do you add?
9	MR. DUNN: It's a Bell curve. It's normal
10	distribution based on 130 degrees 72 degrees
11	Celsius standard deviation. It could be up to 150 to
12	180 degrees Celsius on a given calculation, and it is
13	most probable for this plant, as you said, that
14	because the peaks occur during blow down that it is a
15	high stored energy evaluation that sets the limit for
16	the plant's application. So, it's
17	MEMBER BANERJEE: So, if you took the data
18	that you've got I mean, not the data, your
19	calculations, and took out those cases where you've
20	got the higher fuel temperatures, I mean, the more
21	degradation of thermal conductivity, are these the
22	runs that give you the maximums that you found, or is
23	there something else? Because we haven't analyzed
24	exactly what gave you the high fuel temperatures. Was
25	it those runs that gave you the highest fuel
11	

(202) 234-4433

	331
1	temperatures that you had augmented at or put the
2	uncertainty on top?
3	MR. DUNN: I would have to go into the
4	exact calculation itself to give you a positive
5	answer, but I very much suspect that is the case, that
6	my rule of thumb for this is that maybe 75 percent of
7	the determination of the peak cladding temperature for
8	a case that has a PCT at eight seconds, nine seconds
9	is due to the initial fuel stored energy. It will not
10	be the difference in centerline temperature, it will
11	be the volume average.
12	MEMBER BANERJEE: Yes. But you are
13	sorry, go ahead, Ben.
14	MR. PARKS: I apologize for interrupting.
15	I was just looking at some of St. Lucie's limiting
16	cases the other day, actually. It turns out that the
17	highest PCT cases have pretty high linear heat rates,
18	more than 14.5 kilowatts per foot, I believe, or close
19	to the peak. It's somewhere around there. What I did
20	notice was the top case wasn't the highest in linear
21	heat rate, but it was pretty close, and it was also
22	burnt up about I think 21 gigawatt days per ton. So,
23	those are the characteristics.
24	Some other characteristics of the limiting
25	cases, there was a tendency, it was small, as Jen
	I

(202) 234-4433

	332
1	said, they were very scattered, but the limiting cases
2	had very low, less than one multipliers on some of the
3	two-phase heat transfer coefficients. That kind of
4	tended to drive limiting results, too, just a little
5	bit.
6	CHAIRMAN ARMIJO: What were those
7	conditions again? The power burnup and peak clad
8	temperature for that you just cited for St. Lucie?
9	MEMBER SCHULTZ: Just repeat those again,
10	Ben, because we want to capture what we're talking
11	about here in terms of the when the linear heat
12	generation rate occurs at its peak, and what and at
13	what burnup.
14	MR. PARKS: Oh, I think the peak burnup was
15	in the neighborhood of 20 gigawatt days per ton. The
16	linear heat rate, I think it was about 14.5. Is that
17	the linear heat rate? Do you recall, Bert?
18	MR. DUNN: That would be my expectation.
19	It's in that area.
20	MR. PARKS: Yes. And the PCT there is a
21	little bit more than 1,650 degrees Fahrenheit.
22	CHAIRMAN ARMIJO: And after that, would
23	normal fuel design, which I think that's what you guys
24	do if you're going to be dropping linear heat rate.
25	So, I think it's there's so much that goes into the

(202) 234-4433

	333
1	fuel peak centerline temperature other than thermal
2	conductivity degradation that's got to be appreciated,
3	and whatever we've got, we've got one set of data of
4	thermal conductivity degradation, and it's gone into
5	the agency's codes to check what the licensees are
6	doing, and they're coming up with the same answer
7	maybe for the same good reasons, or wrong reasons. I
8	don't know, but I think that's where we are. My guess
9	is that the big problem is that these burnups, 30
10	gigawatt days per ton and less, and the issue of
11	whether we have an error gets less the higher you go
12	up in burnup, gets smaller as you go up in burnup. But
13	that's where we are, and we're just going to have to
14	discuss it as a Committee to see if we're satisfied.
15	MEMBER BANERJEE: Well, just one piece of
16	information would be useful, which is the sort of what
17	assumptions were made regarding the core in terms of
18	the burnup versus the linear heat rate. If we know
19	what sort of distribution was assumed for that, that
20	would be useful. So, if you assume that at high
21	burnups you had a lower heat rate which seems
22	reasonable, that's okay, but tell us what you assumed.
23	MR. CLIFFORD: Well, I mean, there's got to
24	be somebody from FPL that can provide you with their
25	reload checklist linear heat rate versus burnup curve.

(202) 234-4433

(202) 234-4433

334 1 MEMBER BANERJEE: That's really what we need. 2 3 CHAIRMAN ARMIJO: Can we get that? MR. KABADI: Yes. Ι think like Paul 4 5 mentioned for St. Lucie 1 -- this is Jay Kabadi from FPL. Yes, there is a power reduction that is included 6 7 in the AREVA large break LOCA analysis, and that does 8 show that certain time in life the power goes down. 9 Now, I don't recall exactly the number right now. We 10 can look at that, but --MEMBER BANERJEE: All you need to do is 11 provide it. 12 MR. KABADI: It's in the range of about 95 13 percent of the full --14 15 MEMBER BANERJEE: Just provide it to us. MR. KABADI: I'll provide the number. 16 17 CHAIRMAN ARMIJO: Not just the number, just the graph of linear heat generation rate versus burnup 18 19 that's your design basis, that you're actually designing these cores, or have designed the core. 20 21 MEMBER BANERJEE: But more than that, you intend to operate --22 MR. KABADI: This is Jay Kabadi again. I 23 24 just want to clarify. I think what you want is our 25 actual design powers.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	335
1	MEMBER BANERJEE: Yes.
2	MR. KABADI: That's what
3	CHAIRMAN ARMIJO: Yes, versus burnup.
4	MEMBER ABDEL-KHALIK: If you have a tech
5	spec limit on that, I think it would be worthwhile to
6	provide that.
7	MEMBER BANERJEE: In addition. Anyway, Mr.
8	Chairman, I am trying to do we have someanything
9	more here to go on, because we've interrupted you, and
10	we are now only running one hour over time.
11	MEMBER CORRADINI: That's normal for you.
12	MEMBER BANERJEE: I'm usually on time.
13	CHAIRMAN ARMIJO: Is there any questions
14	from the
15	MR. PANICKER: Just wanted to say that the
16	licensee has committed to implementing the new the
17	revised version of generic Topical Report for RODEX 2
18	as soon as it is as soon as the staff was finished
19	reviewing.
20	CHAIRMAN ARMIJO: So, if it turns out that
21	as a result of this discussion you're going to wind up
22	with more conservatisms required for the final
23	augmentation factors, St. Lucie 1 would have to comply
24	with that. And if they've already designed and built
25	their core, they have a little problem and they're
I	I

(202) 234-4433

	336
1	going to have to do something about
2	MR. PANICKER: One is being reviewed. I
3	think one of the staff members is reviewing it, so we
4	may have some questions. We will run FRAPCON 3.4 and
5	compare with their values and there will be back and
6	forth RAIs. And, finally, we will arrive at a set of
7	penalty factors for the core. And that has to be
8	implemented by the licensee.
9	MR. WASIK: Yes, this is Chris Wasik,
10	Florida Power & Light. We did commit to a condition of
11	license that upon NRC approval of a new version of the
12	RODEX2 code that does address TCD, that we will look
13	at that and determine if it's more conservative than
14	our existing analysis, then we'll commit to what
15	we've committed then to adopting that.
16	CHAIRMAN ARMIJO: And it might
17	MR. WASIK: If it turns out that what we
18	did now is more conservative than the future approved
19	code, then
20	CHAIRMAN ARMIJO: You'll be back. That's
21	the easy answer.
22	MR. WASIK: But that is a condition of
23	license as part of the EPU.
24	MEMBER BANERJEE: That's a commitment.
25	Right?
ļ	I

(202) 234-4433

337 1 MEMBER SHACK: It's a licensing basis. Right? 2 3 (Simultaneous speaking.) 4 MR. WASIK: It's a condition of license. 5 MEMBER BANERJEE: Okay, thank you. MEMBER SHACK: It's part of the license. 6 7 MR. WASIK: That's correct. 8 MEMBER BANERJEE: Okay, thank you. Are you 9 finished with everything? Can I turn this meeting back 10 to --CHAIRMAN ARMIJO: Professor Banerjee, are 11 you going to ask for any comments from the public? 12 MR. ULSES: Yes, the staff is finished. 13 14 MEMBER BANERJEE: The staff is finished. 15 May we ask for any comments from the public, if 16 they're available? 17 MEMBER BLEY: We're checking. MEMBER STETKAR: We're checking. 18 19 MEMBER BANERJEE: All right. 20 MR. WANG: The line is open. MEMBER CORRADINI: The line is open. 21 MEMBER BANERJEE: The line is open? 22 MEMBER CORRADINI: Yes. 23 24 MEMBER BANERJEE: Okay. Are there any comments from the public? Anybody in the public with 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	338
1	comments?
2	CHAIRMAN ARMIJO: Anyone on the line?
3	MEMBER BANERJEE: The line is open. Right?
4	MEMBER CORRADINI: Yes.
5	MEMBER BANERJEE: Okay. All right. In that
6	case, there's no comments.
7	MEMBER SIEBER: No questions.
8	MEMBER BANERJEE: No further questions,
9	thank you very much. Thanks, FPL, very much, and I
10	turn it back to you we're not that we started
11	late.
12	CHAIRMAN ARMIJO: Yes, we started late.
13	MEMBER SHACK: All of 15 minutes.
14	CHAIRMAN ARMIJO: Okay. Well, I thank
15	Florida Power & Light, AREVA, and the staff for an
16	exhilarating afternoon. So, we're going to take a
17	break now. What time is it now?
18	MEMBER BLEY: 5:20
19	MEMBER SIEBER: 8:30 tomorrow?
20	CHAIRMAN ARMIJO: No, no, we've got a bunch
21	of stuff to do, so let's give ourselves 15 minutes.
22	That's 20 of six, that's more than 15 minutes. We're
23	off the record.
24	(Whereupon, the above-entitled matter went
25	off the record at 5:20 p.m.)
I	1

(202) 234-4433

Presentation to ACRS U.S. EPR Design Certification Chapters 3, 9, 14, 19

May 10, 2012 AREVA NP

Outline

Introduction

Overview of the U.S. EPR Design

- EPR Development Objectives
- Major Design Features
- Main Safety Systems
- Protection From External Hazards
- Severe Accident Mitigation

Overview of U.S. EPR Design Certification Application

Chapters 3, 9, 14, 19

2 AREVA

EPR Development Objectives

- Evolutionary design based on existing PWR operating experience, construction experience and Research & Development
 - Improved economics
 - Reduce generation cost by at least 10%
 - Simplify operations and maintenance
 - 60-year design life

Improved Safety

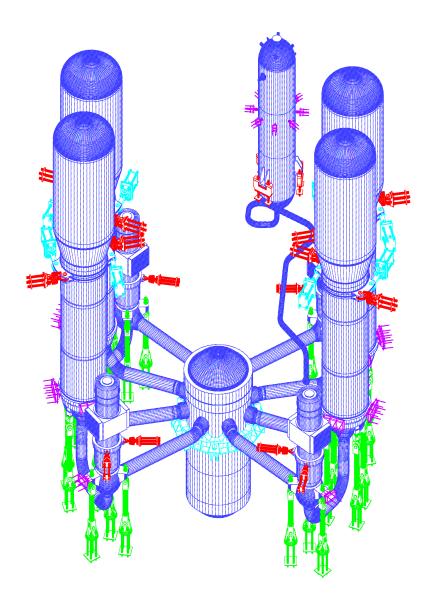
- Increase design margins
- Increase redundancy and physical separation of safety trains
- Reduce core damage frequency
- Accommodate severe accidents and external hazards
- Reduce occupational exposure and low level waste

Major Design Features

Nuclear Island

- Proven Four-Loop RCS Design
- Four-Train Safety Systems
- Double Containment
- In-Containment Refueling Water Storage
- Severe Accident Mitigation
- Separate Safety Buildings
- Advanced 'Cockpit' Control Room

Electrical


- Shed Power to House Load
- Four Emergency Diesel Generators
- Two Smaller, Diverse Station Blackout Diesel Generators

Site Characteristics

- Airplane Crash Protection (military and commercial)
- Explosion Pressure Wave

Reflects full benefit of operating experience and 21st century requirements

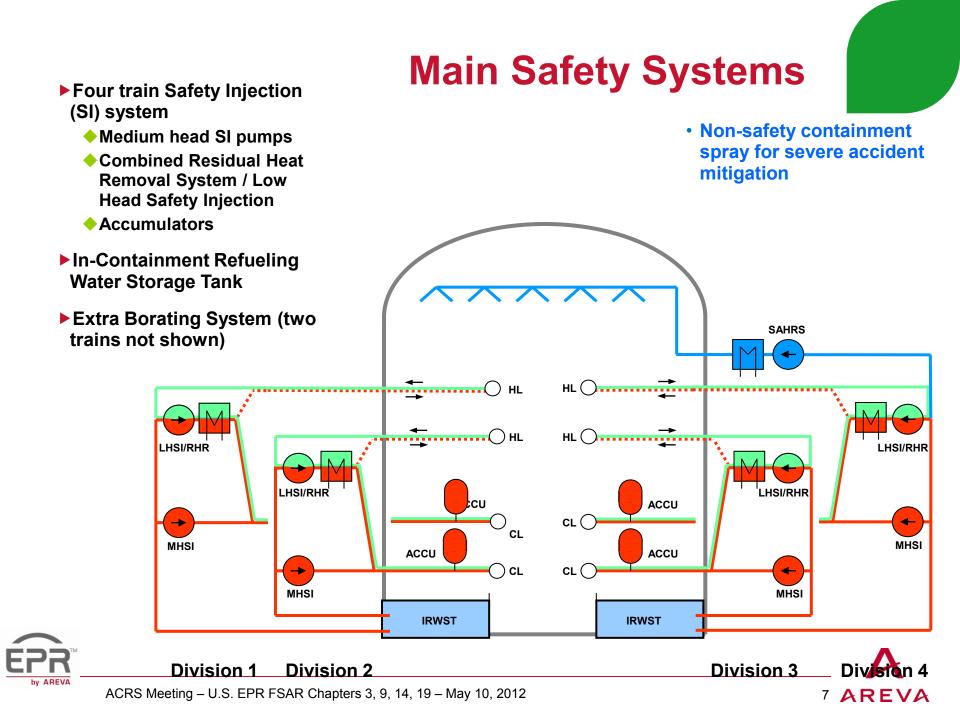
- Conventional 4-loop PWR design, proven by decades of design, licensing and operating experience
- NSSS component volumes increased compared to existing PWRs, increasing operator grace periods for many transients and accidents

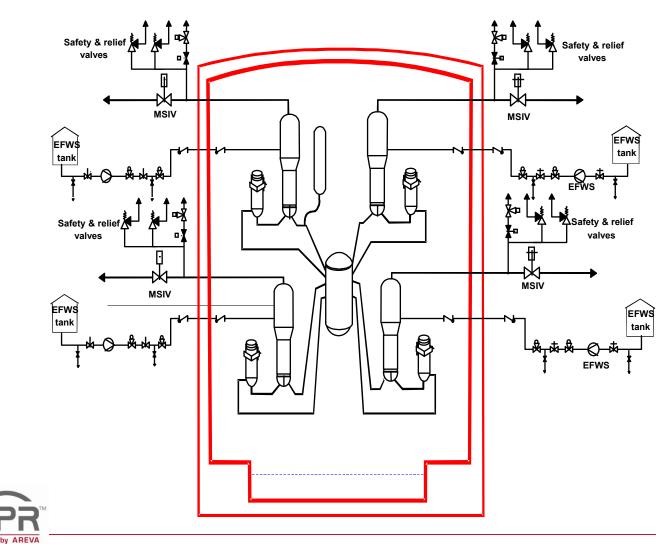
5 ARE

A solid foundation of operating experience

ACRS Meeting – U.S. EPR FSAR Chapters 3, 9, 14, 19 – May 10, 2012

The Four Train (N+2) Concept




Each safety train is independent and located within a physically separate building

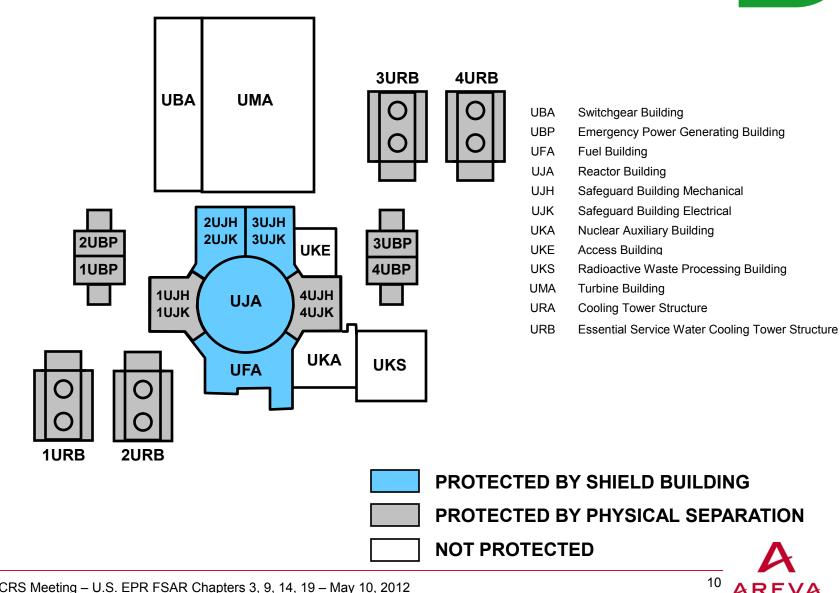
ACRS Meeting – U.S. EPR FSAR Chapters 3, 9, 14, 19 – May 10, 2012

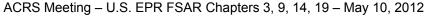
6 AREVA

Main Safety Systems Secondary Side

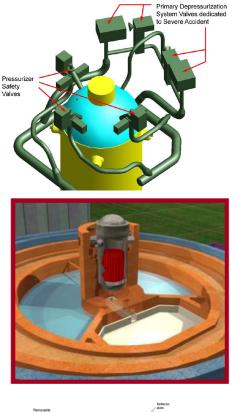
- Safety-related main steam relief train
- Four separate Emergency Feed Water Systems (EFWS)
- Separate power supply for each
- 2/4 EFWS also powered by Station Black Out (SBO) diesels
- Interconnecting headers at EFWS pump suction & discharge

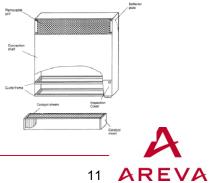
Protection From External Hazards Shielded Containment


- Inner wall post-tensioned concrete with steel liner
- Outer wall reinforced concrete
- Protection against airplane crash
- Protection against external explosions
- Annulus filtered to reduce radioisotope release



Protection From External Hazards





by AREVA

Severe Accident Mitigation

- Prevention of high-pressure melt using Primary Depressurization System
- Ex-vessel melt stabilization, conditioning and cooling
- Long-term melt cooling and containment protection using active cooling system
- Control of H₂ concentration using passive autocatalytic recombiners

U.S. EPR Design Certification Application

- U.S. EPR design reflects an evolutionary, active plant design
- U.S. EPR applies proven analytical methodologies
- FSAR consistent with key NRC guidance documents
 - Regulatory Guide 1.206, "Combined License Applications for Nuclear Power Plants (Light Water Reactor Edition)"
 - NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants"
 - Exemptions and exceptions minimized
 - No RTNSS

Topics

- 3.1 Compliance with NRC General Design Criteria.
- 3.2 Classification of Structures, Systems, and Components
- 3.3 Wind and Tornado Loadings
- 3.4 Water Level (Flood) Design
- 3.5 Missile Protection
- 3.6 Protection Against Dynamic Effects Associated with Postulated Rupture of Piping
- 3.7 Seismic Design
- 3.8 Design of Category I Structures
- 3.9 Mechanical Systems and Components Piping
- 3.10 Seismic and Dynamic Qualification of Mechanical and Electrical Equipment
- 3.11 Environmental Qualification of Mechanical and Electrical Equipment
- 3.12 ASME Code Class 1, 2, and 3 Piping Systems, Piping Components, and their Associated Supports
- 3.13 Threaded Fasteners (ASME Code Class 1, 2, and 3)

Items of interest:

- External Flood Protection
 - ◆ U.S. EPR uses a "Dry Site" concept → Site platform level (grade level) is arranged above the maximum level of the design basis flood

Seismic Design Basis

- Horizontal and vertical ground motion based on European Utility Requirements spectral shapes anchored to a peak ground acceleration (PGA) of 0.3g.
- A high frequency control motion is also added, anchored at a 0.21g horizontal PGA and a 0.18g vertical PGA.
- Range of soft, medium and hard rock sites
- The Reactor Building, Safeguard Building 2/3, and Fuel Building are shielded by a reinforced concrete shield building designed for protection against missiles, including a large commercial aircraft.

Items of interest:

Critical Sections identified to demonstrate essentially complete design per requirements of 10 CFR 52.47(c)

Three-Tiered Selection Methodology for Critical Sections

- Qualitative Criterion
 - SC I structures that perform a safety-critical function such as a barrier to radioactive release.
- Quantitative Criterion
 - Selected through a thorough numerical analysis of the NI finite element analysis results
 - Intended to identify sections that are highly stressed, but not chosen under the qualitative criterion
- Supplementary Criterion
 - Intended to capture critical sections not screened in by other two criteria
 - Based on engineering judgment
 - Necessary to obtain an adequate representation of typical structural elements

15 **ARF**

36 Critical Sections encompassing Category I Structures in U.S. EPR design

Items of interest:

- Leak Before Break is used to define pipe break and crack locations and configurations.
 - Applied to Reactor Coolant Loop, Pressurizer Surge Line, and Main Steam Line

Evaluation of jet impingement and pipe whip effects

- Addresses potential non-conservative assessments of the jet impingement loads due to inaccuracies and omissions in ANS 58.2
- Technical Report ANP-10318P: AREVA NP proprietary methodology for calculating external loading effects on essential SSCs due to jet impingement, including unsteadiness, jet resonance and jet reflection effects
- In-service Testing Program is described in the U.S. EPR FSAR
 - Includes provisions for full-flow testing of pumps and check valves

Chapter 9: Auxiliary Systems

Topics

- 9.1 Fuel Storage and Handling
- 9.2 Water Systems
- 9.3 Process Auxiliaries
- 9.4 Air Conditioning, Heating, Cooling and Ventilation Systems
- 9.5 Other Auxiliary Systems

Chapter 9: Cooling Chain CCW

Cooling Tower CCW HX SCWS EDG NI Loads **ESW** Pump **CCW** Pump

ACRS Meeting – U.S. EPR FSAR Chapters 3, 9, 14, 19 – May 10, 2012

by AREVA

Chapter 9: Auxiliary Systems

Fuel Storage and Handling

- U.S. EPR Under Pit Spent Fuel Cask Transfer Facility design differs from cask loading facilities in U.S. operating fleet; however, the design has evolved from similar facilities in Europe (covered in separate presentation)
- Fuel rack modules are based on existing 10 CFR Part 71 transportation and 10 CFR Part 72 dry storage technology [Detailed description of rack modules and methodology are described in Technical Report TN-Rack.0101]

Spent Fuel Pool Cooling and Makeup

- Safety-related Fuel Pool Cooling System (FPCS) design to cool the spent fuel assemblies with water during all storage conditions.
- EDG-backed Seismic Category I makeup pump with reliable backup (e.g., IRWST)

Chapter 14: Verification Programs

Topics

- 14.2 Initial Plant Test Program For Safety Analysis Reports
 - 14.3 Inspections, Tests, Analyses and Acceptance Criteria, and Tier 1

Initial Test Program (ITP) For Safety Analysis Reports

- Demonstrates structures, systems, and components (SSC) functionality prior to fuel load.
- Exercise and evaluate emergency operating procedures and Technical Specification surveillance procedures.
- Includes testing of unique EPR design features.
- Includes transient tests that demonstrate the ability to handle significant plant perturbations.
- Includes Pre-Operational (173 tests) and Startup (49 tests) testing
- Conduct of test program is responsibility of COL Applicant

Chapter 14: Verification Programs

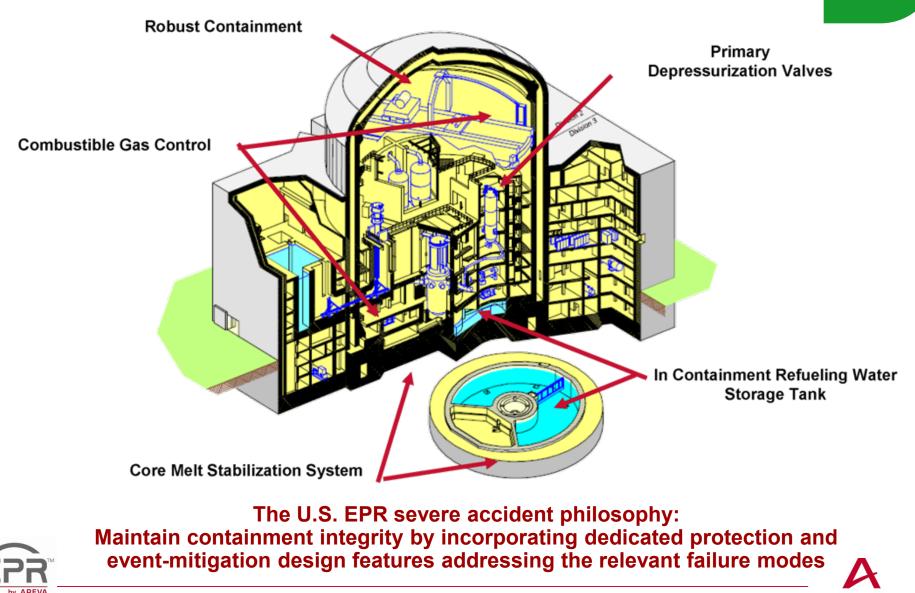
Unique Features Testing in ITP

- Fixed self-powered neutron detectors (SPNDs), fabricated from Cobalt-59
- Movable incore neutron measurement "aeroball" system used to calibrate the SPNDs
- Reactor coolant pump standstill seal, designed to isolate the reactor coolant pump seal in response to station blackout event
- Measurement of U.S. EPR "heavy neutron reflector" reactor internals vibration (RG 1.20)
- Natural circulation of the reactor coolant system
- Partial trip feature to immediately reduce reactor power to ≤50% reactor power and turbine bypass/condenser capacity ≥50% reactor power
- ITAAC based on selection criteria in SRP 14.3, with DAC for piping design and human factors engineering

Chapter 19: PRA and Severe Accidents

Topics

- + 19.1 Probabilistic Risk Assessment
- 19.2 Severe Accident Evaluations


Chapter 19: PRA and Severe Accidents

- Level 1 Core Damage Frequency
- Level 2 Large Release Frequency
- Level 3 Offsite Dose Consequence (supports Environmental Report and SAMDA)
- Scope of initiating events for design certification
 - Internal events (at-power and low power/shutdown)
 - Internal hazards (Internal flood and internal fire events, at-power and at low power/shutdown)
 - External events
 - PRA-based seismic margin assessment
 - Other external events high level, qualitative evaluation

Chapter 19 PRA and Severe Accidents Severe Accident Design Features

Chapter 19: PRA and Severe Accidents

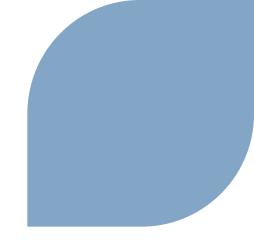
	At-Power	Shutdown	Total (At- power and Shutdown)	Safety Goal
CDF(yr)	5.3E-7	5.8E-8	5.8E-7	1E-4
LRF(yr)	2.6E-8	5.7E-9	3.1E-8	1E-6
CCFP	0.05	0.1	0.05	0.1

The U.S. EPR meets Commission's quantitative safety goals with margin

Acronyms and Abbreviations

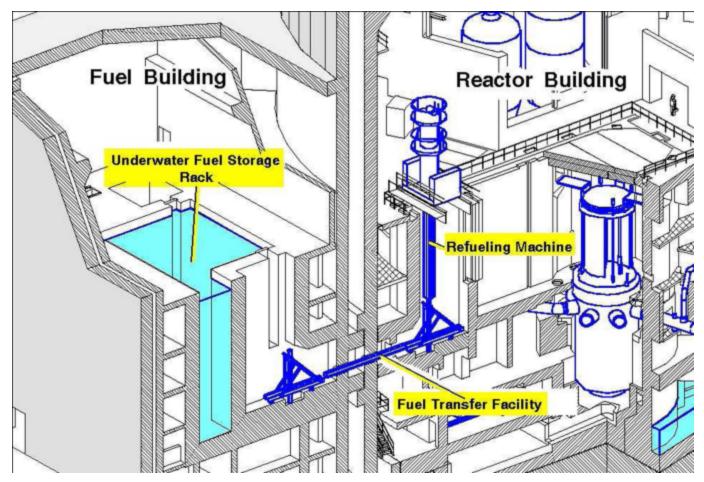
Acronym	Definition
ACCU	Accumulator
ANS	American Nuclear Society
ASME	American Society of Mechanical Engineers
CCFP	Conditional Containment Failure Probability
CDF	Core Damage Frequency
CFR	Code of Federal Regulations
CL	Cold Leg
COL	Combined License
CCW	Component Cooling Water
DAC	Design Acceptance Criteria
EDG	Emergency Diesel Generator
EFWS	Emergency Feedwater System
ESW	Essential Service Water
FPCS	Fuel Pool Cooling System
FSAR	Final Safety Analysis Report
HL	Hot Leg
HX HX	Heat Exchanger
IRWST	In-Containment Refueling Water Storage Tank
ITAAC	Inspections, Tests, Analyses, and Acceptance Criteria
ITP	Initial Test Program
LHSI	Low Head Safety Injection
LRF	Large Release Frequency
MHSI	Medium Head Safety Injection
MSIV	Main Steam Isolation Valve

ACRS Meeting – U.S. EPR FSAR Chapters 3, 9, 14, 19 – May 10, 2012

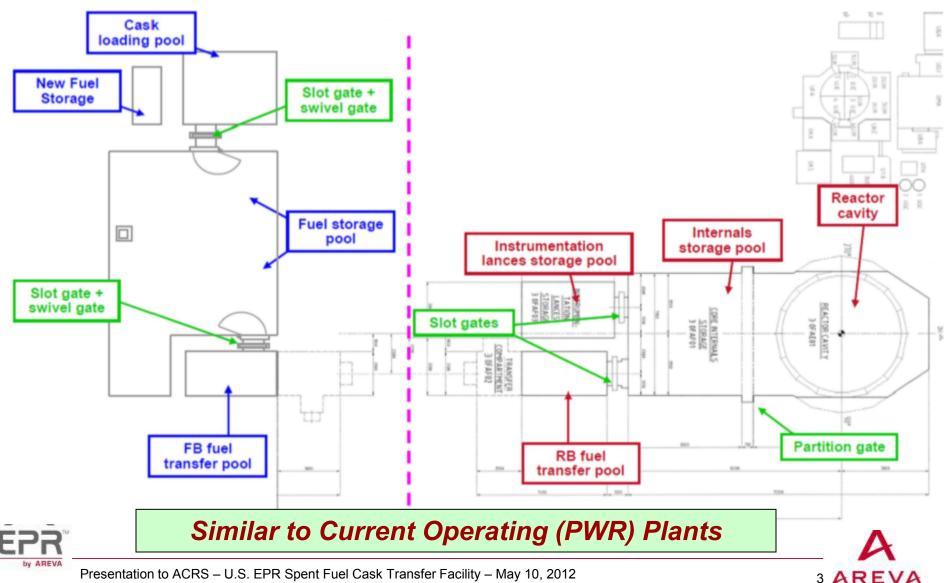

Acronyms and Abbreviations (Cont'd.)

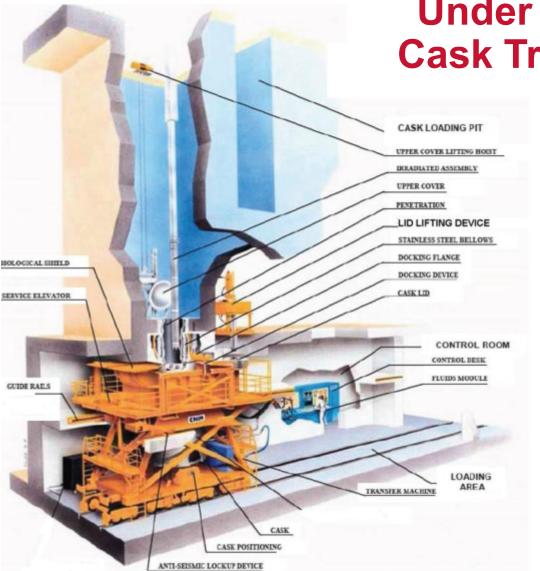
Acronym	Definition
NI	Nuclear Island
NRC	Nuclear Regulatory Commission
NSSS	Nuclear Steam Supply System
PGA	Peak Ground Acceleration
PRA	Probabilistic Risk Assessment
PWR	Pressurized Water Reactor
RCS	Reactor Coolant System
RG	Regulatory Guide
RHR	Residual Heat Removal
RSS	Remote Shutdown Station
RTNSS	Regulatory Treatment of Non-Safety Systems
SAHRS	Severe Accident Heat Removal System
SAMDA	Severe Accident Mitigation Design Alternatives
SBO	Station Blackout
SC	Seismic Category
SCWS	Safety Chilled Water System
SI	Safety Injection
SPND	Self-Powered Neutron Detector
SRP	Standard Review Plan
SSC	Structures, Systems and Components
UHS	Ultimate Heat Sink

ACRS Meeting – U.S. EPR FSAR Chapters 3, 9, 14, 19 – May 10, 2012


Presentation to ACRS U.S. EPR Spent Fuel Cask Transfer Facility

May 10, 2012

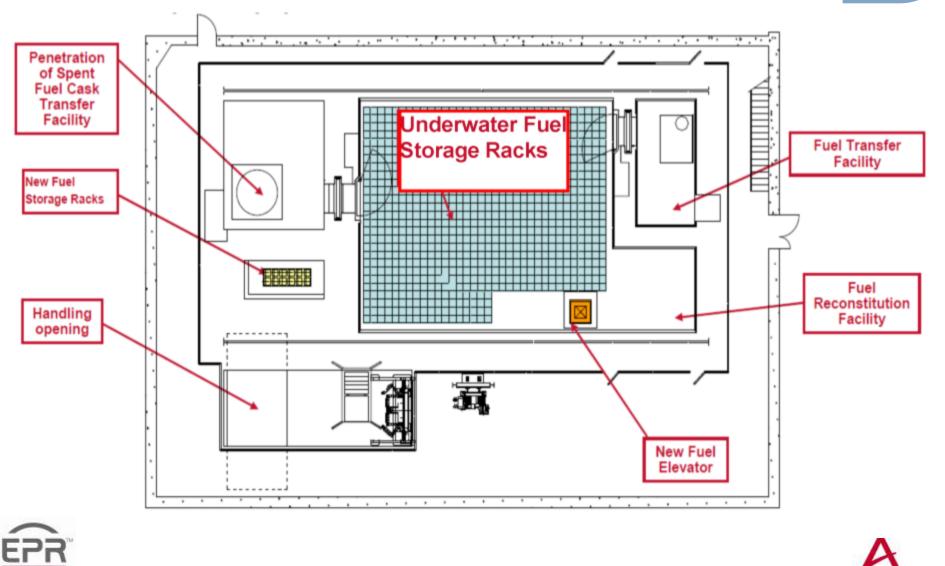

Overview of the Fuel Storage and Handling System



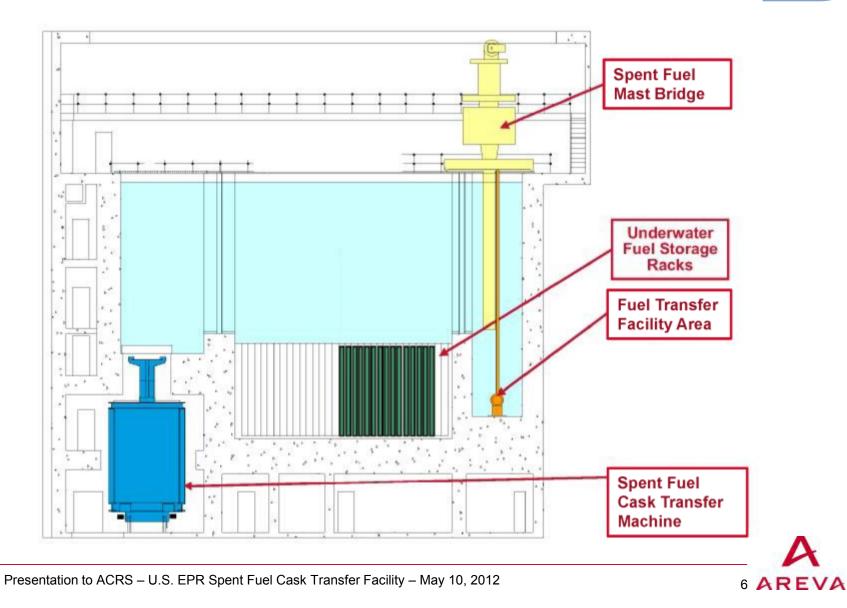
Similar to Current Operating (PWR) Plants

Overview of the Fuel Storage and Handling System

Under Pit Spent Fuel Cask Transfer Facility



Design is First-of-a-kind in the U.S.


Fuel Building Layout

5 AREVA

by AREVA

Fuel Building Section

by AREVA

Spent Fuel Cask Transfer Facility Overview

The facility primarily consists of :

- Spent Fuel Cask Transfer Machine (SFCTM)
- Cask loading pit penetration assembly
- SFCTF fluid and pneumatic systems

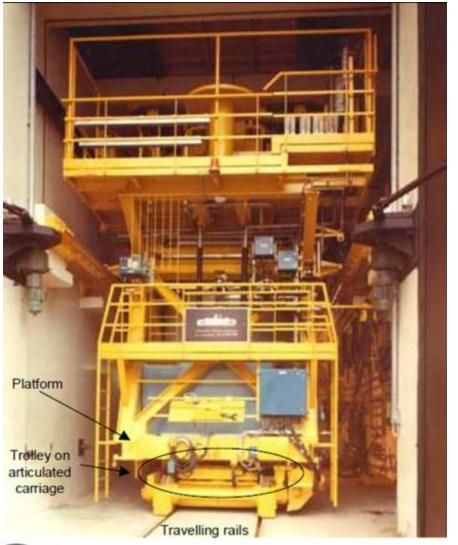
Operations are conducted at the following stations:

- Lifting station
- Handling opening station
- Biological lid handling station
- Penetration station

Spent Fuel Cask Transfer Machine

The SFCTM is a trolley which moves on rails

Main purpose is to carry the cask in vertical position between the lifting station and the three workstations in the loading hall.


Safety-related function:

During cask loading, the SFCTM serves as part of the cask loading pit fluid boundary structural support when the cask is docked with the cask loading pit penetration to prevent draining the spent fuel pool (SFP), including during and following a Safe Shutdown Earthquake (SSE).

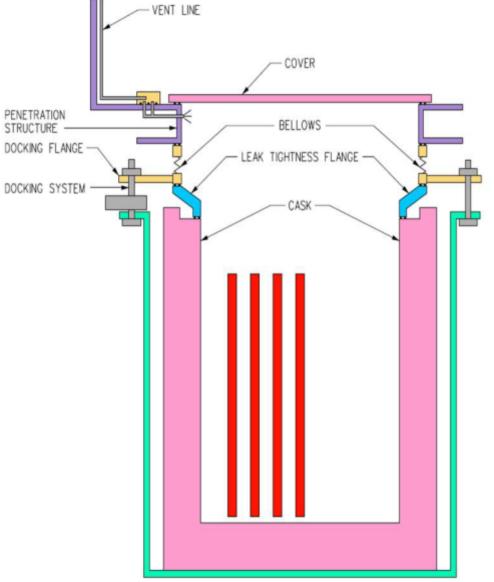
Penetration Assembly

The penetration assembly is the opening in the cask loading pit floor that allows for cask loading

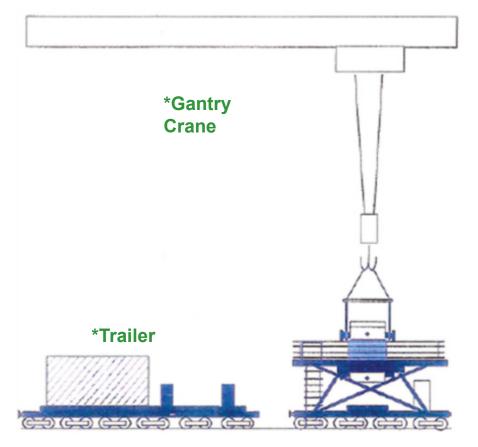
- It consists of an upper cover at the bottom of the cask loading pit, the penetration, and a lower cover at the lower end of the penetration.
- It's main purpose is to provide a leak-tight connection between the cask loading pit and the internal cavity of the cask.


Safety-related function:

 The penetration assembly serves as part of the cask loading pit fluid boundary to prevent draining the SFP, including during and following a Safe Shutdown Earthquake (SSE).


Penetration Assembly

Cask docked with Penetration Assembly

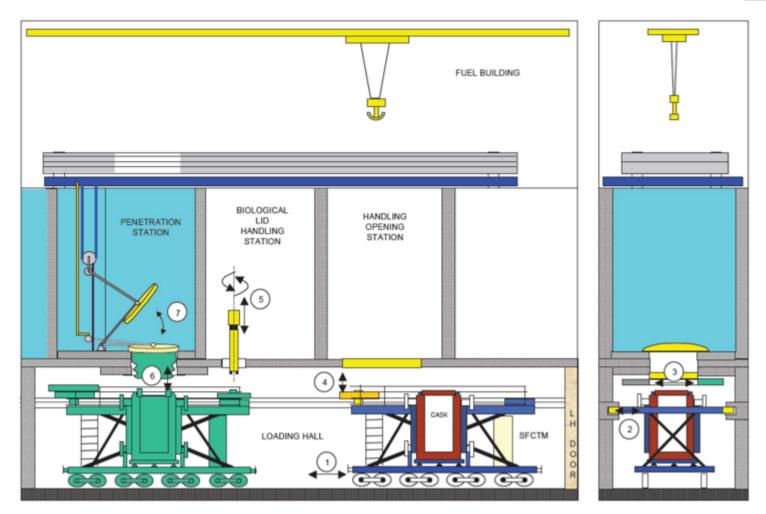


Placement of the Cask on the SFCTM

Lifting Station (Outside Fuel Building)

SFCTM

*Not in Design Certification Scope


Moving of SFCTM to Fuel Building Loading Hall

SFCTF Operations in the Fuel Building

Drain Down Prevention

Drain Down Prevention Design Features

- Tight tolerances between the SFCTM and the loading hall
- Anti-seismic devices, guide rails and brakes
- Seismic Category I fluid boundary components and support elements such as spent fuel pool liner/gates, penetration assembly, SFCTM, loading hall, anti-seismic devices, etc.
- SFCTF Penetration Assembly piping/valves are Quality Group C and Seismic Category I
 - To first normally closed valve
 - To second normally open valve
- Double barriers against leakage
 - Double seals and double wall bellows
 - Upper and lower penetration covers
 - Spent fuel pool is isolated by two gates (swivel and slot)

Drain Down Detection

Drain Down Detection Features

- Leakage monitoring/testing between double leakage barriers
 - Between double seals
 - Between outer and inner walls of the bellows

Level sensors provided in the pool compartment

- Spent fuel pool has Class 1E wide and narrow range level instrumentation which alarms in the Main Control Room
- Cask loading pit have wide and narrow range indicators in the Main Control Room
- Cask loading pit drain isolation valves have position indication in the Main Control Room

Beyond Design Basis Scenarios

Penetration Assembly Double Seal Failures

Limiting Scenario

- Both seals assumed to fail (two passive failures)
- Cask loading pit gates open to the spent fuel pool
- Fuel assembly in cask loading pit
- No makeup water provided
 - However, make-up water at 400 gpm is available via the IRWST and the SFP purification pump
- Leak flow rate is approximately 390 gpm
- Cask loading pit swivel gate can be closed within 30 minutes

or

- Upper cover of the penetration assembly can be closed
- Spent fuel pool level decrease is about 1 foot in 30 minutes
- Loading hall floor drains (10") convey water to the retention pit

If leak is not isolated,

- Maximum spent fuel pool drain down is to the bottom of gateway and takes 8 hours
 - Bottom of gateway is 2.5 feet above top of fuel assemblies stored in the racks
 - Fuel building divided into 2 flood divisions and division under loading hall can accommodate entire SFP inventory loss without flooding the loading hall

SFCTF Operating Advantages and History

- The U.S. EPR's under pit cask loading approach differs from the current cask loading approach in U.S. operating fleet; however, the U.S. EPR design has evolved from similar facilities in Europe.
- The design was developed in Europe to achieve the following advantages:
 - Preclude a cask-drop accident during lifting that could damage the building, stored fuel, or safety-related equipment.
 - Limit ionizing radiation exposure to plant personnel during cask loading.
 - Limit contamination of exterior cask surfaces.
 - Reduce overall cask loading time.
 - Reduce effluent and low-level radioactive waste from the cask loading operation.
- Similar SFCTF installed in sixteen P4 and N4 series plants in France.
 - More than 200 cumulative years of operational history (oldest is 25 years old)
 - About 1,000 loading operations

Acronyms and Abbreviations

FB	Fuel Building
gpm	gallons per minute
PWR	Pressurized Water Reactor
RB	Reactor Building
SFCTF	Spent Fuel Cask Transfer Facility
SFCTM	Spent Fuel Cask Transfer Machine
SFP	Spent Fuel Pool
SSE	Safe Shutdown Earthquake

United States Nuclear Regulatory Commission

Protecting People and the Environment

Presentation to the ACRS Full Committee – 594th Meeting

Briefing on EPR Design Certification Application Safety Evaluation Report with Open Item for Chapters 3, 9, 14, and 19

> Getachew Tesfaye Project Manager

> > May 10, 2012

Additional Presenters:

- Eric Reichelt, Chapter 3
- David Jaffe, Chapter 14
- Anne-Marie Grady Chapter 19

Major Milestones Chronology

12/02/2004	Pre-application activities began
12/11/2007	Design Certification Application submitted
02/25/2008	Application accepted for review (docketed)
03/26/2008	Original review scheduled published
01/29/2009	Phase 1 review completed
04/08/2010	ACRS full committee briefing on Chapters 2, 4, 5, 8, 10, 12, and 17
08/10/2011	U.S. EPR FSAR, Revision 3 submitted
02/09/2012	Phase 2 review completed
02/23/2012	Phase 3, ACRS Subcommittee presentation completed
03/08/2012	ACRS full committee briefing on Chapters 6, 7, 11, 13, 15, 16, and 18
05/10/2012	ACRS full committee briefing on Chapters 3, 9, 14, and 19

Review Schedule

Task	Target Date
Phase 1 - Preliminary Safety Evaluation Report (SER) and Request for Additional Information (RAI)	Completed
Phase 2 - SER with Open Items	Completed
Phase 3 – Advisory Committee on Reactor Safeguards (ACRS) Review of SER with Open Items	July 2012
Phase 4 - Advanced SER with No Open Items	Schedule under review
Phase 5 - ACRS Review of Advanced SER with No Open Items	Schedule under review
Phase 6 – Final SER with No Open Items	Schedule under review
Rulemaking	Schedule under review

Review Strategy

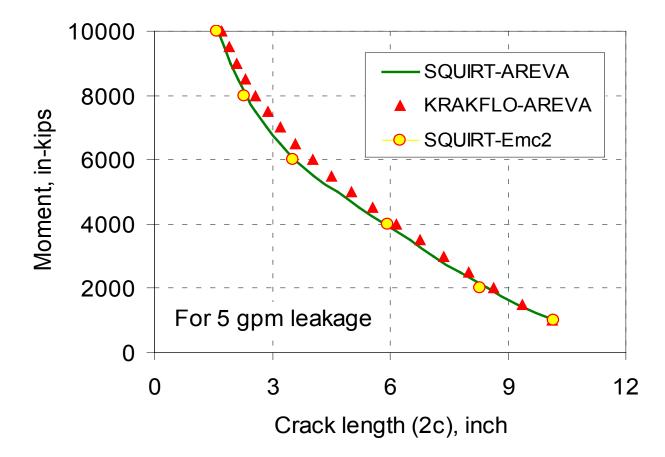
- Pre-application activities
- Frequent interaction with the applicant
 - Teleconferences
 - Audits
 - Public meetings
- Use of Electronic RAI System (eRAI)
- Phase discipline

Chapter 3 - Design of Structures, Components Equipment and Systems

SRP Se	ction/Application Section	Number of OI	
3.2	Classification of Structures, Systems, and Components	8	
3.3	Wind and Tornado Loadings	1	
3.4	Water Level (Flood) Design	1	
3.5	Missile Protection	0	
3.6	Protection Against Dynamic Effects Associated with Postulated Rupture of Piping	3	
3.7	Seismic Design	8	
3.8	Design of Category I Structures	13	
3.9	Mechanical Systems and Components	33	
3.10	Seismic and Dynamic Qualification of Mechanical and Electrical Equipment	0	
3.11	Environmental Qualification of Mechanical and Electrical Equipment	1	
3.12	ASME Code Class 1, 2, and 3 Piping Systems, Piping Components, and their Associated Supports	0	
3.13	Threaded Fasteners (ASME Code Class 1, 2, and 3)	0	
Totals		68	

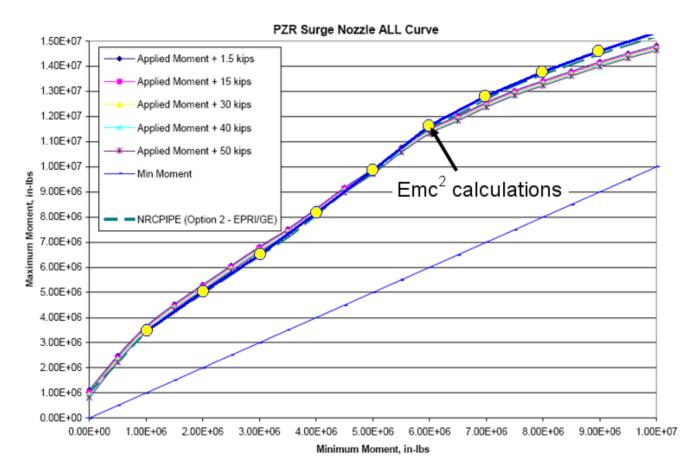
Section 3.6.3 Leak-Before-Break (LBB) Design Regulatory Requirements and Acceptance Criteria

- In CFR Part 50, Appendix A, GDC 4, "Environmental and dynamic effects design bases" states "....However, dynamic effects associated with postulated pipe ruptures in nuclear power units may be excluded from the design basis when analyses reviewed and approved by the Commission demonstrate that the probability of fluid system piping rupture is extremely low with the design basis for the piping..."
- Safety margins for LBB analysis procedure
 - ➢ 10 on leak rate
 - 2 on crack size


Staff's Review of EPR LBB Methodology

Allowable Load Limit (ALL) methodology was used to bound LBB criteria

- Water hammer, corrosion, creep, fatigue, erosion, environmental conditions, and indirect sources are extremely low causes of pipe rupture
- Deterministic fracture mechanics evaluation has been completed and approved by the staff
- Leak detection systems are sufficiently reliable, redundant, diverse and sensitive, and that margin exists to detect the through-wall flaw used in the deterministic fracture mechanics evaluation



Confirmatory Analysis of Leak-Rate Prediction Procedure

Confirmatory Analysis of ALL Diagram for Surge-Line Case

Chapter 3 - Key Confirmatory Analysis Performed by the NRC staff

Overall Conclusions on LBB

- The staff evaluation concludes on a design specific and piping system specific basis that the acceptance criteria are satisfied, and, therefore, that dynamic effects of pipe rupture may be eliminated from design consideration
- There is one Open Item on Section 3.6.3 LBB Analyses
 RAI 467, Question 03.06.02-28;

SRP Section/Application Section		Number of OI
9.1.1	Criticality Safety of New and Spent Fuel Storage and Handling	10
9.1.2	New and Spent Fuel Storage	2
9.1.3	Fuel Pool Cooling and Purification System	2
9.1.4	Fuel Handling System	19
9.1.5	Overhead Heavy Load Handling System	1
9.2.1	Station Service Water System	0
9.2.2	Reactor Auxiliary Cooling Water Systems	0
9.2.4	Potable and Sanitary Water Systems	0
9.2.5	Ultimate Heat Sink	1
9.3.1	Compressed Air System	0

Chapter 9 – Auxiliary Systems (Continued)

SRP Secti	on/Application Section	Number of OI
9.3.2	Process and Post-accident Sampling Systems	2
9.3.3	Equipment and Floor Drainage System	4
9.3.4	Chemical and Volume Control System (PWR) (Including Boron Recovery System)	6
9.4.1	Control Room Area Ventilation System	6
9.4.2	Spent Fuel Pool Area Ventilation System	1
9.4.3	Auxiliary and Radwaste Area Ventilation System	4
9.4.4	Turbine Area Ventilation System	0
9.4.5	Engineered Safety Feature Ventilation System	2

Chapter 9 – Auxiliary Systems (Continued)

SRP Section	n/Application Section	Number of OI
9.5.1	Fire Protection Program	3
9.5.2	Communications Systems	0
9.5.3	Lighting Systems	0
9.5.4	Emergency Diesel Engine Fuel Oil Storage and Transfer System	0
9.5.5	Emergency Diesel Engine Cooling Water System	0
9.5.6	Emergency Diesel Engine Starting System	0
9.5.7	Emergency Diesel Engine Lubrication System	0
9.5.8	Emergency Diesel Engine Combustion Air Intake and Exhaust System	0
Totals		63

SRP Sect	Status Number of Ol	
14.1	Specific Information for IPT	0
14.2	Initial Plant Test Program	7
14.3	Inspections, Tests, Analyses, and Acceptance Criteria	-
14.3.1	Selection Criteria	1
14.3.2	Structural and Systems Engineering	9
14.3.3	Piping Systems and Components	4

Chapter 14 – Verification Programs (Continued)

SRP Sect	ion/Application Section	Number of OI
14.3.4	Reactor Systems	0
14.3.5	Instrumentation and Controls	5
14.3.6	Electrical Systems	0
14.3.7	Plant Systems	0
14.3.8	Radiation Protection	2
14.3.9	Human Factors Engineering	3
14.3.10	Emergency Planning (Plant-specific)	_
14.3.11	Containment Systems	1
14.3.12	Physical Security Hardware	1
	TOTAL	33

Chapter 14 – Clarification on Reactor Coolant Pump Seal Leakage Test Abstract

- Question: Is the acceptance criteria for the reactor coolant pump (RCP) standstill seal performance in Test Abstract #161 consistent with the design basis described in Section 9.3.4.4.1 of the Staff's SER?
 - Acceptance Criterion in Test Abstract #161: The RCPs can be secured one at a time at HZP conditions and the RCP seal package, including the standstill seal, can be verified to limit RCS leakage within design limits.
 - In U.S. EPR FSAR Section 8.4, "Station Blackout" the design basis for the RCPs' "standstill seals" is stated as follows: Fifteen minutes into the event, the standstill seal system terminates RCP seal leakage. Standstill seal system leakage is 0.5 gpm per standstill seal. Total RCS leakage drops to 13 gpm or less; this leakage continues for the duration of the event.
- Conclusion: The RCP seal leakage is limited by the "standstill" seal during Test #161 and the design basis of 0.5 gpm per standstill seal is based upon the station blackout scenario as defined in Section 8.4.

Chapter 14 – Clarification on Severe Accident ITAAC

- Question: Concerning severe accident ITAAC, is there a consistent process for developing the list of equipment to be addressed by ITAAC and how is the determination made as to what equipment should be on the list?
- Answer:
 - Process for determining the list is defined in SRP 14.3.
 - Use the guidance in the SRP Chapter 19 to determine the appropriate toplevel design features for inclusion in Tier 1.
 - Important integrated plant safety analyses from Tier 2 should be considered, such as analyses of fires, floods, severe accidents, and shutdown risk.
 - The PRA for site-specific portions of the design should be evaluated during the COL review.
- As further stated in SRP 14.3, "These [design] features should be described in the design description, and the basic configuration ITAAC should verify that they exist. In general, the capabilities of the features need not be included in the ITAAC. Detailed analyses should be retained in Tier 2."

Chapter 19.1 - Probabilistic Risk Assessment			
SE Section (Application Section)	Subject	SE Open Items	
19.1.4.2 (19.1.2)	Quality of PRA	1	
19.1.4.3 (19.1.3)	Special Design/Operational Features	0	
19.1.4.4 (19.1.4)	Internal Events PRA At-Power	7	
19.1.4.6.1 (19.1.5.1)	PRA-Based Seismic Margin Assessment	3	
19.1.4.6.2 (19.1.5.2)	Internal Flooding PRA At-Power	0	
19.1.4.6.3 (19.1.5.3)	Internal Fires PRA At-Power	1	
19.1.4.6.4 (19.1.5.4)	Other External Events Risk Evaluation	0	
19.1.4.7 (19.1.6)	PRA for Other Modes of Operation	0	
19.1.4.5 (19.1.4.2)	Level 2 Internal Events PRA At-Power	2	
19.1.4.6.2.9 & 19.1.4.6.3.8 (19.1.5.2.3 & 19.1.5.3.3)	Level 2 External Events PRA At-Power	0	
19.1.4.7.2 (19.1.6.2)	Level 2 PRA for Other Modes of Operation	1	
19.1.4.1 & 19.1.4.8 (19.1.1 & 19.1.7)	Uses and Applications of PRA	0	
	Tota	als 15	

Chapter 19.2 - Severe Accident Evaluation		
SE Section (Application Section)	Subject	Number of SE Open Items
19.2.4.2 (19.2.2)	Severe Accident Prevention	0
19.2.4.3 (19.2.3)	Severe Accident Mitigation	2
19.2.4.4 (19.2.4)	Containment Performance Capability	2
19.2.4.5 (19.2.5)	Severe Accident Management	1
19.2.4.6 (19.2.6)	Consideration of Potential Design Improvements	0
	Totals	5

Chapter 19 - Key Confirmatory Analysis Performed by the NRC staff

- AREVA analyzed Severe Accidents:
 - Used Modular Accident Analysis Program (MAAP) version 4.0.7
 - ➢ Modeled relevant scenarios, ie those with CDF > E-08
- NRC Confirmatory analysis
 - ➤ used MELCOR 1.8.6
 - > modeled relevant and additional scenarios, similar nodalization
 - MAAP vs MELCOR comparison
- Confirms the adequacy of the SA mitigation features:
 - Combustible gas control (CGCS)
 - Core melt stabilization (CMSS)
 - Severe accident heat removal (SAHRS)

Chapter 19 - Key Confirmatory Analysis Performed by the NRC staff (Continued)

- Open Items
 - Confirmatory calculation identified potential for delayed relocation of core debris into the reactor pit
 - AREVA will model, addressing steam explosions
- AREVA has revised their SA analysis
 - Confirmatory calculation will reflect changes

United States Nuclear Regulatory Commission

Protecting People and the Environment

END

Overview of the State-of-the-Art Reactor Consequence Analyses (SOARCA)

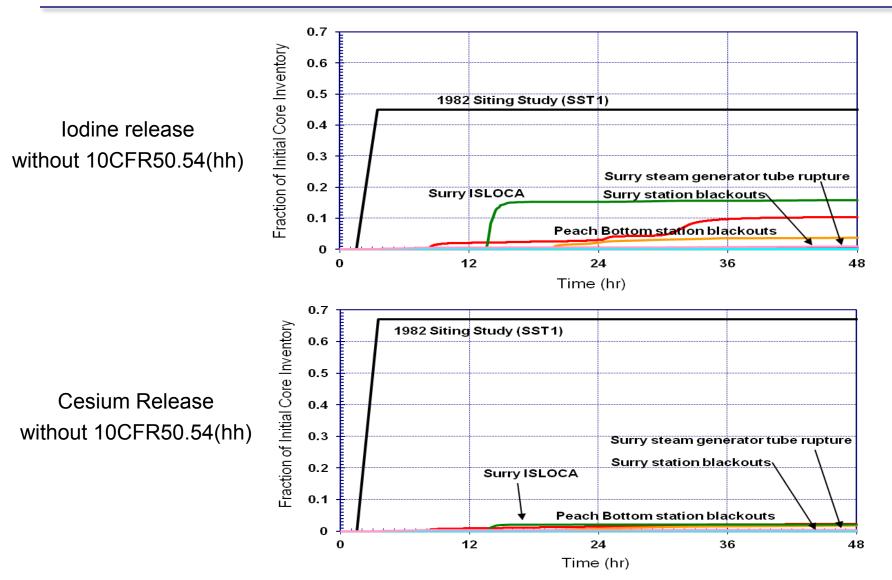
Presentation to the ACRS

May 10, 2012

SOARCA was initiated to develop a body of knowledge on the realistic outcomes of severe reactor accidents

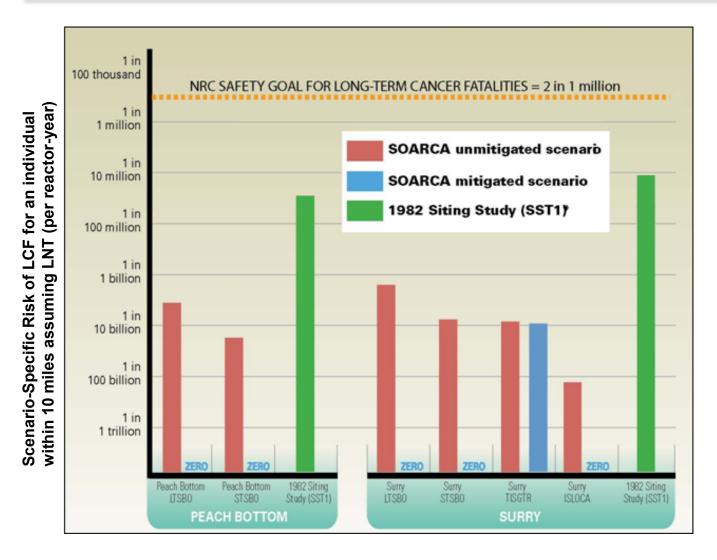
- Update the quantification of offsite consequences
- Incorporate plant changes not reflected in earlier assessments
- Evaluate the benefits of security-related improvements
- Incorporate state-of-the-art modeling (MELCOR/MACCS2)
- Enable the NRC to communicate severe accident aspects of nuclear safety

- Focus on important severe accident scenarios
- Realistic assessments and detailed analyses
- Integrated analyses
- Incorporated recent physical experiments
- Treatment of seismic impacts on evacuation
- Range of health effects modeling



Conclusions for Pilot Plants

- When operators are successful in using available onsite equipment during the accidents analyzed in SOARCA, they can prevent the reactor from melting, or delay or reduce releases of radioactive material to the environment.
- SOARCA analyses indicate that all modeled accident scenarios, even if operators are unsuccessful in stopping the accident, progress more slowly and release much smaller amounts of radioactive material than calculated in earlier studies.


Conclusions for Pilot Plants (cont.)

Conclusions for Pilot Plants (cont.)

Note: Comparisons of SOARCA's calculated long-term cancer fatality risks to the NRC Safety Goal and the average annual U.S. cancer fatality risk from all causes are provided to give context. Relative to the safety goal comparison, the safety goal is intended to encompass all accident scenarios. SOARCA does not examine all scenarios typically considered in PRA. Additionally, estimated risks below 1 x 10⁻⁷ per reactor year should be viewed with caution because of the potential impact of events not studied in the analyses and the inherent uncertainty in very small calculated numbers.

* The 1982 Siting Study did not calculate the risk of long-term cancer deaths. Therefore, to compare the 1982 Siting Study SST1 results to SOARCA's results for risk of long-term cancer death, the SST1 release was put into the MACCS2 code files for Peach Bottom and Surry unmitigated STSBO calculations.

- Peer review by independent experts in the fields of risk analysis, severe accident research, emergency preparedness, and radiation health effects
- Reviewers examined the methods and results of the research and helped improve the work by identifying the project's strengths and weaknesses
- SOARCA team has incorporated the experts' feedback into the reports (e.g., SRV failure timing and mode)

SOARCA vs. Fukushima

- RCIC operation
- Hydrogen release and combustion
- 48 hour truncation
- Multiunit risk
- Spent fuel pool risk/consequences

- Staff believes SOARCA-type analysis for all 8 plant types or 104 reactors as originally described (now 108 licensed reactors) is not necessary
 - Provided body of knowledge updating understanding of severe accident progression, mitigation, and consequences
 - Site Level 3 PRA will continue to add to this body of knowledge
 - Provided flexible and updated models and methods
 - SOARCA models and methods being used for other programs (Fukushima-related plant improvements, Spent Fuel Pool Scoping Study, Site Level 3 PRA)
- Staff recommends limited follow-on research
- Deliverables to EDO in mid-June
 - Commission memo transmitting SOARCA reports to the Commission
 - Notation-vote paper recommending analysis of an ice condenser plant

United States Nuclear Regulatory Commission

Protecting People and the Environment

SOARCA Uncertainty Analysis

Presented by: Tina Ghosh, PhD

ACRS Meeting May 10, 2012

- Goals
- Approach
- Selected parameters
- Preliminary analyses
- Status and schedule

Goals of the Uncertainty Analysis

- Develop insight into overall sensitivity of SOARCA results to uncertainty in inputs
- Identify most influential input parameters for releases and consequences
- Demonstrate uncertainty analysis methodology

- Focus is on epistemic (state-of-knowledge) uncertainty in parameter values
 - Aleatory (random) uncertainty due to weather is handled in the same way as the SOARCA study
- Peach Bottom, unmitigated, long-term station blackout scenario chosen
- Scenario definition not changed after Fukushima
 - A separate qualitative discussion planned for an appendix
- Looking at uncertainty in key model inputs
 - MELCOR parameters
 - MACCS2 parameters

Approach (continued)

- Key uncertain input parameters were identified
- Uncertainty in these parameters propagated in two steps using Monte Carlo and Latin Hypercube (LHS) sampling:
 - A set of source terms generated using MELCOR model
 - A distribution of consequence results generated using MACCS2 model
- An epistemic sample set of 300 generated to complete a corresponding number of individual code runs (Monte Carlo "realizations") to evaluate the influence of the uncertainty on the estimated outcome

Approach (continued)

- Results reported will include:
 - Analysis of source term releases including cesium and iodine release over time
 - Distribution of latent cancer fatality risk, with three dose threshold models
 - Description of most influential uncertain parameters in study
- Tools used to analyze results include statistical regression-based methods as well as scatter plots and phenomenological investigation of individual realizations of interest
- Guidance solicited from SOARCA peer reviewers on the uncertainty analysis plan documenting the approach, chosen parameters and distributions

Process for Choosing Process for Choosing Parameters and Distributions

- Core team of staff from SNL and NRC with expertise in probability and statistics, uncertainty analysis, and MELCOR and MACCS2 modeling for SOARCA
- Approach used informal expert elicitation, based on a PIRT (phenomena identification, and ranking table) process
- Focus on confirming that the parameter representations appropriately reflect key sources of uncertainty, are reasonable, and have a defensible technical basis
- Attempt to obtain contribution from uncertainty across the spectrum of phenomena operative in the analyses, through a balanced depth and breadth of coverage

MELCOR Uncertain Parameters

Sequence Issues

- Battery duration
- SRV stochastic failure rate

In-Vessel Accident Progression

- SRV thermal seizure criteria, and open area fraction
- Main steam line (MSL) creep rupture open area fraction
- Zircaloy melt breakout temperature
- Molten clad drainage rate
- Fuel failure criterion
- Debris radial relocation time constants

Ex-vessel Accident Progression

 Debris lateral relocation time constants

Containment & building behavior

- Drywell liner failure flow area
- Drywell head flange leakage parameters
- Hydrogen ignition criteria (where flammable)
- Railroad doors open fraction

Fission Product release, transport, and deposition

- Cesium and iodine chemical forms
- Aerosol deposition parameters

MACCS2 Uncertain Parameters

Atmospheric Transport and Deposition

- Wet deposition model linear coefficient
- Dry deposition velocities
- Dispersion parameters
- Emergency planning and response
- Shielding factors
- Hotspot and normal relocation
- Evacuation delay and speed

Health Effects

- Early health effects
- Latent health effects
 - Groundshine dose coefficients
 - Dose and dose rate effectiveness factors
 - Inhalation dose
 coefficients
 - Cancer mortality risk coefficients

Preliminary Analyses *Source Term/MELCOR*

3 probabilistic cases:

- (1) <u>Combined scenario probabilistic case using</u> distributions as laid out in draft NUREG/CR, chapter 4, with SRV stochastic, SRV thermal, and MSL creep failures occurring.
- (2) <u>SRV Thermal scenario case keeping the</u>
 SRV thermal seizure open area constant at 1
- (3) <u>SRV stochastic scenario case</u> keeping the SRV stochastic failure rate constant, at the SOARCA estimate value

Consequence/MACCS2

- Source terms from combined scenario case
- Using LNT model
- Aleatory & epistemic uncertainty

Preliminary Analyses *Summary Results*

- MELCOR: Cesium release timings are similar to SOARCA estimate, magnitude of release at 48 hours generally slightly higher than SOARCA estimate (but still far below Siting Study SST1 results)
- <u>MACCS2</u>: Distribution of risk results for latent cancer fatality risk similar to the SOARCA estimate, and early fatality risk essentially zero

UA Status – In Progress

- A few MELCOR parameter distributions under revision
- Uncertain parameter importance analyses
- Additional MELCOR phenomenological insights and additional MACCS2 results and analyses
- Separate sensitivity analyses, for example: (1) habitability criterion, (2) evaluation of the timing of two operator actions in the unmitigated LTSBO, (3) lower head penetration failure
- An appendix with discussion and qualitative comparison with Fukushima

Schedule

- Commission memorandum forwarding results of the SOARCA pilot plant study will contain short discussion on status of UA and interim conclusions (June 2012)
- Draft report documenting UA (September 2012)
- Present final results and updated insights to ACRS (October 2012)
 - Staff is seeking an ACRS letter on the final report
- Submit UA report for publication (November 2012)

Questions?

St. Lucie Unit 1 Extended Power Uprate (EPU) ACRS Committee

May 10, 2012

Agenda

EPU Overview

	– Introduction	Rich Anderson
	 Plant Changes 	Jack Hoffman
•	Materials	
	 Steam Generators 	Rudy Gil
•	Analyses	
	 Fuel and Core 	Jay Kabadi
	 Safety Analysis 	Jay Kabadi
•	Acronyms	

St. Lucie Unit 1

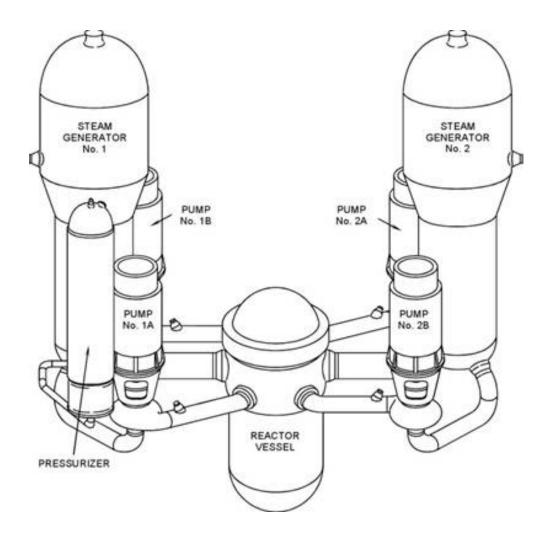
- Located on Hutchinson Island, southeast of Fort Pierce, Florida
- Pressurized Water Reactor (PWR)
- Combustion Engineering Nuclear Steam Supply System (NSSS)
- Westinghouse Turbine Generator
- Architect Engineer Ebasco
- Fuel supplier AREVA
- Unit output 950 MWe gross

- Original operating license issued in 1976
- Steam Generators (SGs) replaced in 1998
- Renewed operating license issued in 2003
- Installation of a new single-failure proof crane to support spent fuel dry storage operations in 2003
- Reactor Vessel Head and Pressurizer were replaced in 2005
- Replaced 2 of 4 Reactor Coolant Pump motors in 2010 and 2012
 - The remaining motor replacements planned for 2013 and 2015

- Licensed Core Power
 - Original Licensed Core Power
 - Current Licensed Core Power
 -- 5.5% Stretch Uprate (1981)
 - EPU Core Power
 - -- Implement 2012

2560 MWt 2700 MWt

3020 MWt


FPL is requesting approval for a 12% power level increase for St. Lucie Unit 1

- 12% increase in licensed core power level (3020 MWt)
 - 10% Power Uprate
 - 1.7% Measurement Uncertainty Recapture
 - (2700 x 1.10) x 1.017 ~ 3020 MWt
- Classic NPSH requirements for ECCS pumps are met without credit for containment overpressure
- Grid stability studies have been completed and approved for the EPU full power output
- Final modifications to support EPU operation are being implemented in 2012
- FPL has addressed action items from the ACRS Subcommittee Meeting on April 26, 2012

St. Lucie Unit 1 is a Combustion Engineering NSSS design with two Steam Generators and four Reactor Coolant Pumps

Combustion Engineering NSSS

Analyses were performed to evaluate the changes in design parameters

Parameter	Original	Current	EPU	EPU Change
Core Power (MWt)	2560	2700	3020	+320
RCS Pressure (psia)	2250	2250	2250	0
Taverage (°F)	565.6	574.2	578.5	+4.3
Vessel Inlet (°F)	542.0	549.0	551.0	+2.0
Vessel Outlet (°F)	589.2	599.4	606.0	+6.6
Delta T (°F)	47.2	50.4	55.0	+4.6
Thermal Design Flow (gpm/loop)	185,000	182,500	187,500	+5,000
Core Bypass (%)	3.7	3.9	4.2	+0.3
Steam Pressure (psia)	848	896	890	-6
Moisture Carryover (maximum, %)	0.20	0.10	0.10	0
Steam Mass Flow (10 ⁶ lb/hr)	11.18	11.80	13.42	+1.62

Modifications will be made in support of safety

- Increase Safety Injection Tank design pressure
- Increase Hot Leg Injection flow
- Add online Containment mini-purge capability
- Upgrade Main Steam Isolation Valves (MSIVs)
- Nuclear Steam Supply System (NSSS) setpoints
- Add neutron absorption material to Spent Fuel Pool storage racks
- Install Leading Edge Flow Measurement (LEFM) System
- Environmental Qualification (EQ) radiation shielding changes for electrical equipment
- Safety related piping support modifications
- Raise Reactor Protection System (RPS) Steam Generator low-level trip setpoint (plant risk profile enhancement)

Modifications will be made in support of power generation at the EPU power level

- Steam Path
 - Replace High and Low Pressure Turbine steam paths
 - Replace main turbine Electro Hydraulic Control (EHC) System
 - Replace Moisture Separator Reheaters (MSRs) and upgrade level controls
 - Increase Steam Bypass Control System capacity and upgrade control system
 - Upgrade steam and power conversion system instrumentation
 - Modify Main Steam piping supports

Condensate and Feedwater

- Replace Main Feedwater Pumps
- Upgrade Main Feedwater Regulating Valves and controls
- Replace #5 High Pressure Feedwater Heaters
- Upgrade Main Condenser
- Modify Main Feedwater piping supports

Modifications will be made in support of power generation at the EPU power level (continued)

Heater Drains

- Replace Heater Drain pumps
- Upgrade Heater Drain valves
- Auxiliary Support Systems
 - Replace Turbine Cooling Water heat exchangers

Other Balance of Plant items

- Balance of Plant (BOP) setpoints
- Condensate piping supports

Modifications will be made in support of power generation at the EPU power level (continued)

Electrical Modifications

- Generator upgrades including
 - -- Stator rewind
 - -- Rotor replacement
 - -- Replace bushings and current transformers
 - -- Replace hydrogen coolers
 - -- Increase hydrogen pressure
 - -- Replace exciter air coolers
- Install Power System Stabilizer
- Upgrade Iso-Phase Bus Duct cooling system
- Increase margin on AC electrical buses
- Upgrade Main Transformer cooling systems
- Switchyard modifications

Agenda

EPU Overview	
– Introduction	Rich Anderson
 Plant Changes 	Jack Hoffman
Materials	
 Steam Generators 	Rudy Gil
Analyses	
 Fuel and Core 	Jay Kabadi
 Safety Analysis 	Jay Kabadi
Acronyms	

Analyses demonstrated acceptable Steam Generator tube wear at EPU conditions

Steam Generator Analysis Results

Parameter	Acceptance Criteria	Results
Maximum fluid-elastic instability velocity ratio	< 1.0	Met with Margin *
Maximum vortex shedding resonance amplitude	< 0.015 in.	Met with Margin *
Accumulated tube wear over the 40 year design life	< 40% nominal tube wall thickness	Met with Margin *

* Proprietary information, reference LAR Section 2.2.2.5.2.5.4

Based on excellent Steam Generator operating performance no tube wear issues are expected at EPU conditions

- The maximum fluid-elastic instability velocity ratio is within the acceptance criteria and current experience base
- Many years of operating experience with no indication of tube vibration problems with Steam Generators comparable to St. Lucie Unit 1
- Periodic Steam Generator tube inspections at St. Lucie Unit 1 have provided no indication of unusual tube wear
 - The Steam Generators have performed very well with only 14 tubes plugged in SG-1A and 1 tube in SG-1B
- Although not anticipated by analysis, on-going Steam Generator tube inspections will provide early indication if problems were to occur
 - Steam Generator inspections planned for first refueling outage after operation at EPU conditions

Agenda

 EPU Overview Introduction	
 Materials Steam Generators Steam Generators 	Rudy Gil
Analyses	
– Fuel and Core	Jay Kabadi
 Safety Analysis 	Jay Kabadi
Acronyms	

Margins to key safety parameters are maintained

Core Design

- Representative core designs were used for EPU analyses
- Core design limits are reduced to offset effect of EPU and maintain margins to fuel design limits
 - Total integrated Radial Peaking Factor (F^T_r) COLR limit reduced from 1.70 to 1.65
 - Linear heat rate COLR limit reduced from 15.0 kW/ft to 14.7 kW/ft
- Normal incore fuel management methods utilized to meet reduced limits with increased energy needs
 - Feed enrichment & feed batch size
 - -- Maximum enrichment changed from 4.5 to 4.6 wt% U-235 planar average
 - Burnable absorber placement
 - Core loading pattern

Margins to key safety parameters are maintained (continued)

Core Design (continued)

- Moderator Temperature Coefficient limits are unchanged
- Shutdown Margin requirement is unchanged for at-power operation
 - Larger doppler power defect at EPU conditions, but Shutdown Margin (SDM) remains acceptable
- Boron requirements met
 - Boron delivery capability improved by changes to boron requirements for the Boric Acid Makeup Tank (BAMT), Refueling Water Tank (RWT) and Safety Injection Tanks (SITs)
 - Minimum refueling boron increased to 1900 ppm

Approved methods used for safety analysis as supplemented by subsequent RAI responses

- Codes and methodologies
 - S-RELAP5: large & small break LOCA
 - S-RELAP5: Non-LOCA transients
 - XCOBRA-IIIC: DNB analysis of the nuclear fuel
- Safety analyses include additional input parameters biasing beyond the requirements of approved methodology

Conservative analysis methods applied for non-LOCA events with all results meeting acceptance criteria

	Event	Criteria	Result
Decrease in RCS	Loss of Flow (AOO)	MDNBR ≥ 1.164	1.319
Flow	Locked Rotor (PA)	Rods-in-DNB ≤ 19%	0%
		RCS Press. ≤ 2750 psia	2744 psia
	Loss of Load (AOO)	MSS Press. ≤ 1100 psia	1092 psia
RCS Overheating	Loss of Load to one SG (AOO)	MDNBR ≥ 1.164	1.867
(Decrease in Secondary Heat		Liq. Vol. ≤ Pressurizer Vol.	~70% span
Removal)	Loss of Feedwater (AOO)	RCS Subcooling ≥ 0°F	47°F
	FW Line Break (PA)	RCS Subcooling ≥ 0°F @ time when AFW heat removal matches core decay heat	9°F

Conservative analysis methods applied for non-LOCA events with all results meeting acceptance criteria (continued)

	Event	Criteria	Result
	Increase in Steam Flow (AOO)	MDNBR ≥ 1.164	1.385
	Inadvertent Opening of SG Safety Valve (AOO)	MDNBR ≥ 1.164 (No loss of SDM)	SDM > 0 pcm
RCS Overcooling (Increase in Secondary Heat	HFP Pre-scram MSLB (PA) HZP/HFP Post-scram MSLB	Rods-in-DNB ≤ 1.2% (OC) & ≤ 21% (IC)	0.46%
Removal)		Fuel Melt ≤ 0.29% (OC) & ≤ 4.5% (IC)	0%
		Rods-in-DNB ≤ 1.2% (OC) & ≤ 21% (IC)	0%
	(PA)	Fuel Melt ≤ 0.29% (OC) & ≤ 4.5% (IC)	0.02%

Conservative analysis methods applied for non-LOCA events with all results meeting acceptance criteria (continued)

	Event	Criteria	Result
	CEA Withdrawal @ HZP (AOO)	MDNBR ≥ 1.164	6.087
		Fuel CL Temp. ≤ 4908°F	2036°F
		MDNBR ≥ 1.164	1.239
	CEA Withdrawal @ Power (AOO)	RCS Press. ≤ 2750 psia	2657 psia Bounded by LOEL
Reactivity		MDNBR ≥ 1.164	1.566
Addition	CEA Drop (AOO)	Peak LHR ≤ 22.279 kW/ft	20.75 kW/ft
		RCS Press. ≤ 3000 psia	2696 psia Bounded by LOEL
	CEA Ejection (PA)	Fuel Enthalpy ≤ 200 cal/g	166.4 cal/g
		Rods-in-DNB ≤ 9.5%	0%
		Fuel Melt ≤ 0.5%	0%

Conservative analysis methods applied for non-LOCA events with all results meeting acceptance criteria (continued)

	Event	Criteria	Result
Reactivity	Boron Dilution (AOO)	Time-to-Criticality \ge 15 min. (Modes 1 – 5)	≥ 25.46 min.
Addition		Time-to-Criticality ≥ 30 min. (Mode 6)	39.56 min.
RCS Mass Addition	Inadvertent ECCS/CVCS (AOO)	Liq. Vol. ≤ Pressurizer Vol.	~1423 ft ³ @ 10 min. after High Level Alarm
	Inadvertent Opening of a Pressurizer PORV (AOO)	MDNBR ≥ 1.164	1.350
RCS Depressurization		Liq. Vol. ≤ Pressurizer Vol.	~1399 ft ³ @ 7 min. after PORV opens

Small break LOCA analysis demonstrates acceptable results

- Incorporates additional analysis from recent licensing experience
- Not impacted by thermal conductivity degradation

	Pre – EPU (Appendix K)	EPU (Appendix K)	Limit
Limiting Break Size	4.28-inch	3.65-inch	-
PCT (°F)	1765	1807	2200
Maximum Transient Local Oxidation (%)	2.50	3.47	17.0
Maximum Core-Wide Oxidation (%)	< 1.0	0.04	1.0

Large Break LOCA analysis demonstrates acceptable results

- Incorporates additional analysis from recent licensing experience
- Includes provision for Thermal Conductivity Degradation (TCD)
- Analysis methodology and plant configuration for St. Lucie Unit 1
 resulted in no significant impact due to TCD

10 CFR 50.46 Requirement	Appendix K Pre-EPU Value	RLBLOCA EPU Value	Acceptance Criteria
95/95 Peak Cladding Temperature (°F)	2079	1667	< 2200
50 th Percentile Peak Cladding Temperature (°F)	N/A	1492	
95/95 Maximum Local Oxidation (%)	5.38	3.93	< 17.0
95/95 Core Wide Oxidation (%)	0.70	0.021	< 1.0
Coolable Geometry	Long term cooling is maintained via operato		d via operator
Long-Term Cooling	actions. No impact on coolable geometry.		

Agenda

EPU Overview	
– Introduction	Rich Anderson
 Plant Changes 	Jack Hoffman
Materials	
 Steam Generators 	Rudy Gil
Analyses	
 Fuel and Core 	Jay Kabadi
 – Safety Analysis 	Jay Kabadi
Acronyms	

Acronyms

AFW	Auxiliary Feedwater	MSLB	Main Steam Line Break
AOO	Anticipated Operational Occurrences	MSR	Moisture Separator Reheater
BAMT	Boric Acid Makeup Tank	MSS	Main Steam System
BOP	Balance of Plant	MWe	Megawatts electric
CHF	Critical Heat Flux	MWt	Megawatts thermal
CL	Center Line	NPSH	Net Positive Suction Head
CLB	Current Licensing Basis	NSSS	Nuclear Steam Supply System
CVCS	Chemical and Volume Control System	OC	Outside Containment
DNB	Departure From Nucleate Boiling	OD	Outside Dimension
ECCS	Emergency Core Cooling System	PA	Postulated Accident
EHC	Electro Hydraulic Control	PLHR	Peak Linear Heat Rate
EPU	Extended Power Uprate	PORV	Power Operated Relief Valve
EQ	Environmental Qualification	PPM	Parts per Million
FCM	Fuel Centerline Melt	Pres	Pressure
F_r^T	Total Radial Peaking Factor	PSIA	Pound per square inch - absolute
ft	Feet	PWR	Pressurized Water Reactor
GPM	Gallons per minute	PZR	Pressurizer
HFP	Hot Full Power	RCS	Reactor Coolant System
HTP	High Thermal Performance	RIS	Regulatory Issue Summary
HZP	Hot Zero Power	RPS	Reactor Protection System
IC	Inside Containment	RTP	Rated Thermal Power
Keff	K-effective	RWT	Refueling Water Tank
lb/hr	Pounds per hour	SIT	Safety Injection Tank
LEFM	Leading Edge Flow Meter	SDM	Shutdown Margin
LHGR	Linear Heat Generation Rate	Sec	Second
Liq	Liquid	SG	Steam Generator
LOCA	Loss of Coolant Accident	TCD	Thermal Conductivity Degradation
LOEL	Loss of Electrical Load	V	Velocity
MDNBR	Minimum Departure From Nucleate Boiling Ratio	Vol	Volume
MSIV	Main Steam Isolation Valve	ρ	Density
_			

594th Meeting of the Advisory Committee on Reactor Safeguards

St. Lucie, Unit 1 Extended Power Uprate

May 10, 2012

Introduction

Allen G. Howe Deputy Division Director Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Tracy J. Orf

Project Manager Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

EPU Overview

- Background
 - St. Lucie 1 EPU Application November 22, 2010
 - ✤ 2700 to 3020 MWt, 11.85 % increase (+320 MWt)
 - Includes a 10 % power uprate and a 1.7 % MUR
 - 18 % increase above original licensed thermal power
- EPU Review Schedule
 - Followed RS-001
 - Supplemental responses to NRC staff RAIs
 - January 2012 Audit

Disposition of Open Items

- U-bend holdup
- Audit reports on the staff's confirmatory analyses using FRAPCON
- Disposition of supplemental LOCA analyses

Topics for Full Committee

- EPU Overview
- Accident Analyses
- Thermal Conductivity Degradation

St. Lucie Unit 1 EPU Accident Analyses

Samuel Miranda and Jennifer Gall Reactor Systems Branch Office of Nuclear Reactor Regulation

Review of Accident Analyses

- Feedwater Line break
- Mass Addition Events
 Inadvertent ECCS actuation
 CVCS Malfunction
 Inadvertent opening of a PORV
 Loss of Coolant

Feedwater Line Break (FWLB)

- FPL defined FWLB as a cooldown event in the licensing basis
- FPL did not analyze FWLB, since the Main Steam Line Break analysis produces a more severe cooldown
- The staff did not accept this approach

FWLB

- FWLB is treated as a heatup event in RG 1.70 and SRP Section 15.2.8
- The staff requested an analysis of FWLB as a heatup event
- FWLB analysis results were audited on January 30-31
- Acceptable FWLB analysis results: RCS subcooling is maintained

- Inadvertent Actuation of ECCS can fill the pressurizer, and pass water through the PORVs.
- A small break LOCA is created if a PORV sticks open.
- AOOs are not permitted to develop into events of a more serious class.

- Inadvertent ECCS actuation is not in St. Lucie Unit 1's licensing basis
- Shutoff head of ECCS (SI pumps) is lower than RCS nominal pressure
- Analysis was not provided in the EPU application

- Charging pumps (PDPs) have been added to the ECCS since the FSAR
- Charging pumps can fill the pressurizer and cause water relief through the PORVs

Non-Escalation Criterion

- "By itself, a Condition II incident cannot generate a more serious incident of the Condition III or IV type without other incidents occurring independently."
- NRC reminded licensees that this criterion is in the plant licensing bases, and therefore must be met (RIS 2005-29).

- Conservative composite of Inadvertent Actuation of ECCS and CVCS Malfunction was analyzed
- It took almost 11 minutes, after the high pressurizer level alarm, to fill the pressurizer
- This is deemed to be sufficient for manual remedy

Inadvertent Opening of a PORV

- RG 1.70 classifies this AOO as a decrease in RCS inventory event
- RCS depressurization reduces thermal margin, which leads to trip
- RCS continues to depressurize and reaches low pressure SI setpoint
- Lower RCS pressure boosts ECCS delivery rate. Pressurizer can fill.

Inadvertent Opening of a PORV

- Operator can close the PORV very quickly after it opens (< 10 sec)
- With no operator action:
 SI signal is generated in < 2 min
 Pressurizer fills in < 7.5 min
 Charging pumps can cause PORVs to open and relieve water
 A PORV can stick open (SBLOCA)

Inadvertent Opening of a PORV

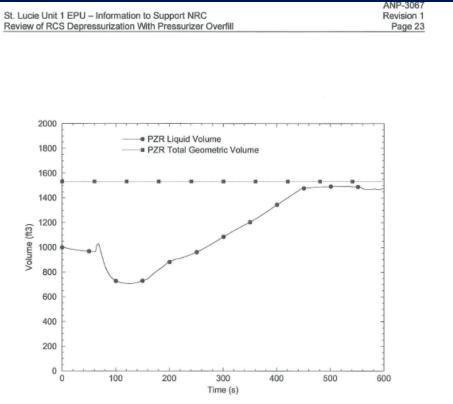


Figure 8 RCS Depressurization / Pressurizer Overfill - Pressurizer Liquid Volume

Audit (January 2012)

- Feedwater line break,
- Inadvertent opening of a power operated relief valve,
- Chemical and volume control system malfunction,
- Loss of electrical load, and
- Realistic large break loss of coolant accident.

Review of LOCA

- Realistic Large Break
 - Licensee implemented EMF-2103, "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."
 - Plant-specific analysis includes modeling assumptions that are more reflective of data than the NRC-approved model

Small Break LOCA

- Licensee implemented EMF-2328, "PWR Small Break LOCA Evaluation Model, S-RELAP5 Based."
- Plant-specific analysis includes modeling assumptions that are more reflective of data and plant phenomenology than NRC-approved model

LOCA Results

Realistic Large Break

Parameters	Fresh UO2 Fuel	Once Burned UO2 Fuel	10 CFR 50.46 Limits
Peak Clad Temperature	1667 °F	1639 °F	2200 °F
Maximum Local Oxidation	2.5268	3.8793	17.0 %
Maximum Total Core-Wide Oxidation (All Fuel)	0.0209	NA	1.0 %

Small Break

Parameters	EPU Analysis	10 CFR 50.46 Limits
Peak Clad Temperature	1807 °F	2200 °F
Maximum Local Oxidation	3.47 %	17.0 %
Maximum Total Core-Wide Oxidation (All Fuel)	0.04 %	1.0 %

Large Break LOCA Observations

- PCT occurs during blowdown
- Break size large factor in PCT
- Dispersed film boiling heat transfer coefficient was varied

Small Break Observations

- Accumulator injection optimization drives limiting result
- SBLOCA analysis in L-2011-206 dated May 27, 2011 will be AOR
- Loop seal clearing treatment provided main difference in PCT between original analysis and the new AOR

Conclusions

- EM's used were more reflective of data than the NRC-approved model
- Results demonstrate compliance with 50.46 requirements

Saint Lucie Unit 1 EPU LAR Review:

Fuel Thermal Conductivity Degradation

Mathew Panicker Division of Safety Systems Office of Nuclear Reactor Regulation

- SL1 TCD short-term solution involves application of RODEX2 augmentation factors.
 - Generic approval of RODEX2 augmentation factors, EMF-92-116(P)(A) Supplement 1, expected in 2012.
- FPL license commitment regarding approval of EMF-92-116(P)(A) Suppl. 1.
 - Demonstrate that the St Lucie Unit 1 safety analyses remain conservatively bounded in licensing basis analyses when compared to the NRC-approved generic supplement to the RODEX2 methodology, or
 - Provide a schedule for re-analysis using the NRC-approved generic supplement to the RODEX2 methodology for any of the affected licensing basis analyses.

Fuel Mechanical Design

- Staff conducted an audit of the AREVA calculations supporting SL1 EPU fuel mechanical design and completed independent FRAPCON-3.4 calculations.
- SL1 TCD long-term solution will be migration to a modern fuel performance code. AREVA is working on a replacement to RODEX2.

Questions?

Public Comments

Committee Guidance Comments

Adjourn