Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Plant Operations and Fire Protection Open Session
Docket Number:	(n/a)
Location:	Rockville, Maryland
Date:	Thursday, October 5, 2011

Work Order No.: NRC-1182

Pages 1-162

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	PLANT OPERATIONS AND FIRE PROTECTION SUBCOMMITTEE
8	+ + + +
9	OPEN SESSION
10	+ + + +
11	THURSDAY, OCTOBER 5, 2011
12	+ + + +
13	ROCKVILLE, MARYLAND
14	+ + + + +
15	The Subcommittee met at the Nuclear
16	Regulatory Commission, Two White Flint North, Room
17	T2B3, 11545 Rockville Pike, at 8:30 a.m., Harold B.
18	Ray, Chairman, presiding.
19	Reporter: Charles Morrison
20	SUBCOMMITTEE MEMBERS PRESENT:
21	HAROLD B. RAY, Chairman
22	CHARLES H. BROWN, JR.
23	MICHAEL T. RYAN
24	GORDON R. SKILLMAN
25	JOHN W. STETKAR
ļ	I

		2
1	NRC STAFF PRESENT:	
2	GIRIJA SHUKLA, Designated Federal Official	
3	PATRICK MILANO	
4	RAGS RAGHAVAN	
5	JUSTIN POOLE	
6	KAMAL MANOLY	
7	MATHEW PANICKER	
8	DAVID RAHN	
9		
10	ALSO PRESENT:	
11	DAVID STINSON	
12	ROBERT BRYAN	
13	PENNY SELMAN	
14	STEVE SMITH	
15	STEVE HILMES	
16	GREG LOWE	
17	GORDON ARENT	
18	MIKE HEIBEL	
19		
20		
21		
22		
23		
24		
25		
I	I	

	3
1	TABLE OF CONTENTS
2	ITEM PAGE
3	Opening Remarks
4	NRC Staff Presentation
5	Agenda Review 6
6	TVA Review
7	Reactor Fuel & Transient Analysis
8	Hydrology Chapter 2.4
9	WINCISE
10	Chapter 4 - Fuels Organization
11	Wrap-Up
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR RAY: The meeting will now come to
4	order.
5	This is a meeting of the Advisory
6	Committee on Reactor Safeguard Subcommittee on Plant
7	Operations and Fire Protection, the Watts Bar Unit 2.
8	Subcommittee members in attendance are
9	John Stetkar, Charles Brown and Michael Ryan.
10	Part of the meeting will be closed to the
11	public attendance, to discuss security-related
12	information and according to the schedule we have in
13	front of us, this will occur following the lunch
14	break.
15	I want to note that the meeting room will
16	be we're hot-bunking it today, and the meeting room
17	will be used by another group from 12:00 p.m. to 1:00
18	p.m., so, if we're running late, we'll have to stop
19	wherever we are. If we're ahead of schedule, we may
20	break early, so that we can then resume with the
21	afternoon's planned schedule at one o'clock.
22	Girija Shukal of the ACRS staff is the
23	Designated Federal Official for this meeting.
24	The Subcommittee will hear presentations
25	from the NRC staff and the Applicant Tennessee Valley
ļ	I

(202) 234-4433

	5
1	Authority, regarding the status of the construction
2	inspection and licensing activities related to Watts
3	Bar Nuclear Plant Unit 2.
4	We've received no written comments or
5	requests for time to make oral statements from members
6	of the public regarding today's meeting.
7	The Subcommittee will gather information,
8	analyze relevant facts and formulate proposed
9	positions and actions as appropriate for deliberation
10	by the full Committee.
11	The rules for participation in today's
12	meeting have been announced as part of the notice of
13	this meeting published in the Federal Register on
14	October 3, 2011.
15	A transcript of the meeting is being kept
16	and will be made available, as stated in the Federal
17	Register notice, therefore, we request that
18	participants in this meeting use the microphones
19	located throughout the meeting room when addressing
20	the Subcommittee.
21	The participants should first identify
22	themselves and speak with sufficient clarity and
23	volume, so that they may be readily heard.
24	Please silence your cell phones during the
25	meeting.
	I

(202) 234-4433

	6
1	Now, we're about to proceed with the
2	meeting. We'll begin with discussion by NRC staff,
3	Patrick Milano, and Patrick, if you don't mind, I'd
4	like to ask you some questions as well, since we
5	prepared for this meeting and I think it would be
6	appropriate.
7	But if you have initial comments you'd
8	like to make, please proceed.
9	MR. MILANO: Thank you, Mr. Ray. Good
10	morning, Mr. Ray and other members of the
11	Subcommittee.
12	Again, my name is Patrick Milano. I'm the
13	Senior Licensing Project Manager in the Office of
14	Nuclear Reactor Regulation Division of Operating
15	Reactor Licensing.
16	With me today, there is Mr. Raghavan, who
17	is our team leader for the Watts Bar special project,
18	and to my left is Justin Poole, who is also one of the
19	project managers assigned.
20	We have with from the region, we have
21	Mr. Bob Haag. He is available here to answer
22	questions, however, because of today's meeting, we're
23	not going to have a specific discussion, with regard
24	to the status of the inspection program. But if
25	questions come up during the course of the
I	I

(202) 234-4433

	7
1	presentation, he'll be here to answer them.
2	We're here before the Subcommittee today,
3	to continue on our with our presentations on the
4	status review of the Operating License Application for
5	TVA's Watts Bar Unit 2.
6	In addition to giving you a brief overview
7	of the status, we will be focusing on what has
8	transpired since the last meeting that we had with the
9	Subcommittee in July of this year.
10	Shortly, TVA will be providing you with
11	its current status of the facility construction,
12	followed by a discussion of the areas of the FSAR,
13	that were discussed in the staff's latest supplement
14	to the Safety Evaluation Report.
15	Because the subject matter to be discussed
16	in the presentation on cyber security is being
17	withheld from the public under 10 CFR 2.309, that
18	portion of the presentation this afternoon, as you
19	indicated, will be closed to the public.
20	After TVA's presentation, the staff will
21	provide its status of the licencing and construction
22	a short discussion of the status of the licensing
23	programs, and then we'll discuss the staff's
24	conclusions presented in both Supplement 23 and
25	Supplement 24.
I	I

(202) 234-4433

	8
1	As you'll remember from last month, we
2	came in here to discuss a number of items, in addition
3	to the instrumentation and control section, and so,
4	what we're going to do is, is we're going to pick up
5	on some of the key items that we were unable to
6	present to you in July, and then we're going to follow
7	up with the key items that are coming out of
8	Supplement 24.
9	So, it's a combination of 23 and 24 that
10	will be presented this time.
11	Unless you have some specific questions
12	right now, our plan was to turn the presentation over
13	to TVA, to provide its discussion of these major
14	activity areas.
15	CHAIR RAY: Well, as I indicated, I do
16	have some questions.
17	MR. MILANO: All right.
18	CHAIR RAY: So, let's stick with the
19	present dialog for a bit longer.
20	As you say, Supplement 24 is the most
21	recent SER that we have in hand.
22	MR. MILANO: Yes.
23	CHAIR RAY: And we've read that, coming
24	into the meeting, and frankly, Patrick, I'm concerned
25	about you characterize this as a I don't
Į	I

(202) 234-4433

	9
1	remember the exact words, but anyway, that we're
2	continuing a process.
3	MR. MILANO: Yes.
4	CHAIR RAY: Well, this SER has over 100
5	open items. It's got a 134 action items, total, but
6	a few of them are closed, and I guess I'm trying to
7	get some clarity about how we make progress with as
8	much open, as we have.
9	I mean, are we thinking that these
10	chapters and partial chapters and so on, are behind
11	us, as a result of this review, today, because it just
12	seems hard to come to any conclusion with as much open
13	as there is, right now, and it's puzzling, why there
14	should be so much, and I'm sure the Commission would
15	be puzzled too.
16	How would you describe where we go from
17	here, assuming we complete today's review process, as
18	you have it planned?
19	MR. MILANO: Well, first, let me step back
20	a minute and characterize what's in the list of open
21	items.
22	CHAIR RAY: I've read them.
23	MR. MILANO: And so, it actually, it
24	falls into two categories.
25	One are open items that are preventing the
ļ	1

(202) 234-4433

	10
1	staff to come to a final conclusion on to make
2	to determine it's reasonable assurance on any on
3	the specific section of the FSAR.
4	However, the majority of the open items
5	are items that need to be confirmed in the field or
6	through submission of documentation from TVA.
7	The staff has made its conclusions subject
8	to certain beliefs of what TVA was going to be doing,
9	and a number of the items that are characterized as
10	confirmatory items are just, either TVA provide
11	something to us and we and we, meaning the NRR
12	staff, agrees that that is, in deed, what we based our
13	conclusions on, or it's the region provides an
14	inspection to confirm that the assumptions that we
15	made in coming to our conclusion are, in deed,
16	correct.
17	Those items that fall into the earlier
18	category, what we consider to be open, in the fact
19	that we haven't made our reasonable assurance our
20	final reasonable assurance determination, we're not
21	saying that we are not going to be discussing them
22	again with you.
23	Our hopes is, is in the next couple of
24	Subcommittee meetings that we have, in addition to
25	presenting to you, those sections of the FSAR that we
	I

(202) 234-4433

	11
1	had not discussed with you in the past, what we're
2	going to be doing too is, is we're going to be
3	discussing with you, the open items and how the staff
4	came to its conclusion that everything was wrapped up
5	in the in that specific SER section.
6	So, we will be discussing some of the open
7	times with you in the future meetings.
8	CHAIR RAY: All right, but as you say,
9	there are some that many, in fact, not all, by any
10	means, that are listed as confirmatory items and
11	presumably, we can discern from the SER, what would
12	what your expectation is that you want to have
13	confirmed, and there are others that are not.
14	Here is one, for example. It might be of
15	interest to some of my colleagues, "TVA should provide
16	the staff either," it's 94, "Should provide the
17	staff either information that demonstrates that the
18	Watts Bar Unit 2 Common Q PAMS meets the applicable
19	requirements in IEEE Standard 603, or justification
20	for why it should not meet those requirements."
21	Well, okay, that's fine, that's an open
22	item, but it's the sort of thing that we certainly
23	want to know, if you're satisfied by some other means,
24	what that was, and whether
25	So, it just I guess I just want to make
I	

(202) 234-4433

	12
1	note of that fact that these are not only partial
2	chapters, but they're lacking in a lot of information,
3	some of which is merely confirmatory and we can say,
4	"Okay, fine," if it's not confirmed, and we assume to
5	come back.
6	But some of it, like what I just read
7	there, could entail something quite unexpected from
8	our standpoint.
9	Well, I've made note of it, and that's all
10	I'll do for the moment. I just if we had to say
11	something right now, about the status of things, it
12	would be that, well, we've looked at a good deal, but
13	there is a lot that's still outstanding, much of it,
14	we would like to know what the resolution is.
15	MR. MILANO: And you will see, especially
16	when we come up and present to you in December, you
17	know, you will start to see some of these open items
18	being closed, and those items, like 94 that you just
19	indicated, those type of items that are holding open,
20	the staff's final reasonable assurance on that
21	section, you will see a specific write-up in the SER.
22	Those items that are just confirmatory in
23	nature, the staff's plan is, is they will be
24	they'll only be reference to whatever documentation
25	exists that shows that that item was confirmed, and
I	I

(202) 234-4433

	13
1	was confirmed successfully, whether it's a let's
2	say, an NRC inspection report, and stuff. There will
3	be reference to it, because it hasn't changed the
4	staff's conclusion.
5	If, on confirmation, we find that that is
6	not the case, that what is being provided does not
7	confirm what the staff's conclusions, assumptions
8	were, and stuff, then you will see a new write-up in
9	the appropriate in the appropriate section of the
10	SER.
11	CHAIR RAY: Yes, well, I understand that,
12	but of course, we have a responsibility to do more
13	than just be informed that you're satisfied.
14	MR. MILANO: Yes.
15	CHAIR RAY: On things, and you know, just
16	to pick another one here, 93, TVA should confirm to
17	the staff, that testing in EAGLE 21 system has
18	sufficiently demonstrated that two-way communication
19	of the ICS has precluded with the described
20	configurations.
21	Well, sufficiently demonstrated, that
22	might be something of interest to members. What does
23	it take to be to have it be sufficiently
24	demonstrated?
25	I'm just I want to move on, now, but I
ļ	

(202) 234-4433

	14
1	just want to point out that there is a lot here that
2	leaves me wondering how we're going to get closure,
3	and I anticipate some bow wave building up, in which
4	we're scrambling, trying to go back through here, and
5	figure out what is it that we weren't able to even
6	gain any insight to, because of its status, and need
7	to, therefore, provide more review of.
8	Let me shift, Patrick, to another
9	question, because I'd like repeat. I know it's in the
10	record somewhere, in the past, but I'd like to just
11	freshen up our perspective on the following point.
12	The write-up on geology and seismology
13	spans, two and a quarter pages, most of which has to
14	do with settlement, and with regard to geology and
15	seismology, in fact, there is only one pertinent
16	sentence that says, "The staff concluded that TVA did
17	not make any changes to FSAR Section 2.5 through
18	2.5.3, or to Section 2.5.5, dealing with the
19	geological and seismological aspects of Watts Bar Unit
20	2, compared to those aspects which were reviewed and
21	approved by the NRC staff, at the time of licensing of
22	Watts Bar Unit 1 in 1996."
23	Okay, now, I we're all very mindful
24	that this is a Part 50 proceeding, in which we're
25	following on Unit 1 licensing, and we have some very
I	

(202) 234-4433

(202) 234-4433

	15
1	particular policy direction to follow, in that regard.
2	On the other hand, for that to be the only
3	thing that's said, having to do with Watts Bar Unit 2,
4	it makes we feel like, well, there needs to be
5	something more said, or at least reiterated, as to how
6	and when the issues that are before the Commission
7	today, and I'm presuming the answer clearly is, that
8	this will simply be treated as an operating plant
9	would be treated, when it comes to GSI-191 and the
10	generic letter, whatever it turns out to be, all that
11	other stuff.
12	This is an operating plant, from that
13	standpoint, correct?
14	MR. MILANO: That is correct.
15	CHAIR RAY: All right, and yet, I'm just
16	sort of surprised that there is nothing more said than
17	that sentence I read.
18	MR. MILANO: In most of the in the
19	direction that was given to the technical staff was
20	that if there was nothing in its review, if the
21	area was previously reviewed and the conclusions made
22	were still valid and stuff that they actually
23	didn't even need to write up a new like new Section
24	2.5.4, or whatever we're reading
25	CHAIR RAY: Yes.
I	1

(202) 234-4433

	16
1	MR. MILANO: and stuff. In this case
2	here, we did not stop the staff, that if they that
3	if for just for clarity purposes, they felt it
4	necessary they felt a desire to just make a
5	conclusion a conclusion-atory type statement,
6	saying that, they re-assessed everything that was
7	there, and they and the conclusions that were made
8	in 1995 and 1996 still remain valid and stuff, we did
9	not stop those.
10	So, in some areas, as you pointed out
11	there, you'll see those type of statements.
12	However, in the majority of the FSAR
13	sections, the staff just if the previous conclusion
14	remained in tact, they just did not write anything new
15	up, and that is
16	CHAIR RAY: Well, there's no plan to be
17	made here that the prior conclusions remain valid, and
18	I am interpreting this to mean, that the prior
19	conclusions, which apply to Unit 1, which is clearly
20	an operating plant, will apply to Unit 2, as well, as
21	if it were an operating plant.
22	Meaning, that any changes then, that
23	occur that affect operating plants, will affect
24	both Units 1 and 2.
25	MR. MILANO: That is correct.
	I

(202) 234-4433

	17
1	CHAIR RAY: That is different than saying
2	that conclusions remain valid, at least as I view it.
3	MR. MILANO: Okay.
4	CHAIR RAY: It's just a statement that
5	this is being treated as an operating plant, and when
6	it comes to seismology and geology.
7	MR. MILANO: That is correct, it's in
8	some of these areas, you're right, this is and as
9	you saw it, you know, from the title of the SER, it is
10	a it is a Watts Bar Units 1 and 2 SER, and stuff,
11	and there is we've recognized that a you know,
12	it is a single site.
13	You can't you can't split some of these
14	things apart and
15	CHAIR RAY: Well, on the other hand, there
16	is a lot of discussion about hydrology. What is the
17	difference?
18	MR. MILANO: The reason why is because
19	there were there was some major there were some
20	major changes in the area of hydrology, and TVA is
21	going to spend some time with you, in its
22	presentation, of what led up to it.
23	But just not to steal their thunder,
24	but in that area, during the review for the proposed
25	Bellefonte 3 and 4, the Office of New Reactors found
I	I

(202) 234-4433

	18
1	some discrepancies with the river model in that area,
2	and brought into question, the code that's used to
3	determine you know, determine these maximum flood
4	levels and also, how the river is operated, and stuff,
5	were drawn into questions.
6	There were quality assurance issues.
7	There were some assumptions that were in error and
8	stuff like that.
9	So, that was completely re-done by TVA,
10	so, that is basically why it was
11	CHAIR RAY: All right.
12	MR. MILANO: it was reviewed to that
13	nature.
14	CHAIR RAY: But you in this dialog we
15	just had, there is a big distinction between the
16	hydrology, how it's treated, seismology, how it's
17	treated.
18	MR. MILANO: Yes.
19	CHAIR RAY: And yet, stepping back, a lot
20	of people would say, there is as much in play today in
21	seismology as there is in hydrology, and the reason
22	why this distinction is made, apparently, is the
23	hydrology is uniquely associated with Watts Bar.
24	MR. MILANO: That's correct.
25	CHAIR RAY: As the seismology, at least in
ļ	

(202) 234-4433

	19
1	the Southeast, for example, applies to lots of other
2	plants, and again, go back to the operating-plant
3	model.
4	MR. MILANO: That is correct.
5	CHAIR RAY: I just want to be clear about
6	that, because I think if we were to write a letter
7	today, we'd certainly at least make that observation.
8	MR. MILANO: Yes.
9	CHAIR RAY: Okay?
10	MR. MILANO: Yes.
11	CHAIR RAY: But we're not going to write
12	a letter today.
13	MR. MILANO: No, we are not.
14	CHAIR RAY: All right.
15	MR. RAGHAVAN: Can I?
16	MR. MILANO: Yes, go ahead, Mr. Raghavan.
17	CHAIR RAY: Yes.
18	MR. RAGHAVAN: My name is Bob Raghavan.
19	I'm the team leader for the Watts Bar.
20	I just wanted to clarity one thing on
21	this.
22	You have to look at the Unit 2, whether it
23	meets the current requirements that exist in the NRC
24	right now, and that is part of the license, and as
25	part of the license, the first statement in the
	I

(202) 234-4433

	20
1	license would state that the plant will meet the
2	current requirements in effect.
3	If things change, if seismology, new
4	things come up, and it applies to that it applies
5	to Unit 1 or it applies to Sequoyah, or any other
6	plant, would also be applicable to Unit 2, and it
7	would require, under the license, to follow those
8	requirements.
9	CHAIR RAY: Well, that is basically what
10	I think I said, as well.
11	It's just that if I were writing the SER,
12	I would have said so.
13	MR. RAGHAVAN: True, but we're looking at
14	the they're evaluating Unit 2, to
15	CHAIR RAY: All right.
16	MR. RAGHAVAN: to meet the current NRC
17	requirements.
18	CHAIR RAY: All right, but it's just so
19	terce and so limited, in what it says, given what's in
20	play today.
21	As I say, you've got a generic letter out.
22	You've got 191 that's been sitting around for two
23	years, and I would have simply made note that this
24	would be handled, as part of an operating plant, so
25	that it wasn't a blank slate here.
I	1

(202) 234-4433

	21
1	MR. RAGHAVAN: Yes.
2	CHAIR RAY: Okay, go ahead, Patrick.
3	MR. MILANO: Okay, if there are no more
4	questions, I'm going to turn over the floor to Mr.
5	David Stinson, who is the Vice President of TVA for
6	Watts Bar Unit 2.
7	MR. STINSON: Good morning, Mr. Ray.
8	CHAIR RAY: Good morning.
9	MR. STINSON: It's a pleasure to be here.
10	I thought we'd kind of just piggy-back on the question
11	you asked about where we are with the open items, to
12	give you our perspective on those.
13	This is something that we are actually,
14	just obviously, quite concerned about. Every Tuesday
15	at 3 o'clock, we start out start off a status
16	meeting with review of the open items that are there.
17	I can tell you, I'm going to give you kind
18	of approximate numbers, that 80 percent of those open
19	items, we have submitted documentation on those.
20	Ten percent have either testing or
21	completion of construction, that will then follow on
22	with a submittal, and there are 10 percent we've yet
23	to answer.
24	So, you know, in that result there, we
25	feel like we're about, you know, 80 percent complete,
I	

(202) 234-4433

	22
1	with a clear path to get to the rest of them.
2	CHAIR RAY: Well, you'll appreciate our
3	problem, which is that we need to go beyond, at least
4	in some areas that are of interest to the ACRS
5	members, simply acknowledging that you have made a
6	submittal and then later on, that it's been accepted
7	by the staff.
8	We're suppose to independently review what
9	we think is a resolution, a lot of times, and that's
10	quite obscured, as it stands today.
11	So, just recognize that. It may end up
12	later on, with us having to scramble around, if time
13	becomes compressed, later on, and that's sufficient,
14	I think, for now.
15	MR. STINSON: Okay, very good. So, today,
16	we have six topics to go over five topics, I'm
17	sorry.
18	Bob Bryan, to my right, will take care of
19	reactor fuels and transient analysis at Chapter 4 and
20	15.
21	Penny Selman will go over Chapter 2.4,
22	hydrology, quite a bit, the information to provide to
23	you, and then this afternoon, we'll be having the
24	WINCISE and cyber security presentations, and Steven
25	Hilmes will do WINCISE and Laura Snyder and Steven
I	I

(202) 234-4433

	23
1	Hilmes will follow up with cyber security.
2	CHAIR RAY: Thank you.
3	MR. STINSON: So, unless there are any
4	other questions, we'll start into the reactor fuels
5	discussion.
6	MR. BRYAN: Good morning. Bob Bryan,
7	representing licensing at Unit 2, talk about fuel.
8	The focus of my presentation is basically
9	to describe where Unit 2 is, and mention the
10	similarities and differences with Unit 1.
11	Unit 2 is going to start up with the
12	Robust Fuel from Westinghouse, as compared to Unit 1
13	at the time of license, they started up with a VANTAGE
14	5H.
15	Unit 1 has currently transitioned
16	completely to the RFA-2 fuel, like similar to Unit 2.
17	One change that we had made recently in
18	Unit 2, will start up with this we've added an
19	enhanced debris filter on the bottom that does two
20	things.
21	One is it helps limit the amount of debris
22	that you could potentially get into the fuel during
23	normal operation, but it's also designed to be
24	consistent with the updated sump screens that we have,
25	so that the ECCS train flow path is consistent with

(202) 234-4433

	24
1	the license.
2	The cladding is has gone from Zircaloy
3	4 to ZIRLO.
4	The Unit 2 initial core is very, very
5	similar to the Unit 1 core, in terms of the regions
6	and enrichments. We will rather quickly transition,
7	though, into a low leakage core pattern, as we get
8	burn-up on the fuel.
9	The major differences, relative to the
10	fuel for Unit 1 is, is we don't currently have tritium
11	in the core and there are no current plans to use
12	tritium-producing rods.
13	One change to Unit 1 that was associated
14	with tritium, though, was we increased the refueling
15	water storage tank boron from about 2,200 parts per
16	million to 3,000 parts per million.
17	Unit 2 will run those same boron limits,
18	to try to keep the operational differences to a
19	minimum.
20	The other major difference is, and we're
21	going to talk about this in some detail later, is that
22	Unit 2 starts up with a fixed in-core detector system.
23	We have one sort of outstanding generic
24	industry issue on thermal fuel conductivity. This is
25	a experiments and data indicate that as burn-up
I	I

(202) 234-4433

	25
1	increases on the fuel, the thermal conductivity
2	decreases.
3	This isn't an issue for the initial core,
4	since there is no burn-up on it. We're going to have
5	a license condition that will follow the industry
6	approach on this, and we've got a and you can
7	handle it with margin that exists in the analysis.
8	That really concludes my presentation on
9	the fuel, unless there are any questions.
10	CHAIR RAY: No, I don't believe we have
11	any, there. Please proceed.
12	MR. BRYAN: Okay, then we'll go into the
13	transient analysis in Chapter 15.
14	The Unit 2 is analytically very similar to
15	Unit 1, with a couple of the biggest difference is,
16	is Unit 1 replaced their steam generators and Unit 2
17	is starting up in with the original steam
18	generators.
19	Replacement steam generators have a larger
20	water volume. They have more tubes in them, so, that
21	makes some minor differences, in the way the analyses
22	look.
23	The other issue is, is that the start-up,
24	we haven't done the flow measurement uncertainty
25	recovery. So, we're running with the two percent flow
Į	1

(202) 234-4433

uncertainty on Unit 2.

1

13

14

2 The large-break LOCA and small-break LOCA 3 analyses have very large PCT margins. There is, once 4 again, a difference here, in that Unit 2 is starting 5 with the best estimate, using the ASTRUM up methodology and Unit 1 currently still uses the 6 7 Appendix K SATAN and BART/BASH, and there are some 8 plans for Watts Bar to, one, to transition to a best 9 estimate, but currently, those are a difference, and 10 you see that in about -- there is about a 300 degree benefit to Unit 2 versus Unit 1, because of that. 11

There were several analyses that were done 12 for Unit 2, that were not done for Unit 1. The first one was for the loss of load, the transient used in 15 Chapter 15 considered the second safety grade trip.

16 Typically, the second trip is used to size safety relief valves, and that's handled in 17 the Chapter 5 of the FSAR, and then when you get over into 18 19 Chapter 15, you do it, where you do a typical analysis, where you use your first safety grade trip. 20

In this case, we went in and took credit 21 for the second trip, which was an over-temperature 22 delta T versus high presurizer pressure. 23

24 Second analysis that is unique to Watts Bar Unit 2 was, we did a CVCS malfunction, where 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

27 1 you're looking at either an isolation of let-down or the start of a second charging pump, and what you're 2 3 looking for here is to see that you don't overfill the 4 presurizer. 5 Watts Bar Unit 1 treated this as a sub-set of the inadvertent SI event. 6 7 Then on main steam line break, this isn't 8 exactly new analysis, but we did quite a bit more 9 parametric studies on reactivity and shutdown margin 10 that were incorporated into the analysis, than what was done for Unit 1. 11 Then for the --12 CHAIR RAY: We saw that, I'm sure. 13 It 14 never was absolutely clear to me, although there are 15 differences, and you've touched on some of them, what led to the -- this large amount of additional work 16 17 that you're describing? Well, TVA does their designs MR. BRYAN: 18 19 in a relatively conservative manner, compared to a lot of people, and we have higher shutdown margins that 20 run typically with higher shutdown margins, than what 21 many of the Westinghouse plants do. 22 And so, the way that played out was, we 23 24 had very small return to power, and much lower return to power for the larger steam line breaks than was 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	typically seen in a Westinghouse plant.
2	CHAIR RAY: Yes, I saw that, and it had to
3	do, though, with a point in line that would
4	MR. BRYAN: Right, and so, these analyses
5	were to provide additional back up that that if you
6	looked at the range of parameters, you would see a
7	behavior that looked more like what was typically
8	seen.
9	CHAIR RAY: Yes, that is how it turned
10	out, and then after you did the additional work, okay.
11	MR. BRYAN: Basically, it puts more
12	conservatism in the analysis.
13	Inadvertent SI excuse me, yes, the
14	inadvertent SI or inadvertent ECCS, in the original
15	analysis, what TVA did was, was they they did not
16	model the PORV's, and we felt like that was a
17	conservative thing, because you didn't take credit for
18	anything going out of the PORV, and reducing the rate
19	at which the presurizer would fill.
20	In terms of liquid releases, out of the
21	PORV, the case for Unit 1 was, was if you got such a
22	release, you could close the block valve, which was
23	designed to deal with a liquid release, and that would
24	terminate it.
25	We went and re-ran these and showed by

(202) 234-4433

	29
1	analysis, that you don't get a liquid release out of
2	the PORV for Unit 2.
3	CHAIR RAY: Therefore, you don't have a
4	small break LOCA?
5	MR. BRYAN: Right, and for boron
6	precipitation, TVA for Watts Bar started very early
7	on, and reset their hot-leg switch over times to three
8	hours, to preclude any likelihood of getting boron
9	generate concentrating in the core for a cold-leg
10	break.
11	These sets of analyses were done with
12	adding more conservative assumptions on the back end
13	of the transient to look at the window in which the
14	operator had to complete the action.
15	In the original analyses, you had about
16	three and a half hours to do it in a very, very
17	conservative analysis. The operator still has an hour
18	to make that, before you would see any boron
19	collection in the core.
20	We still have an open analysis on boron
21	dilution. The way Unit 1 was done was, explicit
22	analyses were done in Modes 1 and 2. Mode 6 was
23	handled by procedures that isolate the dilution paths
24	and then, it was considered that 1 and 2 were the
25	limiting cases and you had operational procedures that
I	

(202) 234-4433

Í	30
1	gave you high shutdown margins for Modes 3, 4 and 5.
2	We've been requested to do explicit
3	analyses for Modes 3, 4 and 5, to show the times, and
4	that is those analyses, we're still working on.
5	CHAIR RAY: Okay, that was going to be one
6	of the questions I asked. So, that will come in, in
7	response to an open item?
8	MR. BRYAN: Yes.
9	CHAIR RAY: Okay.
10	MR. BRYAN: And it should be completed for
11	the December meeting.
12	CHAIR RAY: Okay, let me just ask TVA
13	then, if you'd make sure we touch on that, at that
14	meeting.
15	MR. BRYAN: Okay.
16	CHAIR RAY: We have trouble keeping track
17	of all of the open items, tracking sometimes.
18	MR. BRYAN: If there are no more
19	questions, that completes my presentation.
20	CHAIR RAY: All right, very good. Thank
21	you.
22	MS. SELMAN: Good morning Mr. Ray and
23	members of the ACRS. I am Penny Selman with Tennessee
24	Valley Authority Design Engineering, and I'm here to
25	give you an update on hydrology FSAR Chapter 2.4.

(202) 234-4433

	31
1	CHAIR RAY: Are you going to explain to us
2	what sand baskets are?
3	MS. SELMAN: Yes.
4	CHAIR RAY: Okay.
5	MS. SELMAN: To give you a little bit of
6	background information, Watts Bar is designed in
7	accordance to Regulatory Position 2 of Reg Guide 1.59,
8	Revision 2, August 1977, and as an alternate to all
9	safety related systems, structures and components
10	being hardened for flood protection, our design and
11	licensing basis assumes floods and combination of
12	potential seismic dam failures and lesser floods
13	exceed plant grade.
14	There are protective measures that are in
15	place, to assure the protection of the public health
16	and safety, in the event the flooding exceeds the
17	plant grade.
18	CHAIR RAY: Excuse me, but you're
19	referring to plant grade. Do you not have any safety
20	structure systems or equipment that are below plant
21	grade, and would be vulnerable to flooding at some
22	lower level than plant grade?
23	MS. SELMAN: Well, we do not, for flood,
24	rely on those underground
25	CHAIR RAY: Okay, I was thinking, I don't
I	I

	32
1	have the have been to the plant, but I don't have
2	it that well in mind, and I didn't know if there were
3	pump switch gears, ultimate heat sink connections,
4	whatever, that would fly below plant grade.
5	MS. SELMAN: No, everything that we need
6	for flood measures is above flood grade.
7	CHAIR RAY: All right.
8	MEMBER STETKAR: And is the auxiliary feed
9	water system below plant grade?
10	MS. SELMAN: Well, I'll address
11	MEMBER STETKAR: Just yes or no, please.
12	MS. SELMAN: It's below, and we use an
13	alternate for the aux feedwater.
14	MEMBER STETKAR: Thank you.
15	CHAIR RAY: Okay.
16	MS. SELMAN: TVA utilizes the results from
17	the updated hydrology calculation for the Bellefonte
18	COLA, as Mr. Milano previously alluded to.
19	The February 2008 NRC inspection
20	identified concerns. That calculation has been used
21	as a basis for UFSAR Section 2.4 revisions.
22	Watts Bar initiated those revisions in
23	1998. We had an original analysis PMF elevation of
24	738.1. Our grade elevation is 728.
25	The 1998 PMF analysis results were about
I	I

(202) 234-4433

	33
1	three feet lower, and we changed the FSAR to reflect
2	that to 734.9.
3	MEMBER BROWN: PMF is what? I forgot.
4	MS. SELMAN: I'm sorry, probable maximum
5	flood.
6	MEMBER BROWN: Okay, thank you.
7	MEMBER STETKAR: Which is not probable nor
8	necessarily maximum, so, it's just an acronym.
9	You'll find there are several PMF's
10	referenced in the document.
11	MEMBER BROWN: Yes, there is a number of
12	different numbers.
13	MEMBER STETKAR: Yes.
14	MS. SELMAN: TVA initiated the hydrology
15	project in March 2008, and as part of that, we
16	validated and verified our legacy hydrology software,
17	which is simulated open channel hydraulics, or SOCH,
18	and we have verified and regenerated all model inputs,
19	including unit hydrographs, dam rating curves, channel
20	geometry, storm selection, run-off, in-flows and the
21	calibration of the model.
22	For Watts Bar, the hydrology product
23	produced the following outputs. We regenerated the
24	probable maximum flood for streams and rivers, and
25	supports FSAR Section 2.4.3.
I	

(202) 234-4433

	34
1	We also validated reran potential
2	seismic dam failures. This is combinations of dam
3	failures with smaller floods, to support FSAR Section
4	2.4.4.
5	We completed the warning time assessment
6	to support the Reg Guide 1.59 regulatory position 2,
7	and for FSAR Section 2.4.10, for flood protection
8	requirements, and also as part of the project, we
9	validated that through use of the SOCH code, that the
10	loss of downstream dam, for low water considerations,
11	was still adequate in FSAR 2.4.11.
12	This slide is schematic of the Tennessee
13	River system, and it gives a perspective of the
14	location of Watts Bar within the system and its
15	upstream dams.
16	The major tributaries to Watts Bar is
17	Norris, Cherokee, Douglas and Fontana. The Cherokee
18	and Douglas come together to form the Tennessee River,
19	right up above Fort Loudoun Dam, which is directly
20	above Watts Bar.
21	I do have, if you're interested in looking
22	at it, I have a map of the Tennessee River system, as
23	it is physically in the Tennessee Valley, to the right
24	here.
25	CHAIR RAY: I think the schematic will
	I

(202) 234-4433

	35
1	suffice.
2	MS. SELMAN: Okay, okay
3	MEMBER RYAN: Did you consider multiple
4	dam failures?
5	MS. SELMAN: Yes, we did.
6	MEMBER RYAN: Okay, for each one?
7	MS. SELMAN: Yes. Well, I've got a slide
8	on it.
9	MEMBER RYAN: Okay, it's coming up, fine.
10	MS. SELMAN: Yes.
11	MEMBER STETKAR: Chattanooga is right
12	below Chickamauga, right?
13	MS. SELMAN: That is correct.
14	MEMBER STETKAR: I mean, like right below
15	Chickamauga?
16	MS. SELMAN: Right below Chickamauga, yes.
17	MEMBER STETKAR: Okay.
18	MS. SELMAN: Excuse me. Analysis results,
19	our PMF, updated PMF elevation is 738.8, which is an
20	increase from the original analysis of 738.1.
21	We recalculated the wind wave, and the
22	average wind wave is around 2.5 feet, and that
23	previously was two feet.
24	The potential seismic dam failures with
25	lesser floods is the highest ones are the ones

36 1 shown here, but we did several --MEMBER STETKAR: Before you get into the 2 3 seismic. 4 MS. SELMAN: Okay. 5 MEMBER STETKAR: I'm curious, back on slide number 10, you said the original analysis 6 7 estimated a PMF elevation of 738.1. 8 MS. SELMAN: Yes. 9 MEMBER STETKAR: You redid the analysis, 10 extensively using improved data and methods, in 1998, and managed to reduce that to 734.9. 11 12 MS. SELMAN: Yes. MEMBER STETKAR: Now, you've redone the 13 14 analysis and managed to get it back up to 738.8. What 15 is happening? I mean, why -- what in those analyses of the PMF --16 17 MS. SELMAN: Yes. MEMBER STETKAR: -- is making four foot 18 19 elevation changes at the site? 20 When we redid in 1998, I will MS. SELMAN: say that we didn't do a full model redo. We just --21 we had made some dam safety modifications throughout 22 the Valley, and we put those into the model that we 23 24 had, and reran it, and that produced the three feet less results. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	Gordon, if you could go ahead one, two
2	slides.
3	MEMBER STETKAR: That's okay, if you're
4	going to get to it, that's fine.
5	MS. SELMAN: Okay.
6	MEMBER STETKAR: Back up, I'm sorry, I was
7	just curious.
8	MS. SELMAN: So, for the potential seismic
9	dam failures with lesser floods, what we've shown
10	here, I'm just showing you the top the highest
11	elevation producing floods and seismic dam failures.
12	But we did we redid several. There is
13	no one single dam failure that will exceed plant
14	grade, at Watts Bar. It's a combination of the ones
15	shown here.
16	If you have an SSE plus a 25 year flood,
17	for Norris, Cherokee, Douglas and Tellico, you get an
18	elevation of 731.1, but it is bounded by the PMF
19	elevation. PMF elevation is still is controlling.
20	MEMBER STETKAR: I see a lot of pictures
21	coming up. When is an appropriate time to ask you
22	about specific dams, now, or should I wait?
23	MS. SELMAN: If you could wait.
24	MEMBER STETKAR: I'll wait.
25	MS. SELMAN: Okay, and the OBE and half
I	I

(202) 234-4433

	38
1	PMF, a failure of Norris and Tellico dams, provides an
2	elevation of 728.8 at Watts Bar, and I will say that
3	in most of these cases, we did not do detailed
4	analysis of the dams. We assumed failures of the
5	dams.
6	So, we're not saying that our dams are not
7	safe. We are just postulating failures for this
8	analysis.
9	CHAIR RAY: But the failures assume a
10	certain size breach, a certain release rate, I
11	believe, is that correct?
12	MS. SELMAN: That is right. They these
13	are full failures of the concrete. The embankments
14	during a seismic event, are stable.
15	CHAIR RAY: Okay, so, that's how the size
16	of the breach is defined, it's by the portion of the
17	embankment that is concrete, and therefore, subject,
18	presumably, to seismic failure?
19	MS. SELMAN: Yes, yes. Next slide,
20	please. Continuing with analysis results.
21	For the warning time assessment
22	verification we validated that we still had 27 hours,
23	as we had previously for warning time, for Watts
24	Bar Unit 1, and we relooked at summer and winter
25	storms, for the PMF, with rainfall and the a large
l	

(202) 234-4433

	39
1	amount of rainfall occurring on the last day.
2	We looked at the seismic dam failures with
3	the smaller floods, and actually, the shortest arrival
4	time is from a dam failure, it's actually from OBE
5	failure of Norris and Tellico, in the half PMF with an
6	arrival of 28 hours, and that is an arrival at a foot
7	below plant grade.
8	So, 727, we allow an additional foot for
9	wind wave, in preparation.
10	MEMBER BROWN: Could I ask a question?
11	This is for information.
12	MS. SELMAN: Yes.
13	MEMBER BROWN: In this previous slide, you
14	talk I see the two elevations for the flood. I
15	presume those are the maximum flood levels, and since
16	you're above that grade, you won't be inundated with
17	water. Is that the you won't be buried.
18	MS. SELMAN: No, we are below
19	MEMBER BROWN: I'm trying to understand
20	MS. SELMAN: We're below the
21	MEMBER BROWN: I'm not a hydrology person.
22	MS. SELMAN: Yes.
23	MEMBER BROWN: So, I'm just trying to
24	understand, from the previous slide, where you said
25	the flood grade for you was 738. You got it back up
ļ	1

(202) 234-4433

	40
1	to that, if I'm understanding what the terminology
2	means, and then I see what I think I thought I read on
3	page 13 was that the flood levels, 25 year, the
4	maximum height or elevation would be 731, which is
5	eight feet below, getting into the plant? Is that
6	what that means?
7	MS. SELMAN: Well, no, no, it's not.
8	MEMBER STETKAR: It's three feet above
9	getting into the plant.
10	MEMBER BROWN: Okay, all right.
11	MS. SELMAN: The grade, the plant grade at
12	Watts Bar is 728. So, we are a wet site. We are
13	designed as a wet site.
14	MEMBER BROWN: Okay, where was that?
15	MS. SELMAN: That is what I talked about
16	in the beginning.
17	MEMBER BROWN: Okay, I missed that. I
18	apologize for that.
19	MS. SELMAN: Yes, the reg position 2.
20	MEMBER BROWN: Okay.
21	MS. SELMAN: That we assumed in our
22	design.
23	MEMBER BROWN: Okay, now, I've got it.
24	I've got that.
25	MS. SELMAN: Okay.
ļ	

	41
1	MEMBER BROWN: So, now, the warning time,
2	what does that mean? You've got time to put the sand
3	bags up, or what?
4	MS. SELMAN: That means that
5	MEMBER BROWN: I don't know what a wet
6	site means.
7	MS. SELMAN: Okay, so, that means that we
8	make preparations for the flood, that we'll a lot
9	of the safety related systems, structures and
10	components will abandon, and we use like we use
11	high pressure fire protection to we dump that into
12	the steam generator for cooling the steam generator,
13	and we use ERCW to provide component cooling system
14	water.
15	So, we take
16	CHAIR RAY: What chapter is all of this
17	described in? It's not obviously, here.
18	MEMBER STETKAR: It's 2.4.
19	MS. SELMAN: It's 2.4.
20	CHAIR RAY: It's in 2.4?
21	MS. SELMAN: It's 2.4.10 or 11.
22	CHAIR RAY: Okay.
23	MEMBER STETKAR: Yes, 14 is the mitigation
24	sort of activities.
25	MS. SELMAN: Yes.
ļ	I

	42
1	MEMBER BROWN: So, by dumping all this
2	stuff, filling up the steam generators and having this
3	other system lid off, I mean, I presume you have to
4	have electricity for this ERCW system to operate.
5	MS. SELMAN: Yes, and we assume diesel
6	generator.
7	MEMBER BROWN: And those are above the
8	flood level?
9	MS. SELMAN: Yes, they are.
10	MEMBER BROWN: And all the power sources
11	and the switch gear are above the flood levels?
12	MS. SELMAN: Yes.
13	MEMBER BROWN: Okay.
14	MEMBER STETKAR: Penny, as long as are
15	you finished?
16	MEMBER BROWN: Well, I don't know whether
17	I am or not.
18	MEMBER STETKAR: Let me ask, since Charlie
19	is asking about elevations, and I didn't are you
20	going to talk something more about the equipment and
21	those mitigation actions?
22	MS. SELMAN: I had not
23	MEMBER STETKAR: Okay, let's talk about it
24	now.
25	MS. SELMAN: Okay.
I	I

(202) 234-4433

43 The plant intake 1 MEMBER STETKAR: building, whatever it's called, pumping building --2 where the ERCW and fire pumps live, that will be 3 4 flooded below grade. 5 I understand that the ERCW pump motors and 6 the fire pump motors are -- I think they're 742 or 7 something like that. 8 MS. SELMAN: Right. 9 MEMBER STETKAR: So, they're above flood What -- it's mentioned in the FSAR, that there 10 level. are -- there is electrical equipment below grade in 11 that building that will be flooded. What is that 12 electrical equipment? 13 14 MS. SELMAN: I'm going to have to defer to 15 Steve Smith, please. Steve Smith, operations at 16 MR. SMITH: 17 Watts Bar, TVA. At the intake pumping station, we have the 18 19 ERCW pumps, the high pressure fire pumps, raw cooling water pumps, and the raw cooling water pumps is the 20 non-safety related secondary site cooling supply 21 water, and its electrical distribution is located in 22 the bottom of that, for the raw cooling water system. 23 24 MEMBER STETKAR: Everything electric for ERCW is located --25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	44
1	MR. SMITH: Is located in the plant.
2	MEMBER STETKAR: In the plant, okay.
3	MR. SMITH: That's correct.
4	MEMBER STETKAR: Okay, what about I
5	didn't have a chance to go back and look in Chapter 9,
6	and I couldn't actually, I did look, but I couldn't
7	find details.
8	Are there things like traveling screens
9	and flushing water systems for the intake of ERCW?
10	MR. SMITH: Yes, the ERCW intake traveling
11	screen motors are above grade plant elevation as the
12	ERCW pumps.
13	MEMBER STETKAR: Okay.
14	MR. SMITH: The strainers that support the
15	water coming to the plant are below grade. The non-
16	safety related part is turned to the drum, the motor
17	on it. The flow path through the strainer is
18	available
19	MEMBER STETKAR: Now, my question all
20	right, thank you. I'm glad you said that, because my
21	question is why will the flow path through those
22	strainers be available if the drums aren't turning
23	into clean strainers, in an accident that involves a
24	very, very severe flood that has, entrained in the
25	river now, just more debris than you have ever thought

(202) 234-4433

	45
1	about in your entire life, of varying sizes and
2	consistencies anywhere from buildings to all of the
3	silt that comes down many, many
4	MR. SMITH: I was just speaking from an
5	operations perspective. I guess the design has to do
6	that, so, they'll probably have to answer that another
7	way.
8	My thought is, the silt stuff, it lays on
9	top of the water, and where we take the suction is
10	below
11	MEMBER STETKAR: My thought is that the
12	entire flow would be full of, I'll use a technical
13	term, gook.
14	I've seen floods, and it doesn't seem to
15	be a nice stratified water situation, with things
16	floating on the top serenely and box sitting on the
17	bottom. It tends to be kind of a mess.
18	So, I'm curious about why the intake for
19	ERCW, if it has screens, won't just plug up solid, if
20	there's no way of cleaning those screens?
21	MR. SMITH: The screens have screen wash
22	pumps and the motor turns the screen, and those will
23	still be above grade and safety related power is above
24	grade.
25	MEMBER STETKAR: I thought you said that
	I

(202) 234-4433

	46
1	the
2	MR. SMITH: There's a strainer down stream
3	of the pumps, that takes the smaller sediment out,
4	that the screens don't get.
5	MEMBER STETKAR: And the down stream one
6	will be under water?
7	MR. SMITH: Correct, the pipes go
8	underground from the IPS to the plant.
9	MEMBER STETKAR: The discharge side of the
10	ERCW, that would be
11	MR. SMITH: That is correct.
12	MEMBER STETKAR: would be underwater,
13	but not on the suction side?
14	MR. SMITH: That's correct.
15	MEMBER STETKAR: Okay.
16	MR. SMITH: The intake itself
17	MEMBER STETKAR: I'm sorry, I
18	misunderstood you.
19	MR. SMITH: Okay.
20	MEMBER STETKAR: I thought that there was
21	a rotating screen
22	MR. SMITH: I apologize.
23	MEMBER STETKAR: on the intake side
24	that was underground.
25	So, all you're doing is missing, perhaps,
I	1

	47
1	the discharge side screening of ponds?
2	MR. SMITH: Correct.
3	MEMBER STETKAR: Okay, thanks. That
4	helps.
5	MR. SMITH: Okay.
6	MEMBER STETKAR: Diesel generator
7	building, where are the diesel
8	CHAIR RAY: Before you go to diesel
9	generator building, can I ask a question that's
10	related to
11	MEMBER STETKAR: Yes, if it's the same
12	building, sure.
13	CHAIR RAY: Well, I think so. I
14	understand how we get water into the secondary side of
15	the steam generators and to the reactor plant cooling
16	water supply. John just talked to you about that.
17	How do you maintain the parameter system
18	inventory?
19	MR. SMITH: There is different modes of
20	cooling, whether you're open mode or closed mode.
21	The spent fuel pit cooling system, which
22	have pumps and power supplies that are above the flood
23	grade, is you recirc through the spent fuel pit,
24	through the heat exchangers that are normally used for
25	the residual heat removal system, to the core and then
I	

(202) 234-4433

	48
1	back to the spent fuel pit, circulate around that.
2	The spool pieces and other equipment we
3	install in this preparatory time, align all of that
4	up.
5	CHAIR RAY: It's just, this is after
6	cooling down and de-pressurization?
7	MR. SMITH: Yes.
8	CHAIR RAY: Okay, so, the time from
9	notification until the event arrives that you go
10	through a you go down to mode 3 and
11	MR. SMITH: Actually, in mode 5 or 6
12	CHAIR RAY: Five or six?
13	MR. SMITH: those reactor head if
14	the head is on the vessel, then we use the steam
15	generators and the high pressure fire protection
16	system to feed the steam generators on a natural
17	circulation to cool them.
18	CHAIR RAY: Yes, what I'm concerned about
19	is natural circulation with the RCS pressurized,
20	and how you're what you're assuming about the RCP
21	seals, for example, since you don't have high pressure
22	injection.
23	Do I understand that you that that's
24	not a mode you would find yourself in, because you
25	would de-pressurize?
l	I

(202) 234-4433

	49
1	MR. SMITH: That is how the procedure is
2	set up, yes, sir.
3	CHAIR RAY: Okay, John.
4	MEMBER STETKAR: I'll ask Penny, because
5	she's up front with it.
6	The diesel generator building, where are
7	the diesel fuel oil transfer pumps located, pumps that
8	fill the day tank from the fuel storage tank? Are the
9	below grade?
10	MS. SELMAN: Steve?
11	MR. SMITH: Yes.
12	MEMBER STETKAR: Okay, how can you
13	MR. SMITH: Can I clarify, just a second?
14	MEMBER STETKAR: Sure.
15	MR. SMITH: The we've got seven day
16	tank that's located at the diesel building pump grade,
17	that has pumps that are above grade, that transfers
18	from the seven day tank to the day tank on the diesel
19	generator.
20	Large fuel storage tanks are located where
21	
22	MEMBER STETKAR: Okay.
23	MR. SMITH: that would be below grade.
24	MEMBER STETKAR: But everything for seven
25	days is completely above grade?
I	1

	50
1	MR. SMITH: That is correct.
2	MEMBER STETKAR: Great, thank you. That
3	helps a lot.
4	MR. SMITH: Okay.
5	MEMBER STETKAR: Well, since I'm on a roll
6	here, with sort of equipment, because I know you want
7	to talk about hydrology and dam failure. So, let's
8	consolidate a lot of these things.
9	Spool pieces for connections from ERCW to
10	auxiliary feedwater, are they below grade the spool
11	piece locations?
12	MR. SMITH: That's the high pressure fire
13	protection?
14	MEMBER STETKAR: I'm sorry, high pressure
15	fire protection, ERCW
16	MR. SMITH: They are above, the spool
17	pieces are above grade. The elevation, 737 is the
18	walking elevation that you're on.
19	MEMBER STETKAR: Okay.
20	MR. SMITH: But the spool pieces
21	themselves are several feet above that release valve.
22	MEMBER STETKAR: The auxiliary feedwater
23	flow control valve is up there also?
24	MR. SMITH: They're on that same
25	elevation.
I	I

(202) 234-4433

	51
1	MEMBER STETKAR: Same elevation?
2	MR. SMITH: On a mezzanine above that.
3	MEMBER STETKAR: What gets flooded there,
4	just the AFW pumps down below?
5	MR. SMITH: Yes, the AFW pumps are above
6	grade.
7	MEMBER STETKAR: Okay, I had one more on
8	that. I'll stop at the moment. Thanks.
9	MS. SELMAN: Okay, all right.
10	MEMBER BROWN: Can I ask, John and Harold,
11	you all probably know this, but I don't.
12	For these plants, is 27 hours enough time
13	to take it from normal operating conditions down to
14	complete cool down?
15	MS. SELMAN: We have validated, as far as
16	Watts Bar Unit 1, that that that all of the flood-
17	mode preparations can be completed within that time
18	frame.
19	MEMBER BROWN: Okay, including the cool
20	down to whatever the mode?
21	I'm not familiar with all the I'm Naval
22	nuclear background, so, all the modes, I kind of lose
23	track of them, after a while.
24	So, what mode do you cool down to, and how
25	long does it take to do that?
I	I

	52
1	MS. SELMAN: Steve?
2	MR. SMITH: To give you specifics, I'd
3	have to have a procedure to give you exactly how high
4	level the if you're in the mode for refueling and
5	reactor vessel head is removed, and the spool pieces
6	are installed to use the spent fuel pit cooling
7	system, you recirc through the residual heat removal
8	heat exchanger and the spent fuel pit heat exchangers,
9	to keep the core cool. It's called open mode cooling.
10	Closed mode cooling with a head-on would
11	be the high pressure fire protection, feeding the
12	steam generator with natural circulation and the
13	well, of course the steam generator and the
14	atmospheric release on the steam generator is
15	controlling the temperature and the RCS.
16	MEMBER BROWN: So, you're just feeding and
17	bleeding, in order to maintain cooling?
18	MR. SMITH: That is correct.
19	CHAIR RAY: But natural circulation are
20	you talking about natural circulation with the RCS de-
21	pressurized?
22	MR. SMITH: No, sir, at normal operating
23	temperature and pressure, mode 3
24	CHAIR RAY: Yes.
25	MR. SMITH: Then your pressure I'm
I	

(202) 234-4433

	53
1	sorry, go ahead.
2	CHAIR RAY: Well, I thought you said no,
3	you would be down at mode 5, when you activated this
4	this condition that you were just describing.
5	You're talking about I understand feed
6	and bleed, and natural circulation
7	MR. SMITH: Yes, sir.
8	CHAIR RAY: but I do that with the
9	reactor cooling system pressurized and in that mode,
10	I'm interested in knowing how do you then maintain RCS
11	level?
12	You don't have high pressure injection and
13	your reactor coolant pump seals are not being cooled.
14	(OTR comments)
15	MR. HILMES: Steve Hilmes. What we do is
16	we maintain the thermal barrier on the RCP's, using
17	ERCW with the spool piece and the CCS, to protect the
18	seal, and then as far as make up
19	CHAIR RAY: Can I let me stop you right
20	there.
21	So, you've got leak off passed the seals,
22	but you're it's sub-cooled, because you've got a
23	cooling supply to the seal?
24	MR. HILMES: That is correct.
25	CHAIR RAY: So, it would be like a limited
I	I

(202) 234-4433

	54
1	leakage seal, instead of an injection seal?
2	MR. HILMES: You don't expect the seal to
3	fail, essentially, because you're keeping cooling on
4	the seal, okay?
5	CHAIR RAY: Yes, okay, no, now, I'm with
6	you.
7	MR. HILMES: Okay?
8	CHAIR RAY: At least I'm with you, in
9	terms of what you were saying.
10	MR. HILMES: Okay, now, for a make up, for
11	that, we have flood oration pumps. Those are above
12	elevations with tanks up on the refuel floor, and
13	they're high pressure injection pumps that make up for
14	that small leakage.
15	CHAIR RAY: Yes, okay. So, you're taking
16	credit for the pump seals maintaining their integrity
17	and the leak-off, the small leak-off, you can make up
18	for that?
19	MR. HILMES: Yes, we have relatively small
20	pumps, but they have to make that up.
21	CHAIR RAY: Yes, okay.
22	MEMBER BROWN: How long can you do this,
23	this cooling operation, with
24	CHAIR RAY: Well, they can do it
25	MEMBER BROWN: I mean, is it
I	

(202) 234-4433

	55
1	CHAIR RAY: indefinitely.
2	MEMBER BROWN: I mean, they've got enough
3	water well, they're blowing water off?
4	CHAIR RAY: Off the secondary side,
5	they're injecting fire water, with the high pressure
6	
7	MEMBER BROWN: And there is enough to go
8	for days? Weeks?
9	CHAIR RAY: Yes.
10	MEMBER BROWN: Months?
11	MR. HILMES: It's river water.
12	MEMBER BROWN: It's river water?
13	MR. HILMES: Yes, sir.
14	MEMBER BROWN: Okay.
15	CHAIR RAY: Right.
16	MEMBER BROWN: Right, you'll have to do
17	your water cooling?
18	CHAIR RAY: Yes. Yes, the tricky thing is
19	the reactor coolant pump seals, but that's all right.
20	At least I understand what they're assuming. Penny?
21	MS. SELMAN: Okay, loss of the downstream
22	dam verification, we verified that there is adequate
23	time available to produce release from the upstream
24	dam, Watts Bar dam, to provide sufficient elevation
25	for cooling.
ļ	

(202) 234-4433

	56
1	We did two cases. We did no discharge
2	from Watts Bar dam and there is 27 hours to critical
3	elevation 666.
4	We also did an evaluation of discharge
5	from upstream dam, starting at the same time as loss
6	of downstream dam, and also, starting at 12 hours
7	after loss of downstream dam.
8	The discharge from the upstream dam is
9	it can be the elevation of 666 can be maintained
10	starting at 12 hours after dam failure of Chickamauga
11	dam, downstream dam.
12	MEMBER STETKAR: Penny, not yet.
13	MS. SELMAN: Okay.
14	MEMBER STETKAR: Several questions on
15	Chickamauga.
16	You mentioned that you did an analysis to
17	show that it was I forgot, how long did you say to
18	get down to 666?
19	MS. SELMAN: Twenty-seven hours.
20	MEMBER STETKAR: Twenty-seven hours?
21	MS. SELMAN: Yes.
22	MEMBER STETKAR: That analysis was done
23	during summer conditions, where you had maximum level
24	in the reservoir.
25	What is the time during winter conditions,

	57
1	when you're down at low level and in the reservoir?
2	MS. SELMAN: Greg, do you can you speak
3	to that question?
4	MR. LOWE: Greg Lowe, TVA contractor.
5	Actually, both conditions were looked at and in either
6	case, the cooling level change between winter and
7	summer at Chickamauga is not that large. It's a
8	matter of a few feet, because the difference in winter
9	and summer on a pool that maintains navigation. So,
10	it was very little fluctuation.
11	MEMBER STETKAR: It's about seven feet?
12	MR. LOWE: Yes, it's that is at
13	maximum, yes.
14	MEMBER STETKAR: Okay, all right.
15	MR. LOWE: And even with the lower level,
16	the time available to before you reach that
17	critical level and the opportunity to release on the
18	upstream project, did not present a problem in that
19	case, as well.
20	MEMBER STETKAR: I'm not asking whether
21	it's a problem. I'm asking what the time is.
22	MR. LOWE: I don't recall the
23	MEMBER STETKAR: Okay, let's take a I
24	want to know what that time is.
25	Twenty-seven hours is a magic number,
ļ	I

(202) 234-4433

	58
1	here. Everything is magically 27 hours or greater.
2	If something is less than 27 hours, I want
3	to understand how much less
4	MS. SELMAN: Okay.
5	MEMBER STETKAR: than 27 hours it might
6	be.
7	MS. SELMAN: All right, take that out for
8	you.
9	MEMBER STETKAR: So, I'd like that number,
10	please.
11	MS. SELMAN: Okay.
12	MEMBER STETKAR: Chickamauga dam, if that
13	dam fails catastrophically, it's not a good day in
14	Chattanooga, Tennessee.
15	MS. SELMAN: Correct.
16	MEMBER STETKAR: It's a really bad day in
17	Chattanooga, Tennessee. It's probably the worst day
18	Chattanooga, Tennessee has ever seen in their lives.
19	Are emergency responders in Chattanooga,
20	Tennessee going to be real happy with people releasing
21	a lot of water from the Watts Bar dam, to come down
22	and yet, flood their city more?
23	MS. SELMAN: I don't know if I can answer
24	that question.
25	MEMBER STETKAR: Okay, well, I'd like an
	I

(202) 234-4433

	59
1	answer to that question, because in a real dam failure
2	situation, I'm an emergency responder in Chattanooga,
3	Tennessee.
4	I suspect the last thing I might want to
5	have is Tennessee Valley Authority releasing 3,200
6	cubic feet per second of water from their dam, to come
7	down the river and make my life even more miserable
8	for me.
9	So, I'm curious how you've coordinated
10	these nuclear plant specific recovery actions in the
11	little world of the nuclear power plant, compared with
12	regional emergency planning actions in the event of a
13	downstream dam failure.
14	MS. SELMAN: Yes, sir. Greg, can you
15	speak any further to that?
16	MR. LOWE: I think if I understand your
17	question correctly, the concern is about the failure
18	at Chickamauga.
19	MEMBER STETKAR: Exactly.
20	MR. LOWE: And then the resulting release
21	from the upstream dam that would follow, in order to
22	maintain the levels we're talking about here.
23	MEMBER STETKAR: Right.
24	MR. LOWE: Is that correct?
25	MEMBER STETKAR: That's correct.
ļ	I

(202) 234-4433

	60
1	MR. LOWE: The TVA just basically
2	coordinated, through its Dam Safety Program, and they
3	have an emergency action plan with each of the
4	communities downstream.
5	So, the emergency management people are
6	already aware and have planning, as to what they would
7	do in different types of emergencies.
8	So, the release of Chickamauga is going to
9	be so large, with respect to the flow that we would be
10	releasing from Watts Bar, to maintain depth up there,
11	that it would be within the channel anyway, and it's
12	arrival, it's arrival would be well on the back side
13	of the major release at Chickamauga, which is several
14	miles downstream.
15	So, yes, the community itself would be
16	flooded significantly, by a failure at Chickamauga,
17	major inundation. But a release from the upstream
18	project would be very, very small, relative to that.
19	MEMBER STETKAR: Relative to that, but
20	it's not zero.
21	For example, wouldn't there be fairly
22	extensive pressure from emergency responders on TVA
23	to, for example, hold up all water upstream, in your
24	entire integrated dam system upstream, so that I can
25	allow things to dry out and I can get to trapped
ļ	I

(202) 234-4433

	61
1	people and I can repair infrastructure downstream,
2	because although you like to maybe think of things as
3	staying within a well defined channel, I suspect the
4	channel won't be there anymore, downstream of the dam.
5	I suspect, you know, the entire geography
6	will not look like it does, if you do have that
7	catastrophic failure.
8	So, I'm curious, you know, whether this
9	assumption that very quickly well, not very
10	quickly, in a matter of a few hours, after failure of
11	the downstream dam, in reality, you will establish,
12	you know, substantial flow, small compared to the dam
13	failure, but fairly large compared to, for example,
14	historical low flows in the river system.
15	You know, 3,200 cubic feet per second is
16	nothing to sneeze at, whether that is realistic, given
17	the realities of the pressure of emergency responders
18	in the city of Chattanooga, to try to keep things as
19	dry as possible for as long as possible, for them to
20	do their work, and you know, are those emergency
21	responders aware of the fact, of these plans, to open
22	up flow from Watts Bar dam for the nuclear plant?
23	MS. SELMAN: Okay, I understand.
24	MR. ARENT: So, we have that action?
25	MEMBER STETKAR: Yes, I mean, it's I'm
Į	

(202) 234-4433

	62
1	really curious, because this is not you know, I
2	recognize that our concern right now, here in this
3	room, is survival of Watts Bar Units 1 and 2, under
4	really severe conditions.
5	But those really severe conditions are
6	going to affect a lot of people who might have
7	incentives that could be contrary to your incentives
8	at the nuclear plant, in particular, for these flows.
9	MS. SELMAN: Understood.
10	CHAIR RAY: Yes, or I guess it can be
11	expressed as, can you are you sure, under all
12	circumstances, you can continue to supply cooling
13	water, in the event of this dam failure that you're
14	pointing at here?
15	MEMBER STETKAR: Well, yes, I mean, will
16	will the emergency response infrastructure support
17	that notion?
18	CHAIR RAY: But I think of it beyond
19	MEMBER STETKAR: Because if they can't, if
20	they can't open up
21	CHAIR RAY: Yes.
22	MEMBER STETKAR: the flood gates, then
23	
24	CHAIR RAY: I understand.
25	MEMBER STETKAR: the river becomes dry.
l	I

(202) 234-4433

	63
1	CHAIR RAY: Right, and so, that's well
2	put, but it's just a matter of can you in the
3	absence of that downstream dam, can you maintain
4	sufficient cooling flow to the plant?
5	The assumption is that you can. You're
6	asking a reasonable question, how do you know it would
7	actually be possible to do?
8	MEMBER STETKAR: Physically, I know it's
9	possible, it's just, you know
10	CHAIR RAY: Well, no, I
11	MEMBER STETKAR: Will response to that
12	emergency
13	CHAIR RAY: Everything considered is a
14	MEMBER STETKAR: allow you?
15	MEMBER BROWN: John, can I just I want
16	to like Harold, I guess I want to try to understand
17	this, some of this.
18	If Chickamauga goes, is the concern then
19	that the water level falls so low below the dam, that
20	you then can't get sufficient cooling for Watts Bar?
21	MEMBER STETKAR: The river drains.
22	MEMBER BROWN: The river drains, I
23	understand that part.
24	MEMBER STETKAR: Yes.
25	MEMBER BROWN: But I want to know how much
I	I

	64
1	it drains.
2	CHAIR RAY: If we have to supply water
3	from an upstream dam
4	MEMBER BROWN: So, you drain your you
5	open your own to keep that water level high, order to
6	make okay.
7	CHAIR RAY: Which then adds to the effect
8	of the dam failure.
9	MEMBER BROWN: Yes, absolutely, I got
10	that. Thank you.
11	MEMBER STETKAR: Are we going to talk more
12	about dams, individual dams?
13	MS. SELMAN: No.
14	MEMBER STETKAR: Okay, thanks.
15	MS. SELMAN: Okay, next slide, Gordon.
16	So, you had asked previously, what caused the
17	increases in the flood level, for the PMF today.
18	There were three major things that had
19	occurred, that caused the changes.
20	Over time, river operations had changed
21	the way they operated the river. We had completed a
22	study in 2004, and we raised tributary elevation.
23	So, your starting elevations were higher
24	in the tributaries.
25	We also re-assessed operational
I	1

	65
1	allowances. When we were going going through all
2	of the validation and verification in the inputs, we
3	looked we re-looked at the assumptions that were
4	made about how much you could surcharge the tributary
5	dams.
6	So, you have the flood come, and we use
7	the tributaries for storage, and we had allowed
8	previously, had allowed that surcharge to get up to a
9	level so high, that dam safety was not comfortable
10	with that, and therefore, we changed that assumption.
11	Also, the spillway coefficients were found
12	to be we found that we had used textbook values for
13	the upper reaches of for the high levels of flow,
14	for orifice flow, and we actually had some model test
15	data that we had completed at our Norris hydraulics
16	and hydrology lab.
17	And we had the test data that for our
18	specific gates, and we used that data in the updated
19	hydrology analysis.
20	So, the comment that was a major player
21	because it increased the amount of storage behind the
22	dam, because we couldn't get out the the flow as
23	fast, as we had previously assumed.
24	So, as part of that the hydrology
25	update and the dam rating curves, the spillway
I	I

(202) 234-4433

	66
1	coefficient issue, we had four upstream dams that were
2	increasing in elevation, such that the embankments
3	behind those dams at those dams, went over top, and
4	if the embankments overtop, then you are you are
5	then assuming erosion and failure of embankments.
6	So, those four dams, Watts Bar. Fort
7	Loudoun, Tellico and Cherokee, were protected with
8	HESCO bastions or barriers, and these were chosen as
9	they had previous proven reliability during floods in
10	New Orleans, North Dakota, Missouri and Iowa, during
11	the 2008 flood there.
12	This table just gives you an overview of
13	the new PMF headwater elevations at the four dams, and
14	the new tell-water elevations, that where it says
15	'current elevation', that's actually previous
16	elevation, before raising the embankments with the
17	HESCO barriers, and the new elevation is with the
18	HESCO barriers.
19	MEMBER BROWN: What does HESCO mean,
20	again?
21	MS. SELMAN: It's a brand name.
22	MEMBER BROWN: A brand name?
23	MS. SELMAN: Yes.
24	MEMBER BROWN: Okay, thanks.
25	MS. SELMAN: We raised we installed
	I

(202) 234-4433

67 1 18,2001 linear feet of HESCO barriers on the embankments, and it shows you there, the HESCO -- the 2 3 number of HESCO baskets used, and the numbers - -4 amount of sand used. 5 This is -- I'm just going now into some pictures to show you the location of the sand baskets, 6 7 the HESCO barriers. Cherokee Dam, there you see in the red, 8 the area that was -- where the embankments were raised 9 10 and the little insert picture just shows you, to the left, places that you couldn't see in the big picture, 11 that were also protected. 12 This is just an up close look of the 13 14 baskets, and how they --CHAIR RAY: Did I understand that these 15 16 are not intended as permanent? 17 MS. SELMAN: That is correct. CHAIR RAY: And therefore, there is some 18 19 plan to replace them or supercede them with something that is permanent? 20 MS. SELMAN: That is correct. At Tellico, 21 we raised -- we installed 6,011 linear feet of sand 22 baskets, again, along the embankments in the Saddle 23 24 Dams. Just another view of the baskets at 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	Tellico.
2	Fort Loudoun Dam, Fort Loudoun Dam is a
3	little bit of a was a challenge for installation.
4	The it went right along the roadway, underneath the
5	bridge, and there is already existing concrete flood
6	wall there, and as you'll see in the next slide, where
7	there is concrete flood wall in the upper left-hand
8	picture, the baskets are sitting against that flood
9	wall, and then we did a double layer to protect up to
10	the needed elevation.
11	At Watts Bar Dam it's not as visible,
12	there is not a red line, but back there along the
13	roadway, is where the baskets were located.
14	MEMBER BROWN: Which roadway? The big
15	roadway or the little bitty road, coming in?
16	MS. SELMAN: Not across the dam the
17	bridge, but down near the river, the beach area, yes.
18	Thank you.
19	MEMBER BROWN: That little blue line?
20	MS. SELMAN: Yes.
21	MEMBER BROWN: Okay.
22	MS. SELMAN: Okay, for Watts Bar Damn, you
23	can tell a little bit in the upper left-hand picture
24	that there were portions under the bridge that we
25	could not put in the sand baskets.
I	

(202) 234-4433

	69
1	So, next slide, Gordon. So, we allowed
2	overtopping of that concrete wall, but to protect the
3	embankment, we installed Armor Flex concrete mats and
4	to protect to harden the embankment, and we covered
5	those with soil and they've since been grassed.
6	Okay, any questions on the baskets, before
7	I move along?
8	Okay, also, when we had modified the four
9	projects, we did re-evaluated the dam stability of
10	those dams. We had an issue at Cherokee. There were
11	some challenges.
12	In the simplified analysis, we just did a
13	limit equilibrium or a gravity analysis on Cherokee
14	Dam, and it and we also did crack base analysis.
15	So, there were challenges with the cracked
16	base, but we had sufficient factors of safety for
17	sliding and for over-turning, and the cracked base,
18	what that means is you have some uplift pressures that
19	are putting tension on the hill of the dam, and that
20	that was the problem, there.
21	So, we have we are right now,
22	ongoing, detailed finite element analysis of Cherokee
23	and also, of Douglas, which is a sister dam to
24	Cherokee, to that's the next phase step of the
25	dam stability process, is to do the finite element
	I

(202) 234-4433

	70
1	analysis.
2	Addition protection at Watts Bar Nuclear,
3	we have thermal barrier booster pumps, which we talked
4	about previously, that are required for a flood mode.
5	We currently have margin to protect those pumps, but
6	the elevation of the flood is right near the base
7	the pedestal of those pumps.
8	So, additional margin was desired by the
9	plant and we have we are pursuing high temperature
10	reactor coolant pump seals, as a design fix for that.
11	CHAIR RAY: Okay, well, that was maybe
12	what I was anticipating you saying, when I was asking
13	the question earlier.
14	You have license condition, and you're
15	going to speak to that at all?
16	MS. SELMAN: Yes.
17	CHAIR RAY: Okay.
18	MS. SELMAN: There is the commitments. We
19	have the we have an issue that was raised about the
20	seismic stability of those HESCO baskets.
21	We committed to do either a hydrology
22	analysis, assuming that the sand baskets fail or to do
23	a seismic test of the baskets.
24	We have we've done the hydrology
25	analysis. It's not complete yet. It's preliminary.
I	

(202) 234-4433

	71
1	We have preliminary results. The results are
2	adequate, that the elevations at Watts Bar do not
3	exceed the PMF elevation, and the timing is still
4	adequate, but those results are not finalized yet.
5	We will continue to maintain in the spec,
6	those HESCO barriers until implementation of a
7	permanent solution for all four dams, and the
8	permanent solution is underway. We're got an
9	Environmental Impact Statement notice out, and then
10	we'll it's going through the NEPA process.
11	MEMBER BROWN: How long is that going to
12	take?
13	MS. SELMAN: It is expected to take three
14	to four years for implementation of the permanent
15	measures.
16	Then we will we also have a commitment
17	to provide an update to the FSAR to describe long-term
18	stability analysis methodology following completion of
19	the finite element analysis of Cherokee and Douglas
20	Dams, by August 31, 2012.
21	CHAIR RAY: Well, I mean, in to say it
22	as simply as possible, I'm not sure exactly how we
23	came to the conclusion about this, given what is
24	outstanding, as you have just summarized here.
25	I don't expect you can add anything to
Į	I

(202) 234-4433

	72
1	what you say. We'll have to talk to the staff about
2	what their views are.
3	MEMBER STETKAR: Harold, in the sense of
4	I have numerous questions, I've been politely
5	waiting for Penny to get through her
6	CHAIR RAY: Well, then we should pursue
7	them, definitely.
8	MEMBER STETKAR: Yes, and I would like to
9	do that, before you finally summarize.
10	CHAIR RAY: Yes, but I mean, given the
11	for example, the dates when some of this stuff
12	MEMBER STETKAR: Well, I have more
13	fundamental questions about the analysis
14	CHAIR RAY: Okay, go ahead.
15	MEMBER STETKAR: the analysis and the
16	dates for the fixing the four dams.
17	In the FSAR, there is Section 2.4.4.1, and
18	I have to apologize, we only had Amendment 103
19	available until today. So, I'm trying to quickly
20	check, I don't see any change bars in this particular
21	section, but excuse me, if I misquote.
22	MS. SELMAN: Okay.
23	MEMBER STETKAR: For the analysis of
24	Fontana Dam that was done, failure of the Fontana Dam,
25	there are a couple of statements that it says that
	I

(202) 234-4433

	73
1	a subsequent review, which takes advantage of later
2	earthquake stability analysis and dam safety
3	modifications performed for the TVA Dam Safety Program
4	has defined a conservative, but less restrictive
5	seismic failure condition at Fontana Reference 40. I
6	couldn't find Reference 40. It may be in 104.
7	The subsequent review used a finite
8	element model for the analysis and considered the
9	maximum credible earthquake expected at the Fontana
10	Dam site.
11	Was that maximum credible earthquake
12	different from the original earthquake acceleration
13	that was used, and if so, what is it and what is its
14	frequency and why is it considered the maximum
15	credible earthquake?
16	MS. SELMAN: I don't have those answers
17	right off the top of my head. I'll have to get back
18	with you on that.
19	MEMBER STETKAR: Okay, I am interested in
20	that, because it was notable that it was the only that
21	said, you kind of it was the only one where this
22	notion of maximum credible earthquake came in, as
23	opposed to the
24	MS. SELMAN: Okay.
25	MEMBER STETKAR: there is fairly decent
ļ	

(202) 234-4433

	74
1	descriptions about epi-centers of earthquakes and
2	expected peak ground accelerations at various other
3	dams, and this one was a little bit different. So,
4	I'm curious about that.
5	For one of the failure combinations, and
6	this is also in Section 2.4.4.1, it's a long section,
7	the combination of Cherokee, Douglas and Tellico, for
8	the operating basis earthquake when one-half the
9	probable maximum flood, that's just a hook to get you
10	to the right part.
11	It says that you didn't perform a specific
12	analysis for that combination. It says rather, the
13	results for this combination were taken from the
14	Bellefonte Nuclear Plant analysis.
15	The primary difference between the
16	Bellefonte Nuclear Plant calculation and that for
17	Watts Bar Nuclear Plant is that the head-water rating
18	curve used at Chickamauga Dam.
19	For the Bellefonte Nuclear Plant analysis,
20	the future lot configuration, five spillway bays
21	removed, leaving 13 spillway bays, was used, rather
22	than the current lot configuration with 18 spillway
23	bays, and it's concluded that that's conservative.
24	Is there, in deed, a plan to remove five
25	spillway bays from Chickamauga?
ļ	I

(202) 234-4433

	75
1	MS. SELMAN: There is a plan in place to
2	install the new lot.
3	MEMBER STETKAR: Is are all of the
4	flooding analyses, say for this one combination, that
5	were performed for Watts Bar, done presuming that you
6	will have 18 spillways at Chickamauga?
7	MS. SELMAN: Currently.
8	MEMBER STETKAR: Okay, why were they not
9	redone?
10	MS. SELMAN: Well, it's in in the TVA
11	business plan long-term, to redo those analyses.
12	MEMBER STETKAR: Why weren't they redone
13	for the licensing of Watts Bar Nuclear Unit 2, because
14	that reduced spillway capacity could affect the actual
15	flood level at the site?
16	MS. SELMAN: Well, we do have an elevation
17	for those reduced spillway gates, for PMF, but we
18	would we did not redo all of the other the
19	seismic plus
20	MEMBER STETKAR: What is that elevation?
21	MS. SELMAN: Greg, do you know the
22	elevation?
23	MR. LOWE: No.
24	MS. SELMAN: It's, I believe it's 740.4,
25	but I would have to follow up with that.
ļ	I

	76
1	MEMBER STETKAR: Another foot and a half,
2	okay.
3	MS. SELMAN: Yes. No, it should only be
4	I'm wrong. It's only .6. It's less than a foot at
5	Watts Bar.
6	MEMBER STETKAR: I'm curious to learn what
7	that is, and I'm really curious about the analysis
8	if it's going to be done, if it's in the plan, the
9	analysis was done for Bellefonte.
10	We are sitting in the year 2011 with a
11	fairly extensive re-analysis of the flooding at this
12	site, which is susceptible to floods.
13	Why wasn't the entire re-analysis redone,
14	using the planned gate configuration at Chickamauga,
15	because releasing water from Chickamauga is pretty
16	important to a lot of these flooding analyses.
17	MS. SELMAN: Yes, it is.
18	MEMBER STETKAR: Okay, let's see, we
19	talked about Fontana.
20	Watts Bar Dam, I had questions about Watts
21	Bar. There is a statement in there, and this is
22	I'm curious about this.
23	This is in Section 2.4.4.1, again. There
24	is a statement that says, re-evaluation was not made
25	for Watts Bar Dam for Safe Shutdown Earthquake
	I

(202) 234-4433

	77
1	conditions. However, even if the dam is arbitrarily
2	removed instantaneously, the level at the Watts Bar
3	Nuclear Plant, based on previous analysis, would be
4	below 728 plant grade.
5	Does that mean if I vaporize the Watts Bar
6	Dam, I will not flood the site?
7	MS. SELMAN: That is correct.
8	MEMBER STETKAR: Okay.
9	MS. SELMAN: And that's for, you know, 25
10	year flood elevations, SSE plus 25-year flood. So,
11	your head-water and your toe-waters are much lower.
12	MEMBER STETKAR: That doesn't apply for
13	the OBE with the half PMF?
14	MS. SELMAN: The OBE, Watts Bar has been
15	analyzed
16	MEMBER STETKAR: Okay, yes.
17	MS. SELMAN: and it doesn't fail.
18	MEMBER STETKAR: Okay, let me ask you,
19	there are I'm trying to phrase this coherently,
20	because there is so much information in that section.
21	The analyses for Watts Bar and
22	Chickamauga, under the OBE with the half PMF, other
23	members, bear with me, I know it's a lot of jargon.
24	Presume that the flood gates, if I can
25	call them that, are open fully to deal with the pre-

(202) 234-4433

	78
1	existing rain condition. There are statements in
2	there saying, "Failures of the bridge across each dam
3	may occur a the OBE, and the bridge would them impact
4	the open gates, snapping them off, sweeping them
5	downstream."
6	So, therefore, in effect, the full release
7	capability remains available from those two dams under
8	these seismic conditions. Am I interpreting the
9	analysis correctly?
10	MS. SELMAN: Greg, would you like to
11	answer?
12	MR. LOWE: I don't know exactly. I would
13	have to look, to be able to answer.
14	There are some classes where the collapse
15	of the bridge came down the structure, but I don't
16	have the I don't have the
17	MEMBER STETKAR: As best as I can make out
18	from the discussion, the OBE events, because they
19	occur in combination with this half probable maximum
20	flood severe rainfall event, it's presumed that the
21	gates are initially opened fully, and that it's
22	presumed that when the bridge fails, it basically
23	clears them out, so that you you have full release
24	flow from both of those dams, which is a good thing
25	for the site, and that's pretty clear.
	I

(202) 234-4433

	79
1	When it got to the SSE analysis, it became
2	less clear, because that analysis is done under the
3	25-year flood conditions, which are less severe, and
4	there are statements like, "Well, the flood crest
5	would have probably passed the Watts Bar Dam before
6	the seismic event occurred. So, the gates would have
7	been open when the flood crest went through, but the
8	gates would probably be re-closed, and a bridge
9	failure would then affect the gates, and that's
10	conservative."
11	The implication that I have is that maybe
12	the gates are Watts Bar are failed closed, and the
13	same is true for Chickamauga, but I couldn't quite
14	confirm that. Could you?
15	MR. LOWE: Not without looking at that
16	MEMBER STETKAR: Okay, I'd appreciate
17	that, because again, I'm trying to get into what sort
18	of hydrologic conditions were assumed under these sort
19	of contrived seismic and water conditions at the dams,
20	and what benefit or detriment those flow conditions
21	may have to the flooding analyses that were performed?
22	MS. SELMAN: Okay.
23	MEMBER STETKAR: Do you follow me?
24	MS. SELMAN: Right.
25	MEMBER STETKAR: You know, conditions that
I	1

(202) 234-4433

	80
1	maximize the release rates are not necessarily if
2	they're realistic, they're realistic. If they're
3	optimistic, I'd like to understand whether they are.
4	MS. SELMAN: Okay.
5	MEMBER STETKAR: Okay, Watts Bar Dam, and
6	this came up in the safe shut-down earthquake analysis
7	that I looked at, there are discussions in there
8	well, there are a couple of places where there are
9	discussions about how quickly the gates could be
10	opened at Watts Bar, and the fact that the lift
11	mechanism is normally positioned over one of the gates
12	and that it's powered from the normal buses and that
13	there is a gasoline powered emergency generator that
14	can be connected to the buses to supply power.
15	Is any of that equipment equally
16	qualified?
17	MS. SELMAN: I'll have to follow up on
18	that also.
19	MEMBER STETKAR: So, for example, although
20	you say you have electric power available to open the
21	gates, during any kind of of either an OBE or an
22	SSE, will you actually have electric power available
23	to operate that equipment?
24	MS. SELMAN: I'll have to follow up on
25	that.
I	I

(202) 234-4433

	81
1	MEMBER STETKAR: Data, there is the
2	only place that I saw references to data I know
3	that you've I know that you've updated the PMF
4	calculations, based on Corp of Engineers, you know,
5	updated analyses over the years, I guess.
6	There is one reference to wind data that
7	are used for assessing the wind driven wave heights
8	that something like 2.2 feet, you know, under the
9	probable maximum flood conditions.
10	There is a reference to data that says,
11	"Well, we really didn't have much data, so, we went
12	to," if I can find the reference here. Don't ever get
13	old, your eyes are the third thing to do. Your knees
14	are the first thing. I don't remember what the second
15	was. Bear with me.
16	It says, "Records of daily maximum average
17	hourly winds for each direction are available at the
18	Watts Bar site for the period May 23, 1973 through
19	April 30, 1978."
20	And you say that you compiled wind data at
21	Chattanooga from 1948 to 1974, but because there was
22	minimal or almost zero overlap between these records,
23	there were fairly sophisticated statistical
24	correlations that we used to draw the conclusion that
25	Chattanooga wind data from '48 to '74 was conservative
I	I

(202) 234-4433

	82
1	for the Watts Bar site.
2	My question is, don't we have wind data
3	since 1978 at the Watts Bar site? I mean, it has been
4	33 years. Don't you have a meteorological tower there
5	that compiles wind data?
6	MS. SELMAN: Yes, and that is part of the
7	analysis. That we took the wind data that we used
8	for Unit 1, and we did not update that.
9	MEMBER STETKAR: Even though you had a
10	third of a century more of wind data?
11	MS. SELMAN: Yes.
12	MEMBER STETKAR: Okay, it would seem
13	reasonable to use that wind data at the site, to
14	estimate wind speeds at the site.
15	So, you know, this is another example of
16	saying that we're using analyses that are 33 years old
17	and kind of piece-meal updating them without updating
18	all the information that's available at the site in
19	2011.
20	Now, I understand a little bit of the
21	seismic stuff, because it's a different issue, but
22	this is meteorology, after all, and you're using
23	updated Corp of Engineers probable maximum flood
24	information that's extensively conservative or
25	current. I believe that it's been updated to 2008 or
I	I

(202) 234-4433

	83
1	2009 or 2010, I don't remember the numbers.
2	I don't know whether it makes a
3	difference, but it would certainly lend an awful lot
4	of confidence, if you said, "I had, you know, 35 years
5	of data from the site," and it takes you know, I
6	can pull up data for Chattanooga from 1948 through
7	2011, from National Weather Service, you know, in a
8	minute.
9	So, correlation of that data, if you want
10	to go back previous to 1973, for another 25 years, is
11	easy to do.
12	MS. SELMAN: Okay.
13	MEMBER STETKAR: It's not very difficult,
14	and I guess in the interest of time, I have other
15	questions.
16	One question I did have, though, what
17	elevation is the control in?
18	MR. SMITH: Seven-fifty-five.
19	MEMBER STETKAR: Seven-fifty-five, yes, I
20	figured it's up pretty high. The discussion in the
21	FSAR says, "Well, it's pretty likely that the flood
22	conditions at the site will remain above grade for,
23	you know, one to four days." I think I remember that
24	range.
25	Although, you know, you've demonstrated
I	I

(202) 234-4433

	84
1	capability for the flood mode cooling configuration
2	for, you know, at least 100 days. It's certainly a
3	long time from that.
4	Then the operators have to live in the
5	control room for those four days, because nobody can
6	actually, physically get to the control room?
7	MR. SMITH: We have boats available that
8	they can use.
9	MEMBER STETKAR: Okay, so, you're going to
10	rely on boats and helicopters?
11	COURT REPORTER: Can you speak right into
12	that microphone, please?
13	MR. SMITH: I'm sorry.
14	MEMBER STETKAR: Did you pick him up?
15	COURT REPORTER: No.
16	MEMBER STETKAR: You want to repeat that?
17	MR. SMITH: We have boats available for
18	ferrying people in and out.
19	MEMBER STETKAR: Okay, is that part of the
20	plan or is it
21	MR. SMITH: Yes.
22	MEMBER STETKAR: Okay, thank you.
23	CHAIR RAY: Well, that's fine, John. I'm
24	trying to formulate in my mind, a way to characterize
25	what we're experiencing here, because I have some of
I	I

(202) 234-4433

	85
1	the same difficulty that reflected in your questions.
2	But I'm going to shift to well, I
3	wanted to let you guys make sure we get all of your
4	presentation. How much longer would you expect?
5	We're at this point in the package. What is your
6	expectation, before we get to the security topics,
7	which are at slide 38?
8	MR. ARENT: The WINCISE this is Gordon
9	Arent. The WINCISE topic should probably take us 15
10	or 20 minutes to walk through, depending on the
11	questions, and then we'll be ready for we'll be
12	done with our morning presentation.
13	CHAIR RAY: You're not planning on having
14	any discussion of other things that are covered in the
15	same SER, such as rad-waste and so on?
16	MR. ARENT: No, this was the scope of our
17	presentation for today, this and then the cyber
18	security.
19	MR. MILANO: Mr. Ray?
20	CHAIR RAY: Yes.
21	MR. MILANO: This is Pat Milano, again.
22	With regard to what the staff decided to do,
23	because a number of the items in Chapters 11 and 12 on
24	rad-waste and center around operational dose
25	considerations, and since and also in December,
	I

(202) 234-4433

	86
1	we're going to talk about accident dose
2	considerations.
3	We just the staff decided to couple
4	those two, and just talk about operational and
5	accident, all at one time, so we're delaying Chapters
6	11 and 12 discussions until December.
7	CHAIR RAY: Well, I saw it wasn't on the
8	agenda, but I didn't know that maybe, it was just
9	the agenda had been shortened for convenience.
10	But it's intended then, to talk about what
11	again, 11 and what?
12	MR. MILANO: Chapter 11 and 12.
13	CHAIR RAY: Twelve?
14	MR. MILANO: Yes.
15	CHAIR RAY: All right, I've got a question
16	about 9. Can I ask it now, or do I need to do it
17	later?
18	Nobody is talking about 9. It's in the
19	SER. Is that going to come up later?
20	MR. MILANO: Actually, we discuss Chapter
21	9, elements of Chapter 9, two meetings ago. But you're
22	more than welcome to ask questions about it.
23	CHAIR RAY: Well, what I am looking at
24	here is dated September 2011. So, I guess I'm is
25	there anybody from TVA who can discuss the deletion of
I	I

(202) 234-4433

	87
1	the removal, is the word used here, of the post-
2	accident sampling system from Unit 2?
3	MR. HILMES: Steve Hilmes. I'll do my
4	best to answer your question, sir.
5	CHAIR RAY: Well, there is a again, I
6	am responding to perhaps I should have associated
7	it with discussions months ago, but I am responding to
8	having reviewed this document, issued just a couple of
9	weeks ago.
10	It talks about and I can of course, ask
11	the staff about their view, but I thought since you
12	guys were still here, it would be worth while, asking
13	you.
14	What the staff says in the SER is, the
15	staff reviewed the acceptability of removing the post-
16	accident sampling system, and then they go into a
17	discussion about how there are contingency plans for
18	obtaining the information that the post-accident
19	sampling system was years ago, required to provide.
20	And so, I would have questions of the
21	staff, about why they think this is okay, but be that
22	as it may, why did you take it out?
23	MR. HILMES: There is a
24	MR. BRYAN: Do you want me to handle this?
25	MR. HILMES: Sure, yes.
ļ	I

(202) 234-4433

	88
1	MR. BRYAN: Bob Bryan. The Westinghouse
2	Owner's Group performed a set of studies that
3	supported taking the post-accident sampling facility
4	out, and it was based on that there was a lot of
5	information that had been developed in the years after
6	Three Mile Island, looking at the instrumentation that
7	we had put in, looking at a number of other factors.
8	We had incurred analytical techniques for
9	looking at degraded core events, and what you found
10	was, was that you had sufficient, and in many cases,
11	better information and far more timely information
12	from the equipment that you had installed in the
13	plant, than you could get from the post-accident
14	sampling facilities.
15	And so, so, as part of that Owner's Group
16	effort, a number of the Westinghouse plant and
17	others, have taken these facilities out, and as a
18	back-stop for that, we have looked at the availability
19	of other normally installed sample points where you
20	take hot samples, where you can take hot samples and
21	evaluate them, in developing contingency actions to
22	aid you in the recovery.
23	But the use of the post-accident sampling
24	facility, for making sort of the real-time decisions
25	that you're trying to deal with early in the accident,

(202) 234-4433

(202) 234-4433

	89
1	when decisions are truly critical, are better done
2	with the equipment that we've got, as opposed to
3	trying to get samples to do it.
4	CHAIR RAY: Okay, well, that, in deed, is
5	that never uses the word 'better', but that's fine.
6	I'll accept that. It simply discusses here, the fact
7	that you said that this is a Westinghouse Owner's
8	Group conclusion, that it can be done.
9	I guess I'll simply wonder out loud, as to
10	whether or not the post-Fukushima analysis is going to
11	continue to validate that being the case, but this is
12	not the place to debate that.
13	But in any event, it was done pursuant
14	as a reflection of that fact that the post-accident
15	sampling system has proven not to be the best way to
16	get the information that you need?
17	MR. BRYAN: That is correct.
18	CHAIR RAY: All right, well, like I say,
19	it happens that it was discussed here, in this SER,
20	and although the Westinghouse Owner's Group was
21	certainly referenced as a source of information, it
22	didn't quite say that this was a better way to get the
23	job done. It just said it was an acceptable one, and
24	I wanted to find out if there was some reason why the
25	post-accident sampling system was something you'd like
ļ	

(202) 234-4433

	90
1	to abandon or get rid of, or not to provide in the
2	plan.
3	Okay, yes, Dick?
4	MEMBER SKILLMAN: I would like to ask a
5	question, but Penny is still what is the normal
6	pond elevation at the Watts Bar facility, and in the
7	last number of years, there have been cardinal storms
8	in the Northeast, Camille, Agnes, Lee, Irene, Isabel.
9	What did the pond level do for those cardinal for
10	those cardinal storms?
11	MS. SELMAN: Greg, do you have any
12	information on summer pool at Watts Bar?
13	MR. LOWE: Specific elevation?
14	MS. SELMAN: Yes, I have some other back
15	up information, but not
16	MR. LOWE: Without actually having the
17	particular operating guy here, it's difficult to say
18	exactly what that pool level is.
19	MS. SELMAN: It should
20	MR. LOWE: I think it's seven
21	MS. SELMAN: It should be under 600. I've
22	got some other flood elevations here.
23	MR. BRYAN: This is Bob Bryan. The normal
24	summer pool elevation is 682, and at yes, on
25	Chickamauga, which is the flood level which is the
I	I

(202) 234-4433

	91
1	actual lake that Watts Bar Plant is on.
2	I think the max summer pool elevation is
3	about 684.
4	MS. SELMAN: Like the 100-year flood
5	elevation at Watts Bar is 697.
6	Now, speaking specifically to those
7	storms, I can't, but I can say that they have not been
8	within the 100-year flood elevation.
9	MEMBER SKILLMAN: Thank you. Thank you to
10	John. I'm new onboard and coming up to speed.
11	MS. SELMAN: Okay.
12	MEMBER SKILLMAN: I understand the topic
13	and understand the geography. I was just trying to
14	understand the flood elevation.
15	MS. SELMAN: Okay.
16	MEMBER SKILLMAN: Thank you.
17	MEMBER STETKAR: Did I'm assuming
18	well, I'll ask, in any of those storms, did you
19	because you haven't come close to the 100-year flood,
20	you haven't come close to invoking stage one of the
21	flood protection program?
22	MS. SELMAN: No, we have never came close
23	to stage one.
24	MEMBER STETKAR: One question, since we
25	keep bugging you.
	I

(202) 234-4433

92 1 Has the flood protection program been in effect for Unit 1, for the entire life of Unit 1? 2 3 MS. SELMAN: Yes, it has. MEMBER STETKAR: It has? 4 5 MS. SELMAN: Yes. MEMBER STETKAR: Okay, thank you. 6 7 CHAIR RAY: So, it's been, as you called 8 it, a wet site from --9 From day one, yes. MS. SELMAN: 10 CHAIR RAY: All right, anything more than, other than the piece that remains to be gone through, 11 and you said it would take? 12 Maybe 20 minutes. 13 MR. ARENT: 14 CHAIR RAY: Twenty minutes, okay. We're 15 about, therefore, I would say, we're going to be maybe 16 -- by the time we take a break, which we'll do, we'll 17 be maybe 45 minutes behind schedule. But I suspect we may be able to get to 18 19 make it up. If we don't before noon, then we'll simply add it to -- I'll decide whether to add it 20 right after lunch or add it later. I say this for the 21 benefit of those who may be stuck here. 22 But we'll go ahead now and take a 15 23 24 minute break, which is called for in the schedule, and we'll resume at MEMBER RYAN: 40 a.m. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	(Whereupon, the above-entitled matter went
2	off the record at approximately 10:20 a.m. and resumed
3	at approximately 10:40 a.m.)
4	CHAIR RAY: We will resume the meeting,
5	and Gordon, we're ready for you.
6	MR. ARENT: Okay.
7	CHAIR RAY: Okay to proceed.
8	MR. ARENT: Again, I'm Gordon Arent.
9	Steve Hilmes is going to talk about the WINCISE
10	special topic, and I'm going to go ahead and let him
11	just get started.
12	CHAIR RAY: All right.
13	MR. HILMES: Okay, one of the larger
14	changes we did in the plant was installation of the
15	WINCISE system.
16	WINCISE is a non-safety related fixed core
17	instrumentation system, used for mapping neutron flux
18	in the core.
19	It does the probes themselves, which we
20	call the in-core instrument thimble assemblies,
21	IITA's, also contain the core exit thermal couples.
22	The core exit thermal couples are a post-
23	accident monitoring system, and under under 603, it
24	will be considered safety related.
25	MEMBER BROWN: Under 603, it would be
	I

(202) 234-4433

	94
1	considered what? I didn't hear.
2	CHAIR RAY: Safety related.
3	MR. HILMES: Safety related.
4	MEMBER BROWN: You just said it was a non-
5	safety related.
6	MR. HILMES: The flux mapping portion of
7	the system is non-safety related.
8	MEMBER BROWN: That is the computer
9	processing and all of that stuff?
10	MR. HILMES: Right, and the actual probes,
11	neutron sensing probes inside the core.
12	MEMBER BROWN: Okay, but the which part
13	is safety-related?
14	MR. HILMES: The core exit thermal couple.
15	MEMBER BROWN: Oh, that part of the
16	MR. HILMES: Right.
17	MEMBER BROWN: Okay.
18	MR. HILMES: It's also contained in that
19	probe, though. So, we'll discuss that a little later.
20	MEMBER BROWN: Okay, thank you.
21	MR. HILMES: Okay, historically, Gordon,
22	if you could go to the next slide?
23	Watts Bar Unit 1 and originally, Unit 2,
24	had a I'm not sure how to had a moveable in-core
25	detector system. They had six probes. It was if
	I

```
(202) 234-4433
```

	95
1	you look at the drawing to your left, it had six
2	probes that were in a mechanical arrangement, using
3	Gleason wheels.
4	Each of the probes had to go through a
5	five position indexer and a 10 position indexer. At
6	the seal table, it would insert the probe into the
7	reactor vessel, and in your chosen position, retract
8	it and measure the neutron flux map, as it came back
9	out.
10	This was done periodically. It wasn't a
11	continuous monitoring system.
12	In addition, the core exit thermal couples
13	originally came through the upper head, at we had
14	65 type A thermal couples, and there was a reference
15	junction box that was in site containment.
16	Pretty much, WINCISE modification has
17	eliminated all this hardware, except for the wet tubes
18	going from the seal table to the reactor vessel, and
19	replaced it.
20	Okay, so, Watts Bar Unit 2 has fixed in-
21	core instrumentation. Therefore, we have continuous
22	monitoring of the flux in the core, as far as mapping
23	goes.
24	We've eliminated, as I said, all of the
25	mechanisms associated with the mechanical system and
I	I

(202) 234-4433

	96
1	it's pretty much all automated data collection that
2	goes to our core-analysis software, BEACON,
3	specifically.
4	The IITA assemblies are the probes
5	internally. There are 58 in-core probes now. They go
6	through the old wet tubes used for the mechanical
7	system. Each of these probes have five vanadium self-
8	powered detectors, and one type core exit thermal
9	couple.
10	These are distributed in 2X, 29 in Rack A
11	and 29 in Rack Bravo I'm sorry, 29 in Rack Alpha
12	and 29 in Rack Bravo.
13	They're arranged in this manner, so that
14	you can use an entire rack and continue to operate.
15	You do need both racks, however, to start up, for the
16	initial flux map.
17	Essentially, we have Gordon, why don't
18	you go to the following sketch?
19	We have two-signal processing cabinets.
20	Those are inside the instrument room in containment,
21	and this is only showing one probe and the panel is
22	only showing one of the racks. There is, as I said
23	before, two of them.
24	So, what occurs is essentially, we do an
25	A to D conversion directly inside containment at that
ļ	I

(202) 234-4433

	97
1	SPS panel, and it is sent out to the BEACON system.
2	The sets themselves, the reference
3	junction box, which used to be in containment, is now
4	in the actual Common Q panels. So, we've eliminated
5	that piece in site containment, and all the set
6	columns, the old columns that we had going through the
7	upper head, have all been capped off, and so, that
8	eliminates quite a bit of the radiation exposure in
9	doing work around the head for the for working on
10	those.
11	MEMBER STETKAR: Steve, I see, since the
12	core exit thermal couples are safety related, those
13	SPS cabinets in containment are all qualified?
14	MR. HILMES: No, I'm going to explain that
15	now.
16	MEMBER STETKAR: Never mind, I'm sorry.
17	MR. HILMES: Looking at this drawing here,
18	this little sketch and I don't know why this isn't
19	working.
20	If you see at the top of the seal table,
21	the sets split off at the seal table, where it if
22	you look at seal table right above it, it breaks the
23	
24	MEMBER STETKAR: I guess Gordon
25	MR. HILMES: Yes, it's not functioning.
I	I

(202) 234-4433

	98
1	MEMBER STETKAR: It's the mouse?
2	MR. HILMES: That's okay. So, it splits
3	off in two. So, your individual thermo-couples run
4	over to penetration directly
5	MEMBER STETKAR: Oh, okay.
6	MR. HILMES: and get sent out to your
7	Common Q panels.
8	MEMBER STETKAR: Okay.
9	MR. HILMES: Whereas, the vanadium
10	detector signals, they go to the A to D panel
11	MEMBER STETKAR: Okay.
12	MR. HILMES: the SPS panel, are
13	converted into a fiber optic signal out to the BEACON
14	system.
15	So, let's go to the next page, and let me
16	explain how they deal with the isolation here.
17	If you this is much shorter version of
18	the probe, but what they do is, the core exit thermal
19	couple, which sits at the top of the probe, is in its
20	own stainless steel sheath. It's mineral-insulated
21	cable and it's separately sheathed to ensure that we
22	have isolation between the non-safety related piece in
23	the probe and the safety related probe.
24	The vanadium detectors are in there, in
25	another sheath, together, and we they've actually
ļ	I

(202) 234-4433

	99
1	done they do testing here, where they've shown that
2	a 600-volt potential across them will not cause
3	interaction between them and we have proven that that
4	is the max the actual voltage is much less than
5	that, that's possible to be seen.
6	MEMBER BROWN: The core exit thermal
7	couples, this probe still runs from the bottom, up?
8	MR. HILMES: It comes in the bottom of the
9	vessel and it just sits in your
10	MEMBER BROWN: From the the thermal
11	couple is at the top?
12	MR. HILMES: At the very top.
13	MEMBER BROWN: And then the other
14	detectors are distributed, in some manner, down the
15	length?
16	MR. HILMES: Yes.
17	MEMBER BROWN: So, you don't have to move
18	this thing?
19	MR. HILMES: You don't move it, and the
20	vanadium detectors, they're it's an interesting
21	design, in that they they're kind of progressively
22	longer.
23	So, if you look at the sketch, the number
24	one detector is actually the full length of the probe,
25	and then the
I	I

(202) 234-4433

100 1 MEMBER BROWN: That's the full length detector? 2 MR. HILMES: Yes. 3 4 MEMBER BROWN: This is just for --5 MR. HILMES: The detector is the full length, and then the --6 It senses flux over its 7 MEMBER BROWN: 8 full length? 9 MR. HILMES: That is correct, and then 10 number two detector is, you know, part -progressively smaller and it keeps working its way 11 down, and the way that it deals with this is, 12 it actually subtracts the probes, the flux from the one 13 14 probe from the other one, in order so that you get the 15 -- that particular area. 16 MEMBER BROWN: Yes, okay. MEMBER SKILLMAN: If I could ask, back on 17 page 36, please. 18 19 So, I think what you're communicating is that you have a 58 independent in-core detectors and 20 each of these 58 goes through a separate fuel 21 assembly? 22 That is correct. 23 MR. HILMES: 24 MEMBER SKILLMAN: Understand, thank you. 25 MR. HILMES: Okay.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	101
1	MEMBER STETKAR: Steve, if the seal
2	table is still your
3	MR. HILMES: That is correct.
4	MEMBER STETKAR: Right? You haven't
5	sealed off
6	MR. HILMES: No.
7	MEMBER STETKAR: at the bottom vessel
8	head?
9	MR. HILMES: Actually, no, we have not,
10	but the connector, the electrical connector is right
11	at the seal table now, okay.
12	MEMBER STETKAR: Yes.
13	MR. HILMES: So, you don't really have an
14	issue with it rupturing the probe and leaking out,
15	because you have that seal up there.
16	MEMBER STETKAR: Okay.
17	MR. HILMES: It's pretty much what I have,
18	just to summarize the advantages of us going to
19	WINCISE, is that we have continuous monitoring now.
20	We've eliminated the penetration on the
21	upper head of the sets, and by eliminating all of the
22	complexity that we had with the old Gleason wheel
23	system, we've gotten much higher reliability and a
24	much simpler system.
25	MEMBER SKILLMAN: Another question,
	I

(202) 234-4433

	102
1	please. On the thermal couple, what is the
2	temperature range, for this device?
3	MR. HILMES: I am going to turn that over
4	to Mike.
5	MR. HEIBEL: Mike Heibel, Westinghouse.
6	The calibrated range of thermal couple is zero to 2300
7	degrees Fahrenheit.
8	MEMBER SKILLMAN: Thank you. What do you
9	know about the thermal couples behavior above that
10	temperature, please?
11	MEMBER STETKAR: Can you repeat that?
12	We're having problems picking you up.
13	MR. HEIBEL: The range is zero to 2300
14	degrees Fahrenheit.
15	MEMBER STETKAR: Hold on a second.
16	(OTR comments)
17	MR. HEIBEL: The calibrator range of the
18	thermal couples themselves is zero to 2300 degrees
19	Fahrenheit, and that range is dictated by the post
20	requirements Reg Guide 197.
21	So, all of the instruments in use are
22	suppose to be operable in that range.
23	MEMBER SKILLMAN: What do you know of the
24	behavior of the thermal couple above that temperature?
25	MR. HEIBEL: That is the limit of the
I	I

	103
1	calibration curve that's developed for the thermal
2	couple. So, actually, if you go beyond that, you're
3	interpreting or extracting beyond the calibrated
4	range, and I'm not really sure what that can do to the
5	accuracy of the instrument.
6	Up to that range, we get into it needs
7	to meet a 50 degree tolerance value.
8	MEMBER SKILLMAN: Okay, by any chance, do
9	the vanadium detectors have a behavior of temperature
10	that could be used in an accident?
11	MR. HEIBEL: Could they? They would
12	certainly register. The problem is that so much with
13	the vanadium is with the insulation, as you increase
14	temperature, the insulation resistence would change.
15	So, the current for the same flux would be
16	different. If we understood the relationship between
17	insulation resistence and temperature, we could
18	certainly arrive at a way to compensate for that, but
19	that hasn't been done yet.
20	MEMBER SKILLMAN: The rhodium detectors at
21	TMI went into thermionic emission, and that was the
22	only temperature we had at the tail end of the
23	accident.
24	MR. HEIBEL: Yes, actually I had
25	CHAIR RAY: Dick, I can't hear you.
ļ	I

(202) 234-4433

	104
1	You're fine. You need to stand up.
2	MEMBER SKILLMAN: The rhodium detectors at
3	TMI went into thermionic emission and that's how we
4	learned, what we had in temperature at TMI 2.
5	MR. HEIBEL: While I say I hope I never
6	have to know
7	MEMBER SKILLMAN: I agree.
8	MR. HEIBEL: the mechanism involved in
9	rhodium detector responses would be present there.
10	MEMBER SKILLMAN: Thank you.
11	MR. ARENT: Okay, are there any other
12	questions?
13	CHAIR RAY: I don't have any. All right,
14	we will now turn it over to like I say, we're about
15	for the last hour, late, about 45 minutes or so.
16	But we'll see how we do now.
17	MEMBER BROWN: I do have one question.
18	MR. HILMES: Yes.
19	MEMBER BROWN: Is Watts Bar Unit they
20	still have the old system?
21	MR. HILMES: Yes, they still have the old
22	system. Currently, I don't
23	MEMBER BROWN: All right, it was just yes
24	or no.
25	MR. HILMES: Yes, it's the old system.
	I

(202) 234-4433

```
105
 1
                   MR. MILANO: Okay, go to slide number
       four.
 2
 3
                   CHAIR RAY: All right, I'm going to ask
 4
       everybody to speak up, more than you normally would,
 5
       just because -- until we can get it stopped, which is
       not a certainty, we're going to need to carry on.
 6
 7
                   MEMBER STETKAR: You, too, Harold.
 8
             (OTR comments)
                   COURT REPORTER: I'm just not sure if this
 9
10
       is going to deal with the audio.
                   CHAIR RAY: You think it won't -- just
11
       speaking up isn't --
12
                   COURT REPORTER: Just listening to you, I
13
14
       can't make out about half of what's said.
                   CHAIR RAY: Okay, all right. We've got to
15
16
       do something about it, would you?
17
                   MR. MILANO: Staff is doing something
       about it.
18
19
                   CHAIR RAY:
                               All right.
             (OTR comments)
20
                   MR. MILANO: Okay, again, my name is Pat
21
       Milano.
22
                   On the basis of the work -- the final
23
24
       remaining designs have Watts Bar Unit 2, and
                                                         in
25
       response to requests for -- or
                                          to
                                               clarify the
```

```
(202) 234-4433
```

```
(202) 234-4433
```

	106
1	information in the FSAR, TVA has continued to amend
2	the FSAR and as of today, the FSAR is at Amendment
3	Number 106.
4	As you can see from the contents of the
5	last four supplements that
6	MEMBER BROWN: Can I ask you a question?
7	MR. MILANO: Yes.
8	MEMBER BROWN: I've only gotten up to 104,
9	and I've got one section of 105, which was the Chapter
10	7 part. Is there any plan to give us the other stuff
11	at some point, or have you seen any of it?
12	MR. SHUKLA: No, I have not seen it.
13	MR. MILANO: We haven't we have been
14	providing it
15	MEMBER BROWN: I know you've been
16	providing it. I'm not this is not a criticism.
17	It's just that there seems to be this I mean, you
18	have to check between the FSAR's, as well as your
19	SER's, to see what they even apply to, because the
20	they don't always include they're not at all
21	conclusive in every case.
22	MR. SHUKLA: Yes, I only got 104 when I
23	requested it yesterday.
24	MEMBER BROWN: Yes.
25	MR. MILANO: Not to get into a dialogue,
	I

I	107
1	but we've been providing these. We've been providing
2	them, you know, hard copies or excuse me,
3	diskettes, and we've been sending them over with a
4	memo, transmittal memo.
5	What we will do is, we will work with Mr.
6	Girija, to make sure he's got everything that has come
7	in.
8	MEMBER BROWN: Okay. Sorry, John, you
9	look like you were going to say something.
10	MEMBER STETKAR: No, that's all of 106
11	is in, not just sections?
12	MR. MILANO: That's correct. Each one of
13	the amendments
14	MEMBER STETKAR: Comes in as a
15	MR. MILANO: as a complete item, that's
16	correct.
17	MEMBER STETKAR: With just the changed
18	parts, yes.
19	MR. MILANO: That's right.
20	MEMBER STETKAR: It would be really
21	useful, to have one of those.
22	MR. POOLE: This is Justin Poole, one of
23	the other PM's.
24	I believe that all of the SE's that were
25	submitted and written, for SER-24, at the time, we
I	

	108
1	only had Amendment 104 in house.
2	MR. MILANO: That is correct.
3	MEMBER STETKAR: Yes, but I mean, I even
4	ran into it, because if you refer to 104, and until
5	today, I didn't have 104. So, you never know what you
6	don't know, is the problem.
7	MR. MILANO: All right, again, as you can
8	see from the contents of the last four SER's
9	supplements, that the staff has published, a
10	significant portion of the Watts Bar Unit 2 FSAR has
11	been reviewed, along with TVA's response to generic
12	communications, various corrective action programs and
13	major programs, under required under
14	MEMBER BROWN: Oh, I do have one other
15	question.
16	MR. MILANO: Yes, sir.
17	MEMBER BROWN: Relative to the just the
18	admin part. I've got SER-24. I went back and I
19	noticed that you all every one of the SER's that
20	you sent in, are they are they complete like the
21	FSAR pieces are? They're not?
22	MR. MILANO: No, they are not.
23	MEMBER BROWN: They are not? So, you've
24	got to search between
25	MR. MILANO: That's correct.
Ĩ	

	109
1	MEMBER BROWN: I just wanted to make sure
2	I had the calibration.
3	MR. MILANO: And that is why we initially
4	started out with a road map in Supplement 21, so that
5	you could see what all the changes were, on the
6	various sections, and what supplement affected that
7	section, and as we and we will continue in Section
8	one of each one of the SER's SER supplements, that
9	we update it.
10	So, let's say
11	MEMBER BROWN: Okay, thank you.
12	MR. MILANO: Right.
13	MEMBER BROWN: I did not realize that.
14	MR. MILANO: I know, it is
15	MEMBER BROWN: I've been searching and
16	trying to destroy stuff, as I go through. So, all
17	right, that's enough.
18	MR. MILANO: All right, okay.
19	MEMBER BROWN: I can understand the system
20	here.
21	MR. MILANO: So, again, we've you know,
22	we've reviewed major programs required under 10 CFR
23	50.34 and also, we're starting to review the proposed
24	technical specifications and most of these areas, as
25	you see up here, through Supplement 23, were presented
I	I

(202) 234-4433

	110
1	up through the last presentation.
2	For the major areas remaining to review,
3	and we discussed this before, the fire-protection
4	report is going to be is the major work activity
5	that is currently under way. The staff, although it
6	wasn't in Chapter it wasn't in Supplement 24, the
7	accident dose consequences is being finalized and
8	will be published in Supplement 25, which we're going
9	to talk about in December.
10	And again, as we've discussed with Mr.
11	Ray, closure of open items for the SER review is under
12	way, and will be in the subsequent supplements,
13	you'll be seeing more of the open items being
14	addressed and lastly, we're completing the we're in
15	the final throes of completing the draft supplement to
16	the final environment statement, which we are our
17	goal is to issue that draft for public comment by the
18	end of the month, it looks like.
19	CHAIR RAY: Well, wait a minute. Let me
20	just take one up there, Chapter 16.
21	MR. MILANO: Yes.
22	CHAIR RAY: All right, a lot of material
23	here in Supplement 24 on Chapter 15.
24	MR. MILANO: All right.
25	CHAIR RAY: Goes to what the heck is
ļ	I

	111
1	it? It's 66 pages.
2	Now, what is tell me what how we're
3	suppose to think about that. Is something is that
4	something we reviewed four or five months, a year ago,
5	or what?
6	MR. MILANO: Chapter 15?
7	CHAIR RAY: Yes.
8	MR. MILANO: No, Chapter 15, we have not
9	talked about accident transient analysis
10	CHAIR RAY: Okay.
11	MR. MILANO: at all, beforehand.
12	CHAIR RAY: Well, when I look at these,
13	the major reviews areas remaining, I guess you're
14	talking about major review areas for yourself.
15	MR. MILANO: That is correct.
16	CHAIR RAY: All right, and I guess our
17	interest is more in when, because I have to coordinate
18	this with the other members of the committee, make
19	sure they're here, make sure they've gotten the word,
20	this that Chapter 15 is coming up at this time or
21	that time.
22	So, what I would like, Patrick, is your
23	roadmap for us, not for you.
24	MR. MILANO: Okay.
25	CHAIR RAY: When should we expect to
I	

	112
1	review what?
2	MR. MILANO: Okay.
3	CHAIR RAY: I'm not real interested in
4	when you're going to review it.
5	MR. MILANO: Go to slide 26. Jumping to
6	the end of our presentation, just to show you what I
7	was planning to do.
8	This is kind of a ramp up of a slide for
9	that we're planning to go to, and just for the ACRS
10	Subcommittee meetings, we're looking at the December
11	meeting, we're going to talk about both operational
12	and accident dose considerations, as covered in
13	Chapters 11, 12 and 15.4.
14	CHAIR RAY: Right.
15	MR. MILANO: And then April, we were
16	April Subcommittee was going to we were going to
17	talk about fire protection.
18	CHAIR RAY: And what about the rest of
19	Chapter 15?
20	MR. MILANO: That is what we're talking
21	about today.
22	The accident and transient analysis, from
23	the reactor side, is going to be discussed today.
24	From the consequence side, that is going to be in
25	December.

(202) 234-4433

	113
1	CHAIR RAY: All right, I understand.
2	MR. MILANO: Yes, okay. Okay, go to slide
3	5. Okay, and quickly, Supplement 20 since we're
4	going to be discussing things in both Supplements 23
5	and 24, just 23 was published in July, and 24 was
6	published last month, in September.
7	Okay, next slide. You've heard most of
8	this, this discussion about hydraulic engineering in
9	detail this morning with from TVA.
10	However, I'll just try to synopsize a
11	little bit, as to what the staff has done in the
12	and the overall findings of the staff, and I've got
13	I've got members of the staff here, Mr. Dan Hoang, and
14	on the side, Mr. Kamal Manoly, in case you have
15	specific questions.
16	The staff found that the major changes
17	that TVA made major changes to the hydraulic
18	engineering evaluation based on the latest information
19	from the Corp of Engineers and National Weather
20	Service and the Geological Survey.
21	TVA stated that the PMF elevation is 738.8
22	feet and that in enveloped the calculated potential
23	dam failure analyses.
24	TVA further stated that it had not changed
25	the breach sizes and as a result, the PMF elevation is
ļ	1

(202) 234-4433

	114
1	738, which exceeds the original PMF elevation, but
2	ensures that margin still exists to protect critical
3	equipment.
4	The Unit 2 PMF analysis and the seismic
5	dam failure analyses credited increased height of
6	embankments at the four dams, Fort Loudoun, Tellico,
7	Cherokee and Watts Bar.
8	The increased height prevents overtopping
9	and failure of these embankments during a PMF event.
10	In this regard, the reservoir head-waters
11	will not have reached the bottom elevation of these
12	sand baskets. Therefore, a hydro-dynamic loading
13	condition, as a result of a seismic event does not
14	apply in this situation.
15	MEMBER STETKAR: Pat?
16	MR. MILANO: Yes.
17	MEMBER STETKAR: You mentioned that the
18	738.8 elevation, the conclusion is that necessary
19	equipment, at least to establish the flood mode
20	operation, is still protected
21	MR. MILANO: Yes.
22	MEMBER STETKAR: at that elevation.
23	When I asked the question about the reduced number of
24	spillway gates at Chickamauga Dam, TVA indicated that
25	the PMF flood level that they were currently
l	I

	115
1	evaluating, but not published, would be greater than
2	738.8.
3	A couple of different numbers were
4	mentioned, but anyway, it would be higher than 738.8.
5	Is there still assurance that that
6	equipment will be protected at that level, and since
7	they haven't done the seismic analysis, with the
8	reduced number of gates at Chickamauga, do we have
9	any confidence that the seismic flood levels, granted,
10	there is extra margin in the flood, there's about
11	seven feet margin.
12	So, I wouldn't expect the flood level to
13	become dominant, but
14	MR. MILANO: I'll make a stab at answering
15	that.
16	MEMBER STETKAR: But PMF, at least, do you
17	still have confidence that that margin exists?
18	MR. MILANO: I'm going to make a quick
19	stab at answering your question, then I'll turn it
20	over to one of our reviewers, if they have more.
21	The fact is, is the reduced spillways at
22	Chickamauga are not currently in operation, and are
23	not planned to be for several years.
24	So, for licensing of Watts Bar Unit 2,
25	they weren't the staff did not evaluate those
I	

(202) 234-4433

	116
1	the reduced spillways, and so, it's to answer your
2	question, they answer is no, we have not reviewed it,
3	and in the and the reason being is, is it's not
4	something that's been presented to us.
5	MEMBER STETKAR: When in the I'm
6	woefully inept at understanding regulatory processes.
7	In the future, when they implement that
8	change, are they required under the license, to
9	resubmit the flooding analysis?
10	MR. MILANO: They will have to what
11	they'll have to do is, they'll evaluate these proposed
12	changes under their 10 CFR 50.59 program, and assume
13	and just not saying positively, but I would assume
14	at this time here, since the design basis in the FSAR
15	is being changed, and it would screen into having to
16	have a review, and would most likely have to come in
17	for prior staff approval, before they actually
18	implement it.
19	MEMBER STETKAR: So, it would get
20	triggered under the
21	MR. MILANO: That is correct.
22	MEMBER STETKAR: Okay, thanks.
23	MR. MILANO: Okay, continuing on. Because
24	the the predicted PMF level is dependent on these
25	temporary modifications that are currently in place,
ļ	I

(202) 234-4433

	117
1	which are the sand baskets, which you heard about,
2	which add approximately four feet in height in the
3	vicinity of the four dams, TVA has agreed to confirm
4	the stability analysis of the sand baskets used in
5	Watts Bar Unit 2 licensing basis, by performing either
6	a hydrology analysis without crediting the use of the
7	sand baskets at the Fort Loudoun Dam, for the seismic
8	dam failure, and flood combination, or by performing
9	a seismic test of the sand baskets.
10	Next page, and thus, this is one of the
11	open items that the staff needs to confirm. Yes?
12	MEMBER BROWN: If I could back-track a
13	little bit.
14	The statements over here, the increased
15	height prevents overtopping and I presume that means
16	we don't flood the plants.
17	MR. MILANO: No, it means that we're not
18	going to it's not going to go over the top of the
19	dams, such that you would get
20	MEMBER BROWN: Okay.
21	MR. MILANO: dam erosion.
22	MEMBER BROWN: All right, well, let me
23	back-track even farther then.
24	Under the probable maximum flood level,
25	how much margin is that, to when if it exceeds your
ļ	I

(202) 234-4433

	118
1	PMF, how much margin is there to where the plant has
2	a problem? Is it a foot? Is it 10 feet?
3	MR. MILANO: There is I mean, for the
4	ERCW system, and I'll let TVA can confirm it here,
5	it's 741 for the high pressure fire pumps, and ERCW,
6	it's and it's about there is about, I believe
7	it's a foot and a half margin to the diesel
8	generators, diesel generator building, and I'll ask
9	TVA to reconfirm.
10	MEMBER BROWN: And that's your 25 year
11	flood, based on the first view-graph, one of the early
12	view-graphs that shows that, is that correct?
13	The PMF is based on the 25 year well,
14	I thought that is what it said, up in the front.
15	MR. MILANO: Can you answer that?
16	MEMBER BROWN: If you could figure out how
17	to figure that out, you're better than I am.
18	CHAIR RAY: I think you're referring to
19	the size of the flood that's combined with the OBE and
20	the SE.
21	MR. MILANO: The SE, yes.
22	MEMBER STETKAR: There is sort of three
23	flood things, Charlie.
24	One is a PMF flood, and that is a
25	construct from rainfall and Corp of Engineers
	I

(202) 234-4433

	119
1	hydrologists and
2	MEMBER BROWN: Yes, but based on how long
3	a period of time?
4	MEMBER STETKAR: It's actually constructed
5	from and TVA can answer this. It's actually
6	constructed from two storms, two three-day period
7	storms.
8	MR. MILANO: That's correct, separated by
9	a week.
10	MEMBER STETKAR: By the I think it was
11	
12	MEMBER BROWN: Okay, so, it's not a
13	historical
14	MEMBER STETKAR: And you know, the
15	rainfall amounts that happen during those storms, and
16	the timing of the rainfall and the flows, it's a
17	rather complicated but it's a construct.
18	For their seismic analyses, they're
19	required by regulatory well, under regulatory
20	guidance, not required, but they use an operating
21	basis earthquake in conjunction with half the water
22	volume from that PMF. Well, I don't know if it's just
23	or they use a safe shutdown, and they must use also
24	a safe shutdown earthquake, higher acceleration, but
25	with only a 25 year flood.
I	

(202) 234-4433

	120
1	MEMBER BROWN: Okay.
2	MEMBER STETKAR: So, it's the notion of
3	it's some sort of notion of ad hoc convolution of
4	storms with seismic
5	MEMBER BROWN: I was just trying to get
6	MEMBER STETKAR: in a very discreet
7	manner.
8	MEMBER BROWN: This is very visceral. I
9	just remember, you know, the Fort Calhoun
10	circumstances, that we had during the recent floods in
11	the Midwest, and watching the water, you know, in some
12	places, it was it looked like looking at it on
13	TV, inches, that's what it looked like. It might have
14	been a little bit more.
15	Were those has anybody ever looked at
16	what happened there, and compared it to their
17	analysis, to see, you know, were they close or not,
18	and how did it apply to any of our future thought
19	processes?
20	MR. MILANO: It was not part of the Watts
21	Bar Unit 2 review. We did not go back and relook at
22	what took place at Fort Calhoun.
23	MEMBER BROWN: Okay, I am just thinking
24	about this from the Fukushima and other type
25	standpoints, that how do we evaluate our
	I

(202) 234-4433

ĺ	121
1	fundamental, you know, large environmental concerns,
2	whether it's flooding or earthquakes and/or tornados
3	or hurricanes, etcetera.
4	MR. MILANO: Okay, understand.
5	MEMBER BROWN: Thank you.
6	MR. MILANO: Okay, as noted earlier, TVA
7	re-verified the design basis flood levels of Watts Bar
8	Unit 1 and 2, and as a result, the PMF elevation,
9	again, increased.
10	Remember, it's I say 734.9 to 738.9,
11	because, you know, there was that dip and then rise
12	again.
13	TVA indicated that the hydrological
14	analysis performed in support of Unit 2 design-basis
15	flood elevation resolved the deficiencies identified
16	in the re-verification process.
17	The FSAR also was updated to show the
18	increased height credited at the four dams, as part of
19	the current licensing basis for Unit 2.
20	Further, TVA stated that Fort Loudoun,
21	Tellico, Watts Bar have been previously judged, not to
22	fail for the OBE, that the operating basis earthquake
23	at .09G and the postulation of the Tellico failure in
24	the combination has not been evaluated, but is bounded
25	by the safe shutdown earthquake failure at the other
	I

(202) 234-4433

	122
1	three dams.
2	On the basis of TVA's statement regarding
3	multiple failures and dam failure permutations, the
4	staff has created an open issue pending TVA providing
5	technical justification to support that Fort Loudoun,
6	Tellico and Watts Bar have been previously judged not
7	to fail for an OBE.
8	Postulation of the Tellico failure in this
9	combination, you know, as I indicated, wasn't I was
10	repeating, again, what I had previously said, was
11	previously bounded by the other three dam SSE
12	failures.
13	TVA indicated that Cherokee and the
14	Douglas Dams require rigorous evaluation in the form
15	of a finite element analysis to confirm their
16	structural adequacy and functionality for long-term
17	operation.
18	The staff agreed with TVA's actions as
19	confirmation of its earlier operability determination
20	for PMF related to the other operating units,
21	Sequoyah, Browns Ferry.
22	TVA also indicated that the estimated
23	completion of such analysis will likely extend beyond
24	the projected start of operation for Unit 2.
25	Therefore, the staff requested that TVA
I	1

(202) 234-4433

123 1 discuss how the licensing basis of Unit 2 reflects the short-term operability and long-term functionality of 2 3 these dams, and in this regard, the staff has proposed 4 two license conditions, as you heard from TVA this 5 morning, which I'll repeat here. You know, by August 31, 2012, TVA will 6 7 submit for staff review and approval, a summary of the 8 results of the finite element analysis, which should 9 demonstrate that Cherokee and Douglas Dams are fully 10 stable under design basis probable maximum flood loading conditions, for long-term stability analysis, 11 including how pre-established acceptance 12 - the criteria were met. 13 14 Second, TVA will submit, before completion 15 of its first operating cycle, its long-term 16 modification plan to raise the height the of 17 embankments associated with Cherokee, Loudoun, Tellico and Watts Bar Dams. 18 19 The submittal shall include analyses to demonstrate that, when the modifications are complete. 20 The embankments will meet the accept -- the applicable 21 structural loading conditions, stability requirements 22 and functional considerations to ensure the design 23 24 basis PMF limits are not exceeded at the Watts Bar Nuclear Plant. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	124
1	All modifications to raise the height of
2	the embankments shall be completed within three years
3	from the date of issuance of an operating license.
4	CHAIR RAY: Okay, I do not see anywhere,
5	that we can write a letter on this, to just say it
6	clearly.
7	It's just not a consistent, clear it's
8	just a whole welter of specific piece parts, that
9	don't add up to anything consistent.
10	So, I don't know what you're going to do
11	about that, but that's I think the sense we have,
12	if you just take what you just said, Patrick, and
13	listen to it, it's just a bunch of specific things,
14	they're going to do this, going to do that, going to
15	do the other thing.
16	But they don't add up to anything that
17	makes I don't want to say that makes sense, but
18	that has a consistent basis. It's just a whole hodge-
19	podge of specific actions.
20	I don't know how we can I don't know
21	how you came to the conclusion that it's okay, but in
22	any event, I'm not sure how we can.
23	So, that's
24	MR. MILANO: All I can say is, you know,
25	the staff came to its conclusion, and
ļ	I

(202) 234-4433

	125
1	CHAIR RAY: But it doesn't the staff
2	isn't explaining to us how you came to the conclusion.
3	You have these two license conditions that
4	you just ran through here. We've got them on page 2-
5	6. We've all looked at them. Why is that okay?
6	MEMBER STETKAR: Let me ask a specific
7	question, and it kind of follows up what Harold has
8	just said.
9	One of the conditions that you mentioned
10	was TVA should provide justification that Fort Loudoun
11	the justification for the statement that Fort
12	Loudoun, Tellico and Watts Bar previously judged not
13	to fail at the OBE.
14	Well, Chickamauga is also previously
15	judged not to fail at the OBE. Are you confident with
16	their assessment of Chickamauga, or are you just not
17	concerned about Chickamauga because it doesn't happen
18	to be upstream from the site, and you're worried about
19	too much water, rather than not enough water?
20	MR. MILANO: The analysis we did here was
21	you're correct, for too much water. It's not
22	it's not the staff I know the staff has looked at
23	the loss of Chickamauga and the water level you
24	know, there being sufficient water level to maintain
25	the alternate heat sink.
ļ	

(202) 234-4433

	126
1	I can tell you, I know that for a fact,
2	because I'm remember the staff having been involved
3	with some of the staff discussions, where TVA talked
4	about the fact that there is a natural weir in the
5	river and stuff like that, which tends to mitigate
6	some of the effects of loss of that downstream dam.
7	So, it's no, it was not the
8	Chickamauga Dam was not ignored and stuff
9	MEMBER STETKAR: But it's discussed in
10	Section 2.4 of the FSAR. There are a couple of
11	different places that talk about inadequate flow and
12	consequences from catastrophic failure at Chickamauga,
13	under assumptions that you can open the gates and get
14	water flowing into the river at Watts Bar.
15	Now, if the seismic analyses were to show
16	that for example, the gates at Watts Bar could not be
17	operated, and Chickamauga Dam could actually fail, it
18	strikes me that that could be a concern for safe
19	operation of the plant, because you would not have
20	adequate ERCW.
21	So, I'm curious, you know, for example,
22	were those types of questions asked, because I as
23	Harold mentioned, in these sort of six pages of few
24	things, there doesn't seem to be evidence of that.
25	CHAIR RAY: Yes, it's not clear, how the
Į	I

(202) 234-4433

	127
1	staff comes to its conclusion.
2	It's clear that there are many things,
3	some of which get done down the road. Why that is
4	okay? I couldn't find anything that said, this is
5	okay because. It just said what they're going to do,
6	period.
7	So, we're left to our own, to try and
8	figure out why it's okay. Must be okay, because there
9	is you've accepted the license conditions, but why,
10	I can't I can't explain. I can't
11	MR. MILANO: Well, you know, the thing is,
12	is that this is not this is not just an issue that
13	because Unit 2 is coming online.
14	I mean, this is a site issue. It already
15	applies to Watts Bar Unit 1, and the
16	CHAIR RAY: Well, fine, then why not
17	handle it just like seismic? Don't even talk about it
18	here, and say, this all has to do with Unit 1, and
19	Unit 2 will follow in its wake.
20	But the problem is, we're having to sit
21	here and try and judge independently, by law, whether
22	or not all of this makes some kind of sense, and I
23	can't find a pathway through it.
24	MR. MANOLY: Can I add something? My name
25	is Kamal Malony, Division of Engineereing.
I	

(202) 234-4433

	128
1	The premise of the whole issue about
2	license conditions is that we asked, what situation
3	exists in Unit 1, where you're operating under the
4	determination, that is also applicable to Unit 2?
5	So, any issue that is not meeting complete
6	compliance with the licensing basis for Unit 1, we
7	wanted that formalized in Unit 2 license condition,
8	and that was the premise behind this whole thing.
9	CHAIR RAY: Well, it may be, but you know,
10	again, I keep drawing the analogy between seismic and
11	this.
12	You don't explain why it's okay. I mean,
13	I think you just attempted to there, and I do
14	understand the idea of an existing plant and other
15	plant being built. I've been through that myself. I
16	understand how it works.
17	But the point is, we're sitting here
18	looking at Unit 2 right now, and trying to figure out
19	why is this okay? Do we advise the Commission that we
20	think this is okay?
21	All right, how the heck do I I don't
22	see you explaining to us, why it's okay, and
23	therefore, it's hard for us to come up with our own
24	explanation, and you know, I'm trying to think about
25	the fact that well, maybe, we're really talking about
ļ	I

(202) 234-4433

	129
1	Unit 1, here.
2	MR. MANOLY: Yes.
3	CHAIR RAY: We're not talking about Unit
4	2, at all?
5	MR. MANOLY: Right, if you accept the
6	premise that you can operate under the determination
7	for certain amount of time for Unit 1, it's a typical
8	operating unit. It's should also follow the logic
9	that should apply to Unit 2, which is not operating
10	unit, yet.
11	CHAIR RAY: Well, why don't you write that
12	down, then? Just what you just said, and I think the
13	answer is, because it will never fly.
14	MR. RAGHAVAN: This is Raghavan. I think
15	what we need to do is go back and present to the ACRS,
16	next time we come, the hydrology in the most concise
17	manner, and I recommend that we address three things.
18	CHAIR RAY: All right, that's fine.
19	MR. RAGHAVAN: Number one, we still
20	understand the design that was promised, that there be
21	issues that we have. We define the probable maximum
22	flood scenario under which the PMF is established.
23	Number two, we will discuss the mitigating
24	functions, if the flood level is higher, and number
25	three, we'll also talk about what Mr. John Stetkar was
ļ	

(202) 234-4433

	130
1	talking about, a downstream effect of not looking at
2	the nuclear plant, but also, from the emergency
3	preparedness.
4	I suggest that we postpone this discussion
5	for the next meeting.
6	CHAIR RAY: I think that's the right
7	answer. I just want to give you enough feedback that
8	we don't keep iterating on this over and over again.
9	MR. RAGHAVAN: We will do so.
10	CHAIR RAY: Yes, and speaking of things
11	that we're going to defer, we're going to defer the
12	discussion of Chapter 15, because looking at the
13	clock, and looking at the fact that we didn't have
14	time really, to prepare for that discussion, we're
15	going to have to do it later, too, the whole thing.
16	MR. MILANO: Okay, so, we'll discuss both
17	the accident and the consequences in December?
18	CHAIR RAY: I expect so, yes.
19	MR. MILANO: Okay.
20	CHAIR RAY: But that's an aside. Here, I
21	am just trying to give you enough feedback, so the
22	next time when we get together, we can say, okay, now,
23	I understand how the staff came to the conclusion that
24	it's okay to issue the license for operating Unit 2,
25	under the following 14 different assumptions and
l	

(202) 234-4433

	131
1	conditions. It now makes sense to me.
2	I'm sure that we can do that, but right
3	now, it just doesn't work, is what I'm telling you,
4	and you can read these license conditions, for
5	example, you can say, "Well, it looks like that's a
6	good idea," but you know, why is it okay for it to
7	take as long as it is?
8	My assumption is that it has something to
9	do with the fact that these are really requirements
10	that need to be satisfied, that pertain to an
11	operating unit, specifically to Unit 1, and perhaps to
12	other plants, aside from Watts Bar, and that on that
13	basis, the staff concludes that it's okay to have Unit
14	2 go into operation on the same basis that the other
15	units are in operation, namely that these things are
16	going to be, like you just read, are going to be
17	addressed for all the units, over time.
18	There are some other things, though, that,
19	you know, for example, I mentioned the issue of
20	reactor coolant pump seals.
21	It turned out, we're looking at changing
22	the pump seals, so they're more robust under the kinds
23	of conditions that we might encounter here with the
24	flooding.
25	Okay, that's fine, but is that just a
	I

(202) 234-4433

	132
1	matter of adding the margin and it's okay, now, the
2	way it is? I guess so, but I'd like to hear that
3	discussed.
4	Anyway, I go on too much. I'll stop now.
5	MR. RAGHAVAN: We will include that
6	agenda, in not in December meeting, then include it in
7	the April meeting.
8	CHAIR RAY: All right.
9	MR. RAGHAVAN: So, we'll get back to you
10	on that.
11	CHAIR RAY: Okay, thank you. I appreciate
12	your responsiveness and you know, we're not trying to
13	create more possible hurdles here, but we have spent
14	time trying to get our arms around this, and I've got
15	to give you feedback that says we need to take another
16	shot at it, so, we'll just do that.
17	MR. MILANO: Okay.
18	CHAIR RAY: All right. Okay, I probably
19	interrupted you, so, please.
20	MR. MILANO: No, that's fine. Now, I'm
21	going to turn it over to Mr. Mathew Panicker, from our
22	fuels organization, the fuel for performance
23	organization, and he'll discuss Chapter 4.
24	CHAIR RAY: Thank you.
25	MR. PANICKER: My name is Mathew Panicker.
I	I

(202) 234-4433

	133
1	CHAIR RAY: I'm going to ask you to speak
2	really loud, louder than you're comfortable speaking,
3	probably.
4	MEMBER RYAN: Try not to whack the
5	microphone, because it's very loud, and we can't hear.
6	CHAIR RAY: We're having a hard time
7	creating a record today. So, go ahead.
8	MR. PANICKER: Name is Mathew Panicker
9	with one T and one N in my name.
10	I belong to the Nuclear Performance and
11	Code Review Branch, which primarily deals with fuels.
12	This is the fuel design for Watts Bar
13	Unit 2, I am going to talk a little bit, the fuel
14	design for Watts Bar Unit 2.
15	In 2003, Watts Bar Unit 1 switched the
16	fuel design from Westinghouse to RFA-2, RFA stands for
17	robust fuel assembly generation 2.
18	So, Watts Bar Unit 2 will consist of
19	entirely new RFA-2 fuel, but unlike Watts Bar Unit 1,
20	the core for Watts Bar Unit 2 will not have any
21	tritium-producing rods.
22	Now, the what we'll rely on approving
23	of fuel design, in the agency is, this fuel, when
24	there is process, they have a generic mechanical
25	design and nuclear design process, which Westinghouse
ļ	I

(202) 234-4433

	134
1	calls it FCEP, fuel criteria evaluation process.
2	So, there is a generic document, document
3	reports to the agency, and we go through it, approve
4	it, with a lot of RAI's and so on, and then, for any
5	change in the successive fuel designs, they have to
6	submit it to us, and then we'll go through it again,
7	whether they conform to the original process criteria.
8	So, that is how the fuel design is
9	approved.
10	Here, the mechanical design features of
11	the RFA-2 fuel in the load, integral burnable
12	absorbers, Westinghouse integral nozzle and debris
13	filter, bottom nozzle, external burn-up capability,
14	axial blankets and ZIRLO, ZIRLO is Zircaloy with a
15	different composition for it, for fuel and many
16	structural components.
17	Based on the review, Watts Bar Unit fuel
18	safety analysis, the satisfactory experience of the
19	fuel type with other operating reactors and
20	experienced approval of the fuel type in Unit 1, the
21	staff is concluding that RFA-2 fuel for Watts Bar Unit
22	2 will perform its function adequately and that the
23	materials as met operational regulatory requirements.
24	TVA has described converter programs and
25	calculation techniques used to predict the nuclear
ļ	

(202) 234-4433

1 characteristics of the reactor design and provided 2 examples to demonstrate the ability of the analysis to 3 predict the reactivity and physics characteristics of 4 the Unit 2 core.

5 There are now changes to the reactor, 6 there is a result of reactor heat-up. Changes in 7 operating conditions, fuel burn-up and fission product 8 build-up and significant amount of excess reactivity 9 designed into the core.

10 Also, they have shown that sufficient 11 control rod is available, as excess reactivity at all 12 times. The sufficient control rod is available to 13 make the reactor sub-critical, in the Watt condition, 14 at any time during the cycle, with the most reactor 15 control rod stuck in the fully withdrawn position.

16 So, in that respect, the staff has 17 concluded that TVA's assessment of reactivity control determines how the first core cycle is suitably 18 19 conservative and that the control system provides adequate negative, to ensure the shutdown capability. 20 Now, one issue with the mechanical design 21 of the fuel is the inadequacy in the treatment of 22 thermal conductivity, as a function of temperature and 23 24 burn-up.

That one is still an open item, because as

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 135

25

	136
1	the fuel burns, as it irradiates and as it is
2	irradiated in the core, the thermal conductivity of
3	the fuel is deteriorating, particularly, the
4	reasonably high burn-up with a range of 20 to 30
5	degrees for this turn.
6	It will the thermal conductivity is
7	dependent on several physics and engineering changes
8	in the fuel, such as sufficient gas release, porosity
9	and all kinds of similar actions.
10	So, we if we treat the thermal
11	conductivity in the fuel in a conventional manner, we
12	don't get the correct thermal conductivity to be put
13	into the safety analysis.
14	So, the temperature and the total energy
15	content in the fuel will be cannot be conservative
16	enough to have the analysis, in the analysis.
17	So, we have put an open item, and we are
18	expecting the analysis staff with additional
19	information from TVA to demonstrate that path four,
20	which is the performance analysis core for fuel
21	performance, can conservatively calculate the fuel
22	temperature and other impacted variables, such as the
23	stored analogy, even the lack of fuel, thermal
24	conductivity and radiation model. This is going to be
25	remaining as an open item until we hear from TVA or
	I

(202) 234-4433

	137
1	the fuel vendor.
2	Now, as far as the thermal-hydraulic
3	design of the fuel is concerned, the staff reviewed
4	the thermal-hydraulic design, the scope of the review
5	included design criteria, core design, steady-state
6	analysis of the core thermal hydraulic performance.
7	The review concentrated on the difference
8	between the proposed core design and those designs
9	previously reviewed, and found acceptable by the
10	analysis staff.
11	In this respect, there are two things
12	which comes to the mind, is the thermal-hydraulic
13	compatibility of the fuel is there. It is there
14	because the core is filled with the same fuel, unlike
15	some other cores, and also, the case of mixed core
16	issues do not come because it is the same fuel.
17	So, all the fuel assemblies will have the
18	same pressure drop from the flow, so, those issues
19	will not come until they change the fuel or as it
20	burns in the fuel.
21	So, thermal-hydraulic design of the core
22	therefore, meets the requirements of GDC-10, General
23	Design Criteria 10, and is acceptable preliminary
24	design approval.
25	In the CR Section 4.4.9, the staff
	I

(202) 234-4433

	138
1	document has documented that TVA has committed to
2	three operational and initial start-up test programs
3	in accordance with the Regulatory Guide 1.68., initial
4	test programs for water-cooled nuclear power plants,
5	to measure and confirm the thermal-hydraulic design
6	aspects.
7	MR. MILANO: Pending any questions, that
8	completes the specifics of the fuels for Chapter 4 and
9	now, we'll continue on with the WINCISE in-core
10	instrumentation system.
11	CHAIR RAY: Okay.
12	MR. PANICKER: The in-core instrumentation
13	WINCISE system, which is called by Westinghouse, the
14	in-core instrument Westinghouse in-core
15	instrumentation surveillance and engineering system,
16	the WINCISE, which is I think which is this is
17	similar system is probably the second unit, which is
18	in this country, which is, I think the Sea Brook
19	has the same system.
20	This system is used to produce continuous
21	core power distribution measurement using the BEACON
22	TSM, TSM for technical specification monitoring,
23	systems.
24	MEMBER STETKAR: Mat, before you get
25	going, you mentioned this I don't know what plant

(202) 234-4433

	139
1	this is, it may be the second installed in the U.S.
2	Do you know, has this system been
3	installed in any plants internationally? Maybe TVA
4	may know.
5	MR. PANICKER: Westinghouse might have
6	done
7	MR. MILANO: Westinghouse is there.
8	MR. HEIBEL: This is Mike Heibel, again.
9	We have BEACON system working with fixed in-cores at
10	the Temelin plants in the Czech Republic.
11	MEMBER STETKAR: Thank you.
12	MR. PANICKER: So, the Watts Bar Unit 2
13	WINCISE system uses 58 IITA's, which is the stands
14	for in-core instrument thimble assemblies, each at
15	five self-powered vanadium detectors SPND for self-
16	powered neutron detector elements and one ground
17	junction core exit thermal couple.
18	Each IITA is inserted into the
19	instrumentation tube of the fuel assembly, through the
20	bottom nozzle, IITA length. Within the fuel assembly
21	is such that CET, core exit thermo-couple at the end
22	of the elbow, at the end gauge, on top of the active
23	fuel.
24	The vanadium SPND is a radiation sensing
25	device that uses transport of high energy electronic

(202) 234-4433

	140
1	released from the detector/emitter, so, you can use
2	vanadium, rhodium or platinum, if the vanadium is
3	used, which will have some distinctive effect on the
4	rhodium. One is the life time.
5	The life time of vanadium detectors is
6	around 20 years. Whereas, rhodium detectors are less
7	life time.
8	The emitter currently will be when they
9	are exposed to neutrons, the electrons are the
10	neutrons are absorbed and the electrons are released
11	from the detector emitter, when exposed to neutron and
12	gamma radiation.
13	The emitter currently will be
14	proportionate to the reactors, the neutron or gamma
15	released in the incident on the material.
16	So, each WINCISE SPND is the material
17	is of mineral insulated cable, consisting of a
18	significant vanadium remittal section and an extension
19	member.
20	The vanadium detector is as you saw the
21	diagram from the TVA, they have second increasing in
22	length. This arrangement enables the axial power
23	distribution in the post fuel assembly to be absorbed
24	into five segments.
25	The first four segments, being the

(202) 234-4433

	141
1	difference between the successive SPND. So, for the
2	second one, the difference will be first and second
3	and so on, second and so on.
4	The fifth being the current from only the
5	fifth detector. So, the advantage of this is, the
6	failure of one any single SPND element decreases
7	the axial resolution of the core power.
8	But it does not render the remaining SPND
9	elements in the element inoperable.
10	So, really, one is gone, the other system
11	is not inoperable, particular for this, because of the
12	added suppression.
13	Each OPARSSEL is is an acronym for
14	it is some the system used by WINCISE is called
15	optimized proportional axial region signal separation
16	extended life, OPARSSEL, optimized proportional axial
17	region signal separation extended life.
18	Each OPARSSEL houses a CET which is
19	positioned to provide a measurement of each the
20	reactor coolant and pressure at the top of the active
21	fuel, of the lost fuel assembly, initial at the bottom
22	of the OPARSSEL plate as they are installed in Watts
23	Bar Unit 1.
24	The CET measurements are used by post-
25	axial monitoring systems and are not used by the
ļ	I

(202) 234-4433

	142
1	WINCISE system, as before.
2	The SPND in this are both actually and
3	regularly distributed, using the reactor core to
4	provide continuing signals that are directly
5	proportionate to the neutron flux in the immediate
6	vicinity of the SPND's.
7	The measured SPND signals are processed by
8	use of the BEACON-TSM power distribution monitoring
9	system, PDMS.
10	They generate the continuous three-
11	dimensional measurements of the reactor core power
12	distribution. The SPND signals are routed through
13	there fiber optic cables, to the BEACON-TSM
14	calculation.
15	CHAIR RAY: Okay, we've read that, I
16	think, but is there anything about the staff's
17	evaluation that you want to share with us? We're
18	running short on time.
19	MR. MILANO: Actually, no. We found that
20	the that TVA or excuse me, TVA and Westinghouse
21	really didn't change much with regard to the way the
22	signals are processed into the flux, you know, into
23	the measurement portion.
24	So, we found that aspects pretty much
25	consistent with what was previously utilized. This
l	1

(202) 234-4433

	143
1	new system the new the new instrument system was
2	evaluated.
3	We do have we were going to have some
4	further discussion, with regard to the instrument,
5	instrument itself, and if you bear with us, we can
6	just hit some highlights of what the staff looked at,
7	as the WINCISE portion of the instrument itself, and
8	
9	CHAIR RAY: Well, that's fine, Patrick.
10	You decide how you want to use this 15 minutes.
11	MR. MILANO: Okay.
12	CHAIR RAY: But at 12 o'clock we've got to
13	stop.
14	MR. MILANO: Right, okay. Actually, this
15	ends it, anyway, because after that, we were going to
16	talk about axial transient analysis, and since that is
17	deferred
18	CHAIR RAY: I perceived that that would be
19	the outcome, that's why I said what I did.
20	There was an item here on the agenda, and
21	I just don't want to overlook it, but in which
22	Region 2 would say anything that was
23	MR. MILANO: That was the
24	CHAIR RAY: appropriate to do.
25	MR. MILANO: That was there, just in case
I	1

(202) 234-4433

	144
1	you had some questions.
2	No, they don't have anything specific,
3	now.
4	CHAIR RAY: All right, now, we don't have
5	any questions, to my knowledge.
6	MR. MILANO: Okay, Mr. Rahn.
7	MR. RAHN: Sure, my name is David Rahn.
8	I'm the Senior I&C Engineer in the Office of NRR, and
9	if we could just jump to slide number 12.
10	What we did is, because if you recall,
11	Steve Hilmes described the fact that the cores of
12	thermal couples, which are Class 1E, are in the same
13	overall achieved as the self-powered detectors, and
14	then the they split, and you can show it. See
15	where that split is?
16	It becomes at that point, a split between
17	a Class 1E component and a non-Class 1E component.
18	So, what we're required to do, as part of
19	our analysis, is to ensure that there aren't any
20	events or problems that would occur in the non-1E
21	portion of the circuit, that could then propulgate
22	toward the 1E portion and degrade it, in any way.
23	So, we combined our evaluation of the
24	WINCISE portion, primarily with regard to looking into
25	reliability, which if there is a lot of redundancy
ļ	I

(202) 234-4433

	145
1	built into that system, so it is reliable.
2	But the important thing for us was how did
3	they address the criteria for separation and
4	isolation, and in that regard, we had evaluated some
5	reports that Westinghouse put together for TVA.
6	Specifically, we have a Regulatory Guide
7	1.75, has to do with independence of Class 1E
8	components, and independence on separation
9	requirements, and the requirements are codified in
10	or not codified, they're actually a standard for that
11	IEEE-384.
12	And so, what we did is, we evaluated what
13	does IEEE's 384 say, with regard to joining together
14	a le and a non-1E component, and there are some
15	specific directions provided in that standard, that
16	say that if you cannot meet the minimum separation
17	criteria, it's all right to perform an analysis and in
18	this case, Westinghouse provided not only an analysis,
19	but they supplemented with some test data.
20	But specifically, they were able to
21	demonstrate for us that if there was a fault of a
22	4kV's power, that could impact any of the power supply
23	cable going into the SFAS, the signal-processing
24	cabinet, their analyses showed that the maximum surge
25	capability that is probable at the output of the power
I	I

(202) 234-4433

146 1 supply inside that could only put a 248 volt surge on the lines. 2 3 And so, at that point, they were also able 4 to show us that they performed testing of conductor to 5 ground and conductor to conductor 600 volt surge tests on the middle insulated cable connections, and those 6 7 tests demonstrated that there is not degradation in 8 insulation resistence, and that was satisfactory for 9 us, to meet the IEEE 384 requirement. 10 CHAIR RAY: Is that an environmentally or an aged conclusion? In other words, the way you just 11 expressed it, it could be a test that really didn't 12 apply under the conditions that we would --13 14 MR. MILANO: Yes, in that particular case, 15 the test that they performed was of new cable, of new mineral insulated cable. 16 17 CHAIR RAY: Right, so, why would that then suffice, if you were talking about something in 18 19 service? MR. RAHN: Well, the -- it was by far --20 the energy that is coming from the signals itself, is 21 on the order of five micro-amps. 22 So, the total number of aging that the 23 24 cabling experiences over its life time is -- hardly impacting the ceramic insulation. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	CHAIR RAY: All right, so, I mean, the
2	point is that it doesn't neglect that potential. It's
3	just, your judgment is
4	MR. RAHN: Correct, our judgment is that
5	it is hardly having an effect.
6	CHAIR RAY: Okay.
7	MEMBER STETKAR: Dave?
8	MR. RAHN: Yes.
9	MEMBER STETKAR: You mentioned you said
10	ceramic insulation?
11	MR. MILANO: Yes, mineral insulated, yes.
12	I don't remember the exact the material, but perhaps,
13	Mr. Heibel would be able to provide that.
14	MEMBER STETKAR: I was going to ask, yes,
15	what's that?
16	MR. HEIBEL: Aluminum oxide is the
17	insulator that we're using.
18	MEMBER STETKAR: Aluminum oxide? What is
19	I'm not a materials chemist person. How does that
20	material respond under fire?
21	MR. HEIBEL: It has an extremely high
22	temperature, but as you heat it up, leakage resistance
23	does change.
24	MEMBER STETKAR: Does change?
25	MR. HEIBEL: Yes.
ļ	I

	148
1	MEMBER STETKAR: I was going to ask, you
2	know, your conclusion is that if I can jump ahead
3	to slide 14, I think it says that there is no credible
4	power fail no credible power cabling failure that
5	would affect the CET signals.
6	MR. HEIBEL: Yes.
7	MEMBER STETKAR: I was curious whether
8	they tried to burn those cables, to see whether that's
9	a credible
10	MR. RAHN: I don't believe that was part
11	of the the testing that they did.
12	MEMBER STETKAR: Is has an evaluation
13	of does let me ask the question.
14	Where in the terms of overall evaluation
15	of this particular configuration does the question of
16	possible fire damage
17	MR. RAHN: It would be up
18	MEMBER STETKAR: come up?
19	MR. RAHN: It would upstream in the
20	MEMBER STETKAR: No, I
21	MR. RAHN: in the plant, not in the
22	mineral insulated cable line. The propulgation would
23	occur in the power feed to the cabinet.
24	MEMBER STETKAR: No, no, I'm talking
25	about, if you go back to slide 12, where the cable is
ļ	I

```
(202) 234-4433
```

	149
1	co-located
2	MR. RAHN: Yes.
3	MEMBER STETKAR: right there.
4	MR. RAHN: Yes.
5	MEMBER STETKAR: I don't know what the
6	length of that run is, the physical length of the run,
7	but if I have a fire, right, where the cursor was
8	pointed
9	MR. RAHN: Yes.
10	MEMBER STETKAR: and expose that cable
11	to
12	MR. RAHN: Yes.
13	MEMBER STETKAR: fire conditions, flame
14	and temperature, how do I develop confidence that in
15	deed, I will not have
16	MR. RAHN: It is possible that you could
17	damage that cable.
18	MEMBER STETKAR: Okay.
19	MR. RAHN: And it would be gone, you know.
20	MEMBER STETKAR: And where in TVA's
21	submission for the licensing of this system, is that
22	analysis provided?
23	MR. RAHN: Yes, the requirement for the
24	post-accident monitoring system is that there be at
25	least three thermo-couples in each quadrant available
I	I

```
(202) 234-4433
```

	150
1	to perform the post-accident monitoring function.
2	MEMBER STETKAR: Okay.
3	MR. RAHN: And by loss of the way these
4	are divided, they're alternating quadrants, and so,
5	these are split into two separate cabinets.
6	You could actually lose one entire SPS
7	cabinet and still fulfill the post-accident monitoring
8	functions.
9	MEMBER STETKAR: What is the configuration
10	of the seal table at Watts Bar, in any seal tables,
11	all of the detectors come out in a you know,
12	reasonably constrained, physical
13	MR. RAHN: Yes, but it's
14	MEMBER STETKAR: They're not distributed
15	25 degrees around the containment.
16	MR. RAHN: If you had a fire right at the
17	seal table, it would be difficult to prove
18	MEMBER STETKAR: And the question is, if
19	that's the case, what is the length of those co-
20	located cables runs?
21	I mean, do they go, you know, 50 meters
22	through the containment before they finally split or
23	is it, you know, two meters from the seal table?
24	MR. HEIBEL: Mike Heibel, again, at
25	Westinghouse.
	I

(202) 234-4433

	151
1	The wide cables, as we call the ones that
2	have the split built into them, are approximately six
3	feet in length.
4	MEMBER STETKAR: Six feet?
5	MR. HEIBEL: So, the split happens, rather
6	soon, in a vicinity of the seal table itself.
7	The actual cables on the seal table
8	itself, you go from left to right, for example, it's
9	not all of one train is on one side, and one train is
10	on the other.
11	They're mixed up in the seal table, in
12	terms of how they're split out. So, it would have to
13	be an event that would take
14	MEMBER STETKAR: It would have to be a
15	fairly fairly large fire I'm choking to death,
16	but that's okay, fairly large fire located in the
17	vicinity
18	MR. HEIBEL: And in terms of the
19	MEMBER STETKAR: of the seal table?
20	MR. HEIBEL: Each of these MI cables are
21	steel jacketed, and they're tested to 400 degrees C.
22	You know, that is pretty warm, that's clearly not, you
23	know, as hot as you could get a fire.
24	MEMBER STETKAR: Right, right.
25	MR. RAHN: But there not much to burn in
ļ	I

(202) 234-4433

	152
1	that area.
2	MEMBER STETKAR: Okay, thanks.
3	CHAIR RAY: Were you yes?
4	MR. RAHN: Yes, that's all I have.
5	CHAIR RAY: Okay.
6	MR. RAHN: I'm sorry, I could just add,
7	just for integrity purposes, we also looked at it from
8	its qualification for EMI, RFI and seismic
9	monitoring, as well, as the tests essentially showed
10	that the cabinet won't fall apart, when it's subjected
11	to the required response spectrum for the cabinet.
12	CHAIR RAY: Okay, thank you.
13	MEMBER BROWN: I did have one technical
14	question, I'm not sure I understood your diagram on
15	this, on page 12.
16	MR. RAHN: Yes.
17	MEMBER BROWN: If you can go back. After
18	the split, you show you know, one side goes to the
19	SPS, but the CET's go out, they're separate.
20	Now, that is all conversion. I know the
21	straight thermo-couple signal goes all the way out.
22	There is no other conversions until it gets to the
23	Common Q cabinet?
24	MR. RAHN: Yes, that is right. That was
25	an elimination of the cold junctions.
Į	I

(202) 234-4433

	153
1	MEMBER BROWN: Okay, now, is the mineral
2	insulated cable maintained all the way
3	MR. RAHN: It's maintained up to the
4	penetration.
5	MEMBER BROWN: Okay, just to the
6	containment penetration?
7	MR. RAHN: Right.
8	MEMBER BROWN: And then you transfer to an
9	organic or the
10	MR. RAHN: Right.
11	MEMBER BROWN: the standard cable
12	MR. RAHN: Thermo-couple.
13	MEMBER BROWN: with thermo-couple type
14	cable, for that purpose?
15	MR. RAHN: Right.
16	MEMBER BROWN: Okay.
17	MEMBER SKILLMAN: May I ask you to confirm
18	that the in-core system is independent from your
19	standard NI's start up range intermediate range and
20	power range?
21	MR. RAHN: Yes, yes, the NI's are fixed
22	here. They're escorted.
23	MEMBER SKILLMAN: Thank you.
24	CHAIR RAY: All right, anything else,
25	Patrick?

	154
1	MR. MILANO: That concludes the morning
2	portion of the presentation. This afternoon, we'll
3	pick up with cyber security.
4	CHAIR RAY: And we will begin this
5	afternoon's session by in a non-public format.
6	MR. MILANO: That's correct.
7	CHAIR RAY: All right, well, with that,
8	then, we will adjourn until one o'clock.
9	(Whereupon, the above-entitled matter went
10	off the record at approximately 12:00 p.m. and resumed
11	at approximately 4:10 p.m.)
12	CHAIR RAY: Go ahead.
13	MR. MILANO: All right, I just wanted to
14	lay out what the critical path is, in terms of the
15	staff's review for Watts Bar Unit 2.
16	As we indicated this morning and as we saw
17	from the fact that we were unable, because of time, to
18	get into the accident transient analysis, you know, we
19	do have some critical path items in that area.
20	As TVA indicated, the mass addition
21	accident, the boron dilution is something that the
22	staff hasn't completed its review of, and also, we're
23	in the process right now of completing the dose
24	consequence analysis in Chapter 15 Section 15.4.
25	Those items will are will be the
ļ	I

(202) 234-4433

155 major portion of the non-programmatic reviews that we 1 are going to be doing. 2 3 We did indicate to you that the fire 4 protection program is currently ongoing. That is a 5 major review that is scheduled to be completed by the staff in late January and also, we're in the final 6 7 throes of preparing the draft supplement to the final environmental statement. 8 In that regard, the -- we have two more 9 scheduled Subcommittee meetings, currently scheduled, 10 and you know, December, we're going to meet in 11 December 15th, and --12 Fourteenth. 13 MR. SHUKLA: 14 MR. MILANO: Excuse me, 14th? CHAIR RAY: Well, I'll tell you something, 15 I have been hammering on him, as he will readily 16 confess, to move it back on day to the 15th. 17 So, I would be delighted with that, but it 18 19 does mean I have to deal with my colleagues internal at the ACRS. 20 21 MR. MILANO: Okay. It's just on the record. 22 CHAIR RAY: I am just telling you that I would --23 24 MR. SHUKLA: Can we discuss it? CHAIR RAY: I'll be discussing it with my 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	colleagues tomorrow, and it would help me a good deal,
2	if we could do that. But anyway, go ahead.
3	MR. MILANO: Okay, as this slide
4	indicates, we were thinking, as far as new material to
5	be presented, we were going to discuss the operational
6	and accident dose analysis rad-waste systems and
7	stuff, in Chapters 11 and 12, and then also, as I
8	indicated before, Section 15.4.
9	Now, that we now that the staff did not
10	have a chance to present its findings on the accident
11	transient analysis from the reactor side, we'll
12	discuss that also during that meeting, and then as a
13	follow on to the discussions on the hydrologic
14	engineering area, we plan we will be planning to
15	develop a presentation to give you a clearer
16	understanding of how the staff came to its
17	determinations in that area, with regard to flooding
18	and the dams and stuff like that.
19	CHAIR RAY: That is fair.
20	MR. MILANO: And then our the last
21	Subcommittee meeting that is currently scheduled is in
22	April 2012, no date, no fixed date yet, and we were
23	planning to cover fire protection in that meeting.
24	Now, in both of these, in both the
25	December and the April meetings, as you indicated
I	

(202) 234-4433

	157
1	earlier, there are a number of open items that are
2	still there, and what we will be doing is, is we will
3	be as these items are worked off, we will be
4	presenting those to you, and those items that are of
5	a non-confirmatory nature, those wherein the staff had
6	to write something in its SER to show its final
7	conclusion.
8	So, we'll be discussing open items in both
9	of these. I didn't put it down here because we don't
10	know for sure, which ones are going to be will be
11	done by in each one of those times.
12	MR. SHUKLA: So, Pat, just to make sure,
13	are we discussing cyber-security in the December
14	meeting or not?
15	MR. MILANO: No, we'll have to work it out
16	with you, as to what
17	CHAIR RAY: The way I'd leave it on that
18	is, if we can't achieve the understanding and comfort
19	level, I'll call it, that I referred to in the
20	discussion here over how all this gets verified, it
21	will just be a comment in our letter that says, this
22	is an area that's got to be resolved.
23	It does apply to more than Watts Bar Unit
24	2. I would rather get it resolved here, so we don't
25	have to that, because it's just another thing that has
ļ	I

(202) 234-4433

	158
1	to go out and be tracked around and somehow, dealt
2	with.
3	So, I'd rather that we are able to say,
4	yes, we understand and present it to the full
5	Committee and get their understanding and acceptance,
6	in the context of Watts Bar Unit 2.
7	But at the end of the day, because it does
8	apply to more than Watts Bar Unit 2, we can also just
9	note in the letter that we haven't achieved resolution
10	on the issue of verification of it is very similar,
11	as I said, to DAC.
12	We don't like DAC. I don't think the staff
13	likes DAC, because you set criteria and you have no
14	way of being sure that you've got the criteria
15	precisely correct, and that they can't be interpreted
16	in different ways.
17	Licensees don't like DAC either, for that
18	same reason.
19	So, enough said. I don't want to take
20	anymore time.
21	MR. SHUKLA: So, the full Committee is
22	scheduled in May.
23	MR. MILANO: That is correct.
24	CHAIR RAY: Well, I got a feeling there is
25	likely to build up a need for more than the two
I	

(202) 234-4433

	159
1	meeting days that you just mentioned, Pat. I don't
2	know, I don't want to predict that, but just my gut
3	tells me, that we're not going to get through the
4	agenda that you're referring to in a one-day in
5	December, either.
6	But some of my colleagues are not here,
7	like Professor Banerjee and so on, will help me
8	understand that better.
9	CHAIR RAY: Okay.
10	MEMBER STETKAR: Pat, is the just I
11	haven't looked at it, the fire protection stuff,
12	1.189, I mean, is it a straight deterministic
13	MR. MILANO: Yes, that is correct.
14	MEMBER STETKAR: Without too many
15	MR. MILANO: Yes.
16	MEMBER STETKAR: innovative okay.
17	MR. SHUKLA: Yes, are they going to
18	MEMBER STETKAR: I know that, it's just a
19	question of, given the history of the whether the
20	okay.
21	MR. MILANO: Let's get over to 28, and
22	again, just you know, I think we've provided you
23	with an overview of where the project currently
24	stands, and we also discussed each one of these, you
25	know, what our future milestones are, for both the
I	I

(202) 234-4433

	160
1	meeting with this staff, and also, there is a hearing
2	that is pending, waiting for the completion of the
3	final environmental statement, and so, that is still
4	out there.
5	Then I just put down operational readiness
6	assessment and certification of as-built. Those are
7	pretty standard and common.
8	We have a detailed flow description that
9	we've shared between us and TVA, which lays out what
10	is remaining to be completed, in terms of major
11	milestones between now and the time when the staff
12	would be able to go to the Commission.
13	CHAIR RAY: Okay, well
14	MR. MILANO: And that pretty much
15	CHAIR RAY: If you look at two one-day
16	Subcommittee meetings, and you try and allocate out
17	the time involved in the things you have to go, I just
18	don't think you conclude that it's doable. That's my
19	opinion.
20	What that means is, we want to avoid
21	spending time on, at times today, things that were not
22	very productive.
23	Now, the discussion, I thought TVA's
24	contribution on cyber-security was very responsive,
25	and obviously helpful to the understanding and so on.
	I

(202) 234-4433

That's an example of where we need to focus in on things that are likely to be problematic, okay, and not spend time, because two days go by so fast, that I may be mistaken, it may be that we get through the things that we need to get through in those two days, without any trouble.

7 But I'm just not all that optimistic about 8 it, and in any event, let's make sure we don't spend 9 time on things that we don't need to spend time on, and make sure we get stuff sufficiently in advance, 10 that we are able to distribute it to people and like 11 I say, one of my problems is getting the right people 12 the right Subcommittee meetings, and having 13 to 14 visibility therefore, to what topics are going to be at which of these two meetings is critical. 15

Okay, anymore, Pat?

MR. MILANO: No, but in preparation for the December one, you know, on or before December 15th, excuse me, November 15th, we will have the next supplement to Mr. Girija.

CHAIR RAY: All right. We'll count on it.
MR. SHUKLA: And any FSAR?
MR. MILANO: Right.
CHAIR RAY: All right, with that, Charlie,
do you have anything more you want to contribute?

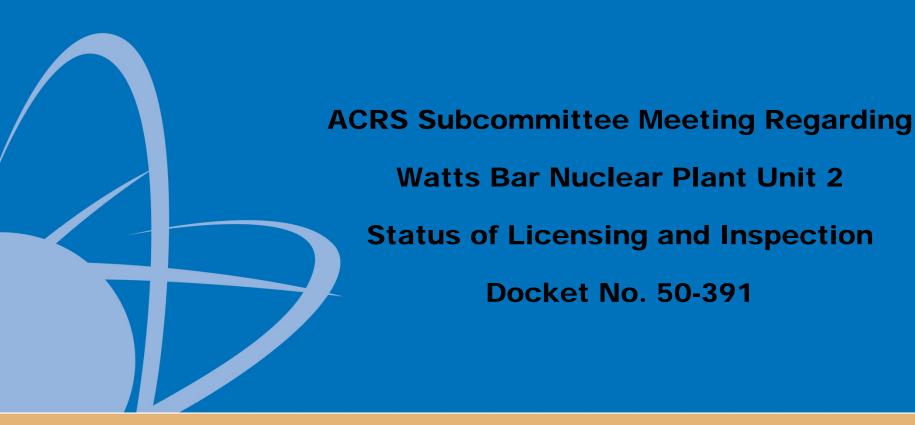
NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3


4

5

6

16

	162
1	MEMBER BROWN: No.
2	CHAIR RAY: All right, Dick, anything you
3	want to say?
4	MEMBER SKILLMAN: No, thank you.
5	CHAIR RAY: John?
6	MEMBER STETKAR: No.
7	CHAIR RAY: Mike?
8	MEMBER RYAN: No.
9	CHAIR RAY: Okay, well, with that, then,
10	we'll consider this meeting concluded. We look
11	forward to whichever those two days in December we
12	finally land on. Thank you.
13	(Whereupon, the above-entitled matter
14	concluded at approximately 4:20 p.m.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

October 5, 2011

Agenda Topics

• TVA

- Construction Completion Status
- Hydrology (FSAR 2.4)
- Reactor (FSAR Chapter 4)
- In-Core Instrumentation (FSAR 7.7.1.9)
- Accident and Transient Analyses (FSAR Chapter 15)
- Cyber-Security (FSAR 13.6.6; Closed Session)

• NRC

- Status of Licensing and Construction Inspection
- Supplements 23 and 24 to SER
- Remaining Safety Review Activities

NRR Presentation of **Status of Licensing Activities**

Protecting People and the Environment

Status of Operating License Application

- TVA amendments to FSAR received (A92 to A106)
- Supplements to original Safety Evaluation Report
 - SSER 21 identifies regulatory framework
 - SSER 22 FSAR Chapters 2, 3, 5, 6, 8, 9, 10, 13, 14, 17
 - SSER 23 FSAR Chapters 4, 7
 - SSER 24 FSAR Chapters 2.4, 11, 12, 13.6.6, 15
- Major Review Areas Remaining
 - Fire Protection Report
 - Accident dose consequences
 - Closure of open items from SER review
 - Complete draft supplement to final environmental statement

Safety Evaluation Report Supplements (SSERs)

- SSER 23 Published July 2011
- SSER 24 Published September 2011

Section 2.4, Hydrologic Engineering

- Increase in Probable Maximum Flood (PMF) level, but margin remains
- Credit for temporary dam modifications (sand baskets)
 - PMF analysis and the seismic dam failure analysis credit an increased height of embankment at four dams (Fort Loudoun, Tellico, Cherokee, and Watts Bar)
 - Increased height prevents overtopping and failure of embankments during a PMF event
 - Reservoir headwaters will not have reached bottom elevation of the sand baskets; therefore, a hydrodynamic loading condition, as a result of a seismic event, does not apply
- TVA to confirm sand baskets meet or exceed the acceptable stability factors of safety

Section 2.4, Hydrologic

- Open Items remaining for Staff review
 - TVA to perform either hydrology analysis without crediting use of the sand baskets at the Fort Loudoun dam for the seismic dam failure and flood combination, or perform a seismic test of the sand baskets
 - Justification for dams not to fail for OBE (0.09g)
- Staff proposed 2 License Conditions
 - Address how the pre-established acceptance criteria were met by August 31, 2012
 - Long-term modification plan shall be completed within three years from the date of issuance of the operating license

Section 4, Reactor

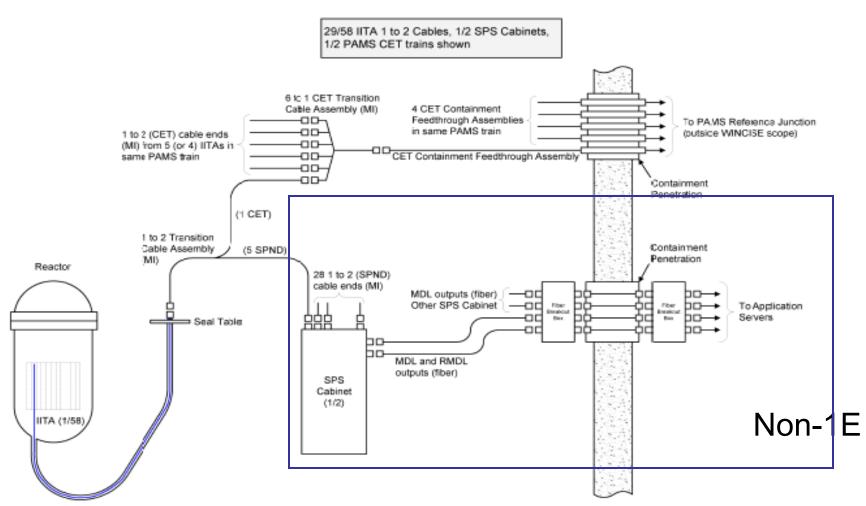
- Fuel Design
 - Unit 1 transition from Vantage 5H to RFA-2 fuel (Amendment 46; 2003)
 - Unit 2 core will be all new fuel of RFA-2. No substantive differences.
 - No tritium producing burnable absorber rods
- Design bases and functional requirements used in the nuclear design of the fuel and reactivity control systems
 - Thermal performance and thermal conductivity (open item)
 - Mechanical performance bounded by prior analyses
- Thermal-Hydraulic Design

In-Core Instrumentation System

- Composed of Westinghouse In-Core Instrumentation Surveillance and Engineering (WINCISE) System
 - Used to produce continuous core power distribution measurements using the BEACON-TSM system software package
 - WINCISE system consists of 58 Incore Instrument Thimble Assemblies (IITA), each with Five (5) self-powered Vanadium detector (SPND) elements and one (1) ground junction core-exit thermocouple.
 - The SPND elements output current values are directly proportional to the local neutron flux
 - > The CET output voltage signals are related to the local temperature
 - The SPND signals are processed for use by BEACON-TSM power distribution monitoring system (PDMS) to generate continuous 3-D core power distribution.

In-Core Instrumentation System

- WINCISE system is an upgrade of WBN Unit 1 moveable incore detection system and its top mounted CETs
- Vanadium SPND elements have a lifetime of 20 reactor years as opposed to shorter lifetime of Rhodium detectors
- The PDMS software monitors the reactor operating limits defined in TS when the reactor is operating above 20% of Rated Thermal Power.
- BEACON-TSM calculation is performed using NRC-approved nodal method
- BEACON-TSM methodology provides procedure to calculate Power Peaking Factor uncertainty
- WBN 2 BEACON system continuously adjusts both axial and nodal calibration factors using the data from the SPND signal measurements


In-Core Instrumentation System

- Scope of Evaluation of Instrumentation
 - Differences in the WBN 2 design from that of Unit 1
 - 10 CFR 50.55a(h) Codes and Standards Compliance
 - SRP Section 7.7, "Control Systems" Review Acceptance Criteria
 - Potential Class 1E to Non-1E Interactions (R.G. 1.75)
 - IEEE Std. 279-1971 (Power Supply for WINCISE)
 - IEEE Std. 603-1991 (PAMS)
 - IEEE 384-1981 Independence Criteria
 - Equipment Qualification—Seismic

Protecting People and the Environment

Class 1E to non-1E Separation/Isolation

Scope of Staff Evaluation

- Neutron Detectors and CETs are electrically separated, but physically located within the same IITA.
- The NRC staff performed an evaluation of the IIS against the independence criterion. Specifically, staff evaluated the licensee's analysis description and supporting documents demonstrating that credible faults originating in, or by means of, the non-1E portion can not adversely affect the operation of the Class 1E CETs.
- Staff also evaluated the licensee's demonstration that the WINCISE SPS cabinet seismic qualification is sufficient to demonstrate that credible seismic events will not cause failures within the cabinet from adversely affecting the mineral insulated cables containing the Class 1E CETs.

Staff Findings and Conclusions

- The Westinghouse analysis submitted by TVA showed that no credible power cabling failure originating within the WINCISE system can result in a propagated fault with a voltage level sufficient to affect the CET signals.
- The Westinghouse seismic qualification results showed that the WINCISE cabinet maintains structural integrity during application of the seismic test qualification level response spectra for 5 OBEs + 1 SSE without any component detachments
- The NRC staff concludes that the IIS conforms to the applicable requirements of 10 CFR 50.55a(h) as defined in IEEE Std. 279-1971 Clause 4.7, "Control and Protection System Interaction, "IEEE Std. 603-1991 Clause 5.6.3, "Independence Between Safety Systems and Other Systems," and IEEE Std. 603-1991 Clause 6.3, "Interaction Between the Sense and Command Features and Other Systems."

Section 15, Transient and Accident Analyses

Agenda Topics

- Review Procedures
- General Results
- Challenging Review Areas
- Conclusions

Review Procedures

- Reference the licensing basis of Watts Bar Unit 1
- Ensure that analytic methods are used within the limits of the staff's approval
- Compare results to similar plants
- Additional information was requested to aid in the review of challenging areas:
 - Several rounds of RAIs were issued
 - Additional analyses were requested
 - Two audits were conducted
 - First audit March 15th in Rockville, MD
 - Second audit June 28 through 30 in Cranberry, PA

General Results

- Most results were acceptable w/o further information
 - Analyses performed using NRC-approved methodology
 - Analyses were continually reviewed since the Unit 1 application
 - Results acceptable with margin to acceptance criterion or regulatory limit
- Results for five accident analyses presented some review challenges

Challenging Review Areas

- 1. Overpressure protection analysis
- 2. CVCS malfunction event
- 3. Inadvertent ECCS actuation at power
- 4. Boron dilution in Modes 3, 4, and 5
- 5. Main steam line break

1. Overpressure Protection

- SRP 5.2.2 specifies that adequate overpressure protection be demonstrated for the limiting event (loss of load)
- Analysis should be based upon a reactor trip from the 2nd trip signal
- Analysis was based upon reactor trip from 1st trip signal
- TVA re-analyzed the loss of load, assuming reactor trips on the 2nd trip signal
- Results of re-analysis show that RCS and MSS pressure safety limits are not exceeded

2. CVCS malfunction event

- CVCS malfunction event was not in the FSAR (i.e., it was omitted)
- The event is listed in RG 1.70, Rev 2
- The event is not bounded by the inadvertent ECCS event
- TVA provided an analysis
- Results indicate there is adequate time for manual mitigation

3. Inadvertent ECCS actuation

- Analysis was unacceptable, as explained in RIS 2005-029
- TVA provided a re-analysis
- Results indicate there is adequate time for manual mitigation

4. Boron Dilution in Modes 3, 4, and 5

- RG1.70, Revs 0 and 1, required explicit Boron Dilution calculations in Modes 1, 2 and 6. Subsequent revisions RG 1.70 added requirements to consider in all 6 modes
- SRP 15.4.6 calls for analysis of event in all modes
- Analyses inconsistent with SRP since only Modes 1, 2, and 6 analyzed
- Open Item for TVA to provide analyses of boron dilution event that meet the criteria of SRP Section 15.4.6, including
 - Description of the methods and procedures used by the operators to identify the dilution path(s) and terminate the dilution in order to determine analyses comply with GDC 10
 - Time available for manual action begins at start of event

5. Main Steam Line Break

- Results were too good (compared to similar plants)
- Results were inconsistent with the conclusions of WCAP-9226
- Results were deconstructed, at the 2nd audit, to explain the contribution of each key assumption and parameter
- A new limiting-case analysis was provided

Staff Review Conclusions

- Staff draws a reasonable assurance conclusion with the same, or higher confidence, as compared to the Unit 1 review
- Some changes in the Unit 2 licensing basis must also apply to the Unit 1 licensing basis
- Westinghouse's steam line break analysis methods should be updated

Critical Path Items

- Accident and Transient Analyses
 - Mass addition accidents boron dilution
 - Dose consequences analysis
- Fire Protection Program
- Supplement to Final Environmental Statement

Schedule

- ACRS Subcommittee Meetings
 - December 2011 Operational and Accident Dose (11, 12, 15.4)
 - April 2012 Fire Protection

Project Summary of Watts Bar Unit 2 Remaining Activities

Project Status

- Staff review nearing completion
- Future Milestones
 - Complete SER and SFES-OL
 - Complete ACRS Review
 - Conduct hearing and ASLB provide decision
 - Operational readiness assessment
 - Certification of as-built construction

Expectations for Next Meeting

- Scheduled for December 2011
- Accident Dose Consequence Analyses
- Radioactive Waste Management
- Radiation Protection

NSIR Presentation on Cyber-Security Plan Watts Bar Unit 2

Protecting People and the Environment

REGULATORY EVALUATION

- TVA submitted the WB2 CSP and implementation schedule per 10 CFR 73.54
- Submission was found acceptable IAW LIC 109
- TVA responded to three generic RAIs
- TVA worked with staff to resolve implementation schedule issues

RG 5.71 AND NEI 08-09, REV. 6

- RG 5.71 is one way for licensees to meet the requirements of 10 CFR 73.54
- NRC staff found NEI 08-09 Revision 6 acceptable (but not endorsed) for use by licensees to meet the requirements of 10 CFR 73.54
- RG 5.71 and NEI 08-09, Revision 6 are comparable documents
- TVA submitted WB2 CSP was reviewed against the corresponding sections in RG 5.71

Protecting People and the Environment

WB2 CSP ELEMENTS

Scope and Purpose	Ongoing Monitoring and Assessment
Analyzing Digital Computer Systems and Networks and Applying Cyber Security Controls	Modification of Digital Assets
Cyber Security Assessment and Authorization	Attack Mitigation and Incident Response
Cyber Security Assessment Team	Cyber Security Contingency Plan
Identification of Critical Digital Assets	Cyber Security Training and Awareness
Examination of Cyber Security Practices	Evaluate and Manage Cyber Risk
Tabletop Reviews and Validation Testing	Policies and Implementing Procedures
Mitigation of Vulnerabilities and Application of Cyber Security Controls	Roles and Responsibilities
Incorporating the Cyber Security Program into the Physical Protection Program	Cyber Security Program Review
Cyber Security Controls	Document Control and Records Retention and Handling
Defense-in-Depth Protective Strategies	Implementation Schedule

CYBER SECURITY ASSESSMENT AND AUTHORIZATION

 Although the WB2 CSP deviated from the template, staff found the deviation acceptable because the CSP adequately established controls to develop, disseminate, and periodically update the cyber security assessment and authorization policy and implementing procedure.

DEFENSE-IN-DEPTH PROTECTIVE STRATEGIES

- WB2 CSP allows only deterministic one-way flows from Level 3 to Level 2, effectively isolating Levels 3 and 4 from the lower levels
- Information flows between Level 3 and Level 4 are restricted through the use of either:
 - (1) one or more deterministic devices (data diodes or air gaps); or
 - (2) firewall(s) and network-based intrusion detection system(s)
- WB2 CSP is comparable to the regulatory guidance
- Staff found the CSP adequately describes implementation of defense-in-depth protective strategies.

DOCUMENT CONTROL AND RECORDS RETENTION AND HANDLING

- Initial industry guidance did not meet the requirements of 10 CFR 73.54
- Subsequent industry guidance was provided that did meet the requirements of 10 CFR 73.54
- In response to an RAI, the WB2 CSP was supplemented to be comparable regulatory guidance without deviation and the NRC staff found the CSP adequately describes cyber security document control and records retention and handling.

- Establish the Cyber Security Assessment Team (CSAT);
- Identify CSs and CDAs;
- Install a deterministic one-way device between lower level devices and higher level devices;
- Implement the security control "Access Control For Portable And Mobile Devices";

- Implement observation and identification of obvious cyber related tampering to existing insider mitigation rounds by incorporating the appropriate elements;
- Identify, document, and implement cyber security controls for CDAs that could adversely impact the design function of target set equipment;
- Commence ongoing monitoring and assessment activities for those target set CDAs whose security controls have been implemented.
- Full Cyber Security Program implementation

- The WB2 CSP implementation schedule stated that an upgrade to two systems common to the operations of both WB1 and WB2 would not be deployed prior to the WB2 fuel load and reactor startup.
 - the security computer system; and
 - the corporate-wide emergency preparedness system.

- WB2 Emergency Preparedness systems and Security Computer will be fully compliant with 10 CFR 73.54 by the full implementation date provided in the WB1 CSP implementation schedule.
 - License conditions are provided for the EP systems and the Security Computer
- All other portions of the WB2 CSP are scheduled to be implemented prior fuel load.
- Based on the WB2 CSP provisions ensuring timely implementation of protective measures and supporting license conditions, the NRC staff found the WB2 CSP implementation schedule satisfactory.

TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT UNIT 2

TVA

WBN Unit 2 ACRS Presentation

October 5, 2011

- Agenda Overview Dave Stinson
- Reactor Fuels (FSAR Chapter 4) Robert Bryan
- Transient Analysis (FSAR Chapter 15) Robert Bryan
- Hydrology (FSAR Chapter 2.4) Penny Selman
- Special Topics
 - WINCISE Steven Hilmes
 - Cyber Security Laura Snyder & Steven Hilmes
- Questions

Reactor Fuels (FSAR Chapter 4)

Chapter 4 Fuel

- Updated Fuel Design
 - Robust Fuel Design RFA-2 vs. VANTAGE 5H
 - Debris Filter Bottom Nozzle
 - ZIRLO® Clad
- Low Leakage Core
- Major Differences to Unit 1
 - No Tritium
 - Fixed Incore Detectors
- Thermal Conductivity
 - Generic Industry Issue
 - License Condition to Follow Industry Approach

Transient Analysis (FSAR Chapter 15)

Chapter 15 Transient Analysis

- Unit 2 Analyses Generally Similar to Unit 1 at OL
 - Original Steam Generators
 - No Measurement Uncertainty Recapture
- LBLOCA & SBLOCA have large margins to PCT Limit of 2200°F
 - ASTRUM vs. Appendix K Model

Chapter 15 Transient Analysis

- New Analysis
 - Overpressure Protection on Second Trip
 - CVCS Malfunction that Increases Reactor Coolant System Inventory
 - MSLB Analysis and Parameter Sensitivity Study
- Additional Analyses
 - Inadvertent ECCS no Liquid Release from PORVs
 - Boron Precipitation
- Open Boron Dilution Modes 3, 4, 5
 - Same as Unit 1
 - Providing additional information

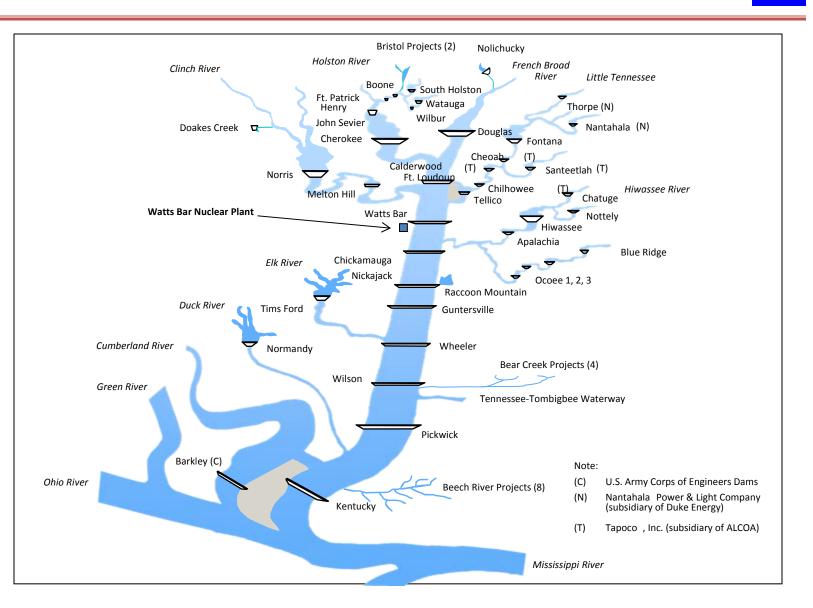
Hydrology (FSAR Chapter 2.4)

Background

- Watts Bar Designed in Accordance with Regulatory Position 2 of Regulatory Guide 1.59, Revision 2, August 1977
- Design and Licensing Basis Assumes Floods and Combination Flood and Seismic Events Exceed Plant Grade
- Emergency Protective Measures are In-place To Assure Protection Of Public Health and Safety in the Event of Flooding that Exceeds Plant Grade

Background

- TVA utilized results from an updated hydrology calculation (*circa* 1998) for Bellefonte COLA
 - A February 2008 NRC Inspection Identified Concerns
- The calculation had been used as a basis for UFSAR Section 2.4 revisions
 - Watts Bar initiated UFSAR changes in 1998


 Original analysis: PMF elevation 738.1
 O1998 PMF analysis results: PMF elevation 734.9
- TVA initiated hydrology project in March 2008
 - Validate and verify legacy hydrology software
 - Verify or regenerate all model inputs

Watts Bar Hydrology Analysis

- Probable Maximum Flood (PMF) (FSAR Section 2.4.3)
- Potential Seismic Dam Failures with Smaller Floods (FSAR Section 2.4.4)
- Warning Time Assessment (FSAR Section 2.4.10)
- Loss of Downstream Dam (FSAR Section 2.4.11)

River System Schematic

- Analysis Results
 - PMF elevation 738.8
 - Wind wave recalculated, average 2.5'
 - SSE + 25 year
 - Norris, Cherokee, Douglas & Tellico Dams fail from SSE combined with 25 year flood = 731.1' (bounded by PMF elevation)
 - OBE + 1/2 PMF
 - Norris & Tellico Dams fail from OBE combined with ¹/₂ PMF flood = 728.8' (bounded by PMF elevation)

- Analysis Results
 - Warning Time Assessment Verification
 - 27 hours verified as adequate minimum time
 - Summer and Winter storms evaluated for PMF
 - Seismic dam failure with smaller floods also evaluated
 - Shortest arrival time from dam failure = 28 hours
 - Loss of Downstream Dam Verification
 - Verified adequate time available to provide release from upstream dam to provide sufficient elevation for cooling

- What caused the increases in flood level?
 - River Operation changes
 - o Tributary reservoir levels higher
 - Reassessment of Operational Allowances
 - Amount of surcharge of tributary projects assumed during PMF conditions
 - Spillway coefficients
 - Textbook values vs. model test data

Chapter 2.4 Hydrology

- Emergency Preventative Measures
 - HESCO bastions
 - Four upstream dams protected
 - Watts Bar
 - Fort Loudoun
 - Tellico
 - Cherokee

Chapter 2.4 Hydrology

Dam	New PMF (HW) (ft)	New PMF (TW) (ft)	Current Elevation (ft)	New Elevation (ft)
Watts Bar	768.3	739.0	767.2	770.2
Fort Loudoun	835.65	821.2	833.3	837.6
Tellico	833.3	820.3	830.5	834.5
Cherokee	1090.7	981.5	1089	1092

Total raised	HESCO baskets	Sand Used
18,200 feet	6,900	30 Million pounds

Cherokee Dam

Cherokee Dam

Tellico Dam

Tellico Dam

Fort Loudoun Dam

TVA

Fort Loudoun Dam

Watts Bar Dam

Watts Bar Dam

Watts Bar Dam

Remaining mats to be covered with soil

26

Cherokee & Douglas Dams

- Dam stability evaluated for increased headwater and tailwater elevations at all modified projects
- Cherokee and sister dam, Douglas, posed challenges using simplified analysis
 - Challenges with cracked base
 - Sliding factors of safety and overturning adequate
- Detailed finite element analysis ongoing

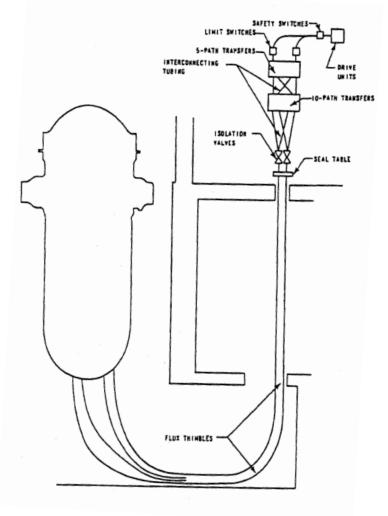
- Additional protection at Watts Bar Nuclear
 - Thermal Barrier Booster Pumps
 - Required for flood mode
 - Currently margin exists to protect pumps in flood
 - Additional margin desired
 - Pursuing High Temperature Reactor Coolant Pump Seals

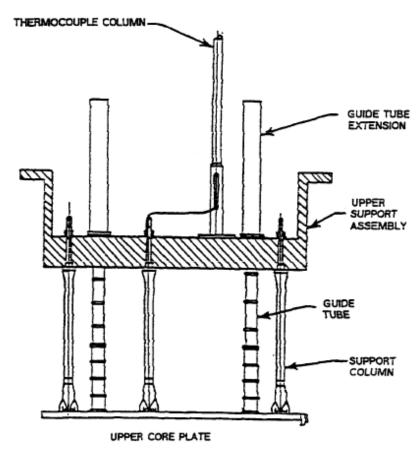
- Watts Bar Unit 2 Commitments
 - Hydrology analysis of Seismic Dam Failures with Smaller Flood without HESCO barriers or seismic test of HESCO barriers – October 31,2011
 - Continue to maintain and inspect the HESCO barriers until implementation of permanent solution at all four dams
 - Provide update to WBN Unit 2 FSAR to describe long-term stability analysis methodology following completion of finite element analyses by August 31, 2012

Special Topics WINCISE

System Purpose

•WINCISE is a Non Safety Related fixed core instrumentation system which provides mapping of neutron flux within the core in order to calculate power distribution.


•The Incore Instrument Thimble Assemblies (IITA's) also contain the Core Exit Thermal Couples (CET) which are required for Post Accident Monitoring.


Background

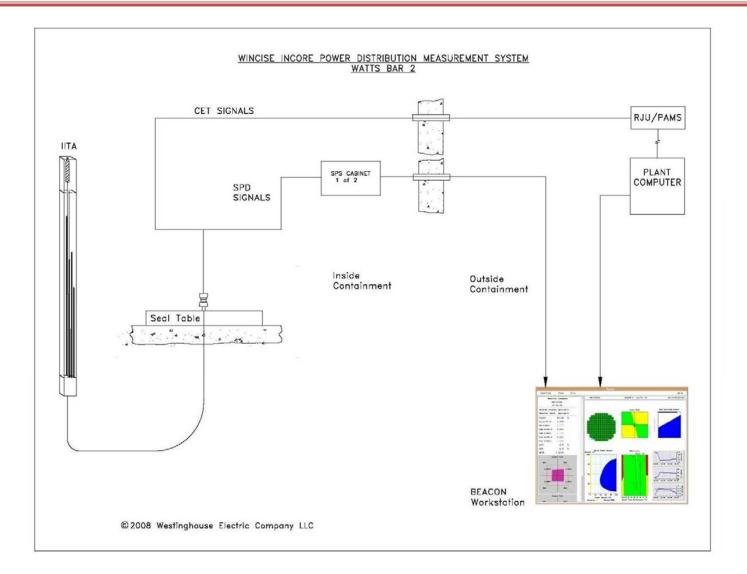
- Watts Bar Unit 1
 - Moveable Incore Detector System (MIDS)
 - 6 U235 Detectors
 - Controls and Recorders in Main Control Room (MCR)
 - Top Mounted Core Exit Thermocouples (CET)
 - 65 top mounted Type-K CETs
 - Reference Junction Box inside containment

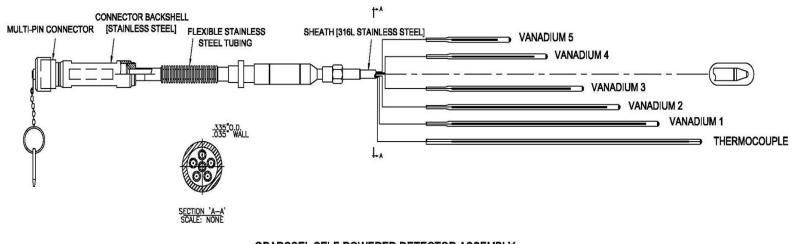
Unit 1 FSAR Figure 7.7-9

Unit 1 FSAR Figure 4.2-11

Westinghouse INCore Information, Surveillance, and Engineering (WINCISE) System

Watts Bar Unit 2


- Fixed Incore Instrumentation
 - MCR controls and recorders not required
 - Computers and hardware automate data collection
- 58 Incore Instrument Thimble Assemblies (IITAs)
 - Each has 5 Vanadium Self Powered Detectors (SPD)
 - Each has 1 Type-K CET
 - 29 Rack A and 29 Rack B


Watts Bar Unit 2 (continued)

- 2 Signal Processing System (SPS) cabinets
 - Analog-to-Digital Conversation
- Monitoring and calculating computer hardware outside containment
- CETs
 - Reference Junction Box outside of containment
 - CET columns removed
 - Eliminates reactor vessel head radiation exposure during outage

WINCISE – IITA/OPARSSEL Detectors

OPARSSEL SELF-POWERED DETECTOR ASSEMBLY FIVE [5] SEQUENTIALLY INCREASING LENGTH VANADIUM ELEMENTS ONE [1] CORE EXIT THERMOCOUPLE