

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Surface Stress Improvement Technologies Qualification

Dana Couch TVA Anne Demma EPRI

May 30, 2007 MRP/PWROG Mitigation Briefing to NRC RES

Technology Investigated: Cavitation Peening

- High pressure water jet create intense clouds of cavitation around the water jet
- Cavitation bubbles collapse on the surface of the material generating shockwaves
- Results in plastic deformation and compressive residual stress
- Also called water jet peening (WJP) in Japan

Technology Investigated: Laser Peening

Laser peening: (a) Set up of work & (b) A high pressure plasma is generated by the laser impact, resulting in a pressure wave

- Laser System
 - Nd:Glass slab flash lamp pumped laser (1 µm)
 - Excellent beam quality
 - High average power
 - Energy output to 20 Joules
 - Pulse width range 10-50 ns
 - Rep. rate 6 Hz
 - Spot size: 3-5 mm

Technology Investigated: Fiber Laser Peening

Fiber laser peening: Process in air (left) and under water (right)

• Laser System:

- Underwater application
 - Nd:YAG laser (532 nm)
 - Pulse energy: 40-100 mJ/pulse
 - Pulse width: 8 ns
 - Spot diameter: 0.4-1.0 mm
 - Pulse density: 18-135 pulse/mm²
 - Repetition rate: 120-300 Hz
- No ablative layer

Cavitation Peening Applications in Nuclear Plants

- To date, cavitation peening applied to:
 - BWR Reactor Internals in Japan (by Hitachi)
 - Core shroud welds
 - Jet pump risers
 - Jet pump diffusers
 - ICM housing/ICM guide tube weld OD
 - ICM housing ID & OD
 - CRD housing/stub tube OD
 - ID of PWR BMNs in Japan (by MHI)

Fiber Laser Peening Applications in Nuclear Plants

- To date, laser peening has been applied (by Toshiba) to:
 - BWR Core shrouds & Reactor Pressure Vessel (RPV) bottom heads in Japan
 - Using water penetrable laser peening with optics delivery initially (since 1999)
 - Then fiber laser peening (since 2002)
 - PWR BMNs and PWR Vessel Nozzles since the end of 2004

Example of Fiber Laser Peening Application

U.S. Work for Surface Stress Improvement Technologies

- In the U.S., initial MRP focus for these technologies is for SCC Mitigation of PWR Alloy 600 Bottom Mounted Nozzles (BMNs)
 - BMNs are a pressure boundary location
 - Complete replacement not practical here
 - Other mechanical methods, i.e. MSIP and PWOL not feasible here due to component geometry
 - Addresses IMT gap
 - \rightarrow Testing in materials and geometry related to BMNs
- Applications to other Alloy 600 locations may be investigated in the future

MRP Project on Surface Stress Improvement Technologies

- Multiphase project:
 - Phase 1 (Completed)
 - Proof-of-concept project
 - Selection of technologies
 - Based on residual stress, microhardness, and microstructural evaluation
 - Selection of parameters for each technology
 - Phase 2 (Under way)
 - Verification of technologies for U.S. PWR fleet BMNs
 - Testing for SCC initiation testing and stress relaxation
 - Phase 3 (under consideration)
 - Demonstration at a U.S. plant

MRP Project on Surface Stress Improvement Technologies

Phase 1

Residual Stress - Flat Plate Specimens

- Compressive surface stress for all processes w/ selected parameters
- Depth of compressive residual stress in alloy 600 flat plates:
- > 0.8 mm, for cavitation peening A & > 1.4 mm, for cavitation peening B
- 1 mm < d < 1.5 mm, for fiber laser peening
- >1.5 mm, for laser peening

Thick-Wall Tube Specimens & Mock-up Specimens -Geometry and Materials

Mock-up Specimens

ELECTRIC POWER

RESEARCH INSTITUTE

Thick-Wall Tube Specimens & Mock-up Specimens Treated Areas and Stress Measurement Locations

RESEARCH INSTITUTE

Surface Stress of Thick-Wall Tubes: before Fiber Laser Peening, after FLP of OD, & after FLP of OD and ID

- Uniform compressive surface residual stress around the circumference
- FLP on the OD increases the OD compressive stress magnitude compared to as-received
- FLP of the ID (after peening of the OD) slightly reduces the OD compressive stress magnitude compared to OD peening only, but increases it compared to asreceived
- Wall thickness: 3.75 mm

Stress with Depth on Fiber Laser Peened Thick-Wall Tubes

After OD and ID treatment

After OD and ID treatment:

- High compressive hoop and axial surface stress on both OD and ID surfaces
- Depth of compressive residual stress: on OD side: 0.6 mm < d < 1 mm

on ID side: 1 mm < d < 1.3 mm

 \rightarrow Due to the peening order: surface treated last (ID) has deeper compressive stress

Surface Stress of Mock-ups: before Fiber Laser Peening, after FLP of OD, & after FLP of OD and ID

- FLP on the OD increases the OD compressive stress magnitude compared to asreceived in tube and clad (at 15 mm & 20 mm) regions
- FLP of the ID (after peening of the OD) increases the OD compressive stress magnitude compared to asreceived in tube, clad (at 15 mm, but not at 20 mm), & weld regions
- FLP of the ID (after peening of the OD) results in OD compressive stress magnitude close to OD peening only

OD Stress with Depth on Fiber Laser Peened Mock-ups

For locations 1 through 5 \rightarrow

Hoop stress compressive for 0.7 mm or more
Axial stress compressive for 0.2 mm or more (depending on location)

RESEARCH INSTITUTE

© 2007 Electric Power Research Institute, Inc. All rights reserved.

Conclusions of Phase 1 (1)

- Stress improvement confirmed in flat plates for all processes w/ selected parameters, up to 0.8 mm or more
- Stress improvement confirmed in thick-wall tubes for fiber laser peening w/ selected parameters - treated on both OD and ID
- Stress improvement in thick-wall tubes not confirmed for cavitation peening w/ selected parameters - tubes treated on ID and OD separately → New vendor for Phase 2 for cavitation peening
- Compressive OD stress results w/ depth for fiber laser peening mock-ups measured

Conclusions of Phase 1 (2)

Cavitation & fiber laser peening selected for Phase 2 of project

- Applicability under water
- No surface preparation required
- Further work under way to verify these processes for US fleet (SCC testing, stress relaxation testing, ...)
- Laser peening not selected for Phase 2
 - Requires the use of an ablative layer to produce compressive stress on the treated surface and protect the surface from micro-cracks
 - Not a practical surface stress improvement process for the BMN location, but could be considered for some other applications (replacement or new plant components)

Phase 2 - Surface Stress Improvement Technologies Qualification – Tasks and Objectives

Testing under way to complete MRP assessment of these technologies for application to BMNs

- 1. Base metal SCC susceptibility identification
 - \rightarrow Select an SCC susceptible A600 heat among several
- 2. SCC initiation testing of "simple" specimens

 \rightarrow Demonstrate that fiber laser peening and cavitation peening improve resistance to SCC initiation in significant number of simple specimens

3. SCC initiation testing of BMN mock-ups

 \rightarrow Verify improvement in a small number of BMN mock-ups

4. Stress relaxation testing of the peening induced compressive stress layer

 \rightarrow Quantify any stress relaxation of the compressive stress layer induced by peening, during exposure to PWR environment

Specimens for Phase 2

Task 1 and 2 specimens: C-Rings and RUBs

Task 3 mock-up

Task 4 specimens

Phase 2 Schedule and Status

- Finalizing specimens design for Tasks 1 & 2: Q4 2006: Done
- RUBs & C-Rings machining & testing for Task 1: Q1 2007: In progress
- U-Bend & C-Rings machining and testing for Task 2: Q2 through Q4 2007 In progress
- Finalizing specimens design for Task 3: Q2 2007: In progress
- Mock-up manufacturing: Q3 2007
- Mock-up treatment: Q3 2007
- Mock-ups testing for Task 3: Q4 2007 through Q3 2008
- Final Reporting: Q4 2008

In Conclusion

- Surface improvement technologies being investigated have been tested/analyzed and applied in nuclear plants in Japan (Multiple vendors)
- These technologies offer reliable PWSCC mitigation option for BMNs where alternatives are few and replacement is impractical; application to other locations to be considered later
- MRP effort is to "verify" these technologies for the US PWR fleet by utilizing Japanese data/experience supplemented by limited independent confirmation of critical parameters
- Demonstration/application for BMNs at a US PWR plant is anticipated

Questions

