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ABSTRACT

We describe the development and application of a
methodology to systematically and quantitatively as-
sess predictive uncertainty in groundwater flow and
transport modeling. The methodology considers the
combined impact of hydrogeologic uncertainties asso-
ciated with the conceptual-mathematical basis of a
model, model parameters, and the scenario to which
the model is applied. The methodology is based on an
extension of a Maximum Likelihood implementation of
Bayesian Model Averaging. Model uncertainty is rep-
resented by postulating a discrete set of alternative
conceptual models for a site with associated prior
model probabilities. The prior model probabilities re-
flect a subjective belief about the relative plausibility
of each model based on its apparent consistency with
available knowledge and data. Posterior model prob-
abilities are computed and parameter uncertainty is
estimated by calibrating each model to observed sys-
tem behavior. Posterior model probabilities are modifi-
cations of the subjective prior values based on an ob-
jective evaluation of each model's consistency with
available data. Prior parameter estimates are optionally
included. Scenario uncertainty is represented as a dis-
crete set of alternative future conditions affecting
boundary conditions, source/sink terms, or other as-
pects of the models. The associated prior scenario
probabilities reflect a subjective belief about the rela-

tive plausibility of the alternative scenarios. A joint
assessment of uncertainty results from combining
model predictions computed under each scenario using
as weights the posterior model and prior scenario prob-
abilities. The computed model predictions incorporate
parameter uncertainties using, for example, Monte
Carlo simulation. The uncertainty methodology was
applied to modeling of groundwater flow and uranium
transport at the Hanford Site 300 Area. Eight alterna-
tive models representing uncertainty in the hydro-
geologic and geochemical properties as well as the
temporal variability were considered. Two scenarios
representing alternative future behavior of the Colum-
bia River adjacent to the site were considered. The sce-
nario alternatives were implemented in the models
through the boundary conditions. Alternative models
were calibrated using hydraulic head and uranium con-
centration observations over a seven-year period. Ura-
nium concentrations under each scenario were pre-
dicted over a 20-year period. Results demonstrate the
feasibility of applying a comprehensive uncertainty
assessment to large-scale, detailed groundwater flow
and transport modeling. Results also illustrate the abil-
ity of the methodology to provide better estimates of
predictive uncertainty, quantitative results for use in
assessing risk, and an improved understanding of the
system behavior and the limitations of the models.

Paperwork Reduction Act Statement

This NUREG does not contain information collection requirements and, therefore, is not subject to the requirements
of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

Public Protection Notification

The NRC may not conduct or sponsor, and a person is not required to respond to, a request for information or an
information collection requirement unless the requesting document displays a currently valid OMB control number.
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FOREWORD

This report was prepared by Pacific Northwest National Laboratory (PNNL) under a U.S. Department of Energy
(DOE) Interagency Work Order (JCN Y6465) with the U.S. Nuclear Regulatory Commission (NRC). This research
report describes a systematic, quantitative approach for combining estimations of uncertainties in the data, concep-
tual models, parameters, and scenarios related to hydrogeology (i.e., the occurrence and distribution of underground
water). This is important because the ground-water pathway is a key consideration in assessing the potential for
radionuclide transport, and possible exposure scenarios to the public and, consequently, it is important to evaluate
and understand the related uncertainties. Toward that end, this report provides details on the primary factors that
contribute to those uncertainties, and how to quantify them through comparative modeling and analyses of site char-
acterization and monitoring data.

The combined uncertainties approach described in this report uses a statistical method, known as maximum likeli-
hood Bayesian model averaging, to assess predictive uncertainty in ground-water flow and transport modeling. To
do so, this approach compares alternative models and assesses their combined predictive uncertainty. This approach
is demonstrated by application to ground-water flow and uranium transport modeling at the 300-Area of the DOE
Hanford Site. Toward that end, eight alternative models were considered representing uncertainty in hydrogeologic
and geochemical properties, as well as the temporal variability. In addition, two scenarios representing alternative
future behavior of the Columbia River adjacent to the site were also considered. Results demonstrate the feasibility
of applying a comprehensive uncertainty assessment to large-scale, detailed ground-water flow and transport model-
ing. In addition, the results illustrate the practical benefits of the approach to provide better estimates of predictive
uncertainty, quantitative results for use in assessing risk, and an improved understanding of the system behavior and
limitations of the models. Although the approach and its applications were designed for reviews of radionuclide
transport at complex decommissioning sites, it is also useful for assessing nuclear facility siting, designing ground-
water monitoring programs, remediating ground water, and identifying and selecting strategies to preclude offsite
migration of abnormal radionuclide releases.

This approach is consistent with the NRC's strategic performance goal of making the agency's activities and deci-
sions more effective, efficient, and realistic by identifying and estimating uncertainties. Toward that end, this report
demonstrates, using examples relevant to decommissioning analyses, that sources of uncertainty can be identified,
quantified, and integrated using a comparative model analysis approach. This report also illustrates the effectiveness
of the combined uncertainty approach to estimate uncertainty in model predictions arising from conceptual, parame-
ter and scenario uncertainties. This information is assisting NRC licensing staff and regional inspectors, Agreement
State regulators, and licensees in their decision-making by identifying and quantifying overall uncertainties in per-
formance assessment models.

This report is not a substitute for NRC regulations, and compliance is not required. Consequently, the approaches
and methods described in this report are provided for information only, and publication of this report does not neces-
sarily constitute NRC approval or agreement with the information contained herein. Similarly, use of product or
trade names is for identification purposes only and does not constitute endorsement by either the NRC or PNNL.

Brian W. Sheron, Director
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
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1 INTRODUCTION

Regulatory and design applications of hydrogeologic
models of flow and contaminant transport often involve
using the models to make predictions of future system
behavior. For example, the primary U.S. Nuclear Regu-
latory Commission (NRC) criterion for license termi-
nation requires an estimate of maximum dose for a
period up to 1000 years from the time of decommis-
sioning. This dose estimate can be made using a simu-
lation model of the transport of residual radionuclide
contaminants through the environment. Similarly, the
design of a subsurface contaminant remediation system
and a network to monitor performance of that system
can be facilitated using a model that predicts system
behavior under the conditions of the remediation.

A variety of factors conspire to render the predictions
of hydrogeologic models uncertain, including

0

0

0

6

0

incomplete knowledge of the system,
variability in system properties,
randomness in the system stresses,
measurement and sampling errors, and
disparity among sampling, simulation, and actual
scales of the system.

Other factors that may affect the degree of uncertainty
inherent in these predictions are the potentially long
time frame over which predictions may be made (e.g.,
1000 years or more), the simulation of transport
through multiple exposure pathways and media, and
regulatory criteria that may be close to contaminant
background concentrations (requiring the prediction of
small effects).

Comprehensive and quantitative assessment of the im-
pact of the factors listed above on the uncertainty in
predictions of hydrogeologic models may require a
significant investment in time for analysis and data
collection. Given this, what benefits would justify this
investment? Morgan and Henrion (1990) considered
this question and concluded that explicit consideration
of uncertainty is important for the following reasons.

* When attitudes toward risk are important, e.g.,
when stakeholders are risk averse (as is commonly
the case for people living or working near an envi-
ronmentally contaminated site), considering uncer-
tainty can improve decision making by quantifying
risk.

* When multiple, uncertain sources of information
must be combined (a defining characteristic of en-
vironmental transport modeling), uncertainty as-
sessment provides a means to systematically

weight and combine the information sources to es-
timate the precision of the predicted value(s).

* When one of the possible actions is to collect addi-
tional data, consideration of uncertainty provides
guidance on what data to collect and the potential
benefit in reduced uncertainty. This issue is par-
ticularly important in hydrogeologic modeling,
which is generally constrained by limited charac-
terization data.

* Empirical evidence suggests that "best estimate"
answers are regularly biased. Thinking about the
uncertainty associated with an analysis can reduce
this bias.

* Analysis of uncertainty can help with model de-
velopment, defining the appropriate level of detail
for model components.

" A documented uncertainty analysis helps users of
model results evaluate conclusions and limitations,
particularly over time as different users arise and
project objectives evolve.

* Attempts to characterize and address important
uncertainties help analysts fulfill a professional
and ethical responsibility to communicate the im-
plications and limitations of their work.

It thus appears that the potential benefits of uncertainty
analysis can justify the expense. The main question is
how this analysis should proceed. In any case, there are
several desirable characteristics that should be culti-
vated. A methodology for uncertainty assessment
should be comprehensive in the sense that all types of
uncertainty can be included. The methodology should
also be quantitative so that results can be compared to
regulatory criteria. Finally, the methodology should be
systematic so that it can be applied to a wide range of
sites and objectives and to enable the common applica-
tion of computer codes and methods.

Before presenting the uncertainty assessment method-
ology adopted in this work, it will be useful to discuss
a framework for the application of hydrogeologic mod-
els to regulatory decision making. As illustrated in
Figure 1-1, the time domain over which model simula-
tions are conducted can be viewed as two distinct peri-
ods. The history-matching period consists of the time
over which observations of the system are available (as
indicated by the diamond symbols in Figure I-1).
Model building and model evaluation take place within
the context of the data available during the history-
matching period. The predictive period consists of the
time over which the behavior of the system is to be
predicted for site management purposes. For many
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Figure 1-1. Framework for application of hy4

problems, the predictive period will be much longer
than the history-matching period.

In general, specific factors resulting in model predic-
tive uncertainty are assessed in the history-matching
period and then propagated into the predictive period.
Parameter uncertainty in hydrogeologic models is typi-
cally addressed in this fashion. Some factors, however,
only apply in the predictive period: randomness in fu-
ture rainfall is an example. As part of the model build-
ing and evaluation process, uncertainty in the history-
matching period can be reduced by collecting addi-
tional data. For example, a pump test could be con-
ducted to reduce uncertainty about the hydraulic con-
ductivity at a specific location. In contrast, uncertain-
ties that apply only to the predictive period cannot be
reduced by collecting data. For example, the annual
rainfall 10 years in the future is uncertain due to natural
variability. Although past and current measurements of
annual rainfall can better characterize that variability,
the essential randomness of rainfall ten years hence
remains.

Although the analysis described here is limited to hy-
drogeologic uncertainty, it is comprehensive in the
sense that the primary uncertainties in most hydro-
geologic modeling applications can be included under
this framework. Three broad types of uncertainty are
considered. Uncertainties are manifested in a hydro-
geologic modeling application as uncertainty in model
conceptualization, model parameters, and modeling
scenarios. The model conceptual basis can be thought
of as a hypothesis about the behavior of the system
being modeled and the relationships between the com-
ponents of the system. This conceptualization is typi-
cally represented mathematically to render quantitative
predictions; thus it is appropriate to talk about a con-
ceptual-mathematical model (sometimes referred to as

Tim 4--- 1000 years --- '"*

drogeologic models to regulatory decision making

model structure). The model parameters are the quanti-
ties required to obtain a solution from the model (and
thus are model-specific). A scenario is defined here as
a future state or condition assumed for a system, with
the emphasis on those aspects of a scenario that affect
the system hydrology (e.g., future irrigation schemes,
ground-water extraction, natural recharge). With refer-
ence to the framework of Figure 1-1, conceptual model
and parameter uncertainties are assessed in the history-
matching period and applied in the predictive period.
Scenario uncertainty applies to the predictive period
only.

What evidence is there for the relative importance of
conceptual model, parameter, and scenario uncertain-
ties in modeling practice? Published results from hy-
drogeologic model post-audits were reviewed to attrib-
ute the primary modeling errors in these applications to
conceptual, parameter, or scenario uncertainties. Six
additional modeling applications described in Brede-
hoeft (2005) were included in this review. Results are
shown in Table 1-1 and demonstrate the importance of
conceptual and scenario uncertainties in contributing to
model predictive errors. In 9 of the 16 applications,
conceptual model errors were most significant. Model
scenario errors were the most significant in 4 of the 16
applications. Parameter errors were most significant in
three of the applications. This (limited) review suggests
that a comprehensive approach to uncertainty assess-
ment in hydrogeologic modeling should not be limited
to parameter uncertainties, but must also consider the
potential for significant conceptual model and scenario
uncertainties if a realistic estimate of predictive uncer-
tainty is desired.

Given our knowledge of the potential importance of
hydrogeologic uncertainties and their categorization as
conceptual model, parameter, or scenario uncertainty,
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Table 1-1. Attribution of primary errors in hydrogeologic model applications (after Bredehoeft 2005)

Model Application (Reference) Comments Error

Phoenix (Konikow 1986) Assumed past groundwater pumping would continue Scenario/
in future Conceptual

Cross Bar Ranch Wellfield (Stewart and Assumed a 75-day, no-recharge scenario would repre- Scenario/
Langevin 1999) sent long-term maximum drawdown Conceptual
Arkansas Valley (Konikow and Person Needed a longer period of calibration Scenario/
1985) Parameter
Coachella Valley (Konikow and Swain Recharge events unanticipated Scenario
1990)
INEL (Lewis and Goldstein 1982) Dispersivities poorly estimated Parameter
Milan Army Plant (Andersen and Lu 2003) Extrapolated localized pump test results to larger area Parameter
Blue River (Alley and Emery 1986) Storativity poorly estimated Parameter/

Conceptual
Houston (Jorgensen 1981) Including subsidence in model improved predictions Conceptual
HYDROCOIN (Konikow et al. 1997) Boundary condition modeled poorly Conceptual
Ontario Uranium Tailings (Flavelle et al. Inadequate chemical reaction model Conceptual
1991)
Los Alamos (Bredehoeft 2005) Flow through unsaturated zone not understood Conceptual
Los Angeles (Bredehoeft 2005) Flow vectors 900 off in model Conceptual

Summitville (Bredehoeft 2005) Seeps on mountain unaccounted for Conceptual
Santa Barbara (Bredehoeft 2005) Fault zone flow unaccounted for Conceptual
WIPP (Bredehoeft 2005) Assumed salt had no mobile interstitial brine Conceptual
Fractured Rock Waste Disposal (Brede- Preferential flow in unsaturated zone unaccounted for Conceptual
hoeft 2005) 1 !!!

what are the analysis options? One option is to assume
the conceptual model and scenario are known and to
address parameter uncertainty only. This has been and
remains the most common approach to uncertainty
analysis in hydrogeologic modeling. One way to assess
the impact of parameter uncertainty is by using a sensi-
tivity approach. An example of this approach is to de-
velop best-estimates of model parameter values using
data in the history-matching period and then use these
to compute a best-estimate predicted value in the pre-
dictive period. Parameter values are then perturbed
from their best estimates to determine potential uncer-
tainty in the'predicted value. For a decommissioning
analysis, the results of this sensitivity approach could
be displayed as in Figure 1-2, which compares the pre-
dicted best-estimate peak annual dose (in blue) and
four sensitivity cases (in red) with the regulatory crite-
rion of 25 mrem/yr. The vertical axis in this figure is
the probability of peak dose, representing the degree of
plausibility of the model result (Jaynes 2003). The
question marks indicate that the actual values of the
probabilities are unknown, although statements about
the relative values may be possible (e.g., the best-
estimate result is presumably more plausible than the
sensitivity cases). A variation of this approach is a
bounding (conservative) analysis in which the desired
predicted value represents the worst plausible behavior

of the system (e.g., the right-most sensitivity case in
Figure 1-2).

The problem with a sensitivity approach to assessing
the impact of parameter uncertainty is that, as indi-
cated, the probabilities of predicted outcomes are not
estimated. There is thus no way to quantitatively esti-
mate the risk involved in a particular decision. In the
example of Figure 1-2, the risk corresponds to the
probability of failure in meeting the regulatory crite-
rion, that is, the probability that the peak dose is greater
than 25 mrem/yr. For a bounding analysis, the signifi-
cance of the bounding case needs to be assessed to
avoid being overly conservative. In Figure 1-2, the
significance of the sensitivity case that violates the
regulatory criterion rises with its probability, but there
is no way to know whether that probability is 1% or
20%.

A quantitative assessment of parameter uncertainty can
be completed by computing the probability density
function of the desired predicted value. This can be
accomplished by assigning a joint probability distribu-
tion to model parameters and propagating this through
the model, using a Monte Carlo simulation for exam-
ple. The joint probability distribution is a measure of
the degree of plausibility of the values of model pa-
rameters and is assigned based on site information and

3
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Figure 1-2. Illustration of possible results of a decommissioning analysis using a sensitivity approach. Best-
estimate predicted peak dose is shown in blue. Sensitivity cases are shown in red.

data available in the history-matching period (using,
for example, expert judgment or inverse modeling).
Assessing the impact of parameter uncertainty on
model predictions in this manner is accepted in policy
(EPA 1997; NRC 2003) and is not uncommon in prac-
tice. For the decommissioning example, the simulation
result could be displayed as shown in Figure 1-3 in
which the probability density function of the desired
predicted value, peak dose, is compared to the regula-
tory criterion of 25 mrem/yr. As in Figure 1-2, the ver-
tical axis (probability density) represents the degree of
plausibility associated with the predicted value. Unlike
the sensitivity approach of Figure 1-2, a quantitative

estimate of risk is available here. The probability of
exceeding the regulatory criterion is easily calculated
from the density function as the area under that portion
of the curve exceeding 25 mrem/yr, as indicated by the
hatched area in Figure 1-3.

As stated above, the examples considered so far have
assumed that the conceptual model and scenario are
known. That is, it is implicit in any assessment that
considers only parameter uncertainty that the resulting
predictive uncertainty is conditional on the structure of
the model. It is generally recognized, however, that a

0.
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0.02

0.00

U

0 20 40 60 80
A = Peak Dose (mrem/yr)

Figure 1-3. Example results of a decommissioning analysis: the probability density function of peak dose re-
sults from the inclusion of parameter uncertainty
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hydrogeologic model of a site is invariably an ap-
proximation of the actual system. As a consequence, it
may be possible to postulate more than one conceptual
model for a site that is consistent with site characteriza-
tion data and observed system behavior, as evaluated in
the history-matching period. Although the potential
importance of conceptual model uncertainty has been
accepted for some time (Apostolakis 1990; Mosleh et
al. 1994), practical methods to assess the impact of
model uncertainty on prediction have not found their
way into widespread practice.

In a quantitative uncertainty analysis, parameter uncer-
tainty is typically characterized using continuous prob-
ability distributions. When characterizing conceptual
uncertainty in hydrogeologic modeling, specifying a
continuum of conceptual model possibilities is likely to
be infeasible. Instead, it is generally more appropriate
to postulate a discrete set of alternative conceptual
models (Neuman and Wierenga 2003). This suggests a
sensitivity approach to conceptual model uncertainty
analogous to the sensitivity approach to addressing
parameter uncertainty. Namely, each model alternative
is used to simulate the desired predicted value, produc-
ing a result that might look like the example in Figure
1-4. In this figure there are three alternative conceptual
models, each predicting the same quantity, peak dose.
Each model result is represented as a probability distri-
bution because the parameters of each model are uncer-
tain. There is no requirement that the models have a
common set of parameters or that parameters common
to more than one model have the same value (or prob-
ability distribution).

0.10-

0.08-

.2

0.06-

0.04-

0.02-

0.00 -

A sensitivity approach to assessing model uncertainty
has the same drawback as the parameter sensitivity
approach discussed with reference to Figure 1-2. With-
out a quantitative measure of the degree of plausibility
of model alternatives, it is impossible to determine the
risk of a decision based on the model predictions. Simi-
larly, a conservative approach to model uncertainty
relies on an implied belief that the most conservative
model has a non-negligible degree of plausibility. A
conservative approach in this case would select Model
3 for the comparison with the regulatory criterion; this
is easier to justify if the three models are equally plau-
sible than if Models I and 2 are significantly more
plausible than Model 3. Such a justification requires a
quantitative measure of model plausibility.

A quantitative assessment of the combined effects of
parameter and conceptual model uncertainty can be
achieved by assigning a discrete probability distribu-
tion to the model alternatives. The model predictions
are then combined using a weighted average with the
weight for each model's prediction consisting of that
model's probability (e.g., Apostolakis 1990). Analo-
gous to the interpretation of parameter probability, the
discrete model probability distribution represents the
degree of plausibility of the model alternatives. Shown
in Figure 1-5 is the model averaged result for the three-
model decommissioning example with model prob-
abilities of 0.5 for Model I and 0.25 for the other two
models. In this example, Model I is thus twice as plau-
sible as Model 2 or 3, with the latter two models being
equally plausible. The resulting model-averaged prob-
ability density function is properly interpreted as a

- Model 1
- Model 2
- Model 3

0 20 40 60
A = Peak Dose (mrem/yr)

80

Figure 1-4. Example results of a decommissioning analysis with three conceptual model alternatives: the
probability density functions of peak dose result from the inclusion of parameter uncertainty for
each model
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measure of the degree of plausibility of peak dose that
takes into consideration the joint effect of parameter
and model uncertainties.

The model-averaging approach has been criticized on
the basis that there is only one model corresponding to
the physical reality and therefore an average over sev-
eral models has no physical interpretation (e.g.,
Abramson 1994). Even if one postulates the existence
of a model corresponding exactly to reality, the inher-
ent complexity of the hydrogeologic environment
makes it unlikely that this model will be contained in
any realistic set of alternatives. Rather, although the
models are physically based, it is likely that all models
considered will be an approximation to physical reality.
When appropriately formulated, each model alternative
will have some merit in reproducing aspects of the
physical system, this merit being quantified by each
model's probability. As articulated in Ye et al. (2004),
model probability is interpreted as a relative measure
with respect to the other model alternatives considered.
Thus if an additional model (Model 4) were to be
added to the example of Figure 1-5, the individual
model probabilities would change to accommodate
this, but the probability of Model 1 would still be twice
that of Models 2 and 3. A model-averaged consequence
has an intuitive and consistent meaning under this in-
terpretation of model probability. Note that we are not
averaging the underlying physics, but the predicted
consequences of the physics as rendered by the models.

Model averaging has also been criticized for masking
information essential to the decision maker (Abramson
1994). This criticism would be valid if the only quan-

tity the decision maker had available was the model-
averaged probability density function (the black curve
in Figure 1-5) or some measure derived from it, such as
the mean peak dose. If, however, the individual model
results are presented along with the model-average
results and the model probabilities (as in Figure 1-5
and Table 1-2), a fully informed decision can be made.
For example, clear differences in the predicted values
of models (e.g., Models I and 3 in Figure 1-5) suggest
that a decision maker might justifiably request addi-
tional data/information to better discriminate between
these models (i.e., to modify the model probabilities
until one model dominates the others). In addition, if
some conservatism is to be built into the decision, the
model probabilities can provide a basis for selecting
the most conservative model (Model 3 in this case) that
carries a significant degree of plausibility.

Conservatism could also be included using the model-
averaged results, for example, by comparing the regu-
latory criterion to a high percentile (e.g., the 9 0 th per-
centile) of the model-averaged probability distribution,
or by using a probability of exceedance regulatory cri-
terion instead of a deterministic criterion. As given in
Table 1-2, the model-averaged mean peak dose is 21.2
mrem/yr (satisfying the deterministic criterion), the 9 0 th

percentile is 48.5 mrem/yr, and the probability of ex-
ceeding 25 mrem/yr is 34%. These factors all suggest
that a conservative regulatory action may be preferred
in this case, but based on a fully informed considera-
tion of model and parameter uncertainty (i.e., risk),
rather than on adoption of the most conservative
model.

..... Model 1 (Prob = 0.5)
----- Model 2 (Prob = 0.25)
----- Model 3 (Prob = 0.25)
- Model-Averaged Result

- - - -- -

I I I. . ' I

0 20 40 60 80

A = Peak Dose (mrem/yr)

Figure 1-5. Model averaged probability density function for the three-model example of Figure 1-4 with
model probabilities (see legend) used as weights
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Table 1-2. Statistics of individual models and
model-averaged results shown in
Figure 1-5 using model probabilities of
0.5, 0.25, and 0.25 for Models 1, 2, and 3,
respectively

Mean Prob 90%ile

Dose (Dose > 25)

Model 1 10.0 8.2 23.0

Model 2 20.0 23.9 32.7

Model 3 45.0 97.7 57.8

Model Average 21.2 34.5 48.5

Portraying model results in the manner of Figure 1-5
does not mask essential information, but rather clearly
illuminates the effect of model uncertainty and the im-
portance of a consistent and defensible means to esti-
mate model probabilities. Model averaging reduces the
risk of relying on an overly conservative model and
provides a consistent and quantitative way to address
model uncertainty in the context of a regulatory deci-
sion.

Parameter and model probabilities, being measures of
the degree of plausibility of parameter values and
model alternatives, are based on information and data
available in the history-matching period. That is, they
are estimated as part of the process of model develop-
ment and evaluation. The characterizations of parame-
ter and model uncertainty can be projected into the
predictive period. As mentioned previously, there is an
additional source of uncertainty that applies in the pre-
dictive period, namely the scenario uncertainty. A sce-
nario is a description of the future conditions under
which a model is applied. While scenario development
is commonly associated with radioactive waste dis-
posal performance assessment (NEA 2001), the con-
cept applies to any modeling application in which pre-
diction of future system behavior is made. Scenarios
are inherently uncertain since they describe conditions
in the (uncertain) future.

Similar to the representation of conceptual model un-
certainty, the uncertainty in future site conditions can
be represented as a set of alternative scenarios. In gen-
eral, only those scenarios that are minimally plausible
and have a significant potential impact on the predicted
consequence are included in the set of alternatives. In
the case where future scenarios are characterized by
changes in model inputs such as boundary or source
terms (e.g., changes in surface recharge or pumping
rates), it may also be useful to represent scenario un-
certainties by treating these inputs as random. As in the
case of model uncertainty, considering discrete sce-

nario alternatives allows for a systematic specification
of scenario uncertainty.

Once the alternative scenarios are defined, the impact
of scenario uncertainty can be addressed using a sensi-
tivity approach in which the desired predictions are
computed with each model alternative under each al-
ternative scenario. Results for the decommissioning
example with two alternative scenarios are shown in
Figure 1-6. In this example, Scenario I is identical to
Figure 1-5. Scenario 2 is an alternative that, in general,
increases the expected peak dose by about 5 mrem/yr
for each model (the impact on Model 3 is somewhat
greater). Although the example is hypothetical, one
might think of Scenario 2 as an alternative land use
scenario that increases the expected recharge and, as a
result, the expected peak dose from residual contami-
nation. For Scenario 2, the model-averaged mean peak
dose is 27.3 mrem/yr (violating the deterministic crite-
rion), the 9 01h percentile is 58.5 mrem/yr, and the prob-
ability of exceeding 25 mrem/yr is 45%.

For some applications, a sensitivity approach to sce-
nario uncertainty may be the most appropriate point at
which to terminate the analysis. The predicted impacts
under each scenario can be qualitatively assessed to
determine the course of action. Analogous to the char-
acterization of conceptual model uncertainty, it may be
possible, however, to assign a discrete probability dis-
tribution to the scenario alternatives. In that case, a
scenario-averaged probability distribution of the de-
sired predicted value can be computed as a weighted
average of the individual scenario (model-averaged)
results with the weights being the scenario probabili-
ties. Sample results for the decommissioning example
are shown in Figure 1-6 (bottom) using probabilities of
0.7 and 0.3 for the two scenarios. The model-averaged
distributions include the impacts of parameter and con-
ceptual model uncertainties under each scenario. The
scenario-averaged distribution includes the combined
impacts of parameter, conceptual model, and scenario
uncertainties. Relevant statistics can be directly deter-
mined from the scenario-averaged result. For the ex-
ample in Figure 1-6, the scenario-averaged mean peak
dose is 23.0 mrem/yr, the 90th percentile is 52.1
mrem/yr, and the probability of exceeding 25 mrem/yr
is 38%. Summary statistics for the individual scenarios
and the scenario average are listed in Table 1-3.

As with model probabilities, the scenario probabilities
should be interpreted as relative values conditional to
the alternatives considered. If an additional scenario
alternative were to be added to the two considered in
Figure 1-6, the probability of Scenario I would still be
2.33 times the probability of Scenario 2, reflecting the
judgment that Scenario 1 is more than two times as
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Figure 1-6. Results for two alternative scenarios (top/middle), each of which includes the impact of conceptual
model and parameter uncertainties. Model-averaged results for each scenario and scenario-
averaged result assuming probabilities of 0.7 and 0.3 for Scenarios I and 3, respectively (bottom).
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plausible as Scenario 2. Because the scenario probabili-
ties define a discrete distribution for scenario uncer-
tainty, the sum of all scenario probabilities will be 1.0
for any number of scenario alternatives.

Table 1-3. Statistics of individual scenarios (model-
average results) and the scenario-average
results shown in Figure 1-6 (lower plot)
using probabilities of 0.7 and 0.3 for Sce-
narios 1 and 2, respectively

Mean Prob

Dose (Dose > 25)

Scenario 1 21.2 34.5 48.5
(model-average)

Scenario 2 27.3 44.8 58.5
(model-average) I

Scenario Average 23.0 37.6 52.1
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2 QUANTIFICATION OF PARAMETER, CONCEPTUAL MODEL, AND
SCENARIO UNCERTAINTIES

2.1 Parameter Uncertainty

One of the primary factors that contribute to hydro-
geologic uncertainty is the natural variability of the
subsurface. Examples of this variability are illustrated
in Figure 2-1, two photos from excavations at the Han-
ford Site in Washington State. On the left is a trench
face from an excavation in the 200 Area. A large varia-
tion in soil particle size can be seen, ranging from fine
silts to very coarse gravels. The profile shows a layered
structure with evidence of cross-bedding; the scale of
the structures is on the order of a few centimeters. This
variation results in hydraulic and transport properties
that may vary over several orders of magnitude on this
same small scale. Laboratory and some field measure-
ments are likely to be made on a somewhat larger

scale, perhaps 10 cm or more. Exhaustive sampling to
determine the exact nature of the subsurface at this
scale will be impossible, thus requiring interpolation
between measurements and other indirect methods to
estimate properties at unmeasured locations. In addi-
tion, the simulation scale for most practical applica-
tions (and thus the scale of the parameters) is likely to
be significantly larger than the measurement scale,
from a few tens of centimeters to many meters.

On the right of Figure 2-1 is a photo of sediments ex-
cavated from a trench beneath the South Process Pond
in the 300 Area. A large fraction of these sediments is
made up of cobble-sized material, which makes it diffi-
cult to obtain representative samples for laboratory
analysis and to conduct field measurements (e.g., of

IT7::;

Figure 2-1. Photographs of (left) a trench face from an excavation in the 200 Area (photograph by
John Selker, Oregon State University) and (right) sediments excavated from a trench be-
neath the South Process Pond in the 300 Area (from Bjornstad 2003), both on the Hanford
Site, Washington
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hydraulic conductivity). Also present in these sedi-
ments are large clasts composed of semi-consolidated,
fine-grained sediments eroded upstream and deposited
in the 300 Area during flood events (Bjomstad 2003).
These are indicated in Figure 2-1 by the white ellipses.
Characterization of these clasts, their preponderance,
location, and effect on flow and transport is unlikely to
be successful in a deterministic framework.

Measurement errors are relatively easy to quantify
compared to other sources of uncertainty. While their
impact on parameter uncertainty may sometimes be
relatively small, Holt et al. (2002) provide evidence
that relatively simple measurement errors can introduce
significant parameter uncertainties. In their simula-
tions, they also observed that the measurement errors
produced spurious parameter correlations, an effect that
has likely been poorly appreciated in most applications.

An additional source of parameter uncertainty that has
likely not been fully appreciated can be illustrated us-
ing results presented in Zimmerman et al. (1998). They
compared results from seven models calibrated on the
same set of data by different participant groups using
different inverse methods. The ratio of estimated to
true parameter values for the variance and correlation
length of the transmissivity are shown in Figure 2-2 for

each of the inverse methods used. The true transmissiv-
ity field was synthetically generated. An exponential
model was fit to the average empirical variogram for a
set of realizations obtained from each inverse method.
The results shown are for Test Problem 1, the simplest
transmissivity model used (an isotropic, exponential
variogram). Parameter errors reflect two sources of
uncertainty: use of different inverse methods and appli-
cations by different experts. The latter resulted in dif-
ferences in model conceptualization for each inverse
method, which contributed to the significant differ-
ences in parameter estimates. Interestingly, one of the
conclusions of this study was that the inverse methods
applied did not adequately assess the prediction uncer-
tainty. "The total uncertainty could therefore be better
described by the results of the ensemble of several
methods, as any one single method in general tends to
underestimate the uncertainty." (Zimmerman et al.
1998, pg. 1405) This observation is consistent with the
thesis of this report, that including conceptual model
uncertainty (in this case, using an ensemble of inverse
methods) improves estimates of predictive uncertainty.

2.1.1 Analysis of Parameter Uncertainty

The analysis of parameter uncertainty has received
much attention in the literature. Helton (1993) and

Transmissivity Variogram
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•:• • m Varianci
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Figure 2-2. Ratio of estimated to true parameter values for variance and correlation length of transmissivity
for seven different inverse methods. Results from Test Problem 1 of Zimmerman et al. (1998).
(FF=Fast Fourier Transform, FS=Fractal Simulation, LC=Linearized Cokriging, LS=Linearized
Semianalytical, ML=Maximum Likelihood, PP=Pilot Point, SS=Sequential Self-Calibration)
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McKay (1995) provide discussions of parameter uncer-
tainty that are particularly relevant to dose assessment
modeling. See also the recent review of Helton et al.
(2006) and the book of Hill and Tiedeman (2007). The
primary steps involved in addressing uncertainty in
model parameters are

" characterization of parameter uncertainty,
* propagation of parameter uncertainty into model

output uncertainty, and
* parameter sensitivity analysis.

To the extent that the parameters considered represent
what is unknown about the system and important to
predictions, uncertainty analysis based on parameters
becomes more useful.

Parameter estimation, including the characterization of
parameter uncertainty, is driven by the available data
and information. Figure 2-3 is a conceptual representa-
tion of the relative parameter uncertainty as a function
of the quantity and quality of the data used in the pa-
rameter estimation process and the level of condition-
ing. Conceptually, we expect parameter uncertainty to
be reduced as the quantity/quality of data increases and
as the level of conditioning increases. No conditioning
corresponds to the use of prior parameter estimates.
Meyer and Gee (1999) discuss data sources for charac-
terizing prior hydrogeologic parameter uncertainty in
the context of dose assessment modeling for license
termination decisions. In data-limited applications,

Relat

on System
Behavior &

Param. Meas.

prior parameter probability distributions can also be
based on the subjective opinions of one or more experts
(Morgan and Henrion 1990).

Meyer et al. (1997) demonstrated the use of informa-
tion from national-scale databases to specify prior pa-
rameter distributions and the subsequent updating of
these distributions using site-specific parameter data in
a Bayesian approach. This is an example of condition-
ing on parameter measurements (see Figure 2-3). An-
other example of this level of conditioning is the appli-
cation of kriging to interpolate from a set of hydraulic
conductivity (or other parameter) measurements.

When observations of state variables (e.g., hydraulic
head, radionuclide concentration) are available at a site,
formal calibration methods can be used to-improve
parameter estimates and characterize the uncertainty of
these estimates (Carrera and Neuman 1986a; Hill 1998;
Hill and Tiedeman 2007). Such inverse modeling is a
means of conditioning on system behavior, which can
be carried out with or without the inclusion of parame-
ter measurements. Calibrated parameter estimates rep-
resent the application of the maximum amount of
data/information and yield parameters with the mini-
mum uncertainty. An application to unsaturated flow
presented in Wang et al. (2003) illustrates the relation-
ships between the data used in parameter estimation
and the resulting prediction uncertainty.

Note that parameter estimates obtained without condi
tioning or that are conditioned only on parameter

ive Parameter Uncertainty

0

0

on System
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on Parameter
Measurements

None

Limited/Poor Abundant/Good

Quantity/Quality of Data

Figure 2-3. Conceptual response of parameter uncertainty to the quantity and quality of data and the level of
conditioning
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measurements may be independent of a model. As dis-
cussed in Meyer and Gee (1999), however, there must
be a correspondence between the estimates and the
parameters assigned those estimates, e.g., a model that
has a single value of a parameter representing a site
must be assigned a value that represents a mean. Simi-
larly, the uncertainty in that parameter value must rep-
resent uncertainty in the mean. Because they rely on an
inverse model, calibrated parameter estimates are
model-dependent and can be expected to change if the
underlying flow or transport model is modified. In fact,
most calibration methods assume the model is correct.
Errors thus represent the uncertainty in parameters
given that the model is correct. This will underestimate
parameter uncertainty. Hill (1998) and Hill and Tiede-
man (2007) discuss these and related issues.

Zimmerman et al. (1998) evaluated a variety of calibra-
tion methods using a set of hypothetical (generated)
data based on the Waste Isolation Pilot Plant site.
Transmissivity fields for two-dimensional groundwater
flow models were calibrated on four test problems. One
of their conclusions was that the calibrated models
consistently underestimated the "true" variability in
transport. The maximum likelihood (Carrera and Neu-
man 1986a) and sequential self-calibration (Gomez-
Hernandez et al. 1997) methods were consistently
ranked higher than the other methods. The sequential
self-calibration method offers the advantage of produc-
ing spatially variable transmissivity fields that honor
the spatial statistics of the transmissivity field. A cali-
brated, stochastic groundwater simulation can be car-
ried out using a set of these fields in a Monte Carlo
simulation. Calibration must be carried out for each
realization, however. The maximum likelihood method
is more general and can be applied to the calibration of
a wide variety of parameters, including statistical pa-
rameters. Other alternatives include direct calibration
of stochastic moment equations, recently demonstrated
by Hernandez et al. (2006), and the gradual deforma-
tion method of Hu et al. (2001).

Computer codes that tan be adapted to the calibration
of any simulation model are available (Poeter et al.
2005; Doherty 2004). A method for calibrating geosta-
tistically-simulated parameter fields (similar to the se-
quential self-calibration method) has recently been
demonstrated using PEST (Doherty 2003).

A variety of methods for propagating parameter uncer-
tainty are available, including Monte Carlo simulation,
the first-order, second-moment method (Kunstmann et
al. 2002; Vecchia and Cooley 1987), the stochastic
response surface method (Isukapalli et al. 1998), and
stochastic moment methods (Dagan and Neuman 1997;
Zhang 2001). Monte Carlo simulation is the most gen-

erally applicable method. The stochastic moment
methods are appealing because of their potential com-
putational advantage over Monte Carlo simulation.
Recent progress in handling conditions that introduce
nonstationarities (Zhang 2001) have made these meth-
ods more generally applicable.

Uncertainties must be defined on a site-specific basis
and the importance of individual sources may vary site
by site or even with different objectives at the same
site. Determination of the parameters that are most
important to the prediction uncertainty is the final ele-
ment of an assessment of parameter uncertainty. This is
generally carried out through the implementation of
sensitivity analysis (Saltelli et al. 2000a, 2004; Helton
1993). Sensitivity measures may also be obtained dur-
ing the calibration procedure (Hill 1998; Tiedeman et
al. 2003; Hill and Tiedeman 2007). Global sensitivity
methods (Borgonovo et al. 2003; Saltelli et al. 2000b,
2004; McKay 1995; Hill and Tiedeman 2007) partition
the total prediction variance according to the contribu-
tion of each parameter and also determine the contribu-
tion to prediction variance due to interactions between
parameters.

2.2 Conceptual Model Uncertainty

As discussed in the previous chapter, hydrogeologic
uncertainty may result in valid alternative model struc-
tures or conceptualizations. When multiple model con-
ceptualizations are consistent with the available data, it
may not be justifiable to rely on a single model struc-
ture. Relying on a single conceptual representation of a
system has two potential pitfalls: the rejection by omis-
sion of valid alternatives, and reliance on an invalid
representation by failing to adequately test it. The po-
tential consequences are underestimation of uncertainty
by under-sampling model space and biased results by
relying on an invalid model.

As mentioned previously, conceptual model uncer-
tainty refers here to uncertainty in both the conceptu-
alization of the system and the mathematical imple-
mentation of that conceptualization in a model. Con-
ceptual model alternatives are based on the available
site data and other relevant information; each repre-
sents a distinct conceptualization of system characteri-
zation or behavior. For example, alternative conceptual
models might be represented by the presence and ab-
sence of leakage from an underlying aquifer; or the
presence and absence of matrix-fracture interaction in a
fractured rock. Each conceptualization may be imple-
mented in more than one way: for example, a fractured
rock may be represented as an equivalent porous me-
dium or as a discrete network of fractures. The process
of conceptual-mathematical model development may
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be iterative as additional site data becomes available
and conceptual models are updated.

2.2.1 Analysis of Conceptual Model
Uncertainty

Methods for the quantification of conceptual model
uncertainty are much less well established than those
addressing parameter uncertainty. Mosleh et al. (1994)
provide a good introduction to the issues involved.
Neuman and Wierenga (2003) discuss a wide variety of
issues related to hydrogeologic conceptual model un-
certainty, including many instances of its practical im-
portance.

While it is generally possible to specify a reasonable
probability distribution representing the complete set of
possibilities for the value of a parameter, it is not gen-
erally possible to specify the complete set of possible
conceptual model alternatives. As a result, conceptual
model uncertainty has generally been represented as a
discrete distribution, with a small number of model
alternatives taken as the complete set of possibilities.

Any approach based on evaluation of a discrete set of
alternative models will only be as good as the set of
alternatives. That is, if the set of alternatives does not
represent the full range of possibilities, conceptual
model uncertainty will be underestimated. In Neuman
and Wierenga's (2003) extensive discussion of concep-
tual model uncertainty, they provide some advice on
the generation of alternatives, summarized as follows.

" From the assembled database of site-specific data
and other relevant information, consider alterna-
tive representations of space-time scales, number
and type of hydrogeologic units, flow and trans-
port property characterization, system boundaries,
initial conditions, fast flow paths, controlling
transport phenomena, etc.

* Each conceptual model alternative should be sup-
ported by key data.

" Minimize inconsistencies, anomalies, and ambi-
guities.

* Apply the principle of Occam's window (Jefferys
and Berger 1992; Madigan and Raftery 1994) ac-
cording to which one considers only a relatively
small set of the most parsimonious models among
those which, a priori, appear to be hydrologically
most plausible in light of all knowledge and data
relevant to the purpose of the model and, aposte-
riori, explain the data in an acceptable manner,

• Maximize the number of experts involved in the
generation of alternative conceptualizations.

* Articulate uncertainties associated with each alter-
native conceptualization.

Because the set of alternative conceptual models is
unlikely to represent the full range of possibilities,
evaluations of model uncertainty should be viewed as
relative comparisons. That is, they may be used to con-
clude that one model is better than another for the in-
tended purpose, but they cannot necessarily be used to
conclude that any model is a good model. In addition,
as stated above, the contribution of model uncertainty
to overall prediction uncertainty will be underesti-
mated.

Having defined the set of alternatives, the options for
addressing conceptual model uncertainty include the
following.

* Evaluate each alternative and select the best
model. This may be carried out through an infor-
mal comparison (James and Oldenburg 1997; Cole
et al. 200 1b) or through evaluation of a formal
model selection criterion (Burnham and Anderson
2002). As mentioned, selection of a single model
may not always be justifiable.

* Evaluate each alternative and combine the results
using some weighting scheme, such as the likeli-
hood-based weighting of Beven and Freer (2001),
the multimodel ensemble approach of Krishna-
murti et al. (2000), the model likelihood weighting
of Burnham and Anderson (2002), and the model
probability weighting of Draper (1995).

Neuman (2003) and Ye et al. (2004) reviewed these
and other approaches that have been used to address
conceptual model uncertainty. As described in the pre-
vious chapter and presented in detail in the following
chapter, the method used here is based on model prob-
ability weighting.

2.3 Scenario Uncertainty

The concept of a scenario has been much discussed in
the literature related to performance assessment of nu-
clear waste disposal facilities. Definitions provided by
practitioners working in this area emphasize the notion
of scenarios as a set of alternative future conditions for
assessing facility performance. Scenario development
generally takes place within an iterative process of
modeling a system (NEA 2001). The system in this
case is the waste disposal facility, the surrounding
natural environment, and any external factors acting on
these.

In the nuclear waste disposal arena, scenario develop-
ment is intimately linked with the assessment of fea-
tures, events, and processes (FEPs) for a system. These
terms generally refer to characteristics of the system
(features), factors acting on the system (events), and
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phenomena governing the behavior of the system
(processes). NEA (2000) provides a database of ge-
neric FEPs from which site-specific scenarios can be
developed through a process of screening and adjust-
ment based on site-specific information. Scenario de-
velopment and the use of the FEP process are not lim-
ited to the assessment of proposed waste disposal fa-
cilities. An application of this process for a site-wide
assessment of impacts from (numerous) currently con-
taminated areas and future waste disposal operations at
the Hanford Site is given by Solar et al. (2001). In this
application, generic FEPs were excluded based on a
low probability of occurrence and/or a lack of conse-
quences. Thus only those FEPs that have an impact on
the performance criteria were included in the scenarios.
Consideration of FEPs was deferred when there was
insufficient information to make a decision about in-
clusion in or exclusion from the analysis. A similar
procedure was followed by Moschandreas and Ka-
ruchit (2002).

In the context of dose assessment modeling for de-
commissioning, the U.S. Nuclear Regulatory Commis-
sion (NRC) refers to "exposure scenarios," which it
defines as "reasonable sets of human activities related
to the future use of the site. Therefore, scenarios pro-
vide a description offuture land uses, human activities,
and behavior of the natural system" (NRC 2000, p.
C26). A number of exposure scenarios are defined in
NRC (2000).

As indicated by the above discussion, the term scenario
is used to indicate a general statement about possible
future conditions. For example, a climate change sce-
nario is a general statement describing a possible
change in climate. A residential farmer exposure sce-
nario is a general description of the pathways leading
to possible exposure. To evaluate the effect of a sce-
nario, however, the specific characteristics of the sce-
nario must be specified. Climate change, for example,
may involve changes to the average and extreme values
of temperature and to the timing, spatial distribution,
and total amount of precipitation and recharge. A resi-
dential farmer scenario involves specification of the
extent and rate of irrigation and the location and rate of
possible groundwater extraction. In this report we are
primarily concerned with the specific characteristics of
scenarios. In addition, our interest is limited to the ef-
fect of a scenario on the hydrologic aspects of a sys-
tem. Scenario elements that may affect the hydrologic
characteristics of a site include: geological events (e.g.,
earthquake, landslide), climatic events (e.g., flood,
change in precipitation or temperature), changes in
engineered components (e.g., surface or subsurface
barriers whose hydrologic properties change over
time), and human activities (e.g., excavation, well drill-

ing, land use changes that affect the rate and chemistry
of recharge). Hydrologic effects of a scenario could
include slow changes over time (e.g., a gradual in-
crease in precipitation), or sudden events (e.g., a flood).

We refer to the future hydrologic state of a system as a
hydrologic scenario (which we will also refer to simply
as a scenario). Regardless of how large or small a sys-
tem of interest may be, it is always part of a larger sys-
tem (which makes it open) and made up of smaller
systems (which render it complex). To render any rea-
sonable hydrologic predictions for an open, complex
system, we must be able to describe its present and
future features, hydrologic processes operating within
it, and events that drive them. The system's features
include the geometric boundaries, geology, hydro-
geologic properties, nature and distribution of permeat-
ing fluids, topography, physiography, and climate. Hy-
drologic processes include fluid flow, advective and
diffusive chemical and energy transport, phase transi-
tions such as evaporation and condensation, geochemi-
cal and biological alterations, and radioactive decay.
Events include driving forces acting on the system's
external boundaries (e.g., precipitation, evaporation,
transpiration, infiltration, chemical spills) and acting
internally (e.g., pumping and injection through wells,
contamination from nonaqueous liquid sources at
depth, contamination through wells or other openings).

No matter what anthropogenic or natural changes occur
in a system in the predictable (though uncertain) future,
such actions will at most modify one or more of the
above three system elements (features, events, proc-
esses) in a predictable (though generally uncertain)
manner. To postulate hydrologic scenarios for a system
thus translates to evaluating the possible future fea-
tures, events, and processes of the system. To deter-
mine the effect of hydrologic scenarios on exposure it
is necessary that the features, events, and processes be
amenable to mathematical descriptions, i.e., a mathe-
matical model. Typically the features will be expressed
in terms of a parameterized description of the system's
geometry and its properties, the processes in terms of
governing equations that include these parameters, and
the events in terms of initial, boundary, and source
terms constraining or entering into the governing equa-
tions.

If a system is defined (arbitrarily) such that the soil
surface is one of its boundaries, then a scenario with
conditions acting at or near this surface (climatic con-
ditions, precipitation, evapotranspiration, surface or
near surface contamination) would manifest itself in
the form of boundary conditions. If a river is modeled
(arbitrarily) as a boundary, a scenario defining condi-
tions in the river (stage, contaminant levels) would also
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be reflected in the boundary conditions. (It may be bet-
ter to make the river part of the system being modeled,
in which case conditions upstream would form the
boundary). In general, the water table would be part of
the system and so computed from the system model. If
it is treated (arbitrarily) as a boundary, however, then a
scenario affecting conditions at the water table would
enter as part of the boundary conditions. Similarly,
water pH would generally be computed using the sys-
tem model, but if it is prescribed then a scenario that
affects water pH would enter the analysis as a modifi-
cation to the system features. If a scenario specifies
that water is pumped or contamination takes place
through a well, this is part of an internal source/sink
term. If a scenario specifies that a farmer irrigates a
field with contaminated water, this is a boundary con-
dition. If the system is subject to tectonic events such
as faulting (often associated with earthquakes), the
occurrence of such a scenario would change the system
features and thus its parametric description. If a dyke
or volcano intrudes into the system, this will again
change the system features and its parametric descrip-
tion. If heat generated at a repository causes water to
boil near the repository and to condense at some dis-
tance from it, this would be reflected in the governing
equations.

In summary, a hydrologic scenario can be reduced to a
set of conditions described by the three elements of any
simulation model: geometry and parameterization (fea-
tures), structure of governing equations (processes),
and driving forces (events). Since we presently know
(imperfectly) how to deal with parameter uncertainty,
uncertainty in the model structure, and uncertainty in
the forcing terms, we know mathematically how to deal
with scenario uncertainty. Most of the time a scenario
will impact mainly forcing terms, which are often eas-
ier to deal with.

2.3.1 Analysis of Scenario Uncertainty

Uncertainty in scenarios can be considered on several
levels. One approach is to admit the possibility that the
future exposure scenario is unknown. Given that the
future occurrence of a particular exposure scenario
depends entirely on human behavior, however, specify-
ing probabilities of occurrence for exposure scenarios
is a speculative proposition and averaging the conse-
quence over multiple exposure scenarios appears un-
justifiable. A conservative approach may be more ap-
propriate in this case.

Given a particular exposure scenario, however, there
may still be many uncertain elements associated with
that exposure scenario. For example, the future infiltra-
tion rate depends on future precipitation rates and pat-

terns, whether or not the land is irrigated, and the rate
of irrigation if it is used. Future uncertainty in the infil-
tration rate may affect exposures through pathways
involving groundwater migration. These uncertainties
in the future hydrologic conditions are more amenable
to representation using probability theory and are the
aspects of scenario uncertainty to which the methods
discussed here are applicable.

The primary considerations in an analysis of hydro-
logic scenario uncertainty are (1) determining those
future hydrologic conditions that are most important to
include in the analysis, (2) characterizing the uncer-
tainty of those conditions, and (3) evaluating hydro-
logic scenario uncertainty jointly with model and pa-
rameter uncertainty.

Identification of future hydrologic conditions that have
potentially significant impacts on exposure are best
undertaken as part of a model building process that
includes exposure scenario development. Established
methodologies, such as that described in NEA (2001),
can provide guidance on the process. In addition to the
use of the International FEP database, NRC (2000)
suggests the use of Kennedy and Strenge (1992), Ship-
ers (1989), and Shipers and Harlan (1989) for identify-
ing appropriate exposure pathways for decommission-
ing sites.

Upon identifying the exposure pathways, hydrologic
conditions affecting contaminant transport along the
pathways can be specified. Consideration of conceptual
model, parameter, and model forcing uncertainties dur-
ing the model building process (i.e., in the history
matching period of Figure 1-1) will help to identify
uncertainties in the predictive period of model applica-
tion. Principles articulated in Neuman and Wierenga
(2003) for generating alternative conceptual models
may be useful in postulating alternative hydrologic
scenarios. Among these are the principle of Occam's
window according to which one would consider only a
relatively small set of the most parsimonious scenarios
among those which, a priori, appear to be hydrologi-
cally most plausible in light of all knowledge and data
relevant to the purpose of the model. Figure 2-4 illus-
trates the modeling framework with scenario uncer-
tainty represented as a set of three discrete scenarios.
An additional principle valuable in postulating alterna-
tive scenarios is to maximize the number of experts
involved in their generation.

Since scenarios describe future conditions, the prob-
ability of occurrence must be assigned to each scenario
based on a subjective understanding and judgment of
the plausibility of the scenario. This does not mean that
scenario probabilities need be speculative. It does
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Figure 2-4. Framework for hydrogeologic modeling with scenario uncertainty represented by three alterna-
tive scenarios

mean, however, that there is no opportunity to condi-
tion one's belief about the probability of occurrence of
a given scenario on observations. In Bayesian terms,
scenario uncertainty can be characterized by prior
probabilities only. As discussed in the previous chap-
ter, prior probabilities are appropriately interpreted as a
subjective measure of the degree of plausibility based
on current knowledge, experience, and judgment. Thus
the evidence available to establish the probability of a
scenario will depend on the specific scenario. For ex-
ample, established methods are available to estimate
the probability of a specific flood occurring within a
1000-year period. No such methods are available for
estimating the probability that irrigated agriculture will
occur at a site. However, the probability of irrigated
agriculture need not be complete speculation. Evalua-
tion of the fraction of nearby land with similar soil and
climatic attributes that is under irrigation would be a
reasonable basis for establishing the probability of irri-
gated agriculture occurring at a site, assuming that
other factors affecting the occurrence of irrigated agri-
culture (e.g., climatic, economic, and demographic
conditions) remain relatively unchanged.

As discussed in the following chapter, using the meth-
odology presented in this report requires that the alter-
native scenarios must be mutually exclusive and collec-
tively exhaustive. Although it is likely impossible to
prove that a set of scenarios is collectively exhaustive,
a relatively small set of scenarios may adequately rep-
resent the primary sources of uncertainty in future hy-
drologic conditions, particularly if the scenarios can be
expressed in a general way. An example is a climate
change scenario, which may have several impacts on
the models. By specifying the scenario general way we
avoid having to consider each of the individual impacts
separately. Because we require that the set of alterna-
tive scenarios is collectively exhaustive, scenario prob-

abilities should be interpreted as relative probabilities
(i.e., relative to the other scenarios in the set).

Alternative scenarios are often likely to be character-
ized as discrete events. Climate change, floods, and
introduction of irrigated agriculture are all examples of
discrete events affecting the hydrologic conditions at a
site. Such events are often not mutually exclusive (e.g.,
the occurrence of irrigated agriculture does not pre-
clude the occurrence of climate change). By defining
scenarios as possible combinations of alternative
events, the scenarios can be made mutually exclusive.
An example for three events is shown in Table 2-1. A
"1" in the table signifies the occurrence of the event in
a scenario and a "0" indicates the absence of that event.
Scenario I in Table 2-1 has none of the events occur-
ring and might be referred to as a reference scenario,
perhaps characterized by the continuation of current
hydrologic conditions into the future. For n events, this
procedure will result in 2" scenarios; some of these
scenarios may be discarded because of an insignificant
probability or because they are not of regulatory con-
cern.

If the scenarios are enumerated from a set of events
such as in Table 2-1, the scenario probabilities can be
determined from estimates of the marginal and condi-
tional probabilities of the events. Procedures to ensure
that the results are consistent with probability theory
are available (e.g., De Kluyver and Moskowitz 1984;
Brauers and Weber 1988). If the events are independ-
ent, the scenario probabilities can be easily computed
from the marginal probabilities of the events, as illus-
trated in Table 2-1. Note that the marginal probabilities
for the events characterizing the scenarios may sum to
more than 1.0, but the scenario probabilities must total
1.0.
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Although this method has been described using a char-
acterization of scenario uncertainty as a set of discrete
alternatives, it is possible to consider additional pa-
rameter uncertainty specific to a scenario. Consider for
example, a scenario that involves a change in land use
to irrigated agriculture with a consequent change in the
water flux to the soil surface, which represents the
boundary of the system. The scenario could specify a

constant irrigation rate. Alternatively, the irrigation rate
in this scenario could be modeled as a random variable
and included, for example, as a sampled parameter in a
Monte Carlo simulation along with any uncertain pa-
rameters evaluated in the history matching period.

The following chapter presents a quantitative method-
ology for assessing the combined impact of parameter,
conceptual model, and scenario uncertainties.

Table 2-1. Example formulation of mutually exclusive scenarios from three scenario-characterizing events.
Marginal probabilities for the three events and resulting scenario probabilities assuming inde-
pendence between events are given.

Events Characterizing Scenarios

Climate Flood Irrigated
Change (p=0.2) Agriculture
(p=0.3) (p=0.6)

1 0 0 0 0.224

2 1 0 0 0.096

3 0 1 0 0.056
c,)

0 4 1 1 0 0.024

5 0 0 1 0.336 ¢

6 1 0 1 0.144

7 0 1 1 0.084

8 1 1 1 0.036
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3 JOINT ESTIMATION OF MODEL, PARAMETER, AND SCENARIO
UNCERTAINTIES

A method is presented here to provide an optimal way
of combining the predictions of several alternative
models and assessing their joint predictive uncertainty,
with consideration of parameter, conceptual model, and
scenario uncertainties. This method relies on the speci-
fication of a set of alternative models and scenarios and
weights the alternative model results by a measure of
the model probabilities and the alternative scenarios by
a measure of the scenario probabilities. The method
closely follows the presentation of Draper (1995).

3.1 Bayesian Model Averaging-
Combining Conceptual Model and
Parameter Uncertainty

A formal method of evaluating prediction uncertainty
with consideration of model and parameter uncertainty
is Bayesian Model Averaging (BMA) (Draper 1995;
Hoeting et al. 1999). Using the notation of Hoeting et
al. (1999), if A is the predicted quantity, its posterior
distribution given a set of data D is

ability density of Ok given Mk and D. Given the joint

parameter probability distribution, p (Ok I Mk, D), (2)

could be solved using, for example, Monte Carlo simu-
lation.

Posterior model probability is given by Bayes' theo-
rem,

p (M. I D)=p (D1Mk) p(Mk)
p(D)

p(D1Mk)p(Mk)

ZP(DIM,)p(M,)
I=l

(3)

K
p (A ID) = I p(A IMk, D) p(Mk ID)

k=1
(1)

where M =(M 1. .. MK) is the set of all models con-

sidered, p (A IMk, D) is the posterior distribution of A

for model Mk, and p(Mk[ID) is the posterior model

probability for model Mk. Referring back to Figure 1-5,
p(A ID) is the solid black curve (the model-averaged

result of interest) while the individual model results,

p (AIMk , D), are shown as the dashed curves. Model

probabilities, p(Mk ID), are given in the legend of

Figure 1-5.

Model uncertainty is represented in (1) by the discrete
set of models ,M. Parameter uncertainty enters (1) as
the random contribution to

P(AIMkD) = (2)

fp(AIMk,D,1Ok)p(8k iMk,D)dOk

where Ok is the vector of parameters associated with

model Mk and p(O• IMk,D) is the posterior prob-

where p(DIMk) is the likelihood of model Mk and

p(Mk ) is the prior probability of model Mk . The

model likelihood can be expressed as

p(DIMk)= fp(D1ok,Mk)p(ok1Mk)dOk (4)

where p(Ok IMk) is the prior probability density of

-k under model Mk ,and p(D1Ok,Mk) is the joint

likelihood of model Mk and its parameters Ok .

The model-averaged values of the posterior mean and
variance of A are (Draper 1995)

K

E[AD]=ZE[AID, Mk]p(MkID) (5)
k=1

K

Var[AID] = I Va,'[AID, Mk ]p(Mk ID)
k=1 (6)
K 2+EEADM,]-E[A1D]) p(M,1D)

In (6), the first term on the right-hand side represents
within-model variance; the second term represents be-
tween-model variance. Note that the predictive prob-
abilities (1) and leading moments (5) and (6) are
weighted by the posterior probabilities of the individual
models.

To apply BMA, one formally requires that the prior
model probabilities sum up to one,
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K

ZP(Mk) = 1.
k=1

(7)

This implies that all possible models of relevance are
included in At (i.e., the set is collectively exhaustive),
and that all models in ,t differ from each other suffi-
ciently to be considered mutually exclusive (i.e., the
joint probability of any two models is zero). In prac-
tice, it may be impossible to demonstrate that the set of
models is collectively exhaustive. In this case, model
uncertainty may be underestimated and model prob-
ability must be interpreted as relative to the other mod-
els in At, as implied by the fact that all probabilities
computed using BMA are conditional on At.

As discussed in Ye et al. (2004) and Meyer et al.
(2004), basing the analysis on a set of model alterna-
tives that do not encompass all possibilities implies a
relative comparison between models. We thus interpret
prior model probabilities to be subjective values re-
flecting a belief about the relative plausibility of each
model based on its apparent (qualitative, apriori) con-
sistency with available knowledge and data. Ye et al.
(2005) discuss the use of maximum entropy and expert
judgment to determine prior model probabilities.

Whereas prior model probabilities are subjective, the
posterior model probabilities are modifications of these
subjective values based on an objective evaluation of
each model's consistency with available data. Hence,
the posterior probabilities are valid only in a compara-
tive, not in an absolute, sense. They are conditional on
the choice of models (in addition to being conditional
on the data) and may be sensitive to the choice of prior
model probabilities (see Ye et al. 2004, 2005 for addi-
tional discussion of sensitivity to prior model probabili-
ties). This sensitivity is expected to diminish with in-
creased level of conditioning on data.

3.1.1 Maximum Likelihood Bayesian Model
Averaging (MLBMA)

Computational difficulties in the BMA approach in-

clude the calculation of p(AIM., D) in (1) and

p(DIM, ) in (3), which may require exhaustive Monte

Carlo simulations of the prior parameter space 0 k for

each model. This may be computationally and hy-
drologically very demanding. MLBMA (Neuman
2003; Ye et al. 2004; Meyer et al. 2004) uses two ap-
proximations to simplify the application of BMA in
hydrogeological modeling. First, approximating

p(AjM,,D) by p(A M,,6kD), where Ok is the

maximum likelihood (ML) estimate of ek based on the

likelihood p(DIOk,Mk), was suggested by Taplin

(1993) and was shown to be useful in the BMA context
by Draper (1995), Raftery et al. (1996) and Volinsky et
al. (1997). Second, Neuman (2003) proposed evaluat-
ing the posterior model probability using an expression

for p(Mk ID) derived by expanding the terms in the

integrand of(4) in a Taylor series about e, (Kashyap

1982). A related approach based on Laplace approxi-
mations has been used in the BMA context by Draper
(1995) and Kass and Raftery (1995). Kashyap's ex-
pression can be written (Ye et al. 2004) as

p(Mk ID) = (--- --

Z exp -- AKIC, p (M,)2= ) 2 (M)

(8)

where

AKIC. = KICk - K]Cmin , (9)

KICk = NLLk +N, ln(N'Vj)+ln Fk (D 16k,Mk)(10)

K!CA is the so-called Kashyap information criterion for

model M,, KICi,, is its minimum value over all can-

didate models, and

NLL, =-2lnp(D16k,Mk)-2Inp(6kIMk) (11)

the negative log likelihood of MA evaluated at 6k '

Here NA is the dimension of Ok (number of parame-

ters associated with model M, ), N is the dimension of

D (number of discrete data points), and FA is the nor-

malized (by N) observed (as opposed to ensemble
mean) Fisher information matrix having components

- 1 2 Inp(DIOkMk)

N ah Ok--0k
(12)

In the absence of prior information about the parame-

ters, one simply drops the term -2 In p (•k IMk ) from

NLLk . This reflects common practice in model calibra-

tion.
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Increasing the number'of parameters N, allows

- In p (DI0,, M, ) to decrease and N. In N to in-

crease. When Nk is large, the rate of decrease does not
compensate for the rate of increase and KICk grows

while p(Mk ID) diminishes. This means that a more

parsimonious model with fewer parameters is ranked
higher and assigned a higher posterior probability. On

the other hand, -In p(D[0I, Mk) diminishes with N at

a rate higher than linear so that as N grows, there may
be an advantage to a more complex model with larger
Nk.

The last term in (10) reflects the information content of
the available data. Among models having an equal
number of parameters, which fit a given set of observa-
tions equally well, the Fisher information term causes
KIC to favor models with relatively small information
content per unit sample or, equivalently, a correspond-
ingly large parameter estimation variance. Looking at
this from a different but related angle, one expects a
model having a large specific (per unit sample) infor-
mation content (and small estimation variance) to ex-
hibit improved performance (better fit for a given com-
plexity) and vice versa. If increasing the specific in-
formation content of a model fails to improve its per-
formance relative to another model, then according to
KIC the former model has a lesser probability of being
correct than does the model with lesser specific infor-
mation content; selecting a model with greater informa-
tion content would not be justified. Among models
having different numbers of parameters that fit a given
set of observations equally well, K/C may favor more
complex models if their specific information content
per unit sample is comparatively small.

As shown in Ye et al. (2004), alternative models can
have different types and numbers of parameters, but the
latter must be estimated and the models compared con-
sidering a single data set D. As additional data become
available, they can be included in D and the analysis
updated accordingly. For a comparison of two- and
three-dimensional models, data distributed in three-
dimensional space may need to be projected onto a
two-dimensional plane as done by Ando et al. (2003)
or averaged in the third dimension as suggested by
Neuman and Wierenga (2003, Appendix B).

Previously, KICk has been used (e.g., Carrera and
Neuman 1986a,b; Samper and Neuman 1989a,b) as an
optimum decision rule for the ranking of competing
models. The highest-ranking model is that correspond-

ing to KIC., . Note that KIC has no intrinsic meaning;

it is only the differences between KIC values that have
meaning. Thus the use of AKIC in (8) reflects the in-

terpretation of p (M, ID) as a relative probability suit-

able for comparing the models within the set .A. The
effect of AKIC on the posterior model probability is
shown in Figure 3-1. Model probability is normalized

1
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0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

0 I 2 3 4 5 6 7 8 9 10
AK/Ck

Figure 3-1. The effect of AKICon posterior model
probability given as a fraction of the
probability for the best model

in this figure by the maximum model probability (i.e.,
the probability of the best model). Relatively small KIC
differences result in large differences in model prob-
abilities due to the exponential in (8). Model probabil-
ity is less than one percent for AKIC values greater
than 10.

A nonasymptotic version of the familiar Akaike (1974)
information criterion (AIC) has also been advocated for
use in computing relative model weights (Burnham and
Anderson 2002). This version of AIC, derived by Hur-
vich (1989) can be written as

2N (N +1) 2N (N +1)
AICc, = AIC + = NLL, +2N, + (13)N--Ný--1 N-N,-

Model probabilities can be estimated by computing
AAICck values as in (9) and substituting these in (8).

Poeter and Anderson (2005) discuss the use of AICc in
groundwater applications. Appendix C of this report
contains an application of MLBMA to recharge model
uncertainty that includes a comparison of model prob-
abilities computed using KIC and AIC. Ye et al.
(2007)1 discuss alternative criteria for computing
model probabilities and present an analysis that sug-

1Ye, M., P.D. Meyer, and S.P. Neuman, On model
selection criteria in multimodel analysis, Water Resour.
Res., in review, 2007.
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gests KIC may be a better model discrimination crite-
rion than AIC or AJCc.

3.1.1.1 Applicability of MLBMA

Using the maximum likelihood method in BMA has
several advantages. It can be applied to both complex
and simplified models. It can be applied to determinis-
tic models as described by Carrera and Neuman
(1986a,b) and Carrera et al. (1997) and also to stochas-
tic models based on moment equations as demonstrated
by Hernandez et al. (2002, 2003, 2006). Application of
maximum likelihood also yields parameter sensitivity
information.

Including prior information in the maximum likelihood
calibration is an option that allows one to condition the
parameter estimates not only on site monitoring (ob-
servational) data but also on site characterization data,
from which prior parameter estimates are usually de-
rived. When both sets of data are considered to be sta-
tistically meaningful, the posterior parameter estimates
are compatible with a wider array of measurements
than they would be otherwise and are therefore better
constrained (potentially rendering the model a better
predictor).

Maximum likelihood yields a negative log likelihood

criterion NLL, (Eq. 11) that includes two weighted

square residual terms: a generalized sum of squared
differences between simulated and observed state vari-

ables arising from -2 In p (D O6,, MA ), and a general-

ized sum of squared differences between posterior and
prior parameter estimates arising from

-2 In p(0, 1M, ). The first is weighted by a matrix

proportional to the inverse covariance matrix of state
observation errors. The second is weighted by a matrix
proportional to the inverse covariance matrix of prior
parameter estimation errors. Maximum likelihood al-
lows the statistical parameters of the errors to be esti-
mated. When these statistical parameters are known
(i.e., not estimated), maximum likelihood reduces to
generalized least squares estimation. In this case, avail-
able codes such as PEST (Doherty 2004) and UCODE
(Poeter et al. 2005) can be applied.

Maximum likelihood estimation yields an approximate

covariance matrix for the estimation errors of 6,,.

Upon considering the parameter estimation errors of a

calibrated deterministic model M, to be Gaussian or

log Gaussian, one easily determines p(AjMA•., D) in

(2) by Monte Carlo simulation of A through random

perturbation of the parameters. The simulation also

yields corresponding approximations E [A IM, 6, D]

of E[AIM,,D],and Var[AIM,,O,,D] of

Var[AjMA, D], in (4) and (5). If M, is a geostatistical

model as in the example of Ye et al. 2004 or a stochas-
tic moment model of the kind considered by Hemandez

et al. (2002, 2003, 2006), it yields E[AIMA,0,,D] and

Var[AjM,,60, D] directly without Monte Carlo simu-

lation.

One final point regarding the applicability of MLBMA.
In the most data-limited application, one in which there
are no system observations with which to calibrate a
model and the only available parameter information is
that available from generic databases, (1) reduces to

K

p(A) = Zp(AIMk )p(M,)
k=1

(14)

That is, model predictions can still be made using prior
parameter estimates and model averaging can still be
carried out, but only with prior model probabilities.
Since the predictions and model probabilities are not
conditioned on state variable observations, however,
the results are expected to be more uncertain and po-
tentially more biased.

3.2 Incorporation of Scenario
Uncertainty

MLBMA predictions are computed using the following
procedure. Each model in .t is calibrated in the his-
tory-matching period using the dataset D. The cali-
brated models are then used to simulate the system
behavior in the predictive period with each model's
result weighted by its posterior model probability. For
calibration, the models must reflect the system makeup,
processes, and forcing of the history matching period
and must be capable of producing the quantities in D
(typically head and concentration measurements). For
prediction, the models must reflect the future sce-
nario(s) and must be able to produce the quantities re-
quired to evaluate site safety/performance. This will, in
general, require that changes be made to the models
between the history-matching and prediction periods.
For example, a climate change scenario may require
modification of the upper boundary condition repre-
senting precipitation or recharge. A residential farmer
scenario may require the inclusion in the models of a
sink term representing a pumped well. For the purposes
of the analysis presented in this section, we assume that
all the models in At retained for prediction (i.e., those
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models with non-negligible posterior model probabili-
ties) were constructed such that they can be easily
modified to simulate any scenario considered.

3.2.1 Bayesian Model Averaging
Conditioned on a Specific Scenario

Formally, scenario uncertainty can be quantitatively
assessed jointly with model and parameter uncertain-
ties following the methodology described by Draper
(1995) and applied in a nuclear waste disposal context
(albeit without the inclusion of model uncertainty) by
Draper et al. (1999). Consider an uncertain scenario in
which the uncertainty is modeled discretely as a set of
alternative scenarios, S= (S,,..., SI ). For a given sce-

nario, Si, the posterior distribution of a predicted quan-
tity can thus be interpreted as conditional on that sce-
nario and equation (1) becomes

p(AlD, s)=

Z•p(AIM,,D,S S)p(MkID,Si). (15)
k=1

Posterior model probability conditional on a given sce-
nario can be expressed similarly by modifying equation
(3).

p(M, ID, S,)= p(DIM, p( S,)p ( DS,)

p(DIM,)p(M, IS,) (16)

KJ.P( DIM, )p( M, I S, )
1=1

The simplifications made in the rightmost equality of
equation (16) are based on the assumption that the
dataset, D, is independent of the scenario. That is, the
occurrence of any particular scenario in the future does
not affect the probability of observing the data, D, in
the past. As a result, the model likelihoods, p(DIMk),

are not a function of the scenario and do not need to be
recomputed under each scenario. In contrast, prior

model probability, p(Mk ISi), is potentially a function

of the scenarios. That is, the occurrence of specific
future hydrologic conditions may have an impact on
the relative plausibility of the various models. Thus
posterior model probability is a function of the scenario
only through the possible dependence of prior model
probabilities on the scenario. As in equation (7), prior
model probabilities under a given scenario must sum to
one.

K

Z'P(Mk IS,)=l.
k=l

(17)

Posterior mean and variance of A become (see Appen-
dix A)

E(AID,Si)=

k=1

Var(AID,S,)= Z[Var(AIM,,D,S,)
k=1

+[ E (AlM, ,D,S, )2] p( M, ID,S, )

-[E(AID, S,)]'

Equation (19) can be rewritten as

Var(AID,SJ) =

ZVar(AIM,,D,Si)p(Mk ID,S,)
k=1

(18)

(19)

(20)

+EE(' IM, ,D,S, )- E(AID, sp p( Mk ID, S,
k=1

where the two terms on the right hand side represent
within-model and between-model variance for a given
scenario.

3.2.2 Scenario Averaging

Averaging equation (15) over all scenarios using sce-

nario probabilities p(S,) = p(S, ID) as weights gives

p(AID) = Z•p(AID, S,)p(S,)
I K

= ZZp(AIM,,D,S,)p(Mk ID,S,)p(S,)
i=1 k=1

(21)

where p(AID) is implicitly conditional on all scenar-

ios and model structures. Probabilities p (A IS. Mk, D)

and p(Mk ISjD) can be obtained by Monte Carlo

simulation and (16), respectively. For the averaging in
(21) we require that the scenarios given in S
= (S ,..., S, ) are mutually exclusive and collectively

exhaustive. That is,
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zP(Si)=l.
1=1

(1) the variance within models and scenarios,
(22)

The posterior mean of A, including the effects of sce-
nario uncertainty, is (see Appendix B)

E(AID) = E E(AID,S,)p(Sj)
I =] (23)

Z K E(AIMk,D,S,)p(MA ID,S, )p(S,)
i=1 k=1

where E(AID,S,) is evaluated by (18). The posterior

variance of A is (see Appendix B)

Var(AID) = E .[Var(AIMk,D, S,)
i=1 k=l

+[E(l~k,,S, )]2]p(MkjD, S,)p(S,) (24)

-[E(AID)]'

Equation (24) can be rewritten as (see Appendix B)
I

Var(AID) = Z Var(AID, S,) p(S,)

I i=1(25)

+E[E(AjD, S,)-E(AjD)] p(S,)
i=l

where E(AID,S,) and Var(AID,S,) can be estimated

by equations (18) and (19) or (20). The first term on
the right hand side of(25) is the variance within sce-
narios; the second term is the variance between scenar-
ios.

By substituting equation (20) into (25), the posterior
variance can be rewritten in the manner of Draper
(1995) as

Var(A ID)=

E EVar(AIMk, D,Sj)p(Mk ID,S,) p(S, ID)
i=1 k=1

+SE[E(AIM,,Sj)-E(AID,Si)] (26)
i=l k=1

*P(MkID,Sj)p(S, ID)
I 2+E[E(AID,Sj-( ) p (S, I D).

i=s

This expression consists of three terms:

I K

EZVar (A IMk, D, S,)
i=1 k=)

"P( Mk ID, S, ) p ( S I D )
(27)

(2) the variance between models within scenarios,

I KZ [E(A IM,,,D, S) 1- E(A ID, S, )]
r=1 k=1

•p(MA.ID,Si)p(S, ID)

(3) and the variance between scenarios,

(28)

IY [E (A ID, S,) - E (A ID)]" p (S, I D).
i=1

(29)

The equations provided above can be applied to esti-
mate the individual and collective contribution to
model predictive uncertainty of parameter, conceptual
model, and scenario uncertainties. Parameter and con-
ceptual model uncertainty are considered using maxi-
mum likelihood Bayesian model averaging (MLBMA)
in the history-matching period (the period for which
system state data exist). To incorporate scenario uncer-
tainty, the MLBMA results are repeatedly applied in
the predictive period under a set of alternative scenar-
ios. Because the scenarios describe future conditions,
the scenario probabilities represent prior estimates and
cannot be updated using the (past) system state data.
Incorporation of scenario uncertainty using the method
described here thus does not require any additional
calibration (beyond that conducted in the MLBMA
analysis), but does require additional probabilistic cal-
culations. For example, solution of equation (21) could
be accomplished using a Monte Carlo simulation of
each model within each scenario. This is straightfor-
ward, albeit computationally expensive for large or
complex numerical models.

As time progresses and additional data are collected,
these data can be incorporated in an expanded data set,
D, and the Bayesian analysis updated accordingly. If of
sufficient duration, the additional data may cause one
to modify the prior probabilities assigned to the alter-
native scenarios.

3.3 Summary of Uncertainty Assessment
Methodology

To implement MLBMA the following steps are fol-
lowed.
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I. Postulate alternative conceptual-mathematical
models for a site. Guidance provided in Neuman
and Wierenga (2003) may be useful in this step.

2. Assign a prior probability to each model using, for
example, the method of Ye et al. (2005).

3. Optionally assign prior probabilities to the parame-
ters of each model, using, for example, guidance
provided in Meyer and Gee (1999).

4. Postulate alternative scenarios affecting the future
hydrologic conditions at the site.

5. Assign prior probabilities to each scenario using,
for example, expert elicitation.

6. Obtain posterior maximum likelihood parameter
estimates, and estimation covariance, for each
model by inversion (model calibration). In many
cases, available codes such as PEST (Doherty.
2004) and UCODE (Poeter et al. 2005) can be ap-
plied to this step.

7. Calculate a posterior probability for each model
using the model calibration results and the prior
model probabilities.

8. Predict quantities of interest using each model.

9. Assess prediction uncertainty (distribution, vari-
ance) for each model using Monte Carlo or sto-
chastic moment methods.

10. Weight predictions and uncertainties by the corre-
sponding posterior model probabilities and sum
the results over all models.

11. Repeat steps 7-10 for each alternative scenario.
Prior model probabilities may be modified for
each scenario.

12. Weight the results of step 10 for each scenario by
the appropriate scenario probability and sum the
results over all scenarios.

A flowchart illustrating the MLBMA approach to com-
bined estimation of conceptual model and parameter
uncertainty is shown in Figure 3-2. Elements of the
flowchart related to the analysis of hydrologic scenar-
ios are shown in red. As mentioned above, the method-
ology can be conducted in an iterative fashion; as addi-
tional data become available, they can be included in
the data set, D, and steps 6-12 repeated. In some cases,
earlier steps in the methodology may be repeated, such
as when additional data indicate that other models or
scenarios should be considered.
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Assign a (subjective) prior prob-

ability, p (M, ), to each model

such that Y p(M ) = I

Assign a (subjective) prior prob-

ability, p(S, ), to each scenario

such that Yp(S) = I

Run each model to estimate
Calculate posterior probability distribution of
model probabilities predicted quantity (A)

p ( M ID, S,) p( AIM,,i,, D, Si

Find model-averaged prediction weighted by
model probabilities (MLBMA result)

K

p(AID,s,) = Y lP(AMk'dkDIS)P(Mk ID,S,)
k=l

Combined estimate of
model, parameter, and
scenario uncertainty

Figure 3-2. Flowchart for the combined estimation of model, parameter, and scenario uncertainties using
Maximum Likelihood Bayesian Model Averaging. Data boxes contain duplicated
data/information and are shown separately to clarify the application of the data/information.
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4 EXAMPLE APPLICATION

This chapter describes an application of the methods
presented in the previous chapter to assess the impact
of conceptual model, parameter, and scenario uncer-
tainty in hydrogeological modeling for dose assess-
ment. The MLBMA methodology for the combined
estimation of hydrogeological conceptual model and
parameter uncertainty was applied to the modeling of
spatial variability in unsaturated, fractured rock by Ye
et al. (2004). Seven alternative variogram models of air
permeability were evaluated in that application, with
the variogram and drift parameters of the models esti-
mated using data from single-hole injection tests. The
application illustrated the superiority of using the
model-averaged result from MLBMA over any indi-
vidual variogram model. The application described
here advances the uncertainty assessment methodology
by including the impact of hydrologic scenario uncer-
tainty and by applying the methods to a problem more
directly relevant to dose assessment: namely, transient
groundwater flow and transport of a radionuclide from
an uncontrolled disposal. The presentation in this chap-
ter generally follows the flowchart of Figure 3-2.

4.1 Available Site Data and Related
Information

In selecting a site for the application of the uncertainty
methodology a number of factors were considered. To
avoid any potential conflict-of-interest issues and limi-
tations on the use of data, NRC-licensed sites were not
considered. The application site needed to have exist-
ing contamination and sufficient historical data to char-
acterize changes in flow and contaminant transport
over time, to calibrate the models to be developed for
the site, and to evaluate the methodology. It was de-
sired that the contaminant at the site be a radionuclide
commonly occurring at NRC decommissioning sites
and therefore of concern to the NRC staff. In addition,
the hydrologic characteristics of the site should reflect
conditions not uncommon at decommissioning sites.

4.1.1 Application Field Site Background

The site chosen for the example application was the
300 Area in the southeastern part of the U.S. Dept. of
Energy (DOE) Hanford Site in Richland, Washington
(see Figure 4-1). The 300 Area is an industrial area at
which uranium fuel was manufactured for use in the
reactors located in the northern part of the Hanford
Site. In addition to the former nuclear fuel fabrication
facilities, the site contains fuels research laboratories,
several solid waste burial grounds, and liquid effluent

disposal sites (e.g., process trenches, process ponds) to
which uranium and other contaminants were dis-
charged during the production process. The primary
discharges of uranium-laden liquid wastes (in terms of
liquid volume and uranium activity) occurred at the
316-2 North and 316-1 South Process Ponds (from
1944-1975) and at the 316-5 Process Trenches (from
1975 to 1984). The locations of the 300 Area boundary
and the waste sites are shown in Figure 4-2. Also indi-
cated on this figure is the boundary of the 300-FF-5
Operable Unit, a region encompassing potential
groundwater contamination and defined for regulatory
purposes. In this report, the term "300 Area" will refer
to a region that includes that portion of the 300-FF-5
Operable Unit immediately surrounding the 300 Area
boundary.

The Hanford Site is located in the semiarid Pasco Basin
of the Columbia Plateau in southeastern Washington
State, within the rain shadow of the Cascade Mountain
Range. The Hanford Site is characterized as a shrub-
steppe ecosystem that is adapted to the region's mid-
latitude, semiarid climate (Neitzel 1998). Such ecosys-
tems are typically dominated by a shrub overstory with
a grass understory. Livestock grazing and agricultural
production prior to government control of the Hanford
Site contributed to colonization by non-native vegeta-
tion species that currently dominate portions of the
landscape. In addition, summer range fires have tended
to eliminate fire-intolerant species and have allowed
more opportunistic and fire-resistant species a chance
to become established. The dominant non-native spe-
cies on the site is cheatgrass.

Average daily maximum temperature varies from about
4°C in late December and early January to 33°C in late
July. On average, there are 48 days during the summer
months with a maximum temperature greater than or
equal to 32°C. From late-November through early
March, minimum temperatures average less than or
equal to 0°C. The recorded maximum temperature is
45°C; the recorded minimum is -30'C.

Precipitation at Richland, Washington (National Cli-
matic Data Center Cooperative Station number
457015) has averaged 18.1 cm/yr since 1948, with 52
percent of the annual precipitation occurring from No-
vember through February. Days with more than 1.3 cm
of precipitation occur on average less than once each
year. Seasonal average snowfall is 22.4 cm with a
maximum recorded monthly snowfall of 52.1 cm; the
maximum recorded seasonal snowfall is 99.8 cm.
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E9705115.2

Figure 4-1. The Hanford Site and its location within Washington State. The 300 Area is in the southeastern
part of the site adjacent to the Columbia River.
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Figure 4-2. Plan view of the 300 Area primary liquid waste discharge sites, boundaries of the 300 Area proper
and the 300-FF-5 Operable Unit, and the water table elevation in March 2003 (NAVD88, m) with
inferred groundwater flow directions (from Hartman et al. 2004)

The semiarid climate results in fairly low rates of
groundwater recharge. Natural recharge rates across the
Hanford Site are estimated to range from 0 to more
than 10 cm/yr depending on surface soils, vegetation,
and topography (Fayer and Walters 1995). Minimal
recharge rates occur in fine-textured soils where deep-
rooted plants prevail. Larger recharge rates are likely to
occur in areas with coarse, gravelly surface sediments
and little or no vegetation.

Data from a number of boreholes located in the 300
Area have been used to develop a geologic conceptual

model of the site. The location of these boreholes (ver-
tical yellow lines) and the interpreted stratigraphy at
the 300 Area are shown in Figure 4-3. Units shown in
Figure 4-3 are

* ul: Hanford Formation flood deposits consisting
of high-permeability sand- and gravel-dominated
facies,

" u5, u7: Ringold Formation fluvial gravel facies
of generally lower permeability than the Hanford
Formation deposits,
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Figure 4-3. Stratigraphy of the 300 Area. Red lines indicate the boundary of the 300 Area, the North and
South Process Ponds, and the 316-5 Process Trenches, vertical yellow lines indicated the location
of boreholes, ul indicates the Hanford Formation, and u5-u9 indicate units of the Ringold Forma-
tion (vertical exaggeration unknown).

" u6: Ringold Formation overbank deposits con-
sisting of silts and silty sands,

" u8: Ringold Formation lacustrine deposit con-
sisting of a low-permeability clay,

* u9: Ringold Formation fluvial deposit of silty
sand and gravel.

The low permeability clay unit (u8) is continuous
across the 300 Area, occurs at an average depth of
about 30 mn, and acts as a confining layer. As occurs
across the Hanford Site, extensive basalt units underlie
the 300 Area. East-west cross-sections through this
geologic model are shown in Figure 4-4; the locations
of the western 300 Area boundary, the edge of the Co-
lumbia River, and the approximate water table in 2001
are also shown.

Approximately 30 years of groundwater elevation and
uranium concentration data exist for wells located in
the 300 Area. Average depth to groundwater in the 300
Area is about 12 m with the water table typically oc-
curring in the lower Hanford Formation near the inter-
face with the Ringold Formation. The 300 Area is
bounded by the Columbia River on the east with
groundwater flow in the unconfined aquifer generally
flowing from west to east toward the river, as indicated
in Figure 4-2. There is some convergence of flow,
however, with hydraulic head measurements indicating
a southwesterly flow in the northern portion of the 300
Area and a northwesterly flow in the southern portion.
Changes in river stage have been observed to affect
heads in the unconfined aquifer as much as several
hundred meters away from the river (Campbell et al.
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1993; Lindberg and Chou 2001). High river stage can
also impact uranium concentrations a similar distance
inland from the river (Hartman et al. 2004). Differ-
ences in observed uranium concentrations during low
and high river stages also have been observed, as
shown in Figure 4-5.

An extensive characterization of the 300 Area was car-
ried out beginning in the late 1980s as part of a Com-
prehensive Environmental Response, Compensation,
and Liability Act (CERCLA) investigation. Data ob-
tained during this investigation illustrate the complex
interaction between site geochemistry, hydrology, and
the waste site discharges. After removing contaminated
soil from the 316-5 Process Trenches (beginning in
1991), uranium groundwater concentration near the
southern end of the trenches was significantly reduced.
Uranium concentration in well 399-1-17A is shown in
Figure 4-6. This well, whose location is indicated in
Figure 4-5, is screened near the top of the aquifer. The
concentration remained low as long as uranium-free
water continued to be discharged to the trenches. The
Remedial Investigation/Feasibility Study report com-
pleted during this period (DOE 1995) concluded that

the uranium source was sorption-controlled and that the
concentration of uranium in the groundwater would fall
below 20 ptg/1 throughout the 300 Area by the year
2003 as a result of dilution and transport/discharge to
the Columbia River. When all discharges to the process
trenches ceased (in December 1994), however, the ura-
nium concentration in well 399-1-17A increased rap-
idly and remains above the 30 lAg/l drinking water
standard.

Groundwater uranium concentrations continue to ex-
ceed the drinking water standard in the 300 Area over
an area of about 0.4 km2 (Hartman et al. 2004), indicat-
ing that there is a long-term, slow-release source of
uranium present. Lindberg and Chou's (2001) concep-
tual model attributed this source to uranium remaining
in the vadose zone. During high river stages, river wa-
ter infiltrates the river banks, raising heads in the aqui-
fer and mobilizing uranium present in the vadose zone
(see Figure 4-7). Recent geochemical studies of sedi-
ments sampled beneath the north and south process
ponds indicate that uranium desorption in the vadose
zone is a nonequilibrium process (Zachara et al. 2005).
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Figure 4-6. Water level and uranium concentration (top of aquifer) in well 399-1-17A near the southern end
of the 316-5 Process Trenches. Contaminated soil was removed starting in 1991. Discharge of
uranium-free water continued until December 1994.
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4.1.2 Hanford 300 Area Data Sources

This section provides a summary of sources of data that
are available to support modeling of groundwater flow
and uranium transport in the 300 Area of the Hanford
Site. Five categories of data are distinguished:

" surface and borehole geophysics,
* physical and hydraulic properties,
" geochemistry, uranium sorption, and transport,
" source terms and boundary conditions, and
" hydraulic head and uranium concentration data.

Each of these data categories is discussed in the follow-
ing sections. In addition, ongoing research activities
that are being conducted by other groups are briefly
described. Data and models developed by these other
groups could possibly be used to provide additional
information in support of this modeling effort.

Most of the available physical and hydraulic property
and borehole geophysics data for sediments within the
boundaries of the 300-FF-5 operable unit are contained
in two reports and/or associated data archives (Schalla
et al. 1988; Swanson et al. 1992). The report by Schalla
et al. (1988) is a compendium of technical information
on the 300 Area, including sediment and groundwater
chemistry data, and hydrogeologic characterization
data based on installation of 18 groundwater monitor-
ing wells. Sediment chemistry data from the 300 Area

Process Trenches and North and South Process Ponds
are also reported by Schalla et al. (1988; Tables 7.3 and
7.4). The report by Swanson et al. (1992) summarizes
characterization data obtained from the installation of
19 additional groundwater monitoring wells that were
added to augment the existing 60-well network in the
300-FF-5 operable unit (which includes the wells in-
stalled by Schalla et al. 1998). A general summary of
these and other available site characterization data is
provided in the Phase 1 Remedial Investigation Report
for the 300-FF-5 Operable Unit (DOE 1994).

More recent sampling has been conducted of near-
surface sediments, and sediments underlying the North
and South Process Ponds, to characterize geochemical
conditions and uranium transport behavior in these
sediments (Serne et al. 2002; Zachara et al. 2005).
Some of these studies are described in more detail later
in this section.

4.1.2.1 Surface and Borehole Geophysics

Upon completion of each of the 18 groundwater moni-
toring wells described by Schalla et al. (1988), geo-
physical logs were taken using natural gamma, neutron,
and density probes. Plots of these data are provided in
Appendix A of Schalla et al. (1988), and the original
logs are maintained in PNNL data archives.
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Spectral gamma surveys were conducted in 8 of the
monitoring wells installed by Swanson et al. (1992;
Table 4). No artificial radionuclides were detected by
the spectral gamma probe in the wells that were sur-
veyed. Gross gamma surveys were also conducted in
11 of the monitoring wells installed by Swanson et al.
(1992). The gross gamma data were said to be margin-
ally useful for correlating thick, fine-grained sequences
such as the lower Ringold mud unit (Swanson et al.
1992).

The results of surface geophysical surveys that were
conducted in the 300 Area are described by Kunk et al.
(1993) and Kunk (1993). The objectives of the geo-
physical surveys were to

* Evaluate the reflective properties of the Hanford
and Ringold formations, the water table, and the
top of the basalt.

* Determine the existence of a proposed N-S
trending paleochannel located near the eastern
boundary of the 300-FF-5 operable unit, parallel
to the present-day Columbia River.

" Define the lateral extent of the Ringold lower
mud unit below the operable unit.

Four surface geophysical techniques were used:

0

S

a

0

shallow high-resolution seismic reflection,
seismic refraction,
electromagnetic induction (EMI), and
ground-penetrating radar (GPR).

interpreted to be a Holocene-age soil horizon that sepa-
rates the eolian silts and sands from the underlying
Hanford formation (Kunk et al. 1993). This feature was
inversely related to the elevation of the ground surface.
When topographic corrections were made to the data,
this feature became a relatively flat surface (Kunk et al.
1993). This interpreted Holocene-age soil horizon was
absent in several areas, which Kunk et al. (1993) sug-
gested could be due to erosion, human disturbance, or
that the horizon was never or poorly developed in these
areas.

Several locations also showed trough-shaped GPR
anomalies which coincided with a missing section of
the interpreted Holocene soil horizon. Kunk et al.
(1993) suggested that these features could be relatively
recent paleochannels, but noted that none of these fea-
tures were of the size, depth, or magnitude suggested
by Lindberg and Bond (1979). They also noted that
most of the interpreted paleochannels appear to post-
date the Holocene soil horizon. A second reflecting
horizon was also detected on several profiles, usually
1.2 to 1.5 m (4 to 5 ft) below the interpreted Holocene
soil horizon. This horizon was also interpreted to be a
buried paleosol (Kunk et al. 1993).

We speculate that the seeps along the banks of the Co-
lumbia River adjacent to the 300 Area (Hulstrom 1993)
occur where one or more of these paleosols intersects
the shoreline. The capillary barrier effect resulting
from these finer-grained paleosols overlying coarser
sand and gravel units should promote lateral flow
through the finer-grained paleosols. It is also likely that
a significant fraction of the residual uranium contami-
nation that exists in the vadose zone in the 300 Area
may reside in these finer-grained sediments, due to
their greater specific surface area.

4.1.2.2 Physical and Hydraulic Properties

All 18 of the wells discussed by Schalla et al. (1988)
were drilled by the cable-tool method. Sieve data (sand
fraction only; 0.05 mm < particle diameter < 2 mm)
were collected for 147 samples taken at approximately
1.5-m-depth (5 ft.) intervals from five of the wells, at
depths ranging from 1.2 to 55 m below ground surface.
Additional particle-size data were collected for selected
fine-grained sub-samples from some of these wells
using the hydrometer method (Gee and Bauder 1986).
Laboratory measurements of vertical saturated hydrau-
lic conductivities were also made on some of these sub-
samples. All of the physical and hydraulic property
data reported by Schalla et al. (1988) were available
only in hard copy. Therefore the sieve data for the 147
samples (from five wells) reported by Schalla et al.
(1988) were entered into an Excel® spreadsheet to fa-

The shallow high-resolution seismic reflection surveys
were the first attempt to use this technique at Hanford.
Kunk et al. (1993) indicated that the contacts between
Holocene-age eolian soils and Missoula flood deposits,
the Hanford/Ringold contact, and the lower mud unit of
the Ringold formation were generally able to be
mapped using this technique. However, the source fre-
quency and the proximity of the water table to the Han-
ford/Ringold contact generally made these two features
appear as one reflector. This was also found to be the
case for the lower mud unit, which is generally within
9 m (30 fi) of the basalt bedrock. Kunk et al. (1993)
suggested that a higher-frequency source might be able
to distinguish between the water table and the Han-
ford/Ringold contact, but cautioned that a higher-
frequency source would also have lower energy, mak-
ing it less able to penetrate and resolve features at
deeper depths. The seismic data did not show the N-S
trending paleochannel that was proposed by Lindberg
and Bond (1979).

The EMI and GPR surveys showed a pervasive reflec-
tor between depths of 0 to 4 m (14 fi). This feature was
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cilitate later use in estimating hydraulic and transport
parameters and their spatial distribution. These data
show gravel (>2 mm particle size) contents ranging
from 0 to 84%, with an average of 33%.

Aquifer test analyses were conducted for 13 of the
wells installed by Schalla et al. (1988). Calculated val-
ues of horizontal hydraulic conductivity for wells
screened in the Hanford formation are up to approxi-
mately 15,000 m/d, which reflects the very coarse na-
ture of these sediments. Calculated horizontal hydraulic
conductivities for the Ringold formation were typically
lower, ranging from a few to several hundred meters
per day (Schalla et al. 1988; Table D.2). The pump test
results were critically evaluated by Spane (1991, un-
published letter report to Craig Swanson, WHC), who
determined that the results from about half of the pump
tests were invalid due to the methods used for data
analysis (semi-log straight-line solutions and log-log
type curve matching procedures) and recharge bound-
ary effects resulting from the proximity of some of the
wells to the Columbia River. Some of these pump test
data have since been re-analyzed.-

The report by Swanson et al. (1992) summarizes data
obtained during drilling of 19 groundwater monitoring
wells. Sixteen of the wells were drilled by the cable-
tool method and 3 were drilled by the sonic-drill
method. A total of 227 sediment samples were col-
lected during installation of 11 of these wells, at 1.5-m-
depth (5 ft.) intervals, using a 10-cm-diameter (4 in.),
60-cm-long (2 ft.), split-spoon sampler with stainless
steel or lexan liners. According to DOE (1994, p.2-8),
the following physical property tests were performed
on the samples collected by Swanson et al. (1992):

" sieve analyses, to determine particle-size distri-
butions for the sand to gravel-sized fractions of
the sediments,

" hydrometer analyses, to determine particle-size
distributions for the silt and clay-sized fractions
of the sediments,

" permeameter tests, to determine vertical satu-
rated hydraulic conductivities, and

* moisture content.

The DOE (1994) report also states that the results of
these tests are provided in Swanson et al. (1992). Un-
fortunately, this is not the case. The report by Swanson
et al. (1992) contains the following data:

2 Personal communication, Paul Thorne, PNNL, March

2005.

" CaCO 3 (%),
" moisture content (%),.
" porosity (%),
" specific gravity, and
" bulk density.

However, no sieve, hydrometer, or permeameter test
data are contained in the report. Laboratory-measured
particle-size distribution data for samples from three of
Swanson's wells were obtained from the ROCSAN
database (http://vlprod.rl.gov/vlib/app/). Further inquir-
ies with former staff from the Westinghouse Hanford
Company Geotechnical Engineering Laboratory
(GEL), which no longer exists, and subsequent search-
ing of archived data records, led to sieve data for 53
samples from 10 of Swanson's wells, and 23 samples
from various other locations in the 300 Area. All of the
samples in the GEL records were from depths shal-
lower than 10 m (33 ft.) below ground surface.

The other missing data that were supposed to be in the
Swanson et al. (1992) report (hydrometer and per-
meameter test data) have not been located and may
never have been reported or published. It should be
noted, however, that measurements of vertical hydrau-
lic conductivities on core samples of gravel- and cob-
ble-dominated sediments, such as those found in the
300 Area, are generally considered to be unreliable
since the measurements would be biased low due to the
very large particle sizes relative to the size of the core
barrel. Therefore, even if the permeameter data were
located, they would probably not be useful.

The pump test results reported by Schalla et al (1988),
Swanson (1992), and others were reviewed. The major-
ity of the pump tests were single well tests; storage
coefficients were not estimated for these tests. Swan-
son (1992) reports specific yield values of 0.37 and
0.0 16 for two multi-well tests conducted near the west-
ern 300-FF-5 boundary. Wurstner et al. (1995) and
Thome and Newcomer (1992) estimated the specific
yield of the Hanford Formation to be in the range of
0.1 to 0.3 and that of the Ringold U5 unit to be in the
range of 0.05 to 0.2.

Current estimates of average hydraulic conductivities
for the different hydrogeologic units underlying the
300 Area are given in Table 4-1 (column 2). Also
shown in Table 4-1 are site-wide estimated ranges for
the hydraulic conductivities of these same units based
on interpretation of measurements (column 3) and in-
verse modeling (columns 4 and 5). Hydraulic conduc-
tivity values for the 300 Area presented in Table 4-1
are representative of the horizontal conductivity. Verti-
cal hydraulic conductivities have generally been as-
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sumed to be 0.01 to 0. 1 times the horizontal conduc-
tivities in Hanford Site groundwater modeling.

4.1.2.3 Geochemistry, Uranium Sorption, and

Transport

Cantrell et al. (2003) describe a database of adsorption
data measured on Hanford Site sediment samples for
contaminants occurring at the site. Measured values for
Uranium (VI) Kd range from approximately 0 to 1000
mL/g. For natural groundwater conditions at the Han-
ford Site, Cantrell et al. (2003) concluded that uranium
adsorption is relatively low; a range of Kd values from
0.2 to 4 mL/g being appropriate for these conditions.

Krupka and Seine (2002) reviewed the geochemical
factors affecting the behavior of uranium in vadose
zone sediments. Relevant to the 300 Area uranium
plume is their conclusion that "near sources of uranium
release, solubility processes are particularly important
for those sediments that become partially saturated
with water or completely dry between periods of re-
charge, such as the surface soils and vadose zone sedi-
ments. Under these conditions, the concentration of
uranium in the residue pore fluids may exceed the
solubility limits for U(Vl)-containing minerals and/or
co-precipitates with other minerals, such as iron oxides.
Characterization studies at DOE sites, such as the Han-
ford, Fernald, Oak Ridge, and Savannah River sites,
suggest that sediments and soils contaminated from

disposal or spills of uranium-containing liquid wastes
at these sites can contain uranium-containing minerals
or co-precipitates" (Krupka and Seine 2002, pg. 6.6).
Such conditions apply to the disposal of uranium-
containing liquid wastes in the 300 Area and may have
contributed to the apparent long-term source of ura-
nium in the vadose zone.

Uranium sorption and transport data from six samples
of 300 Area sediments, collected in December 2000
and February 2001, are described by Seine et al.
(2002). One of the samples, considered to be represen-
tative of uncontaminated background sediment, was
collected from the face of an excavated pit located west
of the 300 Area. Two samples were collected from the
North Process Pond; one from an excavated trench
along the southern border of the pond, and the other
from the northeast comer of the wall of the pond
(Figure 4-8). Three additional samples were collected
near a building in the northern portion of the 300 Area
proper (the 303-K building). All of the samples were
sieved in the field to remove gravel particles greater
than 6.35 mm (1/4 in.). Several types of tests were
conducted on these samples: column leach tests, batch
adsorption and leach tests, and column adsorp-
tion/desorption tests (Serne et al. 2002). The column
leach tests were performed on all six samples using de-
ionized water to simulate leaching of residual contami-
nants by percolating rainwater. The batch leach tests
were conducted on five sub-samples of the sediments

Table 4-1. Estimated hydraulic conductivities (m/d) for the hydrogeologic units underlying the Hanford 300
Area.

Hydrogeologic Current Average Estimated Range for Han- Inverse Model Inverse Model
Unit Estimates for ford Site Based on Pump Estimates for Estimates for

300 Area Tests, Slug Tests, and Some Hanford Site2  Hanford Site3

Lab Tests'
U1 -Hanford 1500 1 - le6 2-30,000 192-37,100
U5 - Ringold 150 0.1-200 0.1-4,000 3
sand/gravel
U6 - Ringold 0.01 0.0003 - 0.09 0.01 -0.1
overbank
U7 - Ringold 43 0.1-200 0.008-90
sand/gravel
U8 - Ringold 5e-5 0.0003 - 0.09 0.0002
lacustrine I _I

Basalt 5e-5 II

' Wurstner et al. (1995); Thorne and Newcomer (1992)
2 Cole et al. (2001 a)

3 Vermeul et al. (2003)
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used for the column leach tests, using de-ionized water,
actual groundwater from the 300 Area, and simulated
vadose zone pore water (1Ox ionic strength). Batch
adsorption tests were performed on one sample using
uranium-spiked pore-water simulant, and a uranium-
spiked pore-water simulant with I Ox ionic strength.
Flow-through column adsorption and desorption tests
were conducted on one sample using non-spiked and
uranium-spiked pore-water simulants, and lOx ionic
strength pore-water simulants. Serne et al. (2002) also

measured the particle-size distributions and bulk min-
eralogical characteristics of their samples and esti-
mated Kd values from their column and batch data.

Uranium leach tests conducted on the 300 Area sam-
ples by Seine et al. (2002) using a simulated pore water
solution resulted in equivalent Kd values between 70
and 300 mL/g. Based on these results and characteriza-
tion studies, Serne et al. concluded that the release of
uranium from the near-surface sediments is dominated

Figure 4-8. Photos of sediments from the location of samples obtained by Serne et al. (2002) for geochemical
analyses at the south side (top) and the northeast corner (bottom) of the North Process Pond
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by dissolution of discrete uranium minerals or ura-
nium-containing co-precipitates, not by desorption of
adsorbed uranium. Adsorption tests on uncontaminated
samples obtained from the 300 Area resulted in Kd val-
ues that ranged from 0 mL/g to more than 100 mL/g
depending on the solution chemistry. Inorganic carbon
solution concentration had the greatest impact on ad-
sorption. Solution pH was also important, but is ex-
pected to be relatively constant in the field due to buff-
ering by the soil. With solution chemistry held con-
stant, a linear adsorption model appears appropriate
over the range of uranium concentrations observed in
the 300 Area groundwater. A nonlinear model may be
appropriate at the higher uranium concentrations ex-
pected in the vadose zone. In response to varying solu-
tion chemistry (primarily alkalinity), the Kd values are
expected to vary spatially. Seine et al. (2002) sug-
gested Kd values of 0 to I mL/g in the near-surface
vadose zone, 2 to 4 mL/g in the.deeper vadose zone
and unconfined aquifer, and values at least as high as 7
mL/g in sediments with solution diluted by Columbia
River water.

Additional experimental work on uranium sorption and
transport in 300 Area sediments is currently being con-
ducted at PNNL and at the U.S. Geological Survey
(Zachara et al. 2005). The samples used in these ex-
periments were collected from excavations at four loca-
tions: two in the North Process Pond, and two in the
South Process Pond. At each location, samples were
obtained every 2 ft. to a depth of 4 ft. below the water
table. (Note that the Ponds had been excavated to re-
move potentially contaminated materials; as a result,
the excavations proceeded from locations below grade.
The water table occurred at 10, 16, 18, and 21 feet be-
low the top of the four excavations.) Figure 4-9 shows
the face of one of the excavated pits and sediments at
depths where samples were obtained. Geochemical
analyses and transport experiments were conducted
with sub-samples of the bulk sediments consisting of
only the less than 2 mm particle size fraction.

Zachara (2004) suggested that the following geochemi-
cal reactions should be considered for U(VI) sorption
and transport in 300 Area sediments:

Aqueous complexation

Hydrolysis:UO22+(aq) + H20 ¢: UO 2OH+(aq) + H'

Carbonate complexation:UO 2
2 +(aq) + 3CI 3

2 ¢

U0 2(CO 3)34(aq) (and many others)

Adsorption

SOH(s) + UO 2OH+(aq) <* SOUO2OH(s) + H+

2SOH(s) + UO 2(CO 3)3
4 (aq) + 2H+ <*

(SOH2 +)2 UO2 (CO 3)
2

(s)

where SOH = SiOH, FeOH, AIOH

Precipitation

UO 2
2÷(aq) + Na+(aq) + H4SiO 4(aq) + 1.5H 20 <:

Na[U0 2(SiO 3OH)](H 20) 1 5(s) + 3H+

UO 2
2+(aq) + Ca2+(aq) + 2CO 3

2-(aq) + 5H20 <*
Ca[UO 2(CO 3)2](H 20)s(s)

The significance of U(VI) aqueous complexation reac-
tions is that the net charge of the complexed uranyl ion
becomes more negative, which could potentially lead
to enhanced transport (e.g., via anion exclusion ef-
fects). However, the complexed aqueous species may
also undergo surface complexation (or adsorption) re-
actions, thus rendering the uranyl ion less mobile.
Various mineral precipitation reactions are also possi-
ble. All of these reactions are strongly dependent on
water chemistry, which is potentially a very important
consideration for the 300 Area due to the differing river
and groundwater chemistries.

The experimental results of Zachara et al. (2005) indi-
cate that the degree of U(VI) sorption in 300 Area
sediments is dependent on a number of other factors,
including dissolved inorganic carbon (DIC), silt and
clay content, extractable Fe(III), and chlinochlore
(chlorite) content. The calculated Kd values ranged
from 0.27 to 38.4 mL/g, with higher values generally
being found for finer-grained samples. In an earlier
study, Seine et al. (1992) found that U(VI) activity in
300 Area sediments increased with decreasing particle
size, presumably due to more reactive surface area, but
that most of the activity was actually associated with
the coarser size fractions, simply because the bulk of
the material in these sediments is very coarse.

The sorption and desorption data of Zachara et al.
(2005) reached a common equilibrium point, but sig-
nificant times were required. Equilibration of samples
with artificial groundwaters showed rapid desorption
for the first 24 hours of reaction followed by a slower,
steady release of uranium for approximately I week. It
is posited that the latter component is a result of the
slow dissolution of U(VI) in precipitated carbonate
minerals (Zachara et al. 2005). As a less likely altema-
tive, Zachara et al. (2005) suggest that the slow release
may also be diffusion of U(VI) from immobile water
within sediment micro-porosity.
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South Process Pond - Pit#2

Groundwater (i8 ft bgs)

Figure 4-9. Photograph of a pit excavated in the base of the South Process Pond at the Hanford Site 300 Area
and close-up photos of sediment at discrete depths where samples were taken (from Bjornstad
2003)
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Two models have been developed to represent the
sorption/desorption data described by Zachara et al.
(2005). One is a distributed-rate, nonequilibrium reac-
tive transport model (Zachara et al. 2005; see also Liu
et al. 2004). The other is a semi-empirical surface
complexation model using the following surface com-
plexation reactions for U(VI) in 300 Area sediments.

SOH + U0 2
2+ = SOUO2+ + H+

SOH + UO 2
2+ + H20 = SOUOOH + 2H+

where S refers to surface complexation sites. A total
site density of 3.84 pmoles/m

2 of BET surface area was
assumed; the FITEQL model (Westall 1982) was used
to determine optimal formation constants.

Davis et al. (2004) also presented "isotherm" data for
several samples. These data exhibited apparent thresh-
old or maximum adsorption capacities, signifying
Langmuir-type isotherm behavior. The maximum ad-
sorption capacities appeared to be proportional to
measured BET surface areas.

4.1.2.4 Source Terms and Boundary Conditions

The historical uranium releases and associated artificial
recharge of water to the 300 Area process ponds and
trenches are not well documented. Thus uranium trans-
port from the 300 Area has been evaluated within a
site-wide probabilistic modeling framework (Bryce et
al. 2003). Records of historical uranium releases and
artificial recharge of wastewater to the process ponds
and trenches in the 300 Area have been estimated using
the Soil Inventory Model (SIM; Simpson et al. 2001).
Estimated liquid volume and uranium discharges to the
major facilities at the 300 Area are shown in Figure
4-10. There are some discrepancies, however, between
the results from SIM and water discharge estimates to
the 316-5 facility (North Process Trench) reported by
Lindberg and Chou (2001). Such differences are attrib-
utable to the uncertainties in the actual waste disposal
history of the 300 Area.

Because the 300 Area is adjacent to the Columbia
River, groundwater heads near the river are strongly
influenced by the river stage, which fluctuates in re-
sponse to seasonal changes in river flows and operation
of the hydropower facilities in the Columbia River ba-
sin. An hourly record of river stage data at the 300
Area is available beginning in 1991. A much longer
record of streamflow data is available from a gage lo-
cated below Priest Rapids Dam, the nearest upstream
dam (USGS Gage No. 12472800). Monthly average
streamflow below Priest Rapids Dam (Figure 4-11)
illustrates the historical variability of the Columbia
River flow. The apparent change in variance of the

discharge in the early 1970's corresponds with the
completion of the three Canadian dams constructed as
part of the Columbia River Treaty. The last of these
dams, and the largest (Mica Dam), was completed in
1973.

Monthly averages underestimate the actual variability
of the river stage as illustrated in Figure 4-12, which
shows the monthly and daily averages juxtaposed on
the hourly data for the river stage at the 300 Area dur-
ing 1996. Using monthly average river stage as a
model boundary condition results in an error of greater
than five feet during peak river stage in 1996 (late Feb-
ruary). Daily averages appear to be a much better ap-
proximation, although it is evident that there are sig-
nificant fluctuations on the hourly time scale that
would not be represented with a boundary condition
based on daily average river stage. The effect of the
river stage variability on the groundwater table can be
seen in Figure 4-13, which shows the water table under
average (March 2000) and high (June 1997) river stage
conditions.

Groundwater velocities shift direction near the river
during the high stage condition as discharge from the
aquifer to the river is reduced and recharge to the aqui-
fer from the river increases. Note that the high river
stage will saturate unsaturated sediments and produce
three-dimensional flow near the river. Simulations
conducted by Waichler and Yabusaki (2005) indicate
that the impact of the river boundary on a tracer ex-
tended much farther inland when using hourly river
data than when using the monthly data. Computational
requirements of modeling may increase significantly as
the period of the boundary condition is reduced.

Waichler et al. (2005) used Columbia River discharge
data and river stage measurements to calibrate a one-
dimensional hydrodynamic model of the Hanford
Reach of the Columbia River for the period of 1940-
2004. This model can be used to generate hourly river
elevations along the boundary of the 300 Area.

4.1.2.5 Hydraulic Head and Uranium

Concentration Data

Hydraulic head data measured in groundwater wells in
the 300 Area are available from 1950 to the present
(see Figure 4-14). The locations of measured heads and
the measurement intervals have varied over that time
with significant periods of no data in most wells. Be-
cause of the high frequency variation in river levels
adjacent to the 300 Area and the rapid response of
groundwater heads to the river level (particularly near
the river), the frequency of head measurements is often
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Figure 4-10. Estimates of liquid volume (top) and U-238 discharged to the 316-1 South and 316-2 North Proc-
ess Ponds, the 316-5 Process Trenches, and the 316-3 trenches

insufficient to accurately represent actual head varia-
tion in time.

Campbell et al. (1993) instrumented a network of wells
in the 300 Area with pressure transducers and data log-
gers. During parts of 1991-1993, hourly head data were
collected from this well network and were automati-
cally transferred from the field to the lab by radio-
telemetry. Hourly head measurements have also re-
cently been resumed in a network of wells. These data

are being used in conjunction with the pump test results
from Schalla et al. (1988) and Swanson (1992) to de-
velop and calibrate a three-dimensional flow model in
support of a review of the Record of Decision for the
300 Area groundwater (300-FF-5 operable unit). This
model is similar in spatial extent to the models used
here, but has differences due to incorporation of the
most recently obtained data and the specific require-
ments of the model to support the Record of Decision.
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Figure 4-11. Monthly discharge as measured below Priest Rapids Dam, the nearest dam upriver from the
Hanford Site 300 Area
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Figure 4-12. Hourly, daily average, and monthly average river stage at the 300 Area in 1996

Groundwater samples are collected quarterly or semi-
annually from selected monitoring wells in the 300
Area for chemical analyses, including uranium. There
are scattered measurements of uranium concentrations
in groundwater in 1959, 1967-68, and the early 1970s,
but more regular measurements did not begin until the
late 1970s (see Figure 4-14). Figure 4-15 shows the
extent of uranium contamination of the groundwater in
1959 during discharge to the North and South Process
Ponds. Figure 4-16 shows a time series of uranium
concentration in groundwater from 1977 to 2004.

Uranium groundwater concentration data from the 300
Area have recently been analyzed using geostatistical
methods to generate estimates of the total mass of ura-
nium in 300 Area groundwater at selected times and
the uncertainty of these estimates (Murray et al. 2004).
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in the uranium source region is indicated by the red arrow. (from Lindberg and Chou 2001).



Chemical analyses were conducted on sediment sam-
ples from some of the wells installed by Swanson et
al. (1992). Sediment concentration data for selected
radionuclides (including uranium), inorganic metals,
cyanide, and volatile organic compounds for 51 sam-
ples from eight of these wells are reported by DOE
(1994; Appendix B). These analyses were conducted
on four to eight samples from each well, with sample
depths ranging from 8.2 to 54 m (27 to 177 ft) bgs.
The U-238 data from these samples all have concen-
trations less than 3.5 gtg/g. The concentration of U-
238 in an "uncontaminated background sample" col-
lected by Serne et al. (2002; sample B 11493) was
about 5 ýig/g. Therefore the sediments around the
process trenches and ponds appear to be at or below
background concentrations. Serne et al. (2002; p. iv)
state, however, that "less than 4% of the existing ura-
nium in the contaminated near-surface sediments
readily leaches into simulated rainwater over a period
of 6 months." This statement suggests that it may be
difficult to accurately determine the amount of ura-

nium that still resides in the unsaturated zone in the
300 Area. Ongoing data collection efforts are di-
rected at better defining the inventory of contami-
nants in the unsaturated zone.

Time-dependent head and uranium concentration data
were used in model calibrations. There are no time-
dependent moisture content or pressure head meas-
urements in the 300 Area vadose zone. The only ura-
nium concentration data available in the vadose zone
are from samples collected for geochemical analysis,
which represent a single point in time. Total uranium
concentrations for the sediment samples collected
from the 300 Area by Serne et al. (2002) ranged from
5 to 989 jig/g, and for the samples collected from the
excavations in the North and South Process Ponds by
Zachara et al. (2005) from 5 to 238 ptg/g. Zachara et
al. (2005) estimated that the fraction of uranium
available to desorb or dissolve was 4% to 8% for the
upper samples and 8% to 67% for the deeper vadose
zone samples.
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Figure 4-14. Available data from the 300 Area: (top) hydraulic head and (bottom) uranium concentrations
in groundwater
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4.2 Postulate Alternative Conceptual
Models

As described in Chapter 3, application of the Maxi-
mum Likelihood Bayesian Model Averaging method
for jointly assessing conceptual model and parameter
uncertainties requires the formulation of alternative
conceptual models. Based on the characteristics of
the site and the available data, a number of concep-
tual model alternatives were considered to potentially
contribute significant uncertainty. The conceptual
model elements for which alternative representations
were considered included the following.

Configuration of the geologic units. Units con-
tacts have been interpreted based on available

borehole data. Uncertainties arise because the
location of these contacts is not always obvious
and must be interpolated between boreholes. In
addition, differences between units u5 and u7
are small and there is significant overlap in the
ranges of observed properties for units u 1 and
u5.

* Heterogeneity within the geologic units. Al-
though it is clear that there is significant spatial
variability of properties within a geologic unit,
data is limited to the location of boreholes. As
a result, it is difficult to specify hydraulic prop-
erty heterogeneity within geologic units.

* Spatial and temporal variability of recharge.
Recharge at the Hanford Site is sensitive to the
surface material (e.g., building, asphalt, soil),
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Figure 4-16. Uranium concentration contours derived from measurements in the year and quarter indicated;
measurement locations shown in green, contours at 10, 30, 50... 150 ptg/I. (A) 1977-1985
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Figure 4-16 cont. (B) 1986-1995
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Figure 4-16 cont. (C) 1996-2004
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the soil texture, and vegetation (if soil is the sur-
face material). Recharge is likely to vary season-
ally and from year to year. Nonetheless, the natu-
ral recharge flux is small relative to the ground-
water flux and the impact on groundwater from
temporal fluctuations in river stage is likely to be
much greater than that arising from temporal
variability in recharge.

* River boundary transience. River stage is known
to vary significantly on an hourly basis. The im-
pact on transport of the scale at which this vari-
ability is modeled is of potential importance.

* Uranium release rates. Disposals to the ponds
have been estimated from available records, but
significant uncertainties remain. Fluxes of water
and contaminants to the unsaturated zone and the
fluxes from the unsaturated zone to groundwater
are even more uncertain.Spatial and temporal
variability of uranium adsorption. Reactive
processes in the unsaturated and saturated zones
have been quantified recently, but significant un-
certainty remains in the appropriate models to
use. The suitability of applying lab-scale data to
the field-scale is also uncertain. Geochemical
modeling uncertainty was not the focus of this
application, however, so the alternative models
considered for adsorption were limited.

* Heads along the lateral boundaries. Boundary
heads are based on a limited number of bore-
holes, particularly in the north and northwest part
of the site. A well was recently added in this
area.

* Representation of unsaturatedflow and trans-
port. The unsaturated zone at the 300 Area is a
significant portion of the transport path. There
are, however, only limited data on the unsatu-
rated hydraulic properties and no in situ record
of soil water content/pressure data for the 300
Area unsaturated zone. In addition, there are lim-
ited data on uranium concentrations in the un-
saturated zone. Some site data indicate that
transport in the unsaturated zone was primarily
vertical. At the same time, the extent of the
groundwater plumes in the past may have been
increased by lateral transport in the unsaturated
zone. In any case, it is computationally easier to
model only saturated flow and transport, thus
motivating a simplified representation of unsatu-
rated zone flow and transport.

*Darc V's Law alternative. As a result of the rapid
fluctuations in river stage, an alternative form of
Darcy's Law that adds a term in the time-
derivative of flux was considered. This would
require modification of groundwater flow codes
and would likely only be applicable very close to
the river and only during high-frequency river

stage fluctuations. Waichler and Yabusaki
(2005) determined that Darcy's Law was valid at
the 300 Area.

To illustrate the application of the uncertainty assess-
ment methodology, the alternative conceptual models
represented uncertainties in three of these elements: the
characterization of heterogeneity in hydraulic proper-
ties, temporal variability in the Columbia River stage,
and spatial variability in adsorption.

4.2.1 Hydraulic Property Heterogeneity

Two alternatives were postulated that represent a de-
gree of uncertainty in the hydraulic property heteroge-
neity. One of the alternatives assumed the hydro-
geologic units were located as given in the geologic
model discussed above and that hydraulic properties
were uniform within each unit. The other alternative
assumed a homogeneous characterization of hydraulic
properties over the entire model domain. Justifications
for this approach include observations that Unit 6 is
absent over much of the model domain near the river
(see Figure 4-4), Units 5 and 7 are hydraulically simi-
lar, a relatively small portion of the Hanford Formation
is saturated, and many of the data are from wells
screened over a length of 4.5 m (15 ft) or more.

4.2.2 River Boundary Transience

As discussed above, the Columbia River stage at the
300 Area fluctuates significantly, sometimes within a
single day. Representing the transient river behavior
has an impact on the computational requirements of the
modeling. As a result, it is not uncommon to average
river fluctuations over some period of time or to model
a transient river boundary as a steady-state boundary.
For this application, two alternatives were considered:
a steady-state and a transient river boundary condition.
A monthly averaging period for the transient river al-
ternative was used, based on practical concerns in lim-
iting the computational requirements.

4.2.3 Adsorption

Two alternative representations of adsorption were
included in this application. Both alternatives assumed
a linear equilibrium adsorption model. One alternative
assumed a spatially homogeneous Kd throughout the
model domain. The other alternative used two Kd

zones, one near the river and one for the rest of the
model domain. This allowed the model to represent, to
a limited extent, the differences in adsorption due to
water chemistry differences in the groundwater and
river water.
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4.2.4 Alternative Conceptual Model
Summary

The alternative conceptualizations discussed above
were combined to generate a set of model alternatives
used in the uncertainty assessment application. The
alternative models for the 300 Area uranium plume
were combinations of (1) homogeneous vs. zoned hy-
draulic conductivity, (2) steady-state vs. transient river
boundary condition, and (3) homogeneous vs. zoned
Kd. Eight combinations of these three factors were
modeled and are listed in Table 4-2. Note that these
models covered the saturated zone only.

Preliminary analyses demonstrated that the models
with a steady-state river boundary (odd numbered
models in Table 4-2) provided a poor representation of
observed heads and uranium concentrations and that
these models would be unable to compete with the
transient models in terms of posterior model probabil-
ity. As a result, the steady-state models were dropped
from the analysis and are not included in the remaining
discussion of this application.

4.3 Alternative Model Implementations

The alternative conceptual models described in the
previous section were implemented using MODFLOW
(Harbaugh et al. 2000) and MT3DMS (Zheng and
Wang 1999). This section describes the elements of the
alternative models.

The initial models used a simulation period starting in
1945 and extending through the period of uranium dis-

and ponds was based on the liquid fluxes used for the
source terms in the Systems Assessment Capability
simulations (Bryce et al. 2003). Uranium mass loadings
for the liquid waste disposal sites were also based on
information from the Systems Assessment Capability
project. The calibrated models for the simulations be-
ginning in 1945 were unable to represent the large-
scale extent of uranium contamination in groundwater
observed prior to 1976 (e.g., Figure 4-15) and the
large-scale introduction of significant uranium to the
groundwater in 1995-97 (Figure 4-16 B and C) either
through geochemical changes in the aquifer beginning
in 1995 (with the cessation of discharges to the 316-5
trench) or the presence of a long-term source of ura-
nium in the vadose zone activated during the flood of
1997.

To reduce the uncertainty associated with the uranium
sources and to simplify the model calibrations, the pe-
riod of September 1997 to December 2004 was se-
lected as the simulation period for calibration. It was
assumed that there were no significant sources of ura-
nium to the groundwater during this period.

4.3.1 Simulation Domain

The simulation domain for the 300 Area models was
selected to cover the observed (past and current) and
anticipated future extent of the uranium plume. A plan
view of the three-dimensional simulation domain is
shown in Figure 4-17, including locations of the Co-
lumbia River boundary, the boundary of the 300 Area,
the primary disposal area boundaries, and existing

Table 4-2. Model alternatives considered in the 300 Area application of uncertainty assessment

charges to the waste disposal sites. The recharge repre-
senting liquid waste disposal at the process trenches

Model Hydraulic Property Het-
erogeneity

River Bound-
ary

Kd Spatial Variability

I Homogeneous K, Steady-State Homogeneous Kd

2 Homogeneous K, Transient Homogeneous Kd

3 5 K, Zones Steady-State Homogeneous Kd

4 5 K, Zones Transient Homogeneous Kd

5 Homogeneous K, Steady-State 2 Kd Zones

6 Homogeneous K, Transient 2 Kd Zones

7 5 K, Zones Steady-State 2 Kd Zones

8 5 K, Zones Transient 2 Kd Zones
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monitoring well locations. The three-dimensional
simulation domain was 1386.8 m (dimension of x) by
2893.1 m (dimension of y) by 47.3 m deep. The rota-
tion angle was 13.6 degrees counterclockwise from the
east-west direction.

4.3.2 Discretization

The simulation domain was discretized into a
MODFLOW/MT3DMS grid with 15 layers, 54 rows,
and 32 columns (approximately 26,000 grid cells). Grid
cell size varied from 34.67 m to 69.34 m in the x direc-
tion (perpendicular to the river), from 36.16 m to
144.66 m in the y direction, and 1.0 m to 5.75 m in the
z direction. Figure 4-18 illustrates the grid discretiza-
tion. The grid was dense near the contamination
sources (the ponds and trenches) with finer discretiza-
tion also applied to the lateral boundaries. The vertical
discretization was finer within the depth of the Colum-
bia River than below the river. However, the first layer
was coarse to incorporate fluctuation of the river stage,
since the river was treated as a constant head boundary.

The simulation period for model calibration was from
September 1997 through December 2004. Because the
transient river boundary was modeled using monthly
average river stage, each month constituted a stress
period for which river stage was constant. Natural re-
charge was assumed constant in space and time for the
entire simulation period.

4.3.3 Hydrogeologic Zonation and Hydraulic
Parameters

As discussed earlier, geologic analysis from borehole
data reveals that there are five major hydrogeologic
units in the 300 Area among six total units located
above the underlying basalt. Using unit contact infor-
mation from the borehole data, a three-dimensional
model of the spatial distribution of the hydrogeologic
units was developed (see Figure 4-3 and Figure 4-4).
This model was used to project the spatial distribution
of the hydrogeologic units onto the MODFLOW grid
as illustrated in Figure 4-18 using the MODFLOW
Hydrogeologic-Unit Flow (HUF) package. Zonation of
the distribution coefficient was different than the hy-
drogeologic zonation and will be discussed in Section
4.3.5.

Estimated representative (average) values for hydraulic
conductivity of the 300 Area sediments were given in
Table 4-1. The parameter estimates were used as initial
value and their ranges were used to constrain parameter
adjustment in inverse modeling described in Section
4.8.

The upper boundary of the 300 Area flow models was
a constant flux boundary with an applied flux of 55.4
mm/yr representing long-term average recharge based
on the analysis of Fayer and Walters (1995). The bot-
tom boundary of the models was a zero-flux boundary
representing the top of the confining Lower Mud unit
(u8). Although flow from the underlying confined ba-
salt aquifer to the unconfined aquifer may occur at lo-
cations where the lower mud unit (u8) is incomplete,
this unit appears to be contiguous throughout the model
domain. Upward flux from the basalt aquifer was not
anticipated to affect uranium concentration and was not
considered in the models.

The eastern boundary of the model domain was the
Columbia River. Groundwater is generally discharged
to the river. During high river stage, there is infiltration
of river water through the river bank resulting in mix-
ing within the near-river groundwater and a potential
reversal of groundwater flow (see the discussion in
Section 4.1.2.4). In the geologic model the river pene-
trates through the Hanford formation and into the upper
Ringold (uS) except for a portion of the boundary
around Northing coordinate 115500 m (see Figure 4-4).
The shape and depth of the river are irregular, which
was reflected in both the geologic model and the 300
Area simulation model grid (Figure 4-18). In the flow
models, the river was treated as a prescribed head
boundary with temporally varying head. As discussed
in Section 4.1.2.4, the river stage fluctuates signifi-
cantly on an hourly time-scale. For computational rea-
sons, however, the river boundary varied no more fre-
quently than monthly for the simulation models. The
monthly average river stage at the 300 Area as simu-
lated by Waichler et al. (2005) was taken as the eastern
head boundary. Figure 4-19 shows the simulated river
stage over the period of site operation.

The western boundary of the flow models was treated
as a prescribed head boundary with the head value
along the boundary varying in space. The assigned
head values were based on groundwater heads ob-
served in wells located near the boundary. Observed
heads supported the assignment of zero flux to the
southern boundary of the nominal model. The northern
boundary was also treated as a zero-flux boundary,
although this assumption has less support from obser-
vations since there has only recently been a monitoring
well in the northwest portion of the model domain.

The boundaries of the transport model coincided with
those of the flow model. The upper boundary along
with the bottom, northern, western, and southern
boundaries were treated as zero flux transport bounda-
ries. The eastern boundary along the Columbia River
was treated as an outflow boundary. That is, mass
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transport across the boundary occurred by advection
only and solely in the direction from the groundwater
to the river.

4.3.4 Initial Conditions

The initial condition for the flow models was based on
average heads across the simulation domain. The initial
uranium concentration in groundwater was based on
observed concentrations in August 1997 (Figure 4-20,
left). Artificial observations were used to provide a
smooth interpolation of concentration over layer 1 of
the simulation domain (Figure 4-20, right). These in-
terpolated concentrations were also applied to layers 2-
5 of the model. Fifty percent of the layer I concentra-
tion was applied to layer 6 and 25% to layer 7 for the
initial condition. Layers 8-15 had an initial concentra-
tion of zero. As discussed in the introduction to Section
4.3, although groundwater contamination occurred
much earlier, the simulations for this application were
begun in September 1997 to reduce the uncertainty
associated with the uranium sources and to simplify the
model calibrations.

4.3.5 Geochemical Modeling

Desorption/adsorption experiments conducted on 300
Area soil samples indicate that uranium chemistry at
the 300 Area may be quite complex (Serne et al. 2002;
Zachara et al. 2005). Reproducing observed uranium
transport may thus require a reactive transport model,
such as the non-equilibrium adsorption model or the
surface complexation model described in Zachara et al.
(2005). Application of a reactive transport model was
beyond the scope of this project, however.

The alternative models implemented here assumed that
adsorption at the site can be represented as a time-
invariant, equilibrium process. Serne et al. (2002) indi-
cated that a linear adsorption model is appropriate for
concentrations currently observed in the groundwater,
but that a non-linear model may be applicable for
higher concentrations potentially present in the vadose
zone. A range of distribution coefficient values
(0 < Kd < 100) have been estimated from laboratory

experiments on the <2 mm particle size fraction (Serne
et al. 2002; Zachara et al. 2005). It is generally ex-
pected that these experimental Kd values will be re-
duced in the field due to the presence of coarse (>2
mm) sediments (Kaplan et al. 2000). Serne et al. (2002)
concluded that likely ranges for field values of Kd are
from 0 to I mL/g in the near surface vadose zone influ-
enced by evapotranspiration, 2 to 4 mL/g in the uncon-
fined aquifer sediments not influenced by dilution of
river water, and 7 mL/g or higher when groundwater is
diluted by river water. Their proposed spatial variabil-

ity in Kd values was primarily due to differences in
dissolved inorganic carbon.

The effect of river water on uranium adsorption was
approximated in the model alternatives implemented
here by using a spatially variable, zoned Kd with differ-
ent underlying values for the groundwater within a
mixing zone adjacent to the Columbia River. For the
alternative models with heterogeneous Kd, the model
domain was separated into two parts by the black lines
shown in Figure 4-18. This zonation was chosen based
on an approximate zone of mixing as reported by
Waichler and Yabusaki (2005) using observed nitrate
concentrations. Prior values for Kd are discussed in
Section 4.5.

4.4 Prior Model Probability

For the 300 Area application, equal prior model prob-
abilities were assumed to simplify the analysis. This
reflects the a priori belief that the alternative models
are all equally plausible. For many applications, non-
uniform prior model probabilities may be appropriate.
In these cases, expert judgment combined with the
method of Ye et al. (2005) can be used to assign prior
model probabilities. Appendix C contains an applica-
tion of MLBMA to alternative recharge models in
which a panel of experts was used to assign prior
model probabilities.

Ye et al. (2005) proposed to maximize a measure of
entropy composed of prior model probabilities subject
to constraints representing prior expert knowledge of
the relative model probabilities. Specifically, they pro-
posed to assign prior model probabilities by solving the
following nonlinear, constrained optimization problem.

K

max H -L Pk log Pk
P, k=1

(30)

subject to

gi<O i=1,...I

hj=0 j = l,...J

Z"Pk =1
k=1

(31)

where H is the entropy measure, Pk p (Mk), the
prior model probability, and g, and h. are specified

relationships between the various Pk values. For ex-

ample, the constraint 2p2 - p, < 0 expresses the prior
judgment that Model 1 is at least twice as plausible as
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Figure 4-17. Simulation domain and locations of major features of the 300 Area simulation model
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Figure 4-18. Discretization of three-dimensional simulation domain. Cells are inactive within the Columbia
River (shown in blue). Hydrogeologic units are also shown in the figure as follows: ul (teal), u5
(green), u6 (grey), u7 (yellow), u8 (red). The black lines indicate an adsorption zone near the
river.
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modified values used as the initial condition in layer 1 of the simulation models
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Model 2. If the constraints are logical in that they con-
form to Ockham's razor'and to behavior expected on
theoretical and/or empirical grounds (i.e., if one ex-
cludes arbitrary solutions that are not based on the
principle of parsimony coupled with sound expert
knowledge), then the corresponding informed solution
is preferred over the non-informative neutral choice
(i.e., p, = 1/K).

If an expert, or a group of experts, is unable to select
one set of constraints among several alternative sets,
Ye et al. (2005) recommended choosing among alter-
native expert opinions a posteriori, that is, on the basis
of posterior measures of model quality. If sufficient
data are available to conduct a cross-validation, Ye et
al. (2005) recommended choosing the set of prior prob-
abilities that yields optimum predictive performance as
measured by an objective criterion (such as mean
squared prediction error). If there are not enough data
to conduct a meaningful cross-validation Ye et al.
(2005) suggested selecting the set of prior probabilities
that maximizes the likelihood of the set of model alter-
natives in light of the data. That is, they suggested
choosing the set of prior probabilities that maximizes

K

p(D IM/) = I p (DIM,)p(m, )
k=1 (32)

Once KICk values, which are independent of prior
model probabilities, have been computed, then Eq. (32)
can be easily calculated for any admissible (i.e., arrived
at via entropy maximization on the basis of prior expert
judgment) prior probability set.

4.5 Prior Parameter Probability

The methodology described in Chapter 3 allows for the
application of prior parameter probabilities as an op-
tional component of the maximum likelihood objective
function used in the parameter estimation (Eq. 11 and
Step 3 of Section 3.3) and as an uncalibrated, but un-
certain parameter input to the computation of predic-
tion uncertainty in Step 9 of Section 3.3. The assess-
ment of prior parameter uncertainty was discussed in
general terms in Section 2.1. This section describes the
use of generic and site-specific data to estimate uncer-
tainty in the average linear adsorption coefficient at the
Hanford Site 300 Area and application of this data to
specify prior values of Kd in the model calibrations.

4.5.1 Modeling Adsorption in Contaminant
Transport Models

Adsorption is one of the most important geochemical
mechanisms for slowing or preventing the migration of
contaminants through the vadose zone and in ground-
water systems. The most common method used to de-
scribe contaminant adsorption on complicated matrices
such as soils and sediments is the distribution coeffi-
cient or Kd model:

K, = SICq (33)

where S is the concentration of the contaminant on the
solid and Caq is the concentration in the aqueous phase.
Implicit assumptions typically made when using this
model in groundwater transport codes are that the Kd is
constant (conditions that affect the Kd do not change),
adsorption reaches equilibrium quickly relative to the
groundwater flow rate, and the adsorption is reversible.
These are not necessarily realistic assumptions. The
popularity of the distribution coefficient approach
among modelers stems from its simplicity and the fact
that it can be applied to complex matrices and solutions
for which it would be difficult or impossible to obtain
all the required thermodynamic and mechanistic sur-
face adsorption data. This advantage is also the primary
drawback of this approach. Because the model is em-
pirical, it should be strictly applied only to the same
geochemical conditions under which the K& was meas-
ured. This condition can be relaxed if a variable is
known to have no or minimal influence on adsorption
of the contaminant of interest. When geochemical con-
ditions that affect adsorption vary significantly within
the system being modeled, then the constant Kd model
can produce erroneous results. This problem can be
avoided by varying the Kd spatially and temporally as
needed due to changing geochemical conditions. In
addition, if mechanisms other than adsorption are im-
portant for immobilizing contaminants of interest (such
as precipitation), the Kd model may not be appropriate.

Surface complexation modeling is a mechanistic-based
approach for describing adsorption that can account for
variable geochemical conditions. Most commonly used
groundwater transport codes do not have the capability
to model sophisticated geochemical interactions. Reac-
tive transport codes that integrate thermodynamics to
model complex geochemical interactions are computa-
tionally expensive and typically have intensive input
data requirements. As a result, these more sophisticated
approaches to contaminant transport modeling are not
generally applied, but are applied at sites where re-
sources permit more in-depth research.
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An alternative to using the more geochemically com-
prehensive reactive transport codes, is to use surface
complexation data and geochemical equilibrium codes
to calculate Kd values that can be used in groundwater
transport codes that rely on Kd values to describe ad-
sorption. In this approach Kd values that vary spatially
and/or temporally can be used as input data to the
groundwater transport code.

Keeping in mind the caveats discussed above, adopting
the use of Eq. (33) requires estimating an appropriate
value of Kd and the uncertainty in that value. A variety
of data sources are available to provide a basis for this
estimation. Table 4-3 lists a possible hierarchy of this
data, ranging from generic literature values to detailed,
site-specific geochemical measurements. The availabil-
ity of data determines the appropriate methods used to
estimate Kd values. It is assumed in Table 4-3 that as
the quantity and quality of site-specific characterization
data become available, the quality of adsorption data
that can be determined or measured will increase and
the uncertainty will decrease. The challenge is to con-
verge on an appropriate balance between minimizing
Kd uncertainty and minimizing the resources needed to
reduce that uncertainty.

4.5.2 Hanford Site 300 Area Uranium
Example

Application of the concepts embodied in Table 4-3 are
illustrated here using as an example uranium adsorp-
tion at the Hanford Site 300 Area.

4.5.2.1 No Site-Specific Data Case

A number of literature compilations of Ka values are
available. Sheppard and Thibault (1990) provide a
compilation of Kd values for four major soil types
(sand, loam, clay, and organic). Across all soil types,
the overall range for the uranium Kd is from 0.03 to
4.Ox 105 L/kg (mL/g). A look-up table for estimating Kd
values as a function of pH (for pH values ranging from
3 to 10) is provided in EPA (1999). The overall range
of Kd values across the entire pH range of 3 to 10 was
<1 to 1.0xl0 6 L/kg. It is clear from these data sources,
that the range of Kd values for a wide range of possible
conditions is very large for uranium. From a transport
modeling perspective, this indicates that uranium mo-
bility can range from being essentially completely mo-
bile (moves at the same rate as water) to essentially
completely immobile. One could define a Kd probabil-
ity distribution to reflect this large range of possible
values, but the resulting transport uncertainty would
likely be so large as to be unworkable.

4.5.2.2 Known Soil Texture and pH Case

When the soil texture and pH are known and can be
used to represent average site conditions, this informa-
tion can be used to narrow the range of Kd values used
for transport modeling and hydrologic uncertainty as-
sessments. As indicated previously, Sheppard and Thi-
bault (1990) provide a compilation of K& values for
four major soil types (sand, loam, clay, and organic). In
this compilation, mineral soils were categorized by
texture into sand, clay, or loam. Soils that contained >
70% sand-sized particles were classified as sand soils.

Table 4-3. Hierarchical application of data to determine best estimates and uncertainty in Kd values

Available Site-Specific Input Data Methodology Used to Determine Resulting Uncertainty in Adsorp-
Best Estimates and Range of Kd tion Modeling Results

Values
No Site-Specific Data Available Literature Compilations of

Generic Kd Values Decreasing Uncertainty,
Soil Texture and pH Refinement of Kd Values Using Increasing Resource Requirements

Available Literature Compilations of
Generic Kd Values Based on Limited

Site-Specific Data
Site-Specific Batch Kd Measure- Better Defined Kd Values and

ments Ranges Based on Site-Specific Em-
pirical Measurements

Detailed Geochemical Information, Use of More Scientifically Defensi-
Site-Specific Adsorption Measure- ble Adsorption Models and Site-

ments and Model Development Specific Data to Calculate Kd Values
for Variable Conditions
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Mineral soils that contained > 35% clay-sized particles
were classified as clay soils. Loam soils had an even
distribution of sand-, clay-, and silt-sized particles or
consisted of up to 80% silt-sized particles. Soils con-
taining > 30% organic matter were classified as organic
soils.

Previous work conducted on 300 Area sediments can
be used as a source for soil texture and pH data
(Zachara et al. 2005). Table 4-4 contains major size
fraction data for a sediment sample collected at 16 feet
below ground surface (bgs) from the 300 Area North
Process Pond (NPP) along with the pH value measured
on a 1:2 water extract. Included are percentages for the
whole sample and the sample fraction less than 2 mm.

Because the 300 Area sediments are composed of pre-
dominantly cobbles, they don't fit into the classifica-
tion scheme of Sheppard and Thibault (1990). To han-
dle this problem, the Sheppard and Thibault method for
estimating Kd values will be used on the less than 2 mm
size fraction and a gravel correction will be handled
separately. For the NPP-I (16 ft bgs) sample, the less
than 2 mm size fraction contains 70% sand. As a result,
this sediment is classified as a sand using the Sheppard
and Thibault (1990) scheme. From Table 3 in Sheppard
and Thibault (1990), the mean uranium Kd value for
sand is 35 L/kg, with a range of 0.03 to 2200 L/kg.

A methodology for adjusting Kd values to account for
the gravel content of soils and sediments is provided in
Cantrell et al. (2003). This report indicates that for high
Kd contaminants (Cs, Sr, and Pu), the following equa-
tion is recommended (see Appendix A, Kaplan and
Serne 2000).

Kdgc= (1) Kd<2,n, + (/)0.23 Kd<2,... (34)

where Kdgc is the gravel-corrected Kd value,f is the
weight fraction gravel, and Kd<2,,,, is the Ka value de-
termined using the less than 2 mm material. For low Kd

contaminants, the following equation is recommended.

The potential range of uranium Kd spans values gener-
ally considered to be both low and high. Because the
mean Kd value for uranium is 35 L/kg, Eq. (34) was
used for the gravel corrections.

Using a value of 0.917 forf in Eq. (34), the gravel-
corrected mean uranium Kd value for 300 Area sedi-
ments was calculated to be 10 L/kg with a range of
0.009-650 L/kg, based on Table 3 in Sheppard and
Thibault (1990).

This Kd value estimation methodology has reduced the
uncertainty for the K5 values by over two orders of
magnitude and has provided a mean estimate as well. A
probability distribution consistent with the mean and
range could be assigned to represent Kd uncertainty.
This approach still produces a relatively large uncer-
tainty for uranium Kd values.

4.5.2.3 Available Regional Batch Kd Values

Kd values measured on Hanford Site sediments and
Hanford groundwater range from 0.16 to 104 L/kg (on
< 2 mm size materials) (Cantrell et al. 2003). None of
these measurements were on 300 Area sediments. As
part of the composite analysis being conducted for the
Hanford Site, best estimate Kd values were selected for
various waste chemistry/source categories and impact
categories (Last 2004). Estimates of minimum and
maximum values were also provided. These values
were determined based upon a thorough review of the
data compiled in Cantrell et al. (2003). For natural
Hanford groundwater conditions, the best estimate Kd

value for uranium was taken to be 0.8 L/kg, with a
minimum of 0.2 L/kg and a maximum of 4 L/kg. Ap-
plying the gravel correction appropriate for the 300
Area (Eq. 35 withf= 0.917), a best estimate of 0.07
L/kg was determined, and a minimum and maximum of
0.02 and 0.33 L/kg were determined. Even though
these Hanford Site values could be considered site spe-
cific, they are not specific to the 300 Area.

4.5.2.4 Available Site-Specific Batch Kd Values

Leaching and adsorption characteristics of uranium in
near-surface sediments collected from the 300 Area of
the Hanford Site were studied by Seine et al. (2002).
Adsorption K5 values were measured over a range of
solution variables. These included two artificial
groundwater compositions; one referred to as high
ionic strength solution and one referred to as low ionic
strength. The low ionic strength solution was a 10:1
dilution of the high ionic strength solution. K5 meas-
urements with these solutions were conducted over a
range of uranium concentrations that varied from 50 to
5000 ppb U. Other experiments were conducted at

Kdgc = (1-J) Kd<2 ...

Table 4-4. Textural characteristics and pH for
sediment sample NPP-1 obtained 16 ft.
below ground surface from the North
Process Pond (Zachara et al. 2005)

Sediment ID Entire Sample Fraction <2mm
Cobbles (%) 91.7 _

Sand (%) 6.5 70
Silt (%) 0.77 13

Clay (%) 1.01 17
pH 7.98 7.98
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variable pH values and variable bicarbonate concentra-
tions. The Kd values measured under conditions that
most closely resemble those of 300 Area groundwater
were those measured using the low ionic strength solu-
tion. Only these Kd values will be reviewed here.

Ten Kd measurements were made using the low ionic
strength solution. As indicated, the U concentration
was varied from 50 to 5000 ppb. Results from both the
low ionic strength and high ionic strength solutions
indicated that the adsorption was linear over this range
of U concentration (i.e., the Kd model was appropriate).
The average and standard deviation for the ten Kd val-
ues measured at low ionic strength were 3.77 and 0.71
L/kg, respectively, with a minimum of 2.99 and a
maximum of 5.04. Applying the same gravel correction
used previously, a corrected average and standard de-
viation of 0.31 and 0.06 L/kg, respectively, were calcu-
lated. The geometric mean was 0.31 L/kg also. Assum-
ing Kd follows a lognormal distribution, the mean plus
and minus three standard deviations yields an approxi-
mate range of values from 0.18 to 0.53 L/kg.

4.5.2.5 Available Site-Specific, Mechanistically-
Based, Adsorption Model Case

To account for the variation in the observed Kd values,
a new geochemical conceptual model was developed to
describe U(VI) adsorption on 300 Area sediments
(Zachara et al. 2005). This conceptual model included
a surface complexation model (SCM) based on the
generalized composite approach (Davis et al. 2004,
2002; Davis and Curtis 2003). A preliminary SCM
based on this work was used here (Davis, J.A., personal
communication, 2005). U(VI) adsorption to 300 Area
sediments was measured over a range of uranium con-
centrations and alkalinity that was significantly greater
than those observed at the 300 Area. This ensured that
the SCM was applicable to all groundwater conditions
that could be expected at the 300 Area.

Two equations were found to provide the best fit to all
the experimental adsorption data. The two equations
are given below, including the log of the equilibrium
constant and its standard deviation:

SOH + UO-2 + + H2O = SOUO 2OH + 2HW
Log K = -4.476 ±0.048

SOH + UO 2
2+ + 2H2CO3 = SOUO 2(HCO3 )2 + 3H+

Log K = -4.081 -0.036

These equations were used along with major ion com-
position data available from the HEIS (1994) database
for 300 Area wells to calculate Kd values. The equilib-

rium distribution between the solid and aqueous phase
was calculated using the SpecE8 module of Geochem-
ists Workbench® (Bethke 2005). The thermodynamic
database thermo.com.v8.r6+.dat was modified to in-
clude the same formation constants for U(VI) solution
species used in the preliminary SCM.

Kd values were calculated for groundwater composi-
tions determined from 19 wells in the 300 Area. Only
wells that had a complete analysis set were used. This
included pH, major cations and anions, and alkalinity.
Wells that were near the river were avoided because
these wells are seasonally influenced by the Columbia
River. Only one analysis was used for each well to
calculate the Kd values. In general, the latest available
analysis that included the required suite of analytes was
used. Table 4-5 shows the groundwater compositions
used to calculate the Kd values, along with the calcu-
lated Kd values. A gravel fraction of 0.917 in Eq. (35)
was used to correct the derived Kd values.

The average and standard deviation for the nineteen Kd
values that were calculated was 3.18 and 2.64 L/kg,
respectively, with a geometric mean of 2.14 L/kg. The
minimum and maximum values calculated were 0.25
and 9.96 L/kg. Assuming Kd follows a lognormal dis-
tribution, the mean plus and minus three standard de-
viations yield an approximate range of values from
0.10 to 44 L/kg. This large variation in calculated Kd

values illustrates that relatively minor changes in solu-
tion chemistry can have relatively large impacts on
how strongly U(VI) is adsorbed to Hanford sediments.

The variation in Ka values calculated using the SCM
approach was significantly greater than that determined
from both the 300 Area site-specific Kd measurements
and Ka measurements made using sediments collected
throughout the Hanford Site. In the case, of the 300
Area site-specific measurements, the limited variation
of the Kd measurements was due to the fact that the
background solution composition was identical for
each measurement. For the Hanford-wide K, measure-
ments, natural Hanford groundwater samples (uninflu-
enced by waste site releases) were used as the back-
ground solution. In the case of the Kd values calculated
for the 300 Area using the SCM, variable solution
compositions measured from wells throughout the 300
Area were used. In some cases, relatively low pH val-
ues were observed in wells near the process trenches
and ponds. Natural Hanford groundwater pH values
typically range from about 7.8 to 8.2. At the 300 Area
some pH values as low as 7.35 were used to calculate
the Kd values. This explains the reason for the rela-
tively large variation in Kd values calculated using the
SCM.
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Table 4-5. 300 Area groundwater compositions (jlg/L) used to calculate Kd (L/kg) values using the SCM,
along with the calculated Kd values. Units for alkalinity are in Pg/L as CaCO3. Included at the bot-
tom are the average, standard deviation, and coefficient of variation (COV) for each of the chemi-
cal constituents and Kd values for all the wells.

Well ID Sample Date Alkalinity Ca Cl Mg Nitrate pHI K Na Sulfate Kd

399-1-12 6/6/1996 120000 44000 16300 9500 22150 7.47 2600 20000 51300 6.52
399-I-13A 7/17/1992 120000 48500 16014 9900 25650 7.86 4500 22000 40720 1.26
399-1-14A 6/4/1996 140000 47000 16500 11000 23300 7.46 5500 22000 53200 4.84
399-1-17A 12/16/2004 140000 56800 18400 12800 23000 7.46 5040 27700 53800 3.46
399-1-21A 4/30/1992 121000 47200 20200 9505 17300 7.40 4710 18250 46000 7.42
399-1-5 5/20/1992 111000 47950 18500 9710 21200 7.35 2550 17250 40720 9.96
399-3-11 6/11/1992 123000 46150 17500 9255 15100 7.55 5195 20250 39000 4.05
399-3-12 4/23/1992 129000 45550 18200 9350 15100 7.80 5105 20650 41000 1.51
399-3-2 12/9/1991 116000 41650 16014 8705 19000 7.98 5105 16700 27000 1.15
399-3-3 5/13/1992 98000 31550 8900 6420 7970 7.79 3660 12350 23000 4.78
399-4-1 12/10/1991 120000 41000 16014 8050 25650 7.82 4800 18000 40720 1.95
399-4-11 12/11/1991 120000 42000 16014 8100 25650 7.61 4600 18000 40720 3.99
399-5-1 4/21/1992 158000 63850 17300 12800 66400 7.84 6605 24250 54000 0.54
399-6-1 4/21/1992 134000 50700 20700 11150 31400 8.30 5985 22150 40000 0.25
399-8-1 7/15/1992 110000 43000 14200 8750 15300 8.16 5250 14000 36200 0.73
399-8-4 1/8/1992 106000 40750 16014 8865 15900 7.87 3420 17550 25000 2.04
399-8-5A 4/16/1996 110000 43000 14000 8900 24000 7.80 5200 14000 32000 2.21
699-S27-E14 11/29/1990 151000 51200 11600 10600 24680 7.47 6250 21000 35300 3.28
699-S28-E12 4/21/1992 146000 64450 11900 13400 68600 7.90 6835 24700 54000 0.48

Average 124895 47174 16014 9829 25650 7.73 4890 19516 40720 3.18
Standard Deviation 16141 7922 2931 1778 15702 0.26 1184 3910 9713 2.64

Coeff. of Variation (%) 12.9 16.8 18.3 18.1 61.2 3.4 24.2 20.0 23.9 83.0

In summary, a hierarchy of data was applied to specify-
ing the uncertainty in Kd values at the Hanford Site 300
Area. Uncertainty in this case was represented as a
range of possible values, which was generally expected
to be reduced as more site-specific data was applied.
Figure 4-21 displays the resulting ranges of Kd values
derived for the five levels of data. If an average value
was available that is shown also. (As noted above,
when the Kd estimates are supported by limited data,
the resulting uncertainty may be unworkably large.
When batch Kd measurements are the only source of
data, they may underestimate the uncertainty by failing
to account for potential variation in water chemistry.
The use of site-specific adsorption measurements and
an SCM, when applied to observed water chemistry
data resulted in a realistic range of Kd values. Since
these values were computed using a common gravel
fraction, the derived Kd uncertainty would be somewhat
larger if the variation in sediment particle size distribu-
tion were included.

4.5.3 Prior Values of Kd for 300 Area Model
Calibration

The distribution of Kd based on the 300 Area surface
complexation model (Section 4.5.2.5) could be used in
model calibration by specifying a prior estimate for the
value of Kd as the mean of the distribution and deriving
a weight for the prior estimate from the variance of the
distribution.. Because two of the models (Models 6 and
8) have two distinct Kd zones (and thus two Kd parame-
ters for which prior information could be supplied), the
data described in Section 4.5.2.5 were supplemented
with a set of seven Kd estimates derived from the sur-
face complexation model using water chemistry data
from seven wells near the river (Table 4-6). The mean
Kd for the near-river wells was 20.1 L/kg with a stan-
dard deviation of 17.5 L/kg. For the entire set of 26 Kd

estimates, the mean was 7.75 L/kg with a standard de-
viation of 11.7 L/kg.

The mean values for the inland and near-river Kd esti-
mates were used as prior estimates for the two Kd pa-
rameters in Models 6 and 8. For Models 2 and 4 in
which the Kd was uniform, the mean value for the en-
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tire set of Kd estimates was used as the prior estimate.
For all models, the weight applied to the prior esti-
mates was taken as the inverse of the standard devia-
tion of the entire set of Kd estimates multiplied by the
number of estimates (26 in this case). Because the log
of Kd was estimated in the calibration, the prior values
and the weight were computed on the log Kd estimates.
Prior estimates and the weight for the log(Kd) parame-
ters are given in Table 4-7 for each of the model alter-
natives.

Table 4-6. Kd values estimated for near-river wells
using a surface complexation model

Well ID Kd (L/kg)
399-1-10A 7.3
399-1-16A 5.5
399-3-10 31.7
399-3-9 51.1

399-4-10 18.9
399-4-7 1.5
399-4-9 25.0

i I Site-specific data, SCM

+--+-+ Site-specific batch Kd data

- Regional batch Kd data

Soil texture data

No site-specific dataI t.

10- I
10-I

I
10 °0

I I I

101 102 103 104 105

Kd (Ikg)

Figure 4-21. Ranges of Kd values for the Hanford Site 300 Area derived using a hierarchy of data

Table 4-7. Prior estimates and calibration weight
for the log of distribution coefficient pa-
rameters

Parameter Model Prior Weight
Applicability Estimate

Kd 2 and 4, -2.46443 45.51

full domain

Kdl 6 and 8, -2.67047 45.51
inland

Kd2 6 and 8, -1.905192 45.51

near-river

4.6 Alternative Hydrologic Scenarios

The baseline hydrologic scenario for the uncertainty
assessment application to uranium transport at the 300
Area was based on a continuation of current conditions

at the site. That is, it was assumed that the current hy-
drologic conditions at the site will continue in the fu-
ture. This was implemented by simulating a 20-year
period from January 2005 through December 2024
with the river boundary condition taken to be the river
stage during the period 1975 to 1994. This boundary
condition was selected for convenience. In a more so-
phisticated analysis, the river stage could be modeled
as a random variable (correlated in time) sampled from
a distribution consistent with the statistics of the ob-
served river stage.

When considering alternative hydrologic scenarios at
the site, several changes to the future hydrologic condi-
tions can be reasonably proposed. (1) Future land uses
in the surrounding area may change as restoration of
the Hanford Site progresses. One such change consid-
ered for a performance assessment of waste disposal at
the Hanford Site is agricultural development of land
after completion of Site restoration (anticipated to be
mid-2 Ist century). Evans et al. (2000) examined the
potential for agricultural development at the Hanford
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Site and estimated recharge rates resulting for the an-
ticipated irrigation. Mixed use development is also
being considered for the site. (2) The operation of dams
on the Columbia River may change as a result of
changes to dam structures, dam aging, and water use
priorities. These changes will have an impact on the
magnitude and variability of river stage at the 300
Area. (3) Climate change is anticipated to impact the
hydrology within the Columbia River basin in a num-
ber of ways (Leung et al. 2004). Changes in precipita-
tion and temperature may directly impact the recharge
rate at the 300 Area and may indirectly impact the river
stage through resulting changes in dam operations.

One alternative hydrologic scenario was considered in
this application. This scenario assumed that changes to
dam operation results in Columbia River flows that are
closer to its free-flowing state. This was implemented
by simulating a 20-year period from January 2005
through December 2024 with the river boundary condi-
tion taken to be the river stage during the period 1955
to 1974. The river stage during this time period reflects
the much higher peak spring/summer flows that existed
prior to the completion of the Canadian dams on the
Columbia River (Figure 4-19). While this scenario is
not plausible in the near-term, it was used here to dem-
onstrate the uncertainty methodology in this applica-
tion using a scenario that has a significant impact on
flow and transport.

4.7 Prior Scenario Probability

As discussed in Section 2.3.1, since scenarios describe
future conditions, prior scenario probabilities must be
assigned to each scenario based on a subjective under-
standing and judgment of the plausibility of the sce-
nario. While formal methods could be used to estimate
scenario probabilities [e.g., expert judgment and the
approach of Ye et al. (2005) could be applied], for this
application, arbitrary prior scenario probabilities were
used to illustrate the uncertainty assessment methodol-
ogy. A prior probability of 0.7 was assigned to the
baseline hydrologic scenario and a probability of 0.3
was assigned to the alternative scenario.

4.8 Model Calibration

Model calibration (inverse modeling) was conducted to
obtain maximum likelihood parameter estimates so that
the NLL (Eq. 11) and Fisher information matrix (Eq.
12) could be calculated to compute KIC (Eq. 10) and
posterior model probability (Eq. 8). The calibration
was implemented using PEST, whose utilities for
MODFLOW and MT3DMS parameter estimation were
used to link MODFLOW/MT3DMS/PEST. The utili-
ties contain a series of subroutines to extract simulated

heads and concentrations from MODFLOW and
MT3DMS output files corresponding to measured
heads and concentrations selected for model calibra-
tion. Residuals between the simulated and measured
heads and concentrations form an objective function,
which was minimized iteratively to find optimum
model parameters. In this application, prior information
on the Kd parameter(s) was used and included in the
objective function.

4.8.1 Selection of Calibration Data

The available head and concentration observations in
the 300 Area for the period of September 1997 to De-
cember 2004 were reviewed for use in the calibration
of the alternative models. Observations from 21 wells
were selected to provide spatially and temporally rep-
resentative coverage (Figure 4-22). Three wells were
screened in the lower portion of the aquifer (well num-
bers are indicated in Figure 4-22) while the remaining
18 wells were screened near the top of the aquifer. A
subset of data from each of the 21 wells was used in
the calibration with the general goal of two observa-
tions per year at each well if available. The distribution
in time of the selected calibration data is shown in
Figure 4-23. In total there were 430 observations used
in the calibration, of which 222 were head measure-
ments and 208 were concentration measurements.

4.8.2 Weights Associated with Calibration
Data

The weights for head measurements were proportional
to the inverse of estimated observation errors and in-
cluded components related to well-altitude error, well-
location error, nonsimulated transient error, and meas-
urement error. More discussion of these individual er-
ror components can be found in Belcher et al. (2004).
At the Hanford Site, the well-location error was small
enough to be negligible (Vermeul et al. 2003). The
well-altitude error was less than 0.01 m, given a maxi-
mum head gradient of about 0.25%. The measurement
error was about 0.03 m corresponding to a depth of
observation of 30 m. To incorporate nonsimulated tran-
sient error, final head observation error was considered
as 0.06 m.

According to Hill (1998), given a measurement accu-

racy, a•, so that h - a, <_ ]* <-- h + ah (h* and h being

"true" and measured head values), the standard devia-
tion of observation error is ah = a,, /1.96 . This as-

sumes that head observation error follows a normal
distribution with zero mean, and 1.96 is determined
from the 95% confidence interval. Therefore, the
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weights associated with head observations can be esti-
mated via

wh= = 1 1.96 h-a,<h*<_h+aa. (36)
o-h a, / 1.96 a.

With a head observation error of a, = 0.06 m, this

gives a uniform weight of 32.667 for each head obser-
vation used in the calibration.

The weights associated with concentration observations
were initially estimated using lab-reported analytical
errors for uranium concentration measurements at well
399-1-17A, a well near the southern boundary of the
316-5 Process Trenches with a long history of detect-
able uranium concentrations. The total analytical error
reported is shown in Figure 4-24 and can be seen to be
an approximately constant proportion of the reported
uranium concentration. Assuming normally distributed
measurement errors and a 95% probability that the true
uranium concentration is within the range defined by

0

593000 593500 594000 594500

Easting [m, WCS]

595000

Figure 4-22. Distribution of observation wells from which calibration data were selected
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Figure 4-23. Distribution of calibration data in time for (top) head and (bottom) concentration observations

the measured concentration plus or minus the reported
analytical error, the standard deviation of the meas-
urement errors was estimated as the reported analytical
error divided by 1.96.The resulting concentration
weights decrease as the observed concentrations in-
crease. The calibration thus emphasized those observa-
tions where the concentrations were relatively small.
The resulting weighted concentration residuals were
not independent of the weighted simulated concentra-
tions as shown in the upper plot of Figure 4-25. Obser-
vations with very low values of concentration (such as
those from the deeper wells) also contributed an inor-
dinate amount to the calibration objective function.

To improve the calibration results, equal weights were
applied to the concentration observations. The weight
selected, 0.349, was the median of the weights com-
puted as inversely proportional to the observed concen-
trations. This corresponds to a standard deviation of
observation error of 2.87 ptg/l, or a uniform measure-
ment error of 5.62 gg/l. The weighted concentration
residuals from a calibration with equal concentration

observation weights were independent of the weighted
simulated concentration as shown in the lower plot of
Figure 4-25. Weighted concentration residuals in-
creased with simulated concentrations, suggesting that
the weights on the lowest concentration observations
may be too small.

4.8.3 Joint Model Calibration and
Calibrated Model Parameters

Joint calibration of the flow and transport models was
necessary, since the Fisher information matrix (Eq. 12)
of MLBMA must be obtained simultaneously by
jointly calibrating the flow and transport processes.
This results in joint calibration of maximum likelihood
estimates for flow and transport parameters. In addi-
tion, Sun and Yeh (1990) have shown that using con-
centration observations in a joint calibration can im-
prove the calibration of flow model parameters.
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Following Medina and Carrera (1996), NLL (Eq. 11) of
MLBMA was defined as

NLL = Nln(2x)+lnICI+(d-d*) Tc-V(d-d") (37)

where N are the number of head and concentration ob-
servations plus the number of prior parameter esti-

mates, d' is a vector of observations and prior parame-
ter estimates (length N), d is a vector of computed
head, concentration, and parameter values (length N),
and C is the combined covariance matrix of the obser-
vations and prior parameter estimates. The covariance
matrix was taken to be diagonal with elements equal to
the inverse of the weights determined in Section 4.8.2
for the head and concentration observations and Sec-
tion 0 for the prior parameter estimates. As the first two
terms on the right hand side of (Eq. 38) were constant,
the PEST implementation used the objective function

S=(d-d*)rc-t(d-d') (38)

which was minimized iteratively using the Gauss-
Levenberg-Marquardt method (Doherty 2004).

Preliminary parameter sensitivity analysis examined
the impact on the flow and transport model results of
horizontal hydraulic conductivity (e.g., Kh_1 for unit
1), the ratio of horizontal to vertical hydraulic conduc-
tivity (VANI), the specific yield of unit I (Sy_l), po-
rosity, longitudinal dispersivity (alphaL), the ratio of
vertical to longitudinal dispersivity (R-alphaV), and the
linear adsorption distribution coefficient (Kd). The
method of Morris (1991) was used to estimate the dis-
tributions of elementary effects for these parameters.
The mean of each distribution represents the first-order
effect of each parameter. The standard deviation of
each distribution represents the effect of parameter
interactions (without information about which parame-
ters are interacting). Results for Model 4 are presented
in Figure 4-26. The distribution of values represented
by the box plots in this figure results from computing
the sensitivities for each of the model outputs used in
the calibration (all head and concentration observa-
tions). The most important parameters to include in the
calibration, as suggested by the sensitivity analysis,
were the horizontal hydraulic conductivity of units 1
and 5, the linear adsorption distribution coefficient,
longitudinal dispersivity, and the ratio of vertical to
longitudinal dispersivity. Model results were relatively
insensitive to the remainder of the considered parame-
ters.

Preliminary calibrations confirmed the sensitivity re-
sults. Calibration results were more stable when the

insensitive parameters were not included in the estima-
tion process. The calibration results were also im-
proved by fitting the log of the hydraulic conductivity
and distribution coefficient parameters. In addition,
because of a high correlation between alphaL and R-
alphaV, the final calibrations did not fit R-alphaV. The
values of all non-fitted parameters were fixed during
calibration at estimates based on literature values and
professional judgment.

Table 4-8 lists initial values of the calibrated parame-
ters and the ranges used to constrain parameter varia-
tion within PEST for the four alternative models. Pa-
rameter ranges were set large enough to ensure that the
optimal parameter values fell between the limits. In this
table, the homogeneous horizontal hydraulic conduc-
tivity of models 2 and 6 was denoted by Kh. The het-
erogeneous hydraulic conductivity of models 4 and 8
was denoted by Kh_1 and Kh_5 for units 1 and 5. The
homogeneous distribution coefficient of models 2 and
4 was denoted as Kd while the heterogeneous Kd for
zones 1 and 2 of models 6 and 8 were denoted as Kdl
and Kd2, respectively. The initial parameter values
were based on preliminary calibration results for Kh_l,
Table 4-1 for Kh_5, mean values from the surface
complexation model for the Kd parameters, and judg-
ment for alphaL. Parameters that were fixed in the
calibrations are listed in Table 4-9. In most cases, val-
ues of the fixed parameters were based on previous
model applications at the Hanford Site or the literature.

4.9 Model Calibration Results

Each of the four alternative models was calibrated over
the period of September 1997 to December 2004 using
the same set of head and uranium concentration obser-
vations. As stated previously, the flow and transport
models were calibrated jointly. Final calibrated pa-
rameter values for each model are listed in Table 4-10
and presented graphically in Figure 4-27. Of the pa-
rameters estimated, sensitivities to Kh_5 and alpha
were the lowest. This is reflected in the large differ-
ences between models for the calibrated values of these
parameters and in the relatively large confidence limits
forKh_5.

Calibrated results for the hydraulic conductivity pa-
rameters differ from the current average estimates for
the 300 Area given in Table 4-1, but are consistent with
the ranges of values based on the field tests and previ-
ous inverse modeling for the Hanford Site (Table 4-1).
Calibrated hydraulic conductivity for the homogeneous
models was significantly less than the unit 1 hydraulic
conductivities from the heterogeneous models.
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Figure 4-26. Estimated means (top) and standard deviations (bottom) of the elementary effects of Model 4
computed using the method of Morris (1991). Boxplots represent the distribution over all head
and concentration measurements used in the calibration. Median, 10, 25, 75, and 90 percentiles
shown; outliers are outside 5 and 95 percentiles.

Calibrated values of the dispersivity were small for the
homogeneous models - much smaller than the grid cell
size in the primary flow direction (35 m) and very
close to the initial value. For the heterogeneous mod-
els, the calibrated values of the dispersivity were much
larger, on the order of the grid cell size.

Calibrated values for the Kd parameters were greater
than the mean values computed using the surface com-

plexation model results (Sections 4.5.2.5 and 0) but
were within the estimated limits derived from the geo-
chemical modeling. Calibration of Model 6 resulted in
nearly equal values for Kdl and Kd2 while the Model
8 calibration resulted in a value of Kd I greater than
Kd2. Each of these results is contrary to the postulated
geochemical conceptualization and indicates that a
more sophisticated geochemical model than used here
may be necessary.

70



Table 4-8. Initial values and upper and lower limits (in brackets) for parameters estimated in the calibration.
Empty spaces indicate that the parameter was not present in a model. Log-transformed parame-
ters were calibrated for all parameters except alphaL.

Kh Kh_1 Kh_5 alphaL Kd Kdl Kd2
(m/d) (mid) (m/d) (W) (L/kg) (L/kg) (L/kg)

Model 2 15000 3.0 8.0
[1,2x.10] _ __[0.1,100] [0.1,500]

Model4 15000 .150 3.0 8.0
[1 ,2x 10] [0.1,50001 [0.1,100] [0.1,500]

Model 6 15000 3.0 3.0 20.0
[1,2x10 5] [0.1,100] [0.1,500] [0.1,500]

Model 8 15000 150 3.0 3.0 20.0
[1,2x105] [0.1,5000] [0.1,100] [0.1,500] [0.1,500]

Table 4-9. Values of parameters that were fixed
in the calibrations

Parameter Value

Kh_6 0.01 m/d

Kh 7 43 m/d

Kh 8 5.0x10 5 m/d

Sy 0.2

VANI 10

Ratio of transverse to 1.0
longitudinal dispersivity

R-alphaV 0.1

Bulk Density 2100 kg/mr3

Molecular Diffusion 8.64x10-6 m 2/d
Coefficient

The initial and final calibration objective function com-
ponents are listed in Table 4-11 for each alternative
model. The total sum of squared weighted residuals
(SSWR) is the sum of the SSWR due to the head and
concentration observations as well as the prior esti-
mates of the Kd parameters (Eq. 39). The total objective
function favors Model 4 over Model 8 by a small mar-
gin and favors the models with heterogeneous hydrau-
lic conductivity (Models 4 and 8) by a wide margin
over the homogeneous models (Models 2 and 6).

The better fit of Models 4 and 8 is due primarily to the
improved fit to the head observations and primarily to
the improved head fit at wells 3-6, 4-1, and 4-11 (see
Figure 4-22 for the locations of these wells). The
SSWR for the head observations actually increased
during the calibration for Models 2 and 6. This was
apparently necessary to decrease the SSWR for the
concentration observations from their large initial vai-
ues. The initial concentration SSWR for Models 2 and
6 was significantly larger than for Models 4 and 8.

Table 4-10. Calibrated parameter values and 95% upper and lower linear confidence limits (in brackets)

Kh Kh_1 Kh_5 alphaL Kd (Likg) Kdl Kd2
(m/d) (mid) (md) (m) (L/kg) (L/kg)

8097 4.9 26.3
[3385,19371] [3.2,6.6] [10.8,64.2]

Model 4 23,508 11 49.6 18.0
[9733,56775] [0.4,263] [22.8,76.3] [7.6,42.2]

6237 4.6 19.0 20.5
[3261,11926] [3.3,5.9] [9.9,36.2] [10.5,40.1]

Model 8 26,093 780 25.0 30.2 14.3
1 [13079,52055] [179,3410] [6.9,43.1] [14.8,61.4] [7.0,29.1]

71



600
500

-400

300
• 200

100

70.0
60.0
50.0

'- 40.0
30.0
20.0
1I0.
0.0

80
70
60

S50
.= 40

-•30

20
10
0

00
00
00
00
00
00
0

Model 2 Model 4 Model 4 Model 6 Model 8 Model 8
Kh I Kh_5 Kh_ I Kh_5

1p 7
I t------

) 0 
___ __

Model2 Model 4 Model 6 Model 6 Model 8 Model 8
Kdl Kd2 Kdl Kd2

T

AI

___________

suggest that there is room for improvement in the mod-
els.

A comparison between observed and simulated values
at selected wells is shown in Figure 4-29 for two wells
located between the major uranium sources. Well 399-
2-2 is close to the river while well 399-1-17A is farther
inland. (See Figure 4-22 for well locations). Calibration
data indicate observations that were included in the
calibration. Measured data are observations that were
not included in the calibration. There are only minor
differences between heads simulated by the four model
alternatives at these wells. For concentrations, Models
2 and 6 produce similar results, but there are differ-
ences in the results of the other two models. In general,
the calibrated models appear to fit the observed heads
better than the observed concentrations. Figure 4-30
presents calibration results for two wells located south
of the major uranium sources. Well 399-3-10 is located
near the river while well 399-4-11 is much farther
inland. Models 2 and 6 produce very similar results at
these wells for both heads and concentrations. Unlike
the other wells, at well 399-4-11 there are noticeable
differences between the heads simulated by the models.

Simulated uranium concentrations at the end of De-
cember 2004 are compared in Figure 4-31 to the ob-
served values from the fourth quarter of 2004. Results
are shown for Model 4. Simulated values are presented
as banded color contours where the color interfaces
represent simulated concentration values of 10, 30, 50,
70, 90, and 110 ptg/l. The observed values are repre-
sented by labeled contours at 10, 30, 50, and 70 ýIg/l. In
general, simulated concentrations appear to be some-
what lower than the observed concentrations except
near the river where there are two regions of elevated
concentration in the simulated results. Overall, the
simulated results reflect the general character of the
observed concentrations at the end of the calibration
period.

Table 4-11. Calibration objective function compo-

nents for each alternative model

Model: 2 4 6 8

Initial 32405 29949 32405 29949SSWR head- Final 32824 28595 33104 28170

Initial 93077 44495 96113 48351
SSWR-conc Final 30219 30404 30474 29869

Initial 280 280 133 133
SSWRprior Final 1619 1070 1961 2747

Initial 125761 74724 128651 78433
SSWR Final 64662 60069 65539 60786

Model 2 Model 4 Model 6 Model 8

Figure 4-27. Comparison of final calibrated pa-
rameter values: (top) hydraulic con-
ductivity parameters, (middle) adsorp-
tion parameters, and (bottom) disper-
sivity

There were relatively small differences between mod-
els in the final fit to the concentration observations.
Model 8 with its two Kd zones fits both the head and
concentration observations slightly better than Model
4, but the contribution to the objective function from
the Kd prior component is significantly larger for
Model 8.

Plots of simulated versus observed heads and uranium
concentrations are shown in Figure 4-28 for Model 4.
Results for the other models appear similar and are not
shown here. Observed heads are underestimated for the
highest heads and overestimated for the lowest heads,
primarily as a result of the fixed head on the western
boundary of the model. The pattern is similar for the
uranium concentrations with the largest concentrations
being somewhat severely underestimated. These results
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Figure 4-28. Simulated versus observed (top) heads and (bottom) uranium concentrations for Model 4

4.10 Posterior Model Probabilities

The results of the model calibrations were used to
compute posterior model probabilities as described in
Section 3.1.1. Equation (8) provides the expression for
posterior model probabilities and contains two needed
quantities: the prior model probabilities, which were
assumed to be an equal 25% for the four models of this
application, and the AKIC value for each model. The
expression for KIC (Eq. 10) contains three terms. The
negative log likelihood term was computed here as

Where a 2 is the maximum likelihood estimate of the
error variance

2 SSWR

N
(40)

NLL represents the fit to the observations used in the
calibration. The smaller this value, the better the fit. As
can be seen in Table 4-12, Model 4 has the smallest
value of NLL followed by Model 8, Model 2, and
Model 6.

NLL = N ln(oy2) (39)
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Figure 4-29. Calibration results for (top two plots) well 399-2-2 and (bottom two plots) well 399-1-17A
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Figure 4-31. Model 4 simulated uranium concentrations in December 2004 (color) overlain by contours based
on observed uranium concentration (jig/l) in the fourth quarter of 2004. Color levels indicate the
10, 30, 50, 70, 90, and 110 jtg/I locations. Dark blue indicates the Columbia River.

The second term in KIC, Nk ln(N/27t), is a function of
the number of calibrated parameters, Nk, which varies
between models, and the number of observations,
which is constant for all models. This term is some-
times interpreted as a representation of model complex-
ity. In this sense, K1C favors models that are less com-
plex. Values of this term are given in Table 4-12 and
can be seen to favor Model 2 over all other models and
Models 4 and 6 over Model 8.

The third term in the computation of KIC is the nor-
malized observed Fisher information matrix (Eq. 12).
This term can be expressed as

ln41l=1In NL ln(N-N' Il1):-N, In N + nIII

where I is the observed Fisher information matrix,
computed here as

(41)

In III = In 1' 1 = - In 1 (42)

and Y is the maximum likelihood estimate of the pa-
rameter covariance matrix. If the parameter covariance
matrix is reported by the parameter estimation soft-
ware, the determinant can be computed directly with
care taken to observe two requirements.
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Table 4-12. Calibration results and computation of
model probabilities using KJC

Model: .2 4 6 8

SSWR 64662 60069 65539 60786
Nk 3 4 4 5

G -=SSWR/N 150.38 139.70 152.42 141.36
NLL=Nln(a2) 2155.65 2123.97 2161.44 2129.07

Nkln(N/27t) 12.68 16.90 16.90 21.13

In I F I -20.20 -38.69 -13.48 -39.71

KIC 2148.13 2102.18 2164.87 2110.49
Rank 3 1 4 2

AKIC 45.95 0.00 62.69 8.32
p(MkID) 0.00% 98.46% 0.00% 1.54%

Eigenvalues were evaluated by running PEST with the
control parameter NOPTMAX=- I and with all parame-
ters untransformed and set at their optimal values.

As discussed in Section 3.1.1, the Fisher information
term causes KIC to favor models with relatively small
information content per unit sample or, equivalently, a
correspondingly large parameter estimation variance.

Values of In I F I for the four alternative models are

given in Table 4-12. It can be seen that this term favors
Model 8 over Model 4 (slightly) with Model 2 and
Model 6 having much larger values.

Final KIC values are given in Table 4-12 with the re-
sult that Model 4 is preferred over Models 8, 2, and 6
in that order. The AKIC value for Model 8 is 8.32 with
Models 2 and 6 having much higher values. With equal
prior probabilities, the posterior probabilities were
computed using Eq. (8) and are also given in Table
4-12. The result is that Model 4 is preferred to the near
exclusion of the other models. Referring to Figure 3-1,
it can be seen that the sensitivity of model probability
to AKIC means that the small differences in the three
terms of KIC can produce a large difference in poste-
rior model probabilities.

4.11 Prediction

For the first requirement, if the parameter covariance is
reported for transformed parameters, as is done in
PEST, the covariance must be recomputed for the un-
transformed parameters. For PEST this can be accom-
plished by setting the parameter NOPTMAX=-I in the
PEST control file and rerunning PEST without parame-
ter transformations and with initial parameter values set
to the optimal values.

For the second requirement, if the parameter estimation
software uses least squares (as does PEST) instead of
maximum likelihood, the parameter covariance re-
ported is the least squares estimate and must be con-
verted to the maximum likelihood estimate as follows.

N-N LS (43)
N

where FILS is the least squares estimate of the parameter
covariance matrix.

PEST reports the eigenvalues of the (least squares)
parameter covariance matrix, which were used to
evaluate Eq. (42),

ln jZ ] = in N -N Ls In ( ----- N--) + In lE . (4

=NklnN~j+lnA~(44)
(N - Ný N,N, In - + EIn Ai

where Xi are the eigenvalues. The third term of KIC
was thus computed using the PEST output as

InIFI = -N, InN- N, In -I•k In A, (45)
N i=1

The fact that Model 4 dominates the other alternatives
in terms of posterior model probabilities means that
only Model 4 would need to be applied in the predic-
tive period. To better illustrate the full application of
the uncertainty methodology, however, we used all
four models for prediction under the baseline scenario.
For the alternative scenario, only Model 4 was applied.

There is an independent reason to apply even low-
probability models in the predictive period. If the con-
ditions of the predictive period are significantly differ-
ent than the calibration period, differences between
models that were not apparent in the calibration may
appear during prediction. Applying even low-
probability models in the predictive period may bring
these differences to light. At that point, the conditions
of the predictive and calibration periods and the data
used in the calibration can all be reviewed to determine
whether the model probabilities should be re-evaluated.

4.11.1 Predictive Simulation Description

The predictive period for the 300 Area application was
from January 2005 to January 2025. The simulation
domain and model discretization were unchanged for
the predictive simulations. Groundwater heads and
uranium concentrations from the end of the calibration
period were used as the initial conditions for the pre-
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dictive modeling. Boundary conditions used in the pre-
dictive simulations were unchanged except for the head
boundary representing the Columbia River stage. For
the baseline scenario, the river stage simulated by
Waichler et al. (2005) for the period 1975 to 1994 was
used in the predictive period (see Figure 4-19). For the
alternative scenario, the river stage simulated by
Waichler.et al. (2005) for the period 1955 to 1974 was
used. In both cases, monthly average river stage was
used with one-month stress periods in the flow models.

4.11.1.1 Modeled Parameter Uncertainty

The calibration results were used to simulate parameter
uncertainty in the predictive period by assuming that
the calibrated parameters (or the log of the parameters
in the case of the hydraulic conductivity and distribu-
tion coefficient parameters) followed a multivariate
Gaussian distribution with mean values given by the
optimal parameter values and a covariance given by the
maximum likelihood estimated parameter covariance
(Eq. 43).

The Latin hypercube sampling code of Iman and
Shortencarier (1984) was used to generate 200 realiza-
tions of the calibrated parameters for each of the four
model alternatives. The resulting parameter distribu-
tions and correlations accurately reflected the input
distributions determined from the calibration results.
Sample distributions are shown in Figure 4-32 for
Kh-l and alphaL of Model 4.

As mentioned in Section 2.3.1, characteristics of the
scenarios could have been modeled as random vari-
ables. Specifically, the future river stage is clearly un-
certain - modeling the river stage as a temporally cor-
related stochastic process would have been justified.
The simulated results of Waichler et al. (2005) could
be used to derive appropriate statistics of the stochastic
process for the two scenarios. Each Monte Carlo reali-
zation would then include not only the randomly sam-
pled parameters described above, but also a randomly
sampled river stage time series. Scenario uncertainty
would thus include not only the effect of the two sce-
narios (baseline and the alternative), but also the ran-
dom variation in the river stage time series.

4.11.2 Baseline Scenario

The parameter realizations discussed in the previous
section were used in a Monte Carlo simulation to com-
pute flow and uranium transport over the predictive
period. The resulting head and concentration distribu-
tions included the impact of parameter uncertainty. A
Monte Carlo simulation was carried out for each of the

four model alternatives to incorporate the impact of
model uncertainty.

There are various types of prediction results that may
be of interest. For example, the mean and variance of
concentration can be viewed as a function of time to
examine the evolution of the plume over the predictive
period and where the greatest concentration uncertainty
exists (that portion due to parameter uncertainty).
Figure 4-33 shows the concentration mean and vari-
ance in January 2010. This is a view looking northwest
with the river grid cells removed. The variance is gen-
erally largest along the river and in the areas of high
mean concentration.

It may also be of interest to examine the predicted out-
put at a specific location. Figure 4-34 shows the ura-
nium concentration at well 399-1-1 near the river as
predicted by Model 4. Concentrations computed for all
200 realizations are shown as a function of time along
with the average concentration. The concentration vari-
ance grows over time at this location. In addition, the
concentration at specific times appears to be somewhat
skewed.

For regulatory or management applications, the pre-
dicted value of interest is likely to be a single quantity
that can be derived from the spatial and temporal dis-
tributions of concentration. Examples include the
maximum concentration along a compliance boundary
during the predictive period, the length of time for the
maximum concentration to fall below a limit, and the
peak dose over the predictive period as computed from
predicted concentrations and a specified exposure sce-
nario. A probability distribution for each of these quan-
tities could be estimated from the Monte Carlo simula-
tion results. These distributions, one for each alterna-
tive model, are the p(A I Mk,D) of Eq. (1). To illus-

trate such results for the 300 Area application, the dis-
tributions of predicted uranium concentration at well
399-1-1 on 1/1/2025 are shown in Figure 4-35 for each
of the four model alternatives and the model average
using the posterior model probabilities from Table
4-12. Empirical probability density functions based on
the 200 realizations are shown in the upper plot while
the lower plot shows the empirical cumulative distribu-
tion functions. As determined by the posterior model
probabilities, the model-average distribution closely
follows the distribution from Model 4.

The distributions of concentration for Models 2 and 6
were nearly identical at this time and location - the
heterogeneity of Kd (Model 6) had little impact on the
predicted concentration when the hydraulic conductiv-
ity was homogenous throughout the domain. This was
not unexpected as the calibrated values of Kdl and

78



12

10*

E
Z

8

6
E
Z

0

4

Kh_ (m/d)

20 30 40 50 60 70 80

alphaL (mn)

1.0

E

0.8

0.6

0.4

0.2

4

Kh_1 (m/d)

20 30 40 50 60 70 80

alphaL (m)

60x1 03

20 30 40 50 60 70 80

alphaL (m)

Figure 4-32. Sample histograms, cumulative distribution functions (mean +/- one standard deviation shown),
and scatterplot for Model 4 parameters Kh_1 and alphaL resulting from 200 Latin hypercube
realizations (correlation = 0.27)

Kd2 for Model 6 were nearly the same (Table 4-10)
with a correlation coefficient of 0.86. In addition, the
calibrated value of the homogeneous Kd for Model 2
was similar to the calibrated values of Kdl and Kd2 for
Model 6. Models 4 and 8 with heterogeneous hydraulic
conductivity had much larger mean uranium concentra-
tions at well 399-1-1 on 1/1/2025 than the homogenous

models. The variance of predicted concentration was
also much larger for the heterogeneous models. The
heterogeneity of Kd in Model 8 had a noticeable effect
on the predicted uranium concentration distribution,
producing a smaller mean and somewhat smaller vari-
ance than Model 4 with homogeneous Kd.
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Figure 4-34. Monte Carlo simulation results for Model 4 under the baseline scenario: uranium concentration
(gg/l) at well 399-1-1 for 200 realizations and average concentration
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The model-averaged concentration mean and variance
can be computed from the individual model results
using Eqs. (18) and (19) or (20). Because of the domi-
nant probability for Model 4 in this application, the
model-averaged mean and variance were essentially
the same as the mean and variance of Model 4. The
model-averaged distribution shown in Figure 4-35 can
be used to estimate risk-related quantities. For exam-
ple, the probability that the uranium concentration at
well 399-1-1 exceeds 30 p•g/l on 1/1/2025 is estimated
to be about 1%.

4.11.3 Alternative Scenario

As discussed previously, the alternative scenario con-
sidered in this application assumed variability in Co-
lumbia River stage at the 300 Area reflective of condi-
tions prior to 1975. This was modeled by simulating
uranium transport from January 2005 through Decem-
ber 2024 using a head boundary condition along the
river equal to the estimated river stage from 1955 to
1974. Compared to the baseline scenario, this boundary
condition was more variable with significantly higher
late spring/early summer peaks (Figure 4-19). For the
alternative scenario, the random realizations of parame-
ter values used in the Monte Carlo simulation were
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Figure 4-35. Probability distributions for the predicted uranium concentration at well 399-1-1 on 1/1/2025:
(top) empirical probability density functions for the four model alternatives and the model aver-
age and (bottom) empirical cumulative distribution functions
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identical to the values used in the baseline scenario.
200 realizations of groundwater flow and uranium
transport were simulated.

Uranium concentration at well 399-1-1 over the entire
predictive period is shown for all 200 realizations in
Figure 4-36. These results can be compared to the
baseline scenario results shown in Figure 4-34. For the
alternative scenario, the mean concentration is much
more variable and falls from its peak value more
quickly, particularly in the first few years of the simu-
lation. The concentration variance appears to grow
more rapidly in the early part of the simulation and
appears be greater throughout the predictive period
than under the baseline scenario.

Model-averaged results could be computed for the al-
ternative scenario in a manner identical to that dis-
cussed above for the baseline scenario and shown in
Figure 4-35 for the predicted concentration at well 399-
1-1 on 1/1/2025. Corollary results for the alternative
scenario are not shown here because the model-
averaged results are nearly identical to the results from
Model 4 (discussed in the following section) due to the
dominant probability of Model 4.

4.11.3.1 Scenario-Averaged Prediction

Probability distributions for predicted quantities that
include parameter, model, and scenario uncertainty can

be computed using Eq. (21). The model-averaged
probability distributions for each scenario were aver-
aged over the alternative scenarios using the scenario
probabilities as weights. For this application, the base-
line scenario had a probability of 0.7 and the alterna-
tive scenario had a probability of 0.3. Model-averaged
probability density functions for the uranium concen-
tration at well 399-1-1 on 1/1/2025 are shown in the
top plot of Figure 4-37 for the two scenarios. The sce-
nario-averaged density function was computed as the
weighted average of these two densities. The corre-
sponding cumulative distribution functions are shown
in the lower plot of Figure 4-37. The mean concentra-
tion is smaller for the alternative scenario while the
concentration variance is larger. The distribution for
the alternative scenario also appears to be more highly
skewed.

Risk-related quantities can be estimated directly from
the scenario-averaged distribution. For example, the
probability that the uranium concentration at well 399-
1-1 exceeds 25 gig/l on 1/1/2025 is estimated to be
about 30 percent. This estimate includes the impact of
parameter uncertainty, conceptual model uncertainty,
and scenario uncertainty. At the same time, the contri-
bution to the total uncertainty from each of these com-
ponents is made clear in the figures (Figure 4-35 and
Figure 4-37). These contributions can also be com-
puted using the equations presented in Section 3. The
mean and variance (Eqs. 23 and 24) of the predicted
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Figure 4-36. Monte Carlo simulation results for Model 4 under the alternative scenario: uranium concentra-
tion (.tg/l) at well 399-1-1 for 200 realizations and average concentration
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concentration at well 399-1-1 on 1/1/2025 are given in Table 4-13. Mean, variance, and standard deviation
Table 4-13. The variance is broken down into the of individual scenarios and the scenario
within-scenario and between-scenario components as average for the predicted concentration
computed from Eq. (25). at well 399-1-1 on 1/1/2025

The impact of changes in the model or scenario prob-
abilities can be readily computed and viewed graphi-
cally. In addition, differences in the distributions of
predicted values due to the model or scenario alterna-
tives are readily apparent. Thus the impact on risk-
related quantities can be easily seen. For example, the
probability that the uranium concentration at well 399-
1-1 exceeds 25 pg/I on 1/1/2025 is estimated to be
about 45 percent under the baseline scenario and just 5
percent under the alternative scenario. Such informa-
tion may be valuable in justifying the use of specific
scenarios and supporting decisions based in part on the
simulation results.

Baseline A
Scenario

Probability 0.7
Mean 24.40
Variance 8.70
Std Dev 2.95
Within-Scenario Variance
Between-Scenario Variance

Itemative
Scenario

0.3
18.30
24.77

4.98

Scenario
Average

22.57
21.34

4.62
13.52
7.82
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5 CONCLUSIONS

This report has described a methodology to systemati-
cally and quantitatively assess predictive uncertainty in
groundwater flow and transport modeling with consid-
eration of the combined impact of hydrogeologic un-
certainties associated with the conceptual-mathematical
basis of a model, model parameters, and the scenarios
to which the model is applied. The application of this
methodology to realistic, field-scale groundwater flow
and transport modeling has been demonstrated using
uranium contamination at the 300 Area of the U.S.
Department of Energy Hanford Site as an example.

A review of published results from hydrogeologic
model post-audits and other model applications dem-
onstrated that the primary errors in groundwater model-
ing predictions can often not be assigned to errors in
parameter values. In 9 of the 16 applications reviewed,
conceptual model errors were most significant. Model
scenario errors were the most significant in 4 of the 16
applications. Parameter errors were most significant in
three of the applications. This (limited) review suggests
that a comprehensive approach to uncertainty assess-
ment in hydrogeologic modeling should not be limited
to parameter uncertainties, but must also consider the
potential for significant conceptual model and scenario
uncertainties if a realistic estimate of predictive uncer-
tainty is desired.

In a quantitative uncertainty analysis, parameter uncer-
tainty is typically characterized using continuous prob-
ability distributions. When characterizing conceptual
uncertainty in hydrogeologic modeling, specifying a
coniinuum of conceptual model possibilities is likely to
be infeasible. Instead, it is generally more appropriate
to postulate a discrete set of alternative conceptual
models. Given a set of alternatives, one might suggest
that model uncertainty be resolved by simply compar-
ing predictions from the alternative models. This ap-
proach has a serious drawback, however. Without a
quantitative measure of the degree of plausibility of
model alternatives, it is impossible to determine the
risk of a decision based on the model predictions. Simi-
larly, justifying the adoption of the most conservative
model for use in prediction will be easier if the plausi-
bility of the conservative model can be compared to the
alternatives.

Maximum Likelihood Bayesian Model Averaging was
used here to estimate model probabilities, which are a
measure of the relative degree of plausibility of a set of
alternative models. MLBMA is an optimal and compu-
tationally feasible way of combining the predictions of
several competing models and assessing their joint

predictive uncertainty. It is a general method, applying
to deterministic and stochastic models, and to complex
and simplified models.

The model-averaging approach has been criticized on
the basis that there is only one model corresponding to
the physical reality and therefore an average over sev-
eral models has no physical interpretation. Although
the models considered here are physically-based, the
inherent complexity of the hydrogeologic environment
means that all models considered will be an approxi-
mation to physical reality. When appropriately formu-
lated, each model alternative will have some merit in
reproducing aspects of the physical system, this merit
being quantified by each model's probability. Since we
interpret model probability as a relative measure with
respect to the other model alternatives considered, a
model-averaged consequence has an intuitive and con-
sistent meaning. Note that in an application of
MLBMA the predicted consequences of the physics as
rendered by the models are averaged, not the underly-
ing physics.

Model averaging has also been criticized for masking
information essential to the decision maker. It is dem-
onstrated in this report, both in the abstract and in the
concrete application to uranium transport at the 300
Area, that the MLBMA results can be presented so as
to fully inform a decision, clearly illuminating the ef-
fect of model uncertainty and the importance of a con-
sistent and defensible means to estimate model prob-
abilities. Model averaging reduces the risk of relying
on an overly conservative model and provides a consis-
tent and quantitative way to address model uncertainty
in the context of a regulatory decision.

In the framework adopted in this report, estimated pa-
rameter values and model probabilities are based on
information and data available for the model calibra-
tion, referred to here as the history-matching period.
That is, parameter values and model probabilities are
estimated as part of the process of model development
and evaluation. The characterizations of parameter and
model uncertainty resulting from this process can be
projected into the period over which model predictions
are needed, referred to here as the predictive period. As
defined here, a scenario is a description of the future
conditions under which a model is applied, conditions
that are inherently uncertain and apply only in the pre-
dictive period. A comprehensive assessment of predic-
tive uncertainty thus requires that scenario uncertainty
be explicitly considered. However, in the limited defi-
nition used here, a scenario can be reduced to a set of
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conditions described by the three elements of any
simulation model: geometry and parameterization,
structure of governing equations, and forcing. Since we
presently know, albeit imperfectly, how to deal with
parameter uncertainty, uncertainty in the model struc-
ture, and uncertainty in the forcing terms, we know
mathematically how to deal with scenario uncertainty.
Most of the time a scenario will impact mainly forcing
terms, which are often easier to deal with.

MLBMA was extended to include scenario uncertainty
in a joint estimation of predictive uncertainty. This
requires postulating a set of alternative scenarios and
the probability of their occurrence. As with model
probabilities, the scenario probabilities are interpreted
as relative measures of the degree of plausibility of the
scenarios. Unlike model probabilities, at the time of
prediction there is no opportunity to condition the sce-
nario probabilities on observation. Scenario probabili-
ties are thus prior probabilities and are appropriately
interpreted as subjective measures based on current
knowledge, experience, and judgment. The MLBMA
methodology requires that alternative scenarios be mu-
tually exclusive, a condition that can be enforced by
defining the scenarios as possible combinations of al-
ternative events that need not be mutually exclusive.
Scenario probabilities can be determined from esti-
mates of the marginal and conditional probabilities of
these events.

In deriving MLBMA with scenario averaging, the as-
sumption was made that the dataset used for model
calibration is independent of the scenario. That is, the
occurrence of any particular scenario in the future does
not affect the probability of observing the data in the
past. As a result, the model calibrations are not a func-
tion of the scenario and do not need to be recomputed
under each scenario. This significantly reduces the
computational requirements of the methodology. To
incorporate scenario uncertainty, predictive simulations
are conducted with the alternative models under each
alternative scenario. While this is computationally ex-
pensive, it is straightforward and would be carried out
in any case unless scenario uncertainty is completely
ignored. Although not considered in the application
presented here, it is possible to include additional pa-
rameter uncertainty specific to a scenario (i.e., not pre-
sent in the history-matching period) in the predictive
simulations.

A previous application of MLBMA illustrated the su-
periority of using the model-averaged result from
MLBMA over any individual model. The application
to the Hanford Site 300 Area uranium plume advances
the uncertainty assessment methodology by including
the impact of hydrologic scenario uncertainty and by

applying the methods to a more complex problem and
relevant system: transient groundwater flow and trans-
port of a radionuclide from an uncontrolled disposal.
The application should be viewed as an example, how-
ever, since significant uncertainties were ignored (pri-
marily uncertainty in uranium sources) and models
were simplified in critical ways (e.g., the geochemistry,
saturated flow only). The application illustrates the
very real tradeoffs that must be made when modeling
complex systems between incorporating complexity in
the model and the computational demands of model
calibration and uncertainty assessment. Application of
the methodology to a similarly-scaled, three-
dimensional, variably-saturated model incorporating
reactive geochemistry is currently likely to be compu-
tationally infeasible. In spite of these limitations, the
application illustrates all aspects of the methodology
and can serve as a template for future applications.

As described in the report, there exists at the 300 Area
a significant amount of data regarding aquifer heads,
uranium concentrations, and site geochemistry. Despite
this, there are significant uncertainties that remain,
including the hydraulic properties of the unsaturated
zone, the extent and magnitude of the current uranium
contamination in the unsaturated zone, and the histori-
cal flux of uranium to groundwater. As is the case at
the 300 Area, the historical data is not always optimal
for use in model calibration. Where models are to be
used in site management, data collection needs to be
targeted for use in model development and evaluation,
including calibration and uncertainty assessment.

Data continue to be collected at the 300 Area site and
the regulatory models continue to be refined. Four
large-diameter boreholes were completed recently with
continuous split-spoon samples collected to better de-
fine the distribution of uranium. Physical and geo-
chemical properties have been measured on more than
100 of these samples. Slug tests and pump tests were
performed on the completed wells to provide hydraulic
parameter estimates. In addition, a large-scale tracer
test was recently conducted using one of the wells as
the injection well. These recent data were not used in
the application presented here. Due to the iterative na-
ture of the methodology, however, these data could be
incorporated in an updated analysis in a very straight-
forward manner.

For this application, prior parameter information was
valuable in producing reasonable estimates of the ura-
nium adsorption coefficients. Without the prior infor-
mation, adsorption coefficients were unreasonably
large. Since the prior information exists, including it in
the calibration was justified. The poor calibration re-
sults obtained without the prior information suggest,

86



however, that the geochemical conceptualization of the
models needs to be improved. This is also suggested by
the failure of the calibrations to produce the expected
relationship between adsorption coefficients in the two
zones used in Models 6 and 8, and by the inability to
reproduce large observed concentrations.

Selection of weights for the calibration data had a sig-
nificant effect on the calibration results. Actual labora-
tory measurement error for the uranium concentration
data is likely to be proportional to the concentration.
Using weights based on estimated laboratory meas-
urement errors produced inferior calibrations to those
obtained using equal weights for the concentration ob-
servations. The use of equal weights implies that a
concentration-independent sampling error dominates
the uranium concentration measurement error.

Model probabilities are very sensitive to the magni-
tudes of the KJC differences. Thus changes in model
assumptions and inputs, such as fixed parameter values
and uranium sources, could alter the model probabili-
ties. Changes in calibration inputs, such as the selection
of data, may have the same effect. The sensitivity of
model probability to factors influencing KIC differ-
ences (as well as other model discrimination criteria
such as AIC) warrants further investigation.

Although the methodology is formulated using maxi-
mum likelihood parameter estimation, results from a
least squares parameter estimation can be used as well.
The 300 Area application used the least squares code
PEST to complete the model calibrations. Computation
of the model probabilities from the PEST results were
completed in a spreadsheet.

For the 300 Area application, one model dominated the
other alternatives. This result implies that only the
dominant model needed to be used in predictive simu-
lations. For illustrative purposes, however, all four
models were used. In some cases, it may be reasonable
to apply low-probability models to the prediction. If the
conditions of the predictive period are significantly
different than the calibration period, differences be-
tween models that were not apparent in the calibration

may appear during prediction. Applying even low-
probability models in the predictive period may bring
these differences to light. At that point, the conditions
of the predictive and calibration periods and the data
used in the calibration can all be reviewed to determine
whether the model probabilities should be reevaluated.

Predictive simulations were carried out for the 300
Area application over the period 2005-2025 using all
four models and under two alternative scenarios.
Monte Carlo simulation was used to simulate parame-
ter uncertainty. Selected uranium concentration results
were shown to illustrate the model and scenario aver-
aging. These figures and the accompanying tables illus-
trate the individual contributions to predictive uncer-
tainty of the model, parameter, and scenario uncertain-
ties. In this case, model uncertainty was negligible due
to the dominance of a single model. Parameter and
scenario uncertainties were significant.

In a regulatory application of the methodology, prob-
ability distributions of concentration would also likely
be computed. The regulatory quantity of interest may
be a quantity derived from predicted concentration,
however, such as peak dose over a given time period or
a mortality risk to a specific population. In these cases,
the execution of the methodology would be identical
except that the desired regulatory quantity would be
computed for each Monte Carlo realization and its dis-
tribution would be averaged over the alternative mod-
els and scenarios. Figures illustrating the results would
be for the regulatory quantity instead of for contami-
nant concentration.

Application of the uncertainty methodology requires
the calibration and probabilistic simulation of multiple
models and is therefore computationally demanding.
For the 300 Area application, however, computations
were carried out on inexpensive desktop computers. In
addition, the application was completed using primarily
public-domain software tools. The 300 Area applica-
tion thus demonstrates the practicability of applying a
comprehensive uncertainty assessment to large-scale,
detailed groundwater flow and transport modeling.
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Appendix A

Derivation of Posterior Mean and Variance Considering Model
Structure and Parameter Uncertainty for a Given Scenario

Posterior mean E (A IS,, D) can be evaluated via

E (A ISi,,D)= f~p (Ajs 1 , D) dA (Al1)

Substituting the expression of p(AIS,,D) (8) into (A1) gives
K

E(AIS,,D) = fA'p(A I Mk,S,,D) p(Mk IS,,D)dA (A2)
k=1

which can be rewritten as

E(AIS, D) = E .AP(AIM,,S,,D)dAp(M, 1S1,D) (A3)

Considering thatE(AlMk,S ,D)= fAp(AIMk,Si,D)dA, (3) leads to (18) directly.

Posterior variance Var (AS,, D) can be evaluated via

Var,(AIS,,D) = E[(A-E(AIS,,D)]2 ID)= JfA-E(AIIs,,D)] 2 p(Ajs,,D)dA
-' (A4)

= fA2p(AIS,,D)dA-2E(AIS,,D) JAp(AIS,,D)dA+[E((Sj,,D)]2 fp(AIlS,,D)dA

Recalling (Al) and Jp(AISi,D)dA = 1, the last two terms of (A4) are

-2E(AIS,,D) JAp(AIS,,D)dA+[E(AISi,D)]2 fp(AIS,,D)dA [E(AISD)] 2  (A5)

and (A4) thus becomes

Var(AIS,,D)= fA'p(AIS,,D)dA-[E(AIS,,D)] 2  (A6)

Substituting the expression of p(AIS,,D) (15) into the first term at the right hand side of (A6) gives
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K

JA 2p(AIS,,D)dA= JA 2Zp(AIMk,S,,D)p(Mk IS,,D)dA
k=1

Z fJA2p(AIMk,S,,D)dAp(Mk ISD) (A7)
k=l

KZE(A2IM,,S,,D)p(Mk S,,D)
k=l

Substituting the expression of variance

E(A 2Mk, S,,D) = Var(AI Mk ,S,,D) + [E(Al M,.,S,,D)] (A8)

into (A7) gives

JA2p(AIS,,D)dA: Z[Var(AIM,,S,,D)+[E(AIMkSS,D)] ]p(MkIS,,D) (A9)

Substituting (A9) into (A6) yields (19) directly.
Equation (19) can be written as

Var(AIS,,D)=

ZVar(AIMkS,,D)p(Mk IS,,D)+Z[E(AIMA ,S,, D) p(Mk IS,,D)-AE(A)S,,D)J
k=l k=1

Consider the expression

Z[E(AIMk ,S,,D)- E(AIS,,D)] p(M, IS,,D) = j[E(AIM, ,S,,D)] p(M, IS,,D)
k=l k=1 (All)

-2E(AISI,D)ZE(AIMk ,S,,D)p(MA IS,,D)+LE(AIS,,D)j ZP(Mk Is,D)
k=1 k=1

Given (17) and (18), (A11) becomes

K

Z[E(AIMk,S,,D)-E(AIS,,D)] p(Mk IS,,D)=
k=1 (A12)
L[E(AIMk,S,SD)]- P(Mk IS,,D)-[E(AlSi,D)I

k=1

Substituting (A12) into (A10) leads to (20) directly.
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Appendix B

Derivation of Posterior Mean and Variance Considering Model
Structure, Parameter, and Scenario Uncertainties

Posterior mean E(AID) can be evaluated via

E(AID) = JAp(AID)dA (B1)

Substituting the expression of p (AID) (21) into (B 1) gives
I K

E(AID) = JA -Zp(AIMk,S,,D)p(Mk IS,,D)p(Si)dA (B2)
i=I k=l

which can be rewritten as
I K

E(AID) = Z L Ap(AIM,,Si,D)dAp(MISj,D)p(Si) (B3)
i=1 k=1

Considering that E(AIMk, Si, D) = Ap (A Mk ,Si, D)dA, (B3) leads to (23) directly.

Posterior variance Var (AID) can be evaluated via

Var(,xID) =E([A -E(AID)]2 ID)= J[A-E(AID)] p(AID)dA (B4)

= fA2p(AID)dA - 2E(A ID) fAp(AID)dA +[E(A[D)] 2 Jp(AID)dA

Recalling (B1) and Jp(AID)dA = 1, the last two terms of (B4) are

-2E(AID) JAp(AID)dA +[E(AID)] 2 fp(AJD)dA =-[E(AID)] 2  (B5)

and (B4) thus becomes

Var(AID) = JA2p(AID)dA-[E(AID)]2 (B6)

Substituting the expression of p(AID) (21) into the first term on the right hand side of (B6) gives
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JS2p(A D)dA = JA2jIp(AIMk,S,,D)p(Mk IS,,D)p(S,)dA
i=1 k=1

= K£ A'p(AIMk,S,,D)dAp(MkISjD)p(Sj) (B7)
i=1 k=1

I K

SZZE(AI Mk,S,.D)p(Mk IS1,D)p(Sj)
i=1 k=1

Substituting the expression of variance

E(A2 Mk,S,,D) = Var(AIMk,S,D)+[E(Al Mk,Si,D)]' (B8)

into (B7) gives

JA2p(AID)dA:

I (I)E )]]P(MI (139)
EI[Var (A k, M S,,D) + [E (Al Mk.Si,.D p ISj,D p(Sj)

i=1 k=1

Substituting (B9) into (B6) yields (24) directly.
Considering (19), equation (24) can be written as

Var(AID) = a( (A IS D)+[E(AIS,,D)]2)p(S, )-[E(AID)] 2

(B110)
= ZVar(AIS,,D)p(SJ)+ Z[E(AIs,,D)] p(S,)-[E(AID)]1

i=l i=1

Consider the expression below

Z[E(AIsj,D)-E(AID)] p(S,)
•=1 (Bll)

Z[E(AIS,,D)]2p(S,)-2E(AID)I 
E(AIS,,D)p(S,)+[E(AID)]

2  1P(S1)

i=l i=l i=1

which, using (22), becomes

j[E(AIS,,D)-E(A D)] (,
(B112)

=E[E(AIS,,D)] p(S,)-2E(AID) E(AIS,,D)p(S,)+[E(AID)]2
i=1 i=1

Using (19), (B12) can be written as

B.2



Z-[IE( A[Sj,D)- E( AjD)z -p ( Si)

- Z[E(Ais,,D)]2 p(S,)-2[E(AID)] +[E(AID)] (113)

={[•(AIs,,D)] P(S,)-[E(AID)]2
i=1

Considering (22), (B 13) leads to

E[E(AIs,,D)]2 p(S,)-[E(AID)12  E Z[E(AIs,,D)-E(AjD)]p(S,) (B14)
i=1 i=i

Substituting (B 14) into (BI10) gives (25) directly.
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On Evaluation of Recharge Model Uncertainty:
A Priori and A Posteriori

M. Ye, K. Pohlmann, J. Chapman, and D. Shafer

Previously published in Proceedings of the International High-Level Radioactive Waste Management
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April 30 - May 4, 2006, Las Vegas, Nevada

Abstract
Hydrologic environments are open and complex, rendering them prone to multiple interpretations and
mathematical descriptions. Hydrologic analyses typically rely on a single conceptual-mathematical
model, which ignores conceptual model uncertainty and may result in bias in predictions and under-
estimation of predictive uncertainty. This study is to assess conceptual model uncertainty residing in five
recharge models developed to date by different researchers based on different theories for Nevada and
Death Valley area, CA. A recently developed statistical method, Maximum Likelihood Bayesian Model
Averaging (MLBMA), is utilized for this analysis. In a Bayesian framework, the recharge model
uncertainty is assessed, a priori, using expert judgments collected through an expert elicitation in the form
of prior probabilities of the models. The uncertainty is then evaluated, a posteriori, by updating the prior
probabilities to estimate posterior model probability. The updating is conducted through maximum
likelihood inverse modeling by calibrating the Death Valley Regional Flow System (DVRFS) model
corresponding to each recharge model against observations of head and flow. Calibration results of
DVRFS for the five recharge models are used to estimate three information criteria (AIC, BIC, and KIC)
used to rank and discriminate these models. Posterior probabilities of the five recharge models, evaluated
using KIC, are used as weights to average head predictions, which gives posterior mean and variance. The
posterior quantities incorporate both parametric and conceptual model uncertainties.

1 INTRODUCTION

Hydrologic analyses are commonly based on a single conceptual-mathematical model. Yet hydrologic
environments are open and complex, rendering them prone to multiple interpretations and mathematical
descriptions. This is true regardless of the quantity and quality of available hydrologic information and
data. Focusing on only one conceptual-mathematical model may lead to a Type I model error, which
arises when one rejects (by omission) valid alternative models. It may also result in a Type II model error,
which arises when one adopts (fails to reject) an invalid conceptual-mathematical model. Indeed, critiques
of hydrologic analyses, and legal challenges to them, typically focus on the validity of the underlying
conceptual (and by implication mathematical) model. If a proposed model is found to be severely
deficient, hydrologic analysis based on the single model may damage professional credibility of the work;
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result in the loss of a legal contest; and lead to adverse environmental, economic and political impacts ([ 1-
2]).

The need to properly assess conceptual model uncertainty has motivated the recent development of a
Maximum Likelihood Bayesian Model Averaging method (MLBMA) [3-4]. MLBMA is being applied in
our study to assess conceptual model uncertainty in the Death Valley Regional Flow System (DVRFS)
model, developed by the U.S. Geological Survey [5] to simulate the regional flow system in southwest
Nevada and southeast California. This area includes the U.S. Department of Energy proposed Yucca
Mountain nuclear repository, the nation's first long-term permanent geologic repository of spent nuclear
fuel and high-level radioactive waste.

Our study is focused on assessing conceptual model uncertainty due to five alternative recharge models
listed in Table C-I: (1) the Maxey-Eakin (ME) model [6], (2) two distributed parameter watershed (DPW)
models, one with and one without a runon-runoff component [7], and (3) two chloride mass balance
(CMB) models, each with different zero-recharge masks, one for alluvium and one for both alluvium and
elevation [8]. These five models are based on different methodologies for estimating recharge and have
different levels of complexity, and they all have been used for groundwater modeling in Nevada.
Recharge estimates of the five models are plotted in Figure C-1, and they are significantly different. A
large amount of conceptual model uncertainty exits in the recharge models [9]. Since recharge
significantly affects modeled groundwater flow paths and travel times, it is important to evaluate the
recharge model uncertainty and quantify its propagation through the groundwater modeling process.

Using MLBMA, we assess the recharge model uncertainty a priori and a posteriori. The terms "a priori"
and "a posteriori" refer primarily to how or on what basis our assessment is conducted. An assessment is
conducted a priori if it is based on prior information without calibrating the regional flow model (of
which the recharge model is a component) against site observations (e.g., hydraulic head and groundwater

flux). The prior information includes assessment of model uncertainty from a similar site and/or expert
judgments based on one's professional experience. An assessment is conducted aposteriori when the
regional flow model (of which the recharge model is a component) is calibrated against site observations.
In MLBMA, assessments a priori and a posteriori are quantified by prior and posterior model
probabilities, as discussed below.
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Figure C-1. Illustration of the five recharge models: (a) ME, (b) DPW1, (c) DPW2, (d) CMBI, and (e)
CMB2.
Table C-1. Abbreviation and Description of the Five Recharge Models.

Models Model Description
ME Maxey-Eakin model

DPWI Distributed parameter watershed model with runon-runoff component

DPW2 Distributed parameter watershed model without runon-runoff component
CMB 1 Chloride mass balance model with fluvial mask
CMB2 Chloride mass balance model with fluvial and elevation masks

2 MAXIMUM LIKELIHOOD BAYESIAN MODEL AVERAGING (MLBMA)
To render our paper complete and self-contained, we start with a brief description of MLBMA; for
additional details the reader is referred to [3-4]. If A is the desired
predicted quantity given a set of K alternative models, then its posterior distribution, given a discrete set
D of site data, is

K

p(AID) = Zp(AIM,,D)p(M, ID) (CI)
k=1

where p(AIMk,D) is the posterior distribution of A under model Mk and p(MkID) is posterior probability of
Mk. With consideration of parametric and conceptual model uncertainty, mean and variance of A are

K

E[AID] = Z E[AD,M] p(M, jD) (C2)
k=l

Var[AID] = E Var[AID,Mk-]p(ML ID)+ Z(E[AID,Mk]- E[AID]) p(Mk ID) (c3)
k=l k=l
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where E[AID,M,] and Var[AID,Mk] are mean and variance of A under model Mk due to uncertainty

of parameters associated with Mk. The weight p(MkID) used to average model predictions and
corresponding predictive variance is posterior model probability of model Mk, evaluated using Bayes' rule

p(MkID)= P(DIMK )P(') (C4)
ZP(DJM,)p(M,)
1=1

where p(DiMk) is likelihood of model Mk (a measure of consistency between model predictions and site
observations D) and p(Mk) is prior probability of Mk. Estimating prior model probability will be discussed

in detail in Section III.The posterior model probability is conditioned on site observations explicitly and

prior information implicitly. According to [4], equation (C4) can be approximated as

exp(- KIC, ) P(Mk)
p(MkID)z K•lep H 1ip• (C5)

where K/C is Kashyap information criterion defined as [10]
KICk = (N - Nk) In ak' - N, In 2r + In I XOXk I (C6)

where N is number of calibration data D, Nk is number of parameters 0 , associated with model Mk, e is

the natural number, (o (the same for all models) is weight matrix associated with calibration data D, and X
is sensitivity matrix with element Xk., = aDk /aOkj evaluated at maximum likelihood parameter

estimates, 6kj (Dk.i being predictions at locations of Di by model Mk). 0k& can be estimated using

maximum likelihood (or, equivalently, generalized least square) methods, which also gives the calculated
error variance, o0,

2 _eoie_ WSSRk
Ok N N- -(C7)N N

where e = D - D' is residual and WSSRk is weighted sum of squared residual of model Mk. All the
quantities above can be estimated based on results of model calibration using common software such as
MODFLOW2000 [11 ].

3. EVALUATE RECHARGE MODEL UNCERTAINTY: A PRIORI
Conceptual uncertainty of the five recharge models is first evaluated, a priori, using prior probabilities of
the models. Prior model probability is interpreted by [4] as subjective values reflecting the analyst's (or a
group of analysts') belief about the relative plausibility of each model (or a group of models) based on its
apparent (qualitative, a priori) consistency with available knowledge and data. The analyst's perception,
degree of reasonable belief [12], or confidence [13] in a model is ideally based on expert judgment, which
is considered by [ 14] as the basis of conceptual model development. Hence we view integrating expert
judgment in MLBMA (by specifying subjective prior probabilities) to be a strength rather than a
weakness. According to this view, the models included in the model set must be those (and only those)
that experts consider being of potential relevance to the problem at hand. Given a set of alternative
models, their prior probabilities sum up to one,
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K

-p(Mk)=1 (C8)
k=l

This implies that all possible models of relevance are included in the model set (collective
exhaustiveness), and that all models in the set differ from each other sufficiently to be considered
mutually exclusive (the joint probability of two or more models being zero).

Following the process suggested by [15], an expert elicitation is conducted to elicit professional
judgments from seven experts on uncertainty of the five recharge models. Elicited prior probabilities of
the five models are plotted in Figure C-2, which shows that the maximum and minimum prior
probabilities are 45% and 5%, respectively. Models ME, DPWl, and CMB2 are the three most plausible
models, and do not receive the minimum prior probability from any expert. Although the experts evaluate
the models from various aspects (e.g., model assumptions and sensitivity of model predictions to mode
parameters), no experts place more than 50% prior probability on any model.

The prior model probabilities are aggregated using simple averaging, i.e.,

1 NE

Pk = •-I Pik (C9)
NEi=

where NE=7 is number of experts and Pik is the prior probability expert i assigns to alternative model Mk,.

The aggregated prior model probabilities are plotted in Figure C-3. Models DPW I and DPW2 have the
largest and smallest probability, respectively, since the experts regard that including the runon-runoff
component is more realistic. Probability of the model CMB2 is larger than that of CMB I, since experts
regard that elevation mask is an important feature in recharge estimation. Model ME is ranked as the
second most plausible model and has prior model probability of 25%, although this model is the simplest
one and its recharge estimation is significantly different from that of other four models. Although prior
probabilities given by each expert are significantly different (Figure C-2), the aggregated probabilities are
more or less uniform, considering that the equally likely prior probability is 20%. The largest deviation
from the equally likely prior probability is only 10% for model DPW 1. This manifests the inherent
uncertainty in the recharge models, since they are developed independently based on solid physical
principles and assumptions, calibrated with site measurements, and have all been applied to water
resource management in Nevada. Since none of the models dominates over other models and all models
have prior model probabilities larger than 5%, there is no justification to select one model and discard
others, a priori.
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Figure C-2. Column chart of prior probabilities of the five models given by seven experts. Columns of
each model represent elicited prior model probability from one expert. Model names are explained in
Table C-1.

25%

11% 31%

Figure C-3. Prior probabilities of the five recharge models obtained through an expert elicitation. Model
names are explained in Table C-1.

4. EVALUATE RECHARGE MODEL UNCERTAINTY: A POSTERIORI
Recharge model uncertainty is assessed, a posteriori, by maximum likelihood model calibration against
site observations. Results of model calibration are used to estimate model likelihood p(DIMk), which, in
turn, is used to evaluate posterior model probability p(MkID) in (C4). Whereas prior model probabilities
must in our view remain subjective, the posterior model probabilities are modifications of these subjective
values based on an objective evaluation of each model's consistency with available data.

4.1 Model Calibration Using MODFLOW2000
Plausibility and uncertainty of each of the five recharge models is evaluated by calibrating the Death
Valley Regional Flow System (DVRFS) model, of which the recharge model is a component. DVRFS
was modeled by [5] using MODFLOW2000, and a three-dimensional hydrogeologic framework based on
characterization of regional geology, hydrology, and hydrogeology. The recharge model used in DVRFS
is DPWI developed by [7]. Our study is to assess recharge model uncertainty in the modeling framework
of DVRFS, without modifying its other components. DVRFS was calibrated using MODFLOW2000
against a total of 4,963 observations of head (2,227), head change (2,672), discharge (49), and constant-
head flow (15). These observations are also used in our calibration.

Our calibration process, however, is different from that of DVRFS, which calibrated 55 model
parameters, 23 in the steady-state model and 32 in the transient model. Our model calibration is based on
the transient model only, since there is insufficient information to identify how the 23 parameters are
calibrated in the steady-state model. In addition, only some of the 55 parameters are calibrated in our
study, due to different purposes of our study. Specifically, 32 of the 55 parameters are calibrated for
DPWI and DPW2. The two models estimate precipitation (not recharge), which is converted to recharge
within DVRFS by dividing the top model layer into five recharge zones. Recharge coefficients in two
zones are calibrated against site observations. Since the other three models estimate recharge directly,
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recharge coefficients are not used and therefore only 30 parameters are calibrated. All other calibration
parameters are the same as those used in DVRFS. Although MLBMA allows different models having
different numbers of calibrated parameters, we intend to calibrate the same model parameters for all the
recharge models so that model ranking and uncertainty analysis are on the same basis. In the same line,
model calibration is conducted in the same manner for all the recharge models. Specifically, all the model
calibrations use identical initial parameter values, convergence criterion, and other calibration variables
such as parameter log transform and damping factors.

Model calibration results corresponding to the five recharge models are summarized in Table C-2 and
Figure C-4. Table C-2 lists WSSR (weighted sum of squared residuals) of the four kinds of observations,
respectively, and total WSSR. WSSR of DVRFS is also listed for comparison. The table shows that,
except for recharge model ME, the values of WSSR of the models are close and are lower than that of
DVRFS. This is not surprising since our calibration is based on model calibration of DVRFS to a certain
extent, and can be regarded as further calibration of DVRFS. The largest relative differences of WSSR
occur for the observations of discharge and constant-head flow. Figure C4 plots some of the calibrated
parameters whose values are noticeably different between the recharge models (values of other calibrated
parameter are close). The values of calibrated parameters in DVRFS are also plotted for comparison.
Although WSSR corresponding to the recharge models are similar, some parameter values are different,
indicating different responses of the regional flow system simulation to the recharge models, which
provides a basis for model discrimination. The largest difference of parameter values occurs for hydraulic
conductivity of volcanic rock units (K3) such as K3BRU 123 and K3CTM. While most of the parameters
are within the parameter ranges given in [5], several parameter values exceed the ranges. This, however,
is not surprising, since the ranges are based on limited information of site measurements. All values of the
calibrated parameters are considered reasonable.

TABLE C-2. Weighted Sum of Squared Residuals (WSSR) for all Kinds of Observations Corresponding
to the Five Recharge Models and DVRFS.

Type of Observaion DVRFS ME DPW1 DPW2 CMBI CMB2
observation Number

Hydraulic head 2227 23083.22 26321.55 20030.92 20296.37 20215.87 19803.57
Head changes 2672 13348.08 11805.63 12599.57 12752.66 12372.07 12057.11

Discharge 49 637.64 2078.36 674.43 611.12 1001.34 1062.06
Constant-head 15 438.15 1520.28 296.94 350.56 863.24 641.49

flow I _II

Total 4963 37507.10 41725.82 33601.86 34010.71 34452.52 33564.23

C.7



1.OOE+03

1.OOE+02
1 .OOE+01 o USGS1

Ila DUSGS2

1.OOE+OO II JW1~
1.00E-01 

: OI2

1.OOE-02 -o 111..1

<~ 0 I.L

Figure C-4. Comparison of values of some calibrated parameters corresponding to the five recharge
models.

4.2 Posterior Model Probability
Posterior model probabilities of the recharge models are calculated using equation (C6) based on the
model calibration results listed in Table C-3, which also lists three information criteria (AIC, BIC, and
KIC) commonly used to rank alternative models. AIC and BIC are evaluated via

AIC, =-21np(DIMk)+2Nk =ANlnka +Nk (CIO)

BICk =-2lnp(DiMk)+NkInN=Nlno,+NkInN (Cli)

These information criteria rank alternative models not only based on their goodness-of-fit (as measured
by WSSR) but also on the principle of parsimony, which states that a simple model (with lower number
of parameters) is considered more plausible than a complex model if their predictions fit observations
equally well. The three information criteria rank the five recharge models at almost the same order, with
models ME, DPW2, and CMB 1 ranked as the least plausible. In addition, the information criteria show
that DPW I and CMB2 are more plausible than DPW2 and CMB 1, respectively, which is consistent with
the results of the expert elicitation (Figure C-3). Nevertheless, model ME is ranked as least plausible after
model calibration. AIC and BIC rank CMB2 as the best model, while KIC ranks DPWI as the best one.
Inconsistency of model ranking given by different information criteria is not uncommon. Among the three
criteria, KIC is favored since it incorporates quality of data used for model calibration [3] and can yield
more reliable model rankings in various circumstances [e.g., 4].

TABLE C-3. Quality Criteria, Ranking, And Prior/Posterior Probabilities Associated With The Five
Recharge Models.

ME DPW1 DPW2 CMBl CMB2
Nk 30 32 32 30 30
WSSR 41726 33602 34011 34453 33564
InIFI 360 346 344 349 346
AIC 10627 9556 9616 9676 9547
Rank 5 2 3 4 1
BIC 10822 9764 9824 9871 9742
Rank 5 2 3 4 1
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KIC 10808 9718 9775 9852 9720
Rank 5 1 3 4 2
p(Mk) 25% 30% 11% 13% 20%
p(MkID) 0 83.16% 0 0 16.84%
p(Mk) 20% 20% 20% 20% 20%
p(MkID) 0 76.70% 0 0 23.30%

Posterior model probabilities are evaluated using (C5) for two sets of prior model probabilities. One set
has informative priors obtained from the expert elicitation and the other one treats the five models equally
likely. Regardless of prior probabilities, posterior probabilities of models ME, DPW2, and CMB2 are
zero, indicating that they are implausible given the calibration data. This is so even though model ME
received a relatively large prior probability from the experts. The effects of prior on posterior model
probability is observed for models DPWI and CMB2. Posterior probability of DPW 1 decreases 6.43%
when its prior probability decreases 10%. This results in a concomitant increase of 6.43% in the posterior
probability of model CMB2, even though its prior probability does not change. Although it is expected
that sensitivity of posterior to prior model probability diminishes as the amount conditioning (calibration)
data increases, this study shows that, even with 4,963 observations, sensitivity to prior probability does
not disappear. In this case, using informative prior model probability (obtained from expert elicitation in
this study) may increase accuracy of model uncertainty assessment, as suggested in [16]. Note that just
like prior probabilities, posterior probabilities are valid only in a comparative, not in an absolute, sense.
They are conditional on the choice of models, calibration data, and prior information used to estimate
prior model probabilities.

5. BAYESIAN MODEL AVERAGING
Based on equations (C2) and (C3), Bayesian model averaging is used to yield the posterior mean and
variance to incorporate both parametric and conceptual model uncertainty. The posterior mean represents
the optimum prediction and the posterior variance measures the associated predictive uncertainty. Monte

Carlo simulation is used to assess parametric uncertainty and estimate E[AID, Mk] and Var[AID,Mk ]

for model Mk. Multivariate normal distributions are used to generate 200 parameter realizations of the
calibrated parameters. The mean of the normal distribution is the maximum likelihood parameter estimate

6k of model Mk and the covariance matrix is k k(XoX) [3, 11 ]. Estimation of posterior mean and

variance using equations (C2) and (C3) is straightforward. Figure C-5 plots mean head predictions
corresponding to the five recharge models (Figures C-Sb - C-5f) and the MLBMA (Figure C-5a)
posterior mean head in the first (top) model layer at stress period 87 (1998, the last year of the transient
model). The MLBMA mean head (Figure C-5a) is an average of the mean heads for DPWl and CMB2,
since the other three models have zero posterior probabilities. Mean head contours of DPW1 and DPW2
are similar to each other, as are the contours of CMB 1 and CMB2, owing to the similarity of the two pairs
of recharge models. Since these four recharge models are different from ME, the contour of ME is
different from the four contours in Figures C-5c - C-5f. Figure C-6 plots the cumulative distribution
function (CDF) of the mean head and standard deviation of head predicted by models DPW 1 and CMB2
and MLBMA for the entire simulation domain at stress period 87. For mean head predictions, the CDFs
of DPW1, CMB2, and MLBMA are almost identical, due to the similarity of mean head predictions of
DPW 1 and CMB2 (shown in Figures C-5b and C-5f). Nevertheless, the standard deviation of head
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prediction of MLBMA is larger than that of models DPWI and CMB2, since MLBMA considers both
parametric and conceptual model uncertainty, while the two single models address only parametric
uncertainty.

6. CONCLUSIONS
This study assesses conceptual model uncertainty of five recharge models within the modeling framework
of DVRFS, of which each recharge model is a component. Conceptual model uncertainty is first assessed,
a priori, using expert judgment gathered from an expert elicitation. The experts placed higher
probabilities on DPW l and CMB2 than DPW2 and CMB 1, respectively. However, since the recharge
models are developed by different researchers based on different theories, prior model probabilities
elicited from the experts are around the average value of 20%. This indicates that one cannot select one
model for predictions and discard all others a priori. Since prior information cannot fully assess
conceptual model uncertainty, model calibration is needed to assess conceptual model uncertainty a
posteriori based on observations of head and flow. DVRFS is used as the framework for numerical
modeling and only its recharge component varies for different recharge models (other components remain
the same). Based on model calibration results using MODFLOW2000, three information criteria (AIC,
BIC, and KIC) are evaluated to rank the models. Model ranking of AIC and BIC are the same, but
different from that of KIC. Consistent with results of expert elicitation, DPW I and CMB2 are ranked
more plausible than DPW2 and CMB 1, respectively. However, as opposed to the results of expert
elicitation, model ME is ranked as least plausible. This suggests the importance of uncertainty assessment
a posteriori. Posterior model probabilities are evaluated using KIC, which is considered superior to AIC
and BIC. Models ME, DPW2, and CMB 1 have zero posterior probabilities. Sensitivity of posterior to
prior probabilities for models DPW 1 and CMb2 does not disappear, although 4,963 observations are used
for model calibration. Note that posterior probabilities are valid only in a comparative, not in an absolute,
sense. They are conditional on the choice of models, calibration data, and prior information used to
estimate prior probabilities. Bayesian model averaging is conducted to estimate posterior mean and
variance of head and flux. Posterior variance of MLBMA is larger than the variance of any single model,
since conceptual model uncertainty is also addressed. Our research results can be extended to incorporate
conceptual model uncertainty in flow path delineation, which can in turn be used to design networks for
detection and monitoring of potential radionuclide transport in the saturated zone of the Death Valley
Regional Flow System, where Yucca Mountain is located.
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Figure C-5. Mean head predicted by (a) MLBMA, (b) ME, (c) DPW 1, (d) DPW2, (e) CMB 1, and (f)
CMB2 in the first (top) layer at stress period 87 (1998).
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prediction over the whole simulation domain at stress period 87 (1998).
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