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ABSTRACT

This report presents the investigations performed to validate the coupled code RELAP5/PARCS
using data of a pump restart-up test carried out at the Kozloduy nuclear power plant (KNPP).
An integral plant model-including the relevant primary and secondary systems as well as a
detailed model of the reactor pressure vessel and of the core-was developed for RELAP5 and
PARCS to simulate the pump restart-up test. From the comparison of the thermal-hydraulic data
obtained during the tests with the code's predictions, it can be stated that the overall trends of
most plant parameters are in a reasonable agreement with the experimental data. The
investigations have shown some limitations of ID thermal-hydraulic coarse models of the
downcomer, lower, and upper plenum. Hence, multidimensional thermal-hydraulic models are
needed for a more realistic description of the coolant mixing phenomena within the reactor
pressure vessel.

iii

ABSTRACT 

This report presents the investigations performed to validate the coupled code RELAP5/P ARCS 
using data of a pump restart-up test carried out at the Kozloduy nuclear power plant (KNPP). 
An integral plant model-including the relevant primary and secondary systems as well as a 
detailed model of the reactor pressure vessel and of the core-was developed for RELAP5 and 
P ARCS to simulate the pump restart-up test. From the comparison of the thermal-hydraulic data 
obtained during the tests with the code's predictions, it can be stated that the overall trends of 
most plant parameters are in a reasonable agreement with the experimental data. The 
investigations have shown some limitations of ID thermal-hydraulic coarse models of the 
downcomer, lower, and upper plenum. Hence, multidimensional thermal-hydraulic models are 
needed for a more realistic description of the coolant mixing phenomena within the reactor 
pressure vessel. 

iii 





FOREWORD

This validation report presents the investigations performed by the Forschungszentrum
Karlsruhe GmbH to validate the coupled code system RELAP5/PARCS. The plant data used
for this work was distributed in the frame of the OECD/NEA VVER-1000 Coolant Tansient
Benchmark. A pump restart-up test was performed at the Kozloduy nuclear power plant
(KNPP) in Bulgaria. This type of data is very unique for the validation of the neutron
physics/thermal hydraulic coupled codes. International code validation and benchmarking
activities are very important to increase the confidence of coupled codes. The CAMP-
Program of the US NRC is one of the most important and long lasting activities to foster the
improvement of thermal hydraulics and coupled neutronic/thermal hydraulic system codes for
light water reactor safety assessment.
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FOREWORD 

This validation report presents the investigations perfonned by the Forschungszentrum 
Karlsruhe GmbH to validate the coupled code system RELAPSIP ARCS. The plant data used 
for this work was distributed in the frame of the OECDINEA VVER-IOOO Coolant Tansient 
Benchmark. A pump restart-up test was perfonned at the Kozloduy nuclear power plant 
(KNPP) in Bulgaria. This type of data is very unique for the validation of the neutron 
physics/thennal hydraulic coupled codes. International code validation and benchmarking 
activities are very important to increase the confidence of coupled codes. The CAMP­
Program of the US NRC is one of the most important and long lasting activities to foster the 
improvement of thennal hydraulics and coupled neutronic/thennal hydraulic system codes for 
light water reactor safety assessment. 
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EXECUTIVE SUMMARY

This report presents the validation of the coupled code RELAP5/PARCS using plant data
obtained during the commissioning phase of the Kozloduy nuclear power plant unit 6 regarding
the pump-restart test.

The measured data were made available to a wider community in the frame of the Organization
for Economic Cooperation and Development/Nuclear Energy Agency/U.S. Nuclear Regulatory
Commission (OECD/NEA/NRC) VVER-1000 Coolant Transient Benchmark Phase 1. This
benchmark includes the following exercises: (1) investigation of the integral plant response using
a best-estimate thermal-hydraulic system code with a point kinetics model, (2) analysis of the core
response for given initial and transient thermal-hydraulic boundary conditions using a coupled
code system with 3D-neutron kinetics model, and (3) investigation of the integral plant response
using a best-estimate coupled-code system with 3D-neutron kinetics.

Because the reactor was operated at low power with only three main coolant pumps in operation,
complex flow conditions existed within the reactor pressure vessel (RPV) already before the test
began. These conditions were characterized by coolant mixing in downcomer and upper plenum
caused by the reverse flow through the loop-3 (pump was not in operation). The test was initiated
by switching on the main coolant pump of loop-3 leading to a reversal of the flow through the
respective loop. After about 15 s the mass flow rate through this loop reaches values comparable
with the one of the other loops. During this time period, the increased primary coolant flow
causes a reduction of the core-averaged coolant temperature and thus an increase of the core
power. Later on, the power stabilizes at a level higher than the initial power.

In this analysis, special attention is paid to the prediction of the spatial asymmetrical core cooling
during the test and its effects on the local power distribution within the core. The code's
predictions are strongly influenced by the way the analyst models the coolant mixing by means of
1D thermal-hydraulic codes.

An integral plant model-including the relevant primary and secondary systems as well as a
detailed model of the reactor pressure vessel and of the core-was developed for RELAP5 and
PARCS to describe the key phenomena within the reactor pressure vessel appropriately.

Selected results of these investigations will be presented and discussed. A comparison of the
thermal-hydraulic data obtained during the tests with the code's predictions showed that despite
the use of the ID coarse model, the overall trends of most plant parameters are in a reasonable
agreement with the experimental data. In addition, multidimensional thermal- hydraulic models
are clearly needed for a more realistic description of the coolant-mixing phenomena within the
reactor pressure vessel. The coupled code RELAP5/PARCS is able to catch the physics of the
investigated test as well as to predict the behavior of the core in case of nonsymmetrical situations
in sufficient detail (i.e., at the fuel assembly level that represents a step forward compared to the
point kinetics models). But additional model development is necessary for the prediction of local
safety parameters based on pin level.

xi

EXECUTIVE SUMMARY 

This report presents the validation of the coupled code RELAPSIP ARCS using plant data 
obtained during the commissioning phase of the Kozloduy nuclear power plant unit 6 regarding 
the pump-restart test. 

The measured data were made available to a wider community in the frame of the Organization 
for Economic Cooperation and DevelopmentlNuclear Energy AgencylU.S. Nuclear Regulatory 
Commission (OECDINEAlNRC) VVER-I000 Coolant Transient Benchmark Phase 1. This 
benchmark includes the following exercises: (1) investigation of the integral plant response using 
a best-estimate thermal-hydraulic system code with a point kinetics model, (2) analysis of the core 
response for given initial and transient thermal-hydraulic boundary conditions using a coupled 
code system with 3D-neutron kinetics model, and (3) investigation of the integral plant response 
using a best-estimate coupled-code system with 3D-neutron kinetics. 

Because the reactor was operated at low power with only three main coolant pumps in operation, 
complex flow conditions existed within the reactor pressure vessel (RPV) already before the test 
began. These conditions were characterized by coolant mixing in downcomer and upper plenum 
caused by the reverse flow through the 100p-3 (pump was not in operation). The test was initiated 
by switching on the main coolant pump of 100p-3 leading to a reversal of the flow through the 
respective loop. After about IS s the mass flow rate through this loop reaches values comparable 
with the one of the other loops. During this time period, the increased primary coolant flow 
causes a reduction of the core-averaged coolant temperature and thus an increase of the core 
power. Later on, the power stabilizes at a level higher than the initial power. 

In this analysis, special attention is paid to the prediction of the spatial asymmetrical core cooling 
during the test and its effects on the local power distribution within the core. The code's 
predictions are strongly influenced by the way the analyst models the coolant mixing by means of 
ID thermal-hydraulic codes. 

An integral plant model-including the relevant primary and secondary systems as well as a 
detailed model of the reactor pressure vessel and of the core-was developed for RELAPS and 
PARCS to describe the key phenomena within the reactor pressure vessel appropriately. 

Selected results of these investigations will be presented and discussed. A comparison of the 
thermal-hydraulic data obtained during the tests with the code's predictions showed that despite 
the use of the ID coarse model, the overall trends of most plant parameters are in a reasonable 
agreement with the experimental data. In addition, multidimensional thermal- hydraulic models 
are clearly needed for a more realistic description of the coolant-mixing phenomena within the 
reactor pressure vessel. The coupled code RELAPSIPARCS is able to catch the physics of the 
investigated test as well as to predict the behavior of the core in case of nonsymmetrical situations 
in sufficient detail (i.e., at the fuel assembly level that represents a step forward compared to the 
point kinetics models). But additional model development is necessary for the prediction of local 
safety parameters based on pin level. 
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1 Introduction

The Karlsruhe Research Center (FZK) is involved in the overall qualification of computational
tools for the safety evaluation of nuclear power plants of different design to improve their
prediction capability and acceptability. In this framework, the code RELAP5/PANBOX was
qualified within the Organization for Economic Cooperation and Development/Nuclear Energy
Agency (OECD/NEA) pressurized-water reactor (PWR) main steam line break (MSLB)-
benchmark [SanOO]. As continuation of this work, partly as a contribution to the international
Code Assessment and Maintenance Program (CAMP) of the U.S. Nuclear Regulatory
Commission (NRC), the coupled code system RELAP5/PARCS is being validated. The PARCS
capabilities for quadratic fuel assembly geometry have been qualified in the frame of both the
PWR TMI- 1 main steam line break (MSLB) [KozlOO] and the boiling-water reactor (BWR) Peach
Bottom Turbine Trip (PBTT) [Bous04] benchmarks. FZK is especially interested in the new
PARCS capability [Joo02] for hexagonal geometries. These aspects are important not only for
the VVER-type light-water reactor (LWR) but also for innovative reactor concepts. The
international OECD/NEA VVER-1000 Coolant Transient Benchmark Phase 1 is an excellent
opportunity to validate the overall simulation capability of RELAP5/PARCS regarding both the
thermal-hydraulic plant response (RELAP5) using measured plant data and the neutron physics
models (PARCS). The Phase 1 of this benchmark is devoted to the analysis of the pump restart
test while the other three pumps are in operation and covers following three exercises. Exercise-I
is an investigation of the integral plant response using a best-estimate thermal-hydraulic system
code with a point kinetics model. Exercise-2 is an analysis of the core response for given initial
and transient thermal-hydraulic boundary conditions using a coupled code system with a three-
dimensional (3D)-neutron kinetics model. Exercise-3 is an investigation of the integral plant
response using a best-estimate coupled code system with 3D-neutron kinetics. For the analysis of
these exercises, the following steps are followed:

" Development of an integral model of the Kozloduy nuclear power plant (NPP) including all
major systems for RELAP5.

* Development of a 3D core model for RELAP5/PARCS.

* Integration of the above developed models in one integral coupled model to investigate the
plant response.

This report presents both the plant components and the developed models. The performed
investigations are described and the main results are discussed in detail by comparing the
predictions with the measured data. Final conclusions are drawn and identified points for further
investigations are outlined.
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2 Short Description of the Reference Plant

The Kozloduy Plant unit 6 was selected as the reference plant for the Benchmark. It is a Russian
design VVER-1000 reactor of type W320 with a thermal power of 3,000 MWth. The plant
consists of four loops, each one with a horizontal steam generator (SG) and a main coolant pump
(MCP) [Ivan02a]. The reactor is equipped with only one turbine. Figure 1 and Figure 2 present
details of the layout and construction of the plant. As shown in Figure 3, the horizontal steam
generator is characterized by a large water inventory on the secondary side compared to western-
designed vertical steam generators. The reactor pressure vessel design also differs from that of the
western pressurized-water reactor (PWR), especially because of the constructive peculiarities in
the lower and upper plenum that strongly impact the flow patterns during normal and accidental
situations. Figure 4 shows a vertical cut through the reactor pressure vessel (RPV). The lower
plenum consists of an elliptical cone with many perforations that result in a narrowing gap in the
direction of the central RPV-point. In addition, 163 support columns are present in the lower
plenum where the lower part is a full slab and the upper part is a tube with wall perforations of
different sizes. Hence, the flow coming from the downcomer has to pass through very complex
flow paths to enter into the core. In the upper plenum, two concentric cylinders with perforations
are present where the lower part of the outer cylinder is conic.

As shown in Figure 5, the core consists of 163 fuel assemblies (FA) and 48 reflector assemblies
(RA). Each fuel assembly has 312 fuel pins that are characterized by a central hole of 0.7 mm
diameter. Table 1 presents the main data about the FA and fuel rod design.

Figure 1. Horizontal Arrangement of the Primary Loops of the VVER-1000 Plant.
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Figure 2. Vertical Arrangement of the VVER- 1000 Primary Components.
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Figure 3. Typical Horizontal Steam Generator of the VVER- 1000 Plant.
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Figure 4. Vertical Cut Through the Reactor Pressure Vessel of the VVER-1000 Plant.

Figure 5 shows the 10 control rod groups (I to X) are arranged in the core symmetrically. The
main coolant pumps (MCP-1 to MCP-4) are located asymmetrically with respect to the main axis
I-I1. The fuel pins are arranged in a triangle within the FA, where the central position is occupied
by an empty rod (instrumentation). In addition, the fuel pins have a central hole of about 1.4 mm
diameter while the western-type pins are a full slab.

Figure 5. Core Configuration with the Position of the Different Control Rod Groups.
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Table 1. Dimensions of the Fuel Rod and Fuel Assembly.

Parameter Value

Pellet diameter, mm 7.56

Central void diameter, mm 1.4

Clad diameter (outside), mm 9.1

Clad wall thickness, mm 0.69

Fuel rod total length, mm 3837

Fuel rod active length (cold state), mm 3530

Fuel rod active length (hot state), mm 3550

Fuel rod pitch, mm 12.75

Fuel rod grid Triangular

Number of guide tubes 18

Guide tube diameter (outside), mm 12.6

Guide tube diameter (inside), mm 11.0

Number of fuel pins 312

Number of water rods/assembly 1

Water rod diameter (outside), mm 11.2

Water rod diameter (inside), mm 9.6

FA wrench size, mm 234

FA pitch, mm 236
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3 Description of the Scenario

3.1 Pre-Test Plant Conditions

The pump restart test (switch-on MCP-3) was performed during the decommissioning phase
(beginning of cycle [BOC]) of the NPP Kozloduy, Unit 6, to investigate the behaviour of the
plant. The pre-test phase started reducing the power from 75 percent to about 21 percent by
consecutive switching off of MCP-2 and MCP-3. Afterwards, the MCP-2 was switched on some
hours before the test. Then the reactor power stabilized at around 27.47 percent of the nominal
power (i.e., 824 MWth). The average core exposure amounted to 30.7 effective full power days
(EFPD). Before the test, the reactor is operated with only three main coolant pumps (MCPs) at a
thermal power of 824 MWth while the MCP-3 is nonoperable. Under such conditions, part of the
coolant injected into the downcomer by the three pumps is flowing back through the piping of the
affected loop-3. This results in a considerable mixing of cold and hot coolant in the upper
plenum.
Table 2 summarizes the main plant parameters of the primary and secondary system just before
the test.

Table 2. Measured Plant Data Before the Test with Error Band of Measurements

Unit Data Accuracy
Thermal core power MW 824 A- 60
RCS mass flow rate Kg/s 13611 =L 800
Primary side pressure MPa 15.60 =- 0.3
Sec. side pressure MPa 5.94 =L 0.2
Cold leg temp. loop-1 OK 555.55 =L 2
Cold leg temp. loop-2 OK 554.55 :- 2
Cold leg temp. loop-3 OK 554.35 =L 2
Cold leg temp. loop-4 OK 555.25 A: 2
Hot leg temp. loop-.l OK 567.05 =- 2
Hot leg temp. loop-2 OK 562.85 + 2
Hot leg temp. loop-3 OK 550.75 + 2
Hot leg temp. loop-4 OK 566.15 =L 2
Mass flow rate loop-i Kg/s 5031 + 200
Mass flow rate loop-2 Kg/s 5069 =- 200
Mass flow rate loop-3 Kg/s -1544 + 200
Mass flow rate loop-4 Kg/s 5075 + 200
PZR water level m 7.44 J- 0.15
Water level in SG-1 m 2.30 A 0.075
Water level in SG-2 m 2.41 - 0.075
Water level in SG-3 m 2.49 - 0.075
Water level in SG-4 m 2.43 + 0.075
DP over core MPa 0.225 + 0.2
DP over MCP-I MPa 0.492 + 0.2
DP over MCP-2 MPa 0.469 A= 0.2
DP over MCP-3 MPa 0.179 =- 0.2
DP over MCP-4 MPa 0.500 1 0.2
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3.2 Switch-on of the Main Coolant Pump #3 Test

The test starts by switching on the MCP-3. Immediately, the reverse flow through the loop-3
goes to zero within 15 s leading to an increase of the total mass flow rate through the core. The
increased coolant inventory leads to a decrease of the coolant temperature and to an increase of
the coolant density. Hence, the core power undergoes initially a rapid increase stabilizing later on
at a power level higher than the initial power. Because of the coolant mixing in the downcomer,
the mass flow rate of loop-1, -2, and -4 slightly decreases while the mass flow rate of loop-3
greatly increases until around 15 s. Afterwards, the mass flow rates of all four loops are similar.
These modifications of the coolant stream influence the heat transfer across the steam generators
leading, for example, to an increase of the water level of steam generators 1, 2, and 4 and to
nonsymmetrical core cooling. The test is characterized by interactions between the core
neutronics and the system thermal hydraulics. The experiment lasted for 130 s., In this time, most
of the important primary and secondary thermal hydraulic parameters of the plant were measured.
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4 Developed Plant Models and Nodalisation

To study the plant response during the main coolant pump (MCP)-switching-on test with system
codes, both the primary and secondary plant systems-including the safety and control systems-
need to be represented in the numerical model. All data needed to develop the respective models
for PARCS and RELAP5 were taken from the benchmark specifications [IvanO2a]. Based on this
information, three models were elaborated-an integral plant model starting with a point kinetics
approach (Exercise-i), a three-dimensional (3D) neutron kinetics and thermal-hydraulic core
model (Exercise-2), and an integral plant model with a 3D core model (Exercise-3). Details of
these models will be described in the following subchapters.

4.1. Integral Plant Model

Figure 6 Nodalization of the Kozloduy Plant (RPV with Two Loops) shows the integral plant
model developed for Exercise-1 and Exercise-3, where only two of the four loops are exhibited.
This model represents the most relevant primary, secondary, and safety systems of the Kozloduy
plant [Metz03]. For Exercise-I, a point kinetics model was implemented. The Core (volumes
845 and 843) is represented by two parallel volumes, one representing the core average channel
and the other one the core bypass. The downcomer (volumes 108, 208, 308, and 408) is
represented in four equal parts, each one connected to one loop so that the complex flow
conditions prevailing during the pre-test phase and during the first 15 s of the transient are
simulated appropriately. The primary circuit consisting of the piping system (loop-i: volumes
146, 140, 141, 142, 144, and 145); the pumps (volumes 144, 244, 344, and 444); and the steam
generator tubes (SG-I volumes: 120, 121, and 122) is fully incorporated in the model. In
addition, the pressurizer (PZR) with the four groups of heaters is included in the model.
Moreover, the make-up and drainage system is included in the model. The full data of the
Russian-type MCPs are taken from the specifications. Each steam generator (SG) consists of
11,000 tubes that are horizontally arranged between the hot and cold collector tubes. They are
vertically grouped in three units associated to the primary and secondary volumes.

The secondary side of the steam generators is characterized by a complex 3D flow inside this big
volume. The back flow in the SG-downcomer (SG-1 volumes: 150, 151, 152, and 109) also is
represented in the model (Figure 6). The feedwater system (SG-I: volume 190) is simply
modelled by a volume providing a constant coolant mass flow with the predefined coolant
temperature. No emergency feed water system is considered in the model because these systems
are not expected to be activated during the transient. The steam lines (loop-1 volumes: 181, etc.)
are in detail modelled including the valves, common header, turbine stop valves and the
associated safety steam valves, and the steam dump valve groups. The core fuel pins, the steam
generator tubes, the PZR-heaters as well as the walls of all relevant primary and secondary
systems (RPV, cold and hot legs, steam generator shell) are considered in the model as heat
structure components with its respective heat transfer area, heater diameter, material data, and
heat source when available. They are connected to the corresponding fluid volumes via
convective boundary conditions. In the point kinetics model, the given neutron physical data
characterizing the VVER-1000 fuel like prompt neutron lifetime, effective fraction of delayed
neutrons, decay constants of delayed neutrons, axial power profile, moderator and Doppler
reactivity coefficients are implemented. The Doppler feedback is calculated using the following
Doppler temperature (TDoppler) instead of the volume-averaged fuel temperature in all three
exercises:
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The moderator and Doppler reactivity coefficients for this model were given in the Specification
as follows:

, Moderator temperature coefficient (MTC): -4.2652 e-3 $/K
, Doppler temperature coefficient (DTC): -2.2853 e-3 $/K

The effective fraction of delay neutrons (Beff) amounts 0.007268. The axial power profile was
predicted by a 3D-neutronic calculation performed by the benchmark team. Figure 7 shows the
axial power shape at the BOC-conditions before the test.
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The effective fraction of delay neutrons (Beft) amounts 0.007268. The axial power profile was 
predicted by a 3D-neutronic calculation performed by the benchmark team. Figure 7 shows the 
axial power shape at the BOC-conditions before the test. 

Figure 6 Nodalization of the Kozloduy Plant (RPV with Two Loops) 

10 



X
L-

1,4

1,2

1

0,8

0,6

0,4

0,2

0
0,0 0,4 0,7 1,1 1,4 1,8 2,1 2,5 2,8 3,2 3,6

Core Heiaht Wi)
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4.2. Multidimensional Core Modelling

For Exercise-2 and Exercise-3, a multidimensional core model is needed for both the thermal-
hydraulic as well as the neutronic representation of the core for the coupled code system
RELAP5/PARCS. This core model is developed for Exercise-2, where only the core behavior is
evaluated for given boundary and initial conditions at the core inlet and outlet. Later on this
model is fully merged with the integral plant model so that the test can be analyzed with the
coupled code system RELAP5/PARCS.
Figure 8 shows that 28 types of fuel assemblies and 2 additional reflector assemblies (radial and
axial) are in the core. In addition, the figure shows the enrichment of the pins varies from 2 up to
3.3 percent.
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Figure 8. One Sixth of the Core with the Number of FA- and RA-types at BOC.

In the Benchmark Specifications, the 29-FA and -RA-types are subdivided into 12 axial
elevations of equal height but of different material composition (10 nodes for the core region and
two for the upper and lower reflector). Hence, the neutronic data needed for 3D-core calculations
were prepared for a total of 283/260 unrodded/rodded material compositions.
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Each one is characterized by unique material properties like enrichment, density as well as
burnup, absorber rod history, and spectral history. The Benchmark team delivered these cross-
section data to all participants as look-up tables. All neutronic parameters for two energy groups
such as diffusion coefficients, scattering, absorption, and fission macroscopic cross sections,
assembly discontinuity factors, etc. are given in these libraries. The look-up tables provide
additional information about the delayed neutron fractions, decay constants, and neutron velocity.
PARCS has several models to read in different formats of cross-section libraries. The nuclear
data for the fuel assemblies with absorber rods are delivered in an additional library containing
260 material compositions to account for absorber rods movement.

4.2.1. Neutron kinetics core model

The 3D neutron kinetics model (PARCS) is coupled to RELAP5 via PVM [Bar98]. It solves the
time-dependent neutron diffusion equation in two or more energy groups using the triangular
polynomial expansion (TPEN) method [Joo02].
Figure 9 shows that, in the core model, eight hexagonal fuel assembly (FA) rings and a reflector
assembly (RA) ring are considered to describe the whole core, where each assembly represents a
numerical node in the radial plane. Figure 10 shows that, axially, all assemblies are subdivided
into 12 equal nodes, one for the lower and upper reflector and 10 for the fuel zone. A total of 283
material compositions (unrodded) are considered for this problem. The look-up tables are
functions of fuel temperature and coolant density. A suitable parameter range of these variables
was selected to cover the expected parameter changes for the steady state and during the transient
progression. PARCS uses a multidimensional interpolation scheme for the online update of the
cross sections during the transient phase in dependence of the actual parameters.
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Figure 9. Radial Arrangement of the Different FA-Types in the Core (Type 1 to 28).
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Figure 10. Axial Discretisation of Each FA/RA-Type in the Core as Used in PARCS

4.2.2. Thermal-hydraulic core model

Figure 11 shows the thermal-hydraulic core model for the coupled calculations consists of 18
parallel channels that are associated with the FA-nodes according to the mapping scheme
proposed in the specification. According to this, the whole core is in radial direction divided into
19 thermal-hydraulic channels-18 for the core region and 1 for the radial reflector. All fuel
assemblies with the same number are associated to one thermal-hydraulic channel. An additional
channel is considered (channel 19) to represent the flow area of the 48 reflector assemblies (RA).
Figure 12 shows that, in axial direction, the parallel channels are subdivided in 12 nodes-the
bottom and top nodes for the axial reflector and the remaining 10 nodes for the active core. The
additional fluid volumes at core inlet and outlet are also represented because they are needed to
define the initial and boundary conditions for Exercise-2. At the core inlet (volume 601 up to
619), the mass flow rate and the coolant temperature are given. The system pressure is defined at
the core outlet (volume 800). In the RELAP5-model, 18 heat structures components representing
the 18 groups of FA are modelled. They are linked to the 18 core channels by convective
boundary conditions. These heat structures have the same axial nodalization like the
corresponding fluid channels. In radial direction each heat structure is subdivided in 7 zones, 4 in
the fuel, one gap and two in the cladding material.
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4.2.2. Thermal-hydraulic core model 

Figure 11 shows the thennal-hydraulic core model for the coupled calculations consists of 18 
parallel channels that are associated with the FA-nodes according to the mapping scheme 
proposed in the specification. According to this, the whole core is in radial direction divided into 
19 thennal-hydraulic channels-18 for the core region and 1 for the radial reflector. All fuel 
assemblies with the same number are associated to one thennal-hydraulic channel. An additional 
channel is considered (channel 19) to represent the flow area of the 48 reflector assemblies (RA). 
Figure 12 shows that, in axial direction, the parallel channels are subdivided in 12 nodes-the 
bottom and top nodes for the axial reflector and the remaining 10 nodes for the active core. The 
additional fluid volumes at core inlet and outlet are also represented because they are needed to 
define the initial and boundary conditions for Exercise-2. At the core inlet (volume 601 up to 
619), the mass flow rate and the coolant temperature are given. The system pressure is defined at 
the core outlet (volume 800). In the RELAP5-model, 18 heat structures components representing 
the 18 groups of FA are modelled. They are linked to the 18 core channels by convective 
boundary conditions. These heat structures have the same axial nodalization like the 
corresponding fluid channels. In radial direction each heat structure is subdivided in 7 zones, 4 in 
the fuel, one gap and two in the cladding material. 
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Figure 11. Coolant Channels Numbering for the Mapping Between RELAP5 and PARCS.

The multidimensional neutron kinetics and thermal hydraulics core model was entirely
incorporated in the integral plant model to perform the coupled calculations for Exercise-3.
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Figure 11. Coolant Channels Numbering for the Mapping Between RELAP5 and PARCS. 

The multidimensional neutron kinetics and thermal- hydraulics core model was entirely 
incorporated in the integral plant model to perform the coupled calculations for Exercise-3. 
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5. Performed calculations

According to the main goal of this benchmark, the following investigations were performed:

" Exercise-1: Integral plant simulation with a system code using point kinetics approach
(RELAP5/MOD3.3) to demonstrate that the developed plant model is well balanced and that
the main steady state plant parameters are well predicted compared to the plant data.

* Exercise-2: Multidimensional core simulation with the coupled system code
(RELAP5/PARCS) to test the operability of the coupled code system such as the correctly
reading the cross-sections (look-up tables), the appropriateness of the interpolation scheme for
the cross-section update, the convergence of both the neutronics, and the thermal-hydraulic
model in a coupled calculation, etc.

" Exercise-3: Integral plant simulation with a coupled system code (RELAP5/PARCS) to
simulate the overall plant response, especially the space-time core behaviour for the reference
scenario.

The numerical simulation of the MCP-switch-on test with the coupled system RELAP5/PARCS
was performed on a LINUX platform with PVM-environment including the following steps:

" Run RELAP5-stand alone with the null transient option for some 200 s until stable thermal
hydraulic plant conditions are reached.

* Run the RELAP5/PARCS coupled system with the steady state option until the eigenvalue
calculation of PARCS converged.

" Then run coupled system code with the transient option restarting from the latter steady-state
condition for both codes until 130 s (duration of the test).

In the subsequent chapter, selected results of the performed calculations will be presented.
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6. Selected results of the calculations

6.1. Steady state results for integral plant model

As part of the qualification of the initial steady state, attention was paid also to the primary circuit
power balance (i.e., the difference between the core power plus main coolant pump (MCP) power
and the thermal power transferred over all four steam generators, which amounts around 12 MW.
Table 3 shows the good agreement between data and predictions using RELAP5 and
RELAP5/PARCS for the stationary plant conditions before the test demonstrates that the
developed integral plant model is appropriate for the subsequent study of the plant response.

Table 3: Comparison of Predicted and Measured Data for Steady State Conditions.

Parameter Benchmark Data RELAP5 Deviation R5/PARCS

Unit Data Accuracy Exercise-1 % Exercise-3
Thermal MW 824 + 60 824 0 824
RCS mass Kg/s 13611 ±800 13577 -0.25 13612
Primary side MPa 15.60 ±0.3 15.62 0.13 15.62
Sec. side MPa 5.94 ± 0.2 6.105 2.83 6.106
Cold leg °K 555.55 ± 2 555.43 -0.02 555.44
Cold leg 'K 554.55 ± 2 554.61 0.01 554.62
Cold leg *K 554.35 ± 2 554.94 0.11 554.95
Cold leg °K 555.25 ±2 555.16 -0.02 555.17
Hot leg OK 567.05 ± 2 566.18 -0.15 566.19
Hot leg OK 562.85 ± 2 563.71 0.15 563.72
Hot leg °K 550.75 ± 2 550.65 -0.02 550.66
Hot leg OK 566.15 ± 2 565.43 -0.13 565.43
Mass flow Kq/s 5031 ± 200 5021 -0.20 5029
Mass flow Kg/s 5069 ± 200 5036 -0.65 5043
Mass flow Kg/s -1544 ± 200 -1503 -2.66 -1491
Mass flow Kg/s 5075 ± 200 5034 -0.81 5041
PZR water m 7.44 ± 0.15 7.44 0.00 7.44
Water level m 2.30 ± 0.075 2.305 0.22 2.304
Water level m 2.41 ± 0.075 2.409 -0.04 2.409
Water level m 2.49 ± 0.075 2.439 -2.05 2.439
Water level m 2.43 ± 0.075 2.458 1.15 2.457
DP over core MPa 0.225 ± 0.2 0.2570 14.22 0.255
DP over MPa 0.492 ± 0.2 0.4845 -1.52 0.4825
DP over MPa 0.469 ± 0.2 0.4818 2.73 0.4798
DP over MPa 0.179 ± 0.2 0.1811 1.17 0.1787
DP over MPa 0.500 ± 0.2 0.4824 -3.52 0.4804

It can be seen that the deviation of most parameters is very small for both calculations. Some of
the parameters are slightly underpredicted, and others are slightly overpredicted by both
calculations. This good agreement between data and predictions for the stationary plant conditions
before the test demonstrates that the developed integral plant model is appropriate for subsequent
studies of the plant response. A prerequisite for the successful simulation of the plant conditions
before the test was the appropriate modelling of the downcomer, lower, and upper plenum of the
VVER-1000 reactor that was realized based on in-house CFD-simulations [Boett04].
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As can be seen in Figure 13 and Figure 14, the flow conditions in the downcomer and the upper
plenum are rather complex. To catch the physical phenomena, the downcomer was subdivided
into four parallel volumes that are connected to each other by cross-flow junctions. To assess the
flow conditions in the upper plenum, especially the distribution of the reverse flow of about 1,500
kg/s entering into the outer ring between the RPV-wall and the inner perforated shell, an isolated
CFX-model was developed for the upper plenum [Boett04]. Figure 15 shows the predicted flow
redistribution in the upper plenum, especially in the outer ring as obtained by a CFX simulation.
It can be seen that a considerable part of the cold backflow of loop-3 is flowing sideward in the
outer ring to the outlet orifice of loop-2 since loop-3 and loop-2 are located next to each other. A
minor part of the coolant of loop-3 is also sideward redirected into the outlet orifice of loop-4. It
should be noted that the rest of the cold flow of the loop-3 is entering the inner volume of the
upper plenum through the perforations of the inner shell. Based on these results, the fluid volumes
representing the outer ring of the upper plenum were connected by cross-flow junction in the
RELAP5 model so that the reverse flow of loop-3 can go through the outlet orifices of loop-2 and
loop-4. The mixing of a part of the flow of loop-3 in the upper plenum before leaving is also
allowed. With these model extensions, the prediction of the stationary plant conditions was
improved.
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Figure 15. Complex Coolant Mixing in the Upper Plenum Predicted by CFX-5.
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flow conditions in the upper plenum, especially the distribution of the reverse flow of about 1,500 
kg/s entering into the outer ring between the RPV -wall and the inner perforated shell, an isolated 
CFX-model was developed for the upper plenum [Boett04]. Figure 15 shows the predicted flow 
redistribution in the upper plenum, especially in the outer ring as obtained by a CFX simulation. 
It can be seen that a considerable part of the cold backflow of 100p-3 is flowing sideward in the 
outer ring to the outlet orifice of 100p-2 since 100p-3 and 100p-2 are located next to each other. A 
minor part of the coolant of 100p-3 is also sideward redirected into the outlet orifice of 100p-4. It 
should be noted that the rest of the cold flow of the 100p-3 is entering the inner volume of the 
upper plenum through the perforations of the inner shell. Based on these results, the fluid volumes 
representing the outer ring of the upper plenum were connected by cross-flow junction in the 
RELAP5 model so that the reverse flow of 100p-3 can go through the outlet orifices of loop-2 and 
100p-4. The mixing of a part of the flow of 100p-3 in the upper plenum before leaving is also 
allowed. With these model extensions, the prediction of the stationary plant conditions was 
improved. 
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6.2. RELAP5/PARCS results for the 3D core model

In the frame of the benchmark Exercise-2, the investigations are focused on the testing of the 3D
core model regarding the mapping scheme between the thermal-hydraulic and neutronic nodes as
well as the consistence of the nodal cross-sections. In addition, different neutronic parameters
like the stuck-rod, shut-down, and tripped rod worth are predicted. Several calculations were
performed with RELAP5/PARCS for both the hot zero power (HZP) and hot full power (HFP)
conditions of the Kozloduy core using the multidimensional model described above. The initial
and boundary conditions as well as the control rod positions used to predict the different reactivity
worth of the HZP state are taken from the specifications. The HZP conditions are characterized by
a nominal power of 0.1 percent of the total power and fixed feedback thermal-hydraulics
conditions (i.e., the moderator density in the core is 767.1 kg/m3 and the fuel temperature amounts
552.15 K).

To assess the developed 3D core models, the effective multiplication factor (kff) was predicted
for different core states defined by different positions of the absorber rod groups. In Table 4,
neutron physical parameters of the HZP state predicted by RELAP5/PARCS are compared with
some data from the specification, where predictions and reference values are in a reasonably good
agreement. The reactivity worth for different HZP-core states calculated by the coupled code is
compared to the values given in the specifications. Both are close to each other.

Table 4.HZP Results Obtained with RELAP5/PARCS Coi ared to Reference Values.
Parameters RELAP5/PARCS Reference Data
K~ff 0.999669
Radial power peaking factor 1.4034
Axial power peaking factor 1.514
Axial offset -0.1726
Ejected rod worth % dk/k 0.078 0.09
Control rod group 10 worth, -0.69 - 0.61
Tripped rod worth, % dk/k -7.24 - 7.02

The HFP core state is characterized by beginning of cycle (BOC) fuel conditions with an average
exposure of 30.7 effective full power days (EFPD) and a thermal power of 824 MW. For this
core state, both steady-state and transient calculations were performed with the coupled code
system using the initial and transient boundary conditions given in the specifications. Table 5
indicates the position of the absorber rod group attained for the HFP state in comparison to the
HZP state.

Table 6 summarizes the main neutron physical parameters predicted for the stationary conditions
of the HFP by RELAP5/PARCS.

Table 5. Position of the Control Rod Group3s for the HFP States (100: out, 0: in).
Core State G1-4 G5 G6-8 G9 G10 G10

EjRod
Hot Zero Power (HZP) 100 100 100 64 0 0
Hot Full Power (HFP) 100 100 100 100 36 36
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Table 6. HFP Results Obtained with RELAP5/PARCS for the Steady State Conditions.
Calculated Parameters RELAP5/PARCS

Keff 1.000425
Radial Power Peaking Factor 1.3471
lAxial Power Peaking Factor 1.408
lAxial Offset -0.1734

The RELAP5/PARCS predicted a non-symmetrical axial power distribution for the steady state
conditions expressed by an axial offset of 17.34 percent. Figure 16 compares the predicted core
averaged axial power peaking to the one given in the specification that was calculated by the
benchmark team (PSU). It can be seen that both curves show the same trends with slight
deviations mainly around 1 m and 2 m height.
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Figure 16. Comparison of the Predicted Axial Power Profile for the HFP Steady State.

6.3. Transient results for the integral plant model

The following subsections present the selected results obtained with both RELAP5/Point Kinetics
and RELA5/PARCS and compare them to the plant data. Finally, the subsections present and
discuss the detailed results obtained with PARCS.

6.3.1. Global plant response

The transient is initiated by the switch-on of the MCP-3. As a consequence, the mass flow rate of
the loop-3 starts to re-invert (Figure 17), leading to a continuous increase of the primary coolant
mass flow (Figure 18). After about 15 s, all loops reached similar mass flow rates, which remain
almost unchanged during the transient. As a result, the core averaged coolant temperature
decreases some degrees for the first 15 s (Figure 19). Like the coolant temperature, the fuel
temperature undergoes the same trend during the first 15 s because the cooling conditions of the
core have improved. Consequently, the total reactor power increases (Figure 20) rapidly until
around 15 s because of the moderator and Doppler reactivity feedbacks.
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6.3. Transient results for the integral plant model 

The following subsections present the selected results obtained with both RELAPS/Point Kinetics 
and RELASIP ARCS and compare them to the plant data. Finally, the subsections present and 
discuss the detailed results obtained with PARCS. 

6.3.1. Global plant response 

The transient is initiated by the switch-on of the MCP-3. As a consequence, the mass flow rate of 
the 100p-3 starts to re-invert (Figure 17), leading to a continuous increase of the primary coolant 
mass flow (Figure 18). After about IS s, all loops reached similar mass flow rates, which remain 
almost unchanged during the transient. As a result, the core averaged coolant temperature 
decreases some degrees for the first IS s (Figure 19). Like the coolant temperature, the fuel 
temperature undergoes the same trend during the first 15 s because the cooling conditions of the 
core have improved. Consequently, the total reactor power increases (Figure 20) rapidly until 
around IS s because of the moderator and Doppler reactivity feedbacks. 
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Afterwards, this trend continues until the end of the transient but with a very moderate change
rate. The power increase predicted with the point kinetics model (Exercose-1) is higher (5.5
percent of nominal power) than the one predicted with the 3D-neutron kinetics model (Exercise-3,
3.7 percent of nominal power) at the end of the transient. The reason is the use of a constant axial
power, peaking Doppler and moderator reactivity coefficients, estimated for the core conditions at
the beginning of the test for the whole transient. This leads to an overestimation of the reactivity
inserted into the core by the point kinetics approach. On the contrary, PARCS solves a 3D
problem with local estimation of the feedbacks by means of using cross-section sets depending on
local thermal-hydraulic parameters that represent a more realistic description of the underlying
asymmetrical core behaviour. The predictions of Exercise-i may improve if a more detailed and
sophisticated point kinetics model is used for this problem.
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Figure 17. Predicted Reverse Flow of the Loop-3 during the Test.
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6.3.2. Code predictions versus experimental data

During the MCP switch-on test, several parameters of the plant were measured and its error bands
were estimated (see Table 2). To show the quality of the RELAP5/PARCS predictions, selected
parameters are chosen and compared to available data. Figure 23 compares the pressure of the
upper plenum predicted by the codes to the measured values.
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6.3.2. Code predictions versus experimental data 

During the MCP switch-on test, several parameters of the plant were measured and its error bands 
were estimated (see Table 2). To show the quality of the RELAP5IPARCS predictions, selected 
parameters are chosen and compared to available data. Figure 23 compares the pressure of the 
upper plenum predicted by the codes to the measured values. 
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The couple code is able to predict the initial time and decrease rate of the pressure during the first
10 s. Figure 24 shows that, later on, the contraction of the primary system coolant is
overpredicted by the simulations, which results in a faster decrease of the PZR level (around 55-
80 s in the transient), and both predictions and measured PZR level are very close to each other.
The primary to secondary heat transfer is almost constant in the calculation, while a slow but
steady cooldown of the primary system is observed in the measured data.
Figure 25 and Figure 26 show the changes of coolant temperature of the loop-1 for both cold and
hot legs predicted by the codes in comparison with the measurements data.

It must be noted that the changes of the coolant temperature are moderate and smaller than the
error band of the temperature measurement devices. The overall trend of the measured data can
be reproduced by the calculation. The predictions tend to estimate a larger variation of the
coolant temperature than one shown by the data. In Figure 27, the measured pressure drop over
the MCP of loop 3 is compared with the values predicted by the code. The agreement is quite
good for the whole transient. On the secondary side, the measured variation of the water level in
the steam generator I is also compared with the predicted one in Figure 28. Although prediction
and data start from around the same level, the code overestimates the heat transferred to the
secondary side for the first 15 s. Then, the primary-to-secondary heat transfer is underestimated
until the end of the transient.
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The couple code is able to predict the initial time and decrease rate of the pressure during the first 
lOs. Figure 24 shows that, later on, the contraction of the primary system coolant is 
overpredicted by the simulations, which results in a faster decrease of the PZR level (around 55-
80 s in the transient), and both predictions and measured PZR level are very close to each other. 
The primary to secondary heat transfer is almost constant in the calculation, while a slow but 
steady cooldown of the primary system is observed in the ~easured data-. 
Figure 25 and Figure 26 show the changes of coolant temperature of the loop-l for both cold and 
hot legs predicted by the codes in comparison with the measurements data. 
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error band of the temperature measurement devices. The overall trend of the measured data can 
be reproduced by the calculation. The predictions tend to estimate a larger variation of the 
coolant temperature than one shown by the data. In Figure 27, the measured pressure drop over 
the MCP of loop 3 is compared with the values predicted by the code. The agreement is quite 
good for the whole transient. On the secondary side, the measured variation of the water level in 
the steam generator 1 is also compared with the predicted one in Figure 28. Although prediction 
and data start from around the same level, the code overestimates the heat transferred to the 
secondary side for the first 15 s. Then, the primary-to-secondary heat transfer is underestimated 
until the end of the transient. 
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Figure 29 to Figure 32 compare the measured data of selected parameters to the predictions of
both the point kinetics model (Exercise-i) and the 3D-kinetics models. The figures show that
both simulations calculated very similar qualitative global trends. Because the predicted power
by the point kinetics and 3D kinetics is different, other parameters like the collapsed liquid level
in the pressurizer are quantitatively different for both simulations.
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Figure 29 to Figure 32 compare the measured data of selected parameters to the predictions of 
both the point kinetics model (Exercise-I) and the 3D-kinetics models. The figures show that 
both simulations calculated very similar qualitative global trends. Because the predicted power 
by the point kinetics and 3D kinetics is different, other parameters like the collapsed liquid level 
in the pressurizer are quantitatively different for both simulations. 
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28

0,65 

_ 0,61 
cu 
a.. 
~ 0,57 
~ 

a.. 
(J 
:E 0,53 
• a.. 

c 
0,49 

0,45 

.J\. .-

~ 

~~ 

I 

o 20 

.A .A. .Jt..A 
.A ... --- --

-ti-Data 

-Ex-1 

-o-Ex-3 

40 60 80 100 120 

Time (5) 

Figure 29. Comparison of Predicted Pressure Drop over MCPl with Data. 

7,60 

7,55 

_ 7,50 

~ 7,45 
> 
~ 7,40 
c:: 
N 7,35 
a.. 

7,30 

7,25 

7,20 

~ 

~ 
~~ 

I I 

o 20 40 

--l::t- Data 

-Ex-1 

-o-Ex-3 

"'-
IJ"LZ" uu l.I"I.I'U 

I 

60 80 100 120 

Time (5) 

Figure 30. Comparison of Predicted Collapse Liquid Level with Data. 

28 



568

567

566

565
0
0564

0
j.563

562

561

--- Data
-Ex-1

I I -

0 20 40 60 80 100 120

Time (s)
Figure 31. Comparison of Predicted Hot Leg-ITemperature with Data.

0.
0.
0

0

F-

557

556

555

554

553

552

551

550

0 20 40 60 80 100 120

Time (s)
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6.3.3. Multidimensional core behaviour

The use of coupled codes with 3D neutron kinetics models allows a more detailed analysis of the
core response compared to the point kinetics. Figure 33 shows the core averaged axial power
peaking predicted by PARCS for three time windows during the transient. The figure shows that
for the basic scenario only a very moderate variation of the power peaking occurs. A similar
trend was observed when the core averaged radial power profile was analyzed. Figure 34 to
Figure 37 show that minor changes of the local radial power profile occur at different time
windows. The maximal relative radial peak power changed slightly from 1.3450 at 0.0 s to
1.3473 at 15 s.
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7. Results for the extreme scenario

Since the local power distribution during this transient was very moderate, an additional scenario
(called extreme scenario) was defined in the Specifications to better check the capabilities of
coupled codes. For this extreme scenario the ejection of a control rod located in the affected core
sector corresponding to the loop-3 (FA#123) was assumed to happen at 13 s. In Figure 38 a
comparison of the power evolution during the transient predicted by RELAP5/PARCS is given. It
can be seen that due to the assumptions the power increase of the extreme scenario is very
pronounced compared to the one of the basic scenario mainly due to the ejection of the control
rod group # 10 at 13 s which has a reactivity of 0.95 $. This power increase was stopped mainly
by the Doppler and also by the moderator reactivity coefficient. Both the fuel temperature and the
moderator density started to increase after the control rod #10 was ejected out of the core. At the
time of the highest power core reactivity amounted 0,157 $ and the maximal relative power
radial/axial power was around 1.605/1.372, see Figure 39. These values are much higher than for
the basic scenario. A higher reactivity insertion due to assumption of control rod ejection at 13 s
was predicted by RELAP5/PARCS than for the basic scenario. The detailed 3D radial power
distribution for the extreme scenario is shown in Figure 40 to Figure 42. Here the fuel
assemblies with the highest power can be identified very clearly.
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Figure 40. Predicted Relative Radial Power Profile for the Extreme Scenario.
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8. Conclusions

The Phase 1 of the V1000 Coolant Transient was analyzed with different computational tools
using both point kinetics and three-dimensional (3D) kinetics models coupled to system codes. It
was demonstrated that the developed integral plant model as well as the multidimensional core
model are appropriate to describe the main plant and core response in case of an MCP-restart
transient. The comparison of the predicted plant conditions with the plant data for the stationary
reactor conditions showed a good agreement.

For the transient phase, most of the predicted parameters show trends that are qualitatively in
good agreement with the experimental data measured during the test. The predicted reactivity
worth for the different states of the cold zero power is close to the ones given in the
specifications. Also, the axial power-peaking factor for the steady state hot full power estimated
by RELAP5/PARCS agreed well with the reference solutions.

From the multidimensional detailed results for the core, it is apparent that the nonsymmetrical
spatial power perturbation for the investigated test is rather moderate. But the analysis of the
extreme scenario showed that the coupled system RELAP5/PARCS is able to predict core
conditions with pronounced power distortions.

In general, the performed investigations clearly illustrate the capability of coupled codes systems
with 3D neutron kinetics models as promising simulation tools to predict local hot spots within
the core at a fuel assembly level. It can be stated that the time-dependent neutron diffusion
solution for hexagonal geometries of PARCS works quite well in connection with the thermal
hydraulic part (RELAP5) and that the RELAP5/PARCS works stable and fast enough under both
Linux and Windows platforms.

Finally, the analysis of the MCP switch-on test showed the limitations of 1D thermal-hydraulic
models of RELAP5 to describe the coolant mixing process. Hence, a more realistic description of
such transients may only be possible using 3D thermal-hydraulics (3D coarse mesh, subchannel,
or CFD codes) models coupled with the multidimensional neutron kinetics models. This kind of
investigation is envisaged for the Phase 2 of this benchmark (V 1000CT-2).

Although PARCS is able to predict the detailed axial and radial peaking factor within the core
where each fuel assembly is considered as a computational node, the current coupled codes are
not appropriate to predict the local fuel pin power within the fuel assembly with the maximal
radial power. Note that exactly these local parameters like the pin power, maximal cladding, and
fuel temperature are very important to assess the safety margins of any reactor design. Here
additional model developments are necessary to extend the prediction capability of safety analysis
codes aiming to implement transport and subchannel codes in the transient solution scheme.
Summarizing the following statements can be made based on this analysis:

* The investigations demonstrated the capability of coupled code systems to simulate complex
transients with tight feedbacks between the system thermal-hydraulics and the core

neutronics.

* Both RELAP5/Point Kinetics and RELAP5/PARCS are able to predict the overall plant
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hydraulic part (RELAPS) and that the RELAPS/P ARCS works stable and fast enough under both 
Linux and Windows platforms. 

Finally, the analysis of the MCP switch-on test showed the limitations of 10 thermal-hydraulic 
models of RELAPS to describe the coolant mixing process. Hence, a more realistic description of 
such transients may only be possible using 3D thermal-hydraulics (3~ coarse mesh, subchannel, 
or CFO codes) models coupled with the multidimensional neutron kinetics models. This kind of 
investigation is envisaged for the Phase 2 of this benchmark (VIOOOCT-2). 

Although PARCS is able to predict the detailed axial and radial peaking factor within the core 
where each fuel assembly is considered as a computational node, the current coupled codes are 
not appropriate to predict the local fuel pin power within the fuel assembly with the maximal 
radial power. Note that ~xactly these local parameters like the pin power, maximal cladding, and 
fuel temperature are very important to assess the safety margins of any reactor design. Here 
additional model developments are necessary to extend the prediction capability of safety analysis 
codes aiming to implement transport and subchannel codes in the transient solution scheme. 
Summarizing the following statements can be made based on this analysis: 

• The investigations demonstrated the capability of coupled code systems to simulate complex 
transients with tight feedbacks between the system thermal-hydraulics and the core 
neutronics. 

• Both RELAPS/Point Kinetics and RELAPS/PARCS are able to predict the overall plant 
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response in case of the MCP-3 restart physical sound.

* RELAP5/Point Kinetics tends to overpredict the reactivity insertion (power increase) partly
due to the use of fixed axial power distribution for the whole transient time and by using fixed
reactivity feedbacks coefficients (DTC, MTC).

* Although the basic scenario is mild in terms of reactivity perturbation, coupled codes like
RELAP5/PARCS permit the gain of detailed spatial information about hot spots in the core
(here at fuel assembly level).

The following areas for further improvements were identified:

" Implementation of an automatic mapping scheme between the thermal-hydraulics and
neutronics nodes is needed for RELAP5/PARCS similar to the one of TRACE/PARCS. This
capability would minimize errors and considerably reduce the tedious work of generating the
mapping manually.

* Development of 3D plotting and movies capabilities to represent the PARCS and also the
RELAP5 results obtained for detailed core models.

* Correction of the PARCS output regarding important fuel-assembly-related parameters like
axial power profile, reactivity contribution by moderator, and fuel temperature changes,
specifically for hexagonal fuel assembly geometries.

* Implementation of an option in PARCS that allows the user to select the plot frequency. This
is very important because the output and restart file of PARCS can become very large
analysing real nuclear power plant problems (in the order of five or more gigabytes).

* Currently, PARCS auxiliary output files for hexagonal geometries are fixed to MSLB and, in
addition, the data of many of them are useless. Modifications of these files in a more general
sense (i.e., case-independent) is desirable:

o MSLBTMMAP.DAT (Assembly averaged coolant temperature map at each time step)

o MSLBTFMAP.DAT (Assembly averaged fuel temperature map at each time step)

o MSLBRPDMAP.DAT (Assembly averaged relative radial power map at each time step)

o MSLBKINFMAP.DAT (Assembly averaged Kinf map at each time step)

o MSLB_DMMAP.DAT (Assembly averaged coolant density map at each time step)

* Improvement of the convergence between the thermal-hydraulic (RELAP) and the neutron
kinetics solution (PARCS).
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