

· ·

. . . .

• • • • •

EGG-SSRE-9777 June 26, 1991

.

TECHNICAL REPORT

ISOLATION VALVE ASSESSMENT (IVA) SOFTWARE VERSION 3.10 USER'S MANUAL PROJECT NUMBER 015488

Prepared for the participant of a data and the Providence of the Contraction of the Contr

.

LL

.

.

Copyright © EG&G Idaho, Inc.. All rights reserved.

•

. .

TABLE OF CONTENTS

, where he has

•

EG&G Idaho, Inc.

.

.

.			
Chapte		-	
INTRO		1	
1.1	Software Notice	2	
1.2	Software Development	2	
Chapte	r 2		
INSTAL	LATION	3	
2.1	System Requirements	3	••• • •••
2.2	Installing the Program	3	
Chapte	r 3		
START	NG IVA	4	
Chapte	r 4		
4. US	ING IVA	5	
4.1	Cursor Movement	5	
4.2	Function Keys	6	• • • •
Chapte	r 5		•
DATA E	NTRY SCREENS	14	
5.1	Mode 1 and 2. Data Screen 1	14	
5.2	Mode 1, Data Screen 2	15	
5.3	Mode 1. Data Screen 3	19	
5.4	Mode 1. Data Screen 4	22	
5.5	Mode 2, Data Screen 2	31	•••
Chapte	r 6		
ESTIM/	TED RESPONSE SCREENS	33	
6.1	Mode 1 Results Screen	33	
6.2	Mode 2 Results Screen	34	
	_	54	
		05	
MOVE	JUATIONS	35	-
Chapte	r 8		
LIMITO	RQUE OPERATOR RATINGS	52	
Chapte	r 9		
REFER	ENCES	53	

..

. .

the second

GETTING STARTED

The Isolation Valve Assessment (IVA) software is a package of tools for evaluating operator sizing criteria for 5° flexwedge motor-operated gate valves in the closing direction utilizing Limitorque operators. Gate valves of the flexwedge design are typically the most common design installed in systems where flow isolation capability is desired.

IVA software increases the user's efficiency by providing the following features:

- easy-to-use data entry screens
- automatic calculation of intermediate variables
- valve stem thrust estimates using both the standard industry equation and the INEL equation and comparisons with operator capabilities
- assessment of low flow, low differential pressure valve testing
- graphical displays of valve performance estimates relative to either operator capabilities or INEL test results.

EG&G Idaho, Inc.

:

iii

June 18, 1991

·· ···

Chapter 1 INTRODUCTION

The general data entry screen is the first screen that the user encounters upon starting up the IVA program. On this screen, the user enters valve parameters, operator characteristics, and operator motor information. The user also uses this screen to select one of two possible assessment modes. The first mode estimates the maximum stem thrust and assesses the capability of the equipment. The second mode assesses low flow, low differential pressure diagnostic test results. The general data entry screen is the first screen for both modes. The first mode contains three additional data entry screens for valve specific data and operator specific mechanical and electrical data. The second mode contains one additional data entry screen for diagnostic test specific data. The data from both modes is in the same data base such that the user can easily toggle from one mode to the other. 17 1 4 and the set of the set

Each mode contains a results screen that summarizes the various calculations and displays the results. The results screen for the first mode displays estimated values for stem thrust, operator torque, and motor torque calculated using the industry and INEL equations. The motor torque, operator torque, and stem thrust which can be developed by the operator are also displayed. The results screen for the second mode displays an evaluation for validating and extrapolating results from low flow diagnostic tests. The results of that assessment determine whether extrapolation of . L. L. low flow test results is possible. and the second second

Various graphs can be displayed in either mode. The first mode displays four graphs. The first graph is a plot of required stem thrust versus available stem thrust as a function of stem factor for nominal and degraded voltage conditions. The second graph provides the same information as a function of stem to stem nut coefficient of friction. The third plot displays the conversion of operator torque to stem thrust for a number of stem to stem nut coefficients of friction. The fourth plot relates the stem thrust to torque switch settings for a number of stem to stem nut coefficients of frictions. The second mode displays a single graph relating an evaluation of the low flow diagnostic test results, compared to the valves tested by the INEL, for possible extrapolation to high flow conditions.

EG&G Idaho, Inc.

1

23

June 18, 1991

Q

NOL

1.--

INTRODUCTION

1.1 SOFTWARE NOTICE	This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this report are not necessarily those of the U.S. Nuclear Regulatory commission.								
1.2 SOFTWARE DEVELOPMENT	This software was been developed by the Idaho Nat under contract to the Office of Nuclear Regulatory Regulatory Commission. Any comments pertaining directed to one of the following:	tional Engineering Laboratory Research, U.S. Nuclear , to the software should be							
	John C. Watkins Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 MS–2403 Idaho Falls, Idaho 83415	(208) 526–0567 (FTS) 583–0567							
	Robert Steele, Jr. Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 MS–2406 Idaho Falls, Idaho 83415	(208) 526–6409 (FTS) 583–6409	• • • • • • • •						
	Kevin G. DeWall Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 MS–2406 Idaho Falls, Idaho 83415	(208) 5260313 (FTS) 5830313	·						

EG&G Idaho, Inc.

2

June 18, 1991

....

LILL

Chapter 2	have been and	
INSTALLATIO	N	
2.1 SYSTEM REQUIREMENTS	IVA was developed to operate on an IBM personal computer or compatible. PC/MS-DOS 3.1, or newer, and an 80 column display should be used. In order to display the various plots, the system also requires graphics capabilities. Best results are obtained with systems that have VGA color capabilities. However, the software has been successfully operated on systems with EGA or CGA screen modes, on systems with Hercules graphics cards, or with VGA mono- chrome capabilities.	
2.2 INSTALLING THE PROGRAM	You can run IVA from either a floppy disk or a hard drive, but performance is better with a hard drive. To install the program on a hard drive, perform the following steps:	
	 Create a subdirectory for the program's execution files. This is done by typing MD\xxxx where xxxx is a 1 to 8 character name for the new subdirectory. 	
	2. Copy the IVA execution files to the new subdirectory:	
	• insert the IVA disk into either a 51/4" or 31/2" floppy drive, depending on the size of your IVA program disk.	میں میں میں م
	• shift to the drive the IVA program disk was inserted into by typing X: where X is the letter designation of the floppy drive containing the IVA program.	
	• Type COPY *.* C:\xxxx	

If you want to be able to start IVA from any hard disk subdirectory, add the

name of the subdirectory that was created for IVA to the DOS PATH command string that exists in your AUTOEXEC.BAT file and reboot the PC.

L

3

.

June 18, 1991

. ...

•

•••

L Chapter 3

STARTING IVA

To run IVA from a hard disk:

- 1. Shift to the hard drive by typing C:.
- 2. If the subdirectory that IVA was copied to does not exist in the DOS PATH, change to the subdirectory containing the IVA executable files by typing **CD****XXXX**.
- 3. Type IVA.

To run IVA from a floppy disk:

- 1. Ensure that the DOS commands can be executed from a floppy drive by verifying that the complete subdirectory name (drive and subdirectory) containing the DOS commands is contained in the PATH command string that exists in your AUTOEXEC.BAT file. If the complete subdirectory name is not present, add it and reboot the machine.
- 2. Shift to the floppy drive containing the IVA executable files.
- 3. Type IVA.

When the program successfully loads, it creates a blank, unnamed data file, and the general data entry screen appears. Instructions for the use of the entry screens, along with procedures for loading and saving data files, are provided in the following sections of this manual.

EG&G Idaho, Inc.

4

3. STARTING IVA

L;	Chapter 4	
	USING IVA	
	•	When IVA is started, the general data entry screen is the first screen that the user encounters. Two data entry modes can be selected from this screen. The
		default selection when the general data entry screen first appears is Mode 1, which is used to estimate the maximum stem thrust of a valve and assess the capability of a MOV. Mode 1 consists of three data entry screens in addition

- Enter the data required per the current mode or press F3 to retrieve a previously saved data file. The upper left corner of each data screen identifies the use of the data field the cursor currently resides in or whether the data field is optional.
- Press F5 to view the estimated response for the mode selected. The extent of data displayed will depend on the amount of data input to the program.
- Press F6 to select and view the various plots for the mode selected. The availability of plots will depend on the amount of data input to the program.
- Press F4 to print out a hard copy of the current MOV data and calculations for the mode selected.
- Press F8 to save the current data and, if desired, exit the program.

You can move through the various data entry screens using the PAGE-DOWN and PAGE-UP keys. Entering PAGE-DOWN at the last data entry screen brings up the general data entry screen. Likewise, entering PAGE-UP at the general data entry screen brings up the last screen for whichever mode has been selected.

You can move from field to field in any of the data entry screens using the UP-ARROW or DOWN-ARROW keys.

a provinsi a construction de la sector de la s El sector de la construction de la sector de la ົລ

ž

June 18, 1991

EG&G Idaho, Inc.

4.1 CURSOR

MOVEMENT

5

Chapter 4		
USING IVA		
·	You can move within a field using the LEFT-ARROW, RIGHT-ARROW, HOME, END, and BACKSPACE keys. Data within a field can be edited using the INSERT and DELETE keys. Some data entry fields are bracketed by <> characters. This indicates that for that field, you can a toggle through a series of preset values. With the cursor in	میرید در بینید در د سر ایر اینین ایر ایر ایر
4.2 FUNCTION	a toggle field, you can view and select using the LEFT-ARROW and RIGHT-ARROW keys. Note that several of the toggle fields have been included for future expansion of the program. As such, these fields contain a single option and do not appear to function. The valve type (Gate) on the general data sheet is one example of a toggle field which does not appear to function.	
F1 Help Information	This function displays context sensitive help information. If the help screen contains more information than will fit on a single screen, the bottom row of the screen will state that the additional information can be viewed using the UP-ARROW, DOWN-ARROW, PAGE-UP and PAGE-DOWN keys. If no context sensitive help information is available for the current cursor location, or if you press F1 while the help information is being displayed, the Function Key Definition help screen appears. (Thus, pressing F1 either once or twice will bring up the screen that defines the function keys.) Pressing any other key will return you to the data entry screen you were in when you pressed F1.	هي بـ عور . ۲
Functio	n Key Definitions Activate from any data entry screen	

Fl	EQUATIONS Help Information	Color/Graphics Mode	F2
F3	CHANGE DIRECTORY File Menu	Print Active Data	F4
F5	Estimated Response	Graphics Menu	F6
F7	Save File	Save/Clear/Exit	F8
F9	Table Up (Ctrl ↑)	Table Down (Ctrl ↓)	F10

Legend: UPPER CASE – SHIFT + FUNCTION KEY lower case – Function Key only

EG&G Idaho, Inc.				6				June 18, 1991								
						-	·	·	<u> </u>	• •	· -		•	-	· -	-
	• •				 ·- ·		e			•		• •	• • • •	•••	· •·	-

٠

Chapter 4			Les
USING IVA			
Shift–F1 Equations	This function underlying for and PAGE-D review these e	isplays a series of 17 text screens that provide the user wit nulas used by IVA. To view each equation, use the PAGE OWN keys. See the MOV Equation section of this manual quations as they appear on screen.	h the -UP to
F2 Colors/Graphics Mode	This function graphs. You ca ground, and w the UP-ARR ARROW and current color of the various gra mode can be s press Esc to s	ets you select and save default screen colors for text screen in select various color combinations for the foreground, bac indow displays by moving the cursor to the desired item us DW and DOWN-ARROW keys, and then using the LEFT RIGHT-ARROW keys to make the selection. Examples o pombinations are shown next to the current settings. Colors phics can be set in the same manner. In addition, the graph lected, subject to the capabilities of the system. When finis two the settings.	s and k- ing f the for ics shed,
F3 File Menu	This function of directory and p screen. Use the DOWN-ARF number of one clear the curre gram, see the o	isplays a listing of the available MOV data files in the curr rovides four file management options at the bottom of the LEFT-ARROW, RIGHT-ARROW, UP-ARROW , and OW keys to highlight the desired data file and then select t of the following file management options. To unload a file it data being edited so that new data can be entered into the siscussion under section F8, Save/Clear/Exit.	ent he or pro-
	1. Load	Loads the data in the highlighted file into the curr data entry screens.	rent
	2. Delet	Deletes the highlighted file after the user confirm desired action.	s the USING
	3. Renai	Allows the user to enter a new name for the high- lighted file. If a file exists with the same name, th user is prompted on whether the existing files sho be overwritten or not.	e vild
	4. Сору	Allows the user to copy the information in the hig lighted file to a different file. If a file exists with t same name, the user is prompted on whether the existing file should be overwritten or not.	;h- he
EG&G Idaho, Inc.	.	7 June 18	, 1991

•

· · ·

. <u>.</u> . . .

-

.

• ...

. . . .

•

.

•

.

•

. .

. . .

.

1

• •

USING IVA

Shift–F3 Change Directory	This function allows you to enter the name of an alternate data subdirectory. If the requested subdirectory does not exist, IVA will prompt the user on whether to create it or not. Subsequent file actions will occur within this subdirectory. All subdirectories created by IVA will exist under the directory that contains the IVA executable files.	
F4 Print Active Data	Use this function to print out the input and results data for the current MOV being assessed. The actual output will depend on which mode is currently active, as selected on the general data entry screen. The following three pages provide examples of the output that is available. The first two pages present output when Mode 1 is active, the third page when Mode 2 is active. Note that a Hewlett Packard LaserJet or compatible printer is required.	<u>`</u>

EG&G Idaho, Inc. 8						June 18, 1991									
		-	· -			· _	 							-	
 - .			•	<u> </u>			 	-							

.

. .

•••

....

•••

. ..

JASS

...

JSING IVA	
------------------	--

IVA-3.10 Motor Operated Valve Cap	ability Estim	ates	Date: Time: Page: 1 of 2		
System:	Type:	P&ID Coord:	\$1ze:		
			میں بر اور اور اور اور اور اور اور اور اور او	, <u>, , , , , , , , , , , , , , , , , , </u>	2
Design Basis Conditions Pressure (psig): OP Disk Factor: Subcooli	(psid):	Packin	g (1bf):		.
Valve Data Orif Dia (in): Stem Dia Orif Area(in ²): Stem Are Seat Angle	(in): a(in ²): (deg):	Seat Seat	ID (in): DD (in): HD (in):	÷	· ·
Operator Mechanical Data Stem Thds/in:, Lead Desc.: Stem Friction:Stem F Stroke Length (in): Time	Pitch: actor: (sec):	Ope	Lead: r Ratio: in/min):	-	
Operator Electrical Data Motor Rated Speed (RPM): Torque (ft-lbf): Voltage (volts): Stall Torque (ft-lbf): Stall Current (amps):	Source Vo Nominal: Hinimum: Maximum: Power: Containm	ltage	-Pullout Eff: App Factor: Stall Eff: ture (°F):		
Valve/Operator/Motor Requirements				•	
INEL Estimate Industry Estimate	Disk Load (1 Rejection Lo Packing - Ve Req'd Stem T Req'd Operat Req'd Motor	bf) ads (lbf) ight Loads hrust (lbf) or Torque (Torque (ft-	(1bf) ft-1bf) 1bf)		· · · · · · · · · · · · · · · · · · ·
Unit Capabilities	Unit Req	uirements		60 4 62 - 14 1	
Available at Available at Available Max. Voltage Nom. Voltage Min. Volta	at INEL ge Estimate	Industry Estimate		1 	ļ
	- X - X		Stem Thrust Operator Torque Notor:Torque Voltage Drop Torque Switch		· · · ·

Mode 1 Printed Output, Page 1 of 2

EG&G Idaho, Inc.			9				é) *			une 18, 1	991	•.		
···· · ·-	· -	•	 •					•	•		•••	 	· - — ·	

Ы

USING IVA

.

IVA-3.10	Notor Operated	Valve Capabi	ility Estima	tes	Date:						
Plant/Unit System Number Valve Nake Oper. Make	: Mc	ode1:	Page: 2 of 2 Page: 2 of 2								
Data Number	Torque Switch Setting	Operator Torque	Data Number	Torque Sett	Switch ing	Operator Torque					
1 2 3 4 5 6 7 8 9 10			11 12 13 14 15 16 17 18 19 20								
Data				Length	W1r	e Size					
Number 1 2	Cable	Гуре 		(ft)	AWG	Cir Mils					
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20											

Mode 1 Printed Output, Page 2 of 2

. .

EG&G Idaho, Inc.

. .

10

June 18, 1991

HAR -

. _ .

11

USING IVA

•		 · ·	· ·	2	2	• 1	1. 25	
	- 1				 		•	

IVA-3.10	Motor Operated Valve Test Assessment Date: Time: Page: 1 of 1
Plant/Unit: System: Number:	P&ID Coord:
Valve Make: Oper. Make:	Type: Size: Hodel: Rumber:
Valve Data	a second a s A second a se
Seat Angle (deg)	:Stem Dia (in):Seat ID (in): Stem Area(in ²):Seat OD (in): Seat MD (in):
Recorded Tes	t Conditions
Pressure (psig Stem Thrust (lbf): DP (psid): Packing (lbf):): Fluid Subcooling:
INEL Estimate	ed Valve Response and the second of the second second second
Tota Vertical (1b Horizontal (1b	1 Disk Load s):Normal(lbs): s):Sliding (lbs):
Sliding Fo	rce Within Limits of INEL Data (to):
Is the tes	t valve typical of valves tested by the INEL:

Mode 2 Printed Output, Page 1 of 1

F5 Estimated Response

F6 Graphics Menu This function displays the estimated response screen, showing the results of IVA program calculations, depending on which mode is active. These results screens will be explained later in this manual.

.

This function displays a mode-specific menu from which you can select one of several plots. All lines are color coded, and the colors can be changed using the F2 Color/Graphics Mode function, subject to the capabilities of the system.

Mode 1, Graph 1: Required and Available Thrust vs Stem Factor The two horizontal lines identify the thrust required to close the valve, as estimated using the industry and the INEL equations. The vertical line identifies the estimated stem factor for the operator as it appears on Data Screen 3. The curved lines identify the thrust available from the operator under nominal and degraded voltage conditions, including the effects of voltage losses in the cables from the power source to the MOV.

EG&G Idaho, Inc.

June 18, 1991

DNING

Ň

USING IVA

Mode 1, Graph 2: Required and Available Thrust vs Stem Nut Friction

This option is identical to Graph 1, except that the various thrusts are plotted against the stem to stem nut coefficient of friction, which appears on Data Screen 3, instead of the stem factor.

Mode 1, Graph 3: Conversion of Operator Torque to Thrust

The two horizontal lines identify the thrust required to close the valve as estimated using the industry and the INEL equations. The vertical line identifies the maximum available operator torque at degraded voltage conditions, including the effect of voltage losses in the cables from the power source to the MOV. The various sloping lines represent the conversion of operator torque to thrust assuming several stem to stem nut coefficients of friction.

Mode 1, Graph 4: Relationship of Torque Switch Setting to Thrust

The two horizontal lines identify the thrust needed to close the valve as estimated using the industry and the INEL equations. The vertical line represents the maximum allowable torque switch setting at degraded voltage conditions, including the effect of voltage losses in the cables from the power source to the MOV. The various sloping lines represent the available thrust versus torque switch setting for several stem to stem nut coefficients of friction.

Mode 2, Graph 1: Relationship between Sliding and Normal Forces

A solid sloping line represents the best estimate relationship between sliding and normal forces acting on a disk. The two sloping dashed lines represent the limits observed in the INEL test data. The circle represents the estimated sliding and normal loads acting on the disk during a test.

F7 Save File

This function lets you save the current data file. A window prompts you as to whether the current file should be saved. If the response is Yes, a second window opens and identifies the current file name, if one exists. You can either use the same file name or change the file name prior to saving the file. If a file exists with the same name, a third window opens and prompts you on whether the existing file should be overwritten or not. Answering Yes will complete the save operation.

EG&G Idaho, Inc.

12

June 18, 1991

F8

F9/F10

Table Up/

Table Down

This function lets you save the current data file and exit the program. A win-Save/Clear/Exit dow prompts you as to whether the current file should be saved as discussed under F7, Save File. A final window then opens and prompts you on whether to exit the program or not. A No response at this point will clear the current data file and start a new file.

> If you want to exit the program without saving the current file, answer No to the Save File window and Yes to exit the program.

If you want to clear the current file without saving the data and without exiting the program, answer No to the Save File window and No to the Exit Program window.

Use these functions to move through the multiple rows of the data tables to enter data in either the torque switch calibration table or the cable description table on Data Screens 3 and 4 of Mode 1.

On some machines, the CTRL UP-ARROW and CTRL DOWN-ARROW keys can also be used to move through the tables to enter data. This capability is machine dependent and is left for the user to determine if this capability is available on a given machine.

13

June 18, 1991

Chapter 5 DATA ENTRY SCREENS

5.1 Modes 1 and 2, Data Screen 1

]___

The first data entry screen records general data associated with the MOV. This data plays no part in the actual calculations. This screen is common to both modes, and it is from this screen that you select either Mode 1 (capability assessment) or Mode 2 (validate and extrapolate). Such items as the plant and system the MOV is located in, the MOV number, the grid location on P&IDs and general valve and operator information can also be documented. A comment field is also provided.

	· · · · · ·			· · ·
File: Variable Us	e:	,. * * *	General Data (Sh	et 1 of 4)
Plant/Unit: System: Number:	n an	م به ب ه مدر در مرزی	P&ID coord:	
Valve	Manufacturer: Type:<	> Size:		;
Operator	Manufacturer:< Model:	> Number:		
3	n - 1 - 1	Mode	:<	>
Comments:			•	
F1-Help	F5-V	alve Response	PgUp/PgDn-net	w data sheet

Mode

Determines what type of input will be entered, calculated, printed and graphically displayed.

Available options are

- Capability Assessment (Mode 1)
- Validate & Extrapolate (Mode 2)

Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.

and the strategy and the state

EG&G Idaho, Inc.		• • *	14	June 18, 1991	_		
	•		<u>.</u>				
			 	 	<u>.</u>	·	••••

DATA ENTRI SCREENS

DATA ENTRY SCREENS

5.2 Mode 1, Data Screen 2

The second data entry screen in Mode 1 is used to record specific valve data and system conditions needed for design basis stem thrust calculations. Critical parameters include the maximum system pressure and valve differential pressure, disk factor, packing load, orifice and stem areas/diameters, the stroke length, the valve seat inside/outside/mean diameters and the subcooling of the fluid at design basis conditions.

You need not enter both the area and the diameter of the orifice and the stem. If you enter a diameter, then the computer calculates the corresponding area. Likewise, if you enter an area, then the computer calculates the corresponding diameter.

File: Valve Data (Sheet 2 of 4) Variable Use: Pressure (psig): Differential Pressure (psid): Disk factor: Packing Load (1bf): Orifice Diameter (in): Stem Diameter (in): Area (sq in): Area (sq in): Stroke Length (in): Seat ID (in): Seat OD (in): Mean Seat Dia (in): Seat Angle (deg):< Fluid Subcooling:< F1-Help F5-Valve Response PgUp/PgDn-new data sheet

Pressure (psig)The maximum upstream pressure that the valve must close against as specified
in the design basis documents.Differential
Pressure (psid)The maximum differential pressure that the valve must close against as speci-
fied in the design basis documents. If this value is not specified, enter the max-
imum upstream pressure again as the maximum differential pressure.Disk FactorA factor that is dependent on the valve design.

EG&G Idaho, Inc.

15

June 18, 1991

Ŀ

DATA ENTRY SCREENS

Derein

•	The following ¹ are ty	pical values of disk fac	tors being used b	by the industry:		· · · · · · · · · · · ·
	0.2 for paral 0.3 to 0.5 for wedg	llel seat double disk ga ge gate valves	te valves	· ·		· · · · · · · · ·
Packing Load (Ib _l)	The maximum packin packing drag depends operation.	ng drag as specified in t on the packing design	he design basis d , gland nut torque	ocuments. The e, and direction of		
	The following ¹ are maindustry based on the	aximum packing drag e size of the stem:	estimates being u Packing	sed by the		n fan ser fan s Reference fan ser fan s
	Stem Dian	neter	Asbestos	Flexible Graphite		
	Up to 1" inclusive		1000	700 — 1200		
	Greater than 1" to 1"	inclusive and that are	1500	1000 — 1800		·. ·
	Greater than 1" to 2"	inclusive	2500	1600 — 3000	•	·
	Greater than 2" to 4"	inclusive	4000	3500 — 6000		
	Greater than 4"		5000	4000 — 7000		91 (11).
	Note: The validity of with the valve and/or	these values for a speci packing manufacturer.	fic application m	ust be verified		
Orifice Diameter (inch)	The cross-sectional d the valve as a minimu final estimated stem th	iameter of the valve po m. Larger port diamete hrust.	rt. Use the actual rs introduce cons	port diameter of servatism into the	 •	
	The computer will cal area.	culate the valve port di	ameter if you en	er the valve port	5	
Orifice Area (inch²)	The cross-sectional as as a minimum. Larger estimated stem thrust.	rea of the valve port. U port areas introduce co	se the actual port	area of the valve the final	DATA ENTI SCREENS	
	The computer will cal diameter.	culate the valve port ar	ea if you enter th	e valve port	RY	
EG&G Idaho, Inc.	·	16		June 18, 1991		
· •					••	· <u> </u>

DATA ENTRY SCREENS

•

EG&G Idaho, Inc.		17	Iune 18, 100	10									
		0.545											
	10 inch	0.126	0.500										
		0.377		ه ، ، ه.									
	6 inch	0.125	0.135										
	Valve Size	900 lb _f valve	600 lbf valve										
		Seat Wi	dth (inch_)										
	The following seat width by the INEL. These mean seat width of similar value	is were observed for the surements may be of sor ves.	flexwedge gate valves tested ne assistance in estimating th	l server and s									
Seat OD (inch)	The outside diameter of the should be measured in the outer diameter is not avan times the seat width as an	o											
Seat ID (inch)	The inside diameter of the valve seating surfaces. The seat inner diameter should be measured in the plane perpendicular to the valve stem. If the seat inner diameter is not available, you can use the valve orifice diameter as an approximation.												
	If the above information 110% of the valve orifice	is not available, you car e diameter.	estimate the stroke length a	S									
Stroke Length (inch)	The distance the valve di tion. Use the valve stroke puter will calculate the st stroke time.	isk travels from the fully e length supplied by the troke length if you enter	open to the fully closed pos valve manufacturer. The cor the valve stroke speed and t	i n- he									
	The computer will calcul	late the stem area if you	enter the stem diameter.										
Stem Area (inch²)	The cross–sectional area the valve manufacturer.	The cross-sectional area of the valve stem. Use the stem area as supplied by the valve manufacturer.											
	The computer will calcu	late the stem diameter if	you enter the stem area.	••••••••••••••••••••••••••••••••••••••									
(inch)	supplied by the valve ma	anufacturer.		80 yuku waange yuu									
otenn Dianneter													

r , , , L uei

L

DATA ENTRY SCREENS

Mean Seat Diameter (inch)	The average of the inside and outside diameters of the valve seating surfaces. The computer will calculate the mean seat diameter if you enter the seat inner diameter and the seat outer diameter.
Seat Angle (degrees)	The angle of the valve seating surface relative to the valve stem. The seat angle for a majority of flexwedge gate valves is nominally 5 degrees. Currently, IVA is written to use this value only.
Fluid Subcooling	Fluid subcooling is the difference between the actual temperature of a liquid and the saturation temperature of the liquid at the design basis pressure.
	Two options are available:
:	• Less than 70°F subcooled (fluid near or at the steam temperature), and
:	• 70°F or greater subcooled (colder fluid).
•	If the actual fluid subcooling is unknown or is close to 70°F, or if additional conservatism is needed in the estimated stem thrust, use a subcooling of 70°F or greater. Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.
• •	an a
	no. Des la desta de
	······································
	1、11、1、12、11、11、12、11、11、11、11、11、11、11、

- And and

° :}

EG&G Idaho, Inc.	- * <u>-</u> *	18						Ju					
		•	·	-			· -	 • ••		· • ·	 . .		

DATA ENTRY SCREENS

5.3 Mode 1, Data Screen 3

The third data entry screen in Mode 1 is used to record specific mechanical data for the operator, such as the stem pitch and lead, stem to stem nut coefficient of friction and stem factor, stroke time and speed, and the overall operator ratio.

If you enter a threads/inch value and a lead description, the computer will automatically calculate the stem pitch and stem lead. If you directly enter a stem pitch or lead, the threads/inch and the lead description fields will go blank. If you enter a stem to stem nut coefficient of friction, the computer will calculate the stem factor, and vice versa.

File: Operator Data (Sheet 3 of 4) Variable Use: Threads/inch:< Close Limit:< Lead Description:< Stem Pitch: Stem Nut Friction: Stem Lead: Stem Factor: Stroke Time (sec): Stroke Speed (in/min): Over All Operator Ratio: Data Set **Torque Switch** Operator Number Setting Torque F1-Help F5-Valve Response PgUp/PgDn-new data sheet

Threads/inch (TPI) The number of threads that occur in one inch of the valve stem.

Twenty-two options are available:

- Blank (No entry),
- 1 to 6 threads per inch in thread increments, and
- 6 to 16 threads per inch in 1 thread increments.

The threads per inch is the reciprocal of the stem pitch. If you enter the stem pitch or lead, this field will go blank.

Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.

EG&G Idaho, Inc.				19								June 18, 1991										
-						-			-													
. .						_ .	. <u>-</u>				_		•									

•

DATA ENTRY SCREENS

Lead Description	The stem lead description describes the number of independent threads cut into the stem. This can also be expressed as the number of apparent stem threads advanced for each revolution of the stem.								
	Four options are available:								
	• Blank (No entry),								
	• Single,								
	• Double, or								
	• Triple.								
	If you enter the stem pitch or lead, this field will go blank.								
	Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.								
Stem/Pitch (inch/thread)	The distance from the peak of one thread to the peak of an adjacent thread.								
	The stem pitch is the reciprocal of the stem threads per inch. If you enter the stem threads per inch, the computer will calculate the stem pitch. If you enter the stem pitch, the stem threads per inch field and the lead description field will go blank.								
Stem Lead (inch/stem	The distance the stem travels in one revolution of the stem-nut.								
revolution)	The stem lead is the product of the stem pitch times at the second state to the second								
	• 1 for single lead threads,								
	• 1742 for double lead threads, or the state of the state								
	• 3 for triple lead threads.								
	The computer will calculate the stem lead if you enter the stem pitch and the stem lead description. If you enter the stem lead, the stem threads per inch field and the lead description field will go blank.								

•

.

20

-- ---

June 18, 1991

-

- ---

.

..

La Land

DATA ENTRY SCREENS

.

Close Limit	An entry stating whether the valve closure is controlled by a torque switch or by a stem position switch.	
	• Torque, or	
	• Position.	
	Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.	
Stem Nut Friction	A coefficient of friction between the stem and the stem-nut that depends on the material, the surface finish, and the lubrication between the stem and the stem- nut.	
	The design basis stem to stem nut coefficient of friction will typically range from 0.15 to 0.20 ² . Conservatively, 0.2 is used to take into account the possibility of poor maintenance of the stem threads. However, lower and higher values have been calculated from the results of valve tests.	• • • • • • • • • • • • • •
	The computer will calculate the stem to stem nut coefficient of friction if you enter the stem pitch, the stem lead, the stem diameter, and the stem factor.	
Stem Factor	A factor reflecting the conversion of operator torque to stem thrust. This factor varies with stem diameter, pitch, lead, and the stem to stem nut coefficient of friction.	(`
	The computer will calculate the stem factor if you enter the stem pitch, the stem lead, the stem diameter, and the stem to stem nut coefficient of friction.	• · •
Stroke Time (sec)	Use the valve stroke time specified in the technical specifications or as sized by the operator manufacturer. The computer will calculate the stroke time if you enter the valve stroke length and the stroke speed.	
Stroke Speed (inch/minute)	Use the valve stroke time supplied by the technical specifications or as sized by the operator manufacturer. The computer will calculate the stem speed if you enter the stroke length and the stroke time.	<u>.</u>

EG&G Idaho, Inc.

21

۰. ۲ June 18, 1991

LI Li

Ratio

5.4 Mode 1.

L

DATA ENTRY SCREENS

· . · · · and the second

DATA ENTRY SCREENS

- -

.

1

. :

Toraue Switch Information

Overall Operator

Use the torque spring calibration data supplied by Limitorque or data from separate testing. If this information is available, enter the torque switch calibration data as a

The number of electric motor turns to stem nut turns. This is often listed as the

The computer will calculate the overall operator ratio if you enter the electric

motor rated speed (next screen), the stem lead, and the stroke speed.

· . . .

torque switch setting

"RAT" number on the unit."

corresponding operator torque (ft-lb_f).

This information is used to estimate torque switch settings. If this information is not included, this feature of the program will not be available. 101

The final data entry screen in Mode 1 is used to record specific electrical data Data Screen 4 for the operator, such as the power source, the source nominal, minimum and maximum voltages, the motor rated speed, torque and voltage, the motor stall torque and current, stall and pullout efficiencies, application factor, and the temperature of the containment as design basis conditions.

> The cable description fields allow information on the cable used to connect the motor to its electrical source to be entered. IVA uses the data entered in the length and cir mils fields to estimate the voltage drop caused by the connecting cables. A start of the second start of the .

File: Variable L	Jse:	e o su clata e petro cato El	ectrical Data (Sheet 4 of 4)
Power Source:< Source Voltage: X Minimum: X Maximum:		> Hotor Rated Speed (RPM): DOLLAR Torque (ft-lbf): DOLLAR Voltage (volts):	Motor Stall Torque (ft-lbf): Current (amps):
Contair Temp	ment (*F):	App. Fact: ¹⁰ Pullout Eff:	Erriciency:
Data Set Number	Cable	en ander sollter en ander Description	Get Length Wire Size (ft) AVG Cir mils
		2012 - 2012 - 2012 2012 - 2012 2013 - 2012 2014 - 2015 2014 - 2014 2014 - 2014	99 99 - 19 - 19 19 19 19 19 9 - 19 19 19 19 19 19 9 - 19 19 19 19
F1-Help		F5-Valve Response	PgUp/PgDn-new data sheet

EG&G Idaho, Inc.		5-7-5		22		•		June 18,	1991		· .		۰.
	-	· •	 •	·	 		 •			· •== ·	-	—	

DATA ENTRY SCREENS

•

Power Source	The type of electrical power being supplied to the operator motor.				
	Available options are:		-		
	• AC-3 Φ ,		-		
	• AC-1 Φ , or				
	• DC.				
	Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.			. .	
Source Voltage (volts)	The nominal voltage of the power source that supplies power to the operator motor.				
Minimum Voltage (%)	The minimum voltage supplied to the operator motor under degraded voltage conditions.				
	Express as a percentage (0 to 100%) of the source voltage.			. 🛥	
Maximum Voltage (%)	The maximum voltage supplied to the operator motor under maximum voltage conditions.				-
	Express as a percentage (100% or higher) of the source voltage.				
Containment Temperature (°F)	The maximum containment or power cable temperature expected during a de- sign basis event.				
Motor Rated Speed (RPM)	The rated speed of the operator motor.				·
	Values suggested by Limitorque ¹ include				
	850 RPM for 900 RPM, 3 phase 60 cycle service ac motors				
	1700 RPM for 1800 RPM, 3 phase 60 cycle service ac motors				
	3400 RPM for 3600 RPM, 3 phase 60 cycle service ac motors				
	700 RPM for 750 RPM, 3 phase 50 cycle service ac motors				
	1425 RPM for 1500 RPM, 3 phase 50 cycle service ac motors	• -•		•• •	•••
	2800 RPM for 3000 RPM, 3 phase 50 cycle service ac motors				

EG&G Idaho, Inc.			23	23				June 18, 1991								
			•	•								•		· -		_
	• • • • •		-			- .		- .				• .				

Chapter 5				D. C.
DATA ENTRY	SCREENS			· · · · ·
•	1425 RPM for 1500	RPM, 3 phase 25 cyc	le service ac motors	Maria (1997)
	2100 RPM for Mod	utronic motors		: ·
	1700 RPM for 1800 1900 RPM for dc m	RPM, 1 phase 60 cyclotors	le service ac motors	
	Note: Dc and 1 phase mot approximate. Dc and 1 ph	ors are load sensitive, ase motors subjected t	so the design speeds are or o little or no running torqu	nly e
	(e.g., high gear ratios and speeds 50 to 100% higher	corresponding long or than indicated above.	cerating times) may run at	
Motor Rated Torque (ft–lb _f)	The rated torque for the op electric motor rated specif Limitorque ³ :	perator motor at nomir fications subject to the	nal voltage conditions. Use following caution from	the
	A a the ampliant terms	<u></u>		
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a	perature increases, a do mitorque's dc operator r to perform at 340°F. t produce their rated st operator, the calculate available starting torqu	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing cd motor torque must be less e shown in the table below	09) of ga ss • • • • • • •
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torqu tors	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below	109) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torqu tors Maximum available	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below	09) of ga ss • • • • • • • •
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo	perature increases, a do mitorque's dc operator r to perform at 340°F. to produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing d motor torque must be less e shown in the table below	09) of ga ss • • • • • • •
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torqu tors Maximum available at qualified starting	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (ft-lbf) g temperature (340°F)	09) of ga ss • • • • • • •
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torqu tors Maximum available at qualified starting 125 volt rating	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating	09) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f)	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torqu tors Maximum available at qualified starting 125 volt rating	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing d motor torque must be less e shown in the table below (c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating	109) of ga 55
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f)	perature increases, a domitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating 5	09) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified startin 125 volt rating 5 10	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below ((ft-lb _f) g temperature (340°F) 250 volt <u>rating</u> 5 10	09) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5 10 15	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ad motor torque must be less e shown in the table below ((c starting torque (ft-lb _f) g temperature (340°F) 250 volt <u>rating</u> 5 10 15	09) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15 25	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5 10 15 25	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below ((c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating 5 10 15 25	09) of ga ss
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15 25 40	perature increases, a domitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5 10 15 25 39	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (c starting torque (ft–lb _f) g temperature (340°F) 250 volt rating 5 10 15 25 36	in of ga ss in the second seco
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15 25 40 60	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5 10 15 25 39 54	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating 5 10 15 25 36 51	109) of ga ss 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15 25 40 60 80	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified starting 125 volt rating 5 10 15 25 39 54 79	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below ((())))))))))))))))	109) of ga ss 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	As the ambient temp torque decreases. Li requires the operator the dc motors canno nuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque (ft-lb _f) 5 10 15 25 40 60 80 100	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available <u>at qualified starting</u> 125 volt <u>rating</u> 5 10 15 25 39 54 79 70	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below ((250 volt rating 5 10 15 25 36 51 68 76	109) of ga ss 55 SCREENS SCREENS
	As the ambient temp torque decreases. Li requires the operator the dc motors cannonuclear qualified dc than the maximum a Rated Torque With dc Mo Nominal motor starting torque $(ft-lb_f)$ 5 10 15 25 40 60 80 100 150	perature increases, a do mitorque's dc operator r to perform at 340°F. It produce their rated st operator, the calculate available starting torque tors Maximum available at qualified startin 125 volt rating 5 10 15 25 39 54 79 70 150	c motor's maximum output r qualification (Report B00 At this temperature, some tarting torque. When sizing ed motor torque must be less e shown in the table below (c starting torque (ft-lb _f) g temperature (340°F) 250 volt rating 5 10 15 25 36 51 68 76 150	09) of ga ss 55 55 56 56 56 57 7 7 7 7 7 7 7 7 7 7 7

EG&G Idaho, Inc. 24 June 18, 1991 . -.....

.

•

· ·• **.** . . . · · · · · . - --. **.** • • • •··•= ·· · • • • · · · **.**

_

-

.....

DATA ENTRY SCREENS

.

Motor Rated Voltage (volts)	The nominal voltage for which the operator motor is rated. This is also the voltage at which the operator motor rated speed and torque are specified.			
Application Factor	The operator motor service factor required for a particular application.		· · · · · ·	
	Values suggested by Limitorque ⁴ include			
	0.90 — Standard			
	0.80 — 900 RPM motors			
	0.80 — High temperature applications using "SB"			
	0.80 — Compound motor gear applications	• ••		•
	0.80 — Air motors	•		· _
	0.75 — Modutronic motors			
	0.75 — Hi–Lo applications			
	0.70 — Non rising stem where operator takes thrust			
	0.50 — Non rising stem where valve takes thrust			
	If two or more application factors are required, (e.g., 900 RPM motor with compound gearing and a Hi-Lo) use as follows:	• • •		و به م
	0.8 (900 RPM motor) x 0.8 (Comp. Gear) x 0.75 (Hi-Lo) 0.9 (Standard) x 0.9 (Standard)			
	If two factors are required, divide by one standard factor.			
	If three factors are required, divide by two standard factors.	·- ^		·

EG&G Idaho, Inc.

.

25

June 18, 1991

.

-- --

.. ...

. .

. .

• •

....

...

~ ~ ~

•••

LILL

.. 🕫

• - -

DATA ENTRY SCREENS

· ·

···· ···	Pull Out Efficiency	The efficiency the appropriate	of the gearing in the operation of the gearing in the operation of the following the f	erator during pulloung table.	t ⁵ (zero speed). U
		Unit Size	Ratio Range	1500/1800 RPM motors	3000/3600 RPM motors
		SMB-000	12.50 - 30.60	0.60	0.60
	··· · ·		33.50 - 100.00	0.40	0.40
	1. M. 1997 (1997)		102.00 — 136.00	0.35	0.35
		SMB-00	9.70 - 22.04	0.60	0.65
ŧ., *	, · · · ·	1.19 V	23.00 - 41.00	0.40	0.45
			43 60 - 109 99	0.10	0.40
			114.00 - 183.90	0.40	0.40
,		in Electropolis de la			0.00
		SMB-0	11.80 — 17.50	0.65	0.65
			18.50 — 26.10	0.60	0.65
• · · · · · · ·	2	alen et al set	26.42 - 41.33	0.40	0.45
· · · · ·		Belge and the second second	¹¹ 43.69 — 96.20	0.40	0.40
			102.60 - 150.80	0.35	0.40
			158.30 - 247.00	0.30	0.35
· · . · . · . ·		24P - 24P -	Sec. S.		
		SMB-1	11.60 - 17.12	0.60	0.65
		 tests of 	18.13 — 25.65	0.60	0.65
			27.20 40.15	0.40	0.45
· , · · ·		an chuir dhei	42.50 - 88.40	0.40	0.40
· · ·	1. Stat. 5			0.35	0.35
	• · · · · · ·	Although a strain.	191.70 — 234.00	0.30	0.35
. Š.	the figure for	SMB-2	10.60 — 17.77	0.60	0.65
, , ,		and the state	18.85 - 25.55	0.60	0.60
` د	1	the state of	26.24 - 41.51	0.40	0.45
	-	···	43.99 - 82.50	0.40	0.40
. .	.,	ř	84.84 - 150.00	0.35	0.35
ومن المستحد معد والمت			153.00 - 212.50	0.30	0.35
م المحمد الحجم المستحد الحمد المحمد	``		·		
		SMB-3	11.05 - 24.11	0.65	0.70
		• :	25.76 — 37.28	0.60	0.65
			43.87 — 57.40	0.40	0.45
•		∂t	61.50 — 95.53	0.40	· 0.40
· ·		3	98.61 — 132.81	0.38	0.38
			138.40 - 186.40	0.33	0.35

SCREENS

EG&G Idaho, Inc.

26

DATA ENTRY SCREENS

••••••••••••••••••••••••••••••••••••••	Unit Size	Ratio Range	1500/1800 RPM motors	3000/3600 RPM motors
	SMB-4	10.13 — 32.30	0.65	0.70
		33.60 — 48.45	0.60	0.65
		51.79 — 124.95	0.40	0.40
		131.78 — 147.90	0.35	0.38
		152.13 219.30	0.33	0.35
•	SMB–5	61.42 — 96.40	0.40	0.45
		101.12 - 230.17	0.40	0.40

Motor Stall Torque (ft–lb_f) The maximum torque available from the operator motor under nominal voltage stall conditions.

Use the electric motor stall torque specification. If this information is not available, you can estimate the stall torque as 110% of the electric motor rated torque.

Motor Stall Current (amps)

The maximum current the operator motor is likely to use under nominal voltage conditions. This will typically be the stall current at nominal voltage, but may be some other value for a particular application.

For guidance, the following table represents typical stall currents at nominal voltage conditions for operator motors in the Limitorque catalog. If motor-specific information is available, it should be used.

Rated	1700	RPM	3400	RPM	1900	RPM
Torque	230V	460V	·230V	460V	125V	250V
(ft-lb _f)	<u>AC-3Φ</u>	$AC-3\Phi$	<u>AC-3Φ</u>	<u>AC-3Φ</u>	DC	DC
2	6		10	_	15	_
5	11	_	21/25		23	11
7.5		_	20	—	32	16
10	24		32		39	20
15	32		52		76	38
25	51		72	—	82	42
40	76		_	73	115	51
60	96	60		94	172	105

June 18, 1991

DATA ENTRY SCREENS Ì . .

·		Rated 1700 RPM			340	ORPM	1900 RPM		
- <i>·</i> · ·	10 I S		Torque	230V	460V	230V	460V	125V	250V
			$(ft-lb_f)$	<u>AC-3Φ</u>	<u>AC-3Φ</u>	<u>ΑC–3Φ</u>	<u>AC-3Φ</u>	DC	DC
•	·		80	_	60		116	253	130
••		•	100		84	_	143	253	146
	. (150	_	130	_	195		425
		• • •	200		164	_	332	1050	530
		:	250	_	183	_	301		
			300	_	234	_	468		_
			350	<u> </u>	224	_		_	_
	1. A.		400			_	629	_	_
			· .						
		•							
	Motor Sta Efficiency	all Y	An efficie appropriat	ncy factor f e value fro	for operator 1 m the follow	notors durir ing table.	ng stall condi	tions. ⁵ Use	the
·• • •			Unit			14	500/1900	2000/	2600
••• •			Size	,	Patio Pange	ן. סס	M motors	5000/ DDM -	
N (1					Katio Kalige	_ <u>N</u>	MI MOLOIS		
. •	۰, ب		SMB-000	1	2.50 - 30.6	50	0.80	0.8	0
,	. :	· . ·	· · · · · · · · · · · · · · · · · · ·	3	3.50 - 100.0	00	0.50	0.5	5
	• •		<u> </u>	10	2.00 — 136.0	00	0.45	0.5	0
			- SMB-00		9.70 - 22.0	04	0.80	0.9	0
		. *	• ;	2	3.00 - 41.0	00	0.60	0.6	5
		٠.		4	3.60 — 109.9	99	0.50	0.6	- D
				114	4.00 - 183.9	20	0.45	0.5	0
×			• • • •			-			•
			SMB-0	1	1.80 — 17.5	50	0.85	0.9:	5
	.*		11,1	-18	8.50 - 26.3	10	0.80	0.9	0
		ŧ	0	20	5.42 - 41.3	33	0.55	0.6	0
				4	3.69 — 96.2	20	0.50	0.5	5
وها هدام معد العد الع				102	2.60 — 150.8	30	0.45	0.50	0
and all some of the	·····	• • • •	je e str	15	8.30 - 247.0	00	0.40	0.4	5

June 18, 1991

SCREENS

.

DATA ENTRY SCREENS

.

	Unit		1500/1800	3000/3600
••• •	Size	Ratio Range	RPM motors	RPM motors
		•		
	SMB-1	11.60 - 17.12	0.85	0.95
		18.13 — 25.65	0.85	0.90
		27.20 - 40.15	0.55	0.60
		42.50 — 88.40	0.50	0.55
		92.40 — 171.60	0.45	0.50
- and the second s		191.70 — 234.00	0.40	0.45
*** **				
	SMB-2	, 10.60 — 17.77	0.85	0.95
		18.85 — 25.55	0.85	0.90
		26.24 41.51	0.55	0.60
		43.99 — 82.50	0.50	0.55
		84.84 — 150.00	0.45	0.50
		153.00 - 212.50	0.40	0.45
enter a anti-	SMB-3	11.05 — 24.11	0.90	0.95
		25.76 — 37.28	0.90	0.95
		43.87 - 57.40	0.55	0.60
		61.50 — 95.53	0.50	0.55
		98.61 — 132.81	0.50	0.50
		138.40 — 186.40	0.45	0.50
	SMD 4	10.12 22.20	0.00	0.05
	SIVID-4	10.13 - 32.30	0.90	0.95
. .		53.00 - 48.43	0.90	0.93
		31.79 - 124.93	0.55	0.00
		131.78 - 147.90	0.30	0.55
		152.13 - 219.30	0.45	0.50
	SMB-5	61.42 - 96.40	0.60	0.65
		101.12 - 230.17	0.60	0.65

Cable	A description of the power cabling from the power source to the operator mo-
Description	tor.
Cable Length (ft)	The length of the power cable from the power source to the operator motor. Do not enter the length of the return cable.

J

. سر ۱

EG&G Idaho, Inc.

June 18, 1991

7

....

DATA ENTRY SCREENS

••	•	. * * .		
••••		(cir mi	is)	
· •	<i>.</i>		. : :	
•.		:	1 -	1 · · I

The cross sectional area of the power cabling,⁶ expressed either as an AWG (American Wire Gage) size or in circular mils. Entering one of the following AWG sizes will cause the corresponding value to appear in the cross sectional area (cir mils) column. Entering the actual cross sectional area in cir mils will cause the AWG column to go blank. The following information on the diameter of the power cabling is presented to assist in identifying the actual cable.

	and the second second strategy and the second s		
	Gage Number	Dia.	Area
	All and the second s	(mils)	(cir mils)
	and the second second second		
	,0000	460.0	212,000
· · · ·		410.0	168,000
	. 00	365.0	133,000
	0, 5	325.0	106,000
	$\left[\frac{1}{2} \right] = \left[\frac{1}{2} \right] \left[\frac{1}{2} \right]$	289.0	83,700
	2	258.0	66,400
• • • • • •	3	229.0	52,600
	4	204.0	41,700
	5	182.0	33,100
·	6	162.0	26,300
	7	144.0	20,800
•		128.0	16,500
·	9	114.0	13,100
	10	102.0	10,400
	11	91.0	8,230
· · · · · · · · · · · · · · · · · · ·	12	81.0	6,530
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	72.0	5,180
	14	64.0	4,110
	$C_{\rm eff} = 0$, $C_{\rm eff} $	2	
	ng han sa tanàng kaong harang harang kaong ka Ng harang kaong k	• • •	
	alenaeth a start an earlier ann an Arabana an Arabana An an Arabana an Arabana an Arabana		
dates, sit allows, and - in	(a) A start of the second s		

12.

DATA ENTRY SCREENS

5.5 Mode 2, Data Screen 2

The first data entry screen in Mode 2 is the same screen as the first screen in Mode 1 (see Section 5.1). The second data entry screen in Mode 2 is used to record specific information relative to a low flow diagnostic test of the MOV, such as the test stem thrust, pressure, differential pressure, packing load, and fluid subcooling.

If the other information called for on this screen (stem diameter, etc.) has not already been entered on Screen 2 of the Mode 1 data base (see Section 5.2), it can be entered here. If it has already been entered in the Mode 1 data base, it need not be entered again here.

File: Variable Use:			Test Data	(Sheet 2 of 2)
Stem Diamet Seat Seat Mean Seat O Seat Angl	<pre>ier (in): ID (in): 00 (in): ia (in): ie (deg):< ></pre>			•
Ste P Differential Pack Fl	TEST m Thrust (lbf): Pressure (psig): Pressure (psid): ing Load (lbf): uid Subcooling:<	>	DESIGN <	>
F1-Help	F5-Valve Response		PgUp/PgDi	n-new data sheet

Test Stem Thrust (lb _f)	The maximum valve stem thrust measured during a test while the disk was riding on the valve body seat, but prior to wedging of the disk.
Test Pressure (psig)	The maximum pressure measured during a test while the disk was riding on the valve body seat, but prior to wedging of the disk.
Test Differential Pressure (psid)	The maximum differential pressure measured during a test while the disk was riding on the value body seat, but prior to wedging of the disk.

EG&G Idaho, Inc.

June 18, 1991

Chapter 5 DATA ENTRY SCREENS Test Packing Load (lby) The packing drag measured during a pretest valve closure while the valve was nearly closed, but prior to wedging of the disk. Test Fluid Subcooling Fluid subcooling is the difference between the actual temperature of a liquid and the saturation temperature of the liquid at the test pressure. Available options are • Less than 70°F subcooled (fluid near or at the steam temperature), or

• 70°F or greater subcooled (colder fluid).

Use the LEFT-ARROW and RIGHT-ARROW keys to set this value.

The other parameters called for on this screen (stem diameter, etc.) are the same as those discussed in section 5.2 (Mode 1, Data Screen 2).

Chapter 6 ESTIMATED RESPONSE SCREEN

6.1 Mode 1, This screen is

Results Screen

This screen is used to summarize the results of the design basis calculations. You can access this screen from any Mode 1 data entry screen by pressing F5. The upper left corner of the screen summarizes the results of the industry and the INEL estimates of disk load, rejection loads, packing minus weight loads, required stem thrust, required operator torque, and required motor torque. The required stem thrust, operator torque, and motor torque are duplicated in the lower right corner to allow easy comparison with Unit Capabilities.

The available stem thrust, operator torque, and motor torque at stall, nominal, and degraded voltage conditions, calculated considering the effect of voltage losses from the power source to the operator motor, are displayed under the heading "Unit capabilities." If torque switch calibration data was entered on Data Screen 3, then estimated torque switch settings are also displayed.

I	NEL	Estin	ate	Indu	stry	Esti	mate					
· · · · · · ·									Disk Load (lbf) µ=0.000, Rejection Loads (lbf) Packing - Veight Loads (lbf) Reg'd Stem Thrust (lbf) Reg'd Operator Torque (ft-lbf) Reg'd Motor Torque (ft-lbf)			
		ι	Jn įt	Capabi	11±10	es ‡			Unit Requ	lirements		
Av Ha	āila x. V	ble a oltag	it Av je No	atlàb] m. Vol	e at tage	Avai Min.	lable Volta	at ge	INEL Estimate	Industry Estimate		
											Stem Thrust Operator Torque Motor Torque	
											Voltage Drop Torque Switch	

ESTIMATED RESPONSE SCREEN

6.2 Mode 2, Results Screen

This screen is used to summarize the results of the test validation and extrapolation calculations. You can access this screen from either Mode 2 data entry screen by pressing F5. The upper part of the screen summarizes an evaluation of the test results and an assessment as to whether the test valve was typical of the valves tested by the INEL. The lower part of the screen summarizes the results of design basis calculations using the INEL equation, assuming the test valve will be typical of the valves tested by the INEL.

INEL Estimated Valve Response	File:
	Test Condition Estimates: Stem Thrust (lbs) Subcooling: Packing - Veight Loads (lbs) Rejection Loads (lbs) Total Vertical Disk Loads (lbs) Total Horizontal Disk Loads (lbs)
:	Normalized Normal Disk Force (lbs) Normalized Sliding Disk Force (lbs) Sliding Disk Force Within Limits of INEL Data () to ()
	Design Basis Estimates: Disk Load (lbs) Rejection Loads (lbs) Packing - Weight Loads (lbs) Req'd Stem Thrust (lbf)
Press any	key to continue

Chapter 7 . **MOV EQUATIONS**

on the various help screens. •••

.

The following equations are used in IVA and are presented here as they appear

Required Capability

(Equation 1 of 17)

RS.Thr = estimated using either the:

· · ·

• Industry stem thrust equation

INEL stem thrust equation. ÷.,

RO.Tor = RS.Thr * SF - atstad

 $RM.Tor_{ii} = \frac{RO.tor}{PO * AF * OAR}$

A Atoma a ser

 f_{i}

;

. .

where, March

		RS.Thr =	Required Stem Thrust (lbf)
	e sa constante	RO.Tor = $\frac{1}{1}$	Required Operator Torque ¹ (ft-lbf)
· ··- · •· · · •	Maria Estadore	RM.Tor =	Required Motor Torque ¹ (ft-lbf)
	and,	÷	
	a sanat di sanat	SF =	Stem Factor
	and the second states	PO = =	Pull Out Efficiency
· · · · · · · · · · · · · · · · · · ·	Strept of the Star Star Star	AF =	Application Factor
an an i a Maanaan ah (, gaa	and the second	OAR =	Overall Operator Ratio

EG&G Idaho, Inc.

7. MOV EQUATIONS

.

. . . .

. . . .

.....

MOV EQUATIONS

	Available Capability at Rated Voltage							
	(Equation 2 of 17)							
	Nom M.Tor = Motor Rated Torque * $\left[\frac{\text{NomV} - \text{VDrop}}{\text{RatedV}}\right]^{\text{Power}}$							
r	Nom O.Tor = Nom M.Tor * PO * AF * OAR							
Į	Nom S.Thr = $\frac{1}{SF}$							
v	where,							
	ľ	Nom M.	Tor	=	Nominal Available Motor Torque ¹ (ft-lbf)			
	ľ	Nom O.	Tor	=	Nominal Available Operator Torque ¹ (ft-lbf)			
	r	Nom S.T	Thr	=	Nominal Available Stem Thrust ¹ (lbf)			
а	and,							
	5	SF	=	Stem F	Factor			
	F	°0	=	Pullou	t Efficiency			
	ł	٩F	=	Applic	ation Factor			
	(DAR	=	Overal	ll Operator Ratio			
	1	NomV	=	Nomin	nal Supply Voltage (volts)			
	١	VDrop	=	Cable	Voltage Loss (volts)			
	F	RatedV	=	Motor	Rated Voltage (volts)			
	F	Power	=	1 for E	DC, 2 for AC			

•

1

.

MOV EQUATIONS

Available Capability at Minimum Voltage

(Equation 3 of 17) $Min M.Tor = Motor Rated Torque * \frac{MinV - VDrop}{RatedV}$ Power Min O.Tor = Min M.Tor * PO * AF * OAR Min S.Thr = $\frac{\text{Min O.Tor}}{\text{SE}}$ where, Minimum Available Motor Torque¹ (ft-lbf) Min M.Tor = Min O.Tor = Minimum Available Operator Torque¹ (ft-lbf) Min S.Thr \cdot = Minimum Available Stem Thrust¹ (lbf) and. SF = Stem Factor PO = ___ Pullout Efficiency and the AF = ... Application Factor OAR = Overall Operator Ratio Minimum Supply Voltage (volts) Minimum Supply Voltage (volts)VDrop = Cable Voltage Loss (volts)

RatedV = Motor Rated Voltage (volts)

Power = 1 for DC, 2 for AC

MOV EQUATIONS

Chapter 7 MOV EQUATIONS

				(Equation 4 of 17)					
Max	Max M.Tor = Motor Stall Torque * $\left[\frac{MaxV - VDrop}{RatedV}\right]^{Power}$								
Max O.Tor = Max M.Tor * SE * OAR									
Max	S.Thr	= <u>Ma</u>	CO.To SF	<u>r</u>					
wher	e,								
	Max M.	Tor	=	Maximum Available Motor Stall Torque ¹ (ft-lbf)					
	Max O.	Tor	=	Maximum Available Operator Torque ⁷ (ft-lbf)					
	Max S.7	fhr	=	Maximum Available Stem Thrust ¹ (lbf)					
and,									
	SF	=	Stem F	factor					
	SE	=	Stall E	fficiency					
	OAR	=	Overal	l Operator Ratio					
	MaxV	=	Maxim	num Supply Voltage (volts)					
	VDrop	=	Cable	Voltage Loss (volts)					
	RatedV	=	Motor	Rated Voltage (volts)					
	Power	=	1 for D	DC, 2 for AC					
	Max Max Max wher	Max M.Tor Max O.Tor = Max S.Thr where, Max M. Max O. Max S.T and, SF SE OAR MaxV VDrop RatedV Power	Max M.Tor = Mod Max O.Tor = Max M Max S.Thr = Max where, Max M.Tor Max O.Tor Max S.Thr and, SF = SE = OAR = MaxV = VDrop = RatedV = Power =	Max M.Tor = Motor Stat Max O.Tor = Max M.Tor * S Max S.Thr = $\frac{Max O.To}{SF}$ where, Max M.Tor = Max O.Tor = Max O.Tor = Max S.Thr = and, SF = Stem F SE = Stall E OAR = Overal MaxV = Maxim VDrop = Cable T RatedV = Motor Power = 1 for E					

Available Capability at Maximum Voltage

Chapter 7 MOV EQUATIONS

Cable Voltage Loss Calculation (Equation 5 of 17) $VDrop' = \Sigma \frac{C2 * Ohms * Length * Amps}{Mils}$ where, VDrop = Cable Voltage Loss⁶ (volts) : . and, Cable Resistance (ohms-circular mils/ft) Ohms = Cable Length (ft) Length = Mils Cable Size (circular mils) = Amps Voltage Adjusted Motor Stall Current (amps) = **C2** 2 for DC and AC-1 Φ , $\sqrt{3}$ for AC-3 Φ Ξ :12 ent... 1.10

41. . ^{. .} an in the

MOV EQUATIONS

Voltage Adjusted Motor Stall Current
(Equation 6 of 17)
$Min.Amps = R.Amps \frac{MinS.Volt}{R.Volt}$
Nom.Amps = R.Amps $\frac{\text{NomS.Volt}}{\text{R.Volt}}$
Max.Amps = R.Amps $\frac{MaxS.Volt}{R.Volt}$
where,
Min.Amps = Motor Current at Minimum Voltage (amps)
Nom.Amps = Motor Current at Nominal Voltage (amps)
Max.Amps = Motor Current at Maximum Voltage (amps)
and,
R.Amps = Stall Current at Rated Voltage (amps)
R.Volt = Motor Rated Voltage (volts)
MinS.Volt = Minimum Power Source Voltage (volts)
NomS.Volt = Nominal Power Source Voltage (volts)
MaxS.Volt = Maximum Power Source Voltage (volts)

Ţ **`** ~

1

1

MOV EQUATIONS

Industry Gate Valve Stem Thrust Equation							
(Equation 8 of 17)							
RS.Thr = F.disk <u>+</u> (+	F.reje for cle	ction + F.packing osure)					
where,							
RS.Thr	=	Required Stem Thrust ¹ (lbf)					
and, `							
F.disk	=	Disk Factor * Orifice Area * DP (lbf)					
F.rejection	=	Upstream Pressure * Stem Area (lbf)					
F.Packing	=	Packing Drag (lbf)					
DP	=	The maximum pressure drop across the valve (psid)					
Orifice Area	a =	$1/4 \pi$ (Orifice Dia) ² (inch ²)					
Stem Area	Ξ	$1/4 \pi$ (Stem Dia) ² (inch ²)					

•

-

. . .

- - -

.....

EG&G Idaho, Inc.

Ī

Chapter 7

MOV EQUATIONS

INEL Gate Valve Stem Thrust Equation . . (Equation 9 of 17) RS.Thr = F.disk + F.rejection + F.packing where. RS.Thr = Required Stem Thrust⁸ (lbf) and. $\sin \alpha$ F.H + [C * Seat Area] (lbf) $\cos \alpha +$ F.disk $\sin \alpha$ $\cos \alpha - f$ F.stem_rej-F.top + F.bottom (lbf) F.rejection = F.packing packing drag-disk and stem weight (lbf) = F.up Upstream Pressure * Seat Area (lbf) = F.down Downstream Pressure * Seat Area (lbf) = F.top Upstream Pressure * Seat Area * $\tan \alpha$ (lbf) = . F.bottom Downstream Pressure * Seat Area * $\tan \alpha$ (lbf) = Upstream Pressure * Stem Area (lbf) F.stem_rej = F.H F.up-F.down = Seat Dia 1/2 (Seat ID + Seat OD) (inch) = Seat Area = $1/4 \pi$ (Seat Dia)² (inch²) $1/4 \pi$ (Stem Dia)² (inch²) Stem Area = f 0.400 for less than 70°F subcooled water = 0.500 for 70°F or greater subcooled water С = $0 lb_f/in^2$ for a best estimate calculation 50 lb_f/in^2 for a conservative calculation

MOV EQUATIONS

·•• - •• ·	Stem Factor Calculation (Equation 10 of 17)
	SF = $\frac{d * [0.96815 * \tan \beta + \mu]}{24 * [0.96815 - \mu * \tan \beta]}$
	where,
	SF = Stem factor9
	μ = Stem to stem nut coefficient of friction
	d = Stem diameter- 1/2 Pitch (inch)
- and the second se	Lead = Stem Lead (inch/stem revolution)
	$\tan \beta = \frac{\text{Lead}}{\pi * d}$

[]

-

--

 \mathbf{r}

MOV EQUATIONS

.-

Stem To Stem Nut Coefficient of Friction Calculation

(Equation 11 of 17)

 $\mu = \frac{0.96815 \ [24 * SF - d * \tan \beta]}{d + 24 * SF * \tan \beta}$

where,

 μ = Stem to stem nut coefficient of friction⁹ and,

SF = Stem factor

d = Stem diameter-Pitch (inch)

Lead = Stem Lead (inch/stem revolution)

 $\tan \beta = \frac{\text{Lead}}{\pi * d}$

<u>.</u>

•

٢

.

MOV EQUATIONS

		Overall Operator Ratio Calculation
•••		(Equation 12 of 17)
		$OAR = \frac{Motor Speed * Lead}{Stem Speed}$
		where,
		OAR = Overall Operator Ratio ¹
		and,
		Motor Speed = Rated Motor Speed (RPM)
		Lead = Stem Lead (inch/stem revolution)
-		Stem Speed = MOV stem speed (inch/min)
	· •	

EG&G Idaho, Inc.

2

Chapter 7 MOV EQUATIONS

.

: .

Motor Rated Speed Calculation

. -:

.

(Equation 13 of 17)

	Motor Speed = $\frac{OAR}{OAR}$	* Stem Speed
		Lead
	where,	
• • • •	- Motor Speed =	Motor Rated Speed ¹ (RPM)
	and, '	
	OAR and a =	Overall Operator Ratio
e and e	Lead =	Stem Lead (inch/stem revolution)
	Stem Speed =	MOV stem speed (inch/min)

· MUY EMUAILUNS

:

MOV EQUATIONS

				Valve Stroke Time			
				(Equation 14 of 17)			
	Tim	$e = \frac{\text{Length }^*}{\text{Stem Sp}}$	* 60 beed				
	whe	re,					
		Time	=	Valve Stroke Time ⁷ (sec)			
	and,	`					
		Length	=	Valve Stroke Length (inch)			
		Stem Speed	=	MOV Stem Speed (inch/min)			
,							

. . .

_ .

1

7

Chapter 7 • • • • **MOV EQUATIONS** Sliding Force Limits (Equation 15 of 17) \mathcal{N}^{+} $J_{1} Is (f * Fn-C) \le Fs \le (f * Fn + C)?$ where, Normalized Sliding Force⁸ (lbf) Fs ; = • .: and, 1.1.1.1. ١ Fn Normalized Normal Force⁸ (lbf) = 0.400 for less than 70°F subcooled water f 0.500 for 70°F or greater subcooled water С 50 lbf/in² = . : . . . : **,** . . 14 NO 16 2 1 1 1

.

:

.

.

.

. .

3 1 **1** 1 1

7. MOV EQUATIONS

Chapter 7 MOV EQUATIONS

...

.

. .	Normalized Forces						
	(Equation 16 of 17)						
	$Fn = \frac{H * \cos \alpha + V * \sin \alpha}{Seat Area}$						
	$Fs = \frac{H * \sin \alpha - V * \cos \alpha}{Seat Area}$						
	where,						
	Fn = Normalized Normal Force ⁸ (lbf)						
	Fs = Normalized Sliding Force ⁸ (lbf)						
	and,						
400 0 mg ,	H = Total Horizontal Disk Forces (lb	f)					
	V = Total Vertical Disk Forces (lbf)						
	α = Valve Seat Angle (degrees)						
	Seat Area = $1/4 \pi$ (Seat Dia) ² (inch ²)						

50

Chapter 7 MOV EQUATIONS

. .

· • •

· ·· -

.

...

.

. _

.

. .

.

:

.

· · ·

.

٠

.

.

	Total Disk Loads						
	(Equation 17 of 17)						
	H = F.up-F.down						
	V = F.stem-F.pack-F.stem_rej + F.top-F.bottom						
landona second - 1	where,						
	Н		=	Total Horizontal Disk Load ⁸ (lbf)			
	v	, ,	=	Total Vertical Disk Load ⁸ (lbf)			
	and,						
	F.u	ıp	=	Upstream Pressure * Seat Area (lbf)			
s s norte anters pr	F.d	iown	=	Downstream Pressure * Seat Area (lbf)			
	F.s	stem	=	Stem Thrust (lbf)			
	F.p	back	=	Packing Drag (lbf)			
in the second se	F.s	tem_rej	=	Upstream Pressure * Stem Area (lbf)			
- .	F.to	ор	=	Upstream Pressure * Seat Area * tan α (lbf)			
	F.b	ottom	=	Downstream Pressure * Seat Area * tan α (lbf)			
	Sea	at Dia	=	1/2 (Seat ID + Seat OD) (inch)			
	Sea	at Area	=	$1/4 \pi$ (Seat Dia) ² (inch ²)			
	Ste	em Area	=	$1/4 \pi$ (Stem Dia) ² (inch ²)			
and the second sec							

-

2

LIMITORQUE OPERATOR RATINGS¹⁰

			Operat	or Rated	Max. Threaded Stem Diameter		
			Torque	Thrust	2 piece nut	1 piece put	
	Model-Size	Ratio Range	(ft-lb _f)	(lb _f)	(inch)	(inch)	
	SMB-000	12.5 — 30.6	90	8,000	1 3/8	1 1/2	
		33.5 — 100.0	9 0				
		102.0 136.0	9 0				
	SMB-00	9.7 22.0	250	14.000	1 3/4	2	
		23.0 - 109.0	2.50	,	2 07 1	~	
	•	114.0 - 183.9	190				
		1000	170				
	SMB-0	11.8 — 26.1	500	24,000	2 3/8	2 3/4	
•		26.4 — 96.2	500				
•		102.6 — 150.8	500				. <mark>О</mark>
		158.3 — 247.0	340				्रेष्ट्रॅ २
······································	SMD 1	11 6 267	050	45.000		.	:ã⊑
A 2 2007	3MID-1	11.0 - 23.7	850	45,000	27/8	3 1/4	QE
		27.2 - 88.4	850				ΞĒ
		92.4 — 171.6	780				Žć
		191.7 234.0	625				ĨŽŔ
	SMB-2	10.6 — 25.6	1,800	70,000	3 1/2	3 7/8	S.
		26.2 — 82.5	1,800				
• •		84.8 — 150.0	1,250				
		153.0 - 212.5	950				
	SMD 2	11.0 04.1	2 700	140.000	<i>p</i>	<i></i>	
	2MID-2	11.0 - 24.1	3,700	140,000	5	5 3/4	
		25.8 - 34.0	3,700				
·		33.9 - 93.3	4,200				
		98.0 - 132.8	3,300				
		138.4 180.4	2,800				
وم هه العارية المراجع	SMB-4	10.1 — 32.3	7,500	250,000	5	6 3/4	
e and a subscript of the second se		33.6 — 48.4	7,500				
		51.8 — 125.0	7,500				
*		131.9 — 147.9	5,100				
		152.1 - 219.3	3,900				
					•		
	SMB-5	59.3 96.4	20,000	500,000	6 1/4	8	
		103.9 229.9	20,000				

June 18, 1991

Chapter 9 REFERENCES

Y

- 1. Limitorque Selection Procedure SEL-3, dated May 21, 1979.
- 2. Limitorque Selection Procedure SEL-1, dated May 21, 1979.
- 3. Limitorque Selection Procedure SEL-5, dated July 1, 1977.
- 4. Limitorque Selection Procedure SEL-4, dated July 1, 1977.
- 5. Limitorque Selection Procedure SEL-7, dated April 8, 1974.
- 6. Marks Standard Handbook for Mechanical Engineers, Eighth Edition, 1978.
- 7. Limitorque Outline of Sizing Procedure
- Steele, R., Jr., J. C. Watkins, K. G. DeWall, and M. J. Russell, 1991, Motor-Operated Valve Research Update (Draft), NUREG/CR-5720, EGG-2643.
- 9. Limitorque 900-00003 and 900-00004, dated March 1988.
- 10. Limitorque Selection Procedure SEL-9, dated June 2, 1975.