Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Power Uprates Subcommittee Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Wednesday, October 5, 2011

Work Order No.: NRC-1179

Pages 1-132

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	POWER UPRATES SUBCOMMITTEE
8	+ + + +
9	OPEN SESSION
10	+ + + + +
11	WEDNESDAY, OCTOBER 5, 2011
12	+ + + +
13	ROCKVILLE, MARYLAND
14	+ + + +
15	The Subcommittee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B1, 11545 Rockville Pike, at 8:30 a.m., J. Sam
18	Armijo, Chairman, presiding.
19	SUBCOMMITTEE MEMBERS:
20	J. SAM ARMIJO, Chairman
21	SAID ABDEL-KHALIK, Member
22	SANJOY BANERJEE, Member
23	JOY REMPE, Member
24	WILLIAM J. SHACK, Member
25	JOHN D. SIEBER, Member
l	I

		2
1	ACRS CONSULTANTS:	
2	MARIO BONACA	
3	GRAHAM WALLIS	
4		
5	DESIGNATED FEDERAL OFFICIAL:	
6	PETER WEN	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
l	1	

	3
1	AGENDA
2	Opening Remarks
3	Staff Opening Remarks 6
4	Introduction
5	NMPNS EPU Overview
6	Reactor Thermal-Hydraulic Design
7	Long-Term Stability Solution Option 69
8	Nuclear Design: Interim Methods 82
9	Material, Mechanical/
10	Civil Engineering Topics
11	NMPNS
12	NRR
13	Steam Dryier
14	Adjourn
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

	4
1	PROCEEDINGS
2	8:28 a.m.
3	CHAIRMAN ARMIJO: Good morning. This is
4	a meeting of the Power Uprates Subcommittee. I'm Sam
5	Armijo, Chairman of this subcommittee. ACRS members
6	in attendance are Said Abdel Khalik, Bill Shack, Jack
7	Sieber and Joy Rempe. I saw Dick Skillman around, but
8	perhaps he's attending the other meeting. Dr. Sanjoy
9	Banerjee will not be able to attend the morning
10	session, but will attend this afternoon.
11	ACRS consultants are Dr. Mario Bonaca and
12	Professor Graham Wallis. Peter Wen is the Designated
13	Federal Official for this meeting. The purpose of
14	this meeting is to review the extended power uprate
15	request for Nine Mile Unit 2, the staff's draft
16	safety evaluation and associated documents.
17	You will hear presentations from the
18	Office of Nuclear Reactor regulation and the licensee,
19	Nine Mile Point Nuclear Station, LLC. As shown in the
20	agenda, some presentations will be closed in order to
21	discuss information that is proprietary to the
22	licensees and its contractors, pursuant to 5 U.S.C.
23	552(b), (c), (3) and (4). Attendance at this portion
24	of the meeting dealing with such information will be
25	limited to the NRC staff, licensee representatives,
I	I

(202) 234-4433

	5
1	and its consultants and those individuals and
2	organizations who have entered into an appropriate
3	confidentiality agreement with them.
4	Consequently, we need to confirm that we
5	have only eligible observers and participants in the
6	room, and the closure of the public phone line for the
7	closed portion. The subcommittee will gather
8	information, analyze relevant issues and facts, and
9	formulate proposed positions and actions as
10	appropriate for deliberation by the full Committee.
11	The rules for participation in today's
12	meeting have been announced as part of the notice of
13	the meeting, previously published in the Federal
14	Register. We have received no written comments or
15	requests for time to make oral statements for members
16	of the public regarding today's meeting.
17	The transcript of the meeting is being
18	kept and will be made available, as stated, in the
19	Federal Register notice. Therefore, we request that
20	participants in this meeting use the microphones
21	located throughout the meeting room when addressing
22	the subcommittee. The participants should first
23	identify themselves and speak with sufficient clarity
24	and volume, so that they may be readily heard.
25	We have several people on the phone bridge
	I

(202) 234-4433

	6
1	lines listening to the discussion. To preclude
2	interruption of the meeting, the phone lines are
3	placed on listen in mode. We will now proceed with
4	the meeting, and I call on Ms. Louise Lunn of NRR to
5	introduce the presenters. Louise.
6	MS. LUND: Thank you, good morning. I'm
7	Louise Lund, the Deputy Director of the Division of
8	Operator Reactor Licensing in the Office of Nuclear
9	Reactor Regulation. I appreciate the opportunity to
10	brief the ACRS Power Uprate Subcommittee this morning.
11	In the interest of time, my opening remarks will be
12	brief.
13	At this meeting, the NRC staff present to
14	you the results of our very thorough safety and
15	technical review of the licensee's application. The
16	thoroughness of the review is supported by the fact
17	that we had several pre-application meetings with the
18	licensee, starting as early as September of 2008, in
19	which the licensee scheduled an overall proposed EPU
20	implementation plans were discussed with the NRC.
21	The NRC staff also performed an extensive
22	acceptance review before initiating our detailed
23	review of the application. We believe this helped
24	with the efficiency and effectiveness of our review.
25	During the course of our review, the staff
	I

(202) 234-4433

1 had frequent communications with the licensee, as well 2 as two audits and numerous conference calls to discuss 3 the EPU application and its supplemental responses to 4 several rounds of requests for additional information, 5 covering multiple technical disciplines. Some of the more challenging review areas 6 7 that you'll hear about today include steam dryer stress analysis, in which Nine Mile submitted its 8 9 revised acoustic circuit model, thermal hydraulic stability analyses, interim methods, specifically the 10 applicability of GE methods to expanded operating 11 demands. 12 draft 13 As presented in the safety 14 evaluation, which was provided to ACRS a month ago, there are currently no open technical issues in the 15 NRC staff's review of the licensee proposed extended 16 17 power uprate application. We'd like to give our thanks to the ACRS staff, who assisted us with the 18 preparations 19 for this meeting, especially Peter Yarsky. 20 At this point I'd like to turn over the 21 discussion to our NRR project manager, Rich Guzman, 22 who will introduce the discussions. Rich. 23 24 MR. GUZMAN: Good morning. My name is I am the senior project manager in NRR, 25 Rich Guzman.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

7

8 assigned to Nine Mile Point Nuclear Station. 1 First off, I'd like to apologize. I'm having some technical 2 3 difficulties in projecting the presentation onto the 4 screen. So at this time I'd ask that you use a hard copy, the color copies that you have. 5 The first presentation is from the NRC 6 7 staff binder, which is titled "Opening Remarks." 8 During today's Subcommittee meeting, you will hear presentations from the Nine Mile Point Nuclear Station 9 The objective is to provide you 10 and the NRC staff. with sufficient information related to the details of 11 application, 12 the ΕP as well the evaluation as staff's reasonable 13 supporting the assurance 14 determination that public health and safety will not be endangered during the operation of this proposed 15 EPU. 16 Before I cover the agenda items, I would 17 like to go over some background information really of 18 19 the staff review of the Nine Mile Point 2 EPU. On May 27th, 2009 -- well there you have my script --20 (Laughter.) 21 All right. 22 MR. GUZMAN: CHAIRMAN ARMIJO: Just go ahead. 23 Don't 24 worry about it. MR. GUZMAN: All right. As you see there, 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

9 on May 27th, 2009, the licensee submitted its license 1 request for Nine Mile Point 2 EPU. The increase would 2 3 be 34.67 megawatts thermal, their current license 4 thermal power, to 39.88 megawatt thermal. This would 5 represent a 15 percent increase from their current license, and a 20 percent increase from their original 6 7 license thermal power. The staff's method of review was based on 8 9 the RS 001, which is NRC's review plan for EPUs. As 10 you know, it provides a safety evaluation template, as well as major C's that cover the multiple technical 11 is to review. areas that the staff 12 associated linked 13 There are no or 14 licensing actions associated with this. Nine Mile 15 previously submitted, and the staff approved two license amendments, mainly the maximum extended load 16 line limit analysis, and the AST amendment in 2007 and 17 2008, respectively. Finally, there were numerous 18 19 supplements to the application, responding to multiple staff RAIs. Overall, there were approximately 25 20 supplemental responses, which supported our draft 21 safety evaluation. 22

The staff projects December 2011 to complete our review, and this would be in support of the licensee's scheduled implementation in the second

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

quarter	of	2012.
---------	----	-------

1

-
The next slide on your hard copy binder
there covers the agenda items for the Subcommittee
meeting. The morning will cover the fuel methods and
the thermohydraulic design review areas, mainly the
anticipated transient without scram, and the stability
review. Then the afternoon will go into materials and
the mechanical and civil engineering review, which
will also include the steam dryer analysis.
Finally, at the conclusion of the meeting,
as needed, we can cover any open items in preparation
for a full Committee meeting. And also to note, there
will be closed sessions during the latter parts of
both the morning and afternoon sessions.
So if there's any proprietary information
that needs to be discussed, it can be deferred over to
the designated closed session for the agenda. This
concludes my presentation. I would like to now turn
the presentation over to the licensee, specifically
Mr. Sam Belcher, who is the Senior Vice President for
Operations for the Constellation Fleets.
And that said, I am going to eventually in
parallel, as you guys just need, talk to the slides
that is in your binder, I'll eventually get this

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	posted on the wall. I apologize.
2	MR. BELCHER: Thank you. As mentioned, I
3	am Sam Belcher. I'm the Senior Vice President of
4	Operations for Constellation Energy Nuclear Group, and
5	I'll be walking through a presentation. I don't know
6	if it will make it up not the slide or not, but it is
7	in your binder and it's titled "ACRS Subcommittee
8	Presentation," and I'm on point 2, "Extended Power
9	Uprate, October 5th."
10	I'll be walking us through a very high
11	level overview, and then we'll get into more technical
12	details as we move through the morning and into the
13	afternoon. We'll start with an overview, followed by
14	a discussion on the plant modifications necessary for
15	the extended power uprate, anticipated transient with
16	scram and stability discussion, and then, as mentioned
17	the closed sessions for fuel methods, material
18	mechanical civil engineering topics, and then steam
19	dryer analysis also will be a closed session.
20	At a very high level, Nine Mile Point Unit
21	2 is a GE BWR 5, with a Mark II containment. Original
22	license thermal power was 33.23 megawatts thermal. In
23	1995, a stretch uprate was done of 104.3 percent,
24	which takes us to the existing license power limit of
25	34.67 megawatts thermal.

(202) 234-4433

1 This amendment would take us to 39.88 2 megawatts thermal, with the intention to implement 3 second quarter of next year. This is a constant 4 pressure power uprate. Additionally, Nine Mile Point 5 Unit 2 is not requesting any containment accident pressure credit to support ECCS positive suction head. 6 7 I see some smiles there. Also, no new fuel will be introduced as a 8 9 part of this uprate. The current core and the EPU 10 core will be GE 14 fuel consistently. Also, as mentioned previously, alternate source term has 11 already been completed, and that was at the EPU power 12 the base assumption. Also previously 13 level as 14 discussed is the maximum extended load line limit 15 analysis, expanded operating domain as well. 16 Finally, the New York state ISO has 17 reviewed and approved the full EPU power uprate, with no grid modifications being necessary. The only 18 19 modifications that I would note were revenue metering type modifications for the increased output. 20 But nothing for grid stability or anything along those 21 lines. 22 23 The first phases of the EPU two 24 modification have been completed, and then the third

and final phase of the modification will be completed

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

(202) 234-4433

12

	13
1	in the second quarter of 2012, consistent with the
2	refueling outage. At this point, unless there are
3	some questions for me, I will turn it over to Dale
4	Goodney, who is our lead engineer, to talk in more
5	detail around some of the plant modifications required
6	moving forward.
7	MR. GOODNEY: Okay, good morning. As Sam
8	indicated, I'm Dale Goodney. I'm with Constellation
9	Energy and the EPU lead, engineering lead for the EPU
10	project. I'll provide an overview of EPU plant
11	modifications. We'll cover the general approach, the
12	review plant parameters and modification installation
13	time line.
14	We'll summarize the major plant
15	modifications and then we'll review other Nine Mile 2
16	plant improvements that are being implemented at the
17	station.
18	In support of the license amendment
19	request, a series of engineering studies were
20	performed to determine the plant's ability to operate
21	at EPU conditions, and to identify what modifications
22	may be needed. These studies were developed by a team
23	of Constellation engineers, industry consultants, GE
24	Hitachi for the nuclear steam supply system, and
25	Sargent & Lundy for balance of plant systems.
	I

(202) 234-4433

1 These studies analyzed the effects of the 2 increase in steam flow, feedwater flow, electrical 3 power output and reactor power on various plant 4 systems and components. As Sam mentioned, this uprate 5 is not increasing reactor pressure. Therefore, the evaluations were performed based on the methodologies 6 7 outlined in the past and pressure power uprate 8 licensing topical report.

9 The analyses were all based on the target power level of 120 percent of the original license 10 Each study included a review of 11 thermal power. relevant operating experience, both internal 12 and applicable 13 external, and were to results were 14 incorporated into these evaluations.

15 Another element of engineering the 16 evaluations were the margin reviews. Desiqn and 17 operating margins were identified and evaluated for both NSSS and balance of plant systems, to determine 18 be 19 if there would adequate margin under EPU conditions. 20

As a result of these reviews, over 20 physical plant modifications, mostly in the balance of plant area were identified and described in the license amendment request. The primary purpose of these modifications are to (1) restore material

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1 condition, (2) install instrumentation for data 2 collection and analysis, or (3) upgrade or replace 3 equipment to restore design and operating margins at 4 EPU conditions.

This next slide shows the fundamental 5 6 plant process parameters that would change due to the 7 uprate, and compares the EPU conditions to the CLPP 8 conditions. These parameters are the primary starting 9 point for the evaluations that I just described, and 10 they also form the key design inputs for the modifications that were developed for the power 11 12 uprate.

The slide is the modification 13 next 14 installation time line, and as mentioned in our earlier slides, the Phase 1 and Phase 2 implementation 15 Those are the modifications shown in 16 is completed. two left-hand columns. The remainder of the 17 the modifications will be installed prior to the end of 18 19 the 2012 refueling outage.

20 On the next slide, or next few slides, 21 will summarize some of these modifications. It will 22 cover basically four general categories. Feedwater 23 and condensate, steam path, electrical I&C systems, 24 and auxiliary support systems.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

DR. WALLIS: Can I ask you about the steam

(202) 234-4433

25

	16
1	dryer? This isn't the you know, GE has a new
2	design of steam dryer. That's not the one, right?
3	It's the old steam dryer, modified because the
4	analysis says you need to do so. So you're putting in
5	strengthening at various places and perforated plates
6	and so on?
7	So just to clarify, that's the old steam
8	dryer, strengthened because of the results of
9	analysis?
10	MR. GOODNEY: That's correct, and we'll be
11	covering those modifications
12	(Simultaneous speaking.)
13	MR. GOODNEY: Due to the higher feedwater
14	flow requirements, the feedwater pumps will be
15	modified with new rotating elements, new step-up gears
16	and modified flow control valve trim. In addition,
17	the heater drain pumps in motors were replaced in
18	2010, to increase the capacity of the pumps. These
19	changes will provide the additional flow margin
20	required for normal, off normal and transient
21	conditions.
22	Reactor recirculation runback logic is
23	being modified to maintain scram avoidance margin
24	following a single feedwater pump trip. This will be
25	accomplished by initiating the runback immediately on
I	I

(202) 234-4433

	17
1	a feedwater pump trip, increasing the runback rate of
2	the reactor recirc flow control valve, and the
3	higher feedwater pump runoff flow capacity.
4	In terms of the steam path, the high
5	pressure turbine we replaced with a monoblock rotor,
6	new diaphragms and buckets to increase the steam flow,
7	six relief valves located on the reheat piping will be
8	replaced with valves with a higher set pressures to
9	increase the steam relieving capacity.
10	Moisture separate reheaters on the fifth
11	and sixth point feedwater heaters, will be rerated to
12	higher pressures, and as you mentioned earlier, the
13	steam dryer will be modified to provide the required
14	structural margin at the higher steam flows, and we'll
15	provide more details of those modifications in the
16	afternoon session.
17	Two electrical modifications are needed to
18	support the higher power output. The isophase bus
19	duct will be upgraded by installing a higher capacity
20	cooling system, and the coolers on the main
21	transformers will be replaced with larger coolers, to
22	provide additional thermal margin.
23	Instrumentation affected by the uprate
24	include two tech spec instrument set points, the APRM
25	flow-biased scram, and the main steam high flow
I	I

(202) 234-4433

	18
1	isolation. Those changes are included as part of the
2	license amendment request. The balance of plant
3	instrument loops are being rescaled, as required, to
4	accommodate the higher flows, temperatures and
5	pressures under EPU conditions.
6	Due to the high heat load in the turbine
7	building, the turbine building HVAC system will be
8	modified to install four additional area coolers near
9	the condensate and condensate booster pumps.
10	The turbine building cooling, although it
11	does have adequate margins for EPU conditions, it's
12	going to be modified to isolate retired loads to
13	provide additional margin, and the system will be
14	rebalanced to ensure that we get accurate cooling to
15	all the power-dependent loads supplied by the system.
16	So that completes the preview of the EPU
17	modifications.
18	CHAIRMAN ARMIJO: I have a question, not
19	about modifications, but many years ago, a number of
20	the BWRs had stress corrosion cracking problems in
21	their recirc piping, core repiping, and a number of
22	them did some replacements of the original type 304
23	stainless steel with an improved material, 316 nuclear
24	grade.
25	I didn't, don't remember. What did you do
ļ	I

(202) 234-4433

	19
1	at Nine Mile 2? Are you still using the original
2	recirc piping?
3	MR. INCH: Yes, the original Unit 2 was,
4	went into service in '87, and the piping was
5	originally, you know
6	CHAIRMAN ARMIJO: You'll have to speak a
7	little bit louder, so that the microphone
8	MR. INCH: The piping at Unit 2 was
9	originally considered as upgraded piping. I believe
10	it's 316. I'll have to verify that.
11	CHAIRMAN ARMIJO: Yes, if you could. So
12	it was built at a time. By that time, people knew
13	this was a better way to build it, and you just
14	happened to be at the right place at the right time.
15	MR. INCH: It was a safe end replacement
16	prior to service, where they replaced the safe ends
17	with IGSCC-resistant materials. That was all done
18	prior to service.
19	CHAIRMAN ARMIJO: Okay, all right. Thank
20	you.
21	MEMBER SHACK: But just on that point, you
22	do have a number of Class D welds left.
23	MR. INCH: Yes.
24	MEMBER SHACK: At least there's a
25	discussion of that in the
	I

(202) 234-4433

	20
1	MR. INCH: The Class D welds are the
2	similar metal welds, the safe end to nozzle welds. So
3	that is the
4	MEMBER SHACK: But they're what, ferritic
5	to a normal carbon steel safe end? Is that
6	MR. INCH: It's the stainless steel safe
7	end to the low alloy steel nozzle. It's the similar
8	metal weld, and that's the those are the category,
9	considered Category D welds, per 8801, Generic Letter
10	8801.
11	CHAIRMAN ARMIJO: And some of those you've
12	done a weld overlay, repair, mechanical stress
13	improvement?
14	MR. INCH: There was one indication on one
15	of the high pressure core spray lines, that a
16	mechanical stress improvement was done in the early
17	90's. We've been monitoring that since then, with no
18	growth.
19	It was an indication identified in one of
20	the feedwater nozzles, approximately ten years ago.
21	There was an overlay done on that. Otherwise, we're
22	not tracking any
23	CHAIRMAN ARMIJO: So with the exception of
24	those two components, it's the as-built material?
25	MR. INCH: Yes.
ļ	I

21 CHAIRMAN ARMIJO: Okay, thank you. 1 And 2 when did you start the hydrogen water chemistry? 3 MR. INCH: Hydrogen water chemistry was 4 started in, it was either 2000 or 2001. We 5 implemented hydrogen water chemistry in combination with noble metals. So it's always been a noble metals 6 7 hydrogen water chemistry application. I may have I missed it, 8 MEMBER SIEBER: 9 but in my review of the material that was included, that Nine Mile Point 2 has a Mark II containment, 10 which is the upside down lightbulb or ice cream cone, 11 similar to the Mark I containments in containment 12 volume, but the geometry was different. 13 14 Did you analyze the containment 15 capability, insofar as you now have approximately 20 16 percent over the original design stored heat acumen environment? 17 MR. INCH: Yes. 18 And if so, did that 19 MEMBER SIEBER: consider fuel failures, cladding oxidation and so 20 forth? How far did you go in that analysis? 21 The design bases analyses were 22 MR. INCH: redone for the higher megawatt thermal. 23 24 MEMBER SIEBER: Right. And decay heat levels, and 25 MR. INCH:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	those were performed by GE, using their design bases
2	methods for the higher power levels, and mainly
3	because it's the peak pressure is governed by the
4	short-term blowdown, and because it's a constant
5	pressure power uprate, the peak pressure associated
6	with that blowdown has not changed.
7	MEMBER SIEBER: Right, that's true.
8	MR. INCH: And the long-term response
9	MEMBER SIEBER: Has to be increased.
10	MR. INCH: Long-term response was
11	mitigated by the suppression pool cooling systems.
12	There's significant margin built into the original
13	design on those systems, that the original design
14	analyses had not credited. So by actually crediting
15	those systems capability, we were able to maintain the
16	suppression pool temperature effectively the same in
17	design bases space as current.
18	So there really wasn't any significant
19	change in the long-term pressure temperature profile
20	for the
21	MEMBER SIEBER: Or change at all?
22	MR. INCH: Effectively, yes.
23	MEMBER SIEBER: I have to think about
24	that.
25	MEMBER SHACK: While we're at it, is this
I	I

	23
1	a vented Mark II? Is there a vent on this Mark II?
2	MR. GOODNEY: Phil.
3	MEMBER SIEBER: Has to be.
4	MR. AMWAY: My name is Phil Amway, and I'm
5	the extended power uprate operations lead, and I
6	maintain an active senior reactor operator's license
7	for the facility. Nine Mile Point 2 is able to vent
8	the containment through a path that will divert the
9	containment out directly to the stack, using a bypass
10	around the PTS train. We have that capability.
11	CHAIRMAN ARMIJO: You know, this is a
12	little bit off the scope, but you can't help it,
13	because of the Fukushima events. How do you test
14	those vents? Do you ever test them or that they
15	MR. AMWAY: We have performed, and again,
16	my name is Phil Amway. We have performed walkdowns of
17	those procedures. We have procedures in place that
18	line up that vent path. All the materials are staged
19	to do so. We cover it in training. We have not
20	actually physically made the alignments, to actually
21	vent in that mode. But it is a fairly simple
22	mechanical arrangement that could be done.
23	CHAIRMAN ARMIJO: Is there a rupture disc
24	in that design or not?
25	MR. AMWAY: There is no rupture disc, no.
I	I

(202) 234-4433

	24
1	DR. BONACA: So it's a duct. Is it the
2	hard piping or
3	MR. AMWAY: It's hard piping. We actually
4	bypass around any duct work that would be subject to
5	the high pressure condition.
6	MR. BELCHER: If I may add, I'm Sam
7	Belcher, the Senior Vice President for Operations for
8	Constellation Energy Group. While we have processes
9	and procedures and training in place, based on the
10	recent events, we are looking in detail at
11	improvements, not only at the Nine Mile Point site,
12	but at our other sites as well.
13	I think there are lessons learned that
14	will ultimately lead to us doing things differently.
15	But we are looking at that.
16	CHAIRMAN ARMIJO: Okay, continue on.
17	MR. GOODNEY: No problem. This final
18	slide covers other plant improvements that the station
19	has implemented or is planning to implement, to
20	restore material condition, improve margin, improve
21	equipment reliability. Some examples are replacement
22	of the third point feedwater heaters in 2010; the
23	standby flow control relief valve margin was improved.
24	Cleaning tower upgrades were implemented.
25	New feedwater pump seals will be installed, according
Į	1

(202) 234-4433

	25
1	to the feedwater pump modifications I mentioned
2	earlier. One of the more significant improvements,
3	the station plans to replace all 20 jet pump inlet
4	mixers during the 2012 refueling outage. That will
5	restore the equipment back to the original design
6	performance, restore core flow margin, and address
7	operating experience relative to flow-induced
8	vibration.
9	Then finally, there have been several PRA-
10	related risk reduction improvements, consisting of
11	procedure changes and other minor modifications. As
12	a result of these improvements, since 2008, the core
13	damage frequency at Nine Mile Point has been reduced
14	by 78 percent.
15	So that concludes my presentation on
16	modification overview. Pending any questions, I'll
17	turn this over to Phil Amway, to discuss power
18	ascension testing.
19	MR. AMWAY: Thank you, Dale. Again, to
20	reiterate, my name is Phil Amway. I'm the extended
21	power operations lead. I'll be giving two
22	presentations this morning. The first area is for the
23	power ascension testing program. Under this topical
24	area, we'll discuss the preparation of the program,
25	approach to uprated power

(202) 234-4433

	26
1	MEMBER ABDEL-KHALIK: I'm sorry. Can we
2	go back to the previous slide?
3	MR. AMWAY: Sure.
4	MEMBER ABDEL-KHALIK: You indicated that
5	you will replace the jet pump inlet mixers?
6	MR. GOODNEY: That's correct.
7	MEMBER ABDEL-KHALIK: Could you explain
8	more of the rationale for that?
9	MR. GOODNEY: I apologize. Excuse me.
10	You'd like to know the rationale behind replacing the
11	jet pump inlet mixers, and whether that will impact
12	the core flow measurement instrumentation.
13	MR. INCH: Oh, the jet pumps become fouled
14	over years of operation, from a mechanism that I don't
15	fully understand. But they call it a zeta potential,
16	where you get deposits that affect the efficiency of
17	the jet pumps. At Nine Mile, that's been occurring
18	for several years.
19	There's several options available. Ultra
20	high pressure cleaning is an option that was
21	considered, and but there's essentially the new mixers
22	we're putting in are identical to the original design.
23	So it restores the jet pumps to a new condition, and
24	so that's what is going on.
25	So therefore, the instrumentation is not

(202) 234-4433

	27
1	affected. It just basically restores the performance
2	to the original performance.
3	MEMBER ABDEL-KHALIK: But the relation
4	between the driver flow, the jet pumps and the actual
5	core flow will change as a result of that
6	modification; is that correct?
7	MR. INCH: It will be restored to the
8	design bases, drive flow design basis and ratio, but
9	it's not a change to the design. So operational
10	procedures, every refuel outage, do a new baseline for
11	where those jet pumps are, to establish the
12	correlation between dry flow and core flow.
13	Then that's put into the instrumentation,
14	and it's all proceduralized, because it does change
15	over time. So the procedures account for that change.
16	MEMBER ABDEL-KHALIK: So that when the
17	operators, the current procedures for knowing where
18	they are on the power flow map, they use the driver
19	flow or they use the direct total core flow, as
20	measured from the 20 jet pumps?
21	MR. INCH: Operations has core flow.
22	Phil.
23	MR. AMWAY: We use total core flow direct
24	indication.
25	MR. INCH: When we plot our
	1

(202) 234-4433

	28
1	MR. AMWAY: Yes.
2	MEMBER ABDEL-KHALIK: But in that process,
3	you use the relationship between the driver flow and
4	the core flow, which you say you empirically calibrate
5	every outage?
6	MR. INCH: Yes.
7	MR. AMWAY: Every outage, and it's part of
8	our start-up test program as well. We will do the
9	core flow calibration, which will calibrate the dry
10	flow to the jet pump flow.
11	MEMBER ABDEL-KHALIK: How much has that
12	calibration changed since the jet pump inlet mixers
13	were replaced? Oh, you have no idea.
14	(Simultaneous speaking.)
15	MEMBER ABDEL-KHALIK: How much has that
16	changed over the years, as a result of fouling?
17	MR. AMWAY: It has changed gradually over
18	the years. It's actually a reactor engineering
19	procedure. It's done at the conclusion of each
20	outage, once we get the full rated power. We'll do
21	that procedure and the trend has been, the acceptance
22	criteria of that procedure is as long as the
23	calibration is within two percent, no additional
24	action is required.
25	It's about every third outage we actually
I	

(202) 234-4433

	29
1	have to go in and make a change, and adjust the gains
2	on the dry flow to match the core flow.
3	MEMBER ABDEL-KHALIK: So the allowable
4	deviation between the two flow indications is two
5	percent you said?
6	MR. AMWAY: Two percent.
7	MEMBER REMPE: Do you expect the new
8	plants that you're replacing to have similar fouling
9	characteristics?
10	MR. INCH: The new mixers, we hope to be
11	able to manage the fouling a little bit better. The
12	plan is to they'll have a coating on them, that will
13	resist fouling. It's not 100 percent, but it should
14	reduce the rate of fouling.
15	MEMBER SHACK: What is this magic coating?
16	MR. INCH: That's proprietary. I can't
17	we can talk about that in closed session, I guess.
18	MEMBER SHACK: Yes.
19	CHAIRMAN ARMIJO: You may want to do that.
20	MEMBER SHACK: But otherwise its geometry
21	is identical, with the exception of a coating to
22	surface treatment of some sort, to minimize the
23	fouling rate.
24	MR. INCH: To try and minimize future
25	fouling, yes, right.
I	I

(202) 234-4433

	30
1	MEMBER ABDEL-KHALIK: But generally th
2	trend is that the actual core flow will likely be less
3	than the indicated core flow. Is that the or is it
4	the other way around?
5	MR. INCH: Right now, the design M ration
6	for the jet pump mixers is at EPU, it will be about
7	2.28.
8	MEMBER ABDEL-KHALIK: No, no, no. I'm
9	asking about the effect of fouling, and you're
10	allowing a two percent deviation between or two
11	percent variation on the calibration, in the empirical
12	calibration between driver flow and actual core flow.
13	MR. INCH: I believe what Phil's referring
14	to is just the instrumentation tolerances
15	MEMBER ABDEL-KHALIK: That's right.
16	MR. INCH: That are built into the design
17	bases. The fouling occurs over very long periods of
18	time, over many years in the cycle.
19	It's a very gradual process, and the
20	frequency for the calibrations will maintain and
21	ensure that the relationship between dry flow and core
22	flow is accurate to within the design tolerances at
23	all times. But it's not something that occurs
24	suddenly. I'm not sure if I'm
25	MEMBER ABDEL-KHALIK: I'm just trying to
Į	I

(202) 234-4433

	31
1	understand the direction of the trend.
2	MR. INCH: Okay.
3	MEMBER ABDEL-KHALIK: Okay, and the time
4	line associated with that trend. You say that you
5	need to do that roughly every third outage?
6	MR. AMWAY: About every third cycle. We
7	actually have enough mismatch between the two
8	measurements that we actually adjust the gains of the
9	dry flow.
10	MEMBER ABDEL-KHALIK: So that sort of
11	gives you an indication of how quickly the core flow
12	is being impacted as a result of fouling? Or is it
13	just drift?
14	MR. AMWAY: It's just looking at the total
15	I mean some of that could be drift, some of that
16	could be fouling. I'm just looking at the total
17	measurements of drive to driven flow when we do that
18	procedure. It's not really looking at specific
19	factors that may input to that deviation of two
20	percent.
21	MR. INCH: I can give you a feel for some
22	of the numbers. The original, when we first started
23	the plant up in '87, the original calibration for dry
24	flow was approximately 41,000 GPM for a rated core
25	flow, which is 108-1/2, 108-1/2 million pounds per
ļ	I

(202) 234-4433

	32
1	hour. That's the relationship. So M ratio, drive to
2	driven of approximately 2.4 or 2.5, I believe, at
3	OLTP.
4	Now, for to achieve 108, the rated core
5	flow, 108 million, we need 46,000 GPM drive flow, and
6	that's occurred over 22 years. That's the it's a
7	gradual change. It is affected by the stretch uprate
8	in effect. When we did the stretch uprate in 1995,
9	that was the original design, five percent uprate.
10	Then fuel type has some effect on it. C
11	Core DP has some effect on it. So as the, you get
12	some of the newer fuel design, you have a higher two
13	phase pressure drop. So that, the jet pumps have to
14	work a little bit harder. So that's in the mix with
15	some of those relationship changes.
16	CHAIRMAN ARMIJO: So do you expect the
17	fouling rate to be greater with the higher flows at
18	EPU?
19	MR. INCH: Again, our flows are really not
20	higher. They're the design flows. So the fouling
21	rates really shouldn't change from what it's been
22	historically. The change for power uprate, changes to
23	the core DP are slightly. So we need basically it's
24	a 1.9 percent effect on the dry flow relationship.
25	MEMBER ABDEL-KHALIK: But if the fouling
Į	I

(202) 234-4433

	33
1	is some sort of a deposition of some, let's say an
2	iron oxide or some other material on those mixers,
3	you're putting a lot more water with all that same
4	material through, over a given period of time. So I
5	would expect the fouling to be faster.
6	MR. INCH: It's important that we're
7	really not putting any more the core flow stays the
8	same, and the dry flow really is the same. Now what
9	we're doing is put it back to the original core
10	relationship and efficiency of the jet pump. So the
11	rate of fouling should be equivalent.
12	MEMBER SHACK: And with your magic
13	coating, less.
14	MR. INCH: Well, hopefully yes.
15	CHAIRMAN ARMIJO: Okay.
16	DR. BONACA: Just one question I had
17	regarding the vent. Do you have that venting
18	procedures?
19	MR. AMWAY: Yes, we do have venting
20	procedures. It's part of our emergency operating
21	procedures, support procedures. But we do have those
22	in place.
23	DR. BONACA: All right, thank you.
24	MR. AMWAY: All right. If I may continue
25	on under power ascension testing, I'm on Slide 17.
	I

(202) 234-4433

	34
1	The topical areas that I want to address under power
2	sensitive testing are preparation, approach, schedule,
3	the test plan and the acceptance criteria and actions.
4	Under the preparations, our objective of
5	the start-up test program is to demonstrate
6	satisfactory equipment performance, ensure we have a
7	careful, monitored approach to EPU power level, and to
8	ensure that we meet established requirements.
9	We define the roles and responsibilities
10	in the master start-up test procedure. We have used
11	industry benchmarking to confirm that our test program
12	matches similarly uprated BWRs, and also that our test
13	plan and implementing test procedure development is
14	consistent with industry standards.
15	We will also perform operator training on
16	the power ascension test program, including the test
17	procedures that will be performed. The approach is
18	similar to that used for other BWRs that have
19	implemented extended power uprate, and that is
20	incremental testing approach. We collect baseline
21	data at 75, 90, 95 and 100 percent of current licensed
22	thermal power.
23	Once we rise above the 100 percent current
24	licensed thermal power, we will perform data
25	acquisition and incremental steps of one percent, and
	1

(202) 234-4433

	35
1	an analysis of two and a half percent. Every five
2	percent plateau is a major testing window that
3	includes the active as well as the passive testing,
4	and there is an NRC data review with those five
5	percent incremental levels.
6	DR. WALLIS: And in doing this, you have
7	instrumented the steam lines? They go and look at the
8	fluctuations and that sort of thing.
9	MR. AMWAY: That is correct. That's part
10	of the ascension program. Power ascension testing
11	approach for Nine Mile 2 does not include large
12	transient testing. The basis for that is the
13	substantial industry operating experience from uprated
14	plants that have experienced large transient post-EPU
15	implementation, and also Nine Mile Point specific data
16	for large transients that have occurred at the station
17	at 104.3, which is the uprate, stretch uprate power
18	level.
19	We were able to use that data to
20	accurately project, using the analytical methods that
21	are available today, such that we fully understand how
22	the plant will respond post-uprate for large
23	transients.
24	MEMBER ABDEL-KHALIK: If you'll go back
25	again to the previous slide, please.

(202) 234-4433

	36
1	MR. AMWAY: Sure.
2	MEMBER ABDEL-KHALIK: Have you had any
3	experience with the SRV leaks?
4	MR. AMWAY: With SRV leaks, and I may ask
5	George to provide additional information here, but
6	recently our SRV leakage has been very good.
7	We had problems, I'll say in the mid-90's,
8	with SRV leakage that was indicated by rising
9	suppression pool temperatures, and the frequency at
10	which we had to place suppression pool cooling in
11	service, to maintain pool temperatures just at normal
12	power.
13	That has not been the experience that I've
14	seen in the power plant for the last 10-12 years, and
15	I would say that we're not seeing it in tail pipe
16	temperatures, or the suppression pool temperatures.
17	George, do you have anything additional to add to
18	that?
19	MR. INCH: No. I might add that when we
20	stopped doing the steam flow surveillance tests,
21	actually opening the SRVs and closing them, which
22	challenges the receding, the SRV leakage has gone away
23	as a problem. So it's been very effective.
24	MEMBER ABDEL-KHALIK: And post-outage
25	testing of the SRVs, they meet the specs, as far as
	I

(202) 234-4433

	37
1	set point?
2	MR. INCH: Oh yes. I'm not prepared right
3	now to go into any of those details, but yes. They
4	change them out in accordance with a rotation plan.
5	They are tested at offsite. I believe they're sent
6	offsite and tested each outage. If you need more
7	details, I would have to come back.
8	MEMBER ABDEL-KHALIK: I'm just trying to
9	get just step by step here. So this emphasis on
10	instrumentation is in primarily during the power
11	upgrade, is in primarily concerns with regard to the
12	steam dryers.
13	MR. AMWAY: It's primarily with the steam
14	dryer, but it also includes balance of plant piping,
15	because of the increased steam flows and feed flows,
16	and we will be monitoring that vibration in those same
17	increments on the way out.
18	MEMBER ABDEL-KHALIK: Is there any concern
19	about increased leakage from the SRVs, as a result of
20	the increased steam flow, and the potential acoustic
21	coupling associated with the SRVs?
22	MR. INCH: No. We've looked at that
23	fairly significantly with our instrumenting. The main
24	steam lines with accelerometers in the vicinity of
25	SRVs, to make sure that there's no coupling.
I	I

(202) 234-4433

	38
1	Analytically, we're not seeing any, haven't seen and
2	are not predicting to see any issues with this
3	MEMBER ABDEL-KHALIK: How would your
4	instrumentation tell you whether or not you have
5	increased leakage out of the SRVs, as a result of the
6	
7	MR. INCH: Well have, there's tailpipe
8	instrumentation to tell us if it's leaking. They
9	know.
10	MR. AMWAY: That's correct.
11	CHAIRMAN ARMIJO: And you have what kind
12	of measurement?
13	MR. AMWAY: It's a temperature
14	measurement, right on the tailpiping.
15	MEMBER ABDEL-KHALIK: Do you have a two-
16	stage or a three-stage SRV?
17	MR. GOODNEY: Are you referring to Target
18	Rock?
19	MEMBER ABDEL-KHALIK: Right.
20	MR. GOODNEY: No, we don't have Target
21	Rock.
22	MEMBER ABDEL-KHALIK: You don't have
23	Target Rock. So what kind of SRVs do you have?
24	MR. INCH: They're Dikkers.
25	MR. GOODNEY: Dikkers.
I	I

	39
1	MEMBER ABDEL-KHALIK: And they're
2	instrumented only by measuring temperature in the
3	tailpipe?
4	MR. INCH: I believe so. I would have to
5	verify that.
6	MEMBER ABDEL-KHALIK: Okay.
7	MR. AMWAY: As far as what we see in the
8	control room, the temperature is our primary
9	indicator, the tailpipe temperature. You know,
10	they're also fitted with acoustic monitors that would
11	tell you to actually lift it.
12	MR. INCH: That's what I think, yes.
13	MR. AMWAY: But for the leaking, it's just
14	the thermocouples on the tailpipe.
15	MEMBER ABDEL-KHALIK: All right, thank
16	you.
17	MR. AMWAY: You're welcome. I'm up to
18	Slide 21 now, the power ascension testing schedule.
19	Data collection in one percent intervals, data
20	evaluation, two and a half percent intervals, and then
21	the major testing plateaus at five percent intervals.
22	That five percent test plateau includes
23	passive data collection, which includes the vibration
24	monitoring, radiation monitoring and plant parameter
25	monitoring. The active testing is associated with the
Į	I

(202) 234-4433

	40
1	stability of the various pressure control and
2	feedwater level control systems.
3	We will perform data analysis of both the
4	active and passive testing, and then that data will be
5	reviewed by station management through the Plant
6	Operations Review Committee, and then submitted to the
7	NRC for review.
8	This next slide just shows an overview of
9	the various tests that are performed at the power
10	levels. Across the top of the slide, you'll see the
11	percent for current license thermal power, and the
12	intervals that we're doing the testing. Those power
13	levels in red, that are red highlighted, are those
14	associated with the five percent test plateaus at
15	which data will be transmitted to the NRC for review.
16	Then all the X's in the box along the left
17	column, you see the various tests that are performed,
18	and the X's designate how often they're performed, at
19	what power levels. Those indicated in the blue
20	shading are those that also have one percent data
21	collection requirements.
22	For power ascension testing acceptance
23	criteria, there's two major levels. The Level 1
24	acceptance criteria is associated with a limit
25	associated with plant safety.
I	I

(202) 234-4433

1 If we reach a Level 1 criteria, we abort 2 from the test. We reduce power level to a known safe 3 condition, and that would be the power level at which 4 the Level 1 criterion was verified met, and that we 5 will use our corrective action program to evaluate the condition and determine required actions. 6 Then we 7 will repeat the testing, to verify Level 1 criterion is satisfied and document results. 8 9 Level 2 is the limit associated with plant 10 or equipment performance that does not meet design expectations, but is not immediately adverse to plant 11 We will perform similar actions, in the terms safety. 12 of we will place the test on hold, and if needed, 13 14 lower power, and then again use the corrective action 15 program to determine the requirements. 16 Τn the Level 2. may make a we 17 determination that the data is satisfactory and that we can continue testing. In either event, we will 18 19 have to also document the results as a test exception. The final acceptance criterion that we may encounter 20 following the start-up program includes things such as 21

22 technical specification required surveillance tests.

They have their own acceptance criteria, based on tech spec limits, and if we reach one of those limits, we would follow the actions in the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

41

	42
1	procedures and the plant technical specifications.
2	MEMBER ABDEL-KHALIK: Can you give me an
3	example of a Level 2 acceptance criterion, and an
4	example of a Level 1 acceptance criterion that you can
5	immediately indicate with a test?
6	MR. AMWAY: Yes, I can. For a Level 1,
7	for the control systems which are tuned, we will
8	introduce step changes, for example, reactor pressure.
9	We would expect that the system will respond in a
10	quarter wave damping fashion, so that any oscillation
11	is quickly dampened, then maintain steady control of
12	the plant pressure.
13	If for some reason that we don't meet the
14	quarter wave damping, but the oscillations are
15	convergent, such that you reach a final steady value
16	and pressure, that would be an example of not meeting
17	Level 2. It doesn't meet the design expectation, that
18	we should be able to meet the quarter wave damping.
19	If we did that same step change, and we
20	got a divergent behavior in the oscillations, which
21	means they did not dampen out and in fact got worse,
22	then we would have actions in the procedure for how to
23	deal with that. That would be a Level 1 criterion,
24	and we would abort that test, to figure out why that
25	happened.
	I

(202) 234-4433

	43
1	MEMBER ABDEL-KHALIK: Okay.
2	DR. WALLIS: Are these limit curves
3	evaluated directly by computer, or does someone have
4	to look at this and look at that, and compare them?
5	MR. AMWAY: We will have both guidance in
6	the procedure for what the operators can look at
7	directly by plant instrumentation. But there will
8	also be backup confirmatory database reviews of the
9	parameters using computers.
10	DR. WALLIS: So there will be something
11	set in place, so that when something unusual happens,
12	it's right there on the computer or there's a warning
13	or something?
14	MR. AMWAY: That is correct.
15	DR. WALLIS: You don't have to wait for
16	someone to look at something?
17	MR. AMWAY: That's exactly right. If
18	there's no further questions on the power ascension
19	test program, I'd like to proceed on to the long-term
20	stability, Option 3.
21	In this topical area, I'll discuss an NRR
22	audit that was performed at Nine Mile 2 in support of
23	our uprate. We'll discuss long term stability, Option
24	3, and under that topical area, we'll discuss the
25	oscillation power range neutron monitor that's
I	I

(202) 234-4433

	44
1	installed at Nine Mile 2, the OPRM settings, the
2	backup stability protection.
3	We'll discuss the 2003 Nine Mile Point
4	stability event, and conclude with the effects of
5	extended power uprate on long-term stability solution.
6	Under the ATWS stability, we'll discuss the Unit 2-
7	specific ATWS mitigation design features, preparation
8	for the simulator demonstration that was done in
9	support of the NRR audit.
10	We'll discuss the MSIV closure with
11	failure to scram and turbine trip with failure to
12	scram events, and then we'll address the conclusions
13	associated with ATWS stability.
14	NRR audit was performed at Nine Mile 2 in
15	October of 2009. The purpose of that audit was to
16	demonstrate procedure actions and operator response to
17	ATWS transience, that EPU conditions conform to
18	regulatory requirements.
19	The audit reviewed implementation of long-
20	term stability, Option 3, and it also observed
21	operator performance in the plant reference simulator
22	for the two events I discussed, the MISV (ph) closure
23	and turbine trips with failure to scram.
24	The audit included a review of related
25	procedures and mitigation strategies, and that audit
	1

(202) 234-4433

also concluded in 2009 the simulator was not ready yet to show comparison data for EPU versus current license thermal power data. That has since been completed and provided to the NRC.

terms of a time line for the 5 In oscillation power range monitor, in 1998, Nine Mile 2 6 7 received Amendment No. 80, which allowed the 8 installation of the system, and it ran in the unarmed 9 condition while we evaluated the performance of the simulator and performed tuning, to make sure that it 10 was set up for the Nine Mile 2-specific application. 11

In 2000, we received Amendment 92, which 12 armed the system, to make the OPRM trips active. 13 In 14 2002, we implemented a plant-specific DIVOM curve, as 15 a result of GE Safety Communication 01-01. In 2003, 16 we implemented further changes to filter frequency and period tolerance setting for GE Safety Communication 17 03-20, and that was as it related to the Nine Mile 18 19 Point 2003 event.

For the OPRM settings, we have cyclespecific DIVOM analysis performed using a TRACG methodology. The cycle-specific amplitude set points are defined in the core operating limits report, and for extended power uprate, we have reduced the enabled region from 30 percent of rated thermal power to 26

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	46
1	percent of rated thermal power, and that's to maintain
2	the level of protection the same for extended power
3	uprate, as it is for current license thermal power.
4	For backup stability protection, the
5	backup stability protection regions are determined
6	using cycle-specific ODYSY decay ratio calculations,
7	and the regions are defined on the plant's power to
8	flow operating maps. The backup stability protection
9	actions are defined in plant procedures, with routine
10	reinforcement in the operator training program, and
11	the BSP exit regions
12	MEMBER ABDEL-KHALIK: So if you'll back to
13	the pervious slide, please.
14	MR. AMWAY: Sure.
15	MEMBER ABDEL-KHALIK: The set point for
16	recirculation dry flow less than 60 percent. This two
17	percent uncertainty between the dry flow, in the
18	calibration between dry flow and actual core flow.
19	Which direction does that normally go? Does it push
20	you inside the exclusion zone, or outside the
21	exclusion zone?
22	MR. AMWAY: The way we actually have our
23	procedures set up is we implement the enabled region
24	at 62 percent. So it's active up to 62 percent core
25	flow, which gives us margin to the 60 percent
I	I

(202) 234-4433

	47
1	requirement.
2	MEMBER ABDEL-KHALIK: So even if there was
3	
4	MR. AMWAY: So even if it was in a non-
5	conservative direction, we're still bounded the way we
6	set the system parameters.
7	MEMBER ABDEL-KHALIK: By the way you set
8	it up?
9	MR. AMWAY: That's correct.
10	MEMBER ABDEL-KHALIK: Okay, thank you.
11	MR. AMWAY: On Slide 32, I discuss the
12	2003 stability event. That event was initiated by a
13	component failure that resulted in a high to low speed
14	transfer of both reactor recirculation pumps. In that
15	event, the period-based detection algorithm initiated
16	an automatic scram, because of core-wide oscillations.
17	The reactor in the post-trip event review,
18	we determined that the reactor was properly tripped by
19	the period-based detection algorithm. However, we did
20	see some unexpected confirmation count resets prior to
21	the scram.
22	The post-review analysis determined that
23	two parameter settings needed to be changed, to
24	address the confirmation count resets, and those
25	parameters changes had been implemented for a BWR
ļ	I

(202) 234-4433

	48
1	owner's group recommendation.
2	MEMBER ABDEL-KHALIK: So the net effect of
3	these resets was a delay in reactor trip?
4	MR. AMWAY: That's correct.
5	MEMBER ABDEL-KHALIK: And how much of a
6	delay was that, time-wise?
7	MR. AMWAY: I would have to take that as
8	an action to take a look. It was, I mean I was on the
9	event review team that looked at that data.
10	I can tell you that the backup stability
11	protection actions that the operators would normally
12	take and look for in that event were to the point that
13	the operators even saw any oscillatory behavior, when
14	the period-based detection algorithms scrammed the
15	reactor.
16	CHAIRMAN ARMIJO: But we're talking
17	seconds, minutes, hours?
18	MR. AMWAY: Seconds.
19	CHAIRMAN ARMIJO: Seconds, okay.
20	MEMBER ABDEL-KHALIK: So you'll follow up
21	on this, and let us know?
22	MR. AMWAY: I will follow up on the actual
23	time delay between when we think the reactor should
24	have
25	MEMBER ABDEL-KHALIK: Should have tripped,
	I

(202) 234-4433

	49
1	and the time when it actually tripped.
2	MR. AMWAY: Correct, and when it actually
3	did, but that is a period of seconds.
4	MEMBER ABDEL-KHALIK: Okay, thank you.
5	MR. AMWAY: You're welcome. Effects of
6	extended power uprate on the long-term stability
7	solution. There are no methods changes for extended
8	power uprate. The maximum rod line remains the same,
9	and that is the maximum extended load line limit
10	analysis boundary.
11	The OPRM armed region maintains the same
12	level of stability protection. Cycle-specific set
13	point analysis captures core design variations.
14	Option 3 long-term stability solution remains
15	unchanged, and the Option 3 OPRM set points will be
16	developed based on plant-specific DIVOM curves for the
17	extended power uprate cycle-specific reload analysis.
18	That concludes the overview of the Option
19	3. We'll move on to the next topic area, the ATWS
20	mitigation for Nine Mile 2. We'll start off with a
21	review of the mitigation system design features at
22	Nine Mile 2. We have a redundant reactivity control
23	system that is there to protect against ATWS events
24	and provide mitigation actions.
25	That system is initiated on RPV high
ļ	

(202) 234-4433

1 pressure of 1,065 psig. At time zero, once that 2 system actuates, we get a backup scram method, which 3 is the alternate rod insertion. At the same time, 4 time zero, we get an automatic reactor recirc pump 5 trip, to slow speed. Normally, the plant would be at high speed operation of the recirc pumps. 6 7 At 60 hertz operation, that would transfer 8 to low speed at 15 hertz. At 25 seconds into the 9 transient, which the IRCSS is initiated if reactor 10 power remains above four percent, which means the ARI was ineffective at completing the scram, then we get 11 an automatic feedwater runback. 12 That's going to drop reactor water level 13 14 down to where we want it for ATWS mitigation. It's 15 very effective at mitigating any instabilities that 16 may occur during the ATWS transient. We also at 25 17 seconds receive an automatic reactor recirc trip to off, which would be zero speed. 18 19 Ιf power remains above four reactor percent, at 98 seconds, we get automatic boron 20 injection, and that's with both trains of standby 21 liquid control. 22 MEMBER ABDEL-KHALIK: And where does the 23 24 98 come from? MR. AMWAY: The 98 seconds is a timer 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

50

1	that's built into the redundant reactivity control
2	system. In our accident analysis, we assume 120
3	seconds. So the 98 seconds bounds the 120 second
4	analysis.

5 When prepared for the simulator we demonstration, that demonstration was performed in 6 7 2009. So it was before any operator-specific EPU training on EPU conditions. 8 The crews were provided with a 10 or 15 minute brief, just to say this is what 9 EPU is in terms of power levels, steam flow, feedwater 10 flows, and I used an SRO for the demonstration that is 11 not part of the extended power uprate team, to avoid 12 biasing the operator response. 13

14 The purpose of the setup was to confirm 15 the expectation that the current procedures that exist and the actions and action times, are 16 today, address the ATWS event at EPU 17 sufficient to conditions, post-EPU compared to current license 18 19 thermal power.

The initial conditions that we set up prior to the demonstration. We establish a reactor power, a full EPU power level of 39.88 megawatts thermal and 99 percent core flow, which is consistent with the upper end of the MELLLA boundary. We establish a pressure pool temperature at 90 degree

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

51

52 1 Fahrenheit, and a suppression pool level at 199.5 2 Service water temperature, 84 degrees feet. 3 Fahrenheit, and no control rod motion occurred during 4 the scram. These initial conditions are consistent 5 with worse case conditions that could occur prior to 6 7 the ATWS initiation, and it's also consistent with the 8 design analysis inputs. 9 As a result of that demonstration, we 10 confirmed that the operators are able to place both loops of suppression pool cooling in service in 404 11 seconds, which is well within the assumed action time 12 1,080 seconds. We were able to achieve hot 13 of 14 shutdown in 406 seconds, and we maintained peak 15 suppression pool temperature below the heat capacity 16 temperature limit, with a five degree margin. 17 It's also important to note that five degree margin is based on a pressure band of 800 to 18 19 1,000 pounds, which is the normal pressure that we would maintain post-ATWS, until we confirmed that we 20 were in hot shutdown. There is alternate strategies 21 available, that if the approach the heat capacity 22 temperature limit, we would take manual action to 23 24 reduce reactor pressure, to gain margin for the heat capacity temperature limit, and avoid the blowdown. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	MEMBER ABDEL-KHALIK: Do you have a
2	schematic of how your power flow map will change after
3	this power uprate? I'm particularly interested in the
4	upper right corner of the power flow map.
5	MR. AMWAY: I do have that. If it's okay,
6	if you let me get through here, before I conclude this
7	presentation I can bring up my backup slides and show
8	you the power to flow map.
9	MEMBER ABDEL-KHALIK: Thank you.
10	MR. GUZMAN: This is Rich Guzman. After
11	the break, we can actually get this laptop working,
12	and we do have backup slides available. Particularly
13	if it's something we need to go in closed session, we
14	can also cover it during the closed session.
15	CHAIRMAN ARMIJO: Yes. Probably we'll
16	finish this part of the presentation, then take a
17	break, and so
18	MR. AMWAY: I can review the two loop
19	power flow map right at the end of this presentation,
20	I've got a few more pages, and Joel, that's going to
21	be my backup Slide No. 10, if you want to get that
22	ready.
23	So continuing on with Slide No. 37, for
24	the MISV closure with failure to scram, as I stated,
25	the containment parameters remain well within design
	I

(202) 234-4433

	54
1	analysis, and when we evaluated the simulator response
2	to compare critical parameter response, they closely
3	matched the design analysis for that event.
4	For turbine trip with failure to scram, we
5	set up the same initial conditions, which again
6	conform for the worse case conditions expected, and
7	are consistent with the Design analysis inputs for
8	that event. The results of the turbine trip with
9	failure to scram, we again demonstrated the operators
10	can place both loops of suppression pool cooling in
11	service at rated flow, in 425 seconds.
12	Again, that's well within the assumed
13	action time of 1,080 seconds. We achieved hot
14	shutdown at 465 seconds. We maintained a suppression
15	pool temperature margin to heat capacity temperature
16	limit of 19 degrees Fahrenheit. Containment
17	parameters remained well within design limits, and
18	again the plant reference simulator behavior, in terms
19	of critical parameter response, closely matched the
20	analysis.
21	MEMBER ABDEL-KHALIK: Well, what are you
22	trying to prove by the fourth bullet?
23	MR. AMWAY: The fourth bullet being the
24	containment parameters
25	MEMBER ABDEL-KHALIK: Right, indicated by
I	I

(202) 234-4433

	55
1	the simulator.
2	MR. AMWAY: Oh. It would be the fourth or
3	the fifth bullet then?
4	MEMBER ABDEL-KHALIK: Either this slide or
5	Slide 37. It's the same kind of information.
6	MR. AMWAY: Okay. The containment
7	parameters, I'm speaking there in terms of the
8	suppression pool, peak temperature, the containment
9	pressures in both the dry well and the supp chamber,
10	those are the parameters I'm discussing.
11	The design analysis assumes approximately
12	six to seven psig for these events. That's largely
13	driven by the expected suppression pool temperature
14	response.
15	MEMBER ABDEL-KHALIK: But I was just
16	trying to get to the point of what are you trying to
17	let's go back to Slide 37, please. So if we look
18	at the fourth bullet here, okay, what are you trying
19	to prove with this statement?
20	MR. AMWAY: What I'm trying to prove is
21	that the operator that we can meet the operator
22	response times, and maintain the containment parameter
23	within design assumptions, or design analysis for
24	these events.
25	MEMBER ABDEL-KHALIK: Is this a reflection
I	I

(202) 234-4433

	56
1	on the simulator model, or a reflection on the design
2	analysis, or a reflection on the operator ability to
3	respond to the event?
4	MR. AMWAY: It's based on the operator's
5	ability to respond to the event.
6	MEMBER ABDEL-KHALIK: So this is not a
7	statement regarding the fidelity of the simulator?
8	MR. AMWAY: No.
9	MR. INCH: The simulator's not an
10	engineered model. We don't use it for design. We use
11	it for operator training. It's been benchmarked to
12	plant data, and transient data in accordance with the
13	guidance. I think there's, you know, for simulator
14	fidelity.
15	MEMBER ABDEL-KHALIK: And that's why I'm
16	asking the questions, right. The simulator is not an
17	engineering model. It's simply an empirical model
18	that's fit to analysis and plant data. So what does
19	this statement tell you, other than
20	MR. AMWAY: What I was trying to
21	demonstrate was the simulator was providing an
22	accurate training tool to the operators in this event.
23	So what I did was I looked at critical parameters. So
24	I'll give you an example. For the boron initiation
25	temperature, 110 degrees.
	1

(202) 234-4433

	57
1	The analysis assumption assumes that we
2	would reach that temperature limit of 110 degrees in
3	59 seconds. When I reviewed the simulator data, it
4	achieved 110 degrees in 60 seconds.
5	MEMBER ABDEL-KHALIK: Sure, because
6	MR. AMWAY: In other words, it's just a
7	qualitative analysis to say the simulator's performing
8	similarly to how we expect the plant to behave, based
9	on our design analysis.
10	MEMBER ABDEL-KHALIK: But isn't that a
11	circular argument? If the simulator is based on the
12	analysis, wouldn't you expect it to perform according
13	to what the analysis said it should do?
14	MR. AMWAY: I would, and I'm not trying to
15	qualify the simulator by that, but just to make sure
16	that we have the simulator modeled to match what the
17	design analysis says.
18	CHAIRMAN ARMIJO: But basically, the
19	operators didn't have to do anything different for
20	this event at EPU than they would have done at current
21	licensed thermal power?
22	MR. AMWAY: That is correct.
23	CHAIRMAN ARMIJO: And you demonstrated
24	that.
25	MR. AMWAY: That's right.
ļ	I

(202) 234-4433

	58
1	CHAIRMAN ARMIJO: That's what I get out of
2	this.
3	MR. AMWAY: And that's really what we were
4	trying to demonstrate with this, that we can use the
5	same EOPs, same EOP actions, same action times and
6	mitigate the event.
7	CHAIRMAN ARMIJO: But if, just for this
8	slide, the only thing that you might expect to have
9	changed was the margin on the suppression pool
10	temperature.
11	MEMBER SHACK: Well, if he actually, if
12	the operators took 1,500 seconds rather than 404
13	seconds, then the other bullets wouldn't have
14	followed.
15	CHAIRMAN ARMIJO: Sure.
16	MR. AMWAY: That's correct.
17	MEMBER ABDEL-KHALIK: Oh, I see.
18	MEMBER SHACK: I mean that's so it
19	really is a test of the operator action, assuming that
20	in fact the design analysis
21	MEMBER ABDEL-KHALIK: Is valid.
22	MEMBER SHACK: Is valid. But you know,
23	what else can you expect?
24	MEMBER ABDEL-KHALIK: In a sense, you
25	know, if the response on the procedure matches the
ļ	1

(202) 234-4433

	59
1	assumptions in the analysis, and since the
2	MEMBER SHACK: Because you expect it to.
3	(Simultaneous speaking.)
4	MEMBER ABDEL-KHALIK: The simulator is
5	sort of fit into what the analysis says, you would
6	expect it
7	MEMBER SHACK: But you want to make sure
8	that in fact that operators can do what the analysis
9	assumes they do, and they seem to have they do it
10	with some margin.
11	MEMBER ABDEL-KHALIK: I think I
12	understand.
13	MR. AMWAY: That brings me to Slide No.
14	40, the conclusions. The conclusion of the
15	demonstration showed that the existing procedures,
16	operator reaction times and strategies are effective
17	in mitigating ATWS and ATWS instability events.
18	Nine Mile 2 features an ATWS recirc trip
19	function, and as a result, the transient power levels
20	are primarily based on the maximum control rod line,
21	which is unchanged for extended power uprate, and that
22	operators can perform actions in a timely manner, to
23	bring the plant to safe shutdown.
24	CHAIRMAN ARMIJO: If you could bring up
25	that backup slide and take a look at it before we take
	1

(202) 234-4433

	60
1	a break.
2	MR. INCH: We want to take a break first,
3	to look at it.
4	CHAIRMAN ARMIJO: Well, you know, I'd like
5	to wrap it up with this, because this is
6	(Simultaneous speaking.)
7	MR. AMWAY: I have a hard copy here.
8	CHAIRMAN ARMIJO: Can't get it up on the
9	screen conveniently?
10	MR. AMWAY: Well the staff presumably is
11	going to address the same issue after the break, so we
12	can do it either way.
13	CHAIRMAN ARMIJO: Let's get it done now.
14	We're a little bit ahead of schedule. Just take a
15	minute, to kind of freshen your mind.
16	(Off record discussion between panel
17	members.)
18	CHAIRMAN ARMIJO: Yeah, why don't we do
19	that? We'll reconvene at 10:00, give us a 15 minute
20	break.
21	(Whereupon, a short recess was taken.)
22	CHAIRMAN ARMIJO: Okay, let's come back
23	into session. I think now we'll address the question
24	before the break on the power flow map.
25	MEMBER ABDEL-KHALIK: I think you
Į	

	61
1	indicated that you will stay on MELLLA.
2	MR. AMWAY: That's correct.
3	MEMBER ABDEL-KHALIK: Could you show us
4	where the boundary is before the power uprate, and
5	where it's going to be after the power uprate?
6	MR. AMWAY: I can. This is our two loop
7	power flow operating map, and you can see on here
8	these are the backup stability protection regions that
9	are defined on our map that I spoke of, in that
10	section on stability. This line right here is the
11	MELLLA boundary, okay.
12	So right now, the operating point, this is
13	shown for extended power uprate, but our current
14	licensed thermal power is at roughly 85 percent, which
15	would be about right across in here, okay.
16	So the expanded domain is really above
17	this line, up to in this triangular area right here is
18	the EPU power level. Where we're permitted to operate
19	is anywhere within the white regions or the green
20	regions, okay.
21	So the difference between current license
22	thermal power and extended power uprate is this domain
23	that used to be our MELLLA domain. It's considerably
24	shrunk by, there's actually two lines shown here. The
25	Gulf 1 line that's indicated by this marker right
I	1

(202) 234-4433

	62
1	here, is the 100 percent rod line.
2	So the 100 percent rod line is defined as
3	the rod line at which if you get to 100 percent core
4	flow, you should be at 100 percent of rated power.
5	There is actually a thin boundary domain within those
6	two lines. It's very small. It's on the order of one
7	percent.
8	So we have used most of that MELLLA
9	operating room to achieve the uprate power level, such
10	that when we're at 100 percent of EPU power level,
11	we're in this corner.
12	MEMBER ABDEL-KHALIK: So you don't have
13	much
14	MR. AMWAY: We don't have much operating
15	room, which underscores the reasons why we're trying
16	to restore the original design margin in the reactor
17	recirc system, which will enable us to go into the
18	green region here, which will give us the operational
19	flexibility we need at 100 percent of rated power
20	for, you know, to account for small pattern
21	adjustments of the control rod system, and for, you
22	know, depletion of the fuel cycle.
23	MEMBER ABDEL-KHALIK: But you can go the
24	other way?
25	MR. AMWAY: I cannot go into this yellow
	I

	63
1	region.
2	MEMBER ABDEL-KHALIK: Right.
3	MR. AMWAY: I can only go, this is my
4	boundary to the left, and I can go all the way to the
5	green boundary on the right.
6	MEMBER ABDEL-KHALIK: Five percent.
7	MR. AMWAY: It's roughly about five
8	percent.
9	MEMBER ABDEL-KHALIK: How much will you
10	gain by this improvement in the jet pumps?
11	MR. AMWAY: Right now, and I'll ask George
12	to back me up a little bit on it, but we were going to
13	we would not be able to achieve EPU power level
14	with the existing condition of the jet pumps.
15	We would maximize our core flow, and we
16	would not be at an operating point consistent with
17	100 percent EPU power level. George, did you want to
18	add anything else?
19	MR. INCH: No, that's correct.
20	MEMBER ABDEL-KHALIK: So currently on this
21	map, where is your maximum core flow, given the fouled
22	condition of the jet pumps?
23	MR. INCH: Approximately 97 percent core
24	flow.
25	MR. AMWAY: So that would be
1	

(202) 234-4433

	64
1	MR. INCH: At our current power level.
2	MR. AMWAY:about right in this region.
3	The flow is across the bottom, so you'd be measuring
4	flow vertically, and they're in five percent
5	increments. So this is 100 percent core flow here.
6	This would be 95 percent core flow at this point.
7	MEMBER ABDEL-KHALIK: So is there a
8	condition being proposed, that the power uprate be
9	limited pending demonstrated performance of the
10	refurbished jet pumps?
11	MR. GUZMAN: This is Rich Guzman. We do
12	not have a proposed license condition on that at this
13	time. But certainly we'll take that in development of
14	our final safety evaluation. But I will certainly
15	talk to the staff regarding that matter, and update
16	our safety evaluation as needed, to address that
17	matter.
18	MR. INCH: But we definitely don't believe
19	there is any need for any license condition. I mean
20	that's a limitation of
21	MEMBER ABDEL-KHALIK: But you're assuming
22	that when you do that, you'll get the right flow, to
23	allow you to go to, you know, 120 percent of the
24	original license thermal power.
25	MR. INCH: If, for example, if the jet
I	I

(202) 234-4433

	65
1	pumps don't perform as designed, then we'll have a
2	shortfall in core flow, and we may not be able to
3	complete the test program up to 120. But more than
4	likely what will happen is that we won't be able to
5	use the full increase core flow domain. But we'll be
6	able to get to 120 percent.
7	Along the MELLLA line, 120 percent power
8	is at 99 percent core flow. So and if we go to
9	maximize dry flow on the system, we'll be able to get
10	there. So we'll be able to achieve 120 percent,
11	especially with the clean jet pumps.
12	MEMBER ABDEL-KHALIK: Okay. The point is
13	currently, the way the plant is, you can't get the
14	core flow required to allow you to remain within the
15	power flow map at 120 percent power.
16	MR. INCH: I'd state it a little bit
17	differently.
18	MEMBER ABDEL-KHALIK: Okay.
19	MR. INCH: We'll be within the power flow
20	map.
21	MEMBER ABDEL-KHALIK: Okay.
22	MR. INCH: We may not be able to
23	MEMBER ABDEL-KHALIK: To reach 120
24	percent.
25	(Simultaneous speaking.)
I	I

	66
1	MR. INCH:full power. But at all
2	times, we're within the licensing envelope.
3	MEMBER ABDEL-KHALIK: Sorry, okay. That's
4	fine.
5	MR. INCH: So that's why I was saying
6	MEMBER ABDEL-KHALIK: Well, wouldn't it be
7	reasonable then? I mean in other words, achievement
8	of 120 percent power and remaining within the power
9	flow map is contingent upon your ability to improve
10	the jet pump performance?
11	MR. INCH: Well, it's really an
12	operational flexibility issue, and Phil
13	MR. AMWAY: You can operate with a small
14	core flow window.
15	MEMBER ABDEL-KHALIK: But you can't even
16	get there now.
17	MR. INCH: Well, you can get there without
18	a flow window. Even with fouled jet pumps. You know
19	with clean jet pumps, we're going to be able to get to
20	99 percent core flow. We'll be able to get to the
21	full 105 percent core flow window.
22	There's no reason to anticipate any reason
23	why we wouldn't, because the design analysis and all
24	the original start-up testing supports that with a
25	clean jet pump, we'll get there, you know.
	I

(202) 234-4433

	67
1	Even with the higher DPs associated with
2	EPU, all the numbers say we'll be able to get to 104
3	percent rated core flow. So we'll be within the power
4	flow map the whole time.
5	MEMBER ABDEL-KHALIK: I guess this is
6	really not the place to argue it, but you know, my
7	feeling is that without demonstrated performance of
8	the new jet pumps, it's
9	MEMBER SHACK: That's sort of his problem.
10	He has to stay within the power flow map.
11	MR. INCH: Right.
12	MR. AMWAY: I'm going to stay within the
13	power flow map.
14	MEMBER ABDEL-KHALIK: Regardless.
15	MR. AMWAY: I've got nothing that tells me
16	I can deviate. The way I see it, I mean we're taking
17	out the existing inlet mixers, replacing them with the
18	same type of inlet mixer that I have today. The
19	reason why I'm doing that is to restore the original
20	design margin of what the system was designed to do
21	from day one when the plant was built.
22	It's not really a change, in terms of a
23	different type of jet pump that would have different
24	flow characteristics. It has all the same flow
25	characteristics of the jet pumps today.
	I

(202) 234-4433

	68
1	CHAIRMAN ARMIJO: And you'll demonstrate
2	that in your power ascension test program.
3	MR. AMWAY: Right.
4	CHAIRMAN ARMIJO: So it's a flexibility
5	issue, really.
6	MR. AMWAY: Yes.
7	MEMBER ABDEL-KHALIK: We'll just argue
8	this point. We'll think about it. Thank you.
9	MR. AMWAY: Are there any other questions
10	on the power flow map?
11	CHAIRMAN ARMIJO: Just keep it around.
12	(Laughter.)
13	CHAIRMAN ARMIJO: All right. I think
14	we're going to go now to Peter.
15	MR. INCH: Oh, I do have an answer to the
16	materials question, the 316 stainless.
17	CHAIRMAN ARMIJO: Oh yes.
18	MR. INCH: It's not the nuclear grade, but
19	it is low carbon.
20	CHAIRMAN ARMIJO: Right.
21	MR. INCH: The carbon level is .02.
22	CHAIRMAN ARMIJO: Probably .03, isn't it?
23	MR. INCH: .023, I believe. It's a low
24	carbon.
25	CHAIRMAN ARMIJO: It's a low carbon,
Į	

	69
1	right. Okay. It is
2	MEMBER SHACK: The spec on low carbon is
3	.03, so he's well within that.
4	CHAIRMAN ARMIJO: 03, yeah. Okay, thank
5	you.
6	MEMBER REMPE: Maybe it's a closed session
7	question, but are there other plants that have used
8	these new jet pumps with this new coating and had
9	great experience? Or would you rather talk about it
10	later?
11	MR. INCH: I think we need to discuss it
12	later on that.
13	MEMBER REMPE: Okay.
14	MR. AMWAY: Thank you.
15	MR. GUZMAN: Good morning. At this time,
16	the NRC staff will be presenting the Nine Mile Point
17	2 EPU ATWS instability review, specifically covering
18	the audited areas that they covered, which the
19	licensee did mention earlier. This presentation will
20	be followed with an open session version of the fuel
21	methods discussion by Dr. Yarsky, and then at that
22	point, we'll go to closed session.
23	All right. So with that, I'm going to
24	turn it over to Dr. Huang, to introduce his team, and
25	go with the first slide.
ļ	I

(202) 234-4433

	70
1	DR. HUANG: Yes. I'm Tai Huang, from
2	Reactor System Branch, along with Dr. Jose March-
3	Leuba, who will present the subcommittee member on the
4	staff evaluation on the Nine Mile Point 2 EPU.
5	There are two portion of the review. One
6	is, you know, the submittal of available documents on
7	their Option 3, long-term stability solution
8	implementation, and second one would be the staff
9	audit on their simulator, to verify whether their
10	operating reactor, operating procedural to the
11	training of their operator are adequate.
12	So that current long-term stability
13	implementation, according to the staff evaluation,
14	it's adequate for EPU. They satisfy the 10 CFR Part
15	50 design criteria 10 reactor design, and 12,
16	suppression of the reactor power oscillation.
17	So level of protection in EPU is similar
18	to the current licensed thermal power, and as well as
19	the staff audit goes, we conclude that the Nine Mile
20	Point 2 operator show good understanding of stability
21	in ATWS issue for EPU, in staff observations of
22	operators' action in the simulator support customary,
23	assume a 120 second delay, assume for calculation.
24	You know, in their run, I mean the license
25	run, you see they're using less than 120 seconds
11	I

(202) 234-4433

1 there. Nine Mile Point 2 EOP adequate for EPU, as the staff evaluation in SER shows. As we go on for that 2 3 generic, you know, on that power flow map here, what 4 the different from the curling (ph) thermal power to 5 the EPU, you can see, you know, that in the power flow diagram here, you know, curling thermal power is 6 right, corner is right here. 7 8 MEMBER SHACK: You need to do it on the 9 mouse, I think. Yeah, okay, on the mouse. 10 DR. HUANG: CHAIRMAN ARMIJO: Use the mouse. 11 Yeah, okay, and then EPU be 12 DR. HUANG: extended out on that same narrow line to the EPU 13 14 corner. You see the power flow map just is shorter. 15 You see that EPU corner over there, all right. Then that there's no like end point are the same, is the 16 17 same, after, you know, that reactor trip. The end point would be the end point, 18 19 following the pump trip, right here on the corner. So EPU and curling thermal power condition and not that 20 would be the same point there. So that try to make 21 22 EPU does not change the end point after the recirculation pump trip. So that diagram show this. 23 24 Next slide. Now there are two parts. One is Option 3, long-term stability implementation on the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

71

	72
1	stability issue. You know the story on that, in the
2	licensee's presentation. This is just summarized.
3	They install since 1998 an arm since 2000, and plant
4	has a very good experience on this Option 3.
5	According to that information, 2003 Nine
6	Mile Point 2 event was detected and the scram
7	activated. So that mean that OPRM on the Option 3
8	system is working. But the lesson learned from that,
9	that the owners group, they come out with adjustment
10	of parameter setting, so that that's already done for
11	this plant.
12	So there's no impact expected for EPU.
13	Option 3 and DIVOM methodology are applicable to this
14	plant. Now ATWS, the second part on the ATWS
15	instability, that the Nine Mile Point 2 has
16	implemented latest EPZ and SAGs. So early level
17	reduction in boron injection are accomplished through
18	automated ATWS action. If high pressure is detected
19	with power grid at four percent, then there's
20	automatic flow runback, automatic boron injection.
21	At Nine Mile Point, we had excellent ATWS
22	response, because they have a select system injections
23	through high pressure core spray system on the top.
24	So they don't need to worry about at the bottom up
25	there. So they don't have that problem.
ļ	1

(202) 234-4433

73 1 So 100 percent water driving feedwater, for this Nine Mile Point 2. So EOPs are 2 yeah, 3 reviewed every cycle, but are not affected 4 significantly by EPU, because boron is injected in a 5 high pressure core spray system, and there is no need to define a hot shutdown boron weight, you know, 6 7 because from the top down. 8 So EPU does not affect heat capacity 9 limits slightly. It's by one degree, thermal 10 according to the analysis. So that's the only difference right there, right. 11 Now staff, second part. 12 The staff has audited, and the purpose of that when staff review the 13 14 performance, OPRM, there are two parts. OPRM Solution 15 3 system in the simulator, and staff reviewed the ATWS 16 performance in the simulator as three events. 17 One is turbine trip ATWS from the MELLLA MELLLA corner was simulated on stable corner. 18 19 observation in the slides. MELLLA corner will be the, you know, it's back in the slides, the MELLLA corner. 20 CHAIRMAN ARMIJO: The upper right-hand 21 22 corner. I understand that, okay. 23 DR. HUANG: 24 Mainstream oscillation valve, oscillation case ATWS from the MELLLA corner, and also from EPU conditions. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

74 1 So we compare to that, and we can show on later slide what the difference between EPU and curling thermal 2 power condition. 3 Nine Mile Point 2, you know, 4 submit additional information, because at the time the staff 5 audit at the plant, simulator not up to the EPU 6 7 conditions for the ATWS. So they ran the results and show additional information to the staff. So we show 8 9 that, you know, in a later presentation on the 10 simulator. Now turn over this to Jose, Dr. March-Leuba on the simulator portion. 11 DR. MARCH-LEUBA: I'm Jose March-Leuba 12 from Oak Ridge National Laboratory, an NRR consultant, 13 14 and the recent discussion this morning about what is 15 the purpose of doing simulator calculations of ATWS. Let me reemphasize your conclusion, that it is to 16 17 review the operator actions. You Yarsky, who 18 can ask Dr. has 19 presentation 20 minutes from now, how long it takes to run an ATWS calculation with engineering code, and 20 he'll tell you several days, if not weeks, of CPU 21 time. 22 This multiple 23 is with restarts and 24 multiple stops and backtracks, when the computer didn't do what it was supposed to, and five engineers 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	looking at the results, to see what feedwater strategy
2	you should have been using.
3	So we have two types of scenarios. I mean
4	one is a very accurate code trace, for example, of
5	Type G, that very accurately models the conservation
6	of energy, mass and momentum and does everything well.
7	On the other side, we have a pretty good simulator
8	model, but it has a human in the loop, as the real
9	operator doing the real control system on real time.
10	The first 120 seconds go in that time real
11	fast. So it is not abundantly clear to anybody
12	looking at it that with the 120 seconds, operator will
13	be able to do anything. So the purpose of this audit
14	that we performed was to go and in the real simulator
15	with real operator, to see what they're supposed to
16	do. My goal, just to give you a visual, is do we need
17	Superman in the control room to do everything that
18	we're asking these operators to do?
19	The conclusions after watching this is
20	indeed, we don't need Superman in there. The
21	operators are really well-trained, they're very
22	professional, and if I were to show you a video of the
23	operators handling an ATWS, and operators handling a
24	control room in motion, you will not see the
25	difference if you didn't have audio with it.
ļ	I

(202) 234-4433

1 The operators just walked to the panel. 2 They're not running from panel to panel. There's one operator in charge of level control; there's another 3 4 operator in charge of the control rows, and they're 5 doing their job. Indeed, the timing turned out to be -- the 120 seconds turned out to be very realistic. 6 7 So that was the purpose of --8 MEMBER ABDEL-KHALIK: During these 9 observations, the operators knew in advance what event 10 they're going to be responding to? DR. MARCH-LEUBA: Not always. They knew 11 they were going to be doing an ATWS, and I was going 12 to point out that you do all these runs in sequence. 13 14 So by the time you do the third simulation, they 15 already know the procedures by heart, okay. So there is a variability from time to time, but not always. 16 17 We do go there and we kind of moved operators into oh, why don't you run this case now for 18 19 us, and they didn't know it in advance. We really, we didn't do it on purpose, but we have extra time. 20 We said well, let's run now assumption that the control 21 room's not going at all, or let's run an assumption 22 23 that there's a leak doesn't come in at all. 24 So they, we do change. We put some variability in the system. But even if they were to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

76

	77
1	know it in advance, they have the procedures in big
2	panels and there's a flow chart, and the first thing
3	there the senior operator does is go get the right
4	flow chart, put it on top of the table, and he's just
5	following it.
6	He gets his marker, that's done. We enter
7	in this branch, that's done. So they're well-trained.
8	They're well-trained in advance. It's maybe knowing
9	what training scene they're going to get reduces their
10	anxiety a little bit, but I don't think it changes the
11	results.
12	So the real difference was probably
13	adrenalin. I realize the adrenalin will be flowing a
14	little differently, and they might be doing things a
15	little faster. But that's where training comes on.
16	You do faster the right procedure, and they do follow
17	procedure.
18	No operator goes and touches any panel
19	unless the senior operator from behind says "it's time
20	to do EOP 3G," and gives the order. So here we have
21	very small description, because I don't want to show
22	the details. Two MSRV closures, a cooling seal,
23	cooling licensing thermal power at EPU. The very
24	first thing that happens, you have this kickout here,
25	which this is the MSRV closure.
ļ	I

(202) 234-4433

	78
1	You have a big pressure transient, and
2	they have this on both. Right after that, you trip
3	the pumps, and the moment you trip the pumps, both
4	CLTP and EPU become the same condition. Then you see
5	approximately the same thing happens.
6	There are some difference out here, and
7	this is not due to the initial condition. It's what
8	the operator did differently in these two runs. This
9	run was done before, and this has to do with
10	maintaining level once you reach the fuel, and he did
11	it better on the second run. But there is no
12	significant difference between the two.
13	We'll go to the next slide here. Again,
14	this is not the engineering simulator, but it's pretty
15	good. It does concern mass and energy and momentum,
16	and we see it in Nine Mile Point, the peak capacity
17	temperature limit, which is 140 degrees F, or 139, is
18	not even reached for an MSRV closure. The maximum
19	temperature in the suppression pool is 130 degrees F.
20	This is in part because Nine Mile Point 2
21	is a really great ATWS plant. I mean if God forbid we
22	don't have an ATWS, but we're allowed to have an ATWS.
23	(Laughter.)
24	DR. MARCH-LEUBA: Because everything,
25	everything is right in that plant. I mean everything
ļ	

(202) 234-4433

	79
1	is done automatically. The boron is injected in the
2	top of the core, so it is no issue with remixing, and
3	there's plenty of margin to everything.
4	CHAIRMAN ARMIJO: A slight reduction in
5	margin is just the result of having more heat to get
6	rid of, or is that an artifact of the
7	DR. MARCH-LEUBA: It's an artifact. In
8	principle, there should be no difference in the HCTL,
9	heat capacity temperature limit, between the two.
10	CHAIRMAN ARMIJO: The actual.
11	DR. MARCH-LEUBA: Oh, you're talking about
12	the
13	CHAIRMAN ARMIJO: The actual could be
14	higher, wouldn't it? You're getting rid of more.
15	DR. MARCH-LEUBA: You're not getting rid
16	of more heat. That's the point. After you trip the
17	pumps, you are at the same power than you were before,
18	or an approximation. Now you do have a different
19	core, you have a different coefficient. So you end up
20	having the slightly different numbers, one, two, three
21	percent difference.
22	CHAIRMAN ARMIJO: Yes, okay.
23	DR. MARCH-LEUBA: The difference between
24	EPU and OLTP is in decay heat. There, you have 20
25	percent more decay heat. But as long as you don't go
I	I

(202) 234-4433

	80
1	into a one week extended outage, decay heat is
2	removed. It's before your scram and you are still
3	putting 50, 60 percent power into your containment.
4	That's what you have in ATWS.
5	So in summary, the staff found the EPU
6	operation acceptable from a stability point of view,
7	because the long-term solution, which is Solution 3,
8	provides exactly the same level of protection under
9	EPU than under the coolant power. Therefore, the OPRM
10	scram and the OPRM procedures satisfy the GDC, general
11	design criteria 10 and 12, which is the criteria that
12	we have to satisfy.
13	On the ATWS scenarios, really the ATWS
14	stability is not affected significantly by EPU event,
15	and it's because after you trip the pumps, you are in
16	exactly the same condition. I mean that satisfy all
17	our acceptance criteria, which are three criteria, if
18	you remember.
19	They are the core coolability, meaning you
20	don't destroy your fuel and put it in the bottom of
21	the vessel; you maintain vessel integrity; and you
22	maintain containment integrity, and the containment
23	integrity has to do with the suppression pool
24	temperature we were talking about before.
25	Just to emphasize that Nine Mile Point 2
l	l

(202) 234-4433

	81
1	has an excellent ATWS pro forma design, and I wish all
2	the plants were like it. I mean it has automatic
3	trips, so we really don't even have to worry about the
4	operator doing the right thing. The control system
5	will do it for them. They inject the boron on the top
6	of the core, so there's no mixing problems, and the
7	feedwater pumps are 100 percent motor-driven, meaning
8	that there is no issue with how much availability of
9	inventory to maintain level in the vessel during ATWS,
10	and that's the end of our presentation.
11	CHAIRMAN ARMIJO: Any questions? I
12	suspect one. Thank you.
13	MEMBER ABDEL-KHALIK: What is the last
14	bullet?
15	DR. MARCH-LEUBA: If you do not have
16	motor-driven feedwater pumps, which many plants don't;
17	they use steam-driven, the moment you close the MSRV,
18	then you don't have steam for those pumps and you
19	don't have feedwater, and you rely on other ACCS
20	systems, which are not as large.
21	If you were to increase, in some of these
22	plants, if you were to increase the power
23	significantly, you will not have enough. HPCI will
24	not be sufficient to maintain level. Here, you have
25	100 percent feedwater available. You don't have any
I	I

(202) 234-4433

(202) 234-4433

	82
1	problems.
2	MEMBER ABDEL-KHALIK: Okay, thank you.
3	CHAIRMAN ARMIJO: Thank you. Let's keep
4	going. I guess we're getting into Peter Yarsky's
5	presentation.
6	DR. YARSKY: Hello. I'm Dr. Peter Yarsky
7	from the staff. I'm a member of the Office of
8	Research, and I'm going to be talking about the
9	applicability of the interim methods to the Nine Mile
10	Point 2 extended power uprate LER. The basis for our
11	methods review was the safety evaluation for the
12	interim methods license and topical report, NEDC-
13	33173P.
14	In the course of our review, we have
15	confirmed that the EPU LER is fully consistent with
16	all of the conditions and limitations in the staff's
17	SE for the IMLTR. The IMLTR specifies 24 different
18	conditions and limitations. In the Nine Mile Point 2
19	EPU application, no supplements to the IMLTR are
20	referenced.
21	The Appendix A to the power uprate safety
22	analysis report provides the disposition of each of
23	the conditions limitations, and in the course of our
24	review, we found that all 24 conditions limitations
25	were acceptably met. In the course of our review, we
Į	

(202) 234-4433

conducted one regulatory audit pertaining to the IMLTR.

3 Then the audit had to do with initially 4 quiding LPRM calibration interval. The frequency with which the LPRMs are calibrated, 5 that's sometimes referred to as the LPRM update, affects core monitor 6 accuracy to predict core power distribution. 7 In the Nine Mile Point 2 technical specifications, the LPRM 8 9 calibration interval is specified in units of 10 effective full power hours. So at EPU conditions, the equivalent exposure interval between LPRM calibration 11 intervals would increase along with the thermal power 12 by approximately 15 percent. 13

14 We asked RAI SMPB-1, which was the only 15 RAI coming from the methods review, to address LPRM calibration interval, and the outcome of that RAI was 16 that the staff conducted an audit at GEH, to confirm 17 distribution uncertainties that 18 the power were 19 acceptable for this longer exposure interval.

20 MEMBER ABDEL-KHALIK: Was this issue 21 raised at the original stretch uprate? 22 DR. YARSKY: I'm not familiar with the 23 stretch power uprate review.

24 MEMBER ABDEL-KHALIK: But it would have 25 been equally applicable, wouldn't it?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

(202) 234-4433

83

84 1 DR. YARSKY: The extension of the interval, yes, would have been applicable, but not 2 3 equally applicable --4 (Simultaneous speaking.) 5 MEMBER ABDEL-KHALIK: Well, I mean essentially the same issue. 6 7 DR. YARSKY: Yes. I personally became first familiar with this topic during the review of 8 the Monticello EPU, and the conclusion and resolution 9 of that issue was different in Monticello than for 10 Nine Mile Point 2. 11 MEMBER ABDEL-KHALIK: 12 Okay. DR. YARSKY: Yes. The Subcommittee was 13 14 briefed on this issue during a generic review related to interim methods, I believe, in August. 15 CHAIRMAN ARMIJO: This summer. 16 17 DR. YARSKY: It is June, in June. So it's the same topic, just applied on a plant-specific 18 19 basis. 20 CHAIRMAN ARMIJO: Peter, if the uncertainties hadn't been acceptable, wouldn't the 21 pretty straightforward? You just 22 solution be recalibrate? 23 DR. YARSKY: The solution would have been 24 straightforward. It could easily have been an 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	adjustment to the LPRM calibration level. That has
2	been done by other licensees seeking power uprate.
3	CHAIRMAN ARMIJO: Okay.
4	DR. YARSKY: That's all I have. So
5	CHAIRMAN ARMIJO: That's it. Okay. Well
6	then I think we're ready to go into closed session,
7	and first I'd like the staff and the applicant to
8	confirm that the right people are here, and that
9	nobody's on the bridge line that shouldn't be on the
10	bridge line.
11	(Whereupon, at 10:29 a.m., the meeting was
12	adjourned to closed session.)
13	
ļ	

	86
1	OPEN SESSION
2	10:59 a.m.
3	CHAIRMAN ARMIJO: Ready to go.
4	MR. AMWAY: Okay. Before we begin the
5	material mechanical civil discussion, I wanted to
6	respond to the open question on the quantifying the
7	scram delay back in the Stability section, where I
8	presented the 2003 stability event for Nine Mile Point
9	2, and the question of that was what kind of time
10	delay do we have from the onset of oscillation to
11	where we should have scrammed to when we actually
12	scrammed the reactor.
13	The answer to that question is 15 to 20
14	seconds.
15	CHAIRMAN ARMIJO: That's the delta between
16	the ideal and the somewhat delayed because of the
17	resets?
18	MR. AMWAY: The time delay from when the
19	OPRM should have scrammed the reactor, based on
20	confirmation counts, and when it actually did, that
21	total delta is 15 to 20 seconds.
22	CHAIRMAN ARMIJO: Okay, and with the
23	corrections and the updates, that has disappeared
24	where you expected?
25	MR. AMWAY: That's correct. That would
Į	I

(202) 234-4433

	87
1	eliminate that 15 to 20 second delay.
2	MEMBER SHACK: And you're not going to run
3	an experiment to verify that?
4	MR. AMWAY: That is also correct.
5	CHAIRMAN ARMIJO: And we don't expect you
6	to.
7	MR. INCH: My name is George Inch. I'm
8	the physical engineer for mechanical structural for
9	the power uprate of Unit 2. I'm going to be going
10	through the reactor pressure vessel internal materials
11	issues, and related flow-induced vibration
12	evaluations.
13	So for the internals, the EPU evaluations
14	included the effect effluence, the effect of flow-
15	induced vibration, structural effects that are non
16	flow-induced vibration-related, and the impact of EPU
17	on the current material condition with regard to
18	intergranular stress corrosion cracking, and
19	irradiation-assisted stress corrosion cracking.
20	The accepted threshold for effluence,
21	where irradiation-assisted stress corrosion becomes a
22	significant factor in the growth rate of an existing
23	IGSCC flaw and potential IASCC that's accepted in the
24	BWR vessel internals program is 5E to the 20 neutrons
25	per centimeter squared.
	I

(202) 234-4433

	88
1	The existing components that are expected
2	to exceed that threshold in the current license term,
3	and that's expected, anticipated in the vessel
4	internal program scope are the top guide, the shroud
5	and the core plate.
6	CHAIRMAN ARMIJO: George, you know, that
7	threshold is a pretty fuzzy threshold. It's not a
8	hard line.
9	MR. INCH: Right.
10	CHAIRMAN ARMIJO: So what other components
11	are close to that 5 times 10 to the 20th? You know,
12	these were, this is the same list as pre-EPU.
13	MR. INCH: Yes.
14	CHAIRMAN ARMIJO: So as you go up 20
15	percent more in flux, I would expect more components
16	come into this population, and others get closer.
17	MR. INCH: Additional components really
18	don't come into the mix. I mean the effluence level
19	goes up, but the threshold, that threshold really
20	isn't exceeded by any additional components.
21	CHAIRMAN ARMIJO: So okay.
22	MR. INCH: So that the
23	MEMBER ABDEL-KHALIK: What's the next
24	I mean the question
25	(Simultaneous speaking.)
ļ	I

(202) 234-4433

	89
1	MR. INCH: It would be some jet pump
2	components that are in the core region. Everything
3	that's going to
4	(Simultaneous speaking.)
5	MR. INCH: And, you know, these are the
6	core region components and then, you know, what's
7	outside of the reactor, I mean the core shroud would
8	be the jet pump components. But because of the size
9	of the annular region, you get significant
10	attenuation. So those components are, you know, don't
11	approach
12	CHAIRMAN ARMIJO: None of the guide tubes,
13	whether it's drives or instrumentation.
14	MR. INCH: All the instrumentation in the
15	core is above this, just as a matter of course. So
16	and the guide tubes are all below the core plate, and
17	so you get significant attenuation as you go down.
18	CHAIRMAN ARMIJO: Okay. So these are
19	still the same components you worried about pre-EPU?
20	MR. INCH: Yes.
21	MEMBER ABDEL-KHALIK: What's the condition
22	of your shroud now?
23	MR. INCH: The Nine Mile Point 2 core
24	shroud has IGSCC cracking associated with the belt
25	line welds. The H-4 weld and H-5 weld have OD IGSCC
ļ	I

(202) 234-4433

90 1 cracking. Cracks are approximately 70 percent of the circumference. They're relatively shallow, as it's a 2 3 two inch shroud, and the cracks are less than half of 4 an inch in depth. 5 They were first identified in the baseline inspections performed in the 90's. I believe it was 6 7 in '97 where they were identified. We've 8 ultrasonically inspected those multiple times, at 9 least four times. 10 Since we implemented hydrogen water chemistry and noble metals, we haven't seen measurable 11 growth that we consider to be real growth. With UT, 12 there's always variation. So you never match it up 13 14 within the uncertainty of the deployment tools and the UT devices. But the condition has been stable for at 15 16 least ten years. ARMIJO: Are these shrouds 17 CHAIRMAN clamped? Have you put any of these --18 19 MR. INCH: There's no tie rods. There's no tie rods, so 20 CHAIRMAN ARMIJO: it's just as-built, and you're monitoring and testing 21 the cracks? 22 The flaw evaluation for MR. INCH: Yes. 23 the core shroud has been updated for the power uprate

higher loads for differential pressures. 25 It's, that

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

24

	91
1	flaw evaluation still shows that the normal upset
2	event is the controlling event for the core shroud.
3	It's not the faulted event.
4	The vertical welds, all the vertical welds
5	are clean. There's no cracking on the vertical welds.
6	Very minor cracking on other locations, less than ten
7	percent, very typical. So the location of the
8	indications on the core shroud are consistent with the
9	understanding in the fabrication process. So it was
10	the final weld built
11	CHAIRMAN ARMIJO: After you, on the
12	shroud, since you've inspected it a lot, after you
13	implemented the hydrogen water chemistry and the noble
14	metals, have you found any new cracks that hadn't been
15	there pre-hydrogen?
16	MR. INCH: Not that we consider we
17	don't consider them new. The UTs have evolved over
18	the past ten years. I'm always seeing, you know, I
19	get a scan and the percent cracking is essentially the
20	same. But we get a little additional coverage at a
21	location. There's a lot of starts and stops, but
22	there's been no significant change in with the new
23	cracking.
24	CHAIRMAN ARMIJO: Okay, just a couple of
25	other things. On the top guide and the core plate,

(202) 234-4433

	92
1	have you, do you have any can you inspect them
2	well, and do you have cracks, IGSCC, in those
3	components?
4	MR. INCH: The top guide, we have the
5	inspection can be performed of the top guide grid
6	beams. That was inspections that were recently added
7	to the VIP program, approximately
8	MEMBER SHACK: These are enhanced VT1?
9	MR. INCH: These are enhanced VT1, where
10	we clear the cell and they have a cleaning process, to
11	get the enhanced visual capability. We've done,
12	completed an initial deployment of this new tool in
13	2010, and that worked quite well. So we haven't
14	established that Unit 2A baseline yet on the top
15	guide, but we
16	CHAIRMAN ARMIJO: Have you seen anything
17	that looks like a crack?
18	MR. INCH: No, no. We've looked at two
19	cells. We've done standard refueling inspections.
20	We've looked at two cells with the enhanced VT1, and
21	we've done the standard VT inspections that would
22	normally detect any significant structural issues.
23	But we haven't completed the five percent baseline
24	that is recommended as planned for implementation over
25	the next
Į	I

(202) 234-4433

	93
1	MEMBER SHACK: Now these are one of these
2	milled top guides, right? Solid, or do you have the
3	interlocking beam kind of thing?
4	MR. INCH: This is a BWR-5, so it's not
5	the BWR-6 top guide.
6	MEMBER SHACK: The 6 is the one that's
7	milled out?
8	MR. INCH: I believe so.
9	CHAIRMAN ARMIJO: So these are
10	interlocking, welded?
11	MR. INCH: I'll verify that, but I'm
12	pretty sure these are interlocking designs.
13	MEMBER SHACK: So there's lots of corners
14	to look at.
15	CHAIRMAN ARMIJO: Okay so yeah, that's
16	the problem. Now the shroud is UT inspectible, but
17	what about the core plate?
18	MR. INCH: Core plate at Unit 2, the only
19	inspection requirements for core plate are for the
20	bolting, and it's part of the program. The evaluation
21	that we have right now is a generic evaluation for the
22	inspectability of the bolting, and so we have in
23	place, as pretty much all the, most of the BWRs do, an
24	interim analyses that shows that the bolting will
25	retain its integrity through the 40-year term.
Į	I

(202) 234-4433

	94
1	The VIP is working on alternatives to the
2	inspection recommendations, so
3	CHAIRMAN ARMIJO: But basically, they're
4	not inspectible?
5	MR. INCH: Not currently, that's correct.
6	CHAIRMAN ARMIJO: Okay. So you're really
7	relying on the analysis and the mitigation afforded
8	by the water chemistry?
9	MR. INCH: That's correct.
10	CHAIRMAN ARMIJO: Okay.
11	MR. INCH: So the effect of effluence is
12	not insignificant on the core shroud. It's a 40 to 60
13	percent increase at peak locations in the core barrel
14	there, and you know, that's because we're loading
15	higher batch fractions and the higher power bundles
16	are getting closer. So there is a, it does increase
17	effluence.
18	We have taken that fluence out through the
19	60-year term, looked at the peak fluence. We stay
20	within the currently accepted range, where hydrogen
21	water chemistry will remain effective.
22	MEMBER SHACK: What is that end of life
23	fluence?
24	MR. INCH: Let me get back to you. It's
25	less than 10 to the 22, I know that.
	I

(202) 234-4433

	95
1	MEMBER SHACK: It's cold comfort, but
2	MR. INCH: It's above the threshold by
3	which radiation-assisted crack growth rate
4	acceleration is expected to occur. We also have
5	reduced ductibility of the materials.
6	CHAIRMAN ARMIJO: Sure.
7	MR. INCH: So we're within, we're applying
8	the VIP guidance.
9	MEMBER SHACK: The normal guide for
10	effectiveness of hydrogen water chemistry, somewhere
11	around three times ten to the 21, and it's sounds like
12	you're probably pushing that.
13	MR. INCH: Towards the end of the 60
14	years. Yes, we'll be pushing that number. But let me
15	verify, get you a good number on that. But so that
16	covers the slide, I think.
17	CHAIRMAN ARMIJO: Not really. Your last
18	bullet, I just, I think it's I have to argue with
19	that statement, because your actions are much better
20	than the words on this chart.
21	The fluence does everything. It does
22	nothing good for you except make power. Your
23	radiolysis rate goes up in proportion to the power
24	uprates. So that means the water chemistry gets more
25	aggressive.

(202) 234-4433

	96
1	But you're compensating that by increasing
2	your hydrogen input rate by the same ratio.
3	MR. INCH: Yes.
4	CHAIRMAN ARMIJO: So you are addressing
5	that. Radiation hardening is going to push things in
6	the wrong direction. So I looked at your various
7	documents, and you're doing everything that I think
8	can be done, that addresses the mechanism of this
9	stress corrosion cracking, either IASCC or IGSCC.
10	But I just take exception to that
11	statement, that it doesn't represent a significant
12	increase in potential, because I think it really does,
13	and your actions indicate that you kind of think so
14	too. So I don't know where that statement came from.
15	But maybe you want to get rid of it in the full
16	Committee.
17	MR. INCH: We don't need to debate that,
18	except the flow-induced vibration of the internal,
19	Nine Mile's well in the pack of the GE operating
20	experience for the flow rates that were taken in the
21	Unit 2. The components that are really impacted are
22	the shroud head separator assembly, because you've got
23	the higher steam flows coming up through it.
24	The jet pumps to a lesser extent. As I
25	said, it's a 1.9 percent effect there versus an 18
ļ	I

(202) 234-4433

	97
1	percent on a steam flow.
2	DR. WALLIS: So the effect is really a V-
3	squared effect? Is that what it does?
4	MR. INCH: It's a turbulent that's how
5	it's evaluated, yes. For those internals, it's a
6	velocity squared due to turbulent loading.
7	DR. WALLIS: Resonance or anything?
8	MR. INCH: No. They do a separation
9	evaluation to any vortex setting, and that's the
10	standard procedure that GE's used. The peak stresses
11	for that shroud head remain less than 5,000. GE uses
12	a 10,000 psi criteria. So the internals really are
13	robustly made. There's significant margin to any FIV
14	issues.
15	The top head region where you have the
16	higher steam flow, those velocities remain very low,
17	where you have the spray nozzles and the head or the
18	head vent lines. So those stay below two feet per
19	second, and the cross-flow configuration has been
20	taken into account, and there's large margins there.
21	So the conclusion is, you know, pretty
22	clear that there's no impact or detrimental effects on
23	any of the internals due to potential for the FIV.
24	Structural effects. You know, the higher
25	power levels, you do have higher internal pressure
I	

(202) 234-4433

	98
1	differences, and there's some small temperature
2	changes. All the analyses are done consistent with
3	the original design bases. For Unit 2, there's really
4	no structural change has been made to the internals
5	that need to be considered. As I said, the
6	thermohydraulic changes are fairly straightforward.
7	With the pressure differences and the
8	temperature changes, there's a little bit change in
9	the carry-under fractions. The way GE does these
10	analyses is with scaling factors to the original
11	design, and with that, you know, for example the core
12	plate and core shroud goes from 11,000 to about
13	14,000, and that's with primary membrane bending is
14	limiting, with an allowable of 21,450 psi.
15	So the shroud head bolt. The limiting
16	component there is the T bolt and bearing stress, and
17	that goes from 8,000 to 13,500, with an allowable of
18	18,000. Now that shroud head bolt analyses is taking
19	credit for the reduced number of shroud head bolts
20	than we actually currently have installed. So it's a
21	conservative evaluation.
22	So all the usage factors really didn't
23	have for the internals, they didn't have a significant
24	change. The only one of note was really the shroud
25	went from .43 to .507. That's primarily due to the
ļ	I

(202) 234-4433

(202) 234-4433

	99
1	slightly larger temperature variation on heat up and
2	cool-downs. That's not a high cycle fatigue.
3	So all the internal components are fully
4	qualified, and as I mentioned previously, the core
5	shroud flaw evaluations that we work have been updated
6	to reflect the higher pressure differences, the higher
7	fluences, reflective of the power uprate condition.
8	We covered pretty well in the questions
9	the, you know, what's been done for IGSCC and IASCC.
10	It's procedurally controlled. The program that's been
11	implemented has always considered, you know, aging
12	effects and the higher fluence level. So the
13	selection of the components and the intervals that are
14	selected aren't impacted by the higher fluence levels.
15	They're still fairly conservative intervals for all
16	the components.
17	Like for the shroud, it's a maximum of ten
18	years, even with hydrogen water chemistry and
19	ultrasonic inspections. We talked about the hydrogen
20	water chemistry and noble metals. There is an
21	increase in the hydrogen, just to keep, maintain the
22	three to one molar ratio in the downcomer.
23	CHAIRMAN ARMIJO: How do you monitor the
24	molar ratio water chemistry program?
25	MR. INCH: At Unit 2, the implementation
I	

(202) 234-4433

	100
1	of the hydrogen water chemistry currently uses molar
2	ratio. We are evaluation the recently-issued staff
3	approved BWRVIP-62-Alpha guidance, where the staff has
4	allowed, on an interim basis, to use molar ratio. But
5	they want to see electrochemical potential monitoring
6	being performed, to credit the hydrogen water
7	chemistry. We haven't implemented that at Unit 2 at
8	this time.
9	CHAIRMAN ARMIJO: Yeah. Instrumentation
10	is tough. It's not necessarily survivable.
11	MR. INCH: Yes. That's a very challenging
12	request from the staff right now.
13	CHAIRMAN ARMIJO: Yes, yes. But molar
14	ratio gives you good indication that it's working.
15	MR. INCH: Yes.
16	CHAIRMAN ARMIJO: You have, also you have
17	online noble metal capability, so you don't have to do
18	this during an outage.
19	MR. INCH: Yes. We implemented, we were
20	one of the first plants to implement online. We did
21	it in 2008, and it's done on a yearly basis, and it
22	works. It's about two, two and a half weeks every
23	year done, at least 90 days after the new fuel is
24	installed, and it's working well for us.
25	It's much easier to do and less of a plant transient
	I

(202) 234-4433

	101
1	than the offline process.
2	MEMBER SHACK: Thank you, and you don't
3	have to I mean this goes on forever. You don't
4	ever have to do an offline noble metal injection
5	again?
6	MR. INCH: Yes. That's
7	MEMBER SHACK: That's the goal.
8	MR. INCH: That's the qualification of the
9	process, yes, that you don't have to ever do an
10	offline application. Yes, the details of the process
11	are, you know, I don't think we probably need to get
12	into. But it's a different particle size, much finer.
13	It's engineered to penetrate deeper into cracks, and
14	so
15	CHAIRMAN ARMIJO: So this is platinum that
16	you're added or not palladium?
17	MR. INCH: Yes. I believe with online,
18	they eliminated the, I think it was rhodium that they
19	had in there. But it's only platinum. So it's a
20	different cocktail that they're using. But it's
21	fundamentally the same.
22	CHAIRMAN ARMIJO: Okay.
23	MR. INCH: I think we already talked about
24	the control blade cracking. One of the impacts of
25	power uprate is scaling of the reactor pressure
	I

(202) 234-4433

vessel, you know, nozzles, and one of the -- so the scale factors were applied to the design bases fatigue 2 usage, accounting for both 40 and 60 years in design 4 bases.

5 When we get our license renewal for 60 years at Unit 2, it was identified that the feedwater 6 nozzle and another location in feedwater had the 7 potential to exceed one in the license renewal term. 8 9 At that time, we took a hard look at, you know, what's 10 the best way to approach this, and you know, design bases fatique usage calculations are usually very 11 conservative, and they take up a design cycle, and a 12 number of design cycles. 13

14 So when we looked at it, it was clear to 15 us that we could optimize, you know, get a more realistic usage factor by actually more accurately 16 So we committed for the locations that were 17 trending. predicted to be above one, to implement a fatique 18 19 monitoring program, such that long before we would approach one, we would be predicting it and could plan 20 any appropriate actions. 21

Those remain the case for the power uprate 22 The scaling of the -- well, before I go 23 conditions. 24 to that, the one location that we did select for fatigue monitoring using stress-based monitoring was 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

3

	103
1	the feedwater nozzle location. That's not unusual for
2	the BWRs. Where that location is part of power
3	uprate, we did a fatigue, a refined fatigue usage
4	calc.
5	MEMBER SHACK: Oh yeah. I guess what
6	caught my eye was computing usage with FatiguePro,
7	which has generally not been received well, unless
8	there's a new version of FatiguePro that eliminates
9	the one stress factor kind of approach.
10	MR. INCH: The numbers I'm showing here,
11	this is an important clarification; I'm on Slide 62,
12	these are based on design, not FatiguePro. So the
13	numbers we're quoting here for the EPU 40-year CUF are
14	a refined design basis usage for the 40 year term, not
15	keyed to FatiguePro.
16	But as you can see, the standard
17	multiplication factor for license renewal is a 1.5
18	factor on, you know, for the additional 20 years.
19	Even with the refined usage, we would still predict
20	the stainless steel clad portion of the feedwater
21	nozzle safe end to be above one.
22	So we're using FatiguePro right now. It
23	was first, the software was first installed in 2008,
24	as a simplified way and a more accurate way to count
25	cycle. We are doing the stress-based monitoring of
ļ	I

(202) 234-4433

	104
1	this location, and the current FatiguePro software
2	does use the simplified greens (ph) function. So the
3	RIS is applicable.
4	The EPU scaling is relatively small. It's
5	a six percent to 15 percent change, and
6	MEMBER SHACK: Now does that include an
7	environmental factor?
8	MR. INCH: No.
9	MEMBER SHACK: What would happen if I put
10	in an environmental factor?
11	MR. INCH: This usage factor is a design
12	bases usage factor. The power, the license renewal
13	provisions have evaluations for environmental effects
14	in the license renewal term. So the FatiguePro
15	monitoring does include environmental usage, and I
16	believe there was an environmental usage evaluation
17	done.
18	I would have to get back to you on this
19	particular nozzle, on how environmental fatigue
20	affects these numbers.
21	MEMBER SHACK: If you could go back to the
22	next bullet, it says there's still a discussion going
23	on, I guess.
24	MR. INCH: Well, yes. You know, the whole
25	industry is working to address the RIS. There is a
I	

(202) 234-4433

	105
1	Structural Integrity is working on a FatiguePro update
2	that would address the full NB-32 fatigue methodology,
3	and to include environmental fatigue usage in the
4	rules. You know, right now, we're not required in
5	using this to manage below one in the 40 year term.
6	So we enter the license renewal term in
7	2026 at Unit 2, so there's quite a bit of time to get
8	this right. We are committed to implementing, you
9	know, fatigue monitoring, and as part of that, the RIS
10	requires us to evaluate that, you know, before we're
11	actually crediting it for usage below one. So that is
12	what our current status us.
13	CHAIRMAN ARMIJO: George, could you go
14	back to Slide 62?
15	MR. INCH: Yes.
16	CHAIRMAN ARMIJO: I don't understand how
17	the cumulative usage factor at current license thermal
18	power is higher than that at EPU. Am I reading this
19	thing wrong, or
20	MR. INCH: Well, that's the refined
21	calculation.
22	CHAIRMAN ARMIJO: But they're two
23	different calculations?
24	MR. INCH: Yes. The original calc had a,
25	for multiple events, had
Į	I

	106
1	CHAIRMAN ARMIJO: Well, you would say that
2	was a crude calculation?
3	MR. INCH: It was conservative, and you
4	know, there's a way
5	MEMBER SHACK: Unconcerned. It was less
6	than one. That was all you needed.
7	MR. INCH: It's the way they did the
8	calcs. If you were less than one, you were done.
9	Everybody knew they were conservative, so
10	CHAIRMAN ARMIJO: Okay. So now this is a
11	refined?
12	MR. INCH: Yes.
13	CHAIRMAN ARMIJO: The EPU is a refined?
14	Okay.
15	MR. INCH: Now when I say "refined," what
16	they did is they went back and looked at each
17	particular event, and then for each event, there was
18	a thermal FEA, where they looked at what the actual
19	cycling on the stress
20	CHAIRMAN ARMIJO: It was detailed.
21	MR. INCH: It was a detailed accumulation
22	for each event.
23	MEMBER SHACK: Now it's got four
24	significant figures rather than three?
25	CHAIRMAN ARMIJO: Yeah, right. It's
	I

(202) 234-4433

	107
1	really good.
2	(Simultaneous speaking.)
3	CHAIRMAN ARMIJO: So it's an analysis of
4	so you did cycle by cycle you did?
5	MR. INCH: Yes. There's, to get these
6	numbers, they started from a natural baseline, and
7	then they refined each event, and then refined each
8	cycle and what the usage for each cycle is.
9	
10	CHAIRMAN ARMIJO: And then they added them
11	up?
12	MR. INCH: And then added them up.
13	CHAIRMAN ARMIJO: Okay, got it.
14	DR. WALLIS: What is this EPU scaling
15	factor small mean? What's that?
16	MR. INCH: You know, relative to what does
17	EPU do to the usage factor?
18	DR. WALLIS: But does it mean that without
19	the refined calculation, it would actually increase
20	the CUF above one?
21	MR. INCH: I'm not sure I understand here.
22	DR. WALLIS: Well, to me, it implies that
23	the EPU increases things by 6 percent to 15 percent.
24	MEMBER SHACK: Right.
25	DR. WALLIS: So if you use the old CUF
	I

(202) 234-4433

	108
1	calculation, you get something closer to one?
2	MR. INCH: That's right.
3	DR. WALLIS: Okay. So you need to refine
4	the calculation?
5	MR. INCH: Yes sir.
6	DR. WALLIS: Thank you.
7	CHAIRMAN ARMIJO: This scaling, it's a
8	stress, scaling on stress?
9	MR. INCH: Yes.
10	CHAIRMAN ARMIJO: Certainly not cycles.
11	MR. INCH: Right. It's a scaling on
12	stress.
13	CHAIRMAN ARMIJO: Okay, okay.
14	MR. INCH: That's all I have.
15	CHAIRMAN ARMIJO: Well, we have a dilemma
16	here. We could take a quick look here. The staff,
17	let me ask the staff. Could they get their
18	presentation done in half an hour?
19	MR. GUZMAN: Actually, the assigned
20	presenter is not here.
21	CHAIRMAN ARMIJO: Well, that answered my
22	question. I think we'll take an early lunch, and
23	we'll be back at 11:30, unless somebody's got an
24	objection to that. At 12:30, I'm sorry.
25	(Simultaneous speaking.)
I	

(202) 234-4433

```
109
1
                 CHAIRMAN ARMIJO: Okay. We're going to
     take a lunch. Be back at 12:30. Thank you, Bill.
2
                  (Whereupon, at 11:31 a.m., a luncheon
3
4
     recess was taken.)
5
                         NEAL R. GROSS
```

	110
1	AFTERNOON SESSION
2	12:57 p.m.
3	CHAIRMAN ARMIJO: Okay, gentlemen. We're
4	going to reconvene. For those who don't know, that
5	jackhammer is actually outside. It's not in the
6	building, so structurally the building is sound, I
7	think.
8	MEMBER SHACK: Of course, there's
9	resonance.
10	CHAIRMAN ARMIJO: Right. So we'll go
11	ahead. Rich, you put your group is up.
12	MR. GUZMAN: Good afternoon again. My
13	name is Rich Guzman. Before we transition over to the
14	staff giving their presentations on the materials and
15	mechanicals and civil engineering reviews, the
16	licensee requested to give some clarifications from
17	the morning meeting. I thought this would be a good
18	time to provide that, before we start delving into the
19	materials and steam dryer discussions.
20	MR. WENGLOSKI: Good afternoon. Phil
21	Wengloski, Constellation Energy Nuclear Group. I just
22	wanted to clarify my response. It was brought to my
23	attention on the control blade cracking issue, that my
24	answer could have been taken one of two different
25	ways.
ļ	I

(202) 234-4433

	111
1	The response I intended to give, which was
2	consistent with George's Slide 60, is that we do not
3	have the control blade models, marathon models as
4	susceptible to the cracking. We may have other
5	marathon models present in the core, but not the
6	models that are susceptible to cracking.
7	CHAIRMAN ARMIJO: Is yours a C lattice
8	plant?
9	MR. WENGLOSKI: That's correct.
10	CHAIRMAN ARMIJO: Yes, but I saw the
11	comment about C lattice plants having susceptibility
12	to this problem, and I think that's very I don't
13	want to (papers shuffling). Anyway, it doesn't make
14	any sense to me. But you do have marathon blades in
15	a C lattice plant?
16	MR. WENGLOSKI: Correct.
17	CHAIRMAN ARMIJO: And GE has told you
18	that's not susceptible?
19	MR. WENGLOSKI: Right. The models that
20	we're using are not susceptible to cracking.
21	CHAIRMAN ARMIJO: Time well tell, but
22	okay. But you do have marathon blades?
23	MR. WENGLOSKI: Correct.
24	CHAIRMAN ARMIJO: Okay.
25	MR. WENGLOSKI: Any further questions?
l	I

(202) 234-4433

	112
1	CHAIRMAN ARMIJO: No.
2	MR. WENGLOSKI: Thank you for that.
3	MR. INCH: Yes, George Inch. The peak
4	effluence were approaching 22 EFPY (ph), probably out
5	two years. So it's approximately 2E to 21 each
6	location on the H4 well, projected out at EPU
7	effluences until the end of 40 years would be 2E to
8	the 21. Then it goes to 4E to the 21 at that H4
9	location.
10	CHAIRMAN ARMIJO: That's at 60 year or 54
11	
12	MR. INCH: The 54 EFPY in 60 years, yes.
13	So it looks like we're just below at the 60 year mark
14	
15	MEMBER SHACK: Well, people have various
16	opinions.
17	CHAIRMAN ARMIJO: About how long it will
18	last, how long it will work.
19	MR. INCH: The top guide clearly is above
20	that at these locations.
21	MR. GUZMAN: Okay. With that, we'll go
22	ahead and start our presentation. Pat Purtscher will
23	be giving his brief on the materials engineering
24	review. Pat, you want to get started?
25	MR. PURTSCHER: Okay. We looked for the
I	1

(202) 234-4433

	113
1	reactor vessel embrittlement, and there are several
2	factors that we always consider. The EPU is going to
3	increase the total fluence in the vessel, so we're
4	going to check initially the material surveillance
5	program.
6	That's the fundamental program we use to
7	monitor. We build with the limiting materials in the
8	plants. At Nine Mile, they are enrolled in the BWR
9	VIP integrated surveillance program.
10	As part of that program, they're not a
11	host plant. They're limiting materials are
12	characterized by capsules that are in other plants,
13	BWR plants. So the change in effluence for Nine Mile
14	doesn't directly affect the capsules that will be used
15	to characterize the limiting beltline materials.
16	They do still have two capsules in their
17	reactor vessel that are being irradiated, but there's
18	no current plans to use those at this point. They're
19	backup capsules. Some of the other factors that we
20	look at are all related to Appendix G requirements.
21	The PT limits, the upper shelf energy projections for
22	all the materials in the beltline, and then there's an
23	inspection exemption that's been granted for the circ
24	weld on the vessel.
25	So we examine that to see if that, how
I	I

(202) 234-4433

	114
1	that changes with the increased fluence. In all
2	cases, they have passed, they still meet these
3	requirements from Appendix G, with significant margins
4	remaining. So there really is no concern from the
5	staff, based on this increased fluence due to the EPU.
6	Next slide. We're now going to look at
7	the internals and the core support materials. Again,
8	due to the now that the fluences are higher on the
9	internals than they're on the reactor vessel itself,
10	and as they mentioned in their presentation, now the
11	top guide, the shroud and the core plate are all
12	exceeding what we take to be the threshold for
13	radiation-assisted stress corrosion cracking.
14	So now we consider them to be susceptible
15	materials once they get above that threshold. To
16	address that, they have instituted, you know, using
17	BWRVIP-62, that's been characterized as a Category 3
18	plant, they're using noble metal additions to mitigate
19	the possibility of stress corrosion cracking. This is
20	following all the EPRI guidelines.
21	So they are following all the industry
22	standards, and the staff sees no issues related to the
23	increased fluence.
24	MEMBER SHACK: Well, there was sort of a
25	discussion this morning that as a Category 3B plant,
ļ	I

(202) 234-4433

	115
1	where they're only looking at molar ratio, you guys
2	take a somewhat skeptical view of that, and you're
3	asking them to do ECP measurements.
4	MR. PURTSCHER: Well, but they did do one
5	time measurement of EPC when they instituted noble
6	metal online additions. So they did it once, and kind
7	of validated the secondary parameters that they're
8	monitoring.
9	So as long as they monitored, as long as
10	they checked that once, and there have been no major
11	changes to the noding and the environment, we feel
12	that's enough justification. So with that one time
13	measurement, to validate it.
14	So really that's, to the vessels and the
15	internals, that's really the summary. Just to say it
16	again, the EPU has a minimal effect on the
17	embrittlement issues, the upper shelf values, the PT
18	limits and the surveillance program. These three
19	internal components we've talked about, that exceeded
20	the threshold for IASCC, are being managed by BWRVIP
21	documents that have been accepted the staff.
22	So this, since there should be no problem
23	associated with the increased fluence related to the
24	EPU. So we're satisfied with their submittal. Okay.
25	Any questions?

(202) 234-4433

	116
1	MR. TSIRIGOTIS: My name is Alexander
2	Tsirigotis. I work in the Mechanical and Civil
3	Engineering Branch, which reviews the EPU impact on
4	the structural integrity of the system structural
5	components.
6	Mainly, the pressure retaining components
7	and the supports, the reactor pressure vessels and
8	supports, the control mechanisms, reactor situation
9	pumps and supports, reactor pressure vessel internals
10	and core support, and the seismic and dynamic
11	qualifications of the mechanical and electrical
12	equipment.
13	The approach to evaluate the Nine Mile
14	Point 2 EPU impact on the structural integrity of the
15	follows the guidance which is provided in the
16	staff-approved Z topical report entitled "Constant
17	Pressure Power Uprate," and it's licensing report
18	NEDC-33004P-A.
19	This is commonly referred to at the BWR
20	EPU as the CLTR. The CLTR also refers into two other
21	Z topical reports, the ELTR-1 and ELTR-2, which
22	provide more detail on the generic guidelines and
23	generic evaluations.
24	These two topical reports, together with
25	associated NRC staff position paper on safety
ļ	1

(202) 234-4433

1 evaluation, incorporated in the topical reports, have 2 been applied for all BWR extended power uprate 3 submittals, since the NRC review and acceptance or 4 endorsement for --.

5 The staff approved the CLTR is for constant pressure power uprates, commonly referred to 6 7 as CPPUs. With a power increase up to 20 percent from 8 the plant's 100 percent original thermal power, and 9 with a minimum and maximum steam and feedwater flow 10 increases up to about 24 percent.

The CPPU approach assumes that the maximum 11 reactor pressure dome remains unchanged from the 12 licensed power level, and the dome temperature is also 13 14 unchanged. The Nine Mile Point 2 proposed EPU does 15 not change the current plant maximum normal operating 16 reactor dome pressure, and it increases the original 17 thermal power by 20 percent, with a maximum steam and increases of nearly feedwater flow 24 percent. 18 19 Therefore, we found that it meets the limitations of the topical reports. 20

In addition to the main steam and feedwater piping, which are the main systems that are affected by the EPU due to its increase in the flows, other piping systems that are mostly affected by the EPU due to increased system temperatures and pressures

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

The licensee's evaluation of flow-induced vibration levels for piping follows the vibration 6 acceptance criteria found in ASME OM-S/G Part 3, which provides requirements for pre-operational and initial 8 9 start-up vibration testing of nuclear power plant pipe and systems.

The OM-S/G Part 3 provides monitoring 11 requirements, acceptance criteria, and it includes 12 equations for calculating the vibratory alternating 13 14 stress for Class 1 and Class 2 and 3 piping, and for 15 thickness for Class 1 piping. It also contains guidance and visual inspection methods, displacement 16 vibrational deflectional values 17 methods and for various pipe sizes and spans. 18

19 The structural evaluations for the system structures and components under EPU conditions employ 20 the plant design base 21 current methodology and acceptance criteria. The structural evaluations also 22 met design basis code and record allowable values. 23 24 That's why we found there is reasonable assurance 25 that the plant SSAs (ph) important to safety as

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

7

10

	119
1	structurally adequate to perform the internal design
2	functions under the EPU conditions.
3	MEMBER SHACK: But you can't really be
4	sure they're not going to need any modifications to
5	the pipe supports until you run that FIV test, right?
6	I mean they could well need to do something.
7	MR. TSIRIGOTIS: The SIV test?
8	MEMBER SHACK: The FIV test.
9	MR. TSIRIGOTIS: Oh yes. You are right
10	about that. During the so far, the evaluations
11	that they have done, they have found out that they
12	don't need any piping modifications or any support
13	modifications or additions. During the start-up
14	testing, they had a plan in place which they will
15	monitor the vibration levels, and if there is a need
16	for any modifications through the corrective code,
17	they will provide corrective actions to do that work.
18	CHAIRMAN ARMIJO: But that will indicate
19	that their analysis wasn't really that good
20	(Simultaneous speaking.)
21	MR. TSIRIGOTIS: They have already done
22	I understand what you're saying. They have already
23	done walk-downs to establish the baseline. From those
24	walk-downs, they have identified whether there is an
25	issue with the vibration levels that the pipe's
	I

(202) 234-4433

	120
1	supposed to see.
2	CHAIRMAN ARMIJO: That's where they'll put
3	instrumentation.
4	MR. TSIRIGOTIS: Right, right. They have
5	instrumentation. They have there are locations
6	which have been gauged, strain gauges, and
7	CHAIRMAN ARMIJO: Accelerometers.
8	MR. TSIRIGOTIS: Accelerometers where
9	needed. The OM-S/G Part 3 is being applied in just
10	about every power uprate, and it's during the initial
11	start-up also for the plants.
12	MEMBER SHACK: What's been the experience?
13	I mean if they found they need to add supports, or the
14	analysis have been generally satisfactory?
15	MR. TSIRIGOTIS: So far from what we've
16	seen in the power uprates from the walk-downs, they
17	haven't identified, from what I know at least, they
18	haven't identified an issue where they needed to add
19	something, mainly because when they established the
20	baseline, they project that baseline to the EPU flows,
21	with velocity square, which is customary to do so. If
22	they find an issue, then they take a corrective
23	action.
24	DR. BONACA: I have a question regarding
25	environmental qualification.
Į	1

(202) 234-4433

	121
1	MR. TSIRIGOTIS: Uh-huh.
2	DR. BONACA: There is a statement in the
3	SER that says that, you know, for inside containment,
4	licensee noted that post local conditions, radiation
5	levels will increase above the levels using the
6	current EQ program. Then it says the NRC staff
7	reviewed the increase EQ evaluation and confirmed that
8	the increase should not affect the qualification of
9	the equipment. What would be the basis for that?
10	MR. TSIRIGOTIS: I'm sorry. I can't hear
11	you very well. Are you reading from the SER, from the
12	staff SER?
13	DR. BONACA: Yes, yes, page 57.
14	MR. TSIRIGOTIS: 57. That's not my page.
15	(Simultaneous speaking.)
16	DR. BONACA: Yeah, inside containment.
17	MR. TSIRIGOTIS: Is that Section 2.2.5,
18	seismic and dynamic qualifications of mechanical and
19	electrical equipment?
20	DR. BONACA: It must be, yes. Do you have
21	the page?
22	(Off record discussion.)
23	MR. TSIRIGOTIS: I don't see that. That's
24	not in my evaluation. That's the same part. I think
25	it might be in the electrical part. Anyway, it's in
	I

(202) 234-4433

	122
1	the SER.
2	(Simultaneous speaking.)
3	DR. BONACA: stand by. Clearly, the
4	radiation field must be higher. Why is
5	(Simultaneous speaking.)
6	MR. TSIRIGOTIS: (reading to self)
7	MR. GUZMAN: What we can do is we'll take
8	that I just need to get back to the safety
9	evaluation, and find out the technical staff
10	DR. BONACA: What's the basis for it, yes.
11	MR. TSIRIGOTIS: This is not my writing.
12	I will find out whose review this falls under, and
13	we'll get back to you.
14	DR. BONACA: Okay, I appreciate it.
15	Thanks.
16	CHAIRMAN ARMIJO: Okay. Any other
17	questions from the committee?
18	(No response.)
19	CHAIRMAN ARMIJO: All right. I think
20	we're ready to move on to the next topic.
21	MR. GUZMAN: The next topic is intended to
22	be in closed session.
23	CHAIRMAN ARMIJO: So we're going to go
24	into closed session. Again, remind everyone here, it
25	should only be folks from Nine Mile and their
I	I

```
(202) 234-4433
```

	123
1	consultants, and make sure the bridge line is closed.
2	(Whereupon, at 1:15 p.m., the meeting
3	adjourned to closed session.)
4	
	NEAL R. GROSS

	124
1	OPEN SESSION
2	4:35 p.m.
3	CHAIRMAN ARMIJO: If not, we're going to
4	come out of closed session and do a public session,
5	and at this point, I'll ask if there are any comments
6	for members of the public, either on the bridge line
7	or open the door so they can come in to this room. Is
8	there anyone on the bridge line who would like to make
9	a comment? If so, please identify yourself.
10	(No response.)
11	CHAIRMAN ARMIJO: Maybe the bridge line
12	isn't open yet. Peter will is it open now?
13	DR. YARSKY: The bridge line is open.
14	CHAIRMAN ARMIJO: Okay. The bridge line's
15	open. Is there anyone, a member of the public, who
16	would like to make a comment concerning this review?
17	If so, please identify yourself.
18	(No response.)
19	CHAIRMAN ARMIJO: Okay. How about someone
20	in here, n this meeting room?
21	(No response.)
22	CHAIRMAN ARMIJO: Okay. I'm going to take
23	that as there's no comment from the public. At this
24	point, I'd like to turn it over, just as far as
25	Subcommittee discussion. I'd just like to go around
ļ	I

(202) 234-4433

	125
1	the table, and see if there's any added points that
2	the members would like to make, and then after that,
3	maybe try and give the staff and licensee some
4	guidance on the full Committee meeting, because this
5	obviously all has to get done in two hours. So that's
6	the challenge. Joy?
7	MEMBER REMPE: Some education. During the
8	discussion, this last topic, there was a mention of an
9	upcoming audit. Could you provide a little more
10	background? I think Stephen was the one who mentioned
11	it and was talking to people in the crowd. What
12	exactly is going to happen here? Is there going to be
13	an end to end audit or what exactly is it?
14	DR. SHAH: This is Vik Shah. I think we
15	have to plan it out before we finalize what kind of
16	audit we'll be doing. I think we are going to review
17	the (breaking up) 194, and during that review, we will
18	be having an audit. I think we will have a (breaking
19	up).
20	MEMBER REMPE: I'm having trouble
21	understanding you.
22	CHAIRMAN ARMIJO: It's breaking up.
23	DR. BASAVARAJU: We have already submitted
24	a topical report.
25	MEMBER REMPE: Who submitted it? Say it
ļ	I

(202) 234-4433

(202) 234-4433

	126
1	again. Who submitted the topical?
2	DR. BASAVARAJU: BWR Vessel Internals
3	program. They submitted a topical report, BWR 194.
4	MEMBER REMPE: Okay.
5	DR. BASAVARAJU: And it just came in for
6	review, and that is the one which will summarize and
7	give all the steam dryer evaluation, the ACM and the
8	structural evaluation. So during that review, we were
9	planning to have an audit, but we have not still
10	identified the times or extent. So that's
11	MEMBER REMPE: Thank you.
12	MEMBER BANERJEE: What is the time scale?
13	I don't want to go out of turn, because this is new
14	information. What is the time scale for review of the
15	topical and I assume it will come to us as well?
16	DR. BASAVARAJU: Yes.
17	DR. SHAH: It's about two years, right
18	Pani?
19	DR. BASAVARAJU: Yes. It's a topical
20	report. Because this is an important topical report,
21	we may accelerate it. But the typical topical report
22	reviews, NRC's time is for two years.
23	CHAIRMAN ARMIJO: Okay. So it won't help
24	us for Nine Mile. Bill, nothing. Said? No, any
25	comments.
I	I

(202) 234-4433

	127
1	DR. BONACA: No. Well, a little input.
2	I thought in general that this was a good application.
3	I felt it was thorough and the steam dryer issue,
4	there are a number of questions which were raised
5	today. I think that I feel pretty comfortable with
6	what I saw.
7	CHAIRMAN ARMIJO: Thank you.
8	DR. BONACA: Anyway, I will make comments
9	to you.
10	CHAIRMAN ARMIJO: Yes, okay, in your
11	report. Mr. Wallis?
12	DR. WALLIS: Well, I thought on most
13	issues, Nine Mile Point people did a very good job.
14	I'm still working on the steam dryer. I'm still
15	puzzled, because I'm told that this small scale test
16	was only used to establish resonance, and yet I read
17	the report, the objective was to develop a bump-up
18	factor relating (coughing) to those anticipated at
19	EPU, to use in the acoustic circuit model.
20	I mean the whole thing says, the whole
21	purpose of the report is to develop numbers to put
22	into a model. I'm really puzzled by this assertion
23	that none of that was the case. I don't understand
24	that, and I'm still working on the numbers. I have
25	learned some things which have been very helpful about
	I

(202) 234-4433

	128
1	some of the issues I raise, and I thank the
2	participants for doing that for me.
3	CHAIRMAN ARMIJO: Sanjoy.
4	MEMBER BANERJEE: Nothing more than I said
5	already.
6	CHAIRMAN ARMIJO: Nothing more. Jack?
7	MEMBER SIEBER: I have no comments or
8	questions at this time.
9	CHAIRMAN ARMIJO: Okay, all right. Well,
10	my view is I think the Nine Mile people and staff are
11	very well prepared for this. I think we can beat the
12	steam dryer to death, but and we obviously can't,
13	won't be able to spend that much time at the full
14	committee meeting.
15	So that between the staff and the Nine
16	Mile, I think we really need one good presentation,
17	without any repetition at all. So you're going to
18	have to sort that out. I think the plant's in the
19	impression I got from the presentation, the plant's in
20	very good shape for EPU.
21	I think the work you've done on the
22	materials, and on the various upgrades and
23	modifications, that goes a long way to making me feel
24	pretty comfortable
25	MEMBER SHACK: And they use that good
I	I

(202) 234-4433

	129
1	barrier clad
2	CHAIRMAN ARMIJO: And they use my
3	cladding, so that's great.
4	(Laughter.)
5	CHAIRMAN ARMIJO: But I'm still surprised
6	at how conservative the fuel design is. It's got more
7	capability, but that's okay. But overall, I think
8	you're well-prepared. I think our problem will be to
9	manage the time, so that you get, the full Committee
10	gets a good feel for the entire plant, and that we
11	don't let the steam dryer dominate everything.
12	So that's going to be hard to do, but I
13	think since so many of us have heard this
14	presentation, and as soon as we get Mr. Wallis' report
15	and Mario's reports, we probably can sort out our
16	questions and focus down. But overall, I think you're
17	well-prepared. We'll work with Rich.
18	MR. GUZMAN: I was hoping I could close
19	out one quick action item, and I wanted to make sure
20	I responded to Dr. Bonaca's question and concern on
21	part of the safety evaluation, and I'll just restate
22	it. The section is part of the Electroengineering
23	review, under Environmental Qualifications for
24	Electrical Equipment.
25	The statement said that "The NRC staff
I	

(202) 234-4433

	130
1	reviewed the licensee's environmental qualification
2	evaluation, and confirmed that the increase should not
3	affect the qualification of the EQ equipment located
4	inside containment." The question is why? Because
5	they should not. Does it or does it not?
6	The staff recognizes the obscurity in that
7	wording, and so it was in error, and we should or we
8	will correct that, and
9	MEMBER SHACK: No, I think the question
10	was that the statement was made that it exceeded the
11	environmental qualification, and then the statement
12	followed that
13	MR. GUZMAN: Okay.
14	MEMBER SHACK: It's still all right.
15	MR. GUZMAN: Still all right, okay.
16	MEMBER SHACK: It was that first line that
17	was the killer.
18	MR.GUZMAN: Okay, yes. So right. So the
19	preceding statement says the licensee noted that the
20	radiation levels would increase above the levels used
21	in the current EQ program.
22	MEMBER SHACK: Right.
23	MR. GUZMAN: And NRC staff review
24	confirmed that these increases should not affect the
25	qualifications. So I guess the question is why, and
ļ	

(202) 234-4433

	131
1	if you go further in the safety evaluation, I mean
2	recognizing that the "should not" was not the
3	appropriate words. It should have said, for lack of
4	a better word, "would not" or "will not."
5	But further down in the safety evaluation,
6	it does go into the, you know, that the staff reviewed
7	the licensee's assessment of the effects of the
8	proposed EPU on EQ equipment, and ultimately we
9	reviewed it against 10 C.F.R. 5049, which is the
10	electrical equipment qualification.
11	MEMBER SHACK: Maybe you should give
12	something like "Despite this step."
13	MR. GUZMAN: Right. So we recognize that
14	the wording needed to be tightened up. It certainly
15	should have been more definitive and explain it. So
16	we will make sure on the final
17	DR. BONACA: This is an example of the way
18	that the information is provided. There were two
19	other, three other in the SER, I believe goes to the
20	outside containment portion. There is a statement
21	that simply says that's okay, and the question is why
22	is it okay?
23	I mean it's counterintuitive that if you
24	have a higher radiation field, it doesn't make any
25	difference. There has to be some reason why, and I
ļ	I

(202) 234-4433

	132
1	mean the qualification exceeded the value. Therefore,
2	there was margin. But something should be said.
3	MR. GUZMAN: And as you know, I mean the
4	intent is to give you the best product that we can for
5	the draft safety evaluation. But in parallel, what we
6	tried to is we actually send the draft safety
7	evaluation to the licensee. They provide some
8	comments to us and we will incorporate those comments,
9	as well as another round of quality check by the
10	staff, to strengthen the product, which would be the
11	final safety evaluation.
12	So there will be some changes, and we will
13	note that one, as well as the other ones that you did
14	note.
15	DR. BONACA: Okay, thank you.
16	CHAIRMAN ARMIJO: Okay. Well with that,
17	I think I'd again like to thank Nine Mile Point and
18	the staff. Good presentations. Good discussion, and
19	with that we're going to adjourn the meeting. Thank
20	you.
21	(Whereupon, at 4:46 p.m., the meeting was
22	adjourned.)
23	
24	
25	
I	1

ACRS Subcommittee on Power Uprates

NRC Staff Review Nine Mile Point, Unit 2 Extended Power Uprate October 5, 2011

Opening Remarks

Louise Lund Deputy Director Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Opening Remarks

- NRC staff effort
 - Pre-application review and public meetings
 - Acceptance Review
 - Requests for additional information
- Challenging review areas included:
 - Steam dryer stress analysis
 - Thermal Hydraulic Design: Stability / ATWS-Stability
 - Interim Methods: Applicability of GE Methods to Expanded Operating Domains
- Draft SE no open technical issues

Introduction

Rich Guzman Senior Project Manager Division of Operating Reactor Licensing Office of Nuclear Reactor Regulation

Introduction

- Objective
- Background
 - NMPNS EPU Application May 27, 2009
 - 3467 to 3988 MWt, 15 % increase (521 MWt)
 - 20 % increase above original licensed thermal power

EPU Review Schedule

- Followed RS-001
- No linked licensing actions under review
- Supplemental responses to NRC staff RAIs
- EPU Implementation

Topics for Subcommittee

- NMPNS EPU Overview
- Anticipated Transient without Scram and Stability
- Fuel Methods IMLTR
- Materials and Mechanical & Civil Engineering
- Steam Dryer Analysis
- Review of open items / Conclusions

Nine Mile Point, Unit 2 Extended Power Uprate ACRS Subcommittee Meeting

Materials Engineering

Patrick Purtscher Vessel & Internals Integrity Branch October 5, 2011

Reactor Vessel Embrittlement

- EPU increases total fluence on RV
- RV Material Surveillance Program, Uses BWRVIP ISP, but not a host plant, still has 2 capsules in RV
- Meets Appendix G requirements for P-T limits, USE projections, circ weld inspection exemption, significant margins remain

Internals and Core Support Materials

- EPU increases total fluence on RV Internals
- Top guide, shroud, and core plate all exceed IASCC threshold for susceptibility
- BWRVIP-62, Category 3b plant uses NMCA for mitigation of SCC, follows EPRI guidelines for effectiveness

Conclusion

- EPU has minimal impact on RV embrittlement issues
- Three RVI components exceed threshold for IASCC, but adequately managed; Core plate – BWRVIP-25-A Top guide – BWRVIP-26-A Shroud – BWRVIP-76-A

QUESTIONS

Nine Mile Point, Unit 2 Extended Power Uprate ACRS Subcommittee Meeting

Mechanical & Civil Engineering Review

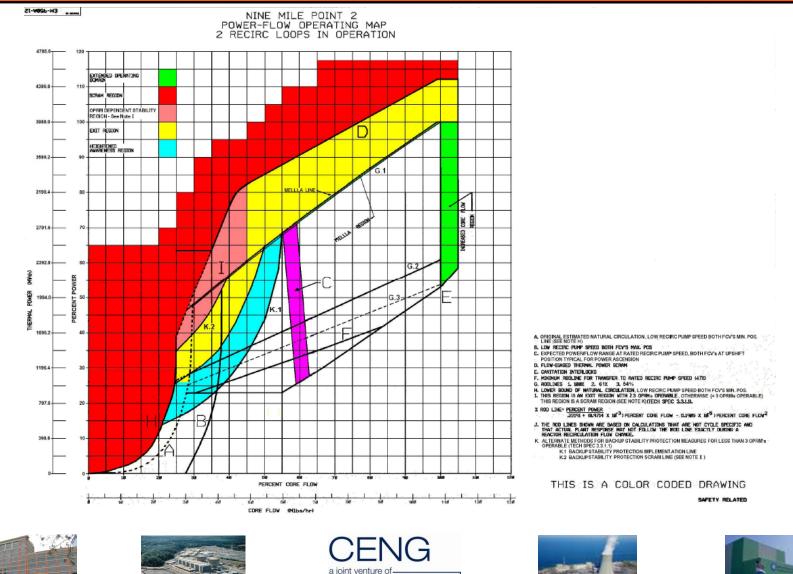
Alexander Tsirigotis Mechanical & Civil Engineering Branch October 5, 2011

Review Scope

- EPU impact on structural integrity of systems, structures, and components (SSCs):
 - Pressure-retaining components and their supports
 - RPV and supports
 - Control rod drive mechanisms
 - Reactor recirculation pumps and supports
 - RPV internals and core supports
 - Seismic and dynamic qualification of mechanical and electrical equipment.

Review Results

- Piping systems that are mainly affected from the EPU:
 - Main steam, condensate, feedwater, extraction steam and heater vents and drains.
 - Evaluation for FIV levels of piping in accordance with the ASME OM –S/G Part 3.
 - There are no modifications to piping and pipe supports that are required due to EPU.
- Structural evaluations of SSCs at EPU conditions employed current plant design basis methodology and acceptance criteria.
- Structural evaluations met design basis code allowable values.


Conclusion

 Reasonable assurance that plant SSCs important to safety are structurally adequate to perform intended design functions under EPU conditions.

QUESTIONS

Power / Flow Operating Map

Constellation Energy Sedf

ACRS Subcommittee Presentation Nine Mile Point 2 Extended Power Uprate

October 5, 2011

Nine Mile Point 2 Extended Power Uprate

NMP2 EPU Overview

Sam Belcher SVP-Site Operations

NMP2 EPU Agenda

Sam Belcher Overview Plant Modifications Dale Goodney Power Ascension Testing Phil Amway Anticipated Transient Without Scram (ATWS) Phil Amway and Stability CLOSED SESSION - Fuel Methods (IMLTR) Phil Wengloski — Material, Mechanical/Civil Engineering Topics George Inch **CLOSED SESSION - Steam Dryer Analysis** George Inch

NMP2 EPU Overview

- > GE BWR 5
- Mark II Containment
- Thermal Power
 - Original License Thermal Power (OLTP)
 - Current License Thermal Power (CLTP)
 - Stretch Uprate 104.3% (1995)
 - EPU Thermal Power (120% OLTP)
 - Implement 2nd Quarter 2012

3323 MWth 3467 MWth

3988 MWth

NMP2 EPU Overview (cont'd)

- > Attributes of the NMP2 constant pressure power uprate:
 - NMP2 is not requesting any Containment Accident Pressure (CAP) credit to support ECCS NPSH
 - No new fuel introduction; the current core and the EPU core are composed entirely of GE 14 fuel
 - The Alternative Source Term for accident radiological consequences was previously implemented using the EPU power level as a base assumption
- NMP2 has implemented Maximum Extended Load Line Limit Analysis (MELLLA) expanded operating domain

NMP2 EPU Overview (cont'd)

- The NYISO has reviewed and approved the EPU full power output - no grid modifications are necessary
- The first two phases of EPU modifications have been installed
- The third and final phase of modifications needed to support EPU operation will be complete by 2nd Quarter of 2012

Nine Mile Point 2 Extended Power Uprate

Plant Modifications

Dale Goodney EPU Lead Project Engineer

Plant Modifications

- General Approach
- Plant Parameters
- Installation Timeline
- Major Modifications
- > NMP2 Plant Improvements

Plant Modifications - General Approach

- Engineering studies were performed to evaluate structures, systems and components to determine the plant's ability to operate at EPU conditions
 - Analyzed effects of increase in steam flow, feedwater flow, reactor power and electrical output
 - Evaluations were based on NEDC-33004P-A, "Licensing Topical Report Constant Pressure Power Uprate," Revision 4 (CLTR)
 - Analyses are based on the target power level of 120% OLTP
 - Operating Experience was evaluated and applied

Plant Modifications - General Approach (cont'd)

- Design and operating margins were identified and evaluated for both NSSS and BOP systems
- Over 20 physical plant modifications were described in the License Amendment Request
 - Restore Material Condition
 - Instrumentation for data collection and analysis
 - Upgrades to restore design and operating margin at EPU conditions
- Installation began in 2007 and will continue through 2012 Refueling Outage

Plant Modifications - Plant Parameter Changes

Parameter	CLTP (104.3% OLTP)	EPU (120% OLTP)					
Thermal Power (MWth)	3467	3988					
Reactor Pressure (psia)	1035	1035					
Rated Steam Flow (Mlb/hr)	15.002	17.636					
Rated Feedwater Flow (Mlb/hr)	14.970	17.604					
Generator Output (Mwe)	1211	1369					
Feedwater Temperature (°F)	425.1	440.5					

Plant Modifications - Installation Timeline

 Replace Feedwater Heater Partial Bypass Around the Condensate Replace Feedwater Heater Drain Pumps and Motors Replace Low Pressure Turbine Cross Around Relie Valves 	2007 and 2008	2010 and 2011	2011 through 2012 Refueling
 Extraction Steam Expansion Joint Replacement Main Steam/Feedwater Pipe Supports 	Vibration Monitoring Strain GagesPartial Bypass Around the Condensate	 Heater Replace Feedwater Heater Drain Pumps and Motors Install Piping Vibration Monitoring Install Shielding for 	 Replace Feedwater Pump Motor Cables Recirculation Runback Initiation and Runback Rate Replace High Pressure Turbine Replace Low Pressure Turbine Cross Around Relief Valves Replace Low Pressure Turbine Atmospheric Relief Diaphragms Steam Dryer Modifications Feedwater Heater Rerate Generator Isolated Phase Bus Duct Cooling Improvements Improve Main Transformer Cooling Instrument Replacement and Scaling Improve Turbine Building HVAC Turbine Building Closed Loop Cooling Enhancements Extraction Steam Expansion Joint Replacement

Constellation Energy

eDF

Major Plant Modifications

- Condensate and Feedwater
 - Feedwater Pump Upgrades
 - Heater Drain Pumps and Motors
 - Reactor Recirculation Runback
- Steam Path
 - High Pressure Turbine
 - Cross-Around Relief Valves
 - Moisture Separator Reheater and 5th/6th Point Feedwater Heater Requalification
 - Steam Dryer

Major Plant Modifications (cont'd)

- Electrical/I&C
 - Isophase Bus Duct Cooling
 - Main Transformer Cooling
 - Technical Specification Instrument Setpoints
 - BOP Instrument Rescaling and Setpoints
- Auxiliary Support Systems
 - Turbine Building HVAC
 - Turbine Building Closed Loop Cooling

NMP2 Plant Improvements

- NMP2 has implemented, or is planning to implement prior to EPU, a number of upgrades to restore margin, improve equipment reliability and reduce risk. Examples are:
 - Replaced Third Point Feedwater Heaters in 2010
 - Increased Standby Liquid Control Relief Valve Margin in 2010
 - Performed Cooling Tower Upgrades in 2008 and 2010
 - New Feedwater Pump Seals in 2012
 - Replace Jet Pump Inlet Mixers in 2012
 - Several PRA-related risk reduction improvements. Since 2008, Core Damage Frequency (CDF) has been reduced by 78%

Nine Mile Point 2 Extended Power Uprate

Power Ascension Testing

Phil Amway EPU Operations Lead - SRO

Power Ascension Testing

- Preparation
- > Approach
- Schedule
- Fest Plan
- Acceptance Criteria and Actions

Power Ascension Testing - Preparation

- Test Objective Development
 - Satisfactory Equipment Performance
 - Careful, Monitored Approach to EPU Power
 - Meet Established Requirements
- > Roles & Responsibility Development
- Industry Benchmarking
- Test Plan and Implementing Test Procedure Development
- Power Ascension Test Training

Power Ascension Testing – Approach

- Similar to approach used in other EPUs Incremental Testing
- Baseline data at 75%, 90%, 95% and 100% CLTP
- Greater than 100% CLTP
 - Data acquisition performed in incremental steps of 1% and 2.5%
 - Active Testing and NRC Data Review at incremental steps of 5%

Power Ascension Testing – Approach (cont'd)

No Large Transient Testing

- Industry OE indicates that plants will continue to respond to transients as designed following EPU implementation
- Plant specific OE at 104.3% OLTP (Generator Load Reject and MSIV Closure)
- NMP2 has previously performed Large Transient Testing and documented results
- Plant operators will be trained on large transient events in the simulator
- Analytical methods and training facilities adequately simulate large transient events

Power Ascension Testing – Schedule

- Data collection 1% intervals
- Data evaluation 2.5% intervals
- > EPU Major Testing Plateau 5% intervals
 - Passive data collection (e.g. vibration, radiation monitoring, plant parameter monitoring)
 - Active control system stability dynamic testing
 - Pressure regulator step test
 - Feedwater level control step test
 - Data Analysis
 - Plant Management (PORC) Review
 - NRC Review

EPU Power Ascension Testing – Test Plan Major Testing

	Description	70% CLTP used	75% CLTP	80% CLTP	85% CLTP		95% CLTP	100% CLTP	102.5% CLTP	105% CLTP	107.5% CLTP	110% CLTP	112.5% OLTP	115% CLTP	power and s	115% CLTP 100% EPU	(@ point "r (05% flow))	115% CLTP 100% EPU	First controllor after EPU implementation	"ad shutdown	
1A	Chemical and Radiochemical Water Chemistry an Gaseous Effluent Data Collection	d							x		х		x		x						
18	Steam Dryer/Separator Moisture Carryover				-		<u> </u>		x		x		x			x	+	х			\neg
2	Radiation Measurement Data Collection			+		<u> </u>			x		x		x		x	^	+	~			-
10	IRM Overlap			+	-				^		^		^		^		+			х	\neg
10	LPRM Calibration		x				<u> </u>							<u> </u>	x		-			^	\neg
12A	APRM Calibration/Functional Test		~	+		<u> </u>			x					<u> </u>	x		+				\neg
12B	APRM Calibration to Heat Balance			+			x		x		x		x		x		+				-
18	TIP Probe Uncertainty			-		-	~				~		~		x		-				\neg
19	Core Performance			-		-	x	x	x	x	x	x	x	x	x						\neg
22A	Pressure Regulator Testing			-		-	X		x		X		X		x						\neg
23A	Feedwater Level Control Testing			+		<u> </u>	X		X		X		X		X		+				-
23B	Feedwater Flow Data Collection						х		X		х		X		X						\neg
23C	Max Feedwater Runout Data Collection			+		<u> </u>	X		X		X		X		X		+				\neg
24A	Turbine Valve Surviellance Margin Test		х																		\neg
24B	MSIV Partial Closure Surveillance Margin Test				-				х		х		х		х						\neg
35	Recirc Drive Flow Gain Adjustment Calibration			+					х						х						\neg
74	Offgas System Performance			+			х		х		х		х		х						\neg
75	Drywell Cooling			+		х	х		X		х		х		х						\neg
100A	Piping VibrationTesting: MS, FW, and other key systems > 100% CLTP: • Data Collection Every 1% • Data Evaluation Every 2.5%			x			x	x	x	x	x	x	x	x	x						
100B	Dryer/Separator Stress Analysis > 100% CLTP: • Data Collection Every 1% • Data Evaluation Every 2.5%			x			x	x	x	x	x	x	x	x	x						
101	Key Parameter Monitoring						х		х	Х	х	X	Х	х	х						
102	Reactor Recirculation Performance Data				х		х		X		Х		Х		Х						

Power Ascension Testing – Acceptance Criteria and Actions

- Level 1 Acceptance Criteria: A limit associated with plant safety
- If Level 1 criterion is not met:
 - Abort the test
 - Reduce power to last known safe condition
 - Use the Corrective Action Program to evaluate the condition and to determine and implement required actions
 - Repeat testing to verify that the Level 1 criterion is satisfied
 - Document problem resolution

Power Ascension Testing – Acceptance Criteria and Actions (cont'd)

- Level 2 Acceptance Criteria: A limit associated with plant or equipment performance that does not meet design expectations but is not immediately adverse to plant safety
- If Level 2 criterion is not met:
 - Place the test on hold and confirm the plant is in a safe condition
 - Use the Corrective Action Program to evaluate the condition and to determine and implement required actions
 - Repeat testing to verify the Level 2 criterion is satisfied unless the as-found condition is determined satisfactory
 - Document problem resolution

Power Ascension Testing – Acceptance Criteria and Actions (cont'd)

- Other Acceptance Criteria: A limit associated with plant surveillance requirements, plant operating procedures, rounds or alarm responses
- When this criteria is not met, plant procedures will be followed

Nine Mile Point 2 Extended Power Uprate

Long Term Stability Solution Option III and ATWS – Stability Events

Phil Amway EPU Operations Lead - SRO

Long Term Stability Solution – Option III/ATWS

- NRR Audit at Nine Mile Point 2
- Long Term Stability Solution Option III
 - Oscillation Power Range Neutron Monitor (OPRM)
 - OPRM Settings
 - Backup Stability Protection (BSP)
 - 2003 NMP2 Stability Event
 - Effects of EPU on the Long Term Stability Solution
- Impact of EPU on ATWS Stability Events
 - NMP2 ATWS Mitigation Design Features
 - Preparation for Simulator Demonstration
 - MSIV Closure with Failure to Scram
 - Turbine Trip with Failure to Scram
 - Conclusions

NRR Audit at NMP2

- Performed October 28, 2009 to demonstrate procedure actions and operator response to ATWS transients at EPU conditions conform to regulatory requirements
- Reviewed implementation of Long Term Stability Solution Option III
- Observed operator performance in plant reference simulator
 - MSIV Closure with Failure to Scram
 - Turbine Trip with Failure to Scram
- Included review of related procedures and mitigation strategies
- Requested follow up information when plant reference simulator was modified to provide ATWS - Stability transient response data

Oscillation Power Range Monitor (OPRM)

- 1998 NUMAC Power Range Neutron Monitor OPRM hardware installed (Amendment 80) - system tuning performed for plant specific settings
- 2000 Reactor Protection System (RPS) OPRM trips armed (Amendment 92)
- 2002 Implemented Plant Specific Delta CPR Over Initial CPR Versus Oscillation Magnitude (DIVOM) curve per GE Safety Communication 01-01, Stability Setpoint Calculation using Generic DIVOM Curve
- 2003 Implemented filter frequency and period tolerance settings per GE Safety Communication 03-20, Stability Option III Period Based Detection Algorithm Allowable Settings

OPRM Settings

- Cycle specific DIVOM analysis is performed using TRACG methodology
- Cycle specific amplitude setpoint is defined in the Core Operating Limits Report
- OPRM trips will be enabled <u>></u>26% RTP and <u><</u>60% recirculation drive flow to maintain the same enabled region in terms of MWth power

Backup Stability Protection (BSP)

- BSP regions are determined using cycle specific ODYSY decay ratio calculations
- BSP regions are defined on plant power/flow operating maps
- Operator actions are defined in plant procedures with routine training reinforcement
- > BSP exit region procedures are enforced at all times

2003 NMP2 Stability Event

- Component failure resulted in high to low speed transfer of both Reactor Recirculation pumps
- OPRM Period Based Detection Algorithm (PBDA) initiated an automatic reactor scram because of core wide oscillations
- > The reactor was properly tripped by the PBDA
- Unexpected Confirmation Count (CC) resets occurred prior to the scram
- Post scram analysis determined that two parameter settings needed to be changed to address CC resets
- Parameter setting changes have been implemented per BWROG recommendations

Effects of EPU on Long Term Stability Solution

- No methods changes for EPU
- Maximum rod line remains the same (MELLLA boundary)
- OPRM armed region maintains the same level of stability protection
- Cycle specific setpoint analysis will capture core design variations
- > Option III long term solution remains unchanged
- Option III OPRM setpoints will be developed based on plant specific DIVOM curves for the EPU cycle specific reload analysis

NMP2 ATWS Mitigation Design Features

- High RPV pressure initiates ATWS systems
 - T=0 seconds
 - Automatic Alternate Rod Insertion (ARI)
 - Automatic Reactor Recirculation Pump Trip (RPT) to slow speed
 - T=25 seconds and power >4%
 - Automatic Feedwater Runback
 - Automatic Reactor RPT to off
 - T=98 seconds and power >4%
 - Automatic Boron Injection

Preparation for Simulator Demonstration

- Simulator demonstration performed prior to operator training for EPU conditions
- Operating crew was provided with a briefing on EPU power level, steam and feedwater flows
- An SRO other than the EPU Operations Lead participated in the demonstration to avoid biasing operator response
- Simulator demonstration confirmed that current procedures and strategies successfully mitigate ATWS events

MSIV Closure with Failure to Scram

- > 3988 MWth at 99% core flow (MELLLA boundary)
- Maximum Suppression Pool temperature 90°F
- Minimum Suppression Pool level 199.5 feet
- Maximum Service Water temperature 84°F
- No Control Rod Motion
- The above worst case conditions are consistent with design analysis inputs

MSIV Closure with Failure to Scram (cont'd)

- Both loops of Suppression Pool cooling in service at rated flow in 404 seconds vs action time of 1080 seconds
- > Hot shutdown (<0.1% power) achieved in 406 seconds
- Peak Suppression Pool temperature remains below Heat Capacity Temperature Limit with 5°F margin
- Containment parameters remain well within design analysis
- Plant reference simulator critical parameter response closely matched the design analysis for this event

Turbine Trip with Failure to Scram

- > 3988 MWth at 99% core flow (MELLLA boundary)
- Maximum Suppression Pool temperature 90°F
- Minimum Suppression Pool level 199.5 feet
- Maximum Service Water temperature 84°F
- No Control Rod Motion
- The above worst case conditions are consistent with design analysis inputs

Turbine Trip with Failure to Scram (cont'd)

- Both loops of Suppression Pool cooling in service at rated flow in 425 seconds vs. action time of 1080 seconds
- > Hot shutdown (<0.1% power) achieved in 465 seconds
- Peak Suppression Pool temperature remains below Heat Capacity Temperature Limit with 19°F margin
- Containment parameters remain within design analysis
- Plant reference simulator critical parameter response closely matched the design analysis for this event

Conclusions

- Existing procedures, operator action times and strategies are effective in mitigating ATWS and ATWS instability transients
- NMP2 features an ATWS RPT function. As a result, transient power levels are primarily based on the maximum control rod line which is unchanged for EPU
- Operators can perform actions in a timely manner to bring the plant to safe shutdown

Nine Mile Point 2 Extended Power Uprate

Material, Mechanical/Civil Engineering Topics

Principal Engineer - Mechanical/Structural Lead

RPV Internals

- Fluence
- Flow Induced Vibration (FIV)
- Structural Effects (Non-FIV)
- Intergranular Stress Corrosion Cracking (IGSCC) and Irradiation Assisted Stress Corrosion Cracking (IASCC)

RPV Internals – Fluence

- Irradiation assisted stress corrosion cracking (IASCC) fluence threshold is 5 E20 n/cm²
- > The following components exceeded the IASCC fluence threshold:
 - Top Guide (BWRVIP-26-A)
 - Shroud (BWRVIP-76-A)
 - Core Plate (BWRVIP-25-A)
- Continued implementation of the current program in accordance with the BWRVIP recommendations assures the prompt identification of any degradation of reactor vessel internal components
- NMP2 Utilizes Hydrogen Water Chemistry and Noble Metals
- Reactor vessel water chemistry conditions maintained consistent with the EPRI and established industry guidelines
- Peak fluence increase does not represent a significant increase in the potential for IASCC

RPV Internals – Flow Induced Vibration

- Vibration levels for EPU were estimated by extrapolating vibration data from prototype plant or similar plants and on GEH BWR operating experience
- The following components were evaluated: a) shroud head and separator assembly; b) jet pumps; c) core delta P line; d) guide rods; e) in-core guide tubes and control rod guide tubes; f) jet pump sensing lines; g) feedwater sparger; h) fuel assembly, top guide, and core plate; i) RPV top head spare instrument nozzle; j) RPV top head vent nozzle; k) RPV head spray pipe and head spray nozzle; l) core spray piping
- Results show that continuous operation at EPU conditions does not result in any detrimental effects on the safety-related reactor internal components

RPV Internals – Structural Effects (Non-FIV)

- Evaluations/stress reconciliation was performed consistent with the Design Basis Analysis
- Original configurations of the internal components utilized, unless a component had undergone permanent structural modification
- Effects of thermal-hydraulic changes due to EPU were evaluated
- EPU loads compared to those in the existing design basis analysis
- For increases in load, linearly scaled the critical/governing stresses based on increase in loads – compare resulting stresses against the allowable stress limits
- All stresses and fatigue usage factors are within the design basis ASME code allowable values
- RPV internal components demonstrated to be structurally qualified for operation at EPU conditions

RPV Internals – IGSCC and IASCC

- Procedurally controlled program consistent with BWRVIP issued documents
- Components inspected include: core spray piping and spargers; core shroud and core shroud support; jet pumps and associated components; top guide; lower plenum; vessel inner diameter attachment welds; instrumentation penetrations; steam dryer drain channel welds; and feedwater spargers
- Program assures prompt identifications of any degradation
- Hydrogen water chemistry and noble metal applications to mitigate the potential for IGSCC and IASCC
- Recent Control Blade Cracking OE
 - Not applicable to GEH Marathon "C" lattice models
 - GEH concluded no lifetime reduction for "C" lattice

Fatigue Monitoring Program

- NMP2 implemented FatiguePro for fatigue monitoring in 2008 independent of EPU
 - Automated event tracking and usage based on cycle counting for most event
 - Assumed design basis event severity, records actual event severity
 - Stress based monitoring of FW nozzle location to improve the accuracy of usage

Fatigue Monitoring Program (cont'd)

- The EPU evaluation performed refined fatigue usage calculations for the FW nozzle
 - Reduced usage from original design basis
- FW nozzle high usage defined by off-normal rapid cycling events occurring during partial loss of feedwater heating and hot standby operation
 - EPU scaling factor small (between 6% and 15%)
 - Stress based fatigue monitoring anticipated to demonstrate usage less than 1.0 for 60 years

			CLTP 40 year CU	F	EPU 40 ye	ar CUF
Carbon Steel Safe End			0.965		0.6537	
Stainless Steel Clad			0.916		0.8299	
		CE	NG		4	

edf

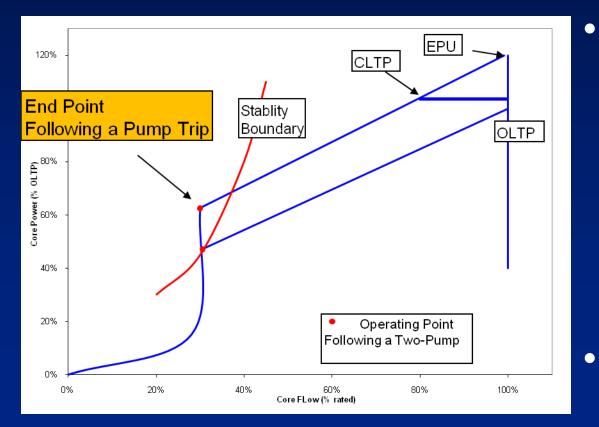
Fatigue Monitoring Program (cont'd)

- FatiguePro implemented at NMP2 uses a single stress term for stress based monitoring
 - Simplified Greens function
 - RIS-2008-30 is applicable to NMP2
- NMP2 is following industry developments to reconcile RIS-2008-30 issue
 - FatiguePro 4
 - ASME Code Sub article NB-3200 fatigue analysis methodology
 - Environmental Fatigue rules (NUREG/CR-5704/6583/6909)
 - NMP2 is considering alternative confirmatory analyses as proposed by RIS-2008-30

NMP2 EPU ATWS & Stability

Dr. Tai L. Huang (NRR/ADES/DSS/SRXB) Dr. Jose March-Leuba (ORNL)

> ACRS Subcommittee Meeting October 5, 2011



- Staff has completed an SER with positive findings based on the review of available documents and a staff audit
 - Current LTS implementation (Sol III) is adequate for EPU
 - Satisfies GDC 10 & 12
 - Level of protection in EPU is similar to CLTP
 - Staff audit concluded that
 - NMP2 operators show good understanding of stability and ATWS issues for EPU.
 - Staff observations of operators' action in the simulator support the customary 120 s delay assumed for safety calculations
 - NMP2 EOPs are adequate for EPU

EPU Does Not Change the End Point After The Recirculation Pump Trip

- End Point is the same for CLTP and EPU because it is defined by
 - Natural Circulation
 - Subcooling (lower pressure of FW heating-steam)
- Stability
 characteristics of end
 point are similar

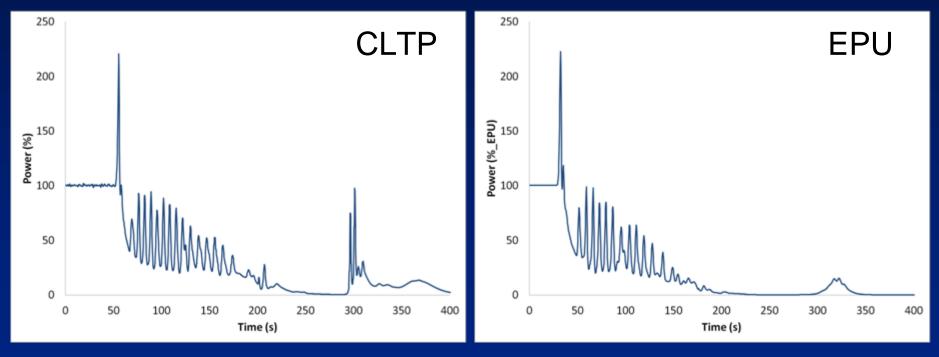
Stability

- LTS Option III installed since 1998, and armed since 2000
- Plant has good experience with Option III
 - 2003 NMP2 event was detected and scram actuated
 - very low amplitude oscillations, which kept on resetting the OPRM confirmation counts
 - Lessons learned (parameter settings) implemented at NMP2 per BWROG recommendations
- No impact expected for EPU

 Option III and DIVOM methodology are applicable

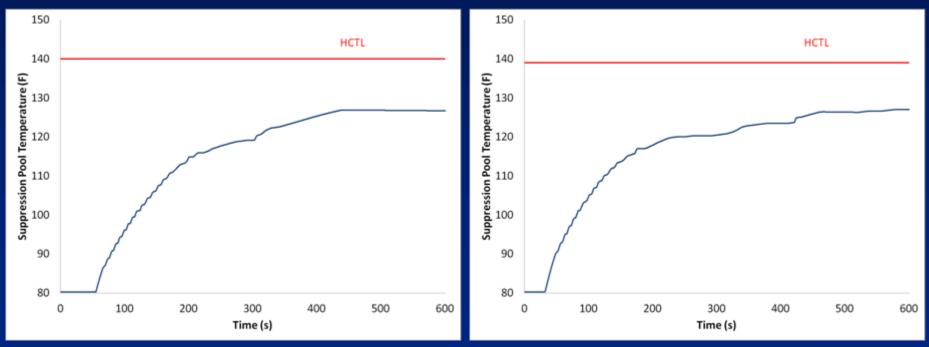
ATWS-Instability

- NMP2 has implemented latest EPG/SAGs
 - Early level reduction & boron injection are accomplished through automated ATWS actions if high pressure is detected with power >4%:
 - Automatic flow runback
 - Automatic boron injection
- NMP2 has excellent ATWS response:
 - SLC injection through HPCS (early shutdown)
 - 100% motor driven FW (sufficient HP inject capacity)
 - EOPs are reviewed every cycle, but are not affected significantly by EPU because boron is injected in HPCS and there is no need to define a HSBW.
 - EPU does affect HCTL slightly (from 140°F to 139°F)



Staff Audit

- Staff reviewed the performance of the OPRM Solution III system in the simulator
- Staff reviewed ATWS performance in the simulator (3 different scenarios)
 - Turbine Trip ATWS From The MELLLA Corner with simulated unstable oscillations
 - MSIV Isolation ATWS from MELLLA corner
 - MSIV Isolation ATWS from EPU conditions
- NMPNS submitted additional information with the simulator ATWS results


Simulator shows similar response at EPU and CLTP

Simulator shows margin to emergency depressurization

CLTP

8

EPU

- EPU operation is acceptable from stability point of view
 - Installed LTS (Sol III) provides similar level of protection under EPU and CLTP
 - OPRM scram satisfies GDC 10 and 12
- ATWS and ATWS-Stability not affected significantly by EPU
 - Satisfies ATWS Acceptance Criteria (10CFR 50.62)
 - NMP2 has excellent ATWS performance design
 - Automatic trips
 - Upper plenum boron injection
 - 100% motor-driven FW pumps

Nine Mile Point Unit No. 2 Extended Power Uprate ACRS Subcommittee Meeting

Interim Methods Applicability of GE Methods to Expanded Operating Domains

> Dr. Peter Yarsky RES/DSA/RSAB

Pani – can you please print out 2 colored copies of the attached and give them to me later today.

Methods Review Basis

- Review based on approved LTR NEDC-33173P "Applicability of GE Methods to Expanded Operating Domains," (the IMLTR)
- Staff confirmed that the EPU LAR is fully consistent with the conditions and limitations specified in the staff's SE for the IMLTR

Staff Review Items

- IMLTR: 24 Conditions and Limitations
 - No Supplements to the IMLTR referenced in the NMP2 EPU LAR
 - PUSAR Appendix A dispositions each condition and limitation
 - All 24 conditions and limitations acceptably met
 - Staff conducted one regulatory audit pertaining to the IMLTR

Staff Review Items

LPRM Calibration Interval

- LPRM update affects core monitor accuracy to predict power distribution
- Interval is 1,000 EFPH
- Post EPU, exposure interval between calibrations would increase 15 percent
- Staff audited GEH data to confirm that power distribution uncertainties were acceptable for longer exposure interval

Conclusions

 Methods application acceptable because all staff SE conditions and limitations on the IMLTR are met