Review and Analysis of the Davis-Besse March 2002 Reactor Pressure Vessel Head Wastage Event

Prepared for

First Energy Nuclear Operating Corporation c/o Morgan Lewis 1111 Pennsylvania Avenue, NW Washington, DC 20004

Prepared by:

Exponent Failure Analysis Associates 21 Strathmore Road Natick, MA 01760

Altran Solutions Corporation 451 D Street Boston, MA 02210

December 15, 2006

© Exponent, Inc.

Matenizion

Ronald M. Latanision, Ph.D.

Bulle

Daniel B. Bullen, Ph.D., P.E.

Balling

Ronald Ballinger, Ph.D.

Contents

			Page
Lis	t of Figur	res	vi
Lis	t of Table	25	xiii
Acı	conyms a	nd Abbreviations	xiv
1	Introc	luction, Purpose and Scope	1-1
2	Princi	pal Conclusions and Opinions	2-1
3	Backg 3.1 3.2 3.3 3.4	ground Overview of the Davis-Besse Plant The Davis-Besse Reactor Pressure Vessel Head The Davis-Besse CRDM Nozzles References	3-1 3-1 3-2 3-2 3-16
4	The D	Davis-Besse March 2002 Event	4-1
	4.1	Summary Chonology of the March 2002 Event 4.1.1 RPV Head Video Inspections, CRDM Flange	4-1
	4.2	Leakage, Boric Acid Deposits, and Head Cleaning 4.1.2 CRDM Nozzle UT Inspections March 2002 13RFO Discovery of Large Head Corrosion Cavity	4-2 4-3
		 at CRDM Nozzle 3 and Minor Crevice Corrosion at CRDM Nozzle 2 in the RPV Head 4.2.1 Initial Discovery of the Corrosion Cavity in the Reactor Pressure Vessel Head 4.2.2 Inspection and Metallurgical Analysis of the 	4-4 4-5
	4.3	Responses to the March 2002 Davis-Besse RPV head Corrosion Cavity Discovery 4.3.1 FENOC Responses	4-6 4-6 4-7
		4.3.2 EPRI Material Reliability Program (MRP) Response	4-14
	4.4	4.3.3 Regulatory Response References	4-15 4-32
5	World	wide Industry Response to CRDM and Other Alloy 600 Nozzle	
	Crack 5.1	Non-US Experience with and Responses to CRDM Nozzle	5-1
		Cracking 5.1.1 Bugey-3 and Subsequent EdF Experience	5-2 5-2

		5.1.2	Other Non-US Experience with CRDM Nozzle	~ ~
	5 0	A 11 av (00 D	Cracking	5-5 5 0
	5.2 5.2	Alloy 000 P	ressurizer Nozzle Cracking	J-0 5 10
	5.5	US Experier	Le with and Responses to CRDM Nozzle Cracking	5-10
		5.3.1	Initial Experience of CRDM Nozzie Inspections and	5 10
		522	Cracking in US Plants 1994-2000	5-10
		5.3.2	Initial US industry and NRC Regulatory Response	5 14
		522	to CRDM Nozzle Cracking	5-14
		5.3.3	NRC/INEL/EG&G Assessment of CRDM Nozzle	5.01
		5 0 4	Cracking	5-21
		5.3.4	NRC Generic Letter GL 97-01 and Industry	5.00
			Response	5-23
		5.3.5	Experience of CRDM Nozzle Cracking in US	5-27
		5.3.6	US Industry and NRC Regulatory Response to	
			CRDM Nozzle Cracking 2000-2001	5-33
		5.3.7	US CRDM Nozzle Cracks, Repairs, and RPV Head	
			Replacements Since 2000	5-36
	5.4	References		5-44
6	Boric	Acid Wastage	of Carbon Steel Components in US PWR Plants	6-1
	6.1	Review of U	JS Experience with Boric Acid Corrosion of Carbon	
		Steel Compo	onents Prior to 2002	6-4
		6.1.1	Boric Acid Corrosion of Components Other than	
			the RPV Head	6-4
		6.1.2	Boric Acid Corrosion of RPV and Pressurizer heads	
			Prior to the 2002 Davis-Besse Event	6-10
	6.2	NRC Regula	atory and US Industry Responses to Boric Acid	
		Corrosion Is	sues 1980-2001	6-14
	6.3	Boric Acid	Corrosion Research and Testing Prior to 2002	6-20
		6.3.1	Non-Crevice Geometry Boric Acid Corrosion	
			Testing	6-20
		6.3.2	Crevice Geometry Boric Acid Corrosion testing	
			Prior to 2002	6-24
	6.4	Recent Rese	earch on Boric Acid Corrosion of RPV Head	0 - 1
	0.1	Resulting fro	om the Davis-Besse Event	6-28
		6 4 1	FPRI Boric Acid Corrosion testing to Replicate the	0 20
		0.4.1	Davis-Besse RPV Head Wastage Event	6-28
		612	NPC/ANL Corresion Test Programs to Penlicete	0-20
		0.4.2	the David Resse Westers Conditions	6 22
	65	Defense	the Davis-Besse wastage Conditions	0-32
	0.3	References		0-30
7	FENOC/	Davis-Besse Re	esponse to CRDM Cracking and Boric Acid	
	Corrosio	n Issues		7-1
	7.1	Davis-Besse	Action and Responses to Key US NRC and Industry	
		Initiatives	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7-2

	7.1.1	Davis-Besse Response to NRC Bulletin 88-05 and the Implementation of a Boric Acid Corrosion	
		Control Program	7-3
	7.1.2	FENOC Responses to US NRC Bulletin 2001-01	
		and Subsequent Information Requests	
7.2	RCS Leakag	ge Monitoring at Davis-Besse	7-17
	7.2.1	RCS Inventory Balance	7-17
	7.2.2	RB Radiation Monitoring	7-19
7.3	Review of D	Davis-Besse Plant Refueling Outages and History of	
	Boric Acid I	Leakage	7-21
	7.3.1	Pre-8RFO CRDM Flange Leakage	7-21
	7.3.2	8RFO Inspections and Events – March/April 1993	7-22
	7.3.3	9RFO Inspections and Events – October/November	
	71010	1994	7-22
	734	10RFO Inspections – April/May 1996	7-23
	735	11RFO Inspections – April/May 1998	7-23
	7.3.6	12REO Inspections Events and NRC Regulatory	1 23
	7.5.0	Review April/May 2000	7_26
	737	13PEO Inspections Started February 2002	7-20
74	Poforoncos	13K1 O hispections – Statted February 2002	7-28
7.7	References		7-40
Stress A	nalysis and Cra	ck Growth Rates for Davis-Besse CRDM Nozzles 2	
and 3	inary one and ora		8-1
8.1	PWSCC and	Prior Industry Stress Analysis Studies	8-2
0.1	811	PWSCC of Alloy 600 Materials in PWRs	8-2
	812	Prior Industry Stress Analysis Studies	8-5
82	Stress Analy	ris of Davis-Besse CRDM Nozzles 2 and 3	8-5
0.2	8 2 1	Finite Element Model of CRDM Nozzle 3 Head	05
	0.2.1	Penetration	8-6
	822	Material Properties	8-0 8-7
	823	Loading Conditions	8-8
	8.2.5	Strace Analysis Desults	8.0
83	DWSCC Cro	Siless Analysis Results	8 10
0.5		Creak Growth Dates Used in Dravious Work	8-10
	0.3.1	Clack Glowin Rates Used in Flevious work Recent Data on Davis Ressa Nozzla and Wald	8-10
	8.3.2	Allow (00/182 Motorials by NDC/ANI	0.10
0.4		Alloy 600/182 Materials by NRC/ANL	8-12
8.4	PwSCC Cra	acks in Davis-Besse CRDM Nozzies 2 and 3	8-15
	8.4.1	Effective Crack Leak Lengths of the Axial PWSCC	0.15
	0.4.0	Cracks in Nozzles 2 and 3	8-15
	8.4.2	Reconstruction of the Crack I Profile in RDM	
	~ ~	Nozzle 3 and J-groove Weld	8-16
8.5	Crack Grow	th Rates for Observed Cracks at Davis-Besse CRDM	
	Nozzles 2 ar	nd 3	8-17
	8.5.1	Estimate of Time at Which Cracks in CRDM	
		Nozzles 2 and 3 Reached Through Wall above	
		Weld and Leakage Began	8-17

		8.5.2	The Unique Nature of the Cracking at Nozzle 3	8-20
	8.6	References		8-34
9	CFD Mo	deling of Fluid	Flow in CRDM Nozzle and Weld Cracks and	
	Through	Annulus		9-1
	9.1	Prior Assess	ments of Thermal Hydraulic Environments in the	
		CRDM Ann	ulus and Developing Wastage Cavity	9-2
	9.2	RPV Head L	ow Alloy Steel Removal Mechanisms and Wastage	
		Rates	,	9-8
	9.3	Approach to	CFD Modeling and Model Development	9-10
		9.3.1	Overall Approach to CFD Modeling	9-10
		9.3.2	CFD Model Development	9-11
	9.4	Leak Rate vs	s. Crack Length Calculations	9-13
	9.5	Developmen	t of the Initial Wastage Cavity in the CRDM Nozzle	
		Annulus		9-16
	9.6	CFD Modeli	ng of the Initial Stages of Wastage Cavity Growth at	
		CRDM Nozz	zles 2 and 3	9-19
		9.6.1	Input and Boundary Conditions	9-20
		9.6.2	CFD Case 1—Crack Length of 0.5 Inch, Leak Rate	
			of 0.001 gpm, Bottom of Wastage Cavity 2 Inches	
			Above Top of Crack	9-24
		9.6.3	CFD Case 2—Crack Length of 0.8 Inch, Leak Rate	
			of 0.01 gpm, Bottom of Wastage Cavity 1.7 Inches	
			Above Top of Crack	9-26
		9.6.4	CFD Case 3—Crack Length of 1.0 Inch, Leak Rate	
			of 0.02 gpm. Bottom of Wastage Cavity 0.2 Inches	
			Below Top of Crack	9-29
	9.7	CFD Modeli	ng of the Final Wastage Cavity at CRDM Nozzle 3	9-31
		9.7.1	CFD Case 4—Modeling of the Final Wastage	
			Cavity at CRDM Nozzle 3 and Final Leak Rate in	
			February 2002	9-31
		9.7.2	CFD Case 5—Transient Analysis of Fluid Flow and	
			Fluid Ejection from the Final Wastage Cavity at	
			CRDM Nozzle 3	9-33
	9.8	Summary		9-35
	9.9	References		9-67
10	Develop	nent of Wastag	e Cavities at Davis-Besse CRDM Nozzles 2 and 3	10-1
	10.1	Wastage Cav	vities at Nozzles 3 and 2	10-2
		10.1.1	Physical Apprearance and Characteristics of the	
			Wastage Cavity at Nozzle 3	10-2
		10.1.2	Physical Appearance and Characteristics of the	
			Wastage Cavity at Nozzle 2	10-3
		10.1.3	Cracks in CRDM Alloy 600 Nozzle 3 and Alloy	
			182 Weld	10-4

	10.1.4 Metal Removal Processes by Corrosion, Erosion,	
	Flow Assisted Corrosion (FAC), and Water Jet	
	Cutting	10-5
10.2	Timeline of Cavity Development at Nozzles 3 and 2	10-6
	10.2.1 12 RFO: Nozzle 3 Crack is Leaking at a Low Rate	
	And a Minor Wastage Cavity Begins to Form at	
	Nozzle 3	10-7
	10.2.2 October-November 2001: Weld Crack Uncovers,	
	Leak Rate Dramatically Increases, Cavity Growth	
	Accelerates, and Significant Damage to the RPV	
	Head Occurs	10-9
10.3	Postscript	10-11
10.4	References	10-28
Appendix A	Finite Element Stress Analysis of Davis-Besse CRDM Nozzle 3	
	Penetration	
Appendix B	Crack Driving Force and Growth Rate Estimates	
Appendix C	CFD Analysis	
Appendix D	Leak Rate vs. Crack Length Calculations	
Appendix E	Fluid Jet Cutting of Davis-Besse RPV Head Materials	

List of Figures

Figure 3.1	Davis-Besse NSSS Showing "Raised Loop" Configuration	3-5
Figure 3.2	Typical Reactor Pressure Vessel Head General Arrangement	3-6
Figure 3.3	Davis-Besse Reactor Pressure Vessel Head Sectional View	3-7
Figure 3.4	Davis-Besse Reactor Pressure Vessel Head Sectional View	3-8
Figure 3.5	Davis-Besse Reactor Pressure Vessel Head Plan View	3-9
Figure 3.6	View of the Underside of the Davis-Besse RPV Head with Control Rods in Place	3-10
Figure 3.7	View through the Access Opening Cut in the RPV head Service Structure above the Support Steel and Insulation Showing the Close Proximity of the CRDM Flanges	3-11
Figure 3.8	View through the Access Opening Cut in the RPV Head Service Structure above the Support Steel and Insulation Showing the Close Proximity of the CRDM Flanges	3-12
Figure 3.9	Davis-Besse CRDM Nozzle General Arrangement	3-13
Figure 4.1	Boric acid and iron oxide flowing from mouse holes at 12RFO.	4-23
Figure 4.2	Davis-Besse RPV head wastage cavity found adjacent to Nozzle 3.	4-24
Figure 4.3	Location of RPV head wastage on the downhill side of Nozzle 3.	4-25
Figure 4.4	Crevice identified by inspection of Nozzle 2 with a hand-held video camera following the removal of a section of mirror insulation.	4-26
Figure 4.5	Portion of the J-groove weld with the 10-degree crack.	4-27
Figure 4.6	J-groove weld with the 10-degree crack showing crack and flow channel.	4-28
Figure 4.7	Surface morphology of the Davis-Besse RPV head wastage cavity looking toward the nose of the cavity (~10-degree).	4-29
Figure 4.8	Surface morphology of the Davis-Besse RPV head wastage cavity looking toward the 90-degree side.	4-30
Figure 4.9	Surface morphology of the Davis-Besse RPV head wastage cavity looking toward the 270-degree side.	4-31

Page

Figure 6.1	Areas on the RPV Head at Turkey Point-4 Affected by Boric Acid Wastage in 1987 (from EPRI Boric Acid Corrosion Guidebook, April 1995)	6-37
Figure 6.2	Effect of Boric Acid Deposits in Protecting Surfaces from Corrosion (from EPRI Boric Acid Corrosion Guidebook, April 1995)	6-38
Figure 6.3	Boric Acid Corrosion Test Program Configurations and Conditions (from EPRI Boric Acid Corrosion Guidebook, April 1995)	6-39
Figure 6.4	Summary of Boric Acid Corrosion Test Results (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-40
Figure 6.5	Temperature Dependency of Corrosion Rate in B & W Tests of Water Containing Boric Acid Dripping onto Pipes (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-41
Figure 6.6	CE Crevice Test Configuration for Boric Acid Leakage into an Annular Crevice (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-42
Figure 6.7	Location of Wastage in CE Crevice Test Configuration for Boric Acid Leakage into an Annular Crevice (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-43
Figure 6.8	EPRI Crevice Test Configuration for Boric Acid Leakage into an Annular Crevice (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-44
Figure 6.9	Maximum Wastage Rates from CE and EPRI Crevice Test Results (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-45
Figure 6.10	Typical Corrosion/Erosion Wastage Pattern Near Injection Point in EPRI Crevice Test for Boric Acid Leakage into an Annular Crevice (Slide 26 from the May 22, 2002 EPRI Meeting with the NRC; also in EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-46
Figure 6.11(a)	EPRI MRP Corrosion Testing Wastage Model: Phase 1 and Phase 2	6-47
Figure 6.11(b)	EPRI MRP Corrosion Testing Wastage Model: Phase 3 and Phase 4	6-48
Figure 7.1	Daily average unidentified leak rate for Davis-Besse Cycle 13.	7-31
Figure 7.2	Three-day average unidentified leak rate for Davis-Besse Cylce 13.	7-32

Figure 7.3	Thirty-day average unidentified leak rate for Davis-Besse Cycle 13.	7-33
Figure 7.4	Monthly average unidentified leak rate for Davis-Besse Cycles 10 through 13.	7-34
Figure 7.5	Location of radiation monitors RE 4597AA and RE 4597BA.	7-35
Figure 7.6	Noble gas activity for Cycles 10-13 for radiation monitors RE 4597AA and RE4597BA.	7-36
Figure 7.7	Iodine activity for Cycles 10-13 for radiation monitors RE4597AA and RE4597BA.	7-37
Figure 7.8	Flange Leakage Showing Boric Acid Deposits Leaking Through the Mirror Insulation at 8RFO.	7-38
Figure 7.9	Flange Leakage Showing Boric Acid Deposits On Side of Nozzles and Stalactites from Gaps in Insulation (8RFO).	7-39
Figure 7.10	Reddish Brown Boron Deposits Crusted on Side of Nozzle (8RFO).	7-40
Figure 7.11	Boric Acid Deposits behind the CRDM Nozzles on the North Side of the Reactor Pressure Vessel Head at 10RFO.	7-41
Figure 7.12	Boron Piled on Reactor Pressure Vessel Head Under the Mirror Insulation Near Nozzle 31 (11RFO).	7-42
Figure 7.13	Boron Piled Up to the Mirror Insulation Near the Center of the RPV Head (12RFO).	7-43
Figure 7.14	Boric Acid Deposits on RPV head at 13RFO. Note this is Figure 24 from the Root Cause Report.	7-44
Figure 7.15	Corrosion Product/Boric Acid Deposits Adjacent to Nozzle 3 (90 Degree Side) after Hydrolasing.	7-45
Figure 7.16	Corrosion Product/Boric Acid Deposits Adjacent to Nozzle 3 (270 Degree Side) after Hydrolasing.	7-46
Figure 8.1	Crack initiation and growth in steam generator tubes, (a) lab- generated SCC cracks showing multiple crack initiation; (b) actual steam generator tube crack; (c) eddy current inspection signal from the tube crack in (b) one cycle earlier	8-22
Figure 8.2	Three-dimensional, half-symmetry finite element model of CRDM Nozzle-3 head penetration, showing Alloy-600 nozzle, Alloy-182 J-groove weld, and surrounding SA-533 alloy steel head with Type 308 stainless steel cladding	8-23

Figure 8.3	Close-up view of 13-pass J-groove weld joining CRDM Nozzle 3 to alloy-steel head.	8-23
Figure 8.4	PWSCC growth rate data for Alloy 600 from Davis-Besse Nozzle 3 compared to EPR/MRP disposition curve.	8-24
Figure 8.5	Nozzle-circumferential (hoop) stress results in ksi for downhill side of Nozzle 3 at J-groove weld under operating pressure and temperature (2,155 psi, 605°F).	8-25
Figure 8.6	Nozzle-axial stress results in ksi for downhill side of Nozzle 3 at J-groove weld under operating pressure and temperature (2,155 psi, 605°F).	8-26
Figure 8.7	Framatome plot of crack profiles in Davis-Besse CRDM Nozzle 2 based on UT results	8-27
Figure 8.8	Through-wall profile of Crack in Davis-Besse CRDM Nozzle 2 based on Framatome UT results.	8-28
Figure 8.9	PWSCC growth rate for Alloy 182 from Davis-Besse Nozzle 11J-groove weld compared to EPR/MRP disposition curve.	8-29
Figure 8.10	Through-wall profile of Crack in Davis-Besse CRDM Nozzle 2 based on Framatome UT results.	8-30
Figure 8.11	BWXT photographs from metallurgical examination of Davis- Besse Nozzle-3 J-groove weld showing extent of PWSCC Crack 1 into weld.	8-31
Figure 8.12	Schematic of final size and shape of Crack 1 in Davis-Besse CRDM Nozzle 3 developed from Framatome UT test records and BWXT metallurgical sections.	8-32
Figure 9.1(a)	CFD Model Mesh for Case 3 Small Wastage Cavity	9-36
Figure 9.1(b)	CFD Model Mesh for Case 3 Small Wastage Cavity	9-37
Figure 9.2(a)	CFD Model Mesh for Case 4 Large Wastage Cavity	9-38
Figure 9.2(b)	CFD Model Mesh for Case 4 Large Wastage Cavity	9-39
Figure 9.3	Calculated Leak rate vs. Crack Length Above the J-Groove Weld as Calculated by Dominion Engineering, Inc.	9-40
Figure 9.4	CRDM Nozzle Leak Rate vs. Crack Height	9-41
Figure 9.5	Scanning electron micrograph of CRDM Nozzle 3 crack at 180° location showing typical dimensions of PWSCC nozzle crack widths. Note the maximum crack width is about 20 μ m (0.0008 inches).	9-42

Figure 9.6	Optical micrograph of J-groove weld crack in CRDM Nozzle 3 at 10° location showing large crack width. Note the nominal crack width is about 400 μ m (0.016 inches) or about 20 times larger than the PWSCC crack in the same nozzle shown above.	9-42
Figure 9.7	Calculated leak rate vs. crack length for a J-groove weld crack with crack widths that are 10 times, 15 times, and 20 times wider than typical PWSCC nozzle cracks.	9-43
Figure 9.8	Case 1: Maximum and average fluid velocity magnitude within wastage as a function of distance to the J-groove weld for a 0.5-inch crack with a leak rate of 0.001 gpm.	9-44
Figure 9.9	Case 1: Average fluid pressure within wastage as a function of distance to the J-groove weld for a 0.5-inch crack with a leak rate of 0.001 gpm.	9-45
Figure 9.10	Case 1: Average wall temperature within wastage as a function of distance to the J-groove weld for a 0.5-inch crack with a leak rate of 0.001 gpm.	9-46
Figure 9.11	Case 1: Average steam quality within wastage as a function of distance to the J-groove weld for a 0.5-inch crack with a leak rate of 0.001 gpm.	9-47
Figure 9.12	Case 2: Maximum and average fluid velocity magnitude within wastage as a function of distance from the J-groove weld for a 0.8-inch crack with a leak rate of 0.01 gpm.	9-48
Figure 9.13	Case 2: Average fluid pressure within wastage as a function of distance to the J-groove weld for a 0.8-inch crack with a leak rate of 0.01 gpm.	9-49
Figure 9.14	Case 2: Average wall temperature within wastage as a function of distance to the J-groove weld for a 0.8-inch crack with a leak rate of 0.01 gpm.	9-51
Figure 9.15	Case 2: Average steam quality within wastage as a function of distance to the J-groove weld for a 0.8-inch crack with a leak rate of 0.01 gpm.	9-51
Figure 9.16	Case 3: Maximum and average fluid velocity magnitude within wastage as a function of distance to the J-groove weld for a 1.0-inch crack with a leak rate of 0.02 gpm.	9-52
Figure 9.17	Case 3: Average fluid pressure within wastage as a function of distance to the J-groove weld for a 1.0-inch crack with a leak rate of 0.02 gpm.	9-53

Figure 9.18	Case 3: Average temperature within wastage as a function of distance to the J-groove weld for a 1.0-inch crack with a leak rate of 0.02 gpm.	9-54
Figure 9.19	Case 3: Average steam quality within wastage as a function of distance to the J-groove weld for a 1.0-inch crack with a leak rate of 0.02 gpm.	9-55
Figure 9.20	Velocity magnitude contours for the final wastage state sectioned directly through crack. The viewpoint is looking up from below RPV head.	9-56
Figure 9.21	Temperature contours for the final wastage state sectioned directly through crack. The viewpoint is looking up from below RPV head.	9-57
Figure 9.22	Cavity wall temperature contours for the final wastage state. The viewpoint is looking up from below RPV head from a different orientation than Figures 9.17 and 9.18 to show the cavity wall temperatures directly opposite the cracks.	9-58
Figure 9.23	Top View of Wastage Cavity on Davis-Besse RPV Head.	9-59
Figure 9.24	Wastage Cavity Sidewalls Viewed at Low Magnification Looking Toward 90° and 270°.	9-60
Figure 9.25(a)	Dental Mold of Wastage Cavity Looking Towards 0° and 90°.	9-61
Figure 9.25(b)	Dental Mold of Wastage Cavity Looking Towards 180° and 270°.	9-62
Figure 9.26	Transient analysis results for final wastage cavity filled with boric acid solution for time steps from 0.001 seconds to 0.02 seconds.	9-63
Figure 9.27	Transient analysis results for final wastage cavity filled with boric acid solution for time steps from 0.05 seconds to 0.10 seconds.	9-64
Figure 9.28	Transient analysis results for final wastage cavity filled with boric acid solution for time steps from 0.12 seconds to 0.20 seconds.	9-65
Figure 9.29	Transient analysis results for final wastage cavity filled with boric acid solution for time steps from 0.25 seconds to 0.40 seconds.	9-66
Figure 10.1	Top View of wastage cavity	10-13
Figure 10.2	View of cavity looking toward 270°	10-14
Figure 10.3	View of cavity looking toward 90°	10-15

BN63097.001 B0T0 1106 DB05

Figure 10.4	Low magnification photographs of cavity sidewalls	10-16
Figure 10.5(a)	Photographs of cavity dental mold	10-17
Figure 10.5(b)	Photographs of cavity dental mold	10-18
Figure 10.6	Wastage Cavity at CRDM Nozzle 2	10-19
Figure 10.7	Wastage Cavity at CRDM Nozzle 2	10-20
Figure 10.8	Schematic of final size and shape of Crack 1 in Davis-Besse CRDM Nozzle 3 (from Section 8, Figure 8.10)	10-21
Figure 10.9	PT results for nozzle 3 J-groove weld bore and cladding underside. The J-groove weld contained an axial indication near 10°	10-22
Figure 10.10	Photograph showing the remaining portion of the axial crack near 10° in the CRDM Nozzle 3 J-groove weld. This is the portion remaining after the machining was completed for nozzle repair.	10-23
Figure 10.11	Photograph showing axial crack in CRDM nozzle 3 J-groove weld near 10°.	10-24
Figure 10.12	Piece A2A6 was first sectioned into Pieces A2A6A and A2A6B. Piece A2A6A was further sectioned into Pieces A2A6A1 and A2A6A2. Both cuts were made on the same plane, parallel to the paper. The first cut line is partially visible; Piece A2A6B is the upper portion of the weld. The second cut line between Pieces A2A6A1 and A2A6A2 is obscured by Piece A2A6A1	10-25
Figure 10.13	Piece A2A6B after sectioning. The bottom surface of A2A6B2 was mounted. The axial crack in A2A6B3 was opened up for SEM.	10-26
Figure 10.14	Macro photograph of metallographic mount sample A2A6B2 (see Figures 5.4 and 5.5 for the sample orientation). The axial cracking at ~100 is through the J-groove weld, in contrast to the cracking near 1800, which was partially through the weld. A slightly higher magnification micrograph is also provided	10-27

List of Tables

		Page
Table 3.1	Principal Design Parameters of the Davis-Besse Plant	3-14
Table 3.2	Davis-Besse CRDM Nozzle Geometry, Materials and Operating Parameters	3-15
Table 5.1	EdF CRDM Inspection Results Reported at the 1992, 1994, and 2000 EPRI Workshops on PWSCC	5-38
Table 5.2	Summary of US Plants with Detected RPV Head CRDM Nozzle and/or Weld Cracking (from MRP-110)	5-39
Table 5.3	Orientation and Location of CRDM Nozzle Cracks in US Plant RPV Head CRDM Nozzles (from MRP-110)	5-40
Table 5.4	Summary of Inspections of US Plant RPV Head Nozzle J-Groove Welds (from MRP-110)	5-41
Table 5.5	Summary of US Plants with Detected RPV Head CRDM Nozzle Leakage (from MRP-110)	5-42
Table 5.6	Summary of US Plant RPV Head Replacements (from MRP-110)	5-43
Table 6.1	Test Parameters and Wastage Results from CE Crevice Test for Boric Acid Leakage into an Annular Crevice (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-49
Table 6.2	Test Parameters and Wastage Results from EPRI Crevice Test for Boric Acid Leakage into an Annular Crevice (from EPRI Boric Acid Corrosion Guidebook, Revision 1, November 2001)	6-49
Table 7.1	Summary of Identified Leaking CRDM Nozzles and Repairs for 6RFO to 12RFO	7-47
Table 8.1	Axial PWSCC Crack Dimensions in Davis-Besse CRDM Nozzle 2 for Cracks Extending Above the Top of the J-groove Weld	8-33
Table 8.2	Axial PWSCC Crack Dimensions in Davis-Besse CRDM Nozzle 3 for Cracks extending Above the Top of the J-groove Weld	8-33

Glossary of Terms and Abbreviations

ANO-1	Arkansas Nuclear One
AIT	Augmented Inspection Team (NRC)
ANL	Argonne National Laboratory
ANSI	American National Standards Institute
ASME	American Society of Mechanical Engineers
B&W	Babcock & Wilcox
BA	Boric Acid
BAC	Boric Acid Corrosion
BACC	Boric Acid Corrosion Control
BNL	Brookhaven National Laboratory
BWOG	B &W Owners Group
CAC	Containment Air Cooler
CAL	Confirmatory Action Letter
CE	Combustion Engineering
CEOG	CE Owners Group
CFD	Computational Fluid Dynamics
CGR	Crack Growth Rate
CNRB	Company Nuclear Review Board
CR	Condition Report
CRDM	Control Rod Drive Mechanism
СТМТ	Reactor Containment
DB	Davis-Besse
DEI	Dominion Engineering Incorporated
ECT	Eddy Current Testing

BN63097.001 B0T0 1106 DB05

EdF	Electricité de France
EFPY	Effective Full Power Years
EFPH	Effective Full Power Hours
EPRI	Electric Power Research Institute
FEA	Finite Element Analysis
FENOC	First Energy Nuclear Operating Corporation
FMEA	Failure Mode and Effects Analysis
GAO	US Congress General Accounting Office
GL	Generic Letter (NRC)
gpm	Gallons Per Minute
HVAC	Heating, Ventilation, and Air Conditioning
ID	Inner Diameter
IGA	Inner Granular Attack
ILRT	Integrated Leak Rate Test
IN	Information Notice (NRC)
INPO	Institute for Nuclear Power Operations
ISI	Inservice Inspection
ksi	Kilopounds per Square Inch
LER	Licensee Event Report
LLTF	Lessons Learned Task Force (NRC)
LOCA	Loss of Coolant Accident
MRP	Materials Reliability Program (EPRI)
MWe	Megawatts Electric
NDE	Non-Destructive Examination
NEI	Nuclear Energy Institute

NEIL	Nuclear Electric Insurance Limited
NRC	US Nuclear Regulatory Commission
NRR	Nuclear Reactor Regulation
NSSS	Nuclear Steam Supply System
NUMARC	Nuclear Management and Resource Council
OD	Outer Diameter
PCAQ	Potential Condition Adverse to Quality
psi	Pounds per Square Inch
РТ	Dye Penetrant Testing
PWR	Pressurized Water Reactor
PWSCC	Primary Water Stress Corrosion Cracking
QA	Quality Assurance
QC	Quality Control
RAI	Request for Additional Information
RB	Reactor Building
RCPB	Reactor Coolant Pressure Boundary
RCS	Reactor Coolant System
RFO	Refueling Outage
RPV	Reactor Pressure Vessel
SCC	Stress Corrosion Cracking
SIA	Structural Integrity Associates
SWRI	Southwest Research Institute
TECO	Toledo Edison Company
TVA	Tennessee Valley Authority
UT	Ultrasonic Testing

- VHP Very High Pressure
- WOG Westinghouse Owners Group