

The Role of Science in Shaping Nuclear Policy Issues

HPS- Baltimore-Washington Chapter Commissioner William C. Ostendorff Nuclear Regulatory Commission

February 24, 2011

Personal Background

What we do

Safety

Security

Environment

Where we are located

Source: NRC Strategic Plan Fiscal Years 2008-2013

The National Landscape-US New Reactor Applications

Source: NRC Information Digest 2010-2011

The National Landscape-**Small Modular Reactors**

CORE VESSEL	Toshiba 4s Nuclear Battery	, Hyperion Power Module	NuScale Power Plant	TerraPower TWR	Conventional nuclear reactor
TYPE	Sodium-cooled fast neutron reactor	Liquid-metal cooled fast- neutron reactor	Light-water thermal reactor	Traveling-wave reactor, which uses depleted uranium	Pressurized water or boiling light-water thermal reactor
REFUEL	Every 30 yrs.	Every 8 to 10 yrs.	Every 2 yrs.	Every 40 yrs.	Every 18 mos. to 2 yrs.
= 10,000 POWER OUTPUT	Enough for about 10,000 households	Enough for about 25,000 households	Enough for about 45,000 households	Enough for about 50,000 households	
ce: Washington Post, September 14, 2010					Varies, some can power 1.5 million households

Source

Global Nuclear Development

Number of Reactors under Construction Worldwide

Source: IAEA Power reactor Information Database,

02/01/2011

The National Landscape- The Fuel Cycle

 Construction of the National Enrichment Facility in Eunice, NM

 Smith Ranch-Highland In Situ Recovery Wellfield, Converse Co., WY

Regulatory Philosophy

NRC principles of good regulation...

<u>Independence</u>

Openness

Efficiency

Clarity

Reliability

How Can the U.S. Remain a Leader in Nuclear Technology Safety?

- US leadership in nuclear science and technology will promote safety
- Access to the best available knowledge
- Risk informed/performance based regulation
- Full stakeholder engagement
- Communication and education

The HPS is uniquely positioned to be a key player

Overview

U.S. Safety Leadership based on Good Science

Recent Commission Policy Issues

Risk Informed Decisions Based on Good Science

Risk informed decisions promote efficiency

 The Commission's recent decision on blending was risk-informed

HPS provided valuable input

Communication and Education

 Communication and education promote credibility and openness

These principles align with HPS's mission

 These principles impacted the Commission's decision on the cesium chloride policy statement

Stakeholder Involvement

 Stakeholder involvement promotes openness

 Development of the safety culture policy statement required extensive stakeholder input

HPS provided valuable input

Upcoming Commission Policy Issues

Groundwater Task Force

Communication Education

Stakeholders Risk informed Good Science Spent Fuel Framework

Conclusions

- U.S. leadership in nuclear science and technology will ensure domestic and international safety
- The HPS is uniquely positioned to assist the NRC to make decisions based on principals of good regulation
- The HPS and the NRC have complementary roles