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ABSTRACT 

This report presents the application of sensitivity and uncertainty (S/U) analysis methodologies to the code/data 
validation tasks of a criticality safety computational study. Sensitivity and uncertainty analysis methods were first 
developed for application to fast reactor studies in the 1970s. This work has revitalized and updated the available 
S/U computational capabilities such that they can be used as prototypic modules of the SCALE code system, which 
contains criticality analysis tools currently used by criticality safety practitioners. After complete development, 
simplified tools are expected to be released for general use.  

The S/U methods that are presented in this volume are designed to provide a formal means of establishing the range 
(or area) of applicability for criticality safety data validation studies. The development of parameters that are 
analogous to the standard trending parameters forms the key to the technique. These parameters are the 
D parameters, which represent the differences by group of sensitivity profiles, and the ck parameters, which are the 
correlation coefficients for the calculational uncertainties between systems; each set of parameters gives 
information relative to the similarity between pairs of selected systems, e.g., a critical experiment and a specific 
real-world system (the application).  

The use of a generalized linear-least-squares methodology (GLLSM) tool is also described in this report. The 
application of the GLLSM tool in this work is largely to provide a preliminary understanding of the magnitude of 
the D and ck parameters and the number of experiments needed to rigorously define applicability and properly 
estimate the bias and uncertainty due to data. This work has determined that cý values of 0.80 and higher or D 
values of 0.40 and lower constitute systems that are similar to the extent that they are useful in the determination of 
bias and associated uncertainty for interpolation and extrapolation scenarios. Initial analyses have also shown that 
in order for the bias and associated uncertainty estimates to be meaningful, it is anticipated that about five or more 
very highly correlated systems (ck of 0.90 or higher) or more than about 10 moderately correlated systems (ck of 
0.80 or higher) should be included in the validation exercises.  

These methods and guidelines will be applied to a sample validation for uranium systems with enrichments greater 
than 5 wt % in Volume 2 of this document. This sample validation will compare these newly proposed methods 
with more traditional procedures. A side-by-side comparison of the results and procedures, along with guidance on 
their use, is also presented.  
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EXECUTIVE SUMMARY 

This report develops the formalisms necessary for the application of sensitivity and uncertainty (S/U) analysis 
methodologies to the code/data validation tasks of a criticality safety study. The specific investigation tasks 
involved the formal determination of the range (or area) of applicability for a set of critical benchmarks and the 
means of using that benchmark set for applications requiring interpolation and extrapolation of that range.  

The validation requirements in ANSI/ANS-8.1-1998 define the area(s) of applicability as follows: the limiting 
ranges of material compositions, geometric arrangements, neutron energy spectra, and other relevant 
parameters (such as heterogeneity, leakage, interaction, absorption, etc.) within which the bias of a calculational 
method is established.  

The standard also notes that the area(s) of applicability of a calculational method may be extended beyond the 
range of experimental conditions over which the bias is established by making use of trends in the bias. Where 
the extension is large, the method should be supplemented by other calculational methods to provide a better 
estimate of the bias, and especially of its uncertainty in the extended area (or areas), and to demonstrate 
consistency of computed results.  

The standard is vague on how to establish areas of applicability. No guidance is given with respect to determining 
what constitutes a valid range or under what conditions the range is breached. The second statement does little to 
clarify the situation because the methods used to extend the areas of applicability are not stated.  

A great deal of judgement is often needed in the current validation techniques in order to establish the area of 
applicability. A number of parameters are currently used in establishing bounds for the application of the 
supporting critical benchmarks. These parameters include hydrogen-to-fissile nuclide ratio (H/X), average energy 
group causing fission (AEG), energy of average lethargy causing fission (EALF) and others. Each of these 
parameters can be useful in establishing possible areas of applicability; however, most systems have multiple 
variables and their simultaneous variation can make a definite determination of applicability difficult. The 
combined variations in H/X, soluble poison concentrations, reflected/unreflected geometry, enrichment, and 
impurity concentrations may be treated poorly by using single- or even multiple-parameter trend curves. Similarly, 
no method is available to determine if there is sufficient coverage for the entire range of the parameter in ill-defined 
trend curves. For example, given systems with H/X values of 200, 500, and 1500: is there coverage of the entire 
range from 200-1500? If experiments with H/X of 0 and 50 are added, is there adequate coverage from 0-1500? 
If two of these systems have soluble poison levels of 200 and 500 ppm, is there sufficient coverage for 0-500 ppm 
levels of poison over the full range of H/X? These are difficult questions, with answers typically derived from 
expert judgement.  

A useful tool in establishing similarities between systems is the use of sensitivity coefficients. Physically sensitivity 
coefficients are defined such that they represent the percentage effect on some response due to a 1% change in an 
input parameter. For fissionable material systems, an appropriate response is the effective neutron multiplication of 
the system (k,), with the current input parameters of interest being the nuclear reaction probabilities or cross 
sections. These sensitivities can be presented either as "total" sensitivities, where the relative cross-section change 
is uniform over all energies, or as a "profile," where the change in k, due to cross sections is given as a function of 
the energy of the cross section. The total sensitivity, while interesting, is not unique and therefore is unable to 
completely characterize similarities between systems. For example, two very different systems could have the same 
total sensitivities because they represent the integral over all energies of the sensitivity profiles. However, it was 
shown in this work that the plot of total sensitivities as a function of a key parameter, like H/X, does give insight 
into the possible ranges of these parameters that could be considered as defining similar systems. For regions of the 
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Executive Summary

parameter where the total sensitivities are constant or have a linear slope with respect to the key parameter, the full
sensitivity profiles clearly indicate that the systems are very similar to each other, since the shape and magnitude of 
the sensitivity profiles are very nearly the same.  

The fMll-sensitivity profiles can be generated in the selected problem neutron-energy-group structure for each 
material and may include reaction types (e.g., fission, capture, scatter) or other parameters such as X (fission 
spectrum) or V' (neutrons per fission). For a typical critical system (comprising a few materials, i.e., 235U, 13U, H, 
0, etc.), some 20 such profiles are usually generated. Sensitivity profiles were generated for six critical systems 
with U(2)F4 fuel and HJX values of 195, 294, 406, 496, 614, and 972; two critical systems of U(5) 30 8 stereotex 
blocks with H/X values of 147 and 757; and 14 hypothetically critical systems of U( 1)0 2 with H/X values of 0, 3, 
5, 10, 20, 40, 80, 200, 300, 400, 500, 600, 800, and 1000. These profiles give considerable information about the 
particular systems; however, the amount of information is too large to be of general use (20 profiles with about 
40 values each, i.e., one for each energy group). Therefore, a method of obtaining the differences between the 
sensitivity profiles for pairs of systems was devised to reduce the amount of needed information to only a few 
parameters, while maintaining the uniqueness of the information present in the full sensitivity profiles.  

Tests of different potential integral parameters derived from the sensitivity profiles were carried out in order to 
determine a norm that would best satisfy the needed similarity determination. The most promising set of parameters 
is a family of "D" value norms as defined below: 

g 

g 

D. S.. - .  

D = Si- Si 

i=1 

where S is the relative sensitivity of kff for the safety application, a, or experimental configuration, e, to V (n) for 
energy group i, or to the capture (c) or to scattering (s) cross sections.  

These coefficients are useful in making a quick determination of the similarity between pairs of systems. Since the 
range of D values is from 0-2, values of D that are greater than 1 are clearly indicative of dissimilar systems.  
Based on a comparison of the respective sensitivity profiles and expert judgement, it appears that values of D that 
are about 0.40 or less indicate similar systems. Additionally, a D, parameter, which consists of a sum of the D., 
D, and D, values, was shown to be a good indicator of similarity if its value is less than 1.2. These D values are 
quite useful because they give an indication of similarity with respect to individual materials and reaction processes.  
Besides determination of D., D,, and D, as an integral system quantity, these values can also be tabulated for each 
material in the problem, (i.e., D, values are tabulated for both 2 5U and 23U for low-enriched systems). As a result, 
the D parameters can be used to imply that certain systems are similar with respect to a given isotope and possibly 
not similar with respect to another isotope. This information can be extremely useful in determining which systems 
should be included in a criticality safety validation, and the range over which those systems can be used for 
validation.  

An alternative approach to exploring the similarity of systems is using uncertainty analyses. This procedure 
involves the propagation of estimated cross-section uncertainty information to the calculated kf value of a given
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system via the sensitivity coefficients. Mathematically, this is accomplished by a quadratic product of the 
sensitivity profile vectors by material and reaction type with the cross-section uncertainty matrices by material and 
reaction type. The result of this procedure is not only an estimate of the uncertainty in the system k•, for a given 
system, but also an estimate of the correlated uncertainty between systems. These correlated uncertainties can be 
represented by correlation coefficients, which effectively represent the degree of correlation (0 = no correlation, 
1 = full correlation, - 1 = full anticorrelation) in the uncertainties between the two systems. This parameter, 
denoted as ck, has not only the desirability of a single quantity relating the two systems, but the similarity of the 
systems is measured in terms of uncertainty, not just sensitivity. As a result of this work, it appears that a ck value 
of about 0.8 or higher is indicative of similar systems. These correlation coefficients are felt to be particularly 
useful when used in traditional trending analyses for criticality safety validation. When used as a trending 
parameter in these analyses, the correlation coefficient should relate to the degree in which the uncertainties in the 
critical benchmarks are coupled with the uncertainties in the application of interest. This coupling with the 
common uncertainties in the various systems is expected to closely mimic the coupling in predicted biases and 
associated uncertainties between the various systems, since they should both be related to the cross-section 
uncertainties. The underlying assumption in this approach is that the cross-section processing biases and modeling 
approximations are either small or they are identified and included in the analysis.  

The uncertainties in the calculated values of kff for each of the 2-11 wt % systems described above were generated, 
along with their D values and correlation coefficients, the c, values. The standard deviation values for the 
uncertainty in the calculated system kf value range from 0.87 to 1.91%. The highest uncertainties correspond to 
the lowest H/X values due to the fact that a harder spectrum enhances the sensitivity to the higher-energy cross 
sections, which are usually less well known than the thermal values. The correlation coefficients among the 
2-5 wt % systems are all 0.80 or higher (with the exception of two systems with H/X values over 700), indicating 
that most of these systems are similar to each other. Another way of looking at the 0.80 correlation coefficient is 
that 80% of the variance is common to all these systems. Thus, these systems are expected to behave in a very 
similar manner with respect to bias determinations for the SCALE 44-group cross-section library on which these 
results are based.  

By comparing ck values among the 14 systems with 11 wt % U0 2, (using a criterion of 0.8 or greater to indicate 
similar systems) conclusions regarding similar systems are nearly identical to those based on a comparison of 
detailed sensitivity profiles. Comparison of the detailed sensitivity profiles allow visual confirmation of the degree 
of similarity between two systems. The ck results indicate that the H/X of 0 system is only similar to the H/X of 3 
system and then only marginally so (ck is 0.8328). For HIX values between 5 and 1000, similar systems are 
indicated if the H/X values are within a factor of about 5.  

The final issue addressed in this work is an interpretation of the D and c, parameters with respect to how they relate 
to interpolation and extrapolation conditions of a criticality safety validation. The key issues are the magnitudes of 
the ck and D parameters and the number of systems needed for a meaningful estimate of bias and associated 
uncertainty. Once these quantities are determined, a number of options are available for determination of bias and 
associated uncertainty. A standard trending approach can be performed with only those experiments deemed to be 
similar. As mentioned previously, these D and c, parameters can be used in a traditional trending analysis for the 
determination of the predicted bias and associated uncertainty. An alternative approach to the traditional trending 
analysis for the determination of biases and associated uncertainty is the use of the generalized linear-least-squares 
methodology (GLLSM).  

Physically the GLLSM is designed to predict a revised set of data such that differences between the measured and 
calculated values of kff are minimized for the entire set of criticals used in the data validation process. The inputs
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needed for such an analysis are almost identical to the concepts presented thus far - the sensitivity coefficients, the 
cross-section uncertainties, the actual calculated and measured ke- values - but with the addition of an estimate of 
the uncertainty in the measured kff value for each critical experiment. Mathematically, the GLLSM represents a 
combination of measurements. These measurements include the experimental values of k. for each critical 
benchmark as well as the calculated value of kff obtained by utilizing evaluated nuclear data from differential cross
section measurements. This calculation is simply the transport analysis determination of the system multiplication 
factor, kff. The identification of a calculated value for kff as an integral "measurement" with uncertainties 
consisting of the evaluated cross-section uncertainty contribution and method uncertainty contributions 
(uncertainties in the transport method determination of kff and data processing methods) is the key to understanding 
the GLLSM approach. The "data changes" that result from the application of the GLLSM can then be used to 
predict (via interpolation or extrapolation) the bias and associated uncertainty for any application determined to be 
relevant to the benchmark area of applicability.  

One of the benefits of the GLLSM approach is that not only can the bias and associated uncertainty for a given 
application be estimated, the cumulative "combination" of critical benchmarks can be used to determine the 
convergence of the procedure. Questions that can be addressed include: how many experiments are needed to 
verify an application, and how much correlation to the application is necessary in order to validate the application 
area? 

This work applied a GLLSM tool to the set of U(2)F4 and U(5)30 8 systems. From an analysis of the results, it 
appears that for correlation coefficients equal to 0.9 or higher, about 5-10 experiments are needed For correlation 
coefficients between 0.80 and 0.89 approximately 10-20 experiments are needed (although these rules of thumb 
were not sufficient for some systems). The primary factor in whether systems with correlation coefficients between 
0.80 and 0.89 produce convergence is believed to be the "completeness" of the experiments (i.e., do the other 
experiments with lower ck values provide validation of the application system for all important cross sections and 
energy ranges?). Further development of the concept of completeness is currently in progress.
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1 INTRODUCTION 

1.1 Purpose 

The purpose of this report is to present research performed to demonstrate that sensitivity and uncertainty (S/U) 
analysis methodologies can be used to help establish areas of applicability related to the validation of computational 
codes and data for nuclear criticality safety. In addition, rigorous, quantitative methods that can estimate the bias 
and associated uncertainty due to nuclear cross-section data are explored. This estimated bias and uncertainty can 
be utilized in defining adequate margins of subcriticality.  

1.2 Background 

The validation requirements in ANSIIANS-8.1-19981 define the area(s) of applicability as follows: the limiting 
ranges of material compositions, geometric arrangements, neutron energy spectra, and other relevant 
parameters (such as heterogeneity, leakage, interaction, absorption, etc.,) within which the bias of a 
calculational method is established.  

The standard also notes that the area(s) of applicability of a calculational method may be extended beyond the 
range of experimental conditions over which the bias is established by making use of trends in the bias. Where 
the extension is large, the method should be supplemented by other calculational methods to provide a better 
estimate of the bias, and especially of its uncertainty in the extended area (or areas), and to demonstrate 
consistency of computed results.  

The standard is vague on how to establish areas of applicability. No guidance is given with respect to determining 
what constitutes a valid range or under what conditions the range is breached. The second statement does little to 
clarify the situation in that the methods used to extend the areas of applicability are not stated.  

A more formal procedure for defining the area(s) of applicability is needed, so that systems that appear to be 
similar can indeed be shown to be (or not to be) in the same area of applicability. Systems can indeed appear to be 
similar, but in actuality be very different. That is, systems with small-versus-medium concentrations of poison 
material behave very differently, even though they may "look" the same. Another problem can be an 
"interpolation" within ranges that are very broad. It is difficult to determine if the entire range is covered by its 
endpoint conditions without some formal process to verify similarity.  

1.3 Overview of Approach 

The concept of similarity is somewhat vague itself. How similar is similar? It is proposed that a useful gauge of 
system similarity would be sensitivity coefficients. Sensitivity coefficients are defined physically such that they 
represent the percentage effect on some response due to a fractional (e.g., typically a 1%) change in an input 
parameter. For fissionable material systems, one of the appropriate responses is the effective neutron multiplication 
of the system (kg) relative to input parameters of interest (e.g., the nuclear reaction probabilities or cross sections).  
These sensitivities can be presented either as "t6tal" sensitivities, where the cross-section change is uniform over all 
energies, or as a "profile," where the change in kf due to cross sections is given as a function of the energy of the 
cross section. The total sensitivity, while interesting, is not unique and, therefore, is lacking in its ability to 
characterize the similarities between systems. For example, two very different systems could have the same total 
sensitivities since they represent the integral over all energies of the sensitivity profiles. These sensitivity profiles 
can be generated for each material and may include various reaction rates (e.g., scatter, absorption, fission) as well 
as X (fission spectrum) and9 (neutrons per fission). For a typical system (comprising a few materials, i.e., 2"U,
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238U, H, 0, etc), some 20 such profiles are usually generated. These profiles give a great deal of information about 
the particular system, because they provide the effect on keg for differential changes in the cross-section information 
or other system parameters. However, the amount of information is too large to be of general use (20 profiles with 
about 40 values each, i.e., one for each energy group). Some type of norm for measuring these differences in 
sensitivities would be useful to reduce the amount of information to a few parameters. The sensitivity theory 
utilized in this work will be given in Section 2. The results of various norms to represent sensitivity differences will 
be discussed in Section 5.  

Another method for exploring the similarity of systems is to use uncertainty analyses. This method involves the 
propagation of estimated cross-section uncertainty information to the calculated kff value of a given system using 
the sensitivity coefficients. Mathematically, this is accomplished by a quadratic product of the sensitivity profile 
vectors by nuclide and reaction type, with the cross-section uncertainty matrices determined by nuclide and reaction 
type. The result of this method is not only an estimate of the uncertainty in the system k, for a given system, but 
the procedure also provides estimates of the correlated uncertainty between systems. These correlated uncertainties 
can be represented by correlation coefficients, which effectively represent the degree of correlation (0 = no 
correlation, 1 = full correlation, - 1 = full anticorrelation) in the uncertainties between the two systems. This 
parameter is desirable, not only because it provides a single quantity relating the two systems, but because the 
similarities of the systems are measured in terms of uncertainty, not just sensitivity. Therefore, two systems with 
identical sensitivities with respect to a well-known nuclide of medium importance could be determined to be 
dissimilar if they have differing sensitivities to a nuclide of high importance, and with large uncertainties.  
Similarly, two systems that may appear different, could be deemed similar if they have similar large sensitivities to 
a nuclide with large uncertainties, but very different sensitivities to a well-known nuclide. These correlation 
coefficients are felt to be particularly useful when used in traditional trending analyses for criticality safety data 
validation. When used as a parameter in the trending analyses, the correlation coefficient should relate to the 
degree in which the uncertainties in the critical benchmarks are coupled to the uncertainties in the application of 
interest. This coupling to the common uncertainties in the various systems is expected to very closely mimic the 
coupling in predicted bias and associated uncertainty between the various systems, since they should both be related 
to the cross-section uncertainties. Details of the uncertainty analysis theory are presented in Section 3.  

The use of the previously described sensitivity and uncertainty analysis techniques are intended to help provide a 
formal and rigorous approach to the determination of area(s) of applicability for criticality safety validation per 
ANSI/ANS-8.1. As mentioned earlier, the correlation coefficient can be used as the parameter in a traditional 
trending analysis for the determination of expected bias and associated uncertainty for specific applications in 
criticality safety. An alternative approach to the traditional trending analysis for the determination of bias and 
uncertainty is the use of the so-called generalized linear-least-squares methodology (GLLSM). Physically the 
GLLSM is designed to predict adjustments in the underlying data such that differences among the measured and 
calculated values of kff are minimized for the entire set of criticals used in the data validation process. The inputs 
needed for such an analysis are almost identical to the concepts presented thus far - the sensitivity coefficients, the 
cross-section uncertainties, the actual calculated and measured kf values - but with the addition of an estimate of 
the uncertainty in the measured kf values. Mathematically, the GLLSM represents a combination of 
measurements. These measurements include the experimental values of ke for each critical benchmark and the 
calculated value of kff obtained by utilizing evaluated nuclear data determined from differential cross-sections 
measurements. This calculation is simply the transport analysis determination of k, The identification of a 
calculated value of k. as an integral "measurement" with uncertainties consisting of the evaluated cross-section 
uncertainty contribution and method uncertainty contributions (uncertainties in the transport method determination 
of kf and data processing methods) is the key to understanding the GLLSM approach. The "data changes" that 
result from the application of the GLLSM can then be used to predict the bias and associated uncertainty for any

NUREG/CR-6655, Vol. 1

Introduction Section 1

2



similar application where the area of application corresponds to an interpolation or extrapolation scenario. The 
GLLSM approach is described in detail in Section 4.  

One of the benefits of the GLLSM approach is that not only can the bias and associated uncertainty for a given 
application be estimated, the cumulative "combination" of critical benchmarks can be used to determine the 
convergence of the procedure. For example, questions that need to be addressed include: how many experiments 
are needed to validate computations for a safety application, and how much correlation to the application is 
necessary in order to validate the area of applicability? A separate question is: can the validation be performed 
collectively with a set of benchmarks, none of which are considered explicitly to be in the area of applicability for 
the application? The last subject is especially provocative in that experiments that are not even critical experiments 
could be used to validate a criticality safety application. The first two topics will be discussed in this report, while 
the last is the topic of ongoing research.  

Currently, these techniques are felt to be valuable in many areas where the set of available, "relevant" experiments 
seems to be limited with respect to current applications of interest. These areas include, but are not limited to, the 
extension of criticality data validation for U0 2 fuel enrichments greater than 5 wt %, low-moderation applications 
where H/X values approach zero, mixed-oxide systems with the introduction of weapons-grade plutonium, 
incorporation of burnup credit (use of spent fuel nuclides), and fissile material waste applications where the matrix 
includes nuclides not available in the type and quantity found in critical experiments.
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2 SENSITIVITY THEORY 

The techniques used in this work to generate sensitivity information for the various critical benchmarks are based 
on the familiar perturbation theory of reactor analysis. Textbooks provide a progression from a one-group 
neutron diffusion model2 to a two-group model3 to a multigroup transport version. Research papers' examine 
the higher-order perturbation effects and show relationships between various formulations. From those 
generalized approaches, we extract the specific theory for the generation of kff sensitivities. For a full derivation 
of the general sensitivity equations, the reader is referred to Refs. 9 and 10.  

Considering the Boltzmann transport equation written in the form: 

[A - XB] =0 (1) 

whereX = 1/ke,, and a perturbed system 

[A' - X'B']4b' = 0, (2) 

the adjoint equation to Eq. (1) is 

[A* - XB]* =0. (3) 

Multiplying Eq. (2) by 4)*, and integrating over all phase space (indicated by the bracket notation < >), yields 

K(4' (A' - V'B')(4') = 0. (4) 

Defining: 
A' = A + dA 
B' = B + dB (5) 

'= X + dX 

and inserting in Eq. (4) leads to 

(4ý- (dA - XdB - BdX - dXdB)4ý') = 0. (6) 

Ignoring second-order terms (dXdB), assuming use of the unperturbed flux, and solving for the reactivity 
perturbation yields 

dX/X = (*(dA - XdB))/(ý * (XB),ý) . (7) 

Hence, the sensitivity of X, with respect to the multigroup reaction x cross section, _, becomes 

dVX Ex (q*(dA/dEx-_XdS/dEx)() 

dT,/Ex X ((q * B(ý)(8
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Sensitivity Theory

Note that since X = llkf, then d&/A = - dkjc/kf such that the above equation is essentially the defining equation for 
the kf relative sensitivity, S•, where 

S.= dlkeff-kff -dX/p.  
d,•XIY-x dEx/Ex 

In practice, the dA and dB terms in Eq. (8) are simple functions of the scattering, capture, fission cross sections 
represented symbolically as Z. The evaluation of Eq. (8) then becomes an integration of the forward and adjoint 
fluxes and the cross sections over the entire system.  

Typically, the energy dependence of the cross sections is represented by averaging the 1 quantities over 
an energy group i, represented as I. Insertion of these group quantities into Eq. (8) yields the definition of a 

tdkekexý 
sensitivity profile, S_ - , where group index i is varied to obtain the sensitivity for all groups.  

" d rXex, i 

2.1 Sensitivity Sequence Development 

The kff sensitivity calculation, as described above, has previously been implemented in the FORSS 10 (Fantastic Oak 
Ridge Sensitivity System) package. The FORSS system was developed in the late 1970s primarily for use in the 
development of fast reactor systems. The FORSS system makes use of the evaluated nuclear data files (ENDF/B), 
covariance information, and results of integral experiments. Sensitivity formulas for multigroup discrete ordinates 
were developed and applied successfully to Argonne ZPR critical assemblies.9 Extensive tests were made to assure 
internal consistency and achieve precision in sensitivity profiles. A version of the system is available from the 
Radiation Shielding Information and Computational Center (RSICC) as CCC-334. The FORSS system package 
placed into RSICC, while operational, is not complete (e.g., thermal upscatter is not operational). More complete 
versions of FORSS, while internally available in the 1980s at ORNL, were not maintained and documented as fast 
reactor funding dwindled.  

At the beginning of this project, it was decided that the most appropriate procedure was to start with the RSICC 
version of FORSS and reactivate and enhance the individual modules with the goal of putting portions of the 
original system into the SCALE" system. The "SCALE philosophy" is to include standard well-known computer 
codes into an application-specific computational sequence with a single integrated input file. Using this philosophy 
as a guide, a one-dimensional (1-D) sensitivity sequence, SEN1,1'2 was produced for use in this project and for 
subsequent release in future versions of SCALE. This sequence performs standard resonance processing tasks 
(BONAMI and NITAWL modules), then determines, using 1-D transport theory, the forward and adjoint angular 
fluxes needed for sensitivity coefficient generation. The XSDRNPM radiation transport code within the SCALE 
system is used to calculate the forward and adjoint angular fluxes. The sequence then calls modules VIPlD, 
LAKE, and PLOT, which computes the sensitivity coefficients, estimates the uncertainty in the system ke value, 
and plots the sensitivity profiles, respectively. The user input to SEN1 is very similar to the user input of the 
SCALE shielding module, SAS 1, except that since kff sensitivities do not require a source input, a fixed source is 
not required.  

A prototypic sequence to generate two-dimensional (2-D) sensitivities has also been developed for use in the current 
work This capability is not as fully integrated into the SCALE system as the 1-D sensitivity module. The 2-D 
sensitivity package is based on 2-D discrete-ordinates code DORT,`3 which is not contained in the SCALE system.  
The documentation of the 2-D sensitivity module is included in the SEN1 documentation."2
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The feasibility of generating three-dimensional (3-D) sensitivity coefficients, using Monte Carlo methods, was 
investigated as a separate task under this project. The results of this work have been documented.14 This 
development of 3-D sensitivity methods is continuing.  

2.2 Demonstration of Application 

2.2.1 235U-Fission Cross Section 

Sensitivity analyses can be excellent tools for understanding the underlying characteristics of systems. As an 
example of the information that can be gleaned from sensitivity plots, eight systems were analyzed using the 1-D 
and 2-D sensitivity tools. These systems include six systems'5 with U(2)F4 fuel and H/X values of 195, 294, 406, 
496, 614, and 972; and two systems"6 of U(5)30, stereotex blocks with H/X values of 147 and 757. Total 
sensitivity trends of kff for each of these systems to the "U fission, 23'U capture, and H total cross sections are 
plotted versus H/X in Figure 1. This curve gives a visual representation of the similarities between the various 
systems. It is clear from these curves that all of these system are "similar" with respect to ' 5U-fission cross 
sections because the magnitude and slope of the sensitivities remain nearly constant over a large range of H/X 
values. It is less apparent that the systems are similar with respect to "U capture and H total cross sections, 
because the respective curves are further apart. However, the slopes of the curves are very nearly the same and 
constant and, therefore, provide an additional indicator that the systems are similar. To illustrate this point, 
Figure 2 gives plots of total sensitivity trends for U(2)F4 versus U(1 1)02 systems. The sensitivity trends for the 11
wt % UO2 systems look very similar to those of the 2-wt % UF 4 systems above an H/X of 200. The UF 4 curves are 
given for actual systems that had H/X values in the range 200 to 1000. The U(1 1)02 systems are "artificial" 
systems, that is to say that no such measurements exist, and they were generated for calculational comparison 
purposes. Each of these systems is a critical bare sphere with H/X values corresponding to 0, 3, 5, 10, 20, 40, 80, 
500, 600, 800, and 1000. The curves below an H/X of 200 exhibit large changes in slope along with maxima and 
minima. Clearly the curves indicate that the systems are changing rapidly at low values of HIX. Although the total 
sensitivity of kffto the '-5U fission cross section (e.g., for H/X = 1000 and for H/X = 3) can be almost equal it does 
not always mean that the systems are similar. These curves are useful for determining trends within a family of 
systems; however, by themselves they should not be used as a formal basis for establishing similar systems.  

In order to understand the details behind the total sensitivity trends shown in the previous two plots, it is necessary 
to look at the individual sensitivity profiles. Note that Figures 3-20 contain plots of the relative sensitivity per unit 
lethargy. The relative sensitivities are the energy-dependent quantities, S defined in Section 2. To smooth out the 
effects of variable energy group widths, these quantities have been divided by the group lethargy width, defined as 
4ni/E-0) - ýn(Ei+ I/Eo) , where E0 = 107 eV. This renormalization is not expected to alter the conclusions of this 
section since the procedure only smooths the plots. Shown in Figure 3 are the sensitivity profiles of three selected 
systems (i.e., U(2)F4 with H/X of 195, 614, and 972) to the "U fission cross section. Even though there are slight 
spectrum variations in the three systems, it is clear that all three are most sensitive to the '-U thermal (i.e., 0.02 to 
0.1 eV) fission cross section, only to differing magnitudes. Figure 4 gives a similar comparison for systems of 
different compositions and different enrichments, namely to U(2)F4 with H/X of 195, and U(5)30 8 with H/X of 147 
and 757. These plots are interesting in that they show the near equivalence with respect to '5U fission between 2 
and 5 wt % systems. For H/X values within 30 to 50% of each other, the sensitivity plots are nearly identical.  

Looking further at the sensitivity information for the 11 wt % systems, the differences between the H/X values of 0, 
3, and 5 are clearly seen in Figure 5. The 23U fission cross section of importance is very different for the system 
with H/X = 0. However, the systems with H/X values of 3 and 5 appear quite similar. In Figure 6, the 25U fission 
sensitivities are given for systems with H/X values of 10, 20, and 40. It appears from these plots that
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Sensitivity Theory

none of these systems is similar to the other. Systems with an H/X of 80, 200, and 300, shown in Figure 7, and 
systems with H/X of 400, 600, and 1000, shown in Figure 8, have ' 5U fission cross-section sensitivities that are 
very similar to each other. This region corresponds to the approximately linear region in the sensitivity trend plots 
shown in Figure 2. Thus, these results confirm that for linear portions of the trend plots, the systems are indeed 
very similar with respect to that material. The underlying physical phenomenon appears to be the similarity in the 
system spectra. Thus far, only the detailed sensitivity plots for ' 5U-fission cross sections have been discussed.  
The behavior of the same systems with respect to the "8U-capture cross-section sensitivities is discussed below.  

2.2.2 238U-Capture Cross Section 

A review of the detailed 238U-capture total sensitivity trend plots for the U(2)F4 systems shown in Figure 2 is useful 
for understanding the following discussion. The region from an HIX of 200 to 400 appears to be slightly non-linear 
with respect to the remaining portions of the trend plot. Observation of the full sensitivity profiles in Figure 9 for 
the U(2)F4 systems with H/X values of 195, 614, and 972 indicates that in general the 238U capture cross sections of 
most importance are the resonance region, especially at the lowest energy resonance of 6.67 eV and the thermal 
energy range of 0.02 to 0.1 eV. However, for the system with H/X = 195 the resonance cross sections just above 
the 6.67 eV resonance are also marginally important. This region, from 10 to 100 eV, is represented in the SCALE 
44-group structure as two groups, when in actuality-it consists of a number of resonances. The influence of these 
resonances appears to be the cause of the slight nonlinear response seen in the sensitivity trend curves for 23'U 
capture in systems with H/X values between 200 and 400. The decreased nonlinearity for the 11-wt % cases is 
discussed later.  

In Figure 10, a comparison is made of the "8U-capture sensitivity profiles for a U(2)F4 system with H/X = 195 
versus two U(5) 30 8 systems with H/X values of 147 and 757. Here the 238U-capture sensitivities are not as closely 
related as those for 235 U fission. However, it is still clear that all systems are still most sensitive to the 238U-capture 
cross section in the same energy ranges, 0.02 to 0.1 eV and the 6.67 eV resonance.  

The 238U-capture sensitivity profiles are presented in Figure 11 for the U(1 1)02 systems with H/X values of 0, 3, 
and 5 for comparison purposes. The system with H/X of 0 is very "fast" with the highest sensitivity to the 
238U-capture cross section being in the 10 to 100 keV range. Interestingly, the sensitivity profiles for the two 
U(l 1)02 systems with H/X of 3 and 5 are "nearly identical." This situation is also true in Figure 12, where the 
sensitivities of kf to '8U capture for U(l 1)02 systems with H/X values of 10, 20, and 40 are shown. Comparison 
of Figures 12 and 6 indicates that for 5̀U fission, the region of H/X values between 10 and 40 is a transition 
region, while a lesser effect is seen for '8U capture. This seeming contradiction is explained by noting that the '8U 
thermal capture cross section is much smaller than the 2 5U thermal fission cross section, negating the importance of 
23'U thermal capture and making the transition much less severe. This observation is confirmed by noting the shape 
of the 238U-capture total sensitivity trend curve in Figure 2, where the sensitivity changes very little through this 
transition region.  

The comparison of the sensitivity profiles for 238U capture for U(1 1)02 systems with H/X values of 80, 200 and 
300 (Figure 13), and 400, 600, and 1000 (Figure 14) indicate again the similarities of these respective systems.  
Again noting the total sensitivity trends for `U capture seen in Figure 2, the nonlinear shape for the U(2)F4 system 
is not as severe as that in the U(11)0 2 systems for H/X>200. Careful study of the detailed sensitivity profiles 
shows that for the low-enrichment (2-wt %) systems, the thermal (0.02-0.1 eV) '8U-capture cross sections appear 
to be competing with those in the resonance range (10-100 eV). For the 11-wt % systems, the increased amount of 
23 5U combined with the corresponding decreased amounts of 238U causes the 28U capture to become less important 
in the thermal range.
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Sensitivity Theory

2.2.3 Hydrogen Total Cross Section 

Lastly, the hydrogen sensitivity plots and their trends with respect to the systems H/X values were examined. If the 
previously mentioned "rules-of-thumb" hold, the prediction can be made that for H/X values of about 100 to 1000, 
the systems should largely be very similar with respect to hydrogen cross sections due to the linear behavior of the 
total sensitivity trends shown in Figures 1 and 2. In Figure 15, the hydrogen sensitivity profiles are given for H/X 
values of 195, 614, and 972 for the U(2)F4 systems. At first glance these systems would appear to have large 
spectral changes. However, these plots are constructed differently from the previously reported plots and therefore 
require a slightly different interpretation. These plots give the sensitivity of the system kf to the hydrogen total 
cross section. In these cases the sensitivity to the total cross section is essentially the sum of the sensitivities of the 
scattering and capture cross sections. The scattering sensitivities are generally positive, whereas the capture 
sensitivities are always negative. Hence, the "spectral" changes are due to changes in the relative magnitudes of the 
scattering and capture components as the system goes from under-moderated to over-moderated. The "spectra" for 
individual scattering and capture components remain essentially unchanged as a function of H/X. The same 
conclusions can be reached for the comparison of hydrogen sensitivity profiles for the systems U(2)F4 with H/X of 
195 and U(5) 30 8 with HIX values of 147 and 757 shown in Figure 16.  

The hydrogen sensitivity comparisons for the U(1 1)02 systems are shown in the following figures: H/X values of 3 
and 5 (Figure 17); H/X values of 10, 20, and 40 (Figure 18); H/X values of 80, 200, and 300 (Figure 19); and H/X 
values of 400, 600, and 1000 (Figure 20). For each figure, the individual scattering and capture sensitivity profiles 
appear to have relatively constant spectral shapes, giving rise to the conclusion of very similar systems with respect 
to the hydrogen cross sections. Indeed, for the individual scattering and capture portions, the spectral shapes of 
these sensitivity profiles are relatively constant over most of the H/X range from about 10 to 1000.  

2.2.4 Summary 

Analyses such as the preceding studies of Sections 2.2.1-2.2.3 are essential for understanding interaction 
mechanisms in the systems and are also valuable in determining the similarities between systems. However, for 
general validation studies, it is hoped that more concise methods could be developed to convey the same information 
in a more compact manner. These studies for more concise methods are described in Section 5.
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3 UNCERTAINTY ANALYSIS THEORY 

The determination of uncertainties in the calculated values of the system multiplication factor is accomplished by 
two steps: the estimation/processing of uncertainties in the underlying cross-section data and the propagation of 
those uncertainties to the system kff value. The techniques for processing cross-section uncertainty data are 
well-known 17, 8 and will be discussed here only briefly.  

The two primary cross-section covariance processing codes, PUFF-217 and NJOY,18 use very similar techniques.  
These codes are designed to read the covariance information from the ENDF/B files (typically files 31 and 33) and 
process it into a user-defined group structure. The codes generate an energy "supergrid," which is the combination 
of the energy group structures of the ENDF/B data, the processed cross-section data, and the user-defined energy 
grid. The covariance information contained in the ENDF/B data is then expanded onto the energy supergrid by 
assuming the relative uncertainty is constant over each ENDF/B group. This allows the relative variances to be 
generated onto the supergrid. The final step is to collapse the supergrid to the user-defined grid via the same 
weight functions that are used in the cross-section collapse. These techniques are appropriate for the so-called 
smooth cross sections in files 1 and 3. However, for the resonance region an alternative approach is used.  

In the resonance region, the resonance parameter uncertainties (given in file 32) are propagated to the groupwise 
resonance self-shielded cross sections using an approximate technique suggested in Ref. 17. This technique is 
limited to the single-level Breit-Wigner formulation of the resonance cross sections. The procedure uses simple 
formulae to predict the area under each resonance. By differentiating these formulae, the sensitivity coefficients of 
the resonance area to the individual resonances parameters are obtained. These sensitivity coefficients are then 
used to propagate the resonance parameter uncertainties to the resonance area, hence to the groupwise cross 
section. The entire resonance area, and hence its uncertainty, is assumed to be contained within a single group.  
The correlations between groups are assumed to be zero using this technique. A previous study' 9 compared this 
approximate technique with direct perturbations. In that work, general agreement is seen for many cases. In some 
cases there are large differences seen in the predicted and actual sensitivities, even opposite signs. Improvements 
need to be made in the existing procedures in order to correctly treat the impact of changes in self-shielding.  

Additional work is currently under way to remedy some of the limitations with respect to the resonance parameter 
uncertainty treatment. Some of these studies have been reported2" and will be incorporated into the current analyses 
when the decision to use later cross-section libraries is made. The cross-section libraries used in this study are 
based on ENDF/B-V since an ENDF/B-VI multigroup cross-section library pertinent to criticality safety 
applications is not available, therefore the use of the data covariances based on later versions of ENDF/B are 
judged to be inappropriate.  

Using uncertainty information for the cross sections for the nuclides and reaction processes that are available, it is 
possible to estimate the uncertainty in the system multiplication factor due to these data uncertainties. Denoting the 
matrix of uncertainty information for all of the cross sections as C. and the sensitivity matrix relating changes in 
each constituent material and process to the system kf as Sk, the uncertainty matrix for the system kff values, Ck, 
is given as: 

-kk = S C. Sk . (9) 

The Sk matrix is I x N, where I is the number of critical systems being considered, N is the number of nuclear data 
parameters in the problem. Typically, N is the number of nuclide/reaction processes times the number of energy 
groups. The CQ. matrix is an N x N matrix, with the resulting symmetrical Ckk matrix, which is I x I. The Ck 
matrix consists of variance values, (i.e., the standard deviation squared), a,, for each of the critical systems under 

2 consideration (the diagonal elements), as well as the so-called "covariance" between systems ai'j (the off-diagonal
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elements). See Appendix A for a discussion of these variance and covariance definitions. These off-diagonal 
elements represent the shared or common variance, hence the term covariance, between any two of the various 
systems. For presentation, these off-diagonal elements are typically divided by the square root of the corresponding 
diagonal elements (i.e., the respective standard deviations) to generate a correlation coefficient matrix. Thus, the Ck 

coefficients are defined as, k = a a a., such that each c value represents the correlation coefficient between 
uncertainties in system i and system j. Note that the ij notation is omitted in the remainder of this report. These 
correlations arise due to the fact that the kff values for two different systems are both functions of the same 
underlying random variables. The underlying random variables are the evaluated nuclear data for each nuclide.  
Systems with the same materials and similar spectra would be strongly correlated, while systems with different 
materials or differing spectra would be weakly correlated. The physical interpretation of the correlation matrix is 
the following: a value of zero represents no correlation between the systems, a value of unity represents full 
correlation between the systems, and a value of - 1 represents a full anticorrelation. A kf correlation matrix for 
eight of the critical benchmarks described earlier (i.e., 6-U(2)F4, 2-U(5) 30 8) is given in Table 1. Since the diagonal 
elements are unity, each diagonal element is replaced by the corresponding fractional standard deviation 
representing the uncertainty in the calculated k. value.  

Table 1 Cross-correlation coefficientsa (due to cross sections) for k. of 2% and 5% systems 

Critical system 2%(195) 2%(294) 2%(406) 2%(496) 2%(614) 2%(972) 5%(147) 5%(757) 

2% H/X = 195 0.0158 

2% HIX = 294 0.9884 0.0139 

2% HIX = 406 0.9729 0.9896 0.0129 

2% H/X = 496 0.9556 0.9801 0.9908 0.0122 

2% H/X = 614 0.9269 0.9605 0.9782 0.9880 0.0116 

2% H/X = 972 0.8019 0.8560 0.8886 0.9177 0.9499 0.0110 

5% H/X = 147 0.8604 0.8624 0.8467 0.8383 0.8242 0.7521 0.0128 

5% H/X = 757 0.7276 0.7713 0.7961 0.8153 0.8335 0.8373 0.7795 0.0093 
aNote the diagonal elements give the fraction standard deviation since the diagonal correlation coefficient is defined as 

unity.  

The standard deviation values shown in Table 1 range from 0.93 to 1.58%. The highest uncertainties correspond to 
the lowest H/X values due to the fact that a harder spectrum enhances the sensitivity to the higher-energy cross 
sections, which are usually less well known than the thermal values. Note that the correlation coefficients, denoted 
as ck, are all 0.71 or higher, indicating that most of these systems are similar to each other. Another way of looking 
at the 0.71 coefficient is that 71% or more of the variance is common to all these systems. Thus, these systems are 
expected to behave in a very similar manner with respect to bias and uncertainty determinations for the SCALE 44
group cross-section library on which these results are based. Shown in Table 2 is a correlation matrix for the 
14 - U(1 1)02 artificial systems discussed earlier. The trends in standard deviation are replicated here with a peak 
uncertainty of 1.92% for an HIX of 0, going down to 0.87 for an H/X of 1000. Looking at these values with a ck 
criterion of 0.8 or greater indicating similar systems leads to conclusions nearly identical to those based on a 
comparison of the sensitivity profiles. For example, the H/X of 0 system is only similar to the HIX of 3 system and 
then only marginally, so ck is 0.8328. We see that for H/X values between 5 and 40, the similar systems include
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Table 2 Cross-correlation coefficientsa (due to cross sections) for kf of 11% systems

11%-0 11%-3 11%-5 11%0-10 11%-20 11%-40 11%-80 11%-200 11%-300 11%-400 11%-50011%-60011%.C80011%-1000

0.4887 0.8409 0.9161 0.9784 0.0176 

0.4067 0.7562 0.8403 0.9253 0.9763 0.0151 

0.3428 0.6585 0.7392 0.8327 0.9094 0.9698 

0.2800 0.5240 0.5888 0.6760 0.7696 0.8705 

0.2633 0.4751 0.5315 0.6115 0.7058 0.8157 

0.2557 0.4452 0.4953 0.5687 0.6604 0.7727 

0.2517 0.4329 0.4688 0.5359 0.6235 0.7349 

0.2490 0.4076 0.4482 0.5097 0.5927 0.7014 

0.2432 0.3755 0.4076 0.4567 0.5278 0.6265

ll%H/X= 1000 0.2353 0.3452 0.3697 0.4071 0.4652 0.5509

0.0128

0.9526 0.0106 

0.9148 0.9832 0.0099 

0.8798 0.9668 0.9846 

0.8453 0.9448 0.9717 

0.8123 0.9200 0.9543 

0.7331 0.8514 0.8991 

0.6484 0.7702 0.8277

0.0095

0.9845 0.0091 

0.9742 0.9847 0.0089 

0.9330 0.9576 0.9734 0.0087 

0.8731 0.9097 0.9367 0.9752 0.0087

aNote the diagonal elements give the fraction standard deviation since the diagonal correlation coefficient is defined as unity.  

only the two or three neighboring systems with either higher or lower HIX values. For systems with H/X values of 
80 to 1000, the systems are typically similar to the nearest three or four neighboring systems. Based on these 
observations, these systems appear to be similar if the H/X values are within about a factor 5 of each other.  

The explicit comparison of sensitivity profiles performed earlier did not examine quantitatively the similarities of 
low-enriched systems (2-5 wt %) with the U(1 1)02 system. Table 3 gives a comparison of ck values for these 
systems for comparison. These results give indications that the 2- and 3-wt % systems are only marginally similar 
to the 11 -wt % systems. For systems with similar HIX values, the 2- and 3-wt % systems typically have a ck value 
of only 0.75 with respect to the 11-wt % systems. For the 5-wt % systems and HIX values near to those of the 
11 -wt % systems, ck values are already above 0.80, indicating similarity. Of course such a comparison is not 
possible for H/X values below about 100, where criticality is not possible for enrichments of 2-5 wt %.  

These ck values are judged to be most appropriate for correlation with error trends in a criticality safety validation 
analysis because they are essentially the sensitivities to the individual cross sections weighted by their uncertainties.  
Thus, the ck values represent the systems similarity with respect to materials with highest sensitivity/uncertainty 
combination. For determination of the similarity of systems with respect to each material/reaction process it would 
be useful to have additional parameters that are more differential in nature. These additional parameters will be 
discussed in Section 5.
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Critical system

11%N/X=0 0.0191 

11%H/X=3 0.8328 0.0185 

11%H/X=5 0.7379 0.9818 0.0188 

11 TG Rr= 10 0.6011 0.9205 0.9725 0.0165
11% H/X= 20 

11%H/X=40 

11%H/X=80 

11% H/X=200 

ll%H/X =300 

11% H/X = 400 

11% I-X = 500 

11%H/X= 600 

11%t/X=800
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Table 3 Comparison of correlation coefficientsa (due to cross sections) for kff of 2%, 3%, 5%, and 11% systems

Cntical system 

2% H/X = 294 

2% H/X = 406 

2% H/X = 496 

2% H/X = 614 

2% H/X = 972 

3% H/X = 133 

3% H/X = 277 

5% H/X = 757 

11% HiX = 200 

11%H/X=300 

11% HIX = 400 

11% H/X= 500 

11%H/X= 600 

11% H/X= 800 

11%H/X= 1000

2%-294 

0.0139 

0.9896 

0.9801 

0.9605 

0.8560 

0.8752 

0.8564 

0.7713 

0.7575 

0.7391 

0.7248 

0.7116 

0.6992 

0.6667 

0.6282

20-406 2%-496 2%-614 2%-972 3%-133 3%o-277 5%-757 llo%-200 11l%-300 11%-400 11%-500 11l%-600 11%o-800

0.0129 

0.9908 

0.9782 

0.8886 

0.8489 

0.8453 

0.7961 

0.7596 

0.7504 

0.7429 

0.7354 

0.7274 

0.7027 

0.6699

0.0122 

0.9880 

0.9177 

0.8341 

0.8400 

0.8153 

0.7621 

0.7589 

0.7561 

0.7526 

0.7478 

0.7290 

0.7004

0.0116 

0.9499 

0.8133 

0.8294 

0.8335 

0.7599 

0.7634 

0.7663 

0.7675 

0.7667 

0.7554 

0.7326

0.0110 

0.7297 

0.7666 

0.8373 

0.7142 

0.7330 

0.7491 

0.7622 

0.7716 

0.7805 

0.7747

0.0157 

0.8396 

0.7137 

0.7440 

0.7114 

0.6870 

0.6661 

0.6478 

0.6052 

0.5601

0.0129 

0.7733 0.0093 

0.7633 0.7892 

0.7496 0.8170 

0.7383 0.8383 

0.7273 0.8544 

0.7164 0.8652 

0.6858 0.8736 

0.6481 0.8639

0.0106 

0.9832 

0.9668 

0.9448 

0.9200 

0.8514 

0.7702

0.0099 

0.9846 

0.9717 

0.9543 

0.8991 

0.8277

0.0095 

0.9845 0.0091 

0.9742 0.9847 0.0089 

0.9330 0.9576 0.9734 0.0087 

0.8731 0.9097 0.9367 0.9752
aNote the diagonal elements give the fraction standard deviation since the diagonal correlation coefficient is defined as unity.
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4 GENERALIZED LINEAR-LEAST-SQUARES METHODOLOGY 

The GLLSM has been referred to as a data adjustment procedure, a data consistency analysis, and even a data 
evaluation technique. The most appropriate description of GLLSM for this particular application would be that of a 
generalized trending analysis tool. Physically the GLLSM is designed to minimize differences between the measured 
and calculated values of kf for the entire set of experiments used in the data validation process. The "data changes" 
that result from the application of the GLLSM can then be used to predict the biases and associated uncertainties for 
any application determined to be similar to the benchmark area of applicability. Functionally, the GLLSM can be 
thought of as a trending of a suite of critical benchmarks with respect to the cross-section correlation coefficient 
between the various systems. The GLLSM has the capability to identify experiments that contain inconsistencies 
(i.e., the magnitude of the measured-to-calculated kff difference is larger than their combined uncertainties). A)? 
consistency indicator is used to directly predict the overall consistency of the suite of benchmarks, a value of )? for 
each experiment is also available from the GLLSM tool.  

This present work utilizes GLLSM procedures based on those introduced by Gandini,21 Dragt et al.,2 and Barhen, 
Wagschal, and Yeivimn. The derivation of the GLLSM equations in this work follows the general notation from 
Ref. 25, however, the fall derivations are included in Appendix B for completeness. The vector m (mD, i = 1, 2, 
I, represents a series of kff measurements on critical benchmark experiments that are to be used in the validation of a 
dataset for criticality safety computations. This vector m has a corresponding symmetric I x I uncertainty matrix 
associated with it, which is denoted as C.a = cov(mnjn.) - <5mn•5mr>. Further, the vector k - (k) is denoted as the 
corresponding series of calculated values of kf for each of these experiments. The vector a E (aj, n = 1, 2, ... N, 
with its corresponding symmetric N x N uncertainty matrix Co, E cov(cxa,) - <8a8a >, represents the differential 
data used in the calculations (i.e., nuclear data such as fission, capture, and scattering cross sections, the fission 
spectrum and other problem parameter data) and, additionally, the material densities used in the problem description.  
This procedure also allows for the possibility of correlations between the integral and differential quantities, which 
may be present at times in the analysis. These correlations are denoted by the N x I covariance matrix Cm

The sensitivities of the calculated kffto the a parameters are given as Sk ak-lIa, with Sk being an I x N matrix.  
Representing perturbation of the a parameters as linear changes in the calculated kff value, yields the following: 

k(a') = k(a + 5a) = k(a) + 5k - k(a) + SkSa , (10) 

with the corresponding uncertainty matrix of the calculated values of 

Ci -= k<Skj-k> = Sk<Sa >S = Sk CS(11) 

If the deviations of the calculated values from their corresponding measured responses is denoted by the vector 
d (d,) = k(a) - m, then the uncertainty matrix for the deviation vector d, denoted by Cd, is 

Cdd =Ckk +C -C SC - CmSS m k S (12) 

SkCaa k + C. - SkCm - CSk.  

Denoting x = a' - a, and y = k(ca') - m, we can rewrite Eq. (10) as 

y = d + Sk X. (13) 

The measured kf values, m, and the measured (or evaluated from measurements) parameter values, a, both have 
their corresponding uncertainties. The best evaluated parameters a' and the best evaluated values of the 
measurement m' will be those values that are consistent with each other, namely m' = k(a'), and are consistent
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with their estimated values and uncertainties (i.e., in general they do not deviate more than a standard deveiation 
from their current best estimates m and a, respectively).  

The GLLSM procedure involves minimizing the quadratic loss function 

Q(x,y) = (y,x)t C.C= (y'X))- (14) 

where (y,x)t - (Y1, Y2 .... I Y, X1, x 2 , ... , xN), subject to the constraint expressed by Eq. (13). Adopting the procedure 
of Refs. 23-25, the above conditional minimum formulation is equivalent to unconditionally minimizing the function 
R(x,y), where 

R(x,y) = Q(x,y) + 21t(SkX - y), (15) 

and 2k is an I-dimensional vector of Lagrange multipliers. Thus x and y satisfy the equations 

aR(x,y)/ax = aR(x,y)/ay = 0. (16) 

Solving the resulting equations for x and y, we obtain 

a' = a + (C. - C.S 1)Cd~'d, and 

m' = m + (C,. - CLSk) (17) 

where Cd- 1 is the inverse of the I x I matrix Cd Eq. (12) and a' and m' are the best estimate of the parameters and 
measurement within their uncertainty range.  

A few observations are due here: 

1. If the a' values obtained in Eq. (17) are substituted in k(a'), using the linearity assumption of Eq. (10), 
the m' value of Eq. (17) should be obtained, thus m' = k(a') is satisfied.  

2. Moreover, not only are the new/best estimates of the cross sections and of the key values consistent, but 
their uncertainties are reduced as well.  

3. The minimum value of Q(x,y) is also known as ?, which is a measure of the consistency of the various 
calculated and measured responses. The value of )/I should be near unity for a particular study to 
indicate consistency for the entire set of data.  

The reduced uncertainty matrices are given by 

Cm,= C. - Cyy and Cc,., = C= -CX, (18) 

where 

Cy= (C" - Cm=SJ)Cd-1(C= - SkC.m) 
and (19) 

= (Ca- CSkk)Cdd -(C. - SkC.).

NUREG/CR-6655, Vol. 1

Section 4

36



Generalized Linear-Least-Squares Methodology

This could of course suggest that any criticality application that is similar to the selected benchmarks should be 
calculated using the modified cross sections and thus have a reduced uncertainty. However, even when maintaining 
"conventional" criticality estimates using "established" cross sections and trend curves, the GLLSM approach can 
be beneficial, as will be demonstrated in the next section.  

In summary, the GLLSM procedure as applied to the validation of cross-section libraries for criticality safety 
applications is designed to predict the data changes, x, such that the differences between measured and calculated kff 
values (i.e., the quantity, y) are minimized. These kff differences are the trends observed in the traditional criticality 
safety trending analyses. Removal of these trends and the identification of the data responsible for them are keys to 
the application of GLLSM techniques to criticality safety data validation.  

4.1 Application of GLLSM to Validation 

For a criticality safety scenario of interest (denoted the "application"), the "measurement," mr, associated with the 
predicted kff values, k(a), does not exist. The quality of interest is the bias, which is defined as the difference 
between the predicted value k(a) and the best estimate "measurement" for the application, m.'. Now consider 
rewriting Eq. (10) as: 

k(a') - ma' = [k(a) - ma'] + Sa(a' - c), (20) 

where Sa are the calculated sensitivities for the application. The solution of Eq. (17) via the GLLSM procedures 
allows evaluation of a'. The GLLSM theory predicts that if a sufficient number of experiments are similar to the 
application of interest, the calculated value of kff using the "best" cross sections, a', will indeed approach the value 
of the best estimate measurement for the application. Thus, k(a') - ma' and the bias for the application can be 
determined to be 

ba = k(a)- m =- S.(a' - a), (21) 

where a' - a was obtained in Eq. (17) using all similar benchmark criticality measurements.  

The definitions of "similar" and "sufficient" number of experiments can now be determined by tests using actual 
benchmark experiments.  

4.2 Testing of GLLSM with Low-Enriched U Systems 

The general approach of GLLSM is the combination of information obtained in a series of integral experiments, with 
the aim of predicting changes in the underlying nuclear data such that differences in the calculated and measured k4 
values are minimized. The GLLSM techniques are useful for understanding the relative consistency of experiments 
in that this combination of integral experiments can be in a graded manner. An overall measure of the consistency of 
the GLLSM application is obtained via the use of a )? analysis, thus inconsistencies between groups of experiments 
can be identified. Experiments in the series can also be added cumulatively in order to see the "convergence" of the 
technique. Using actual experiments as example "applications," trial analyses can be performed to test for 
convergence, where the measure of convergence is that the quantity in the left-hand side of Eq. (20) asymptotically 
approaches zero within the bounds of the measurement uncertainty as the number of experiments used in the 
GLLSM process is increased. For consistency with later applications, this absolute quantity is recast into the 
relative quantity (e-a)/c where e is the experimental value, rna'; a is the adjusted calculated value, kl(ax'); and c is the 
original calculated value ka(a). These tests are used to help determine a minimum magnitude of ck that represents
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"similarity" or "applicability." In addition these tests help indicate the sufficient number of experiments needed for 
convergence by the GLLSM procedure.  

4.2.1 Tests with Experimental Data 

The 2 wt % and 5 wt % systems discussed earlier were chosen for further study as a demonstration application of 
the GLLSM procedures. For this phase of the study, the measured results from selected experiments are ignored to 
see if GLLSM can accurately predict observed biases, i.e., individual experiments are assumed to be the application 
and the process tested using an increasing number of the remaining experiments. These systems are excellent 
candidates since they are highly correlated with each other and consist of multiple enrichments and a fairly broad 
range of H/X values from 147 to 972. These systems are documented in Refs. 15 and 16 with the properties given 
in Tables 4 and 5. (These 3-D systems were modeled as 1-D spheres; the stated references give both the actual 
system dimensions and spherical model dimensions.) The uncertainties in the number densities noted in the tables 
were included in the analysis, along with a uniform uncertainty in the measured system multiplication factor that 
varied between 0.1 and 0.4% for each system.  

Correlations in the material density uncertainties were established, but the measurement uncertainties of 0.1 to 0.4% 
were assumed to be uncorrelated between systems. The tightening of the system uncertainties (0.1%), and the 
loosening of the system uncertainties (0.4%) were used to test the variability of the solutions with assumptions in 
these quantities.  

Unlike the real applications where measured values are not available, the 2% and 5% systems can serve as a good 
testing arena for the GLLSM predicted kff values. The convergence of the 2 wt % systems is shown in Figure 21.  
Here the (e-a)/c values are given as a function of the number of experiments "added" together in the GLLSM 
procedure. For convenience, the "0 experiments included" case assigns the calculated value to the adjusted value 
such that this data point gives the actual calculated-versus-experimental discrepancy. The order of adding systems 
into the GLLSM procedure is from low to high H/X values: the first system added has an HIX of 195, the second 
has an H/X of 294, and so on. The convergence toward an (e-a)/c value of 0 is seen in Figure 21, even though the 
convergence is incomplete. The identical situation is shown in Figure 22, except for an experimental uncertainty of 
0.1%, instead of 0.4% in the results for Figure 21. The convergence is closer to 0 in Figure 22 due to the decreased 
flexibility in movement of the measured values, and hence greater movement of the calculated values. With the 
exception of the system with H/X of 972, the systems converge to approximately the same values in both Figures 21 
and 22. Note that in Figures 21 and 22 the two systems with H/X values of 972 and 294 seem to have some 
difficulty converging. The system with an H/X value of 972 does indeed "converge" for experimental uncertainty of 
0.1%, but only after the system itself is included in the adjustment. This behavior is due to the fact that this system 
is less correlated to the remaining systems. In Table 1, the correlation coefficients for the system with an H/X of 
972 range from 0.80 - 0.95, with only two systems that have correlation coefficients greater than 0.90. While 
certainly these correlation coefficients should indicate similarity between these systems, it appears that they are only 
marginally able to produce convergence in the GLLSM scheme. The system with an HIX value of 294 is quite 
different, in that four of the other systems have correlation coefficients values of 0.96 or higher. The system seems 
to be converged, only it doesn't converge to 0. This behavior appears to be due to a slight inconsistency in this 
experiment (based on its ) value) in relation to its companion experiments. The experiment is still valid; however, 
for this limited set of experiments, the system with an H/X of 294 is somewhat inconsistent with the other five 
systems. In Figure 23, the effect of omitting this experiment is seen, where the results are largely unchanged, thus 
this experiment doesn't add anything or take away any information from the combined systems.
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Table 4 Properties of 2-wt % UF4 experimentsa

U(2)F4-1 U(2)F4-2 U(2)F4-3 U(2)F4-4 U(2)F4-5 U(2)F4-6 

Atom densities 

231U (1020 atoms/cm3  1.5811 1.3303 1.1191 0.9924 0.8667 0.6232 
± 1.2%) 

2 8U (1021 atoms/cm 3  7.6467 6.4370 5.4152 4.7998 4.1941 3.0150 
± 0.7% 

H (102 atoms/cm3  3.0864 3.9097 4.5472 4.9212 5.3187 6.0557 
± 1.2%) 

C (1022 atoms/cm3  1.4839 1.8797 2.1861 2.3660 2.5570 2.9114 
± 1.2%) 

F (102 atoms/cm3  3.1219 2.6280 2.2109 1.9596 1.7123 1.2309 
± 0.7% 

Critical radius (cm) 44.91 38.50 36.38 36.36 37.67 49.65 
.Source: Ref. 15.  

Table 5 Properties of 5-wt % U308 experiments" 

U(5) 308  U(5) 30 8  U(5) 30 8  U(5) 3 0 8  U(5) 308  U(5) 308 
H/X = 147 HIX = 245 H/X = 320 H/X = 396 HIX = 503 H/X = 757 

Atom densities 

234U (1017 atoms/cm 3  8.7460 5.8410 5.1680 4.2730 3.5050 2.3260 
± 0.71% 

23SU (1020 atoms/cm3  2.1290 1.4220 1.2580 1.0400 0.8532 0.5663 
± 0.71%) 

231U (1021 atoms/cm3  4.0880 2.7300 2.4160 1.9970 1.6380 1.0870 
_ 0.5% 

H (102 atoms/cm3  3.1220 3.4780 4.0280 4.1090 4.2960 4.2870 
± 0.5%) 

C (1022 atoms/cm3  1.5660 1.7440 2.0200 2.0610 2.1550 2.1500 
± 0.5%) 

0 (102 atoms/cm3  1.3410 0.9698 0.9086 0.7926 0.6993 0.5440 
± 0.5% 

Critical radius (cm) 35.563 34.106 32.383 33.158 37.67 41.214 
.Source: Ref. 16.
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Generalized Linear-Least-Squares Methodology

The examples given in Figures 21-23 for the application of GLLSM procedure to a series of 2-wt % systems are not 
typical for a standard analysis. They are given only to show that for very highly correlated systems, convergence 
can be quite rapid. The more general situation is shown in Figure 24, which shows the combined effect of the same 
6 experiments, only the values to the far left of the plot correspond to the "learned" effects of some 62 other 
experiments. These experiments correspond to experiments 7-66, 91, 94 summarized in Table 1 of Volume 2 of 
this report. These 62 experiments consist of numerous low-enriched U systems, several systems with enrichments in 
the 10-20-wt % range and quite a few high-enriched U systems. Although this collection of critical experiments is 
incomplete, it is designed to demonstrate the use of GLLSM techniques on a wide variety of typical application 
scenarios, which will be the subject of Volume 2.  

Comparison of the (e-a)/c predictions in Figure 24 between those on the far left to those of the far right reveal that 
for all cases, except the H/X of 972 system, the 62 other experiments are sufficient to converge the GLLSM 
procedure (i.e., the predicted values on the left- and right-hand sides of the figure are approximately equal to each 
other). In essence, there is little to no difference between the predicted differences in the 2-wt % systems, whether or 
not they are included in the GLLSM procedure. The HIX = 972 case does not converge.* Interestingly, the 62 other 
experiments do not contain a single additional system with a correlation coefficient greater than 0.9. Hence, this 
system still does not converge even though there are 62 systems in the procedure instead of only 6.  

The key question for the HIX = 972 system is whether its failure to converge under these circumstances is due to an 
inconsistency or due to the lack of sufficient similar experiments in the GLLSM procedure. Even though the 
definitive answer to this question requires more study, the apparent answer is that with additional similar 
experiments included in the GLLSM procedure it would converge. This scenario is believed to be plausible since 
when the experiment itself is added to the GLLSM procedure, as shown in Figures 21 and 22, this case either begins 
to converge, or does indeed converge.  

The application of the GLLSM procedure to the 5-wt % systems was also examined in a similar manner. In 
Figure 25, the (e-a)/c values are given for each of the 6 systems consisting of 5-wt % U30 8 material. Again, there is 
rapid convergence of the GLLSM procedure for these very highly correlated systems. In this case, 2 systems appear 
to be unconverged after the sequential combination of these experiments. These systems correspond to H/X values 
of 245 and 320. The first 3 systems (H/X of 147, 245 and 320) are all very highly correlated with correlation 
coefficients greater than 0.95. Thus, these 2 systems would appear to simply have inconsistencies with the 
remaining systems. In Figure 26, the tightening of the experimental uncertainties from 0.4% to 0.1% has little or no 
effect on the convergence of these experiments. Interestingly, if one assumes that the system with an HIX of 245 is 
inconsistent and removes it from the GLLSM procedure, the effect is shown in Figure 27, where the other 5 
remaining systems converge while no effect is seen for the H/X = 245 system. Thus, it would appear from this 
analysis that the system with an H/X of 245 is inconsistent with the remaining systems and should be removed from 
the analysis if only a few experiments are available for consideration. This observation is confirmed by noting that 
the ? value for the experiment with an H/X = 245 (its ) value is much greater than unity) indicates the least 
consistency as compared with the remaining experiments.  

The behavior of the 5-wt % systems with the inclusion of the entire 62 experimental systems was also examined.  
In Figure 28, the convergence of the (e-a)/c values is shown, first considering the 62-system database, followed by 
the addition of the 6 systems with 5-wt % enrichments. The addition of these 5-wt % systems is performed using an 
"optimal" procedure. The optimal sequence is defined such that the most consistent experiments are added first, 
followed by those which have less and less consistency. The order of inclusion from left to right is H/X 

*Convergence is not seen for this experiment in Figure 24; however, when the experimental uncertainty is reduced to 0.1%, all of the 2% 
systems converge to better than 0.1% with the exception of the "troublesome" II/X = 294 which converges to only 0.15%.
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Generalized Linear-Least-Squares Methodology

values of 757, 396, 503, 320, 147, and 245. The divergence of the solutions near the right-hand side of the graph 
was expected, since the analysis of the six 5-wt % experiments alone concluded that the H/X = 245 system is 
inconsistent with the remaining systems. However, it appears from this analysis that the system with an H/X value 
of 147 is also inconsistent with the remaining systems. This finding is curious since the calculated value for this 
system agrees well with its measured value; however, it appears to be somewhat inconsistent with the general trends 
seen in the other data. For the remaining 4 systems (H/X of 320, 396, 503 and 757), it is clear that, not only are 
these systems converged, but the database of 62 experiments very accurately predicts the (e-a)/c values for these 
experiments.  

4.2.2 Lessons Learned for Use of Correlation Coefficients 

As stated in the introduction to this section, two of the goals of this GLLSM analysis were to predict the number of 
experiments and the magnitude of the correlation coefficient necessary for convergence, i.e., the similarity criteria.  
Obviously these two quantities are connected. It would be expected that fewer experiments are needed to ensure 
convergence if the correlation coefficients are larger, than if they were smaller. With this in mind, a numerical 
exercise was carried out using the 2-wt % experiments. In Figure 29, the values of (e-a)/c are plotted versus the 
correlation coefficient range for the 62 plus experiments in the benchmark database. The values plotted to the far 
right correspond to the inclusion of all of the experiments (i.e., correlation coefficients 0.9-1.0 and lower), followed 
by inclusion of experiments with correlation coefficients of 0.8-0.89 and lower, and so on. This curve is designed to 
estimate the correlation coefficient by which convergence is typically obtained. It appears from these results that in 
general correlation coefficients of 0.80 and higher can be utilized to obtain convergence. The exception is again the 
system with an H/X of 972, which was shown previously to be quite difficult to converge. Even though these results 
only correspond to the group of 2-wt % systems, there appears to be a clear break in the behaviour of the 
convergence for systems with correlation coefficients below 0.80. Although the actual number of experiments 
needed to ensure convergence is quite difficult to conclude precisely, it appears that for correlation coefficients equal 
to 0.9 or higher, about 5-10 experiments are needed. These recommendations are based on the 2 wt % and 5 wt % 
cases shown in the previous section which seem to indicate that convergence is seen when about 4 other highly
correlated (ck > 0.9) experiments are included in a GLLSM analysis. For correlation coefficients value between 0.80 
and 0.89 approximately 10-20 experiments are needed, although these are not sufficient in all cases, as seen for the 
system with an H/X of 972. The recommendations for less-highly correlated systems (0.8 _< ck • 0.89) are loosely 
based on the number of experiments in that range for the exercise shown in Figure 29. The primary factor in 
whether systems with correlation coefficients between 0.80 and 0.89 produce convergence is believed to be the 
"completeness" of the experiments, that is, do the other experiments provide validation of the application system for 
all important cross sections and energy ranges. Further development of the concept of completeness is currently 
ongoing.
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5 INTEGRAL PARAMETER APPLICATIONS 

Two integral parameter quantities have been discussed thus far in this report: the total sensitivities and the 
correlation coefficients. The total sensitivities are quite useful in identifying trends in the various systems; however, 
they can be quite confusing when applied to only a few disconnected systems because their uniqueness cannot be 
guaranteed. The correlation coefficients, ck, on the other hand, give simple indications of the degree of commonality 
between the various uncertainty contributors for each system, regardless of their origin. In order to generate the 
correlation coefficients, cross-section uncertainty information must be available for all important systems 
components. In some cases, system similarity may need to be determined based solely on their respective 
sensitivities. A measure of similarity consisting of a single parameter or perhaps a few parameters is needed for 
these situations.  

Tests of many different parameter types were carried out in order to determine a set of values that would best satisfy 
the needed similarity determination. The most promising set of parameters are a family of "D" values as defined 
below: 

g 

D = = Snaj - Sneil 
i=l 

D. jI = Si - S~i (22) 

Ds = S - SseiI 
i'~l 

where S is the relative sensitivity of kf for the application, a, or experimental configuration, e, toyT (n) or to the 
capture (c) and scattering (s) cross sections for energy group i. See Eq. (9) for the defining relation for the S values.  

These parameters can be presented as a single quantity as defined above or as an energy-dependent profile, 
corresponding to the absolute value of the differences in the sensitivities by energy group. Values of Dn, D,, and D, 
are given in Table 6 for a U(2)F4, HIX = 195 system versus the family of U(l 1)02 "artificial" systems described 
earlier in this report.
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Integral Parameter Applications 

Table 6 D parameters for H/X = 195 U(2)F4 + CH 2 as compared with U(11)0 2 + H20

Section 5

H/X D. D, D, 

0 1.7986 0.7938 0.7381 

3 1.6084 0.6641 0.6030 

5 1.5215 0.6125 0.5497 

10 1.3241 0.5230 0.4781 

20 1.0329 0.4220 0.4681 

40 0.6748 0.3593 0.5140 

80 0.3430 0.3220 0.5615 

200 0.1261 0.3086 0.6085 

300 0.2355 0.3751 0.6164 

400 0.2982 0.4270 0.6123 

500 0.3373 0.4694 0.6013 

600 0.3633 0.5042 0.5867 

800 0.4025 0.5701 0.5539 

1000 0.4271 0.6201 0.5198 

These coefficients are useful in making a quick determination of the similarity between pairs of systems. Since the 
range of D values is 0 to 2, values above 1 are certainly indicative of systems that are dissimilar. This dissimilarity 
is clear from Figure 30, where a D, value of 1.7986 is represented by an energy-dependent profile. The spectra of 
the two systems appear to be quite different, one thermal and the other fast. Contrast Figure 30 with the Figure 31, 
which compares the sensitivities by group for systems of 2- and 1 1-wt % U with nearly identical H/X values. The 
D, value in this case is 0.1261. In Figure 32, a Dn value of 0.4271 seems to indicate similar systems for an H/X 
value of 195 as compared with HIX of 1000. Figures 33-35 give a comparison of the same systems, but for the D, 
parameter. In these figures, the D, value of 0.3086 shown in Figure 34 certainly indicates similar systems, while the 
profiles representing D. values of 0.7938 and 0.6201 (Figures 33 and 35) indicate that sizeable differences exist in 
these systems. The energy-dependent values for D. corresponding to these same systems are given in Figures 36-38.  
These values are interesting in that none of the three are below 0.4. The D profiles indicate that while the differences 
in sensitivities are largely confined to two energy regions, the relative magnitudes of the sensitivities between these 
energy regions changes; hence the systems should not be considered similar.
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Figure 33 D, profile for U(2)F4 H/X = 195 and U( 1)02 HIX = 0 systems; Total D, = 0.7938
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Figure 37 D. profile for U(2)F4 HI/X = 195 and U(11)0 2 H/X = 200 systems; Total D, = 0.6085
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Integral Parameter Applications

The precise numerical value of these D's that determine system similarity is difficult to define, requiring some degree 
of expert judgement. For comparison with the ck values presented previously, values of D., D,, and D, below about 
0.4 generally correspond to systems with ck values above about 0.8. In order to show the explicit relationship 
between the various ck and D values, Figure 39 contains a plot of the values of Da, D•, and D. versus ck, 

corresponding to the U(l 1)02 H/X = 500 system with respect to the experimental benchmark data base used in Vol.  
2. Linear fits to these data points are shown as a solid line for D, vs ck, a dotted line for D. vs ck, and a dashed line 
for D, vs ck. Even though the fits are somewhat fuzzy, clearly the ck values greater than 0.8 correspond very closely 
to Dn, D0, and D, values below 0.4-0.5.  

The individual values of D , D, and D, give specific similarity information relating to fission, capture and scattering.  
However, to be compared with the single value of cý, an additional parameter was postulated. The parameter Dm is 
defined as the sum of D., Dc and D,. A plot of D,,m versus ck is shown in Figure 40. There the ck value of 0.8 
clearly corresponds to a Du value of about 1.2. Thus, an additional indicator of system similarity would be a Dum 
value of less than 1.2.
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6 SUMMARY 

This report has presented the theoretical basis for the application of the sensitivity and uncertainty analysis methods 
to the validation of data sets for use in criticality safety applications. These procedures involve standard sensitivity 
and uncertainty analyses that were developed in the late 1970s primarily for use in the development of fast reactor 
systems in the United States and abroad. The sensitivity analyses produce energy-dependent sensitivity values 
(sensitivity profiles) which give the change in the system ke value as a function of changes in the cross sections by 
energy. These analyses provide the basic understanding of the physics of each critical benchmark system in order to 
properly characterize similarities between systems in a consistent manner. The uncertainty analyses provide an 
estimate of the uncertainties in the calculated values of the system k,,, as well as correlations in these uncertainties 
between systems. The use of both sensitivity and uncertainty analyses in the formal determination of areas (or 
ranges) of applicability has been developed in this work. These determinations of applicability can be accomplished 
via parameters, which represent the differences in V', capture, and scattering sensitivity profile values (i.e., D•, Dr, 
and D,, respectively) and the correlation coefficients, ck. Ranges of these parameters, proposed to formally define 
the applicability of a series of critical benchmark experiments to a particular application area, are ck values that are 
0.80 or higher, D,,m values that 1.2 or less and values of D., Dr, and D, that are 0.40 or less. These parameters 
relate directly to the applicability or similarity between pairs of systems - one of which is assumed to be a 
benchmark; the other, an application.  

The sensitivity and uncertainty analysis results, along with the calculated and measured kO values and estimates of 
uncertainties in the measurements, were used in this work to demonstrate application of the full GLLSM procedure 
to data validation for criticality safety studies. The primary goal of the GLLSM analysis is the prediction of the 
calculated-versus-measured differences for systems that have not been measured. These calculated-versus-measured 
differences are the so-called calculational biases. Application of the GLLSM procedures to a series of critical 
experiments is designed to identify "changes" in the underlying nuclear data such that the calculated-versus
measured differences are minimal. This work has identified the relationship between these predicted data changes 
and the calculational bias for systems that have not been measured, and hence correspond to interpolations or 
extrapolations in the vector space corresponding to the original set of benchmark experiments. Uncertainties in the 
bias can be estimated based on the standard deviation provided by the GLLSM procedure.  

To demonstrate the basic concepts and usefulness of the GLLSM procedure and to estimate the required magnitude 
of the ck and D parameters and number of systems needed for a meaningful estimate of bias, the GLLSM procedure 
was applied to a set of 2-wt % and 5-wt % uranium oxide and uranium fluoride critical benchmarks, which consisted 
of 6 experiments each. Initial studies were performed on the 2-wt % and 5-wt % systems in isolation to demonstrate 
that for highly correlated systems, the GLLSM procedure can produce rapid convergence on the predicted bias for 
such systems. These studies were unique in that omission of one of the experiments from the GLLSM procedure 
allowed simulation of the prediction of bias for that experiment as if it had never been performed. These predictions 
can then be compared directly to the actual biases, because the measured and calculated values of ke are known.  

Results using this limited number of highly correlated experiments show that convergence can be quite rapid.  
However, the use of a large number of experiments in the GLLSM procedure is recommended since they place 
additional constraints on the cross-section data changes that are not present in a case with few experiments. The use 
of a large number of experiments in the GLLSM procedure was also demonstrated in this work. The results show 
that the large database is quite effective in producing convergence for the 2-wt % and 5-wt % sets without including 
any of the 2-wt % and 5-wt % data directly in the GLLSM combination procedure. This method is the desired 
operation of the GLLSM for applications in which no direct measurements are available.  

This work also demonstrates approximate values of the ck parameter and the associated number of experiments for 
which convergence of the GLLSM procedure can be expected. These results are expected to be useful for non
GLLSM analyses as well, in that these guidelines should also apply to more traditional trending procedures as well.
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Summary

An estimated 5-10 benchmarks with values of ck equal to 0.9 or higher are needed to ensure convergence in a 
GLLSM procedure. Therefore, a corresponding number and type of systems should be considered a minimum for 
standard validation analyses. Under certain conditions, convergence can also be expected for 10-20 systems with ck 
values between 0.8 and 0.9. The type of conditions under which convergence can be produced with systems with a 
ck value less than 0.8 (even much less than 0.8) is the subject of current research.  

Further comparison of the use of ck and D values indicate that D values less than 0.4 (or sum of the D values less 
than 1.2) match the area of applicability criteria associated with cý > 0.8.
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APPENDIX A 

Covariance Conceptst 

Let the variable y represent measurements taken with some instrument or device that will not yield an exact result, 
but will give a variety of numbers with some spread. If a very large number of measurements were made, a 
probability distribution such as a Gaussian could be developed. A related expression is the probability density, 
labeled f(y), having the property that its integral over all values of y is 1, i.e, 

ff(y)dy = 1.  

The average value of y is 

y = fy f(y) dy 

For a finite number of measurements, yi, where i = 1, 2, 3, ...,N, 

y -- (1/N)F- yj f(y)-.  

These are examples of an expectation value (or expected value), written either as E(y) or as <y>. More generally, 

we can find the expectation value of a function of y, e.g., g(y), by forming 

E[g(y)] = fg(y)f(y)dy.  

A measure of the width of the distribution is sought. We take note of the differences between each observation and 
the average, 

8y=y- y.  

Form the square of that difference and evaluate the expectation value 

E[(5y)21 = E[(y - 7) 2] = f (y - -)2 f(y)dy.  

This is called the variance, often symbolized by var(y) or simply v(y). The square root of the variance is the 
standard deviation, 

a(y) = [var(y)]½ 

having the same units as y and a measure of the width of the distribution. Related parameters often used are the 
relative variance, var(y)/[fy] 2 and the relative standard deviation, a(y)/[y]. All of these quantities may be found for 
other variables such as u, v, w, z, etc.  

There are several distributions that are appropriate for certain processes, but the standard distribution (or 
Gaussian) is most often applied. One calculates the average of the measured data, y, and also the standard 
deviation, c, and inserts them in the theoretical expression, 

tUsed with permission from Dr. R. L. Murray, North Carolina State University, Raleigh, NC.
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f(y) = 1/[o(2rr)/] exp{-½2 [(y Y)/0]21, 

which is used for evaluation of expectation values.  

When a measured variable depends on two or more parameters, for example, r(xy), each of the variables x and y 
has its own expectation value 

E(x) = E(x + bx) = x 

E(y) = E(y + by) = y.  

A joint probability density function is needed, f(x,y). To obtain the f(x) needed to find E(x), it is required to 
integrate f(x,y) over all y, and similarly for f(y).  

It is possible that there is some relationship between x and y. To check that, a new quantity is introduced, the 
covariance. For the two-variable case, it is written as 

cov(x,y) = oxy2 = E(8x by) = f (x -x)(y - y) f(x,y) dx dy 

It is seen to be the weighted product of the error in x and the error in y. A related quantity is the correlation 
coefficient, defined by 

p (x,y) = cov(xy)/oY oy 

with p (y,y) = 1. It can be shown that if there is direct dependence of x on y the correlation coefficient p is +1, if 
there is no dependence, p is zero.  

To be more specific, let us consider a critical assembly similar to the Los Alamos Godiva, but composed of pure 
U-235 as metal. To a rough approximation the neutron flux can be described by a one-group diffusion model, 

DV2(ý - yZ,+ X) Zv=0 

where X = l/ke,,. Ignoring variations in the diffusion coefficient D and the number density N for uranium, the 
value of keff depends on v, oa, and of. The method of measuring the number of neutrons per fission is generally 
different from that used to measure cross sections. However, the methods of measuring the two cross sections 
may be similar so that 0a and of are correlated, and there is a non-zero value of the covariance cov(oa, of).  

Let us derive a formula for the variance of a function of two variables, assuming a linear relationship 

r(x,y) = ax + by.  

where a and b are constants. The expectation value of r is clearly 

r =a x + b y.
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The variance of r is

v(r) = E[(r - -)2] 

Form the quantity 

r - r-= a(x - i) + b(y- y) 

= a 5x + b Sy.

Thus

(r - T)-2 = a2 (Sx)2 + b2 (5y)2 + 2 a b 5x 5y.

Form the expectation value to obtain the variance 

v(r) = a2 v(x) + b2 v(y) + 2 a b cov(x,y), 

which says in words that the variance of r as a linear function of x and y is composed of the variances of x and y 
plus a covariance term. If x and y are not related, the last term is zero, and the variance is merely the sum of those 
for x and y.  

A more general case is where r depends on a number of variables, i.e., 

r(x1 , x2, X3,...,XN).  

It is very convenient to turn to a matrix representation of r, 

r =x 

X2 
Xs 

XN 

There may be relationships between pairs of variables xi and xj, leading to a set of variances vij = E(3xi, 5x) that 
form a matrix array as follows: 

v(r) = v1 1 v 12 v 13 ...  

v 2 1 v22 v23 ...  

v31 v32 v33...  

This matrix is called the covariance matrix, even though the main diagonal consists of variances. It is symmetric 
about that diagonal, because vj is the same as vj~i. It is also known as the error matrix.
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To illustrate the benefits of the matrix method, we now derive a compact relation involving the way the variable r 
changes with the various x,. Propose that the variations are small, so that the first two terms of a Taylor series are 
sufficient. Thus write 

r(x) = r(x) + (dr/dxl)dx1 + (dr/dx2)dx2 + (dr/dx3)dx 3 +... + (dr/dxN)dxN 

where, strictly speaking, partial derivative symbols should be used. Let r'i stand for the rate of change or slope 
dr/dxi, directly related to sensitivity. Then a compact expression for 8r = r - r can be written, 

8r=r', 6xl + r' 2 6x 2 + r' 3 6X3 +...  

Write out the square of 5r for a case of three variables, 

(5r)2 = (r'1 Sxl + r' 2 5x2 + r' 3 5x3)(r', 6xj + r' 2 5x2 + r' 3 6x3) 

= r'I(6x,)2 r' 1 + r'1(8xI)(5x)r'2 + r',(8x1)(5x3) r' 3 

"+ r,2 (x2)(6x 1 )2 r', + r' 2(5x2) 2 r'2 + r' 2(5x2)(5x3)r'3 

"+ r' 3(6x3)(6x 1) r', + r'3(5x,)(5x2)r' 2 + r'3(5x3)2r' 3.  

Take the expectation value of the sum to produce variances and covariances. The expression can be written in 
matrix notation as 

v(r) = E[(5r)2] = r' v (r')T 

where T stands for transposed, i.e. interchanged rows and columns. The two r matrices are 

r'= rII (r')T r'1 r' 2 r' 3 
r/2 

rt 3 

The compact formula expresses the total variance due to the variations Sxj, 8x2, and 5x3 including all possible 
interactions, weighted by the sensitivities of the function r to changes. The virtue of the matrix method is the ability 
to perform algebraic operations conveniently.
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Derivation of the Generalized Linear-Least-Squares Equations 

The derivation of the generalized linear least squares methods is taken from ref. 25 with only minor variations.  

Let the vector m = (m-, i = 1,2.... I represent a series of critical benchmark measurements (i.e., responses) for all 
of which calculations are available. This vector m has a corresponding symmetric I x I uncertainty matrix 
associated with it which we denote as C•,, - cov(mrr, rn) = <5mrr 6m1> = <(5m)(6m)t>.* Let the vector k = (t,) 
represent a calculation of the kf values for each experiment. Further, let the vector a - (a,), i = 1,2.... N, with its 
corresponding symmetric N x N uncertainty matrix C. =- <65a 5c6>, represent the differential data used in the 
calculations ( i.e., nuclear data such as fission cross sections, partial cross sections used in the transport calculation 
and the fission spectrum, and nonnuclear data such as corrections (biases) arising from methods approximations).  
We shall also allow for the possibility of correlations between the integral and differential data, which although may 
often be neglected in a first iteration of the adjustment procedure, are present in any subsequent iteration because of 
the nature of the combining process. These covariances are denoted by the N x I matrix C. - <5a 5mr->.  

If we define the sensitivities of the calculated responses to each of the parameters a as Sk (ak/acx), with Sk being 
an I x N matrix, and if we impose the linearity restriction, 

k(a + 6a) = k(a) + 6k - k(a) + SkSa , (1) 

Ckk - <(6k) (5k)1> = Sk <(5a) (8a)t> Skt = SkC.CSkt (2) 

then the uncertainty matrix corresponding to the calculated responses becomes 

which reflects the propagation of the uncertainties in a through the calculation of k.  

If we denote the deviations of the measured responses from their corresponding calculated values by the vector d 

Cdd = <(k - m) 5(k - m)ý> = <5k~kt> + <5m~mt> - <5k~mt> - <Sm~kt> 
= Ckk + C. - SkC. -CmSk 

= s kc..st + c. - s c. - c."st 3 
S kCS+ k kC,5~ (3) 

(d) - k - m, then the uncertainty matrix for d, denoted by Cd,, is 

Let the (unknown) adjusted parameter vector be a' =- (ai'), and the adjusted calculated response vector be k'(a').  
By imposing the condition m' = k'(a'), we are forcing the adjusted values a' and m' to be consistent within the 
limits of linearity of the theory. If we further denote the actual adjustments by x = a' - a and y = m' - m, then the 
linear approximation expressed by Eq. (1) becomes 

*The symbol '"T' is used to denote the transpose, and the brackets "< >" are used to designate an expectation value, 
i.e., an average over a probability distribution, of possible deviations (6) from the mean value.
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m'= k + Skx

or

m' - m= k- m+ Skx

thus leading to

y=d+Skx. (4)

The generalized linear least squares procedure involves minimizing the quadratic loss function

Q(x,y) = (y,x) C( CM :)1 (y,x) I (5)*

where (y,x) =- (yl,... ,yi, xl,.... xI),subject to the constraint expressed by Eq. (4). Adopting the procedure of 
Refs. 23-24, the above conditional minimum formulation is equivalent to unconditionally minimizing the function 
R(x,y), where

R(x,y) = Q(x,y) + 2Xt(Skx -y), (6)

and 21 is an I-dimensional vector of Lagrange multipliers. Thus, x and y satisfy the equations

aR(x,y)/ax = aR(x,y)/ay = 0. (7)

The matrix in Eq. (5) can be expressed as the following identity

A -'
C m , C M.) C( C.m (8)

-1 in which A = C. - C CI Cm. .Thus, Eq. (6) becomes 

R(x,y)= yt(C1 + C•CmCA-1C C- y - xt(A-'C.ýCb)y 

- yt(C C MA-1) x + xtA-A x + 2Xt(Skx - y) , 

*The symbol "-1" refers to the inverse of a matrix.

(9)
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and the Eqs. (7) become

aR(x,y)/ax = 0 = -It(A-'C.C,ý) y - y (CxiCmciA- ) 1 

- I 1 x + x t A- 1 l + 2X1 SkI , 

aR(x,y)/ay = 0 = It(C1 + CmmCm A-'C.CI) y 

+ yt (C + C .,C.mA A'C.C -) 1 

xt(A-1CmC.) 1 - it (C-1 C A-l) x - •21 ,

(10a) 

(lOb)

where we have introduced the symbols "1" and "0" to represent unit and zero vectors of dimensions 
N x 1 in Eq. (10a) and of dimensions I x 1 in Eq. (IOb). The symbols "I"' and "0" denote the corresponding row 
vectors. Since A71 is symmetric and the. transpose of a scalar and the scalar are the same, Eqs. (10) may be 
simplified to

kS2. + A-'x - A-'C.Cýy = 0

-- -)- (CIC+A -)I+ 
(C, ..... C, m,,,A 1C=C~m,) y - (-CA ' = 0

(10'a)

(10'b)

Solving for x and y yields 

and

x = (C. - C.S2) X 

y = (C. - Cm=SIk) X,

(11a) 

(lIb)

which reflect the driving influence of the vector I• and the independence of the solution on A71. Substituting the 
values of x and y into Eq. (4) yields

S=Cdld d,

with

c) = <(RX) (6X)t> = C ' <(5d) (1)'> C -d1 = C1

(12)

(13)

The adjusted values a' and m'are found from the adjustments in Eqs. (11) to be

a' = a + (C= - cS') C -'d 

r' = r + (C- CmSk) C dd,
and

(14a) 

(14b)

NUREG/CR-6655, Vol. 1

and

Appendix B

79



Derivation of Generalized Linear-Least-Squares Equations

where C-1 is obtained by taking the inverse of Eq. (3) and is a matrix of dimensions I x I. It should be noticed that 
in order to obtain a' and m' !Lif Cd has to be inverted, although AK1 appears in Eqs. (8)-(10).  

The covariances of the adjusted differential values are readily obtained from the first of Eqs. (14): 

Ca', - <(a') (6a')I> = C. + (C= - C.S') C-'<(3d) (Od)t> C-'(Cm - S C.) 

+ (C• - CSk') Cd <(5d) (6a)t> + <(6a) (5d)t> C -(C., - SkC,) 

and since 

<(5d) (5a)t> = <(6k - 5m) ()*yt> = Sk<(6a) (3a)ý> - <(6m) (5a)t> = SkCaa - Cma

then

Ca, ==C.+(C. - CaS t)C -I(C., - SkC) - 2(C - C.S )C-I(C. S C.) k -d k.•c•( m amck ),

or

(15)Coý(a' = C.- (C. - C.•S ) C -I(C." - S C.) 

Similarly, 

Cm'm, = C. + (Cr - C.Sk) Cd <(8d) (5d)t> Cdd(C - SkCa) 
CmaSk) Cd-d1 <(5d) (5m)t> + <(6m) (5d) > C '(Ca - SkC.n)

with

<(3d) (6m)t> = <(5k - 6m) (6m)t> = Sk <(8Ct) (5m)t> - <(6m) (3m)t> = SkCc - C.

leads to
era' = C"-- (Cm.- CmaSt) C-dQ(C. - SkCom) (16)

Finally, the cross covariances of the adjusted integral and differential data become 

Ccem, = <(5a ') (m'),> =Cmn + (C'M - C St) Cd-'<(5d) (5d)t> C d'(C - Sk C) 
+ (Co - C=S ) Cd' <(3d) (5m)t> + <(5a) (5d)t> C -J(C. - SkCam) 

which reduces to

Cam, = C. - (C. - C..SI) Cd-7(Cm - SkC). (17)

Thus, from Eq. (17), even if no a priori correlation between the differential and integral data existed, by virtue of 
the combination (adjustment) procedure an a posteriori correlation does exist and must be considered in any further 
iteration or in the covariance representation of the adjusted data for future use.
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The minimum value of Q in Eq. (5), found by substituting the expressions for x and y from Eqs. (11), is denoted by 
the symbol ): 

Q•(x,y) = dtC C d = d t (Cni + SkCSkt - SkC.- Cm.S')-' d. (18) 

The quantity )? is a measure of the adjustments made in units of (combined) standard deviations summed over all 
participating integral experiments.  

Thus e/I should be of the order of 1 or less (i.e., on the average, the adjustment in each integral experiment should 
be within about one combined standard deviation). This quantity, which is a figure of merit for the proposed 
adjustment, can be calculated without actually performing the adjustment, since all the ingredients of Eq. (18) are 
known d priori and just reflect the consistency status of the available data considered.  

For the particular case of a single measurement in which there is no correlation between the integral and differential 
data, Eq. (18) reduces to 

? = (k- m)2 /(C. + SkCS)(') 

which is just the square of the discrepancy between the calculated quantity k (using the available differential data a) 
and the corresponding measured quantity m expressed in units of the combined variance of m (i.e., C.) and k (i.e., 
Skc SI).  

The Translation or Extrapolation Problem 

The calculation of k. for an criticality safety scenario, denoted the "application," involves the use of cross sections.  
The calculated value of kf, k1, will generally deviate from the value that would have been measured. Our purpose 
is to calculate an adjusted k,0f value in such a way that its deviation from a projected measured value will be 
minimal and that the uncertainty in this calculated value be as small as possible. This adjusted calculated kff value, 
ka' can be recomputed based on the suggested data adjustments, (x' - a, or a Ak bias can simply be estimated using 
the benchmark data. The value of ka' can be computed as: 

k' = k + S.(a'-a) = ka +Sa(C.- C.S) Cd'd, (19) 

or alternatively the adjusted Kl value can be written in terms of a bias, b.; 

ka = k. + ba. (20) 

from this comparison, it is clear that 

b. = - sW(a' - a) 

Taking the covariance of both sides of Eq. (19) and noting that the uncertainty in Kl denoted C, is: 

C <(5k.) (8ka•t> = S,<(5a) (8a)l> St = SaC.St , (21)

NUREG/CR-6655, Vol. I

Appendix B

81



Derivation of Generalized Linear-Least-Squares Equations

we obtain for the covariance matrix of the ka values as

C.'-- <(kýk) (6ka)t> SaC Sa + Sa(Co -CaS ) 
C-, <(5d) (5d)t> Cg,' ( - SkC_)S 

+ 2Sa (CCM - C.St) Ca- <(Sd) (Ska)t>
(22)

Since 

<(5d) (Sk)t> = <('k) (Sk)ý> - <(Sm) (Sk,)t> Sk<(6() ('a)t> Sat 
<(8m) (8a)t> SI = Sc= St -C c.StI 

Ekqa a ma 

Equation (21) becomes

Ca,., = S ac S - Sa(C. - C.St) C-,(Cm. - skC) st (23)

Equations (19) and (23) represent the adjusted ka value and its uncertainty. Again, the calculations involve only the 
inversion of a small I x I matrix together with some matrix multiplication.  

*Equation (23) can be alternatively derived by substituting C ,(, directly from Eq. (15) into the following equation: 

Ca,a= SC,,S = Sa[C - (C. - C S) OdC1 I (Gra.C - SkC.)ISt
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