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ABSTRACT

This is a tutorial report, applying known formulas and tools in a way suitable for risk
assessment. A parametric form is assumed for the hazard function of a set of identical components.
The parameters are estimated, based on sequences of failure times when the components are restored to
service (made as good as old) immediately after each failure. In certain circumstances, the failure
counts are ancillary for the parameter that determines the shape of the hazard function; this suggests
natural tools for diagnostic checks involving the individual parameters. General formulas are given for
maximum likelihood estimators and approximate confidence regions for the parameters, vielding a confi-
dence band for the hazard function. The results are applied to models where the hazard function is of

linear, exponential, or Weibull form, and an example analysis of real data is presented.

KEY WORDS: Time-dependent failure rate, Non-homogeneous Poisson process, Poisson intensity,

Exponential distribution, Exponential failure rate, Linear failure rate, Weibull distribution.

FIN No. A6389—Aging Components and Systems IV:
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SUMMARY

’I"his tutorial report presents a parametric framework for performing statistical inference on a
hazard function, based on repairable data such as might be obtained from field experience rather than
laboratory tests. This framework encompasses many possible forms for the hazard function, three of
which are considered in sorr;e detail. The theory is neatest and the asymptotic approximations most
successful when the hazard function has the form of a density in the exponential family. The results
presented include formulas for maximum likelihood estimates (MLE's), tests and confidence regions,
and asymptotic distributions. "The confidence regions for the parameters are then translated into a
confidence band for the hazard function. For the three examples considered in detail, a table gives all
the building blocks needed to program the formulas on a computer; this table includes asymptotic
approximations when they are necessaty to maintain numerical accuracy. Diagnostic checks on the

model assumptions are sketched.

The report 'gives an example analysis of real data. In this example, the methods are unable to
discriminate among an exponential ilazard function, a linear hazard function, and a Weibull hazard
function. The MLE for the two parameters appears to have approximately a bivariate normal distribu-
tion under the exponential or Weibull hazard model, but not under the linear hazard model. If the
analysis using approxima.t.e normality is carried out in any case, the results appear similar for all three
models. If some model is preferred for theoretical or other reasons, the framework of this report

indicates a way to use it.
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ESTIMATING HAZARD FUNCTIONS
FOR REPAIRABLE COMPONENTS

1. INTRODUCTION:

This report is' concerned with' the failure behavior of components "It is"a tutorial :repor't'
applying previously known results in a’ way surtable for rrsk assessment. "The model rs defined in terms
of the random variable T, the (ﬁrst) farlure trme of a component In many publlshed artrclcs, it is
assumed that many components are tested 'untll thexr ﬁrst failure. The resultxng failure times are used
as data, and the propertres of the drstrrbutron of T are "then inferred. Bv ‘contrast, thls report dcals
with field data, not test data:' it is assumed that each failed component is 1mmedlatelv restored to
operahility (made as good as old) and again placed in service. The data then consist of a sequence of

failure times for each component.

A’ question of ‘interest ‘is whether ‘the’ hazard function (or failure rate) is mcreasnng, that is,
whether the failures ‘tend to occur more t'requently as time goes ‘on.” This and related questrons are
investigated by postulatlng a parametrrc form for ‘the distribution of T, and then performxng the usual
statistical inference about the parameters of ‘the model thh specxal emphasrs on the parameter(s) that
determine whether the hazard -function is ‘increasing.’ The ﬁnal goals of the 1nference are a pomt

estimate and a confidence lnterval for the hazard' functron at any time 1.
[ S Co “';.":r:.‘,z«

. . .. . st
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The general methods are applied in detail to three assumed parametric forms for the hazard
function. A table gives all the formulas needed to implement the methods on a computer for these

three models.

. The outlrne ot' the report is as follows Sectron 2 presents the assumptrons andJnotatlon, and
1ntroduces three examplw Sectlons 3 4, and 5 develop the lrkehhood formulas 'and equatxons l'or
maximum likelihood estimators and tests/confidence intervals. Each ol' these three sectlons also.
discusses the application of the general results to the three examples. People who can apprecxate theory

without considering examples may skip the application portions. Section 6 outlines diagnostic checks,

1 -



and Section 7 presents an analysis of data from- motor-operated valves. Proofs are in Section 8.
2. MODEL FORMULATION

2.1 Basic Assumptions and Definitions

Assume that the failures of a component follow a tinie-dependem. (or non-homogencous)
Poisson process. See, for example, Karr (1986) for a simple description, or Cox and Isham (1980) for a
fuller introductory treatment. Alternatively, one can parallel the development from fundamental
asgti.mptions as given by Me&er (1970, Section 8.3) for the homogeneous case. The most important
properties are the 'foliowing: there is a nonnegative function A(f) defined for ¢t > 0, with the
prdbability of a failure in a short period (t, t + At) asymptotically approaching A(t)At as At — 0; the
t.'ailgjre counts in nonfdvgrlappiné ‘time intervals are independent; and the number of failures occurring

between 0 and ¢ is a Poisson random variable with parameter A(?), where
t
Adt) =/ A5) du .
0

Implicit in thg independence property is the assumption that the component is restored to
service immediately after any failure, with negligible repair time. In operational data, it is not
uncom.mon to find that a component‘hag failed several times in quick succession fo-r the same reason.
?;esumably, the first repairs did ﬁot treat the true cause of the failure. This s.itua.tion violates the
independence property—the fact that a failure has occurred recently increases the chance that another
failure will occur soon, because the problem may not have been really fixed. It may be difficult to
force such data into the Poisson-process model: counting the failures as distinct ignores- their apparent
dependence, while counting them as a single failure may make the time to true repair far from negli-

gible.

The function A is called the hazard function, the failure rate, or the intensity function of the
Poisson process, and A is the cumulalive hazard funclion, Assume now that A is continuous in ¢ It is
related to the cumulative 'c‘iistribu.tion function (c.d.f.) F of the time to first failure, and to the
corresboriding density function fby
A1) = /01 = F(W)]
and .

1 - F(t) = exp[-Att)] .



Any one of the three functions F, f, and A uniquely determines the others. Note that because F(1).— 1
as { = oo, it follows that s ;'

lxi-ronoo‘\(t) =00 . e N VPR e . - (1)

If A(1) is constant, as has been assumed for simplicity in m;;ini\' ‘studies, the time to first failure
has an exponential distribution. Often the concern is whether A(?) is increasing in t. It is therefore
convenient to write ) in the form st S NSRS
A1) = Agh(8:8). S e e s R v - (9)
Here, Ay > 0 is a constant multxpher and A(t;8) determmes the shape of A(1).

e 4 ., . e ‘.,‘ . - -, PR . .. N L iThe
el R AN P i ; - -

- Because data ‘generally come from mote than onecomponent, :i.‘he;followi'ri‘g additional 'a'ssﬁmb-
tions are made. The failures of one component are assumed to ' be independent of those of ahdtber
component. All the components are assumed to have the same function A with the same value of 3;
that is, a proportional hazards model is assumed. Depending on the context, it may‘ or may nqt:.!.be
assumed that the different components have the same value of A,. Some simple regularity conditions
on k, needed for asymptotic results, are discusséd at the beginning of the section on confidence intervals
and tests. - . L e I e

~. . J P . . T .
! - ’ oot Pl s B . b o &

' Sometimes there are gaps in’the failure' data’ - For example, the plant may have been shut
down for an extended period, during which no component ‘failures” were possible, or the failure data
may not have been collected for some period. ;This can be accommodated in the above framework by

treating each component as two components, one observed before the gap and one after-the gap, having

CERAR

the same installation date and, at the analyst’s discretion, the same or possibly different values of A,.

,r\*-',l"

2. 2 One thahon for Two Typa 6f D&t.a

Types of Data B

- Failure data for.a component can arise in a number of -ways.: Two simple ones to analyze are: -

viv
LIRS B4

P R LT T P R S L R A IR
e A random number of failures in'a fixed observation period (time-censored data)

o A fixed number of failures in a random observatlon period ( faqure-censored da.ta.)

e petener e Ty BT T e e el

The terms “time-censored” and “faxlure—censored” follow the analogous usage for: tests that are termma—

ted before all the items have failed (e g Nelson, 1982, Sec. 7. 1). Time-censored data ‘arise 1f thére is
3
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. fixed time period when the component is watched or plant records are examined. During that time,
the component is restored to servic;: after each failure. Failure-censored data might arise if the
component is repaired until a predetermined number of failures has occurred, at which time the compo-
nent is removed from service and replaced by a new component. Both of these types of data result in

tractable formulas for statistical inference.

In reality, the decision to repair or replace a component is based on a number of considera-
tions, such as the availability of replacement components, the severity of the particular failure mode
(including the difficulty and cost of repair), and any recent history of failures. These considerations are
difficult to express in a simple mathematical model. Therefore, only the two types listed are analyzed
here. In practice, one might §implify reality by treati;lg failures that resulted in component replace-

ment as if they were failure-censored.

Unified Notation

Let sy and s, denote the l;eginning and end of the component’s observation period; sq does not
necessarily coincide with the compt;nent.’s installation. Let n be the number of observed failures not
counting any failure that results in replacement of the component. Let m be the total number of
observed failures, including any fail_ﬁrg that results in replacement. Lgt ty, -y t;y denote the ordered

failure times. The two special cases then are

e Time-censored data: The observation period is from s, to a fixed time s;. The random

number of failures is n, and therefore m is random and equal to n.

o Failure-censored data: The number of failures is fixed at m, and n is therefore fixed at
m — 1. The observation period starts at s, and ends at a random time s;, with s; = tp.
In general there are C components, indexed by j, and the quantities defined above are all indexed by j:
Sojs Stjr Mjy Mj, and {;;. In the formulas to be given, it is often convenient to define the midpoint 5;
= (%; + $1;)/2, and to'define the range r; = (s;; — so;). This notation, sometimes with the

subscript j suppressed, will be used without further comment.

Normally, time 0 is defined to be the installation time of the component. It may, however, be
useful to center the data by measuring all times from some value in the middle of the observed time
period(s). This can lead to negative failure times, allowed in the above formulation.

4 ~ .
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2.3 Examples

The methods of this report are applrcable to a rather arbitrary hazard function, such as the
ones discussed by Cox and Oakes (1984 Chapter 2). Three such examples of hazard functions are
considered in this report. In each example, /3 is one-dxmensxonal the hazard functxon is mcreasmg it 3

>0,is constant if 3 = 0, and is decreasing if ﬁ < 0 The units of Ay are 1/time. The unlts of' 3

PR

depend on the e‘cample. but make A(t;83) dxmensronless in every case.

In some of the lwork presented below, the hazard function is treated as proport.ronal to a
density function. Therefore, models can be' ewcpected to be most tractable when the hazard functxon is
of a standard form, such as a:member of.the‘exponentxal family. This is illustrated by ‘the three
examples of this report, with the lmear hazard model consistently producing problems that the
exponential and Weibull hazard models do not have The dlfferences result from the fact that logA(?)

is linear in @ for the exponential and Weibull models, but not for the linear hazard model

Various formulas and expressions are developed throughout this‘rcport. 'l‘he forms that these
expressions take in the example models are all collected in Table 1, given at the end of the report'. To
program the formulas for a computer, sometimes asymptotic approximations must be used to maintain
numerical accuracy. These approximations are also given in Table 1. All the formulas of Table 1 were

either derived or conﬁrmed by using the symbolic computer program Mathematxca (Wolfram, 1988)

Exponential Hazard Function

The hazard function is defined by
Mt) = doexp(BY),
with B measured in units of 1/time. This example is considered .in detail bv Cox and Lewis (l9l56,
Section 3.3). If B is negative, then A does not integrate to oo and Equation-'(1) is not satisfied;
therefore, A is not'a hazard function. This quirk is interesting, but is not important in practice. It is
certainly possible for A(?) to have exponential form with negative # for { in the time period when data
are observed and to have some other form for other ¢, so that A mtegrates to co. In this case, Ais a

[

hazard functlon, and it is decreasmg exponentially in the observed time perrod



Table 1. Formulas for examples c‘onsidered

Expression

Constraints

(1) [Eq. (2)9

Cond. suff. stat

for g8
llogh(1))'

[logh(2)]""

J Dogh(1)]""a(1)¢

v (Eq. (3)9

Asymptoticf
z, A

ag
o
ay
v
Asymptotic’
z, A
%
&
- 8

o

Model

Exponential

None for ¢ in finite interval

exp(B1)

LET;;

o

@

o

exp(Bso)[exp(8r)-1]/8

Br, exp(Bsy)r

1

1/2

1/6 |

exp(Bsg) By~ 55)
- (P-1))/8°

Br, exp(Bsy)r |

Ki

. 5/2 + /3

s/6 + r/8

exp(Bs) [7(L — Bs)?
- (1 - Bs)?

+ 1)) B

Linear®

| Weibull®

—l/ma.x(slj)<;9<—l/min(§oj) 3>-1

31j>0
1+ 4t

(..., T.-J-, o..)

t/(1+41)
-[t/(1+84)]

- ~{log[(1+85,)/(1+85)]

—Br + 8*3}/8°
n(1+43)

-’oj(O

(/)P

log(t/1,)
0

(=]

05 ¢/(B:+1)

BHL, ty

le,e

m

D3

tlctb e~ coj(a+1)]
/ (B+1)

B+1, ¢,

mb,e

203

3D4

H[C2 — 2C1/(B+1)
+200/(8+1))/(B+1)>¢



Table 1. (continued)

As‘ymptotic’ o .
:7 A ﬁri exp(ﬁ‘sO)r ’ o : '
ag so° 4+ sr 4+ /3
a, $02/2 + 2s,r/3 + /4

s w6+ wor/d kP00 T

log! "< s iJB sk

g Hr/ll—exp(—pr)]

Asymptotic i o e e o
z, A Br, 1 o (B+1), 12 -
ag 3 - logsy + logs;

a © /12 ' - piEgehe

. 02.‘ . 0 : ) ' 0 |
n 2 2 Lol " _ 2 “ o -:' b’c . .”l NS
[log®} r“uf/(1+a°u), =[5/(1+53)] 27 /00 - (C1/C0)°

a = fr
= (e + ¢? - 2 — a?)/d*
& (1/12)[1 + a?/30 + a*/1680]

= Jlogh()]""h()/v "~ See individual terms, ~ {=fr + (1+83)x

- B+1, 1y
ap3be
6Dt
1205

Cajott s ey

L+ 1(B+1)?

'See individual ’tér'ins.

+ [log2)"’ ST logl(14Bs,) /(14 Bsol}
peymptotic/ / {r8°(1+45)’)
n A See [loga]"’ B, [r/(14+85) (8+1), D12/12%°
ag 1/12 1
a, ~3/6 0
a, (20524 r%)/80 —D12/20
ay _ . —(3%/3 + *35/20) ¢
ay i (5605* -+ 168r75

+ 3r)/1344



Table 1. (continued)

L'oy/on’? (- EX(1;;—3;) See text
( [( ] ( ] J/)[En 2/1211/2 J J/[szrJ'z/llz]l/z e tex

a. If the data are centered at 1,,;4 = Er;5;/Zr;, then {;;, sp;, and s;; must be replaced bv i —lmids
S0j = tmiar and Sy; — t..;4, respectively, "and Lu; and its derivatives are replaced by 0.

b. For the Weibull fallure rate model, any terms involving sq should be omitted if so= 0. In this case,
the asymptotic expressions are not needed.

¢. Equation numbers refer to defining equations in text.

d. The integral is for, ¢ from so to s,.

e. The notation Ck is defined as (3,/!0)‘“' Uog(s,/lo)]" - (so/to)p+ [log(s(,/t,,)]‘E for k=0, 1,2. The
" notation Dk is defined as {[log(sl/to)] —~[log(so/ 1)1}/, for k = 1,2, 3, 4,

f. The asymptotic approxxmatxon of the expression in the line immediately above is of the form
ATa,z*. The next lines give the variable z and the values of A, g 4y, .... The expression may be
computed as A(ag + 4,7) if a,2° is numerically insignificant compared to a,. For example, under the
exponential failure rate model, the asymptotic approximation for v is '

v & exp(fsg)rl + (1/2)8r + (1/6)(87)? + ...].

Therefore, v may be computed as exp(8sq)r(1 + 8r/2) if

1+ (8r)3/6 =1

to the limits of the machine accuracy.

¢. On a machine where a number has approximately 16 significant digits (IBM PC double precision),
for 5-digit accuracy in all cases, including cases when 3 is virtually zero, the expansion for the linear
hazard model should be evaluated out to the 8% term. If this term is negligible compared to o the
series through the 33 term should be used to evaluate the expression.



The constant Ay is mterpreted as the value of A(?) at time ¢t = 0. This tlme 0is customanlv
taken to be the component’s installation time, but any other time is allowed in prmcxple \Ieasunng t
from a time other than the installation may make t negative, which is allowed. If each component has
a different Ag;, the hazard function of each component changes by the same relative amount in any
specified time, but the hazard functions of the components are not equal. For example, the hazard
function doubles every (log2)/3 time units, regatdless of Ay; and -regardless -of what time is assigned

4

the value 0. - e R Ao

Linear Hazard Function , G 3 : T .

' The hazard function is defined by
A1) = Ap + at = A(1 + BY),
with S measured in units of 1/time. This distribution is mentioned by Johnson and Kotz (1970b).
Salvia (1980) uses the model- with tést . data, in which many components are tested until their first
failures. Vesely (1987) uses the model with field ‘data for which failures from aging (corresponding to
the increasing portion of the hazard function) can be distinguished from failures from other causes
(corresponding to the constant portion of the-hazard function). The cases considered by Salvia and
Vesely both turn out to be much simpler analytically than the cases considered in this report.

T

NN ]

As with the exponential hazard model, it is possible that A has the specified form for the time
period for which data are obsérved, and some other form for.other t. Therefore, it is possible for 8 to
be negative. However, § must not be such that A(?) is negative in the observed time period. Infact,
not even A(f) = 0 is allowed, because logA(?) is often used in the methods below. The details are
complicated by the fact that it is sometimes convement t.o _center t.he data, leadmg to obsened times
expressed as negative values. Let s5; and sy; be the begmmng and ending observation times for

component Jy following the unified notation defined above. To keep A(t) positive for all.observe.d times, '

R Y

B must satisfy g > -l/slj for all positive sipand B < -l/soj for all negative sp;.

The constant A, is the value of the hazard function at time ¢ .=:0. This time is the
component’s installation:time, or thg central time, depending on how time is measured. ‘Note that the
relative change in the hazard function approaches 0 as.t'~ co." For example when § >-0, the hazard

- function doubles from the value at ¢ = 0 in 1/8 time units, doubles again in the next 2/8 time units,

9 ’ .



and so forth.

Weibull Hazard Function

The hazard function is defined by

M) = Ao(t/4)”,

where {; > 0 is a normalizing time. It is common (Johnson and Kotz, 1970a, Cox and Oakes, 1934) to-
write the exponent as ¢ — 1. The 3 notation is consistent with the other two examples because 7 = 0
corresponds to a cc;nstant failure rate. Both t and {; have units of time, and 3 is dimensionless. The
constant A, is measured in units-of 1/time, and is the value of the failure rate at time ¢t = {,.
Changing {, does not change the value of 3, but does change the value of A;. For A(?) to be integrable
at 0, 8 must satisfy the constraint § > —1. Negative _times are not allowed. If 3 > 0, A(0) equals 0;
if 3 <0, A(0) is undefined.

The hazard function doubles between times ¢; and ¢, if logt, — logt;, = (log 2)/8. Because

A(0) is either zero or undefined, the hazard function cannot double from the initial value.
3. LIKELIHOOD

3.1 Summary of Likelihood Formulas

In this section, the expressions for the likelihood are presented. All derivations and proofs are

given in Section 8.

Let C denote the number of components. Define
o) = [ “bwp) au
0
and
”j(ﬁ) = H(Slj;ﬁ) - H(so,';ﬁ) . (3)

Depending on whether the data are time- or failure-censored, v; is fixed or is the realization of a

random variable. The parameter 3 will sometimes not be shown.

10



The logarithm of the likelihood based on all the data is shown in Section 8 to be

e .. 1o f
D F R TN g

Lyuu(By Aoy vy Age) = zc: [Zlogh(t,,,ﬂ) + m; log/\uJ - /\ojvj(ﬁ)] . - (4)

i=1 =

et e, (e

This follo“s the umfxed notatlon establrshed earller, _vuth the mterpretatlon of m; and S1j dependmg on
the way the data for the Jth component were generated The values of Ao j may be drstmct or assumed

to all be equal to a common Ao. In the latter [case, L!u,, depends only on, B and Ao, and can be

1
'

written as

L

Lyuu(B, o) = i:[.Zlogh(tJ,ﬁ) + mlog,\0 ,\ov (ﬂ):| Ve , )

=1

Now consxder the condxtronal dxstrxbutlon of the ordered farlure txm&, condxtlonal on the \alues

of nj of tmj, whlchever is random The condntronal log-hkehhood is shown in Sectlon 8 to be
. Loy . .

L;;,,,;(ﬂ) = g[';logh(t., g - n;ildgb,-(zz) ,..,'._-l.-_:lqg(n‘,-!‘)‘:l. R

= Fres(ir .)H[h(t.,,ﬂ)/ 0| e

T s

From now on, the subscrrpts full and cond will be omltted wrth the meanmg bemg clear from the

o

number of parameters gwen as arguments of L lt is crucral to note that the condmonal log-hkelrhood

0

(5) depends on 8, but not on Ao or the 4\01

For component j, consider the term inside curly brackets in Expression (5'), and suppress the
mdex J- The expressxon is the condltlonal Jomt densrty of the ordered faxlure txmes ( Tl, ey Th).

Therefore, condltronal on N = n or Tm = tm, the n unordered fallure tlmes T; are mdependent and

1
cor Yy -

1dentxcally dlstrlbuted (1 i. d ), each wrth densrty h(t)/v on the mterval [so, 31], and densrty 0 outsnde
thrs mterval Therefore, mferenee for ﬂ can be performed in standard ways, based on observatxons that
are condxtlonally mdependent and condrtlonally 1dent1cally dnstrrbuted for each component ’flrxs can

be done whether or not the components have a common value of Ao.

v e Lo
I R L U M) I

N R \":;f PN Iy Ny

I T NS S R Y S :

Two other facts are needed to carry out inference for all the parameters.-  For'time-censored
data, N; is Poisson(Ag;v;). For failure-censored data, it is shown in Section 8 that 2), jV; has a

x2(2mj) distribution. The values of Ay; may or may not be assumed to equal some common value.
11



3.2 Ancillarity

Suppose that there is a multidimensional paramenter (3, ), and a sufficient statistic (X, Y).
Y is said to be ancillary for B if the marginal distribution of Y does not depend on 3. X is called
condztxonally sufficient for g if the conditional distribution of X given y does not depend on 4. \When
these conditions hold, inference for 3 should be based on the conditional likelihood of .\ given y. When
maximum likelihood estimation is used, the same value for 3 is found whether the full likelihood or the
conditional likelihood is used, but the appropriate variance of 3 is the conditional variance. See
Kalbfleisch (1982) or Cox and Hinkley (1974, Sections 2.2viii and 4.8ii) for more information.

Return now to the setting of component failures, and consxder time-censored data from €
components, when either (1) the components are not assumed to have a common value of Agy or (2) the
components have a common A, and all the v;’s have a common value. In the examples of this report,
case (2) can occur only if all the components are observed over the same period sy to s,. For case (1),
it.is shown in Section 8 that (NV1y eer Nc) is ancillary for B, and that’ the failure times T;; form a
conditionally sufficient stat.lstlc for 8. (A lower dimensional condltlonally sufi‘ cient statistic for 2 can
be determined in some examples by examining the form of EElogh( ij)-) For case (2), t
components may be pooled into a sn_ngle super-component, and N = IN; is ancillary for 5. In these
cases, therefore, basing inference for 3 on Equai‘i'on (5) is not on(); possible but best. In all other cases,

basing inference for § on Equaﬁon ('S)Tinvolves some loss of information.

3.3 Examples

The building blocks for the above formulas are all given in Table 1, at the end of this report.
A few pomts are worth notmg here: The e'(ponentlal hazard model is worked out in some detail by
Cox and Lewis (1966, Section 3. 3) With this model, EZIogh(T J,ﬁ) equals ﬁEET ;j» and it follows
that that. LET;; is conditionally sufﬁcxent for B. For the linear hazard functxon, Elogh( T;;:8) equals
EElog(l + 8T J), and there is no one—dnmensxonal statistic that is condntlonally sufficient for 8. T hxs
is one of several problems with the linear hazard model, which will be mentioned in this report as they
are ‘encountered. For the Weibull hazard function, we have logh( T; ﬁ) Blog(T/t,). Therefore,
EZlogT; jis conditionally sufficient for 3. '

12



4. MAXIMUM LIKELIHOOD ESTIMATION .
4;1 Maximum Likelihood Estimation Based on the Conditional Likelihood

,,.;)? v

If (Nyy o No) is ancillary for 4, then inference for 3 should be based on the conditional log-
likelihood given by Equation (5). Even in other cases, one could use this conditional Iog-llkellhood at
the cost of some loss of: information. The maximuin conditional likelihood equation is fonm.d by
setting the derivative of Expression (5) with respect to ﬁ equal to 0, resulting in:

PRI

e = % }:’{[logh i) = fogs (ﬁ)]} (©)
,ooEEn S e .

Here, the prime denotes the derivative with!respect to §. If 8 has dimension k, there are & such
equations, each involving the partial derivative with respect to one component of 8. The maximum
likelihood estimate (MLE) | typically is found by numerical"iterat'ion to solve Equation (6). If any
algebraic cancellation can be performed on the terms inside the curly brackets in Equation (6), then the
order of evaluation should be as suggested by the bracketing, for numerical accuracy. If no algebraic

cancellation can be performed, the evaluation may take advantage of the fact that S,-[logvj]' =

nj[lqg_vj]', R C T e

Suppose that no common value of ), is assumed. The MLE of Agj» corresponding to the jth
component, is :\o,' = mj/vj([.i). This is shown directly from Equation (4) by maximizing L(3, Agys --es
Agc) with respect to Ag;. Suppose instead that a common value of ), is assumed for all C

components. . Then it is shown similarly that Ao = EEmJ-/EvJ-(ﬁ).A

4.2 Maximum Likelihood Estimation Based on the Full Likelihood

Inference proceeds first by estimating Ay, if a single common value is assumed, or by
estimating the various  Agii Substitute the’ ‘MLE(s) into the expression for the full log—lll\elnhood,'

differentiate the resulting expression with respect to 8, and find the MLE B.

. .. - ~ . . R
Y P [ : . AT PO ‘.-45‘!‘<

AN SRR Fob TNt PO
When no common A, is assumed, the equation for 8'is

(8/8B)L(B, Ay s Aoe) = g g{ llogh(t, ;:8))! — [lg,g-,,'j'(,})']r} .
| 13 '



This is identical to Equation (6), except that m appears in-place of n. Therefore, use of either the
conditional or the full likelihood yields the same MLE B from time-censored data; this agrees with the
conclusion of the ancillarity argument given earlier. For failure-censored data, Equation (7) differs

from Equation (6) by inclusion of the final failure times tm and useof m = n + 1.

When a common A is assumed, the maximum likelihood équation for 3 is

¢ . c M

3 Li'(B Aoy = X T llogh(ty;iB))' — (Em;) [Bv;'(B)]/[Zv;(B)] = 0 (8)
i= =1 i=

This differs from Equation (6) in two ways: m; is used instead of n;, which makes a difference only
with failure-censored data; and the portion involving v; reverses the order of summation and
multiplication and division.

4.3 Examples
All the expressions used in Equations (6) through (8) are presented in Table 1, for the three
examples. A few points of interest are mentioned here. Typical features of all the models are discussed

using the first example as an illustration.

Exponential Hazard Function

Consider first estimation based on the conditional likelthood. The maximum conditional likeli-

hood equation for 3 is, from Equation (6) and the expressions given in Table 1,

3
.

Cc
D
j=1

l(‘-‘j — 5;) + Jé:l"j/ﬁ —Jé:l_nj"j/ll — exp(—fgr;)] =0 . (9)

This agrees with the special case C = 1 and s, = 0 worked out by Cox and.Lewis (1966). It must be
solved numerically for 3. When 8 is near 0, the last two terms in Equation (9) are very large,
although the difference is bounded. Therefore an asymptotic approximation should be used. From

expressions given in Table 1, a first order approximation is

)§l ig-.:x {(tij - 301') - (T‘j/Z)(l + ﬁrJ/G) } = 0.

14



.When g is small, this asymptoti.c approximation must be used:to ‘prevent complete loss of numerical
significance; of course, when § = 0 the limiting value must be used.Note that’B equals 0 when '
ES!;J- = En,-'ij, _

that is; when the sum of the (non-replacement) failure times equals the corresponding sum of the mid-
points of the observation periods. This is intuitively consistent wit}; the fact that when 3 equals 0, the
conditional distribution of T;; is umform on (so, sl) The MLE for Ao or for the Aoj’s can be obtained

ina dlrect way from the results ngen above N A L e

Inference based on the full likelihood is similar, using:Equation (7) or (8) and expressions given
in Table 1.

Linear Hazard Function

It is straightforward to. substitute the ‘expressions for A(t) and v; into the general equations
given above. For example, consider the conditional log-likelihood based on a single component. Its
derivative is ‘
£'(p) = zz/(1+m)—ns/(1+ﬁs) | L
It fol]ows that the MLE B, based on the condltlonal log-llkehhood equa.ls zero 1f ? Zn;3;, just

as with the exponential hazard model. The followmg two points, however, deserve specxal notice:

The MLE ﬁ may be infinite. To see this, consider the expression for L’(ﬂ) jlist"g'iven.' If t; >
3 for all i, then L'(8) is positive for all 8. There is no finite solution to the maximum likelihood
.equation Thus, in cases when the evxdence for an mcrea.smg fallure rate is. strongest, the rate of

increase may not be wtnmable by maximum lxkehhood

. With time-censored data and a common :), assumed, there is some advantage to centering the
data. In this case m; = n;, and the full log-likelihood is .
L(B, Ag) = EnjlogAg + LZlog(l + B1;;) — AOErj_,—./\oﬁErjEJ'-h.“-:
The last sum can be made to vanish by centering the data, that is, by measuring all times from
bmig =055 [ Trjoe cvineet o B d D e : :
The log-likelihood then becomes ’ S e e
L(B, Ag) = Znjlogh, + L Zlog[1 F Bl = i)l — AZTry o L Ty

In this formulation, A, equals the value of A(t) at't = 1,;;. Il any value-is assumed for By EN; is

15



Poisson(AoZr;), independent of 4. Similarly, if any value is assumed for X, L(8,),) is a function of
Ao plus a function of B and-the {;/’s; therefore, inference for B is independent of A;. This ability to
perform independent inferénce for @ and A, is a convenient property, which may be sufficient in the

-

eyes of some analysts to justify centering the data.

Suppose that when the data are uncentered, there is no finite MLE 3. Centering the data is
not a cure-all. When the data are centered, 3 is restricted to a finite range, as discussed in the
introduction to the linear hazard model in Section 2. In this case, the MLE 3 is at an end point of the

possible range; it is finite, but cannot be treated as asymptotically normal.

Weibull Hazard Function

In this case; [logh(t,-j)]' = log(?;;/1y)- The remaining terms needed ‘for Equations (6), (7), and

(8) depend on whether sg; is zero or nonzero, and are all given in Table 1.

There is a noteworthy simplification in Equations (6) and (7) when s5; '= 0 for all j, that is,
when every component is observed from its time of installation. In this case, [logt]’ equals log(s,/t,)
~ 1/(8 + 1), and Equation (6) has the explicit solution
B = —En;/TTlog(t;;/;) — 1 . ' (10)
The solution of Equation (7) replaces n; by m;. These are the only cases considered in this report for

which the MLE 3 can be found without numerical iteration.

In this case, the value 3 ‘'satisfying Equation (6) equals 0 not when EXt; j equals £a;5;, as in
the other examples, but when

—ZEZlog(t;;/%1;) = En; .

This initially surprising fact has the following intuitive basis. For notational simplicity, consider a
single component, suppress the index j, let f, = 1, and condition the observations on the value of n or
8. To derive the conditional distribution of —log(T;/s,), begin with

P[—log(Ti/s1) > z] = P[T; < syexp(—2)] .

Following the discussion below Equation (5), T; has conditional density A(t)/v; therefore, this
probability equals

{Inexp(=20""/(8 + D} / {5°7 /(8 + 1)} = expl==(8 +1)] .

Therefore, the conditional- distribution of —log(T;/s,) is exponential with’ mean u = 1/(8 + 1).

16



Equation (10) can be rewritten as Loy oL
—EZlog(t;;/s,;) [ En; =1/(B+ D) =4 ,
that is, the MLE is based on equating the mean of —log(7};;/s,;) to the sample mean. In particular,

the case 3 = 0 corresponds to i = 1, that is,.—EElog(t,-j/slj) /[ En; =1

When the values of sy; are not -all 'zero, the expressions are ‘more complicated, but the ma‘&i-

. mum likelihood equation'is still ‘equivalent to sétting the mean of £ logT equal to its sample mean.

<~

5, CONFIDENCE REGIONS AND HYPOTHESIS TESTS . -

The standard regularity conditions, such as given by Cox and Hinkley (1974, Section 9.1) are
assume.d. The ‘assumptions involving. the parametef‘spaée:,:identiﬁability’of the distributions, and
existence of derivatives are-all satisfied in the examples considered in ‘this réport. There is also an
assumption involving the behavior of the thitd derivative of the log-likelihood as n goes”to infinity.
For field data, such an-assumption .is typically difficult to affirm or deny. " Practitioners must always

treat asymptotic approximations with care. - LT Coe 2

5.1 Inference Based on the Conditional Likelihood

D

The procedure descriBed heremléhtbeused ‘when [3‘..is:’the primary Baré'rr‘l;e”tkef of intere'stl, or
when (Ny, ..., N¢) is ancillary for 8. The presentation here assumes that 8 is one-dimensional. The
generalizations to multidimensional g are straightforward.. We remark in passing that when logh(?) is
linear in one-dimensional G, as is the case for the exponential and Weibull models, then the one-sided

tests given below are uniformly most powerful.

Inferencefor g .. .- R

~ The derivative ‘with respect to ﬂ of the condmonal Iog-hkellhood L (ﬁ), is glven by Equanon

by e 0T

(6)." ‘The information is '

K8y = —EL"(B)) = E{ [L'(B))* }

T



= -E{j}; ; llogh(t; ;38)1"! —gn,- [losvj(ﬂ)]"}

= Z;n;{— [ Dogh(tB)]""h(6:8) dt/v(B) + [loguy(A)"'} . . (11)

If 3 is k-dimensional, [{8) is the kxk matrix defined by taking all the mixed partial derivatives of L.
Let 3 be the true value. Under the assumed regularity conditions, the expectation of L'(8) is 0. and

the variance (or covariance matrix for k-dimensional ) of L'(3) is I(3).

As a corollary to the Lindeberg-Feller Central Limit Theorem, Feller (1968, Section X.5) give§
a sufficient condition for asymptotic normality of .L'(ﬂ).. Rewrite Equation (6) as L'(8) = ==X,. If
there is a constant A such that |X;| < A for all k, and if (11) = oo, then
L'(8o) / (18N . ' (12)
converges in distribution to normal(0,1). The assumptions must be verified for each example.
Typically, the assumptions are satisfied if all the values of 3p; and s, ; are bounded by some constant,
and if some fixed fraction of the r;'s is bounded away from 0. For the exponential hazard model, it is
enough for the r;’s to be bounded by some constant and for a fixed fractién/to be bounded away from
0. For the linear hazard model, it is necessary in addition for 1 + Bsyj and 1 + 3s,; to be uniformly
bounded away from 0. Qualitatively; the approximation is best if the so;’s are approximately equal
and if the s,;’s are approximately equal. . The approximation also is better if 3 and A are such that

[Iog}x( T; j;ﬂ)]’ does not have a highly skewed distribution. If it is very important to know whether the

normal approximation is adequate in some application, a simulation study should be performed.

An approximate confidence interval for 3 is the set of all 3, such that the statistic (12) lies in
the interval (—¢, ¢), where ¢ is the appropriate number from a normal table; for example, ¢ = 1.96
yields an approximate 95% confidence interval. Actually, this defines a confidence region for 8. To
show that the region is an interval rather than some more complicated set, one must show that
Expression (12) is a monotone function of 8,. Monotonicity is difﬁc'ult. to show analytically. It can be
checked numerically by a computer program in any example. In experience so far with real data, (12)
has always been monotone for the exponential hazard model, but has not always been monotone with
the linear hazard model when the confidence interval was unbounded, or for, the Weibull hazard modei

near § = —1.

" To test the. hypothesis 8 = (3, for some particular value 3, the test statistic (12) can be used,
: : 18 ‘
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and the hypothesis rejected if-the test statistic is in an extreme-tail of the normal distribution." In
particular, the hypothesis 8 = 0 is often of interest; the test statistic (12) may then have.an especially.

simple form, as discussed below for the examples.
Inference for A,

Once a value of 3 is assumed, it is easy to find a confidence interval for Ay or confidence
intervals for the various Ag;’s. The method is shown here when the components are assumed to have a
single common A,.

-. For time-censored data, define N = EN; and v.= Zu; with v evaluated at the assumed value
of B. Because VV is Poisson(A;Zv;), a two-sided -100(1 — a)% confidence interval for A, is given by

Johnson and Kotz (1969, Section 6.2) as - -.

2 - - . - . . : 4 . .-
Aop = X'an,az2/(29) - P e et Tonad 0 D e L e

AOU — x22(n + 1)'1 - 0/2/(2'}) ‘. Lo (13)

If instead the data are failure-censored, define' m = Em; and v = Lv; ‘with ‘v'evaluated at the
assumed value of B. Because 2),V has a x?(2m) distribution, a two-sided 100(1—a)% confidence
interval for A; is given by . - N .
Aog = x22m,a/2/(2v) . | '

Av = XPamy - a2/ . T ek
Note that Formulas (13) and‘ (14) agree except for the degrees of freedom.

(14)

" o . —

A tw&dimdnsional conﬁdensg region, with confidence coefficient approxiniafély —'-100(1 - a)%,
can be formed as follows. Form'a 100(1 — a/2)% confidence negion for f.. At each Bo in the
confidence interval, evaluate v and form the resulting 100(1 — a/2)% confidence interval for Ao The
approximation results from the tGse of a large-sample approxxma.tlon for the conﬁdence mterval for ﬁ,;‘
and from' the way the two individual ‘confidence’ coefficients’ are combmed to yxeld a Jomt. conﬁdence

;

coefficient.

If B is treated as known and equal to 3, Equatlons (13) or (14) glve an approxxma.te coni' dence
interval for Ay. It is too short, however, because it does not account for ‘the’ randomness ‘of the‘

estimator B.  If this“interval for Ao depends strongly on the assumed Value of ﬂ, a more exact
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confidence interval is obtained by taking the largest and smallest values of A4 in the two-dimensional

region for (3, Aq).

A conservative confidence interval for the hazard function A(?) is given by the largest and

smallest values of A(?) attained in the two-dimensional confidence region for (3, Ap).

5.2 Inference Based on the Full Likelihood

When all the model parameters are of interest, an analyst either could follow the perced‘l’xré
presented above, or could perform inference based on the full model as follows. The discussion assumes
that all the components have a common A,. Formulas for A, will be based on joint asymptotic
normality. There are-heuristic arguments for why parameterization in terms of p = logd, improves
the normal approxin;ation: for failure-censored data, this transformation replaces the scale parameter
Ag by a location parameter; also, the log transformation of Equations (13) and (14) yields more nearly

symmetrical intervals,

The log-likelihood L(8, A,) is given by Equation (4/). The sample information matrix for (8,
p) = (B, logho) is

(9%10B*)L(B, Xo)  (8%/3BIP)L(B, Ao)
SKB, logdo) = —

(8%/08 8p)L(B, Xo) (8%18p*)L(B, Ao)
‘{25[108’1(‘5,')]"} + Ao"j" onj,
= I , . (15)

In somé. situations, evaluation of the ‘gb_ove terms at ([3, 30) is made easier by using the identities
Emj/;}p = Zv; and EE[logh(i,-J-)]' = ,‘\ozu,.’, with the second identity following from Equation (8)
evaluated at (3, Aq). '

The information matrix is then defined by
I(Bv log’\(l) = E['SI(ﬂs 108'\0)] *

The expectation is based on the randomnas.of T;; and of either V; or M;. Depending on the form of
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h, the analyst may choose to éstimate the information matrxx by I(ﬁ, long) or by SI(ﬁ, long), see
Cox and Hinkley (1974, p. 302). In practice, expecrally when V; is random, it is much’ more

convenient to use SI to estimate I(F, log),).

Asymptotic inference is based on the fact that (ﬁ, Iogio) is asymptotically normal with mean
(B, log),) and covariance matrix I~} (ﬂ, Iong) Thls allows for appronmate conﬁdence intervals for
B, for A, and for functions of the two parameters, such as A(?). - To do the last, write '
logA(t) = logh, + logh(8;3) . o '
Take the first-order Taylor expansion of logh(t;B) around B = B. This yields the asymptotic distribu-
tion of logh(; ), and :its asymptotic.covariance with logAg. iThen logA(1) is asymptotically normal,
with mean equal to the sum of .the means, and variance equal to the sum of the variances plus twice

the covariance. This may be used for t such that the Taylor approximation is adequate.

5.3 ,Exarnpla o

! o
The building blocks for the formulas are all given in Table.l. -Asymptotic approximations are
also given, to be used when g is near ijith'an;exponent.ial or linear hazard function, and. when 8 is

near —1 with a Weibull hazard function. Special cases are now considered.

Exponential Hazard Function

To test § = 0, based on the conditional:log-likelihood, .the asymptotic formulas in Table 1
show that the test statistic'(12):equals S T VPN K PN I

S.j{z,.vz,.,.' n;3 ;}/[E n; ’/12]"2 T I - I‘ -—(165

Gy
£l e

) Here zgoes from 1 to.n; When there is just one component (j = 1), the statistic becomes ... . - .-
[Eiti/n = s]/[r/(l2n)‘:’—?], S e et e L .

which has a simple intuitive interpretation. If the faxlure rate -is constant (8. =-0), the.conditional
distribution of the failure times for the component is uniform between s, and s;. The test statistic is
the average observed tnme minus the mldpomt of the observatxon penod all dw1ded by the standard de-
viation of an average of umforml} drstnbuted vanables Thxs test was ﬁrst proposed bv Laplace in

1773, according to Bartholemew’ (1955)
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In this case, log/\(t) loghg + ﬂt Therefore, the asymptotic distribution of logA(t) follows
neatly from the asymptotic distribution of (3, logd,).

Linear Hazard Function

~ Recall that time-censored data can be centered. This redefines the meaning of Ay and 3, the
function A(f) becomes 1 + B(t — ;) and Sy; ! equals 0. The sample information matrix (15) then

becomes a diagonal matrix, and 3 and ,\0 are asymptotically uncorrelated.

The test of 3 = 0, based on the conditional log-likelihood, can be built from the eléments in
Table 1. The statistic is given by Expression (16). That is, the natural large-sample test of constant

failure rate is the same, whether an exponential or linear hazard model is postulated.

The asymptotic distribution of A(?) is obtained by making the approximation
logh(5;8) = log(1 + B1) + (B—P)Y/(1 + BY) .
The approximation'may be used when the second term is small compared to 1. For practical use, the
approximation is good enough if twice the standard deviation of 3¢/(1 + A1) is less than 0.1, and fair

if this standard deviation is less than 0.3.

Weibull Hazard Function

The necessary expressions are given in Table 1. In this model, the test statistic (12) differs
from Expression (16). When all the values of sy; equal 0, the test statistic simplifies to
{Efog(ti;/5;) + 1} / (Bn)'/* | (17)

with i going from 1 to n;. Recall from the discussion of maximum likelilood estimation below Equa-

j*
tion (10) that the conditional distribution of —log(T};/s,;) is exponential with mean and variance
equal to 1/(8 + 1), and that the-MLE of 1/(ﬂ + 1) is the sample mean of the terms —log(t,-)-/su).
Therefore, the negative of the test statistic (17) can be written as the MLE of 1/(8 + 1) standardized

by the mean and variance when 8 = 0.

The estimated hazard functlon satisfies A(t) log;\o + Blog(l/ 1), so the asymptotic nérmal
dxstnbutlon follows directly from the cotresponding result for (3, log,).
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6. DIAGNOSTIC CHECKS © -

[T

The methods presented above-have assumed a common value of 8 for all components, perhaps
a common value of Ay, and a hazard function of the form Agh(#;8). Computations are often  based on
the assumption that asymptotic.normality yields an adequate approximation. -Diagnostic checks—both

tests and plots—should be used to investigate the validity of these‘as'snmptions.‘

6.1 Common 8 -. i~ 1.~

1
‘

To see if a particular component, the kth say, has B8 significantly different from the other
components, . calculate the -MLE based -on' the kth component only and on all components-(pooled)
except the kth. At this point.there is no reason for confidence that the components have a common Ag;
therefore, use the MLE based onthe conditional likelihood, which is-independent of the value(s) of A,
The difference ﬁ = ,B;_b_ has varianceequal -to the sum of .the variances, and mean zero if all
components have the same §. Therefore it yields a test, using asymptotic normality, of the hypothesis
that the kth component has the same f as-do the others. The C tests can be combined using the
Bonferrom mequalxty to form an overall t.est of the hypothesxs t.hat. the components have a common g.
If any component has no nonreplacement fallures, ,6 cannot be estlmated for that. .component, and‘

fewer than C test statistics and confidence intervals can be ca]culated

A single component may not have enough failures to justify asymptotic methods. In the
extreme case when the lct.h component has only one non-replacement fallure, a pract.lcal expedient is to
treat ﬂ_k as known, and test whether ,6,: = ﬂ k based on the smgle observed fallure time for the hhl

component Thls test is based on the fact. that the smgle faxlure ha.s condmonal densnty h(t)/ vy, with 3
set. to ﬁ £

In addition to the test.for.common -8,i a useful .visual diagnostic is a plot. of "C-confidence
intervals for the parameter, placed side by ‘.‘s'ide,‘}\'ri'th_\each -interval .based ‘on the data from a single
component.

5.2.'Qommon.A°1;'— TR S TP S ’

Suppose that the assumption-of 'a common B is accepted, and consider how to test whether the
components have a common'‘\g. Treat 8 as known'and equal to 3; this introduces an approximation
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into the tests for Ay, but it does not a priori treat any component differently from any other. Consider
now the kth component, pool all the components except the kth, and test whether Aq, equals A _,.

Assume for the moment the null hypothesis that the components have a common Aq.

With time-censored data, the conditional distribution of ¥y, conditional on the ancillary statis-
tic Tnj, is binomial(Zn;, py), with p, = vk(ﬁ)/Evj(ﬁ). This yields a test of the hypothesis that A4,
is the same as Ay for the other components. These tests may be combined with the Bonferroni
inequality. Alternatively, if the failure counts are not too small, a x? test may be used, based on the

fact that (¥, ..., ¥¢) is multinomial (En;, py, ..y Pe)-

.. With failure-censored data, the distribution of 2y Vi(8) is x?(2m;), and the sum of the
observatior} periods for all components except the kth is likewise proportional to a x* random variable.
Therefore the ratio of V) to the sum.of such terms over all components except the kth is proportional
to an F random variable. This yields a test of the hypothesis that A,, is the same as Ay [or the ot.her

components. The tests may be combined with the Bonferroni inequality.

As when comparing the components for 3, a side-by-side plot of confidence intervals for A, i

provides useful visual diagnostic information.

6.3 Form of A(?)

To.test whether 4 is of the assumed form, use the fact that for the jth component, cond_itional
on 'the observed failure count n; or on the final observation time 8y j,‘llfhe T;;'s are independent and for
each component are identicaily dis—trib'uted, with density proportional to A, as discussed below Equétion
(5'). Therefore, under the assumed model, the conditional probability that a random failure Toccuré
by time tis
P[TL = §IP[T < | failure is in component j] P[failure is in component il
, = EP[T < t| failure is in component jj (n;/Zn;) .
with ’ _
P[T < t| failure is in component j] = [H(f) — H(sy;)]/v; if so; St < 5y

=0 if £ < 8y
=1 o ift> sy .

Tests for a hypothesized Qis;ribt‘xtion may now be used, such as the Kolmogorov-Smirnov test or the
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Anderson-Darling test.

Routine use of one of these tests gives a Type ] e.;'ror smaller than the no‘minal value: the test
tends not to reject often enough. There are two [reasons for this. One is the familiar reason that the
estimated value-of # must be used to evaluate H and . The seco'.nd reason arises if the components
are observed over different time periods. The distribution used is conditional on the failure counts or
final failure times, so -the 'T;;’s are not truly a random sample. As an extremé example, suppose that
component 1 was observed for only the first year of its life and that’it had n, failures, that component
2 was observed for-only the second year of its life and that it’had n, -fa'.ilureé,"?and so ‘forth. The
conditional distribution then says that of En; failures in:the first:C years, on the ‘average n; will occur
in year i. The T;;’s are a stratified sample from this distribution, and are therefore forced to fit the
distribution rather well." They.fit well regardless of the form of k, because thé stratification does not

N

involve the hypothesized A.

To avoid this difficulty, it is good to try to use components that'.‘ ;reobserved over the same
time period; if a few components have a different observation window from all the others. try partition-
ing t'he data and performing the test on the two'sets 'separately.’ In the extreme case ‘given by the
above example, the following method could:be used.’ ‘Find A using all the data, and treat it as known.
Then for each of the C components perform a separate' Kolmogorov-Smirnov test of Hg: 'ﬁ' = f. This

yields py, ..., p¢, the attained significance levels or p-values. It is well-known' that undef 'Ho"," a 'p-vAal'ue

is uniformly dlstnbuted on (0, 1), so that’ —2Zlog(p;) has a x2(2C) distribution.’ This" HO would be

rejected at level a if — —2Zlog(p;) > x* 1-a(°C) cqedy

""Two pictures may accompany the test. One is the plot of the above model based cd f .

overlayed with the empirical c. df ‘The other is a Q Q plot as descnbed for e'cample, by Snee and

Pleifer (1983). It’ plots the n observed failure tlmoe versus the mverse of the model ba.sed cdf

prin - cony s
M B N N L

evaluated at 1/(n + 1), ...\, n/(n +1).

6.4 Adequacy of Asymptotic Normal Approxixnation

¢ -

An'MLE can be mspected t.o see xf n is near the mxd-pomt of e. tw0-51ded conﬁdence mterval 1f .

o ! 5

not, the normal approxxma.txon may not be adequa.te. Also, a two—dxmensnonal conﬁdence regxon for

(B, logAy) can be constructed from an interval for ﬂ “and condmonal intervals for Ao glven B, as
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discussed below Equation (14). This can then be compared to the confidence ellipse based on the
asymptotic joint normality of ([.3, logiu). If the two regions are very different, approximate joint

normality should be questioned.

7. EXAMPLE DATA ANALYSIS

A nuclear power plant for a commercial utility has 12 motor-operated valves in the auxiliary
fecdwater systems at the two units of the plant. Maintenance records covering about 10 years were
examined, and the failure times for the valves were tabulated. The data are summarized in Table 2,
and are given in more detail by Wolford et al. (1990). Three valves were replaced upon failure. and
one was replaced for administrative reasons, leading to 16 valves shown in Table 9. The three valves
that were replaced upon failure were regarded as failure-censored. The other 13 valves were regarded as
time-censored. A Fortran program PHAZE (for Parametric HAZard Estimation) was written-and used

on a personal computer to analyze the data, following the methods of this report; the program is

documented by Atwood (1990).

The valves were first compared to see if they have clearly different values of 3. Figure 1 shows
a side-by-side plot of the confidence intervals based on the individual components. It also shows the
significance levels based on a comparison of [?,, to ﬁ_,,. The diamond in each confidence interval
shows 3 ,,' while the square shows B_k. Note that there is no estimate or interval for components with
no non-replacement failures. The overall significance level, based on the Bonferroni combination of the
ind'ividual significance levels, is 1.0, confirming the pictorial impression that there is no real difference
in 3 for the various components. The exponential hazard function was assumed for these calculations.
The results were similar when the linear or Weibull hazard function was assumed. The only striking
difference was that many of the MLEs and all of the upper confidence limits were infinite with the
hnear hazard function. A similar companson of the components for A, led to a conclusion that the
components do not have greatly dlfferent values of A;. Therefore, the components were assumed to

have a common value of # and of A,.

Tests of 3 = 0 were performed based on the test statistic (12), and the hypothesis was rejected
in favor of # > 0. The test based on EXt;;, when Expression (12) takes the form of Expression (16),
rejected at one-sided level 0.021. The test based on IZXlogt;;, when Expression (12) is evaluated under
the Weibull model, rejected at onetsxded level 0.025.
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Table 2. Summary of example data

Nbir'l:r‘e'p’l. Observed  Mean Failure

R;plé;:'ed' : Imtxal ‘

Component Fails: - Hrs. - Time (Normed) - on Fail.?2 Age (Hrs.)
MOV-1A 1 8.8584E+04 . 0378 , .. .. | 4.1448E+04
MOV-1B 1 = 8.8584E+04  0.086 4.1448E+04
. MOV-1C 2 . 8.8584E+04 - 0.752° - . | 4.1448E+404 3
MOV-ID . 7 8.8384E+04  0.743. - 4.1448E+04 .
MOV-1IE© = 0 21840E+04 =~~~ Y © 4,1448E+04
MOV-1E(R) 3 . 6.6T44E+04 . 0498 i+ =~ 0.0000 " ,
MOV-IF 3  4.3608E+04  0.568 Y  4.1448E+04 -
MOV-1F(R) 1 ' 4.4976E+04 = 0.487 0.0009 ,
MOV-24 4 . 8.8584E+04 - 0.619:: i+ - 3.7824E+04
MOV-2B. 5 8.8584E+04  .0.567 . .. .3.7824E+04
MOV-2C 1 4.9728E+04  0.756 Y '3.7824E+04
. MOV-2C(R) - 1 ‘3.8856E+04- . 0.866 i . ' .. 0.0000E-01" * = ">
MOV-2D 6 8.8584E+04 _ 0.464. . . . 3.7824E+04
MOV-2E 0 2.2608E+04 T " 3.7824E+04
MOV-2E(R) 2 6.5976E+04  0.698 “1r50.0000 -
MOV-2F 7  8.8584E+04  0.593 *.3.7824E+04
MOV-1A —a— 7 0.48
MOV-1B [ + u . 4 0.09
MOV-1C |- H—| M ﬁtg?‘&) -0.44
MOV-1D | - L2 . MLE .- 410.14
MOV-1E . . |— 95% Cont.Int. -
- MOV-1E(R) | - e - 0.64
MOV-1F | —— {091
€ MOV-1F(R) |- —-—— H0.82 &
e 'MOV-2A - e - H0.87 &
S MOV-2B‘| : A 0.802
E. Movac | . e ———— . Jos1 g
© MOV-2C(R) | b - 10335 .
' MOV-2D*| S 4021
oo MOV-2E | K PRASE i x IR
MOV-2E(R) |- - — . 410.54 ..
'MOV-2F |- e ‘ 4097
. OVERALL.F. , .. - ... .. 11.00-- -

I BOE v 28B4 e T "2BE4TT U 5.0E-4
R A SN cier ol B (1Ih) B L N S S
Figure 1. Compohent. b&nb&isohé for ﬁ,Exponentxal ﬁazard Mo&el
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To test the form of theﬁmodel, the Kolmogorov-Smirnov test was performed, as described in
Section 6.3. The test saw notllli.ng wroﬁg with any of the three models; the three significance levels
were all greater than 0.8. To account for the partial stratification of the data, the components \;'ere
partitioned into two groups, the twelve that were in place at the start of observation, and the four that
were installed during the obseri/ation period. The overall MLE, based on the conditional likelihood for
all the components, was ﬁsed to estimate J. This value was treated as known in the two data sets.
and the Kolmogorov-Smirnov test' was used to test the fit of each data 'se'lf. to each of the three models.
The three significance levels corresponding to the larger data set were calculated using asymptotic
formulas and were all greater than 0.79; the significance levels corresponding to the smaller data.set
(seven failures) were not calculated exactly but were all substantially greater than 0.20. Even allowmg
for the fact that the hypqt.heswed model had an estimated parameter, it seems that the data give no

reason to.question any of the three models.

Figure 2 shows the Q-Q plot of the full data set, based on the exponential hazard model. Q-Q
plots based 6n_ the other models look similar. The only evident departure from the assumed model is
shown by several strings of nearly vertical dots, indicating repairs that cluster in time. The effect of

this clustering is ignored below.

For each model, an approxlmate two-dimensional 90% confidence region was found for (3,
logAo), as discussed below Equatxon (14). Snmllarly, a 90% confidence ellipse was found based on the
asymptotic normality of (8, long). These two reglons are superimposed in Figure 3 for the exponen-
tial hazard function, and in Figures 4 and 5 for the linear and Weibull hazard functions. The circle
and-the ellipse show the MLE and the confidence region based on the full likelihood and asvmptotic
normahty, while the square and the non-elllptxcal region show the MLE and confidence region based on
the condltlonal likelihood. For the lmear model the data. were centered, and for the Weibull model the
normahzmg o was set to ;4. For the exponential and Weibull models, the regions overlap fairly
~ well, suggesting that the asymptotic distribution is an adequate approximation. For the linear hazard
functién, the confidence regions must be truncated at tixe maximum allowed value for 3. Therefore the
normal ‘approximation is not adequate. By the way, when the linear hazard model was used with
uncentered data, the céhjﬁaéncé'_réé%ns‘ ‘w._rere' as shown in Figure 6. The non-elliptical region is thin
and strongly curved, and’ it hardly 6ve1;laps the truncated ellipse at all; therefore, centering seems to

improve the normal approximation, even though the approximation still is inadequate.
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Finally, the hazard function was estimated with a confidence interval based on the asymptotic
joint normal approxixﬁation. In spite of the poorness of the joint normal approximation for the linear
hazard model, the method was used for all three mod;is, for comparative purposes. _ Figure 7 shows the
MLE and 90% confidence interval for A(t), at various values of t, for the three models. If the
confidence band for the linear hazard model were seriously advocated, it would be plotted only for
values of t satisfying . |
2 sd t/(1+31) < 0.5,
where sd is the estimated standard deyiation of 3; outside this range, the first-order Taylor approxima-
tion of logh(t;3) is inadequate. Thi§ restriction corresponds to feﬁuiring t > 1.6E4 h. If the upper
and lower bounds for the linear model are ignored where t < 1.6E4 h, the bands for the three models
look similar, except that the Weibull hazard function approaches 0 at time 0. Most of the components
were observed between ages 4.1E4 h and 13.0E4 h. It is not surprising that the confidence intervals are
narrowest [in the scale of logA(1)] in the middle of this period of the observed data. If the model were

extrapolated far beyond the data, the uncertainties would become very large.
8. DERIVATIONS AND PROOFS

The likelihood formulas developed here have long been known; for example, see Equations (2.1)
and (3.1) of Boswell (1966), or Bain et al. (1985). The derivations are sketched here for completeness.
Consider a single component. The fundamental idea to be used repeatedly here is that the trans-
* formation
W) = A = Also)
converts the non-homogeneous Poisson process to a homogeneous one with unit rate. That is, tine
count of events occurring at transformed times u({) wigh u(a) < u(?) < u(b) is Poisson with parameter
u(d) — u(a), and counts for disjoint intervals are indAepend‘ent. For such a homogeneous process, it is
well known that the time between successive events is exponential with parameter 1.0. Likelihood
formulas may be derivéd'—i-xsing the relation between the density of ¢, denoted by f, and the density of
u(1), denoted by ¢
A = ofu(d)] 10u()/31] = exp[—u(D]A(2)

Atilticy) = glu(t)u(2)IA8) = explu(tiny) — w(8)]ML) - '
Here, f{t;]#;_,) is the conditional density of a failure at time t;, conditional on the component’s being

operable (restored to service) at time #;_,.
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8.1 Derivation for Time-Censored Data

The Likelihood

Consider a‘sihgle component and suppress the subscript j and the argument J. Suppose that a
random number- of failufes is observed in a fixed time interval [s0» $1]s and that the ordered failure
times are {;, ..., 5. In the formﬁla’é below, define t; = s and u; = u(¢;). Note that u(sy)- = 0 and
u(s,) = Agv. The likelihood is the-jqint density of the observed failure times, multiplied by the proba-

bility of no failures after {; that is, 4

b8, 30) = [{A416-0] eelde) = Ao

4] n

= [HA(‘i)][l;Iei;P(ui-x - “.')] explun ~ u(s)]

1,
= A" [1':'[1;(:,.)] exp(=Ag1) , (18)

Taking logs and summing over the components yields Equation (4), as claimed.

For a single component, consider now the conditional .distribution of the failure tin;es given n.
Because N_is Poisson()v), the probability of n failures is :
exp(—Aqv) (Agv)* / al . . . o (19)
Therefore the conditional likelihood, the likeli'hood corresponding to the conditional distribution of t,
R giv;zn n, is the quotient of Expression (18) divided by Expression (19): |

lona(8) = [f:[h(t,.)] Ouki

Taking'logs and summing over comporieﬁt.s yields Equation (5), as claimed.

Ancillarity

Consider again a single component. The failure count ¥ is ancillary for 3. To see this, define
p = MAgv. Reparameterize so that the parameters defining the model are-g and 3. Then N is
Poisson( ), so the distribution of N involves only g, not 3. Given ¥ = n, the unordered failure times

T; are i.i.d., each with density A(t#)/v on the interval [sq, s,]. This conditional density depends on 8
4



only, not on ‘u. Therefore, N is ancillary for 8 and (Ty, ..., Tn) is conditionally sufficient for 3.

LY . i
H . -

Suppose now that there are C components, C > 1, and that the components are not assumed
to have a common value of Ay. Then (¥, ..., N¢) forms[a'C-'diniehs'iér}_'al"a.‘n:cil_lar'y statistic for 5.

This is easily shown by a generalization of the above argument for a single component, parameterizing
. L

.1 . ol : =

‘the model in terms of § and (g, ..., p¢), With p; = Ag;v;:

Similarly, suppose that there are C components thh e.cor:nr-nc‘:.rlx walueof ./\0, and that v, has
the same value v for all the components, regardlm of B. (Remark: In the three etamples of this
report, this can occur only if the components ‘all have'a‘common value of S0 and e To see thls, set vy
= v, and v;’ = v,!. Evaluate these quantities at § = 0 usmg the formulas of Table 1. It t'ollows
that s5; = so, and s;; = sy, this is immediate for the exponennal and lmear hazard funcuon, and
can be shown with a little effort for the Weibull hazard function.) Now set B o= on and note that V
= IN; is Poisson(Cp). Consider the conditional log-hkellhood analogous to Expressnon (5). only now

conditional on n rather than on (ngy ey nc) 'It is equal to’

.o ' PR it T ‘~,=.. Py

n;

log{(m)C™ [T ri{h(t.,)/vn EAER RO N
j=1li=1 S N T TS .

This is the log of the conditional density of the ordered failure times, with each time assigned at

random to one of the: C components. Therefore, the, .T;;'s are conditionally i.i.d., each with conditional

density A(#)/vfor sp < t < sy,  The components may therefore be pooled as a single super-component,

and N = IV, is ancillary for 8.

Finally, suppose that there are C components, C > 1, that the v;’s are not all equal, and that
the components are assumed to have a common value of A,. There does not seem to be a reparameteri-
zation such that the distribution of (¥, ..., N¢) is independent of 8. Therefore (N, ..., N¢) does not
appear to be ancillary. To show conclusively that (¥, ..., N¢) is not ancillary, we note that Equations
(6) and (8) yield different values of 3.

8.2 Derivation for Failure-Censored Data

Now suppose that a single component is observed starting at time sy, and that m failures are

observed, with m fixed. The full likelihood is the joint density of the failure times:

AY
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lyunn(B5 Ao)

[ﬁﬂ‘.‘lti-x)] |

m

=[] exalso = wm)

1
= ,\om[i:"[h(z,.)] exp(;-z\lov)]. (20)

Takin'g logs and summing yields Equation .

To condition on the value ¢, the distribution of Tm must first be derived.

THEQREM. The time to the mth failure Tm has density

fm(t';) = w™! Y \(tm) / (m-1)! (1)
where w = A(tm) — A(sg)y and Im > 55

CORCLLARY. Deﬁne‘ AoV by A(Tm) — A(sg). Then 2XqV has a x2(2m) distribution.

PROOF OF THEOREM. Here, w = u(tm), the mth transformed failure time. Because the trans-
formed failure times correspond to a Poisson process with unit rate, it is well known that the mth

transformed- time has a gamma distribution. The asserted result follows. O

-The conditional: distribution of (T}, ..., Tm) given Tm = &m is (20) divided by (21). Take

logs and sum over the components to show that L, ,(8) is exactly equal to Expression (5).
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