NUREG/CR-0200, Rev. 6 ORNL/NUREG/CSD-2/R6 Vol. 3

Version 4.4

A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation

Miscellaneous

Oak Ridge National Laboratory

Prepared for U.S. Nuclear Regulatory Commission

NUREG/CR-0200, Rev. 6 ORNL/NUREG/CSD-2/R6 Vol. 3

SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation

Miscellaneous M1 – M17

Manuscript Completed: February 2000 Date Published: May 2000

Oak Ridge National Laboratory Managed by Lockheed Martin Energy Research Corp. Oak Ridge, TN 37831

Prepared for Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code B0009

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at www.nrc.gov/NRC/ADAMS/index.html. Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal</i> <i>Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non- NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a
attachments.	substantive manner in the NHC regulatory process are maintained at—
 NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i>, in the Code of <i>Federal Regulations</i> may also be purchased from one of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office P. O. Box 37082 Washington, DC 20402–9328 www.access.gpo.gov/su_docs 202–512–1800 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–533–6847 or, locally, 703–805–6000 	The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738 These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42 nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301-415-2289	The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2 206 of NBC's
Some publications in the NUREG series that are posted at NRC's Web site address www.nrc.gov/NRC/NUREGS/indexnum.html are updated regularly and may differ from the last printed version	regulations (NUREG-0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

ABSTRACT

SCALE, a modular code system for Standardized Computer Analyses Licensing Evaluation, has been developed by Oak Ridge National Laboratory at the request of the U.S. Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.4 of the system.

CONTENTS

	Volume 1, Part 1: Control Modules
C1*	CSAS1: A ONE-DIMENSIONAL CRITICALITY SAFETY ANALYSIS MODULE
C2*	CSAS2: A MULTIDIMENSIONAL CRITICALITY SAFETY ANALYSIS MODULE
C3***	CSAS3: AN OPTIMUM CONCENTRATION CRITICALITY SAFETY ANALYSIS MODULE
C4	CSAS: CONTROL MODULE FOR ENHANCED CRITICALITY SAFETY ANALYSIS SEQUENCES (N. F. Landers, L. M. Petrie)
C6	CSAS6: CONTROL MODULE FOR ENHANCED CRITICALITY SAFETY ANALYSIS WITH KENO-VI (D. F. Hollenbach, L. M. Petrie)
	Volume 1, Part 2: Control Modules
D1	ORIGEN-ARP: AUTOMATIC RAPID PROCESS FOR SPENT FUEL DEPLETION, DECAY, AND SOURCE TERM ANALYSIS (S. M. Bowman, L. C. Leal)
S1	SAS1: A ONE-DIMENSIONAL SHIELDING ANALYSIS MODULE (J. R. Knight, C. V. Parks, S. M. Bowman, L. M. Petrie, J. A. Bucholz)
S2	SAS2H: A COUPLED ONE-DIMENSIONAL DEPLETION AND SHIELDING ANALYSIS MODULE (O. W. Hermann, C. V. Parks)
S3	SAS3: AN AUTOMATED MONTE CARLO SHIELDING ANALYSIS MODULE (M. B. Emmett, J. T. West)
S4	SAS4: A MONTE CARLO CASK SHIELDING ANALYSIS MODULE USING AN AUTOMATED BIASING PROCEDURE (J. S. Tang, M. B. Emmett)
S5	QADS: A MULTIDIMENSIONAL POINT-KERNEL ANALYSIS MODULE (B. L. Broadhead, M. B. Emmett)
H1	HTAS1: A TWO-DIMENSIONAL HEAT TRANSFER ANALYSIS OF FUEL CASKS,

Volume 2, Part 1: Functional Modules

- F1 BONAMI: RESONANCE SELF-SHIELDING BY THE BONDARENKO METHOD (N. M. Greene)
- F2 NITAWL-II: SCALE SYSTEM MODULE FOR PERFORMING RESONANCE SHIELDING AND WORKING LIBRARY PRODUCTION (N. M. Greene, L. M. Petrie, R. M. Westfall)
- F3 XSDRNPM: A ONE-DIMENSIONAL DISCRETE-ORDINATES CODE FOR TRANSPORT ANALYSIS (N. M. Greene, L. M. Petrie)
- F4 XSDOSE: A MODULE FOR CALCULATING FLUXES AND DOSE RATES AT POINTS OUTSIDE A SHIELD (J. A. Bucholz)
- F5* KENO IV/S: AN IMPROVED MONTE CARLO CRITICALITY PROGRAM
- F6 COUPLE: SCALE SYSTEM MODULE TO PROCESS PROBLEM-DEPENDENT CROSS SECTIONS AND NEUTRON SPECTRAL DATA FOR ORIGEN-S DATA ANALYSES (O. W. Hermann)
- F7 ORIGEN-S: SCALE SYSTEM MODULE TO CALCULATE FUEL DEPLETION, ACTINIDE TRANSMUTATION, FISSION PRODUCT BUILDUP AND DECAY, AND ASSOCIATED RADIATION SOURCE TERMS (O. W. Hermann, R. M. Westfall)
- F8 ICE: MODULE TO MIX MULTIGROUP CROSS SECTIONS (N. M. Greene, L. M. Petrie, S. K. Fraley)

Volume 2, Part 2: Functional Modules

- F9 MORSE-SGC FOR THE SCALE SYSTEM (J. T. West, T. J. Hoffman, M. B. Emmett)
- F10 HEATING 7.2 USER'S MANUAL (K. W. Childs)
- F11 KENO V.a: AN IMPROVED MONTE CARLO CRITICALITY PROGRAM WITH SUPERGROUPING (L. M. Petrie, N. F. Landers)
- F12* JUNEBUG-II: A THREE-DIMENSIONAL GEOMETRY PLOTTING CODE
- F13* HEATPLOT-S: A TEMPERATURE DISTRIBUTION PLOTTING PROGRAM FOR HEATING

^{*}Obsolete with SCALE-4.0 release.

^{**}Not included in SCALE-4.4 release.

^{***}Cancelled. Included in Section C4.

Volume 2, Part 3: Functional Modules

- F14* REGPLOT6: A PLOTTING PROGRAM TO VERIFY HEATING INPUT DATA
- F15** PLORIGEN: A PLOTTING PROGRAM FOR ORIGEN-S OUTPUT (O. W. Hermann)
- F16 OCULAR: A RADIATION EXCHANGE FACTOR COMPUTER PROGRAM (C. B. Bryan, G. E. Giles)
- F17 KENO-VI: A GENERAL QUADRATIC VERSION OF THE KENO PROGRAM (D. F. Hollenbach, L. M. Petrie, N. F. Landers)

Volume 3: Miscellaneous

- M1 SCALE SYSTEM DRIVER (L. M. Petrie)
- M2 SCALE SUBROUTINE LIBRARY (L. M. Petrie)
- M3 SCALE FREE-FORM READING ROUTINES (L. M. Petrie)
- M4 SCALE CROSS-SECTION LIBRARIES (W. C. Jordan, S. M. Bowman)
- M5 THERMAL MATERIAL PROPERTIES LIBRARY (A. L. Edwards, P. T. Williams)
- M6 ORIGEN-S DATA LIBRARIES (J. C. Ryman, O. W. Hermann)
- M7 THE MATERIAL INFORMATION PROCESSOR FOR SCALE (N. F. Landers, L. M. Petrie, J. A. Bucholz)
- M8 STANDARD COMPOSITION LIBRARY (L. M. Petrie, P. B. Fox, K. Lucius)
- M9 MARS: A MULTIPLE-ARRAY SYSTEM USING COMBINATORIAL GEOMETRY (J. T. West, M. B. Emmett)
- M10 FIDO INPUT SYSTEM (L. M. Petrie)
- M11* SCALE INTERACTIVE INPUT PROCESSOR
- M12* CESAR: A CRITICALITY EXPERIMENT STORAGE AND RETRIEVAL PROGRAM
- M13 PICTURE: A 2-D PLOTTING PROGRAM FOR MARS GEOMETRIES (M. B. Emmett)

^{*}Obsolete with SCALE-4.0 release.

^{**}Not included in SCALE-4.4 release.

^{***}Cancelled. Included in Section C4.

Volume 3: Miscellaneous (continued)

- M14 COMPOZ DATA GUIDE (J. R. Knight, L. M. Petrie)
- M15 USER'S GUIDE FOR AMPX UTILITY MODULES (N. M. Greene)
- M16 COMMENT DATA GUIDE (L. M. Petrie)
- M17 MISCELLANEOUS SCALE UTILITY MODULES (L. M. Petrie)

^{*}Obsolete with SCALE-4.0 release.

^{**}Not included in SCALE-4.4 release.

^{***}Cancelled. Included in Section C4.

PREFACE

Introduction

This Manual represents Revision 6 of the user documentation for the modular code system referred to as SCALE. The previous revision documented version 4.3 of SCALE, released in October 1995. This revision documents version 4.4a of SCALE. Prior to the release of version 4.4a, SCALE 4.4 was released in September 1998. Many minor corrections and enhancements have been made since that time and are being included in SCALE 4.4a. The corrections and enhancements in versions 4.4a and 4.4 are documented separately below. All modifications in version 4.4 are included in version 4.4a.

Background

The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born.

The NRC staff provided ORNL with some general development criteria for SCALE: (1) focus on applications related to nuclear fuel facilities and package designs, (2) use well-established computer codes and data libraries, (3) design an input format for the occasional or novice user, (4) prepare "standard" analysis sequences (control modules) that will automate the use of multiple codes (functional modules) and data to perform a system analysis, and (5) provide complete documentation and public availability. With these criteria the ORNL staff laid out the framework for the SCALE system and began development efforts. The initial version (Version 0) of the SCALE Manual was published in July 1980. Then, as now, the Manual is divided into three volumes — Volume 1 for the control module documentation (Sections C4, C6, D1, S1–S5, and H1), Volume 2 for the functional module documentation (Sections F1–F17), and Volume 3 for the documentation of data libraries, and subroutine libraries, and miscellaneous utilities (Sections M1–M17).

System Overview

The original concept of SCALE was to provide "standardized" sequences where the user had very few analysis options in addition to the geometry model and materials. Input for the control modules has been designed to be free-form with extensive use of keywords and engineering-type input requirements. The more flexible functional modules have a more difficult input logic and require the user to interface the data sets necessary to run the modules in a stand-alone fashion. As the system has grown in popularity over the years and additional options have been requested, the control modules have been improved to allow sophisticated users additional access to the numerous capabilities within the functional modules. However, the most important feature of the SCALE system remains the capability to simplify the user knowledge and effort required to prepare material mixtures and to perform adequate problem-dependent cross-section processing.

The modules available in Version 0 of SCALE were for criticality safety analysis sequences (CSAS) that provided automated material and cross-section processing prior to a one-dimensional (1-D) or multidimensional criticality analysis. Since that time the capabilities of the system have been significantly expanded to provide additional CSAS capabilities, new shielding analysis sequences (SAS) that also include depletion/decay capabilities for spent fuel characterization, and a heat transfer analysis sequence (HTAS). At the center of the CSAS and SAS sequences is the library of subroutines referred to as the Material Information Processor or MIPLIB (see Section M7). The purpose of MIPLIB is to allow users to specify problem materials using easily remembered and easily recognizable keywords that are associated with mixtures, elements, and nuclides provided in the Standard Composition Library (see Section M8). MIPLIB also uses other keywords and simple geometry input specifications to prepare input for the modules that perform the problem-dependent cross-section processing: BONAMI, NITAWL-II, and XSDRNPM. A keyword supplied by the user selects the cross-section library from a standard set provided in SCALE (see Section M4) or designates the reference to a user-supplied library. Several utility modules from AMPX¹ have been included to provide users with the capability to edit the cross-section data and reformat user-supplied libraries for use in SCALE.

Over the history of the project several modules have been removed from the system because they are no longer supported by the development staff at ORNL. Tables 1 and 2 provide a summary of the major applications of each of the control modules and functional modules currently in the SCALE code system. The control modules were designed to provide the system analysis capability originally requested by the NRC staff. The CSAS module (sometimes denoted as the CSAS4 module and documented in Section C4) is the primary control module designed for the calculation of the neutron multiplication factor of a system. Eight sequences enable general analysis of a 1-D system model or a multidimensional system model, capabilities to search on geometry spacing, and problem-dependent cross-section processing for use in executing stand-alone functional modules. CSAS6 is a newer criticality control module to provide automated problem-dependent cross-section processing and criticality calculations via the KENO-VI functional module. The SAS1 and SAS3 modules (see Sections S1 and S3, respectively) provide general 1-D deterministic and 3-D Monte Carlo analysis capabilities. The SAS2 module (see Section S2) was originally developed to perform a depletion/decay calculation to obtain spent fuel radiation source terms that were subsequently input automatically to a 1-D, radial shielding analysis in a cylindrical geometry. Over time the depletion/decay portion of the SAS2 module has been significantly enhanced and interfacing to the other shielding modules has been provided. An alternative sequence for depletion/decay calculations is ORIGEN-ARP (Section D1), which interpolates pre-generated ORIGEN-S cross-section libraries versus enrichment, burnup, and moderator density. The SAS4 module (see Section S4) enables automated particle biasing for a Monte Carlo analysis of a transportation package-type geometry. The HTAS1 module (see Section H1) is the only heat transfer control module and uses the various capabilities of the HEATING code to perform different sequences of steady-state and transient analysis that enable the normal and accident conditions of a transportation package to be evaluated. Like SAS4, the HTAS1 module is limited to a package-type geometry. The capability to perform a point-kernel shielding analysis within the SCALE system has been developed in the QADS control module.

A 238-energy-group neutron cross-section library based on ENDF/B-V² is the latest cross-section library in SCALE. All the nuclides that are available in ENDF/B-V are in the library. A 44-group library has been collapsed from this 238-group library and validated against numerous critical measurements.³ These libraries are available in this version of SCALE.

Technical Assistance and Updates

To obtain technical assistance regarding the installation and use of SCALE, download software updates, or report problems, you may contact us through the following channels:

- E-mail questions to scalehelp@ornl.gov
- The SCALE Users Electronic Notebook on the Web: http://www-rsicc.ornl.gov/ENOTE/enotscal.html
- SCALE Web Site (including Download, Training, Benchmarks, and Newsletter pages): http://www.cped.ornl.gov/cad_nea/text/scale-home.html
- SCALE Newsletter: http://www.cped.ornl.gov/cad_nea/text/scale_news.html
- FAX to SCALE Help, 815-327-6460 or 865-576-3513

Significant Updates in SCALE 4.4a

A significant number of updates have been made to SCALE since the initial release of SCALE 4.4 in September 1998. Most of these updates were minor corrections or enhancements. Because some of these updates could be important to SCALE users, this interim release of SCALE 4.4a is being made available.

SAS4 and PICTURE were enhanced to allow the generation of two-dimensional (2-D) plots when the "PARM=CHECK" option is used. This option is similar to the plotting option in the CSAS criticality sequences. Another innovation was the addition of an option that allows users to specify an X-Y, X-Z, or Y-Z plot and have the code automatically calculate the cosines used for the plot.

A discrepancy in scoring boundary crossings of surface detectors was corrected in MORSE. Contributions to user-specified surface detectors in MORSE in SCALE 4.4 could have been underestimated because of a failure to determine which surface detector to score. This failure was due to the comparison of a single precision variable to a double precision variable. Most affected cases would have a zero result for the surface detector, indicating that no particles have crossed the surface detector boundary. Detector location coordinates of four digits or less would not be expected to experience this problem.

A coding error introduced in QAD-CGGP in SCALE 4.4 has been identified and corrected. Because of inconsistent array dimensions, if more than a very limited number of bodies are input in one zone, the additional zone data are lost or stored incorrectly. This situation typically causes the code to fail. Though extremely unlikely, it might be possible for a case like this to run if the incorrectly stored geometry happened to be valid. SCALE 4.4 users should check under the "input zone data" header in the QAD-CGGP output to verify that the zone data agree with their input.

SAS2 was corrected to fix an error introduced in SCALE 4.4 that caused the PARM=OLDSAS2 option to fail. Another discrepancy introduced in SCALE 4.4 caused spent fuel isotopic data written to file FT72F001 to be incorrect in certain cases. This error, which has been corrected, occurred in cases where burnable poison rods or other inserts are removed from or inserted into the fuel assembly between fuel cycles. SAS2 can now correctly handle multiple fuel zones in the path B model. A minor discrepancy was corrected where invalid characters were being written to title records in the ORIGEN-S binary library. Some text editors could not read the SAS2 output file when invalid characters were present.

A large number of enhancements were made to XSDRNPM. The Fortran source for XSDRNPM was converted to Fortran 90 free format. The input/output units were all moved to the 0\$ array. The energy of the

average lethargy causing fission was added to the balance tables. The output files from the balance tables and the activities were modified and converted to ASCII files. A new ASCII file was created that contains the input and derived data from a problem. The coarse mesh generation algorithm used in rebalancing the inner iterations was modified to correct a problem that prevented convergence for a very small class of problems. The code was modified to recycle if the final iteration performed after convergence failed the convergence test. For group banding cases, convergence is now reset after initial convergence to an order of magnitude less than overall convergence to prevent looping through iterations and never converging. The default value for flux convergence tolerance, PTC, was reduced from 10^{-4} to 10^{-5} . The calculation of activities by interval, an option that was available many years ago, was reintroduced in the code.

The XSDRNPM mesh generation algorithm in MIPLIB was modified to address two problems: (a) insufficient number of mesh intervals for thick reflectors of low absorbing material and (b) too many mesh intervals for highly absorbing regions. New input options to override the automatic mesh generation were added. Although this enhancement was designed primarily for CSAS1X, it potentially affects all control modules except SAS2H that use XSDRNPM.

KENO-VI was modified to detect intersecting HOLEs in the global unit. A problem will now terminate if intersecting HOLEs are detected in the global unit. Intersecting HOLEs are illegal in KENO-VI geometry but were not detected in the global unit in SCALE 4.4. Intersecting HOLEs in units other than the global unit are detected during tracking of particles through the intersecting regions. Several corrections were made to KENO-VI to prevent a particle from becoming lost and causing the code to enter an infinite loop.

MORSE was updated to correct a problem in determining the correct day of the week for dates after December 31, 1999.

Many other minor changes included in SCALE 4.4a are listed under "SCALE 4.4a Minor Modifications."

SCALE 4.4a Minor Modifications

In addition to the major enhancements noted above, SCALE 4.4a contains many minor modifications, including corrections to errors in SCALE 4.4 and changes to improve portability to different computing platforms. Note that some of these modifications may be duplicate listings of items mentioned in the previous section.

PICTURE

MRR98-056

Updated to handle the call by SAS4 when the "PARM=CHECK" option (added to the SAS4 control module in MRR98-057) is used. Also, added an option that allows users to specify an X-Y, X-Z, or Y-Z plot and have the code automatically calculate the cosines used for the plot.

SAS4

MRR98-057

Added a "PARM=CHECK" option that calls PICTURE from within the SAS4 to plot geometry but not run MORSE. SAS4 prepares or reads MARS geometry input data, reads PICTURE input, and calls PICTURE. Several other changes were made to error messages and formats.

SAS2

MRR98-058

Updated to correct an error introduced in SCALE 4.4 that caused the PARM=OLDSAS2 option to fail. Also corrected another problem introduced in SCALE 4.4 that caused spent fuel isotopic data written to file FT72F001 to be incorrect in certain cases where burnable poison rods or other inserts are removed from or inserted into the fuel assembly between fuel cycles.

MRR98-060

Updated to correct the dimensions on two arrays. Also changed a test comparing 2 floating point variable names equivalenced to integer variables to use function ISET. (This test has previously caused floating point underflows on some platforms.)

OADS

SAS4

MRR98-061

MRR98-062

Added a test on the MIPLIB error flag that terminates execution of the problem if an error occurred.

KENO-VI

Updated to allow a particle to cross from one hole directly into an adjacent hole even if the crossing is outside the allowed tolerances. This prevents some cases from entering an infinite loop.

SAS2

MRR98-063

Corrected minor discrepancy that resulted in invalid characters being written to title records in ORIGEN-S binary library. Some text editors could not read SAS2 output file when invalid characters were present.

MIPLIB

Updated to allow control modules to specify a sensitivity library from NITAWL and to allow number density input for an element that has multiple isotopes.

MRR98-064

MRR98-065

XSDRNPM

The Fortran source for XSDRNPM was converted to Fortran 90 free format. The input-output units were all moved to the 0\$ array. The energy of the average lethargy causing fission was added to the balance tables. The output files from the balance tables and the activities were modified and converted to ASCII files. A new file was created which contains the input and derived data from a problem. The flux file was changed to double precision. The code was modified to not run with fluxes out of core unless explicitly requested in the input. The coarse mesh generation algorithm used in rebalancing the inner iterations was modified to correct a problem that prevented convergence a very small class of problems.

C5TOC6/K5TOK6

MRR98-066/MRR98-067

The input file generated for CSAS6/KENO VI incorrectly labeled regions generated to surround HOLEs if there were more than one region in a unit that contained HOLEs. Because of a change in KENO-VI, these regions should no longer need to be generated. Subroutine PUNCH_GEOM was modified to not generate these regions.

QAD-CGGP

MRR98-068

Updated to correct an error introduced in SCALE 4.4. The dimension on one variable in the geometry was not updated when the input format was changed to match that of MARS input. This caused some jobs to fail. Also, updated to correct misspelled name of unit used for error output.

ARPLIB

MRR99-001

Updated to accept either lower or upper case input.

MRR98-059

being scored. The epsilon value for the comparison was also increased from 0.0005 to 0.001.

comparison of a double precision variable to a single precision constant resulted in boundary crossings not

MORSE Corrected a discrepancy in scoring boundary crossings of surface detectors. A roundoff error caused by

PRISM

MRR99-002

Updated to accept either lower or upper case input.

XSECLIST

MRR99-003

Updated to accept either lower or upper case input.

SAS2

MRR99-004

Updated for compatibility with the newest revisions to XSDRNPM (MRR98-065). The routines that wrote the XSDRNPM input files needed to be changed to account for the changes to XSDRNPM input. Subroutine COPYNX had to be changed to add the 0\$ array to the XSDRNPM input file, and to move setting the logical unit number of the flux output file from the 2\$ array to the 0\$ array.

UNIXLIB

MRR99-006

Changes to update XSDRNPM required a double precision ERF function. This function is part of the Fortran intrinsic library for the DEC Alpha's and the IBM RS/6000, but is not part of that library for the HP or the SUN workstations. This modification provided an update for the necessary routines to compute the double precision ERF when it is not part of the intrinsic library.

BONAMI

Updated to correct a problem that caused cases to fail when zero number density input is used.

SAS4

MRR99-008

MRR99-007

Updated to change the convergence criteria because the criteria in XSDRNPM were changed. Also added an input variable NDAB to allow the user to specify the number of direct access blocks allocated.

XSDOSE

MRR99-009

Added option to turn off angular flux print and made the default to be no angular flux print.

MODIFY

MRR99-010

MRR99-011

Updated subroutine LODATA for compatibility with changes in MRR98-064(MIPLIB).

XSDRNPM

(1) The code was modified to re-cycle if the final iteration performed after convergence failed the convergence test. For group banding cases, convergence is now reset after initial convergence to an order of magnitude less than overall convergence to prevent looping through iterations and never converting. (2) The default value for flux convergence tolerance, PTC, was reduced from 10^4 to 10^{-5} . (3) Errors were corrected in the calculation of activities by interval. This previously undocumented option is now documented in the XSDRNPM input description.

KENO-VI

Modified KENO-VI to detect intersecting HOLEs in the global unit. A problem will now terminate if intersecting HOLEs are detected in the global unit. Intersecting HOLEs are illegal in KENO-VI geometry but were not detected in the global unit in SCALE 4.4. Intersecting HOLEs in units other than the global unit are detected during tracking of particles through the intersecting regions.

MRR99-012

ORIGEN

MRR99-014

A new subroutine was added to provide the user the option of more significant digits in the output tables. Unit 71 was set as the default file number for the binary file containing concentrations and spectral data.

MIPLIB

MRR99-015

The XSDRNPM mesh generation algorithm was modified to address two problems: (a) insufficient number of mesh intervals for thick reflectors of low absorbing material and (b) too many mesh intervals for highly absorbing regions. New input options to override the automatic mesh generation were added too. Consistent with MRR99-011, the default value of PTC was reduced from 10^{-4} to 10^{-5} . Although this enhancement was designed primarily for CSAS1X, it potentially affects all control modules that use XSDRNPM.

KENO-VI

MRR99-016

The code was corrected to define LCHK as a logical variable in subroutine POSIT. In addition, an IMPLICIT NONE statement has been added to the beginning of the subroutine. All variables have been explicitly typed as appropriate.

MODIFY

MRR99-017

Program MODIFY was changed for consistency with the change in the direct access file made in MRR99-015(MIPLIB).

KMART

MRR99-018

An error that resulted in calculated volumes of zero for hemicylinders and arrays (if an array number was skipped) was corrected.

CSAS6

MRR99-019

MRR99-020

MRR99-021

The argument list for the call to subroutine PRTPLT was modified for consistency with changes made to KENO-VI in MRR99-012.

SAS2

Calls to subroutine EPSIG were changed for consistency with MIPLIB modifications in MRR99-015.

MORSE

The code was updated to correct a problem in determining the day of the week for dates after December 31, 1999.

KENO-VI

The code was updated to fix a roundoff problem that sometimes caused particles to get into an infinite loop when they transferred from one array location to another but in the process missed the unit boundary.

SUBLIB

Subroutine YREAD turns off the normal invalid character check done by the free form reading routines, but does not make any checks of its own for invalid characters. This can lead to erroneous results in some cases where a user mistypes a character when entering the array data to KENO. Checks were added to the array reading routine to give warning messages if illegal characters are read. Corrections were also made so YREAD would store correctly a double precision array.

MRR99-023

KENO-VI

MRR99-024

The code was updated to fix a problem where the unit boundary shares surfaces with other geometry regions and the unit is in an array. This problem could result in an infinite loop because the code fails to detect a particle crossing the boundary.

MRR99-022

SAS2

MRR99-025

The following modifications were made: (1) The calculation of the light element concentrations in ORIGEN-S was corrected when multiple fuel zones (MX=500) are used in the PATH B model. The code previously assumed only one fuel zone was present, and did not sum the zone volumes when multiple zones were present, resulting in erroneous light element concentrations in the ORIGEN-S depletion calculations. (2) The depletion of light element nuclides with mixture numbers 50 through 59 is now permitted. (3) The use of 1\$ data for MXT (input level 3) when reading a second working library in NITAWL is now permitted.

HEATING

MRR99-027

The code was updated, including Fortran 90 dynamic memory allocation, to improve portability on both workstation and PC platforms.

UNIXLIB

MRR99-028

DRR99-001

Subroutine JSTIME was modified to return time to the precision supplied by the system.

SAS4 Sample Problems

Updated SAS4 sample problems 1, 3, and 5 to remove references to variables FR1, FR2, FR3, and FR4, which became obsolete in SCALE 4.4.

XSDOSE Sample Problem DRR99-002

The XSDOSE section of the SCALE Manual documents the output of the sample problem and includes the printing of the fluxes. The input was modified to turn on the new angular flux print option in XSDOSE (see MRR99-009).

KENO V.a Sample Problems

Input data for sample problems 17 and 18 were changed. The number of neutrons started in sample problem 18 was changed to agree with the number per generation. Problem 17 was changed to specify the NBK parameter because the default was not large enough.

238- and 44-Group ENDF/B-V Libraries DRRs 99-004 and 99-005

Changes were made because problems were discovered with ²³⁸Np, ²⁵⁰Cf, ²⁵³Cf, ²⁴⁹Bk, ²⁴²Am, and ²³³Pa. The corrections for ²⁵⁰Cf, ²³³Pa, and ²⁴⁹Bk were very minor and should have no important effects. However, significant errors were identified for ²³⁸Np, ²⁵³Cf, and ²⁴²Am. In addition, these three nuclides do not have fission cross sections specified in the fast region in ENDF/B-V. This omission is obviously wrong, and because it could lead to very non-conservative answers for k_{eff} these three nuclides were removed from the library.

Major Enhancements in SCALE 4.4

Many enhancements and corrections were made to SCALE in the three years between the release of SCALE-4.3 and 4.4. SCALE 4.4 is compatible with the year 2000 (see "SCALE 4.4 is Year 2000 Compliant"). User-specified surface detectors have been added to SAS4/MORSE to improve its computational flexibility and efficiency (see "Improvements to SAS4 and MORSE"). The KENO-VI input requirements for HOLEs have been simplified and made more consistent with KENO V.a (see "KENO-VI HOLE Input is Simplified"). Additionally, some significant improvements to the speed and stability of KENO-VI have been made (see "KENO-VI Stability and Speed Improvements"). A large number of changes have been made to the SAS2H depletion module (see "SAS2H Corrections and Enhancements").

Several enhancements have been made to the PC version of SCALE 4.4. A significant effort has been made to minimize the programming differences between the PC and Unix workstation versions. Both versions

DRR99-003

will contain the same modules. The heat transfer modules HTAS1, HEATING, and the HEATING auxiliary codes are now available in the PC version for the first time. The PC version can recognize MS-DOS, Windows 95, Windows 98, and Windows NT operating systems and run under any of these systems from a single user command. CSAS can now be run directly from the CSASIN input processor.

ORIGEN-ARP, which was first released in the PC version of SCALE-4.3, has been enhanced and now runs under the SCALE driver, so it can run easily on workstations as well as PCs. ORIGEN-ARP has been improved significantly. ARP now interpolates on moderator density as well as burnup and enrichment for BWR fuel types. Several auxiliary codes have been added that enable users to generate their own ORIGEN-ARP cross-section libraries via SAS2H.

The default number of histories in KENO V.a and KENO-VI have been increased to 200,000 to produce more statistically accurate results. Color plots are now the defaults in both these codes.

PICTURE has been upgraded to generate two-dimensional (2-D) color plots of MORSE/MARS and QADS/QAD-CGGP geometry models like the color plots generated by KENO V.a and KENO-VI in SCALE-4.3. A new utility, LEGEND, has been created that adds a color/material legend and title to the color plots generated by KENO and PICTURE.

KMART is a new module to allow post-processing of a KENO V.a restart file, along with a working format cross-section library, to generate activities and/or broad-group fluxes and to compute the fission production activity if the components are available in the working cross-section library for the requested nuclide.

The group banding procedure in XSDRNPM was modified to significantly improve convergence for many large problems. Two examples of improvement include a fixed-source calculation with an 85% reduction in run-time and a k_{eff} calculation with a 50% reduction in run-time.

A correction was made to MIPLIB to allow the use of moderator in the gap region of a lattice cell calculation. Prior to this correction, if the same mixture number was specified in the moderator and the gap regions, the moderator density was incorrectly increased by a factor of two in the Dancoff factor calculation. In CSAS or CSAS6, this error results in a non-conservative calculated k_{eff} value that is approximately 0.5 to 1% low.

Other additions to SCALE 4.4 include the capability to perform a one-dimensional criticality search in CSAS1X (see "Criticality Search in CSAS1X"); the new KENO biasing weights library for 16-, 27-, 44-, 218-, and 238-group problems (see "New KENO Weights Library and Modules to Generate Weights"); the C5TOC6 and K5TOK6 conversion utilities for KENO-VI, and the Q0RDPN binary to ASCII conversion utility for functional module FIDO input files (see "New SCALE Utility Programs"); and the new zirconium hydride cross section data in the 238- and 44-group ENDF/B-V libraries (see "Zirconium Hydride Cross Sections").

The SCALE manual is distributed in electronic format on CD with the software. The manual is formatted in PDF files that can be read, searched, and printed using Adobe Acrobat Reader with Search. Users who desire a hard copy of the manual may obtain one from RSICC for an additional charge to cover reproduction costs.

Many other minor changes included in SCALE 4.4 are listed under "SCALE 4.4 Minor Modifications."

SCALE 4.4 is Year 2000 Compliant

Current and earlier versions of SCALE should calculate results correctly beyond the year 2000. However, when the year 2000 occurs, the output from some codes in these earlier versions will incorrectly display the year as 1900 instead of 2000. All known instances of this problem have been corrected in SCALE 4.4.

Improvements to SAS4 and MORSE

SAS4 and MORSE have been enhanced to allow users to specify multiple non-overlapping surface detectors on each surface (previously defaulted to 4 locations). These surface detectors can be divided into "sub-detectors" that enable the user to obtain detailed dose rate profiles. The flexibility in the use of these surface detectors makes them suitable for the substitution of point detectors, which are much less computationally efficient. Another enhancement to SAS4 was the addition of two options to pass data to PICTURE for plotting. One option generates geometry data only for the purpose of running PICTURE to view 2-D slices of the geometry. The other option provides "PARM=CHECK" option that calls PICTURE from within the SAS4 to plot geometry but not run MORSE. SAS4 prepares or reads MARS geometry input data, reads PICTURE input, and calls PICTURE.

Improvements to MORSE include orderly termination of a problem when errors in tracking to detector exceed a limit, an option to print/not print flux output after each batch, user capability to specify the number of direct-access blocks allocated on scratch units, compatibility with the year 2000, and reduction of the amount of error output in some cases.

KENO-VI HOLE Input Is Simplified

HOLE input in KENO-VI has been simplified. These changes are significant improvements requested by many users. The HOLE boundary no longer needs to be specified in the unit containing the HOLE. The HOLE boundary is automatically added by the program based on the unit specified in the HOLE record and its ORIGIN and ROTATE data. HOLEs cannot intersect. An example of the original and the new methods for adding HOLEs to a unit is given below. The input data no longer required are highlighted in the old input.

```
unit 1
hexprism 10 1.0 10.0 -10.0
media 1 10
boundary
       10
unit 2
cuboid
       10 6p20.0
hexprism 20 1.0 10.0 -10.0 origin x=5.0 y=3.0 rotate a2=90
media 2 10 -20
hole 1 20 origin x=5.0 y=3.0 rotate a2=90
boundary 10
unit 1
hexprism 10 1.0 10.0 -10.0
media 1
       10
boundary
       10
unit 2
cuboid
       10
          6p20.0
media 2
       10
hole
     1
       origin x=5.0 y=3.0 rotate a2=90
boundary
       10
```

Note that in addition to the lack of a geometry record which defines the HOLE boundary, the HOLE record no longer has a vector definition array. The new version of KENO-VI should be able to read most old input files correctly, but they will take longer to run.

KENO-VI Stability and Speed Improvements

Improvements have been made to KENO-VI since the last Web update to increase the stability and the speed of KENO-VI. To improve the code's stability, logic has been added to KENO-VI to check if a particle is still in the boundary region of a unit when it is no longer in any region. If this occurs, an error message is printed and the program terminates. This situation is often caused by an undefined volume in a unit and could previously lead to the program entering an infinite loop.

To improve the execution speed of KENO-VI, the following modification has been made: When a particle is in an array, the particle is tracked both in the unit where it is currently within the array and in the unit containing the array. It needs to be tracked in the unit containing the array so it knows when it crosses out of the array. Previously, the crossing distance to every surface in that unit was calculated. The code has been changed to calculate only the crossing distance to the surfaces related to the array boundary. This change will significantly reduce the running time of problems where particles spend most of the time in an array or where the array is in a complex unit containing many additional regions unrelated to the array boundary. Running times have been reduced by as much as 15% for arrays contained in complex units.

SAS2H Corrections and Enhancements

A large number of corrections and enhancements have been completed in SAS2H for the release of SCALE 4.4. They are listed below.

- Two errors were corrected for cases where there were more than three zones prior to the mixture 500 zone in the Path B model: (1) The atomic densities were not updated with depleted values in the cross-section processing/spectrum calculations when fuel was input to more than one zone (including the cell-weighted mixture 500 zone). (2) Nuclides that only appear in the moderator were depleted. An example of a model that would be affected is a BWR Path B model with Gd-poisoned fuel pin, gap, clad, moderator, and mixture 500. Usually these discrepancies cause only slight errors in the neutronics part of such BWR cases, but could significantly impact the results for some unique fuel models.
- Input checks and error messages were improved.
- A programming error that caused problems with "MXREPEATS=0" cases to fail on PCs was corrected. These cases are typically used to remove or insert burnable poison rods from one cycle to the next in a depletion.
- A modification was made to correctly calculate the fuel bundle area printed in the shipping cask geometry for the triangular-pitch lattice type of fuel.
- The FUELBNDL input parameter was changed from integer to floating point to allow fractions of fuel assemblies.
- The temperatures of the zones (except the gap) in the Path A model may now be changed for each cycle, similar to the BFRAC and H2OFRAC variables.
- The limit on the total number of libraries (NCYC*NLIB/CYC) was increased to 9,999. However, because the number of unique output file names in SCALE is currently limited to 10,000 and there are typically 11 output files per pass in SAS2H, the practical limit for users is approximately 900 total libraries.

- A significant change was implemented to enable fixed sources (volumetric source or angular flux at a boundary) to be used with INPUTLEVEL=3 cases. This change gives users the capability to model cases such as the irradiation of target materials without explicitly including the irradiation facility in the SAS2H model. Previously the driver geometry and its specific power were required as input to govern the depletion calculation. This fixed-source option is specified in the INPUTLEVEL=3 data as either a volumetric or boundary source. SAS2H then determines the flux based on this fixed source and passes it to ORIGEN-S for use in a flux-driven depletion calculation.
- SAS2H was modified to allow two zones in the Path A model to contain the same nuclide, one at a density of 10⁻²⁰ and the other at a density of greater than 10⁻¹⁰.
- The fixed dimension of 1000 for the Path B mixing table arrays was removed where possible and increased otherwise. The size needed for these arrays can be as large as five times the Path A mixing table size (currently a maximum of about 300 in the 44-group library) plus the number of nuclides outside the zone of mixture 500. The dimension of the arrays that remain fixed was increased to 5000. The remaining arrays were variably dimensioned to the maximum of 2000 or the sum of the Path B mixing table size plus 100 (to allow increases of at least 100 nuclides for INPUTLEVEL=3).

Criticality Search in CSAS1X

MIPLIB has been updated to add input options to MORE DATA that allow specifying an XSDRN adjoint solution, a zone width search, a unit number for the balance table file, and suppressing the cross section weighting. The addition of the zone width search option now gives CSAS1X the capability to perform one-dimensional criticality searches on the size of a geometry zone in XSDRNPM.

New KENO Weights Library and Modules to Generate Weights

Because there was a need to be able to automatically generate a set of weights for use in KENO for arbitrary group structure and material, a new control module GWAS and a new functional module GENWGTS have been added. GWAS sets up an adjoint XSDRNPM case and generates weights automatically from the fluxes. GENWGTS is called by GWAS to read the adjoint fluxes, automatically generate the KENO weighting functions from them, and write an output file for use by program WGT. The biasing weights library for KENO V.a and KENO-VI was updated using the new modules GWAS and GENWGTS. The library contains weights for paraffin, water, concrete, and graphite in 16, 27, 44, 218, and 238 energy groups. The new library was created because there were no biasing data for use with the new ENDF/B-V 44- and 238-group libraries that were released in SCALE-4.3. The old library only contained data for 16, 27, and 123 groups. Note that the 123-group library was removed in SCALE-4.3. Results using this new weights library with the 16- and 27-group cross-section libraries will be different but should agree within statistical uncertainty.

New SCALE Utility Programs

Several new utility programs have been developed for SCALE. A new utility LEGEND has been created that adds a title and legend to the color GIF files generated by KENO V.a or KENO-VI. LEGEND was released last summer with the updated version of KENO-VI (see the June 1996 issue of the Newsletter). The versions of KENO V.a and PICTURE in the next release of SCALE will use LEGEND as well.

K5TOK6 and C5TOC6 are new utilities that convert KENO V.a and CSAS input files to KENO-VI and CSAS6 input files by translating the KENO V.a geometry input to KENO-VI format. Since the converted input files are based on the KENO V.a geometry input, they are generally not the most effective in terms of the

KENO-VI geometry features. They do provide the user with a working KENO-VI input file that can be modified for improvements.

Another new utility is QORDPN. It converts a binary input file generated by a CSAS or SAS control sequence for one of the functional modules that use FIDO input such as BONAMI, NITAWL-II, ICE, and XSDRNPM, to an ASCII input file. The user can easily edit the ASCII input file to run a modified version of a problem. This capability allows the user to specify input parameters that are not available in the standard control sequences.

Zirconium Hydride Cross Sections

The ENDF/B-V cross-section libraries in SCALE 4.4 have been updated with thermal scattering data for zirconium hydride. New standard compositions have been added to the Standard Composition Library to allow access to these new cross sections. The new standard compositions are the following:

ZRH2 - density 5.61 g/cc, 1 zirconium to 2 hydrogen atoms **ZR5H8** - density 5.61 g/cc, 5 zirconium to 8 hydrogen atoms **H-ZRH2** - density 1.0 g/cc, the hydrogen in zirconium hydride **ZR-ZRH2** - density 1.0 g/cc, the zirconium in zirconium hydride

SCALE 4.4 Minor Modifications

In addition to the major enhancements noted above, SCALE 4.4 contains many minor modifications, including corrections to errors in SCALE-4.3 and changes to improve portability to different computing platforms. Note that some of these modifications may be duplicate listings of items mentioned in the previous sections.

18-Group Gamma Library: (1) Processed through CORECTOL to mark it as NITAWL-II compatible. Could not be processed by NITAWL-II prior to this correction. (2) Updated to replace the Henderson and Claiborne-Trubey dose factors because the data overestimated the doses by about 25%. The replacement data were taken from the 22n-18g group coupled library.

27-Group Burnup Library: Updated data on rhodium-103 so that Bondarenko factors are generated in the unresolved resonance range. A test case based on 4.5 wt % UO₂ burned to 54,585 MWD/MTU, cooled for 5 years, was run. The calculated k_{eff} increased by 0.06% with the new Rh-103 cross sections.

44-Group ENDF/B-V Library: The 44-group neutron cross-section library was recollapsed from the 238-group library using the corrected version of MALOCS. The impact of the MALOCS corrections should be negligible. See MALOCS corrections below for more information.

238-Group and 44-Group ENDF/B-V Libraries: (1) Corrected negative scattering and total cross sections for minor actinides, fission products, and beryllium metal. Also corrected thermal Bondarenko factors for potassium. Only significant impact should be on cases where potassium is important in the thermal range. (2) Updated to remove resonance parameters from specially weighted stainless steel nuclides because they were being doubly applied. Also, zirconium and hydrogen cross sections for zirconium hydride were added to both libraries.

AJAX: Corrected a portability problem in subroutine ANN caused by the array D being typed real by default, and then printing variables from it using an integer format.

ARP: Updated for optional interpolation on moderator density and made more general to handle user-created basic cross-section libraries. ARP now runs under SCALE driver on PCs and workstations.

ARPLIB: This is a new utility program that creates binary ORIGEN libraries for ARP. It extracts libraries at the desired burnups from large multi-burnup library files generated by SAS2H.

AWL: Added AWL to SCALE to convert AMPX working format libraries between ASCII and binary formats. It is required for the SCALE Criticality V&V package.

BONAMI: (1) Updated to improve error handling procedure and messages. (2) Corrected a problem that caused cases to fail when zero number density input was used.

C5TOC6/K5TOK6: The input file generated for CSAS6/KENO VI incorrectly labeled regions generated to surround HOLEs if there were more than one region in a unit that contained HOLEs. Because of a change in KENO-VI, these regions should no longer need to be generated. Subroutine PUNCH_GEOM was modified to no longer generate these regions.

COUPLE: Updated for year 2000 compatibility, PC version compatibility, uppercase or lowercase input files, and for printing the banner page only when COUPLE is first called.

COUPLE Sample Problem: Updated to change the inner radii in the 3\$\$ array to zero for consistency with the NITAWL-II input requirements.

CSAS/KENO V.a /KENO-VI/SAS2H Sample Problems: Updated to use the 44-group library.

CSAS and MODIFY: CSAS was updated to add additional required data to the direct access file written for a search problem. MODIFY was updated to read this file. A check for valid parameter constraints and the printing of an error message if they are invalid were also added.

H7MAP: For 1-D problems, if the number of nodes is large enough that the output exceeds one page in length, only part of the output is displayed. The output from the first page is repeated, and the rest of the output is never printed. Correcting this problem involved simply moving one statement from within a DO loop to a point before the DO loop.

H7TECPLOT and H7MONITOR: Outdated comment lines in the BLOCK DATA subroutine that are used to activate or deactivate computer-system-dependent blocks of code resulted in memory not being allocated for variably-dimensioned arrays. An additional correction was made in H7TECPLOT, where the x and y axes were reversed when a translation was done from spherical to Cartesian coordinates.

HEATING Sample Problems: The input file for the second HEATING sample problem was modified to first compile and run a simple Fortran program to convert an ASCII node connector file to binary format for use by HEATING. This modification improves installation portability on different Unix workstation platforms.

KENO V.a: (1) Updated subroutine RDPLOT to correct the format used to print the error message for incomplete input data. (2) Corrected variable type in format statements for debug prints. This discrepancy causes problems on some systems, including PCs when debug print is turned on (DBG=YES). (3) Changed default plot type to color. (4) Updated to correct an error in the k_{eff} calculation that caused a doubling of k_{eff}

when using an ICE mixed AMPX format working library. This error was introduced in SCALE-4.3. (5) Updated to allow printing the frequency distributions for 1-group problems. (6) Updated to match KENO-VI with respect to matrix calculations. The calculation of lifetime was corrected because it was not based on a fair game. These changes can cause the lifetime to be substantially different. The error in the lifetime calculation has probably been in KENO V.a since its initial release in SCALE-3.

KENO-VI: (1) Updated to correctly number error messages, replace the word PICTURE with the word PLOT throughout the program, and print plot symbol data only for character plots. (2) Updated subroutine TRACK to correctly sum fluxes. The fluxes didn't sum properly for units that were crossed by an array boundary. (3) Enhanced to allow HOLEs to be used without explicitly defining a geometry region where the HOLE was to be inserted. The code automatically adds to the unit containing the HOLE the equations that define the boundary of the unit contained within the HOLE, properly rotated and translated as specified on the HOLE record. (4) Fixed problem writing restart file on Sun workstation. (5) Modified the subroutine GEOMIN to correct an infinite loop problem. A pointer to the array that contained the unit boundary x, y, and z position was improperly specified. The pointer LBOXGM has been respecified. (6) Corrected a problem where a particle's inability to cross an array boundary due to round-off problems caused an infinite loop. (7) The code was updated to correct a problem that could cause cases containing arrays with complex boundaries to incorrectly calculate k_{eff} . (8) Corrected a discrepancy that caused the code to go into an infinite loop when boundaries consisted of a body with multiple sets of paired planes. (9) Corrected an error that prevented a restart problem from producing a readable file if it stored data in the generation before the code entered the infinite loop. (10) Corrected a problem involving nested arrays and hexprisms that sometimes caused the code to go into an infinite loop if a collision occurred very near a boundary. (11) Corrected a problem that occurred when a particle crossed a boundary and immediately had a collision that reversed its direction without traveling any distance. The particle sometimes got lost and entered an infinite loop. (12) Modified subroutine TRACK to correct a problem that occurred when an array shared a boundary with a hole that contained the array. If the distance to cross out of the array is less than EPS, the particle now exits the array instead of crossing from one unit to another within the array. (13) Corrected an error in placement of starting points for start type 6. (14) Corrected an error in the flux calculation for regions containing holes or arrays. (15) Corrected a roundoff problem with arrays offset a long distance from the origin. This problem could sometimes cause an infinite loop. (16) Corrected a variable that was misnamed and, as a result, was used without being initialized. (17) Set a lower limit for the calculated crossing tolerance to prevent the code from entering an infinite loop. Also made minor changes to the particle-tracking output when parameter TRK=YES. (18) Updated to allow starting points in a volume larger than the global unit. (19) Updated to terminate a problem if a particle in subroutine TRACK gets lost. Also, updated to allow problems that contain array data but do not reference the arrays in the GEOMETRY data block to run. (20) Updated to change the logic in calculating the array boundary crossing distance (decreases running time for some problems) and to change the default plot type to color. (21) Updated to correct a problem with non-cuboidal albedo boundaries and to add additional space for matrix data. The standard deviations for average k-effective by generation skipped are now accumulated in batches. Because of these changes, any matrix information and the table of average k-effective by generation skipped in the sample problem output will be different. (22) Corrected tracking to allow simultaneous crossing of multiple shared boundaries and to correctly sum fluxes after a collision. Also corrected error related to calculating the x-offset of an array. Changed input logic for ORIGIN and ROTATE data to sum values for an auxiliary keyword for a given geometry record rather than use the last value. This last change was made for compatibility with C5TOC6. (23) Updated to allow a particle to cross from one hole directly into an adjacent hole even if the crossing is outside the allowed tolerances. This prevents some cases from entering an infinite loop. (24) Modified to detect intersecting HOLEs in the global unit. A problem will now terminate if intersecting HOLEs are detected in the global unit. Intersecting HOLEs are illegal in KENO-VI geometry but were not detected in the global unit. Intersecting HOLEs in units other than the global unit are detected during tracking of particles through the intersecting regions.

KENO-VI Sample Problems: Sample problem 22 has been altered in the KENO-VI input file. The geometry data were changed to take advantage of the simplified method of adding HOLEs.

KMART: This new module was added to allow post processing of a KENO V.a restart file, along with a working format cross-section library, to generate activities and/or broad group fluxes and compute the fission production activity if the components are available in the working cross-section library for the requested nuclide. A resonance self-shielded value is used for the fission cross section.

MALOCS: (1) An error was corrected in weighting a coupled master library using a neutron spectrum from a neutron library combined with an explicitly specified gamma-ray spectrum. Also introduced several options for truncating upscattering terms. Changes were made to properly weight the delayed and prompt values of v. (2) A discrepancy was corrected that caused the storage of invalid data in the temperature array. In the 44-group library this caused the data for the third temperature to be overwritten and to be used for a temperature that is effectively zero degrees Kelvin.

MARSLIB: (1) Updated to change the value of epsilon used to check for round-off errors in the geometry and, thereby, reduce the number of such errors. This modification eliminated the errors previously experienced with several of the SCALE Shielding V&V problems. (2) Variables IR in subroutine AZIP and IRET in subroutine UNIS are now initialized to 0 before they are used as arguments to function IREAD. In AZIP and in UNIS a 'CALL EXIT' was changed to a 'STOP'. In subroutine ALBERT, the nH was removed from two formats and replaced with quotes.

MIPLIB: (1) Updated to allow moderator mixture in a lattice cell to be used in the gap and to add the ability to specify the inner radius to the resonance data. (2) Updated to allow a control program to suppress certain output by setting flags. Added input options to MORE DATA to allow specifying an XSDRNPM adjoint solution, a criticality search in XSDRNPM using the zone width search option, a unit number for the balance table file, and suppressing the cross section weighting. (3) Corrected an error allowing the input of a number density for a compound or alloy. This error was introduced in SCALE-4.3. (4) Updated to allow number density input for an element that has multiple isotopes.

MIPLIB, SUBLIB, UNIXLIB, COMPOZ, MODIFY: Updated to use new direct access routines for character data and replaced references to specific intrinsic FORTRAN functions with their generic names for Fortran 90 compatibility. Also corrected an error in the Dancoff factor calculation that occurs for cylinders in a MULTIREGION problem. This error results in an error in the calculated k_{eff} value of approximately 0.1% for a cylinder the size of a typical fuel rod. Note that this error did not occur in the LATTICECELL geometry option.

MORSE: (1) Updated the limit on number of tracking errors, the unit number for surface detector results, and increased dimensions on surface detector arrays. (2) Updated to include changes to surface detectors for SAS4 cases, to correct a problem in DIREC for NDSG=17 case, to allow orderly termination of a problem when errors in tracking to detector exceed a limit, to add an option to print/not print flux output after each batch, to input the number of direct-access blocks allocated on scratch units, to change the way date is output (to handle the year 2000 and beyond) and to reduce the amount of error output in some cases.

MORSE Sample Problem 8: The 10** array was modified by adding a 22r0.0 at the end.

NITAWL: Corrected the potential cross section used for higher order resonances (L>0). The impact should be negligible in most cases.

ORIGEN-S: (1) Updated cross-section edit of binary libraries to add option to change cross-section values to quantities derived from total flux (as in ORIGEN2) instead of thermal flux. (2) Corrected calculation of printed average power. (3) Added error message if number of time steps is less than 4 for reactor startup case. (4) Updated to correct the loop index for re-normalizing the R8 array. (5) Updated for year 2000 compatibility and to correct calculation of He-3 and H-3 for long time steps and high flux. (6) Updated to allow saving concentrations and then continuing with a subcase using a new library. (7) Updated to allow the flux input value for the last time step to be zero.

ORIGEN-S Master Photon Library: The library was updated to correct the photon yield data for Ra-222 and Th-226, and the photon yields for gammas accompanying (α, n) and spontaneous fission reactions were updated to reflect small changes that occurred during the last decay data update.

OSBICO/OSBIRE: Updated for compatibility with lastest version of ORIGEN-S.

PERFUME: Improved the selection of new moments when a moment is found to be invalid and converted coding to a more standard Fortran 90.

PERFUME Sample Problem: The special cross-section data file required for the PERFUME sample problem has been added to SCALE, and the sample problem input data have been updated to use it. This problem has not been included in SCALE since SCALE was moved from the mainframe to the workstation several years ago.

PICTURE: (1) The module was updated to add option of generating 2-D color GIF plot files of the geometry model input for the SCALE shielding modules MORSE or QAD-CGGP. This capability already exists in the SCALE criticality modules KENO V.a and KENO-VI. (2) The module was also updated to handle the call by SAS4 when the "PARM=CHECK" option is used. (3) An option was added that allows users to specify an X-Y, X-Z, or Y-Z plot and have the code automatically calculate the cosines used for the plot.

PRISM: This is a new utility program for ARP that can read a single SAS2H or other type of input file and generate multiple copies by replacing generic symbols with specified values.

QADS/QAD-CGGP: (1) Updated to make the combinatorial geometry input data have the same format as the combinatorial portion of the MARS geometry input which is used in other SCALE modules. Old input files will no longer run. (2) Updated to add error checks for limits on number of compositions and elements and to fix the code to handle upper- or lower-case input. (3) Added a test on the MIPLIB error flag that terminates execution of the problem if an error occurred.

QADS and QAD-CGGP Sample Problems: Updated to change the geometry input format to agree with the changes made to QADS and QAD-CGGP.

RADE: Corrected an error in subroutine MCHEK that caused RADE to fail on a Sun workstation. A constant was passed as an argument to subroutine MCHEK to be used for dimensioning, but MCHEK later used the same variable for other purposes. The argument was renamed and used in the dimension statement.

SAS1: Scratch unit N16 was not opened when SCALE driver returned to SAS1 after cross-section processing and prior to XSDRNPM shielding calculation. This problem caused SAS1 to fail on the PC. The OPEN statement was moved to the beginning of main program so it would always be opened.

SAS2H: (1) Updated to fix a problem where the reload feature failed to reload correctly for the final cycle type. (2) Modified subroutine SZNSEG so that it would not cause the ORIGEN library creation to fail by not recognizing the cross-section library specified. The problem was an uninitialized variable ERSET. The change was to initialize the variable as "FALSE" before calling subroutine GETLIB. A change was also made so that the library name was passed to GETLIB instead of only the first 4 characters. (3) Updated to correct an error in the mass of the clad when the clad was input as an isotope and the mass was not input as a light element in Data Block 15. (4) A problem was corrected where the atomic densities were not updated with depleted values in the cross-section processing/spectrum calculations when fuel was input to more than one zone (including the cell-weighted mixture 500 zone) and there were more than three zones prior to the mixture 500 zone. For example, consider a BWR Path B model with Gd-poisoned fuel pin, gap, clad, moderator, and mixture 500, where there are four zones prior to the mixture 500 zone. Usually this discrepancy causes only slight errors in the neutronics part of such BWR cases, but could significantly impact the results for some unique fuel models. (5) The module was updated for compatibility with the newest revisions to XSDRNPM. The routines that wrote the XSDRNPM input files needed to be changed to account for the changes to XSDRNPM input. Subroutine COPYNX had to be changed to add the 0\$ array to the XSDRNPM input file, and to move setting the logical unit number of the flux output file from the 2\$ array to the 0\$ array.

SAS3: (1) Variable IR in subroutine OAKTRE is now initialized to 0 before it is used as an argument to function AREAD. Subroutine RINPUP was updated to initialize the variables JMK and IML in COMMON JOMK because they are used when SAS3 calls MARSLIB routines and they were not being defined prior to the calls to JOMIN. (2) Updated to be compatible with the new MORSE input options and to implement the PARM=SIZE parameter which was not being passed to MORSE.

SAS4: (1) Subroutine MORINP was updated to add common JOMK and to initialize the variables JMK and IML in common JOMK because they are used when SAS4 calls MARSLIB routines and they were not being defined prior to the calls to JOMIN. (2) The code was modified to translate the user input to lowercase. This change was necessary to make SAS4 capable of handling input files in either upper or lowercase, as the other SCALE neutronic codes already do. (3) The code was updated to correct the dimensions on two arrays. Also changed a test comparing 2 floating point variable names equivalenced to integer variables to use function ISET. (This test has previously caused floating point underflows on some platforms.) (4) Added a "PARM=CHECK" option that calls PICTURE from within the SAS4 to plot geometry but not run MORSE. SAS4 prepares or reads MARS geometry input data, reads PICTURE input, and calls PICTURE. Several other changes were made to error messages and formats. (5) The convergence criteria was updated because the criteria in XSDRNPM were changed. (6) The input variable NDAB was added to allow the user to specify the number of direct access blocks allocated.

SAS4 Sample Problems: (1) A ninth sample problem was added to illustrate the new enhanced surface detector option. (2) SAS4 sample problems 1, 3, and 5 were updated to remove references to variables FR1, FR2, FR3, and FR4, which became obsolete in SCALE 4.4.

SCALE Driver: (1) Updated to allow processing the rest of the input data after invalid input data are detected. (2) The driver has been updated to obtain and act on error codes from the modules. The driver now prints error codes and stops further sequence execution.

Standard Composition Library: (1) The default density of B4C was corrected from 2.54 to 2.52 g/cc. This error was introduced in SCALE-4.3. For an LWR fuel problem with B_4C pins between fuel assemblies, the calculated k_{eff} value increased less than 0.2%. (2) Updated to reference the nuclides used for zirconium

hydride which have been added to ENDF/B-V libraries and to add four new standard composition names related to zirconium hydride. (3) The densities for SS304 nuclides were made identical to the standard versions of the same nuclides. (4) Updated the standard composition ZIRC2 for consistency with current technical standard and updated densities for SS304 and SS316. (5) Mass of copper was corrected (it was in atomic mass units instead of C-12 mass units). Density of C-GRAPHITE was changed from 1.0 to 2.3 g/cc. The following compositions were added: GRAPHITE, KEROSENE, KERO(H2O), NORPAR13, NORPAR(H2O), POLYVINYLCL, PVC, PVC(H2O), TBP, TBP(H2O).

SUBLIB/UNIXLIB: (1) Updated to remove year 2000 problems. These changes basically changed the year format for the QA verification table to 4 digits. Additionally, the date format was changed to use a 3-character month abbreviation so that the date would be unambiguous. A new line was added to the QA verification table printout to identify the machine on which the program was run. (2) Updated to remove an artificial limit of 8-character-length filenames for non-standard files in subroutine OPNFIL. (3) Modified subroutines LISTOA and VERGET for consistency of the length of the string containing the executable name, the creation date, and the directory path to the executable. The directory path was increased to 256 characters. (4) Updated subroutine FINDQA to place underscores in place of the blanks in the date to simplify the automatic updating of the QA verification table. (5) Replaced the CHARACTER*8 type of variable CAT with a variable length CHARACTER type in subroutine NOTE. This corrected a problem in WAX on the Sun workstation. (6) Added comments to subroutine OPENDA indicating how to replace the Fortran 90 specific INQUIRE statement with a Fortran 77 compatible statement. (7) Replaced all STOP statements with calls to EXIT with the appropriate error return code for proper detection by the driver. (8) Modified subroutine DREAD to correctly process data following the second digit of an exponent when called by the array reading subroutine YREAD. Previously, exponents of 10 or greater sometimes caused errors in the reading of FIDO-type input arrays. This discrepancy was discovered in an ORIGEN-S case. (9) Changes to update XSDRNPM required a double precision ERF function. The necessary routines were added to compute the double precision ERF when it is not part of the intrinsic library.

XSDOSE: An option was added to turn off angular flux print and no angular flux print was made the default.

XSDOSE Sample Problem: The input was modified to turn on the new angular flux print option in XSDOSE.

XSDRNPM: (1) The special activity file and balance table file were not written correctly, and the correct file structure is not what was documented. Subroutine SETUP was changed such that it would not read or write dummy records after the files were opened. These read/writes were the only way to open the files before Fortran 77, but when the code was converted to Fortran 77 and OPEN statements were added to explicitly open the files, the extra statements were not removed. (2) Updated to correct the accumulation of zone fluxes when inner-cell weighting is selected. (3) Updated to correct the value of productions/absorptions when a direct buckling search is done. (4) The code was also modified to collapse prompt u and delayed u using the same procedure as used to collapse the total v. (5) Corrected calculation of broad group balance tables to be consistent with fine group tables. Broad group cross sections were not in balance when upscatters were collapsed. (6) Updated to print clearer messages when allocated memory is insufficient. Also, in these cases if an output file could not be written, any previously existing file was deleted to prevent subsequent calculations from reading it. (7) The Fortran source for XSDRNPM was converted to Fortran 90 free format. (8) The input/output units were all moved to the 0\$ array. The energy of the average lethargy causing fission was added to the balance tables. (9) The output files from the balance tables and the activities were modified and converted to ASCII files. A new file was created which contains the input and derived data from a problem. The flux file was changed to double precision. (10) The code was modified to not run with fluxes out of core unless explicitly requested in the input. (11) The coarse mesh generation algorithm used in rebalancing the

xxvii

inner iterations was modified to correct a problem that prevented convergence of a very small class of problems.

XSECLIST: This is a new utility program for ARP which prints lists of absorption and fission cross sections vs burnup for nuclides from ORIGEN-S multi-burnup binary libraries.

Portability

Version 4.4a of the SCALE system has been developed to ensure portability among various computing platforms. The system is maintained and enhanced at ORNL under quality assurance and configuration management plans. The system has been routinely tested on IBM and DEC workstations. In addition, a version for personal computers (PCs) is included in the package. The PC version runs on Windows 95, 98, and NT4.0 and platforms. The system also has been installed and tested by ORNL on SUN and HP workstations. Information needed to install and run SCALE on each of these systems is included in README files with the software package distributed by the code center.

Related developments

The definition of "easy-to-use" has changed considerably since the late 1970s. As funding has allowed, the ORNL development staff has sought to develop user interfaces that provide a distinct aid to novice or occasional users of the system.

The ORIGNARP input processor is a MS-DOS PC program designed to assist a user in creating an ORIGEN-S input file. It is coupled with the ARP code, which interpolates on standard LWR ORIGEN-S binary libraries, in the ORIGEN-ARP system (Section D1).

CSPAN (Criticality Safety Input Processor for Analysis) is the Windows GUI replacement for the CSASIN input processor for the CSAS criticality sequences in SCALE. CSASIN was an MS-DOS program developed in 1990–91 to assist new and occasional SCALE users. Because CSASIN is incompatible with Pentium II and later PCs, a new easier to use and more powerful Windows program has been developed. CSPAN can be used to read and modify an existing SCALE input file or to create a new input file. CSPAN can call SCALE to execute CSAS using the input file it creates. The SCALE Standard Composition library and the selected SCALE cross-section library are read by CSPAN and the user is only allowed access to those compositions, solutions, and arbitrary materials, unit cell data, optional parameter data, and KENO V.a input data. CSPAN can call SCALE to execute any CSAS case. CSPAN runs under Windows 95, 98, or NT. Checks for errors are included throughout the program to verify that the input is valid. The initial version distributed with SCALE 4.4a is considered a beta test version. Help files have not been developed yet, but will be made available soon.

The initial version of a Windows-based GUI for HEATING named Visual Heating is also included in the SCALE 4.4a release. Visual Heating assists the user in preparing a HEATING input file and includes a 3-D graphics display of HEATING geometry models using OpenGL. Visual HEATING can execute the HEATING case in SCALE and display the output file in a text editor. It includes an HTML Help system similar to many commercial Windows programs. The help system is accessible both from the main menu bar and by pressing the F1 key. Most of the information in the HEATING User's Manual (Sect. F10 of the SCALE Manual) is included in the help system along with explanations of Visual HEATING input screens.

Availability

The SCALE code system and the other software designated under "Related Developments" have been packaged by the Radiation Safety Information Computational Center (RSICC). The SCALE system and the related software may be obtained by contacting

Radiation Safety Information Computational Center Oak Ridge National Laboratory . P.O. Box 2008 Oak Ridge, TN 37831-6362 Telephone: (865) 574-6176 FAX: (865) 574-6182 E-mail: rsic@ornl.gov Internet: http://www-rsicc.ornl.gov

Acknowledgments

The SCALE system is maintained at ORNL and enhanced to keep pace with normal technical advancements in the analysis areas of interest. Although the NRC continues its role as the controlling sponsor of the SCALE system, the U.S. Department of Energy (DOE) began assisting in the maintenance of the SCALE system in 1987. Over the years numerous individuals within these sponsoring organizations have played key roles in ensuring that the SCALE system remained a readily available, reliable system for the analysis of nuclear fuel facilities and packages. The individuals who have worked with the ORNL staff to coordinate maintenance and development activities include R. H. Odegaarden (NRC, ret.), G. H. Bidinger (NRC, ret.), C. Mauck (DOE, ret.), E. P. Easton (NRC), W. H. Lake (NRC and DOE), M. E. Wangler (DOE), and M. G. Bailey (NRC).

As demonstrated by this Manual, there are also numerous individuals from the ORNL staff who have contributed significantly to the development and enhancement of the SCALE system. Most are credited by their authorship of the sections in this Manual that correspond to their work. A few individuals have been essential to the development and maintenance of SCALE but are not credited by authorship. These individuals include: S. K. Lichtenwalter, who is responsible for implementing and controlling software system changes; C. H. Shappert, who provided the editorial review of this Manual; and L. F. Norris (ret.) and W. C. Carter, who prepared the entire manuscript. Special acknowledgement is also due to R. M. Westfall and G. E. Whitesides (ret.) who, together with R. H. Odegaarden of the NRC, developed the concept and long-range goals of the SCALE system in the late 1970s. Finally, this Project Leader will always be grateful to C. V. Parks, who served as the SCALE Project Leader for the first 15 years, and L. M. Petrie, who for 20 years has consistently provided consultation and advice on the technical direction that should be taken in development of nearly every module and cross-section library that are in the present system.

Stephen M. Bouman

Stephen M. Bowman SCALE Project Leader December 1999

References

- N. M. Greene, W. E. Ford III, L. M. Petrie, and J. W. Arwood, AMPX-77: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Cross-Section Libraries from ENDF/B-IV and/or ENDF/B-V, ORNL/CSD/TM-283, Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, October 1992.
- N. M. Greene, J. W. Arwood, R. Q. Wright, C. V. Parks, *The LAW Library-A Multigroup Cross-Section Library for Use in Radioactive Waste Analysis Calculations*, ORNL/TM-12370, Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory, August 1994.
- M. D. DeHart and S. M. Bowman, Validation of the SCALE Broad Structure 44-Group ENDF/B-V Cross-Section Library for Use in Criticality Safety Analyses, NUREG/CR-6102 (ORNL/TM-12460), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, September 1994.

Control module	Analysis function(s)	Functional modules executed	Section reference
CSAS	1-D deterministic calculation of neutron multiplication 3-D Monte Carlo calculation of neutron multiplication Problem-dependent cross-section processing Multiplication search or spacing	BONAMI NITAWL-II XSDRNPM KENO V.a ICE	C4
CSAS6	3-D Monte Carlo calculation of neutron multiplication	BONAMI NITAWL-II XSDRNPM KENO-VI	C6
ORIGEN-ARP	Point depletion/decay of nuclear fuel and radioactive material	ARP ORIGEN-S	D1
SAS1	 1-D deterministic calculation of radiation transport through shield and dose evaluation at a point Calculation of dose at detector based on leakage from critical volume 	BONAMI NITAWL-II XSDRNPM XSDOSE	S1
SAS2	Point depletion/decay of nuclear fuel 1-D radial shielding analysis in cylindrical geometry	BONAMI NITAWL-II XSDRNPM COUPLE ORIGEN-S XSDOSE	S2
SAS3	Dose evaluation using MORSE Monte Carlo code	BONAMI NITAWL-II XSDRNPM MORSE-SGC	S3
SAS4	Calculation of dose outside of transportation package using MORSE code and automated biasing techniques	BONAMI NITAWL-II XSDRNPM MORSE-SGC	S4
QADS	3-D point-kernel gamma-ray shielding analysis	QAD-CGGP	S5
HTAS1	R-Z steady-state and transient analyses of a transportation package	OCULAR HEATING	H1

Table 1 Analysis capabilities summary of the SCALE control modules

Module	Function	Section reference
BONAMI	Resonance self-shielding of cross sections with Bondarenko factors	F1
NITAWL-II	Resonance self-shielding of cross sections with resolved resonance data	F2
XSDRNPM	 General 1-D, discrete-ordinates code for: zone-weighting of cross sections eigenvalue calculations for neutron multiplication fixed-source calculation for shielding analysis adjoint calculation for determining importance functions 	F3
XSDOSE	Module for calculation of dose at a point based on the 1-D leakage flux from a finite shield	F4
COUPLE	Interface module for preparation of cross-section and spectral data for ORIGEN-S	F6
ORIGEN-S	General-purpose point-depletion and decay code to calculate isotopic, decay heat, radiation source terms, and curie levels	F7
ICE	Cross-section utility module for mixing cross sections	F8
MORSE-SGC	Monte Carlo code with combinatorial and array geometry features used to perform radiation shielding analysis	F9
HEATING7.2	Finite-volume, multidimensional code for conduction and radiation heat transfer	F10
KENO V.a	Monte Carlo code for calculation of neutron multiplication factors	F 11
OCULAR	Calculation of radiation exchange factors	F16
KENO-VI	Monte Carlo code for calculation of neutron multiplication factors for complex geometries	F17

Table 2 Analysis capabilities summary of the SCALE functional modules

1.

NUREG/CR-0200 Revision 6 Volume 3, Section M1 ORNL/NUREG/CSD-2/R6

Computational Physics and Engineering Division

SCALE SYSTEM DRIVER

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

The SCALE driver was designed to allow implementation of a modular code system consisting of control modules, which determine the calculation path, and functional modules, which perform the basic calculations. The user can either select a control module and have that module determine the execution path, or the user can select functional modules directly by input.

NUREG/CR-0200, Vol. 3, Rev. 6

M1.iii

CONTENTS

Page

ABSTRACT	M1.iii
LIST OF TABLES	M1.vi
M1.1 DESCRIPTION	M1.1.1

NUREG/CR-0200, Vol. 3, Rev. 6

LIST OF TABLES

<u>Table</u>	Page	
M1.1	Use of data in the communication block between the driver and the control module M1.1.2	

NUREG/CR-0200, Vol. 3, Rev. 6

M1.vi
M1.1 DESCRIPTION

The SCALE driver was designed to allow implementation of a modular code system consisting of control modules, which determine the calculation path, and functional modules, which perform the basic calculations. The user can either select a control module and have that module determine the execution path, or the user can select functional modules directly by input.

The driver obtains the name of the module to be accessed from the module specification card, the first card in the user input data file. It then transfers data cards from the input file to unit 5 until it finds an END card (a separate card with the characters END in columns 1 through 3). The driver constructs a file of control information and accesses the module named on the first card. The control file allows the module to return control information to the driver and indicate what the next task will be. These tasks may include transferring more cards from the input file to unit 5, accessing a string of up to eight functional modules and/or terminating this module and checking the input file for another module name to be accessed. SCALE uses subroutines GETMS and RESETM to communicate data from the control file between the driver and labeled commons. This isolates the exact mechanism for communicating these data to the driver. This mechanism is one of the system-dependent parts of the SCALE system. Another system-dependent function the driver needs is the means to initiate the execution of another program.

When the driver accesses a functional module, the exit code returned by the module is checked. If the returned code is nonzero, the access string is terminated. When a string of functional module accesses is finished, the driver again accesses the control module to determine its next function.

Table M1.1 describes the four sets of data the driver passes to a control module. The data of JP and JD are message strings, IC is an integer array, and AC is a real array. JP is the string defined by the PARM= field on the module specification card.

By default, the driver reads input from SYSIN, prints a record of primary module accesses and input data to PRINT, writes the input file for the primary module to INPUT, and calls the module.

Vol NU	Table M1.1 Use of data in the communication block between the driver and the control module				
IREG/CR-0200, I. 3, Rev. 6	Item	Use ^a Contr	ol module action	Driver action	
	JP(1)	PARM field, string length starts on a half-word boundary followed by a character string.	Can be passed to the main program as a parameter.	(None)	
	JD(1)	DDNAME table, length of table starts on a half- word boundary, then 8-character names follow, binary zeros nullify.	Needed for system routine use.	(None)	
	IC(1)	Control module access count, termination flag.	If 1, read data from unit 5, save, set 0 for subsequent case, <0 for termination; <1 upon entry indicates an error condition.	Initialize as 0 whenever user input instructs access of a control module, add 1 prior to each access of a control module, seek new user input instructions if 0, terminate if <0.	
	IC(2)		Not used.	Not used.	
	IC(6)				
M1.1.2	IC(7)	Task completion flag, 0 - completed successfully, \neq 0 - failure.	If \neq 0, execute wrap-up procedures.	Store STOP return number from code module here if it exceeds that allowed.	
	IC(8)	User input data transfer flag (0 - no; 1 - transfer data and access module specified by control module; 2 - transfer data and access the special processor named on the first card (A8); >2 - transfer data only).	Set to anticipate needs.	If >0, move a block to unit 5, no other tasks if >2; set to zero on successful data transfer.	
	IC(9)	Individual code module task completions.	Probably set 0 at the start of each separate case; nonzero upon first access indicates previous calculations have been done, perhaps under control of this or another control module.	Add 1 after each acceptable return from a code module excluding the control module.	
	IC(10)	Reserved for future driver control.		If $5376 \le IC(10) \le 5631$, driver will print a functional module access record along with the control module access and input record.	
	IC(11) IC(80)	Reserved for control module use.			

Item	Use a	Control module action	Driver action
AC(1)	8-character control module name.	(None)	Set here.
AC(2- AC(9)	8-character code module names.	Set functional module access order here, end with a blank if <8 entries.	Initialize blank.
AC(10)	Latest input data header name.	Used here, then set blank.	Initialize blank, set here unless first record read
AC(11)- AC(40)	Reserved for control module use.		encounters end-or-me.

Table M1.1 (continued)

*A control module will not be summoned under the apparent error conditions of unsuccessful transfer of data to unit 5; a terminator flag in the input data is required. The driver processes the user input file seeking a subsequent request for access to a control module. The elements in the IC array are set zero and in array AC are set "BLANK" initially by the driver, and prior to a subsequent access of any control module, IC(1) - IC(8) and IC(10) are set zero and AC(1) - AC(10) set "BLANK." Upon entry to a control module, AC(1) will contain its access name, IC(1) will be 1, IC(8) is a task completion flag set for transfer of the control-module input data, IC(9) remains the code-module access count.

Computational Physics and Engineering Division

SCALE SUBROUTINE LIBRARY

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

A number of subroutines have been developed which are used by more than one of the SCALE program modules. The subroutines have been collected together in a library. This section contains a brief description of the function and the arguments of each subroutine.

CONTENTS

		Page
ABSTRACT		
ACKN	IOWLEDGN	MENT M2.ix
M2.1	INTRODU	JCTION
M2.2	DESCRIP	TION OF FORTRAN SUBROUTINES
	M2.2.1	ALOCAT M2.2.1
	M2.2.2	ANIS M2.2.1
	M2.2.3	READ
	M2.2.4	AZIRN
	M2.2.5	A1DX M2.2.4
	M2.2.6	BDYS M2.2.5
	M2.2.7	BLANK
	M2.2.8	CLEAR M2.2.6
	M2.2.9	CLOSDA M2.2.7
	M2.2.10	CMPS M2.2.7
	M2.2.11	СОРУ М2.2.8
	M2.2.12	CREAD M2.2.8
	M2.2.13	REED,RITE,RD,CREED,CRITE M2.2.9
	M2.2.14	DATIM M2.2.10
	M2.2.15	DAZIRN
	M2.2.16	DGTISO M2.2.11
	M2.2.17	DREAD
	M2.2.18	DSET
	M2.2.19	DTASET M2.2.12
	M2.2.20	ЕСНЕСК М2.2.13
	M2.2.21	ENERGY M2.2.13
	M2.2.22	ENFILE
	M2.2.23	ERRO M2.2.14
	M2.2.24	ERRTRA M2.2.14
	M2.2.25	EXPRN M2.2.15
	M2.2.26	EYENIT
	M2.2.27	E3 M2.2.16
	M2.2.28	FFPACK
	M2.2.29	FFPUN M2.2.16
	M2.2.30	FFREAD
	M2.2.31	FHLPR
	M2.2.32	FIDAS
	M2.2.33	FILNAM M2.2.19
	M2.2.34	FINDQA

CONTENTS (continued)

Page 1

M2.2.35	FISCAP	M2.2.20
M2.2.36	FLTFX	M2.2.21
M2.2.37	FLTRN	M2.2.21
M2.2.38	FLUX	M2.2.21
M2.2.39	FPUNCH	M2.2.22
M2.2.40	FREAD	M2.2.23
M2.2.41	FREECR	M2.2.23
M2.2.42	GETFILE	M2.2.24
M2.2.43	GETMS	M2.2.24
M2.2.44	GNERGY	M2.2.25
M2.2.45	GTISO	M2.2.25
M2.2.46	ІСОМРА	M2.2.26
M2.2.47	INQUIR	M2.2.26
M2.2.48	INTIME,PRTIME	M2.2.26
M2.2.49	IO	M2.2.27
M2.2.50	IOLEFT	M2.2.27
M2.2.51	IOWRT	M2.2.28
M2.2.52	IO4	M2.2.28
M2.2.53	IREAD	M2.2.29
M2.2.54	ISET	M2.2.30
M2.2.55	JDFJX	M2.2.30
M2.2.56	JLL1	M2.2.30
M2.2.57	JOBNUM	M2.2.31
M2.2.58	КІЗ	M2.2.31
M2.2.59	LABL	M2.2.32
M2.2.60	LCOMPR	M2.2.32
M2.2.61	LESTER	M2.2.33
M2.2.62	LISTQA	M2.2.33
M2.2.63	LNBLNK	M2.2.34
M2.2.64	LRDERR	M2.2.34
M2.2.65	LREAD	M2.2.35
M2.2.66	MESAGE	M2.2.35
M2.2.67	MGCWRD	M2.2.35
M2.2.68	MOVE	M2.2.36
M2.2.69	MWLIST	M2.2.36
M2.2.70	MWLS	M2.2.37
M2.2.71	OPENDA	M2.2.38
M2.2.72	OPNFIL	M2.2.39
M2.2.73	PRTID	M2.2.39
M2.2.74	PULL	M2.2.40
M2.2.75	QZCNVT	M2.2.40
M7.2.76	QZSCAN	M2.2.41

NUREG/CR-0200, Vol. 3, Rev. 6

M2.vi

CONTENTS (continued)

-

	M2.2.77	QOREAD	M2.2.41
	M2.2.78	READSG	M2.2.42
	M2.2.79	RECTRY	M2.2.42
	M2.2.80	RESETM	M2.2.43
	M2.2.81	RMUNIT	M2.2.43
	M2.2.82	RNDIN	M2.2.44
	M2.2.83	RNDOUT	M2.2.44
	M2.2.84	SCANON	M2.2.44
	M2.2.85	SET	M2.2.46
	M2.2.86	SFLRA	M2.2.46
	M2.2.87	SHELC	M2.2.47
	M2.2.88	SNST	M2.2.47
	M2.2.89	STOP	M2.2.48
	M2.2.90	ТІМҒАС	M2.2.49
	M2.2.91	VERGET	M2.2.49
	M2.2.92	WOT	M2.2.50
	M2.2.93	WOT8	M2.2.50
	M2.2.94	WRTID	M2.2.51
	M2.2.95	WRTWID	M2.2.51
	M2.2.96	XTENDA	M2.2.52
	M2.2.97	XUFLOW	M2.2.52
	M2.2.98	YREAD	M2.2.52
	M2.2.99	YOREAD	M2.2.53
	M2.2.100	YOTRNS	M2.2.54
	M2.2.101	ZREAD	M2.2.54
	REFEREN	СЕ	M2.2.55
M2.A	C LANGU	AGE ROUTINES	. M2.A.1
M2.B	AMPX SU	BROUTINES	. M2.B.1
	REFEREN	CES:	. M2.B.1

<u>Page</u>

Many of the subroutines described here were contributed by N. M. Greene. Numerous other people have also contributed to the library.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.ix

M2.1 INTRODUCTION

The SCALE subroutine library is a collection of subroutines, each of which performs a function that may be useful to more than a single program. These subroutines have been collected into a library so that a program can easily access those it needs. In the description that follows the calling sequence, a brief description of the function, a brief description of the arguments, and the programming language used for each subroutine in the library are given. This section is written from the point of view of aiding a programmer in using these subroutines in a program. Section M3.2 gives more information on how a user inputs data to the SCALE free-form reading package. Section M10 gives similar information on using FIDO-type input.

The programming language for the subroutines refers to the distributed version of SCALE. Most of the subroutines are programmed in FORTRAN 77, with the rest being programmed in C. The C routines are used to provide functionality not available in FORTRAN 77. Section M2.2 describes the FORTRAN subroutines. Appendix M2.A contains a list of the C language routines, their FORTRAN interface, and the functionality they provide.

A number of AMPX¹ subroutines are included in the SCALE subroutine library for use with the AMPX modules included in SCALE. These subroutines are not described here, but are listed in Appendix M2.B, along with the modules that use them.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.1.1

M2.2 DESCRIPTION OF FORTRAN SUBROUTINES

M2.2.1 ALOCAT

CALLING SEQUENCE:

CALL ALOCAT(PROG,LMAX,*NSRET)

FUNCTION:

ALOCAT is used to dynamically allocate an automatic array and pass it, along with its dimensions, to a subroutine supplied as an argument. The length requested is the second argument. ALOCAT passes the address of the storage and its length to a subroutine supplied by the calling program.

ARGUMENTS:

PROG is the subroutine ALOCAT is to call. The call is of the form CALL PROG(D,LEN), where D is an array of length LEN. D starts on a double-word boundary, and LEN is the number of single words in D.

LMAX is the number of words of storage to be allocated.

*NSRET is an alternative return that will be used when the system is unable to allocate the required block. ALOCAT returns to this alternative return without calling PROG.

M2.2.2 ANIS

CALLING SEQUENCE:

```
CALL ANIS(EG,UG,EN,UN,IDE,CX,C,MSC,MSCM,ID,IHT,IHS,ITL,MMCR,NOU,NPU,NT4, NT9,IFCT)
```

FUNCTION:

ANIS is used to convert an AMPX working format library to an ANISN format library (either binary or punched card).

ARGUMENTS:

- EG is an array into which the gamma energy group boundaries are read.
- UG is an array into which the gamma lethargy group boundaries are read.
- EN is an array into which the neutron energy group bounds are read.

- UN is an array into which the neutron lethargy group bounds are read.
- IDE is an array of length 50 into which the nuclide identifier record from the AMPX library is read.
- CX is a scratch array used to hold the cross sections from the AMPX working library.
- C is an array used to construct the ANISN-formatted cross section in. Its length is ITL*(IGM + IPM), where IGM is the number of neutron groups and IPM is the number of gamma groups.
- MSC is an array containing the MT numbers of the extra 1-D cross sections to be output on the ANISN library.

MSCM is the number of extra 1-D cross sections to be output on the ANISN library.

- ID is the ANISN cross-section identifier. ANIS increments this by one for every set. If ID<0 when ANIS is called, it is set to 0. The first cross-section set will have an identifier of the initial ID + 1.
- IHT is the position of the total cross section in the ANISN cross-section table. If IHT is 3 or greater, position IHT-1 will contain $\upsilon \sigma_f$, and position IHT-2 will contain σ_a by default. Positions 1 to MSCM will contain the cross sections specified in the MSC array.
- IHS is the position of the within-group scattering cross section in the ANISN cross-section table. If the cross sections contain upscatter elements, positions for the values must be left between IHT and IHS.
- ITL is the table length of the ANISN cross sections. The value should be IHS plus the number of downscatters allowed.
- MMCR specifies the format of the output ANISN library. If MMCR = 1, the ANISN library will be punched card format. If MMCR = 2, the ANISN library will be unformatted binary.
- NOU is the logical unit number to print messages and list cross sections on.
- NPU is the logical unit number to punch the cross sections on.
- NT4 is the logical unit number for the AMPX working library.
- NT9 is the logical unit number for the binary ANISN library.
- IFCT is a listing control flag. The ANISN cross sections are listed through order of L = IFCT. If IFCT <-1, only the P_o cross sections are output on the ANISN library.

SUBROUTINES CALLED:

CLEAR, IO, A1DX, SNST, WOT, FFPUN

M2.2.3 AREAD

CALLING SEQUENCE:

WORD = AREAD(IBR, IRET)

FUNCTION:

AREAD is a CHARACTER*4 function used to read character data in free format. AREAD returns four characters at a time. Depending on its arguments, AREAD can return the first four characters of a new record, the next four characters from the current record, or it can skip blanks and then return up to four characters. After having skipped to a nonblank character, AREAD will return up to the next four characters, but will stop and pad with blanks if it detects a blank or equal sign (or double blank or left parenthesis, depending on the argument). AREAD, on the next reference, can return the next four characters, but it remembers if a blank (or double blank) has been detected, and can return a blank word in this case. The double blank allows a string of characters with embedded single blanks to be returned as entered.

ARGUMENTS:

- IBR is an option flag determining the mode of reading data.
 - IBR = 0 returns the next four characters in the input record.
 - IBR = 1 reads a new record and returns the first four characters.
 - IBR = 2 returns four characters starting with the first nonblank character and stopping if there are two consecutive blanks or an equal sign. Padding is with blanks if necessary.
 - IBR = 3 returns four characters but stops with a double (or single) blank, depending on whether the preceding call to AREAD had IBR = 2 or IBR = 4.
 - IBR = 4 returns four characters starting with the first nonblank character and stopping with a single blank, or an equal sign. Padding is with blanks if necessary.
 - IBR = 5 same as IBR = 4, but will also stop at a left parenthesis.

IBR = -1 returns the last character scanned.

IRET is a flag returned to the calling program if the scan-ahead feature has been activated (see SCANON, also see Sect. M3). If IRET = 2 when AREAD is called, it prints a message and

terminates. Otherwise, it sets IRET = 0 and continues. If the scan ahead feature is activated, and `END' is found when scanning, IRET is set to 1. If an end of file is detected while scanning ahead, IRET is set to 2.

SUBROUTINES CALLED:

ENFILE, YOREAD

COMMONS:

UNIT, QRDBUF

M2.2.4 AZIRN

CALLING SEQUENCE:

CALL AZIRN (s,c)

FUNCTION:

AZIRN returns the sine and cosine of a uniformly distributed random azimuthal angle.

ARGUMENTS:

S is the sine of a random azimuthal angle

C is the cosine of a random azimuthal angle

SUBROUTINES CALLED:

FLTRN, SIN, COS

M2.2.5 A1DX

CALLING SEQUENCE:

CALL A1DX(CX,N,IGP,IA,C,ITL,MSC,MSCM,IHT,GR,IGM,ITRG)

FUNCTION:

A1DX finds the 1-D cross sections from an AMPX working library (see Sect. F2.4) and moves them to the correct positions in an ANISN library. It has a default set of reaction types which can be supplemented in the argument list.

ARGUMENTS:

- CX is an array containing the 1-D cross sections from an AMPX working library.
- N is the number of different 1-D cross sections in CX.
- IGP is the number of groups + 1 in the AMPX cross sections.

IA is the offset to be added to the group number in the AMPX library to obtain the group index in the ANISN library. This offset will be zero for neutron groups, and will be the number of neutron groups for the gamma groups in a coupled library. The offset will be zero for a gamma-only library.

- C is the array for the ANISN library.
- ITL is the table length of the ANISN cross sections.
- MSC is the array containing the identifiers of extra processes to be put in the ANISN library.

MSCM is the number of extra processes to be put into the ANISN library.

- IHT is the position of the total cross section in the ANISN library. By default, $u\sigma_f$ is in position IHT-1, σ_a is in IHT-2, and the extra cross sections are lined up sequentially in positions 1 to MSCM. An "extra" cross section will override the default process if the positions overlap.
- GR is a vector into which A1DX will place the difference between the cross section placed in position IHT and the total cross section. This difference is then used to correct the within-group scattering position of the transfer array.
- IGM is the number of groups in the ANISN cross sections.
- ITRG is a flag determining whether the cross sections are for neutrons or gammas (0 is neutrons, 1 is gammas).

M2.2.6 BDYS

CALLING SEQUENCE:

CALL BDYS(E,IGM,N6,NTYPE,IVER,NWT)

FUNCTION:

BDYS searches a group boundary library for a particular group structure, type, and version, and then reads the corresponding boundaries from the library into E. If the particular set asked for cannot be found, BDYS will generate a default set using an equal lethargy spacing. The default neutron

structure will be from 0.00001 to 1.49E+7 eV; the default gamma structure will be from 1.E+4 to 1.E+7 eV.

ARGUMENTS:

Е	is the array returning the group boundaries.
IGM	is the number of groups.
N6	is the logical unit number for the printed output.
NTYPE	is a flag determining whether a neutron or a gamma group structure is needed. 0 - neutrons 1 - gammas
IVER	is the version number desired.

NWT is the logical unit number of the group boundary library.

M2.2.7 BLANK

CALLING SEQUENCE:

CALL BLANK (LC,NL)

FUNCTION:

BLANK sets a character string to blanks.

ARGUMENTS:

LC is the character string.

NL is the number of characters in the string.

M2.2.8 CLEAR

CALLING SEQUENCE:

CALL CLEAR (LD,N)

FUNCTION:

CLEAR sets an array to zero.

NUREG/CR-0200, Vol. 3, Rev. 6

ARGUMENTS:

LD is the array to be zeroed.

N is the number of words to be zeroed.

M2.2.9 CLOSDA

CALLING SEQUENCE:

CALL CLOSDA (NU)

FUNCTION:

CLOSDA is used to close a random access file opened by OPENDA.

ARGUMENTS:

NU is the logical unit number of the file to be closed.

M2.2.10 CMPS

CALLING SEQUENCE:

CALL CMPS (C,L,IGM,IPM,IFTG,N,IHT,CODE)

FUNCTION:

CMPS is used to convert an expanded transfer array that allows space for all possible values to a compressed form containing magic words and with zeroes suppressed such as is used on AMPX cross-section libraries.

ARGUMENTS:

C is the array to be compressed.

- L is the compressed dimension of C upon exiting CMPS.
- IGM is the number of neutron groups.
- IPM is the number of gamma groups.
- IFTG is the first thermal group.
- N is an array that points to the magic word position in the expanded array.

NUREG/CR-0200, Vol. 3, Rev. 6

IHT is the number of 1-D cross-section positions in the array.

CODE is a flag determining whether a group can be completely compressed out of the array (0.0 is yes, 1.0 is no).

M2.2.11 COPY

CALLING SEQUENCE:

CALL COPY (X,N,II,IO,IGO)

FUNCTION:

COPY is used to copy a record from unit II to unit IO.

ARGUMENTS:

- X is an array used in the copy.
- N is the number of words to be copied.
- II is the input logical unit number.
- IO is the output logical unit number.
- IGO is a flag keying whether the records are self-defining or not. IGO = 1 means N must be supplied by the calling program. IGO = 2 means N is supplied by the record to be copied.

M2.2.12 CREAD

CALLING SEQUENCE:

WORD = CREAD(IBR, IRET)

FUNCTION:

CREAD is a CHARACTER*8 function used to return eight characters according to the argument IBR. See AREAD for more details.

ARGUMENTS:

IBR is an option flag determining the mode of reading data. IBR = 0 returns the next eight characters in the input record.

NUREG/CR-0200, Vol. 3, Rev. 6

- IBR = 1 reads a new record and returns the first eight characters.
- IBR = 2 returns eight characters starting with the first nonblank character and stopping if there are two consecutive blanks. Padding is with blanks if necessary.
- IBR = 3 returns eight characters but stops with a double (or single) blank depending on whether the preceding call to AREAD had IBR = 2 or IBR = 4.
- IBR = 4 returns eight characters starting with the first nonblank character and stopping with a single blank.

NOTE: IBR = 2,3, or 4 will also stop at an '=' character.

- IBR = 5 same as IBR = 4, but will also stop at a '(' character.
- IBR = -1 returns the last character scanned.
- IRET is a flag returned to the calling program if the scan ahead feature has been activated (see SCANON, also see Sect. M3). If IRET=2 when AREAD is called, it prints a message and terminates. Otherwise, it sets IRET=0 and continues. If the scan ahead feature is activated, and 'END' is found when scanning, IRET is set to 1. If an end of file is detected while scanning ahead, IRET is set to 2.

SUBROUTINES CALLED:

AREAD

M2.2.13 REED,RITE,RD,CREED,CRITE

CALLING SEQUENCE:

CALL REED (X,L,NU,NP) CALL RITE (X,L,NU,NP) CALL RD (LP,X,L,NP,NU) CALL CREED (C,L,NU,NP) CALL CRITE (C,L,NU,NP)

FUNCTION:

REED is used to read an array, X of length L, from the random access file pointed to by logical unit number NU, starting at block number NP. RITE is used to write X on NU at NP. RD is used to read X from NU starting with LP*th* word of block NP. CREED is used to read a character array, C of length L from NU at NP. CRITE is used to write C on NU at NP.

ARGUMENTS:

- X is the array into which or from which data are read or written.
- C is the character array into which or from which data are read or written.

- L is the number of words to be read or written.
- NU is the logical unit number of the random-access file.
- NP is the block number at which data transfer is to start.
- LP is the first word of block NP to be transferred to X.

M2.2.14 DATIM

CALLING SEQUENCE:

CALL DATIM (DATE, TIME)

FUNCTION:

DATIM returns the date and time of day as two eight-character strings suitable for printing.

ARGUMENTS:

- DATE is an eight-character string in which the date is returned in the form mm/dd/yy, where mm is the month, dd is the day, and yy is the year.
- TIME is an eight-character string in which the time of day is returned in the form hh:mm:ss, where hh is the hour, mm is the minutes, and ss is the seconds.

SUBROUTINES CALLED:

RETMTM

M2.2.15 DAZIRN

CALLING SEQUENCE:

CALL DAZIRN (DS, DC)

FUNCTION:

DAZIRN returns the double-precision sine and cosine of a uniformly distributed random azimuthal angle.

ARGUMENTS:

DS is the double-precision sine of a random azimuthal angle

NUREG/CR-0200, Vol. 3, Rev. 6

DC is the double-precision cosine of a random azimuthal angle

SUBROUTINE CALLED:

FLTRN, COS, SIN

M2.2.16 DGTISO

CALLING SEQUENCE:

CALL DGTISO (DU, DV, DW)

FUNCTION:

DGTISO returns the double-precision direction cosines of an isotopically distributed random direction.

ARGUMENTS:

DU is the double-precision x-direction cosine

DV is the double-precision y-direction cosine

DW is the double-precision z-direction cosine

SUBROUTINES CALLED:

FLTRN, SQRT, SIN, COS

M2.2.17 DREAD

CALLING SEQUENCE:

WORD = DREAD(IBR,IRET)

FUNCTION:

DREAD is used to read numbers in free-form format. It returns a double-precision floating-point number. This routine is the basic number reading routine for the free-form reading package.

ARGUMENTS:

IBR can have two values.
IBR = 1 - read a new record and return the first number found.
IBR = 0 - return the next number found.

NUREG/CR-0200, Vol. 3, Rev. 6

IRET = 2 will cause DREAD to terminate.

IRET \neq 0 will cause a 0.0 to be returned. If the scan-ahead feature is activated and an `END' is found while scanning, IRET will be set to 1. If an end of file is sensed while scanning, IRET will be set to 2.

SUBROUTINES CALLED:

ENFILE, YOREAD

COMMONS:

UNIT, QRDBUF

M2.2.18 DSET

CALLING SEQUENCE:

R = DSET(I)

FUNCTION:

DSET returns the double word at I as a double-precision floating point value.

ARGUMENTS:

I is the address of a double word containing a double-precision number.

M2.2.19 DTASET

CALLING SEQUENCE:

CALL DTASET (LOG, DSN, VOL)

FUNCTION:

DTASET returns the data set name and volume serial number pointed to by a logical unit number.

ARGUMENTS:

LOG is the FORTRAN logical unit number of the DD card.

DSN is the 44-character data set name returned.

VOL is the 8-character volume serial number returned.

NUREG/CR-0200, Vol. 3, Rev. 6

SUBROUTINES CALLED:

GETFILE

M2.2.20 ECHECK

CALLING SEQUENCE:

CALL ECHECK (E,IGM,N6)

FUNCTION:

ECHECK verifies that the energy boundaries of a group structure are in descending order.

ARGUMENTS:

E is the array containing the group boundaries.

IGM is the number of energy groups.

N6 is the logical unit number on which the error messages are printed.

M2.2.21 ENERGY

CALLING SEQUENCE:

CALL ENERGY (E,IGM,N6)

FUNCTION:

ENERGY determines a set of energy-group boundaries for an IGM group neutron structure by calling subroutine BDYS. The boundaries are expected to reside on logical 47.

ARGUMENTS:

E is the array of group boundaries.

IGM is the number of energy groups.

N6 is the message unit number.

SUBROUTINES CALLED:

BDYS

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.22 ENFILE

CALLING SEQUENCE:

CALL ENFILE

FUNCTION:

ENFILE is used by the free-form reading package to print an end-of-file message and stop when an end-of-file has been sensed.

COMMONS:

UNIT

M2.2.23 ERRO

CALLING SEQUENCE:

CALL ERRO (A,J)

FUNCTION:

ERRO is used to print an error message and stop.

ARGUMENTS;

A is a four-character error identifier.

J is an integer containing information relating to the error.

M2.2.24 EŔRTRA

CALLING SEQUENCE:

CALL ERRTRA

FUNCTION:

ERRTRA gives a traceback of the calling chain. It is currently a dummy routine.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.25 EXPRN

CALLING SEQUENCE:

X = EXPRN()

FUNCTION:

EXPRN returns an exponentially distributed double-precision random number.

SUBROUTINES CALLED:

FLTRN, LOG

M2.2.26 EYENIT

CALLING SEQUENCE:

CALL EYENIT (NBLK,LBLK,NUNIT,D,LSKIP,BAL)

FUNCTION:

EYENIT is called to initialize a set of direct-access blocks. It is necessary on IBM systems, but may not be necessary on other systems. On UNIX systems, it removes any pre-existing dataset.

ARGUMENTS:

- NBLK number of blocks
- LBLK length of each block
- NUNIT FORTRAN logical unit number
- D scratch buffer array of length LBLK
- LSKIP number of blocks already existing
- BAL 12-byte area where system data will be saved. This area should be saved from the creation of the file to the destruction of the file.

SUBROUTINES CALLED:

FILNAM

M2.2.27 E3

CALLING SEQUENCE:

Y = E3(X)

FUNCTION:

E3 returns the value of the E₃ function at the point x. $E_3(x) = \int_1^\infty \frac{e^{-xu}}{u^3} du$.

ARGUMENTS:

X is the point at which the value of the E_3 function is desired.

M2.2.28 FFPACK

CALLING SEQUENCE:

CALL FFPACK (ISTRNG, ICHAR, IPOS)

FUNCTION:

FFPACK is used to insert a character into a string of characters at a given position. FFPACK is used by the FIDO reading package (see Sect. M10) when transmitting character data.

ARGUMENTS:

ISTRNG is the string of 8 characters.

ICHAR is the character to be inserted.

IPOS is the position in ISTRNG at which ICHAR is to be inserted.

M2.2.29 FFPUN

CALLING SEQUENCE:

CALL FFPUN (X,N,N2)

FUNCTION:

FFPUN is used to punch a floating-point array in free-format input form. The data are punched on unit NPU, the first variable in COMMON /PUNIT/. The default unit number is 7.

NUREG/CR-0200, Vol. 3, Rev. 6

ARGUMENTS:

- X is the array to be punched.
- N is the number of words to be punched.

N2 columns 73-76.

SUBROUTINES CALLED:

FLTFX

COMMONS:

PUNIT

M2.2.30 FFREAD

CALLING SEQUENCE:

CALL FFREAD (IN,K,V,NF,N5,N6,IPRTRG)

FUNCTION:

FFREAD is the free and fixed-field card translator for the FIDO input package. It reads a card at a time, returning the data and the number of entries read.

ARGUMENTS:

- IN is the array used to hold the first subfield value of the three-subfield arrangement used by the FIDO input scheme. It generally contains the number of repeats, the array number, etc.
- K is the array used to hold the second subfield in FIDO input scheme. It generally contains an operator, such as R for repeat, * for a floating-point array, etc.
- V is an array used to hold the third subfield in the FIDO input scheme. It most often contains a data value.
- NF is the number of entries in IN, K, and V.
- N5 is the input logical unit number.
- N6 is the print logical unit number.

IPRTRG is a print trigger flag signaling whether the input card images should be echoed to the print unit.

= 0 - do not echo. >0 - do echo.

SUBROUTINES CALLED:

FFPACK

M2.2.31 FHLPR

CALLING SEQUENCE:

CALL FHLPR (CC,A,NOU)

FUNCTION:

FHLPR prints an eight-character block letter line.

ARGUMENTS:

CC is the carriage control character to be printed with the first line.

A is the eight-character string to be printed in block letters.

NOU is the logical unit number for the print.

COMMONS:

LETTER

SUBROUTINES CALLED:

YOTRNS

M2.2.32 FIDAS

CALLING SEQUENCE:

CALL FIDAS (D,LD,LPN,LOF,NER,N5,N6)

NUREG/CR-0200, Vol. 3, Rev. 6

FUNCTION:

FIDAS reads a FIDO-type input data block into an arbitrary array. (See Sect. M10 for a description of FIDO-type input.)

ARGUMENTS:

- D,LD are the arrays into which the floating point and the integer numbers are stored. These arrays would normally be the same.
- LPN is the array containing the pointers to the beginning of each FIDO array in D and LD.
- LOF is the offset to the 1\$ or 1* array pointer in LPN.

NER is returned as the count of errors found in reading the current data block.

N5 is the input logical unit number.

N6 is the print logical unit number.

SUBROUTINES CALLED:

FFREAD

M2.2.33 FILNAM

CALLING SEQUENCE:

CALL FILNAM (FILE, PREFIX)

FUNCTION:

FILNAM generates a unique filename using the prefix.

ARGUMENTS:

FILE is the unique filename return upon successful completion.

PREFIX is the character string used in generating the unique filenames.

M2.2.34 FINDQA

CALLING SEQUENCE:

CALL FINDQA (PROGRAM, DATE, LIBRARY)

FUNCTION:

FINDQA returns the name of the current program, the date it was created, and the library it comes from. These data are used to print a QA table.

ARGUMENTS:

PROGRAM eight-character name of the current program

DATE eleven-character date PROGRAM was created

LIBRARY 44-character dataset name of the library containing PROGRAM

SUBROUTINES CALLED:

GETARG, GETMTM, LNBLNK, GETCWD

M2.2.35 FISCAP

CALLING SEQUENCE:

CALL FISCAP (ZA, EPF, EPC)

FUNCTION:

FISCAP is used to supply default values of energy per fission and energy per capture for a selected set of nuclides. It returns EPF and EPC unchanged if it has no data for the ZA specified. If EPF and/or EPC already have positive values, FISCAP will not change them.

ARGUMENTS:

ZA is 1000*Z+A for the nuclide for which data are to be supplied.

EPF is the energy per fission in watt-s/fission.

EPC is the energy per capture in watt-s/capture.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.36 FLTFX

CALLING SEQUENCE:

CALL FLTFX (X, IX, IEX)

FUNCTION:

FLTFX is used to convert a floating-point number to an integer and an exponent.

ARGUMENTS:

X is the floating point number to be converted.

IX is the integer derived from X.

IEX is the exponent derived from X.

M2.2.37 FLTRN

CALLING SEQUENCE:

X = FLTRN()

FUNCTION:

FLTRN returns a double-precision pseudo random number uniformly distributed between 0.0 and 1.0. The generator programs the algorithm described in Refs. B.1-5 for sixteen-bit computers.

M2.2.38 FLUX

CALLING SEQUENCE:

X = FLUX (E, EMAX, T, C2, EF, THETA, C1, IOPT)

FUNCTION:

FLUX supplies a flux value at E based on the other arguments. If IOPT = 1, the value is interpolated from a fast reactor spectrum. Otherwise, the spectrum is a combination of a fission spectrum to 1/E to Maxwellian at thermal.

ARGUMENTS:

E is the energy in eV at which the flux is desired.

EMAX is the upper energy in eV at which a Maxwellian spectrum is to be used.

T is the thermal temperature in eV of the Maxwellian spectrum.

C2 is the normalization factor for the Maxwellian spectrum.

EF is the upper limit in eV of the 1/E portion of the spectrum.

THETA is the temperature in eV of the fission spectrum used at high energies.

C1 is the normalization factor used for the fission spectrum.

IOPT selects the flux spectrum to be used. IOPT = 1 selects a ZPPR default spectrum. Otherwise, a Maxwellian-1/E-fission spectrum is used.

M2.2.39 FPUNCH

CALLING SEQUENCE:

CALL FPUNCH (N,L,LABL, IFORM)

FUNCTION:

FPUNCH is used to punch in free format the array N according to the data type specified by IFORM.

ARGUMENTS:

- N is the array to be punched on unit NPU, the first variable in COMMON /PUNIT/. The default unit number is 7.
- L is the length of the array.
- LABL is an identifier to be punched on the output cards. If LABL<0, then the LABL and sequence number are not punched.
- IFORM selects whether the data are to be punched as integers or floating-point numbers. IFORM = 0 selects integers IFORM = 1 selects floating point

COMMONS:

PUNIT

NUREG/CR-0200, Vol. 3, Rev. 6

SUBROUTINES CALLED:

FLTFX, QZCNVT, BLANK

M2.2.40 FREAD

CALLING SEQUENCE:

WORD = FREAD(IBR,IRET)

FUNCTION:

FREAD returns a floating-point number read in free format.

ARGUMENTS:

See DREAD.

SUBROUTINES CALLED:

DREAD, YOREAD

COMMONS:

UNIT, QRDBUF

M2.2.41 FREECR

CALLING SEQUENCE:

CALL FREECR (LL)

FUNCTION:

Releases some of the array acquired by ALOCAT. This mechanism allows a program to keep only the amount of storage it needs to run. This program is currently a dummy routine.

ARGUMENTS:

LL is the negative of the number of words to be freed.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.42 GETFILE

CALLING SEQUENCE:

CALL GETFILE (NAME, FILE)

FUNCTION:

GETFILE returns the path for a given filename.

ARGUMENTS:

NAME is the given filename.

FILE is the full path to filename.

SUBROUTINES CALLED:

LNBLNK

M2.2.43 GETMS

CALLING SEQUENCE:

CALL GETMS

FUNCTION:

GETMS is used to transfer the data the SCALE driver supplies to labeled commons. It is called by SCALE control programs to isolate the communications with the driver. After the call to GETMS, the driver data are loaded into two labeled commons.

COMMON/CDATA/AC(40),IC(80),JPL,JDL DOUBLE PRECISION AC COMMON/CCDATA/JP,JD

CHARACTER JP*144, JD*96

AC, JC, JP, and JD are described in Sect. M1. JPL is the number of characters supplied in JP, and JDL is the number of characters supplied in JD.

COMMONS:

CDATA, CCDATA

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.44 GNERGY

CALLING SEQUENCE:

CALL GNERGY (E,IGM,N6)

FUNCTION:

GNERGY sets the group boundaries of a gamma-group structure in E. It calls subroutine BDYS to access the boundaries that are expected to reside on logical 47.

ARGUMENTS:

E is the array of group boundaries.

IGM is the number of groups.

N6 is logical unit number for printed output.

SUBROUTINES CALLED:

BDYS

M2.2.45 GTISO

CALLING SEQUENCE:

CALL GTISO (U, V, W)

FUNCTION:

GTISO returns the direction cosines of an isotopically distributed random direction.

ARGUMENTS:

- U is the x-direction cosine
- V is the y-direction cosine
- W is the z-direction cosine

SUBROUTINES CALLED:

FLTRN, SQRT, SIN, COS

M2.2.46 ICOMPA

CALLING SEQUENCE:

N = ICOMPA(S1,S2,LEN)

FUNCTION:

ICOMPA compares character string S1 of length LEN characters with string S2 and returns a value 1, 0, or -1-, depending on whether S1 is greater than, equal to, or less than S2 in the collating sequence. S1 is defined as equal to S2 if every character in S1 is equal to the corresponding character in S2. S1 is greater than S2 if the first character that is not equal to the corresponding character in S2 is further down the collating sequence.

ARGUMENTS:

S1 is the first-character string.

S2 is the second-character string.

LEN is the number of characters in S2 and S2.

M2.2.47 INQUIR

CALLING SEQUENCE:

CALL INQUIR (NUNIT, NXTREC)

FUNCTION:

INQUIR returns value of the next record on the direct-access file connected to NUNIT.

ARGUMENTS:

NUNIT FORTRAN logical unit number of the file.

NXTREC Next record on the file.

M2.2.48 INTIME, PRTIME

CALLING SEQUENCE:

CALL INTIME (IO) CALL PRTIME (IO)

NUREG/CR-0200, Vol. 3, Rev. 6
INTIME initializes the argument IO with the time left in the job step.

PRTIME computes the time used since IO and prints it in units of minutes.

ARGUMENTS:

IO is the time left in the job step in hundredths of a second at the call to INTIME.

SUBROUTINES CALLED:

JSTIME

M2.2.49 IO

CALLING SEQUENCE:

CALL IO (X,L,JUMP,NU)

FUNCTION:

IO is used to do short list input/output.

ARGUMENTS:

X is the array to be read or written.

L is the number of words in X.

JUMP selects reading or writing and whether or not the record is self-defining. 1 is a simple read.

2 is a self-defining read.

3 is a simple write.

4 is writing a self-defining record.

A self-defining record contains L as the first word.

NU is the logical unit number for the input/output.

M2.2.50 IOLEFT

CALLING SEQUENCE:

CALL IOLEFT(LEFT)

IOLEFT returns the number of input/output requests left before the system cancels the job. This routine performs a specialized function for the local Oak Ridge computer systems. A dummy routine returning a constant value of LEFT>0 is supplied with SCALE.

ARGUMENTS:

LEFT is the number of input/output requests left to the job before the system cancels it.

M2.2.51 IOWRT

CALLING SEQUENCE:

CALL IOWRT (OUTPT, PARNAM, IO, HOLLID)

FUNCTION:

IOWRT is used to print a line of information identifying the dataset connect to a logical unit number.

ARGUMENTS:

- OUTPT is the unit where the line is printed.
- PARNAM is a four-character identifier that indicates the input variable name used to set the logical unit number.
- IO is the logical unit number.
- HOLLID is a character string printed at the end of the line to further identify IO (less than 35 characters).

SUBROUTINES CALLED:

DTASET

M2.2.52 IO4

CALLING SEQUENCE:

CALL IO4 (MTX,LX,NLX,NTX,LEN,JUMP,NU)

NUREG/CR-0200, Vol. 3, Rev. 6

IO4 is used to read or write the descriptor records for the transfer (2-D) arrays.

ARGUMENTS:

MTX is the array of mt numbers identifying the 2-D arrays.

LX is the array of maximum lengths of the 2-D arrays corresponding to MTX.

NLX is the array specifying the order of scattering of the 2-D arrays corresponding to MTX.

NTX is the array containing the number of temperatures of the 2-D arrays corresponding to MTX.

LEN is the number of entries in MTX, LX, NLX, and NTX.

JUMP selects whether the call is a read or a write (see IO).

NU is the logical unit number to be used.

M2.2.53 IREAD

CALLING SEQUENCE:

NUM = IREAD(IBR,IRET)

FUNCTION:

IREAD returns an integer read in free format.

ARGUMENTS:

See DREAD.

SUBROUTINES CALLED:

DREAD, YOREAD

COMMONS:

UNIT,QRDBUF

M2.2.54 ISET

CALLING SEQUENCE:

I = ISET(X)

FUNCTION:

ISET returns the integer stored at X.

ARGUMENTS:

X is the location of the integer ISET is to return.

M2.2.55 JDFJX

CALLING SEQUENCE:

CALL JDFJX (ID,NGN,NGG)

FUNCTION:

JDFJX is used to zero entries in the AMPX master library nuclide identifier record.

ARGUMENTS:

ID is the array containing control information about an AMPX master library nuclide.

NGN is the number of neutron groups.

NGG is the number of gamma groups.

M2.2.56 JLL1

CALLING SEQUENCE:

CALL JLL1 (IGM, IPM, IFTG, N, IHT)

FUNCTION:

JLL1 constructs an array, N, pointing to the beginning of each group in an expanded transfer array.

ARGUMENTS:

IGM is the number of neutron groups.

IPM is the number of gamma groups.

IFTG is the first thermal group.

N is the array of pointers returned.

IHT is the number of 1-D cross sections stored in the expanded array for each group.

M2.2.57 JOBNUM

CALLING SEQUENCE:

CALL JOBNUM (JNAME)

FUNCTION:

JOBNUM returns the eight-character jobname of the current job.

ARGUMENTS:

JNAME is the eight-character jobname.

SUBROUTINES CALLED:

GETNAM

M2.2.58 KI3

CALLING SEQUENCE:

Y = KI3(X)

FUNCTION:

KI3 returns the third-order Bickley function evaluated at its argument.

ARGUMENTS:

X is the point at which KI3 is evaluated.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.59 LABL

CALLING SEQUENCE:

CALL LABL (N,X,HEAD1,HEAD2)

FUNCTION:

LABL is used to print a page header, indexed table of an array.

ARGUMENTS:

N is the number of entries to be printed.

X is the array containing the entries to be printed.

HEAD1 and HEAD2 form the 16-character heading for each column printed.

COMMONS:

UNIT

M2.2.60 LCOMPR

CALLING SEQUENCE:

LFLAG = LCOMPR(STRING,CARRAY,NEL,INDX)

FUNCTION:

LCOMPR searches an array CARRAY for a match with STRING, and returns a value of true if a match is found. Only the number of characters supplied in STRING are compared. If a match is found, INDX is set to the index in CARRAY, where the match occurred, and STRING is set equal to CARRAY(INDX).

ARGUMENTS:

STRING is the string for which a match is checked.

CARRAY is the array of strings containing possible matches.

NEL is the number of elements in CARRAY.

INDX is the index at which a match occurred.

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.61 LESTER

CALLING SEQUENCE:

CALL LESTER (E,MAXG,P,IOPT,T,THETA,AKT,FCUT)

FUNCTION:

LESTER is used to generate a flux spectrum based on the arguments in an arbitrary group structure.

ARGUMENTS:

E is the array of energy bounds.

MAXG is the number of groups.

P is the array of fluxes.

- IOPT selects the basic spectrum. IOPT = 0 selects a fission to 1/E to Maxwellian spectrum. IOPT = 1 selects a fast reactor spectrum.
- T is the temperature for the Maxwellian in Kelvin.
- THETA is the temperature for the fission spectrum in eV.
- AKT is the multiplier on kT for the Maxwellian-1/E joining point.

FCUT is the fission-1/E joining point.

SUBROUTINES CALLED:

FLUX

M2.2.62 LISTQA

CALLING SEQUENCE:

CALL LISTQA (OUTPT)

FUNCTION:

LISTQA prints a table of information useful for QA purposes.

ARGUMENTS:

OUTPT is the unit number the table will be printed on.

SUBROUTINES CALLED:

FINDQA, JOBNUM, DATE_AND_TIME, VERGET, MACHNAME

M2.2.63 LNBLNK

CALLING SEQUENCE:

L = LNBLNK (STR)

FUNCTION:

LNBLNK returns the position of the last nonblank character in a string.

ARGUMENTS:

STR is the character string to be searched.

M2.2.64 LRDERR

CALLING SEQUENCE:

LFLAG = LRDERR()

FUNCTION:

LRDERR returns the current value of the free-form reading error flag, and resets it to false.

ARGUMENTS:

None.

COMMONS:

QRDBUF

M2.2.65 LREAD

CALLING SEQUENCE:

LFLAG = LREAD(IBR, IRET)

FUNCTION:

LREAD returns a true value if the next character in the free-form reading package buffer is a numeric digit. Otherwise, it returns a false value.

ARGUMENTS:

IRET = 2 will cause LREAD to print a message and stop. Other values of the arguments are ignored.

M2.2.66 MESAGE

CALLING SEQUENCE:

CALL MESAGE (LINE1,NOU)

FUNCTION:

MESAGE prints a banner page in block letters consisting of the eight-character LINE1, the jobname, the date, and the time of day. This page is followed by a table of information useful for QA purposes.

ARGUMENTS:

LINE1 is an eight-character name printed as the first line of block letters on the banner page.

NOU is the logical unit number of the print file.

SUBROUTINES CALLED:

FHLPR, JOBNUM, DATIM, LISTQA

M2.2.67 MGCWRD

CALLING SEQUENCE:

CALL MGCWRD (MW,IIG,IMX,IMN,M)

NUREG/CR-0200, Vol. 3, Rev. 6

MGCWRD is used to either decipher or construct a magic word.

ARGUMENTS:

- MW is the magic word. If it is not zero, MGCWRD sets the other arguments by deciphering it. If it is zero, MGCWRD constructs a new magic word from the other arguments: MW=IMN*1000000+IMX*1000+IIG.
- IIG is the current group number.
- IMX is the maximum group number that can scatter to IIG.
- IMN is the minimum group number that can scatter to IIG.
- M is the length of the cross-section string for IIG: M=IMX-IMN+1.

M2.2.68 MOVE

CALLING SEQUENCE:

CALL MOVE (A,B,L)

FUNCTION:

MOVE is used to move L words from B to A.

ARGUMENTS:

A is the destination of the move.

B is the source for the move.

L is the number of words to be moved.

M2.2.69 MWLIST

CALLING SEQUENCE:

CALL MWLIST (X,LA,IHT,ITRG)

NUREG/CR-0200, Vol. 3, Rev. 6

MWLIST is used to print an AMPX-formatted transfer array. All arguments must be supplied by the calling program.

ARGUMENTS:

X is the array to be printed.

- LA is the length of the array.
- IHT is the position of the total cross section in each group string.
- ITRG is a flag selecting whether the whole array or only the 1-D cross sections will be printed. ITRG = 0 prints the whole array, ITRG = 1 prints only the 1-D cross sections in the array.

SUBROUTINES CALLED:

MGCWRD

M2.2.70 MWLS

CALLING SEQUENCE:

CALL MWLS (X,LA,IHT,TEV,MT,NOU,NL,IDR)

FUNCTION:

MWLS is used to title and print an AMPX-formatted transfer array. All arguments must be supplied by the calling program.

ARGUMENTS:

X is the array to be printed.

- LA is the length of the array.
- IHT is the position of the total cross section within a group string.
- TEV is the temperature of the matrix (in eV).
- MT is the identifier of the array to be printed.
- NOU is the logical unit number of the print file.

NL is the order of Legendre expansion for the array to be printed.

IDR is the ID record for the array to be printed.

SUBROUTINES CALLED:

MGCWRD

M2.2.71 OPENDA

CALLING SEQUENCE:

CALL OPENDA (NBLKS,LBLKS,TYPE,ASSVAR,NUNIT,BUFFER)

FUNCTION:

OPENDA is used to open a file for the random-access package and to initialize the file if necessary. It can return the length of a block when used to open an old file. Although written in FORTRAN, there are still system dependencies that must be dealt with in this routine.

ARGUMENTS:

- NBLKS is the number of blocks of direct access space to be initialized. If TYPE = 'O', the number of blocks in the dataset is returned here.
- LBLKS is the size of a block. If TYPE = 'O', the size is returned here in units of words.
- TYPE selects the type of open to be done. TYPE = 'O' selects opening an old dataset. No initialization is done. TYPE = 'U' selects the size unit to be in words. If the dataset already exists, OPENDA deletes it and opens a new dataset. TYPE = 'L' or 'E' selects the size unit to be in bytes. Otherwise, this is the same as 'U'.

ASSVAR is the associated variable for this file.

NUNIT is the logical unit number for this file.

BUFFER is a scratch array used in initializing the file. It must be at least LBLKS long.

SUBROUTINES CALLED:

EYENIT

M2.2.72 OPNFIL

CALLING SEQUENCE:

CALL OPNFIL (NUN, STATUS, FORM, FILE)

FUNCTION:

OPNFIL is used to isolate open statements so that all system dependencies can be contained in a single subroutine.

ARGUMENTS:

NUN is the unit number to be opened.

STATUS is the status of open (i.e, 'NEW', 'OLD', 'UNKNOWN').

FORM is the format of data, 'FORMATTED' or 'UNFORMATTED'.

FILE is the filename for unit.
Not used on IBM, for other systems.
'DEFAULT' – generates a filename based on NUN.
'\$XXX' - generates a unique filename, _XXXnnnn, where nnnn is a number making the name unique.
Anything else is used as a filename.

SUBROUTINES CALLED:

FILNAM

M2.2.73 PRT1D

CALLING SEQUENCE:

CALL PRT1D (X,NG,NX,NOU)

FUNCTION:

PRT1D is used to print a 1-D array of cross sections (total absorption, etc.) with their identifiers. It will compress multiple lines that are the same to reduce the amount of output.

ARGUMENTS:

X is the array of 1-D cross sections.

- NG is the first dimension of X. NG is the number of groups+1.
- NX is the number of 1-D cross-section sets in X.
- NOU is the logical unit number of the print file.

M2.2.74 PULL

CALLING SEQUENCE:

CALL PULL (MIN, SEC, *RETN)

FUNCTION:

PULL is used to set a CPU time interval. When the interval expires, an interrupt occurs which allows execution to be continued along a different path. This is currently a dummy routine.

ARGUMENTS:

MIN refers to minutes to be set in the interval.

SEC refers to seconds to be set in the interval if MIN and SEC are 0, a previously set interval is cancelled.

*RETN is a statement where execution is to be transferred when the interval expires.

M2.2.75 QZCNVT

CALLING SEQUENCE:

CALL QZCNVT (I, LDATA, LL, PLS)

FUNCTION:

QZCNVT is used to convert a binary integer to character.

ARGUMENTS:

I is the number to be converted to character.

- LDATA is the character string into which the answer is stored.
- LL is the length of the answer.

NUREG/CR-0200, Vol. 3, Rev. 6

PLS is the character to be used as a plus sign.

M7.2.76 QZSCAN

CALLING SEQUENCE:

CALL QZSCAN (LDATA,LL, LT, IEX)

FUNCTION:

QZSCAN is used to delete trailing zeroes by modifying the exponent.

ARGUMENTS:

LDATA is the character string into which the answer is stored.

LL is the length of the answer.

LT is the length of the string from which trailing zeroes are to be removed.

IEX is the exponent.

M2.2.77 QOREAD

CALLING SEQUENCE:

CALL QOREAD (D,LP,LOF,NER,NIN,NOU)

FUNCTION:

QOREAD is used to read a data block from a binary file with FIDO-type array identifiers.

ARGUMENTS:

- D is the array into which the numbers are to be read.
- LP is the array of pointers to the beginning of each array in D.
- LOF is the offset to the number 1 array in LP.
- NER returns the number of errors encountered in reading the data block.
- NIN is the logical unit number of the binary file.

NUREG/CR-0200, Vol. 3, Rev. 6

NOU is the logical unit number of the print file.

SUBROUTINES CALLED:

Ю

M2.2.78 READSG

CALLING SEQUENCE:

CALL READSG (X,M,NIN,IFORM)

FUNCTION:

READSG is used to read an array of cross sections from an ANISN cross-section library.

ARGUMENTS:

X	is the array	of ANISN-formatted	cross sections.
---	--------------	--------------------	-----------------

M is the size of the array.

NIN is the logical unit number from which the array is read.

IFORM selects the form of the ANISN cross sections on NIN. IFORM > 0 means the cross sections are in fixed FIDO format. IFORM = 0 means the cross sections are in free-field FIDO format. IFORM < 0 means the cross sections are in binary form.

SUBROUTINES CALLED:

IONUMS,RCRDLN,FREAD,AREAD

COMMONS:

RETCDE

M2.2.79 RECTRY

CALLING SEQUENCE:

CALL RECTRY (X,LIM,NOU,NT1,NT2,NS,NT)

NUREG/CR-0200, Vol. 3, Rev. 6

RECTRY is used to write a correct table of contents on an AMPX master library NT1 and/or an AMPX working library NT2.

ARGUMENTS:

X is a scratch array.

LIM is the length of X.

NOU is the logical unit number of the print file.

NT1 is the logical unit number of the master library (0 means skip).

NT2 is the logical unit number of the working library (0 means skip).

NS,NT are logical unit numbers of scratch files.

SUBROUTINES CALLED:

IOLEFT, JSTIME, COPY, JDFJX

M2.2.80 RESETM

CALLING SEQUENCE:

CALL RESETM

FUNCTION:

RESETM is used by control programs to reset the data communicated between the SCALE driver and the program. See GETMS.

COMMONS:

CDATA,CCDATA

M2.2.81 RMUNIT

CALLING SEQUENCE:

CALL RMUNIT (NUN)

NUREG/CR-0200, Vol. 3, Rev. 6

RMUNIT deletes the dataset associated with logical unit number NUN.

ARGUMENTS:

NUN to logical unit number to delete the associated dataset.

M2.2.82 RNDIN

CALLING SEQUENCE:

CALL RNDIN (R)

FUNCTION:

RNDIN sets the seed for the next random number.

ARGUMENTS:

R is the seed. It is an eight-byte number.

M2.2.83 RNDOUT

CALLING SEQUENCE:

CALL RNDOUT (R)

FUNCTION:

RNDOUT returns the seed for the next random number.

ARGUMENTS:

R is the seed. It is an eight-byte number.

M2.2.84 SCANON

ENTRIES:

SCANON, SCANOF, ALLOWC, RESETC, SETBIN, RESETB, IONUMS, RCRDLN, GETPTR, RSTPTR

NUREG/CR-0200, Vol. 3, Rev. 6

CALLING SEQUENCE:

CALL SCANON CALL SCANOF CALL ALLOWC CALL RESETC CALL SETBIN CALL RESETB CALL IONUMS(NIN,NOU,NINOLD,NOUOLD) CALL RCRDLN(LEN,LENOLD) CALL GETPTR(PTR) CALL RSTPTR(PTR)

FUNCTION:

- SCANON turns on the feature in the free-form reading package to scan ahead to the next entry and check if it is `END'.
- SCANOF turns off the scan-ahead feature.
- ALLOWC turns off the invalid character check when reading numbers. With the check turned off, any character not valid in a numeric field will act as a terminator for the field.
- RESETC turns the invalid character check on. With the check turned on, any character not valid in a numeric field will cause an error message to be printed and the character will be replaced by a 0.
- SETBIN turns on the binary reading flag.
- RESETB turns off the binary reading flag. This mode is for reading free-form character records.
- IONUMS sets new input and output unit numbers and returns the previous unit numbers.
- RCRDLN sets a new logical record length, and returns the previous one.
- GETPTR returns the current pointer in the input buffer.
- RSTPTR sets the current pointer in the input buffer.

ARGUMENTS:

- NIN is the new input logical unit number.
- NOU is the new output logical unit number. If NIN or NOU is 0, the unit number is not changed.

NINOLD is where the previous input logical unit number is returned.

NOUOLD is where the previous output logical unit number is returned.

LEN is the new logical record length (LEN<253).

LENOLD is where the previous logical record length is returned.

PTR is the pointer in the input buffer.

M2.2.85 SET

CALLING SEQUENCE:

X = SET(I)

FUNCTION:

SET returns the floating point number stored at I.

ARGUMENTS:

I is the location of the floating point number SET is to return.

M2.2.86 SFLRA

CALLING SEQUENCE:

X = SFLRA()

FUNCTION:

SFLRA returns a double-precision random number uniformly distributed between -1.0 and 1.0.

SUBROUTINES CALLED:

FLTRN

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.87 SHELC

CALLING SEQUENCE:

CALL SHELC (R,TAU,TOI,TOO)

FUNCTION:

SHELC is used to generate the transmission probabilities for a cylindrical shell.

ARGUMENT:

R is the ratio of inner radius to outer radius of the shell.

TAU is the thickness of the shell (in mean-free paths).

TOI is the transmission from the outside to the inside of the shell.

TOO is the transmission from the outside to the outside of the shell.

SUBROUTINES CALLED:

KI3,COS,SQRT

M2.2.88 SNST

CALLING SEQUENCE:

CALL SNST (CX,L,C,ITL,IHT,IHS,ITOT,GR,LL)

FUNCTION:

SNST is used to move cross-section data from an AMPX-formatted transfer array to an ANISN-formatted array. It can also make a transport correction to the within-group scatter cross section.

ARGUMENTS:

CX is the magic word 2-D array.

L is the length of CX.

C is the ANISN array.

ITL is the table length of the ANISN array.

NUREG/CR-0200, Vol. 3, Rev. 6

IHT	is the position of the total	cross section in a cross-section	string of the ANISN array.
-----	------------------------------	----------------------------------	----------------------------

- IHS is the position of the within-group scatter cross section within a cross-section string of the ANISN array.
- ITOT is the number of groups.
- GR is the array containing the transport corrections to be applied to the within-group cross sections.
- LL is the order of scattering of the array.

SUBROUTINES CALLED:

MGCWRD

M2.2.89 STOP

CALLING SEQUENCE:

CALL STOP (MESSAGE, STPCDE, NOU, TRCFLG, P1, ... PN)

FUNCTION:

STOP is used to print a message, optionally print a trace back, print optional data, and optionally stop.

ARGUMENTS:

MESSAGE	is the message to be printed. It can be no longer than 132 characters. If it is less than 132 characters, it must be terminated by a \$ symbol. This argument is required, but the calling sequence can be terminated after this argument, or any subsequent argument, in which case defaults are supplied for the missing arguments.
STPCDE	is a stop number, defaulted to 0. If it is greater than 0, STOP will execute a stop instead of returning to the calling program.
NOU	is the logical unit number of the print file. The default is the standard error message file.
TRCFLG	selects a trace back if it is greater than 0. The default is 0.
P1,,PN	are optional arguments which will be printed following MESSAGE. Printing of these arguments is not currently implemented on UNIX systems.

M2.2.90 TIMFAC

CALLING SEQUENCE:

CALL TIMFAC(FACTOR)

FUNCTION:

TIMFAC supplies a machine-dependent factor used to scale cpu times in a program so that roughly equivalent amounts of computation can be done on different machines using the same input time limit. The SCALE version sets FACTOR = 1.0.

ARGUMENTS:

FACTOR is the machine-dependent factor used to scale the time.

M2.2.91 VERGET

CALLING SEQUENCE:

L=VERGET(PGM,CDATE,CLIB,SYSTEM,SVERS,PROG,PVERS)

FUNCTION:

VERGET is used to return the system name, system version, program name, and program version for a given module created on a given date and residing in a given library.

ARGUMENTS:

- PGM is the accessed name of the module.
- CDATE is the date PGM was created.
- CLIB is the name of the library where PGM resides.
- SYSTEM is the name of the system.
- SVERS is the version of the system.
- PROG is the program name of PGM.
- PVERS is the version of PGM.

SUBROUTINES CALLED:

STOP

M2.2.92 WOT

CALLING SEQUENCE:

CALL WOT(X,NCOL,NROW,LG,TOP1,TOP2,TOP3)

FUNCTION:

WOT is used to print a 1-, 2-, or 3-D array in a columnar output form with headings supplied as TOP1, TOP2, and TOP3. It will compress out lines that are the same to reduce the amount of output.

ARGUMENTS:

х	is the array to be printed.
NCOL	is the number of columns in X (1 if X is a vector).
NROW	is the number of rows in X.
LG	is the third dimension of X (1 if X is less than 3 dimensions).
TOP1	is the heading for the row index.
TOP2	is the heading for the columns.
TOP3	is the page heading for the third dimension

M2.2.93 WOT8

CALLING SEQUENCE:

CALL WOT8 (A1,L1,A2,L2,A3,L3,A4,L4,A5,L5,A6,L6,A7,L7,A8,L8,NOU)

FUNCTION:

WOT8 is used to print up to eight arbitrary-length vectors as eight columns down a page. Numbers greater than a parameter, LRGINT, are assumed to be floating point, and are printed as such. Numbers less than LRGINT are printed as integers.

ARGUMENTS:

An is the *nth* vector.

Ln is the length of the nth vector. If Ln=0, then the nth vector is omitted.

NOU is the logical unit number of the print file.

M2.2.94 WRTID

CALLING SEQUENCE:

CALL WRTID (ID,N6)

FUNCTION:

WRTID is used to print a labeled table of the data in an AMPX master library nuclide identifier record.

ARGUMENTS:

ID is the ID record from an AMPX master library.

N6 is the logical unit number of the print file.

M2.2.95 WRTWID

CALLING SEQUENCE:

CALL WRTWID (ID, N6)

FUNCTION:

WRTWID is used to print a labeled table of the data in an AMPX working library nuclide identifier record.

ARGUMENTS:

ID is the nuclide identifier record from the AMPX working library.

N6 is the logical unit number of the print file.

SUBROUTINES CALLED:

SET

NUREG/CR-0200, Vol. 3, Rev. 6

M2.2.96 XTENDA

CALLING SEQUENCE:

CALL XTENDA (BUFFER, NBLK, NUNIT)

FUNCTION:

XTENDA is used to add blocks to (extend) a random-access file. For a UNIX file system, this involves incrementing a limit.

ARGUMENTS:

BUFFER is a scratch array used to initialize the new blocks. BUFFER must be at least as long as a block.

NBLK is the number of new blocks to be added.

NUNIT is the logical unit number of the random-access file.

SUBROUTINES CALLED:

EYENIT

M2.2.97 XUFLOW

CALLING SEQUENCE

CALL XUFLOW (IFLAG)

FUNCTION:

XUFLOW is a dummy replacement for a deck to cause underflows to be ignored.

ARGUMENTS:

IFLAG is a flag turning underflow detection on [1] or off [0].

M2.2.98 YREAD

CALLING SEQUENCE:

CALL YREAD (DD,LD,LIM,IT,LERR)

NUREG/CR-0200, Vol. 3, Rev. 6

YREAD is used to read an array using the free-form reading package while allowing interpolation, filling, skipping, multiple repeats, and arbitrary indexing. (See Sect. M3 for a more complete description.)

ARGUMENTS:

DD,LD is the array to be read. DD is used for floating-point numbers and LD for integers.

LIM is the number of entries in the array.

IT selects what kind of data are being read. IT = 0 selects integers.

IT = 1 selects single-precision floating-point numbers.

IT = 2 selects double-precision floating-point numbers.

LERR logical flag that is set true if an attempt is made to store data outside the DD or LD array.

SUBROUTINES CALLED:

DREAD, AREAD

COMMONS:

UNIT, QRDBUF

M2.2.99 YOREAD

CALLING SEQUENCE:

CALL YOREAD (CBUF, LBUF, IRET)

FUNCTION:

YOREAD is used to read the next logical record for the free-form reading package.

ARGUMENTS:

- CBUF is the array into which the record is read.
- LBUF is the length of the record.
- IRET is set to 2 if scan ahead is activated and an end of file is sensed.

SUBROUTINES CALLED:

ENFILE

COMMONS:

UNIT,QRDBUF

M2.2.100 Y0TRNS

CALLING SEQUENCE:

CALL Y0TRNS(CARD,LBUF)

FUNCTION:

Y0TRNS translates a character array from upper to lower case, or from lower to upper case, depending on the system it was compiled on.

ARGUMENTS:

CARD is the character array to be translated.

LBUF is the number of characters in CARD.

M2.2.101 ZREAD

CALLING SEQUENCE:

D=ZREAD(IBR,IRET)

FUNCTION:

ZREAD is used to read a hexadecimal number in free form and return it as a double-precision number.

ARGUMENTS:

See DREAD.

SUBROUTINES CALLED:

YOREAD, ENFILE

NUREG/CR-0200, Vol. 3, Rev. 6

COMMONS:

UNIT, QRDBUF

REFERENCE

 N. M. Greene, W. E. Ford III, L. M. Petrie, and J. W. Arwood, AMPX-77: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Cross-Section Libraries From ENDF/B-IV and/or ENDF/B-V, ORNL/CSD/TM-283, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., October 1992.

M2.A C LANGUAGE ROUTINES

The following routines are provided for UNIX systems. They may require modification to work correctly on different UNIX systems.

CALACT -	A routine to provide an interface between ALOCAT and the UNIX system MALOCS routine
EXECUTE -	A routine to provide an interface between a FORTRAN routine and a system call on UNIX systems.
EXIT -	A routine to provide an interface to the UNIX system exit routine.
GETMTM -	A routine that returns the creation date of a file
GETNAM -	A routine to return the login name of the user
H7LIB -	Routines for HEATING7
JSTIME -	A routine to return the CPU time left to a process before it is cancelled.
MACHNAME -	A routine to return the machine name of the machine being executed on.
PUTENV -	A routine to set an environment variable
RETNTM -	A routine to return the current date and time

M2.B AMPX SUBROUTINES

Subroutine 54	Used by these modules
BSQ	ALE
EBLIST	RADE
END	LAVA
FILL	
FILLY	ALE, AJAX, ALPO, RADE, WAX
LEGE	RADE
NCK	ALE, AJAX, ALPO, WAX
NOTE	AJAX, WAX
P1D	ALE
RD4	RADE
SUMX	RADE

REFERENCES:

- B.1 Pierre L'Ecuyer, and Serge Cote, "Implementing a Random Number Package with Splitting Facilities," ACM Transactions on Mathematical Software, 17(1): 98-111 (March 1991).
- B.2 B. Wichmann and D. Hill, "Building a Random-Number Generator," BYTE, 12(3):127-128 (March 1987).
- B.3 B. A. Wichmann, and I. D. Hill, "An Efficient and Portable Pseudo-Random Number Generator," Applied Statistics, Volume 31, 1982, pages 188-190.
- B.4 Alexander Haas, "The Multiple Prime Random Number Generator," ACM Transactions on Mathematical Software, 13(4):368-381 (December 1987).
- B.5 Pierre L'Ecuyer, "Efficient and Portable Combined Random Number Generators," Communications of the ACM 31(6), 742-749, 774 (June 1988).

NUREG/CR-0200, Vol. 3, Rev. 6

M2.B.1

Computational Physics and Engineering Division

SCALE FREE-FORM READING ROUTINES

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

The SCALE free-form reading routines are a set of subroutines for use by programs in the SCALE system to read input from cards in an unstructured manner. This document provides information for a programmer who wishes to use these routines.

NUREG/CR-0200, Vol. 3, Rev. 6

M.3.iii

CONTENTS

ABSTR	RACT	M.3.iii
LIST C	DF TABLES	M.3.vi
ACKN	OWLEDGMENTS	M.3.vii
M3.1	INTRODUCTION	M3.1.1
M3.2	DATA INPUT CONSIDERATIONS	M3.2.1
M3.3	PROGRAMMING CONSIDERATIONS	M3.3.1

LIST OF TABLES

		<u>Page</u>
M3.1	Routines to activate features	M3.3.2
M3.2	Alphanumeric reading routines	M3.3.3
M3.3	Alphanumeric reading arguments	M3.3.3
M3.4	Numeric data reading routines	M3.3.3
M3.5	Numeric reading arguments	M3.3.4
M3.6	Miscellaneous reading routines	M3.3.4
M3.7	Arguments for LREAD and YREAD	M3.3.4
M3.8	Data input options for YREAD	M3.3.5

NUREG/CR-0200, Vol. 3, Rev. 6

M.3.vi

The many helpful comments and suggestions of N. F. Landers during the development of this package are gratefully acknowledged.

NUREG/CR-0200, Vol. 3, Rev. 6

M.3.vii
M3.1 INTRODUCTION

A set of free-form data reading routines has been developed to facilitate the use of free-formatted data input. These routines are used by the control programs to read the standard composition data and related data. Some of the functional modules such as KENO V.a and HEATING also make extensive use of these routines. This document is intended to provide guidance to a programmer desiring to use these routines in a program. Section M3.2 explains the conventions used to input data, and Sect. M3.3 contains information necessary for a programmer to use the routines.

NUREG/CR-0200, Vol. 3, Rev. 6

M3.1.1

M3.2 DATA INPUT CONSIDERATIONS

The free-form reading routines allow alphanumeric data, floating-point data, and integer data to be entered in a free-formatted manner. All columns of any record may be used; and data, with certain exceptions noted below, can start or end in any column. A single data entry cannot be started on one record and extend onto the next record, however.

Any alphanumeric data entry is terminated by one or more blanks or an equal sign, depending on the first argument supplied to the reading routine. Any numeric data entry will be terminated when a blank or a comma is encountered. The use of an E as an exponent does allow a single imbedded blank after the E. An exponent is limited to two digits, and the number being read is terminated with the second digit. Therefore, for this case only, another number can be started immediately following the second digit of the exponent without an intervening blank or comma. Decimal data may be entered as in FORTRAN input: e.g., 1.733-4, 1.733E-04, or 0.0001733 are the same as 1.733×10^4 ; 1.733+4, 1.733E+4, 1.733E4, and 17330.0 are the same as 1.733×10^4 . Integers may be entered for floating-point data (i.e., 10 will be interpreted as 10.0). Similarly, floating-point data may be entered for integers. Thus, 1.733E+4 would be interpreted as 17330, and 1.733E-4 would be interpreted as zero.

The free-form routines have provisions for multiple entries of the same data value. This step is done by entering the number of repeats, followed by an R, *, or \$, followed by the data value to be repeated. For example, 5R2, 5*2, or 5\$2 enters five successive 2s in the input data. Blanks are not allowed between the number of repeats and the repeat flag (R,*,\$). However, a blank is allowed between the repeat flag and the data item to be repeated. Multiple zeros may be specified by entering nZ, where n is the number of zeros to be repeated. No blanks should be placed between the n and the Z, and the nZ must be separated from the rest of the data by one or more blanks.

All numeric data are read in double precision and are then converted to the desired form. Exponent indicators can be either a D or an E. The default method of terminating a data field is one or more blanks or a comma. A comma must immediately follow the number if it is used as a terminator (i.e., 5.6, should be used to enter the number 5.6 as data; 5.6, results in two numbers, 5.6 and 0). Thus, commas can be used to enter zeros. 5.6,,,,,8.0 enters 6 numbers as data-5.6, four zeros, and 8.0 (the comma immediately after the 5.6 terminates that number and does not cause an entry of zero into the data). Similarly, both 5.6 ,,,,,8.0 and 5.6 ,,,,, 8.0 enter seven numbers as data-5.6, five zeros and 8.0.

All data are translated to lowercase before being passed to the calling routine.

NUREG/CR-0200, Vol. 3, Rev. 6

M3.3 PROGRAMMING CONSIDERATIONS

When using the free-form reading routines in a program, it is important to be aware of the different types of routines that are available in the package. Routines are available to activate desired features, to do the actual reading, and "transparent" routines that are used internally. These routines and their arguments are listed in Tables M3.1 through M3.7.

If the programmer desires to use the word END to terminate a block of data, SCANON must be called to activate the scan-ahead feature. Once SCANON has been activated, the scan-ahead feature remains in effect until it is inactivated by calling SCANOF. If the scan-ahead feature is active, the second argument, IRET, of the reading routine (see Tables M3.2 and M3.5) will be returned with a value of 1 whenever the next piece of data to be read is the word END. The argument IRET will be returned with a value of 2 if an end-of-file is the next piece of information to be read. Note: IRET should be initialized to zero before the very first read is done.

The first argument, IC, is used to communicate to the reading routine information regarding the means of reading data. This step is explained in greater detail in Tables M3.2 and M3.4. It may be advantageous to create a common that contains preset values of IC for use in the call statements.

Subroutine ALLOWC can be called to force termination of a numeric entry whenever any character that is illegal in a numeric field is encountered. Once invoked, this feature remains in effect until it is inactivated by calling RESETC.

The default record length is set at 80 columns. If it becomes desirable to set the record length at some value less than or equal to 252, this can be accomplished by calling RCRDLN. The new record length remains in effect until RCRDLN is called to set a different record length.

Under certain conditions it is desirable to be able to read unformatted data. This can be achieved by calling SETBIN. Once activated, this feature remains in effect until it is inactivated by calling RESETB. When this feature has been activated, unformatted records of the current record length are read from the input file. The reading routines then do no conversion, but simply return the next word (or two words for double precision) from the record.

Subroutine YREAD allows reading a whole array of numbers using free-form input. In addition to repeating numbers, capabilities are provided for various sequence repeats, interpolations, filling the array, and entering or overriding specific locations in the array in a manner similar to FIDO-type input (see Sect. M10). Table M3.8 lists the various data entry options.

NUREG/CR-0200, Vol. 3, Rev. 6

Subrouting	Moone - C	
Subroutine name	means of utilization	Purpose
SCANON	CALL SCANON	This routine is used to activate the scan-ahead feature that allows the program to scan ahead for an 'END'
SCANOF	CALL SCANOF	This disables the scan-ahead feature
IONUMS	CALL IONUMS (II,JJ,KK,LL)	This subroutine is used to change the input and output unit numbers II is the unit to be used for input (new input unit, default = 5) JJ is the unit number to be used for output (new print unit, default = 6) KK is used to return the old input unit number LL is used to return the old output unit number
RCRDLN	CALL RCRDLN (LIN,LO)	This subroutine is used to change the number of columns in a record and thereby ignore any information past column LIN LIN is the new number of columns to be considered in a record (≤ 252) LO is the previous value of the number of columns in a record (default = 80)
SETBIN	CALL SETBIN	This subroutine is used to set a flag that causes data reading to be unformatted. This feature remains in effect until RESETB is called
RESETB	CALL RESETB	This subroutine sets a flag that causes data reading to be free-form (disables the SETBIN feature)
ALLOWC	CALL ALLOWC	A call to this subroutine causes the termination of a numeric data field whenever any character that is illegal in a numeric field is encountered; i.e., it treats all such characters the way it treats a comma during normal numeric reading. This feature remains in effect until RESETC is called
RESETC	CALL RESETC	This subroutine resets a flag to disable the ALLOWC feature
GETPTR	CALL GETPTR (I)	This subroutine returns the index of the next character in the current record in I
RSTPTR	CALL RSTPTR (I)	This subroutine sets the index of the next character in the current record to I

1 auto MD.1 Routines to activate tearing	Table M3.1	Routines	to activate	features
--	------------	----------	-------------	----------

NUREG/CR-0200, Vol. 3, Rev. 6

-

Function name	Means of utilization	Type of data	
AREAD	Variable name = AREAD(IC,IRET)	Alphanumeric data, 4 characters at a time	
CREAD	Variable name = CREAD(IC,IRET)	Alphanumeric data, 8 characters at a time	

Table M3.2 Alphanumeric reading routines

T 11 3 10 0		•		
1 anie MASS	A Inha	nneric	reading	araimente
1 4010 1113.5	<i>i</i> npna	numente	reading	argumento

Value of IC	Response
-1	Returns the last character transmitted
0	Returns the next 4 characters – no scan-ahead capability
1	Read a new record and return the first 4 columns of the new record – no scan- ahead capability
2	Skip to the first nonblank character and return 4 characters $-$ terminate at a double blank or an =
	If less than 4 characters were found prior to the double blank or =, the remaining characters are padded with blanks
	Scan ahead for END may be enabled
3	Returns the next 4 characters and terminates at either a single or double blank, depending on whether it follows an AREAD with IC=4 or 2, or an =. If less than 4 characters were read, the remaining characters are padded with blanks Scan ahead for END may be enabled
4	Skips to the first nonblank character and returns 4 characters – terminates at a single blank or an = Scan ahead for END may be enabled
Value of IRET	A value of zero is always returned if the SCAN feature is not active
0	Nonblank characters (not END) were found
1	END was found (SCAN feature enabled)
2	Found an end-of-file (SCAN feature enabled)

Table M3.4 Numeric data reading routines

Function name	Means of utilization	Type of data
DREAD	Variable = DREAD(IC,IRET)	Double-precision data
FREAD	Variable = FREAD(IC,IRET)	Floating-point data
IREAD	Variable = IREAD(IC, IRET)	Integer data
ZREAD	Variable = ZREAD(IC,IRET)	Double-precision hexadecimal data

Value of IC	Response
0	Returns the next number Reads a new record and returns the payt number
Value of IRET	A value of zero is always returned if the SCAN feature is not enabled
0 1	Nonblank characters (not END) were found following the current number END was found as the next entry after the current number
2	An end-of-file was encountered in scanning for END

Table M3.5 Numeric reading arguments

Table M3.6 Miscellaneous reading routines

Name	Means of utilization	Purpose
LREAD	Variable = LREAD(IC,IRET)	This logical function returns a true if the next character is a numeric character and false if the next character is nonnumeric. It does not do any actual reading, but may cause new record(s) to be read
YREAD	CALL YREAD(A,A,NUM,ITP)	To load an array of numeric data that consists of integer or floating-point data in single or double precision. A is the array and is entered in the argument list twice. NUM is the length of the array
LRDERR	Variable = LRDERR()	This logical function returns the current value of the reading error flag, and resets it to false

Table M3.7 Arguments for LREAD and YREAD

Argument	Explanation
IC IRET A NUM	This argument is not used If IRET = 2, ENFILE is called; otherwise, this argument is ignored The array to be loaded by YREAD, integer, or floating point The length of the array A
ITP	 ITP = 0 indicates that integer data are to be loaded into the array A ITP = 1 indicates that single-precision floating-point data are to be loaded into the array A ITP = 2 indicates that double-precision floating-point data are to be loaded into the array A

Count field	Option field	Data field	Function
		i	Stores i at the current position in the array
	F	j	Fills the remainder of the array with the number j, starting with the current position in the array
	Α	j	Sets the current position in the array to j
i	S		Increments the current position in the array by i. (This allows skipping i positions. i may be positive or negative)
i	Q ·	j	Repeats the previous j entries i times. The default value of i is 1
i	N	j	Repeats the previous j entries i times inverting the sequence each time. The default value of i is 1
i	В	j	Back i entries. From that position, repeat the previous j entries in reverse order. The default value of i is 1
i	I	jk	Provides the end points, j and k, with i entries linearly interpolated between them (i.e., a total of i+2 points). At least one blank must separate j and k. When used for an integer array, the I option should only be used to generate integer steps [i.e., $(k-j)/(i+1)$ should be a whole number]
i	L	jk	Provides the end points, j and k, with i entries logarithmically interpolated between them (i.e., a total of $i+2$ points). At least one blank must separate j and k
i	Z		Enters i zeros
i	R	j	Repeat j i times
i	*	j	Repeat j i times
i	\$	j	Repeat j i times
i	Р	j ·	Alternately stores j and -j in the next i positions of the array
	Т		Terminates the data reading for the array

Table M3.8 Data input options for YREAD

NUREG/CR-0200 Revision 6 Volume 3, Section M4 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

SCALE CROSS-SECTION LIBRARIES

W. C. Jordan S. M. Bowman

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

This document briefly describes the cross-section libraries available in the SCALE code system. Included are the background of each library, the intended use of the library, and information relating to general experience with the library. The energy group bounds of the library are given in a manner that allows a quick comparison of the different libraries available. This document is intended as a companion document and supplement to Sect. M8, which describes the Standard Composition Library.

> NUREG/CR-0200, Vol. 3, Rev. 6

M4.iii

CONTENTS

ABSTI	RACT	
LIST (OF FIGUR	ES M4.vii
LIST (OF TABLE	S M4 viii
		~
ACKN	OWLEDG	MENTS M4.ix
M4.1	INTROL	DUCTION M4.1.1
M4.2	DESCRI	PTION OF THE SCALE CROSS-SECTION LIBRARIES
	M4.2.1	THE 218-GROUP ENDF/B-IV LIBRARY (218GROUPNDF4) M4 2.1
	M4.2.2	THE 27-GROUP ENDF/B-IV LIBRARY (27GROUPNDF4) M4.2.1
	M4.2.3	THE 27-GROUP DEPLETION LIBRARY (27BURNIPLIB) M4 2 13
	M4.2.4	THE 238-GROUP ENDF/B-V LIBRARY (238GROUPNDF5)
	M4.2.5	THE 44-GROUP ENDF/B-V LIBRARY (44GROUPNDF5)
	M4.2.6	THE HANSEN-ROACH LIBRARY (HANSEN-ROACH)
	M4.2.7	THE 18-GROUP GAMMA LIBRARY (18GROUPGAMMA)
	M4.2.8	THE 22n-18g STRAKER-MORRISON LIBRARY (22N-18COUPLE)
	M4.2.9	THE 27n-18g COUPLED LIBRARY (27N-18COUPLE)
M4.3	REFERE	NCES
M4.A	TABLE	OF CONTENTS LISTING FOR SCALE LIBRARIES
	M4.A.1	THE 218-GROUP ENDF/B-IV LIBRARY M4.A.1
	M4.A.2	THE 27-GROUP ENDF/B-IV LIBRARY M4.A.2
	M4.A.3	THE 27-GROUP BURNUP LIBRARY M4.A.3
	M4.A.4	THE 238-GROUP ENDF/B-V LIBRARY M4.A.7
	M4.A.5	THE 44-GROUP ENDF/B-V LIBRARY M4.A.12
	M4.A.6	THE 16-GROUP HANSEN-ROACH LIBRARY M4.A.17
	M4.A.7	THE 18-GROUP GAMMA LIBRARY M4.A.18
	M4.A.8	THE 22n/18g STRAKER-MORRISON LIBRARY M4.A.21
	M4.A.9	THE 27n/18g COUPLED ENDF/B-IV LIBRARY M4.A.22
M4.B	LOCAL	EXPERIENCE WITH THE 218- AND 27-GROUP ENDF/B-IV LIBRARIES M4.B.1
	M4.B.1	CHARACTERISTICS OF THE ENDF/B-IV LIBRARIES
	M4.B.2	KNOWN CROSS-SECTION IRREGULARITIES
	M4.B.3	THERMAL-SCATTERING DATA LIMITATION
	REFERE	ENCE OF APPENDIX B M4.B.2

LIST OF FIGURES

Figure	Page
M4.2.1 Weighting function for 238-group LAW Library.	

NUREG/CR-0200, Vol. 3, Rev. 6

M4.vii

LIST OF TABLES

Table	Page
M4.1.1	Standard SCALE cross-section libraries M4.1.2
M4.2.1	Neutron energy group structure for some SCALE libraries
M4.2.2	Neutron energy group structure for the SCALE ENDF/B-V libraries
M4.2.3	SCALE gamma energy group structure
M4.2.4	Resonance nuclides in the ENDF/B-IV libraries
M4.2.5	Nuclides in ENDF/B-IV libraries with multiple sets of thermal-scattering data
M4.2.6	Resonance nuclides in the ENDF/B-V libraries
M4.2.7	Nuclides in ENDF/B-V libraries with multiple sets of thermal-scattering data
M4.2.8	Resonance nuclides found on the Hansen-Roach library
M4.2.9	Nuclides in Hansen-Roach library with multiple sets of thermal scattering data
M4.2.10	List of nuclides in the 27n-18g library with no gamma-ray production cross sections M4.2.31

M4.viii

ACKNOWLEDGMENTS

We would like to acknowledge all those who participated in developing and implementing the SCALE cross-section libraries for their assistance in preparing this document. Special thanks go to J. A. Bucholz, M. D. DeHart, N. M. Greene, J. R. Knight, L. M. Petrie, and R. M. Westfall.

NUREG/CR-0200, Vol. 3, Rev. 6

M4.ix

M4.1 INTRODUCTION

The SCALE control modules are designed to allow complex analyses using simple input descriptions. Each shielding or criticality control module (1) uses the Standard Composition Library (see Sect. M8) for specifying the materials and mixtures used in a calculation and (2) provides automatic problem-dependent cross-section preparation prior to problem execution via the functional modules. This section describes the cross-section libraries currently available in the SCALE system. There are nine cross-section libraries distributed with SCALE, eight of which are automatically available in the SCALE system.

Six of these libraries were designed primarily for criticality analysis. The 218-group library is a finegroup library derived from ENDF/B-IV data. The library contains 140 fast groups and 78 thermal groups and includes explicit resonance data in the resolved resonance range. No unresolved resonance data are available in the library. The 27-group library (27GROUPNDF4) is the broad-group library collapsed from the 218group library and has 14 fast and 13 thermal groups. This library has been extensively validated against critical experiments. The 27-group depletion library (27BURNUPLIB) contains the same data as 27GROUPNDF4 plus pre-release ENDF/B-V data for a large number of fission products. This was the first library designed for use with the SAS2 depletion/decay sequence. The 238-group library (238GROUPNDF5) is the most complete library in SCALE. This library contains data for all ENDF/B-V nuclides and has 148 fast and 90 thermal groups. Most resonance nuclides in the 238-group library have resonance data in the resolved resonance region and Bondarenko factors in the unresolved resonance region. The 44-group library (44GROUPNDF5) is a broad-group version of 238GROUPNDF5 designed for analysis of light-water-reactor (LWR) fresh and spent fuel systems and has been extensively validated against LWR critical experiments. The 238- and 44-group libraries are the preferred criticality safety analysis libraries in SCALE. The Hansen-Roach 16-group library (HANSEN-ROACH) is based on the original Hansen and Roach data. Important nuclides not available in the library were added by collapsing the 218-group ENDF/B-IV library to the 16-group structure. Although the library was originally developed for fast systems, a modification to the s, data for ²³⁸U has allowed it to be successfully used as a general-purpose library.

The other three libraries were developed as shielding libraries. The SCALE 18-group gamma library (18GROUPGAMMA) is based on data that were later approved as ENDF/B-IV data. The Straker-Morrison 22- neutron and 18-gamma-group coupled library (22N-18COUPLE) contains the same gamma data as 18GROUPGAMMA. The 22-neutron-group data were taken from ENDF/B-II and developed in conjunction with air-over-ground radiation transport studies done in the late 1960s. The group collapse of the cross sections was tailored for water-filled shipping cask calculations. The 27-neutron-group and 18-gamma-group coupled library (27N-18COUPLE) contains neutron data from 27GROUPNDF4 and gamma data from 18GROUPGAMMA. This library has been widely used in LWR spent fuel shielding calculations and has been validated against experimental data.

A library is selected by specifying the appropriate alphanumeric name (which in turn points to the appropriate unit number for the cross-section data). Alternative libraries can be used easily with a minimum of additional job control specifications. Table M4.1.1 lists the standard SCALE cross-section libraries, along with the alphanumeric name and associated logical unit number. Also listed is the main source of data for each library.

The SCALE control modules are designed to read AMPX master format libraries.¹ These libraries are very general and many include temperature-dependent cross-section data as well as resonance data. The master format libraries are used as a basis for creating an AMPX working format library that has

NUREG/CR-0200, Vol. 3, Rev. 6

Alphanumeric name ^a	Default logical unit No.	Primary data source
HANSEN-ROACH	81	Hansen-Roach 16 group library
27GROUPNDF4	82	ENDF/B-IV 218-group library
44GROUPNDF5	83	ENDF/B-V 238-group library
238GROUPNDF5	84	ENDF/B-V
22N-18COUPLE	85	Straker-Morrison
18GROUPGAMMA	86	OGRE point-data library
27BURNUPLIB	87	ENDF/B-IV, ENDF/B-V . (pre-release)
27N-18COUPLE	88	ENDF/B-IV 27-group library, 18GROUPGAMMA library
Anything else ^b	70	User-supplied library

Table M4.1.1 Standard SCALE cross-section libraries

"SCALE will recognize any shortened version of the alphanumeric name as long as it is unique to one name in the list. For example, "27" would not be unique because three library names begin with "27," but "27G" is unique, a shortened version of the name "27GROUPNDF4."

^bThe SCALE 218-group ENDF/B-IV library is no longer associated with a default logical unit number, but may be used via unit 70 as a user-supplied library.

problem-dependent (user-specified) temperature dependence and appropriate resonance processing. The SCALE control module sequences access BONAMI first to process nuclides with Bondarenko data. The master library output from BONAMI is input to NITAWL-II, where resonance data are processed via the Nordheim integral treatment and an AMPX working format library is produced. The SCALE criticality and shielding functional modules are all designed to use an AMPX working library format.

One significant difference between Version 4 of the SCALE system and all previous versions of SCALE is in the structure of the AMPX master format libraries. Earlier versions of SCALE used a cross-section library structure that was generated by AMPX prior to XLACS-77 and that is compatible with the NITAWL code. The current version of SCALE uses cross sections having a data structure compatible with XLACS-77 (and later versions of XLACS) and processed by NITAWL-II. The cross sections are the same in both cases; however, the data are represented in the manner that allows correct interface with the two different implementations of the Nordheim Integral Treatment found in NITAWL and NITAWL-II. This modification should be invisible to the SCALE user in most situations. However, it should be cautioned that cross sections compatible with NITAWL cannot be properly processed by NITAWL-II, and vice versa.

M4.2 DESCRIPTION OF THE SCALE CROSS-SECTION LIBRARIES

The neutron energy group structure of each of the SCALE neutron libraries other than the ENDF/B-V libraries is given in Table M4.2.1. The neutron energy group structure of the ENDF/B-V libraries is given in Table M4.2.2. Six different neutron energy group structures are available in the SCALE system: the Hansen-Roach 16-group structure, the Straker-Morrison 22-group structure, the 27-group subset of the 218-group library, the 218-group structure of the ENDF/B-IV Criticality Safety Reference Library (CSRL), the 44-group subset of the 238-group library, and the 238-group structure of the ENDF/B-V fine-group library. The energy group structure of the gamma cross-section libraries is given in Table M4.2.3. Each of the SCALE cross-section libraries is discussed in the following sections. The table of contents of each library is listed in Sect. M4.A.

M4.2.1 THE 218-GROUP ENDF/B-IV LIBRARY (218GROUPNDF4)

The 218-group ENDF/B-IV library is one of the more complete libraries available in SCALE. The source of the data was ENDF/B-IV, and the processing of the cross sections by XLACS in the AMPX system is well documented.^{2,3} The weighting function used in the P₃ cross-section generation was a fission-1/Es₁-Maxwellian weighting (except for resonance nuclides, which were weighted 1/E instead of 1/Es₁). One of the features of the library is that explicit resonance data carried with it can be used to generate problem-dependent, resonance-region group cross sections using NITAWL-II. This capability allows great flexibility in the use of the library as a general-purpose criticality analysis library. The library has 140 fast groups and 78 thermal groups (below 3.05 eV). The group structure was designed to fit the cross-section variation and reaction thresholds of the light and intermediate nuclides and to fit the major resonances of the intermediate and heavy nuclides. No unresolved resonance data are carried in the library. The unresolved resonance region was processed at a s_p = 50,000.

The 218-group library has not been routinely validated because of its size and the related costs. However, the 27-group ENDF/B-IV library was derived directly from the 218-group library and has been validated against a large number of critical experiments (see Sect. M4.2.2). The 218-fine-group structure of the library generally will give either the same or more precise results than its companion 27-broad-group library.

An obvious advantage of a fine-group library over a broad-group library is that the library is less sensitive to the weighting spectrum used to generate the library. The cross sections more closely represent the base data, and the group structure allows a more detailed determination of the energy dependence of the flux. In past validations, it has been found useful to compare a fine-group calculation against a broad-group calculation when bias is observed. Tables M4.2.4 and M4.2.5 show 218-group nuclides that have resonance data and thermal scattering data, respectively.

M4.2.2 THE 27-GROUP ENDF/B-IV LIBRARY (27GROUPNDF4)

The 27-group ENDF/B-IV library is the broad-group companion library to the 218-group ENDF/B-IV library. The 218-group library was flux collapsed using MALOCS and the MT 1099 flux file carried with the fine-group cross sections. (This flux file is the group representation of the original weighting spectrum used to generate the 218-group cross sections from ENDF/B-IV data.) The library has 14 fast groups and 13 thermal groups (below 3 eV). The group structure was chosen to match the 16-group Hansen-Roach structure with two additional fast groups and seven additional thermal groups. The additional groups were

NUREG/CR-0200, Vol. 3, Rev. 6

			Straker-	Upper	
CSRL	CSRL	Hansen-Roach	Morrison	energy	Upper
218-group	27-group	16-group	22-group	(eV)	lethargy
1	1			2.0000+7ª	(-0.693)
			1	1.4918+7	(-0.40)
			2	1.2214+7	(-0.20)
		1	3	1.0000+7	0.0
			4	8.1873+6	0.200
2	2			6.4340+6	0.441
			5	6.3600+6	0.453
			6	4.9659+6	0.70
3				4.8000+6	0.734
4				4.3040+6	0.843
			7	4.0657+6	0.90
			8	3.0119+6	1.20
5	3	2		3.0000+6	1.204
6				2.4790+6	1.395
			9	2.4660+6	1.40
7				2.3540+6	1.446
			10	2.3500+6	1.448
8	4			1.8500+6	1.687
			11	1.8268+6	1.70
9				1.5000+6	1.897
10	5	3		1.4000+6	1.966
11				1.3560+6	1.998
12				1.3170+6	2.027
13				1.2500+6	2.079
14				1.2000+6	2.120
			12	1.1080+6	2.20
15				1.1000+6	2.207
16			•	1.0100+6	2.293
17	-	_		9.2000+5	2.386
18	6	4		9.0000+5	2.408
19				8.7500+5	2.436
20				8.6110+5	2.452
21				8.2000+5	2.501
22				7.5000+5	2.590
23				6.7900+5	2.69
24				6.7000+5	2.703
25				6.0000+5	2.813
26				5.7300+5	2.859
~~			13	5.5023+5	2.90
27				5.5000+5	2.900
28				4.9952+5	2.997

Table M4.2.1 Neutron energy group structure for some SCALE libraries

1....<u>I.h</u>.

•

NUREG/CR-0200, Vol. 3, Rev. 6

.

CSRL 218-group	CSRL 27-group	Hansen-Roach 16-group	Straker- Morrison 22-group	Upper energy (eV)	Upper lethargy
29				4.7000+5	3.058
30				4.4000+5	3.124
31				4.2000+5	3.170
32	7	5		4.0000+5	3.219
33	-	-		3.3000+5	3.411
34				2.7000+5	3.612
35				2.0000+5	3.912
36				1.5000+5	4.200
37				1.2830+5	4.356
			14	1.1109+5	4.50
38	8	6		1.0000+5	4.605
39				8.5000+4	4.768
40				8.2000+4	4.804
41				7.5000+4	4.893
42			•	7.3000+4	4.920
43				6.0000+4	5.116
44				5.2000+4	5.259
45				5.0000+4	5.298
46				4.5000+4	5.404
47				3.0000+4	5.809
48				2.5000+4	5.991
49	9	7		1.7000+4	6.377
50	-			1.3000+4	6.645
51				9.5000+3	6.959
52				8.0300+3	7.127
53				6.0000+3	7.419
54				3.9000+3	7.849
55				3.7400+3	7.891
			15	3.3546+3	8.00
56	10	8		3.0000+3	8.112
57		-		2.5800+3	8.263
58				2.2900+3	8.382
59				2.2000+3	8.422
60				1.8000+3	8.623
61				1.5500+3	8.772
62				1.5000+3	8.805
63				1.1500+3	9.071
64				9.5000+2	9.262
65				6.8300+2	9.592

Table M4.2.1 (continued)

		······································	Strakor_	Unner	
CSRL	CSRL.	Hansen-Roach	Morrison	energy	Linner
218-group	27-group	16-group	22-group	(eV)	letharmy
	Broap		<u>22 group</u>	(01)	
66				6.7000+2	9.611
67	11	9		5.5000+2	9.808
68				3.0500+2	10.25
			16	5.8295+2	9.75
69				2.8500+2	10.466
70				2.4000+2	10.637
71				2.1000+2	10.771
72				2.0750+2	10.783
73				1.9250+2	10.858
74				1.8600+2	10.892
75				1.2200+2	11.314
76				1.1900+2	11.339
77				1.1500+2	11.373
78				1.0800+2	11.436
			17	1.0130+2	11.50
79	12	10		1.0000+2	11.513
80				9.0000+1	11.618
81				8.2000+1	11.711
82				8.0000+1	11.736
83				7.6000+1	11.787
84				7.2000+1	11.841
85				6.7500+1	11.906
86				6.5000+1	11.944
87				6.1000+1	12.007
88				5.9000+1	12.041
89				5.3400+1	12.140
90				5.2000+1	12.167
91				5.0600+1	12.194
92				4.9200+1	12,222
93				4.8300+1	12.241
94				4.7000+1	12.268
95				4.5200+1	12.307
96				4.4000+1	12.334
97				4.2400+1	12.371
98				4.1000+1	12.405
99				3.9600+1	12.439
100				3.9100+1	12.452
101				3.8000+1	12.481
102				3.7000+1	12.507
103				3.5500+1	12.549

Table M4.2.1 (continued)

. .

			(•••••••••)		
			Straker-	Upper	
CSRL	CSRL	Hansen-Roach	Morrison	energy	Upper
218-group	27-group	16-group	22-group	(eV)	lethargy
104		·····			
104				3.4600+1	12.574
105				3.3750+1	12.599
106				3.3250+1	12.614
107				3.1750+1	12.660
108				3.1250+1	12.676
109	13	11		3.0000+1	12.717
			18	2.9023+1	12.75
110				2.7500+1	12.804
111				2.5000+1	12.899
112				2.2500+1	13.005
113				2.1000+1	13.074
114				2.0000+1	13.122
115				1.9000+1	13.174
116				1.8500+1	13.200
117	•			1.7000+1	13.285
118				1.6000+1	13.346
119	1			1.5100+1	13.403
120				1.4400+1	13.451
121				1.3750+1	13.497
122				1.2900+1	13.561
123				1.1900+1	13.642
124				1.1500+1	13.676
			19	1.0677+1	13.75
125	14	12		1.0000+1	13.816
126				9.1000+0	13.910
127				8.1000+0	14.026
128				7.1500+0	14.151
129				7.0000+0	14.172
130				6.7500+0	14.209
131				6.5000+0	14.246
132				6.2500+0	14.286
133				6.0000+0	14.326
134				5.4000+0	14.432
135				5.0000+0	14.509
136				4.7500+0	14.560
137				4.0000+0	14.732
138				3.7300+0	14.802
139				3.5000+0	14.865
140				3.1500+0	14.971
			20	3.0590+0	15.00

Table M4.2.1 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

	·····		Straker-	Upper	
CSRL	CSRL	Hansen-Roach	Morrison	energy	Upper
218-group	27-group	16-group	22-group	(eV)	lethargy
141	15			3.0500+0*	15.03
142		13		3.0000+0	15.019
143				2.9700+0	15.030
144				2.8700+0	15.064
145				2.7700+0	15.099
146				2.6700+0	15.136
147				2.5700+0	15.174
148				2.4700+0	15.214
149				2.3800+0	15.251
150				2.3000+0	15.285
151				2.2100+0	15.325
152				2.1200+0	15.367
153				2.0000+0	15.425
154				1.9400+0	15.455
155				1.8600+0	15.498
156	16			1.7700+0	15.547
157				1.6800+0	15.599
158				1.5900+0	15.654
159				1.5000+0	15.713
160				1.4500+0	15.747
161	•			1.4000+0	15.782
162				1.3500+0	15.818
163	17			1.3000+0	15.856
164				1.2500+0	15.895
165				1.2250+0	15.915
166				1.2000+0	15.936
167				1.1750+0	15.957
168				1.1500+0	15.978
169				1.1400+0	15.987
170	18			1.1300+0	15.996
171				1.1200+0	16.005
172				1.1100+0	16.014
173				1.1000+0	16.023
174				1.0900+0	16.032
175				1.0800+0	16.041
176				1.0700+0	16.050
177				1.0600+0	16.060
178				1.0500+0	16.069
179				1.0400+0	16.079
180				1.0300+0	16.089

Table M4.2.1 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

			Straker-	Upper	
CSRL	CSRL	Hansen-Roach	Morrison	energy	Upper
218-group	27-group	16-group	22-group	(eV)	lethargy
			· · · · · · · · · · · · · · · · · · ·	1.0000.40	16.000
181				1.0200+0	16.098
182	10			1.0100+0	16.108
183	19	. 14		1.0000+0	16.118
184				9.7500-1	16.143
185				9.5000-1	16.109
186				9.2500-1	16.196
187				9.0000-1	16.223
188	••			8.5000-1	16.281
189	20			8.0000-1	16.341
190				7.5000-1	16.406
191				7.0000-1	16.475
192				6.5000-1	16.549
193				6.0000-1	16.629
194				5.5000-1	16.716
			21	5.3159-1	16.750
195				5.0000-1	16.811
196				4.5000-1	16.917
			22°	4.1400-1	17.000
197	21	15		4.0000-1	17.034
198				3.7500-1	17.099
199				3.5000-1	17.168
200	22			3.2500-1	17.242
201				3.0000-1	17.322
202				2.7500-1	17.409
203				2.5000-1	17.504
204	23			2.2500-1	17.610
205				2.0000-1	17.728
206				1.7500-1	17.861
207				1.6000-1	17.95
208				1.2500-1	18.198
209	24	16		1.0000-1	18.421
210			-	9.0000-2	18.526
211				8.0000-2	18.644
212				7.0000-2	18.777
213				6.0000-2	18.932
214	25			5.0000-2	19.114
215				4.0000-2	19.337
216	26			3.0000-2	19.625

.

Table M4.2.1 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

•

Table M4.2.1 (continued)									
CSRL 218-group	CSRL 27-group	Hansen-Roach 16-group	Straker- Morrison 22-group	Upper energy (eV)	Upper lethargy				
217 218 ^d	27ª			2.5300-2 1.0000-2	19.795 20.723				

^{*a*}Read as 2.0000×10^{-7} .

^bUpper energy boundary for CSRL thermal energy range. ^cLower energy boundary for 22-group library is 5.0000 × 10⁻³ eV. ^dLower energy boundary for CSRL 218- and 27-group libraries is 1.0000 × 10⁻⁵ eV.

NUREG/CR-0200, Vol. 3, Rev. 6

					-87 8-0-P				1 1101.0		
		Upper			Upper			Upper			Upper
238	44	energy	238	44	energy	238	44	energy	238	44	energy
group	group	(eV)	group	group	(eV)	group	group	(eV)	group	group	(eV)
1	1	2.0000E+07	41		2.7000E+05	· 81		1.8600E+02	121		2.0000E+01
2		1.7333E+07	42		2.0000E+05	82		1.2200E+02	122		1.9000E+01
3		1.5683E+07	43		1.5000E+05	83		1.1900E+02	123		1.8500E+01
4		1.4550E+07	44		1.2830E+05	84		1.1500E+02	124		1.7000E+01
5		1.3840E+07	45	12	1.0000E+05	85		1.0800E+02	125		1.6000E+01
6		1.2840E+07	46		8.5000E+04	86	17	1.0000E+02	126		1.5100E+01
7		1.0000E+07	47		8.2000E+04	87		9.0000E+01	127		1.4400E+01
8	2	8.1873E+06	48		7.5000E+04	88		8.2000E+01	128		1.3750E+01
9	3	6.4340E+06	49		7.3000E+04	89		8.0000E+01	129		1.2900E+01
10	. 4	4.8000E+06	50		6.0000E+04	90		7.6000E+01	130		1.1900E+01
11		4.3040E+06	51		5.2000E+04	91		7.2000E+01	131		1.1500E+01
12	5	3.0000E+06	52		5.0000E+04	92		6.7500E+01	132	19	1.0000E+01
13	6	2.4790E+06	53		4.5000E+04	93		6.5000E+01	133		9.1000E+00
14	7	2.3540E+06	54		3.0000E+04	94		6.1000E+01	134	20	8.1000E+00
15	8	1.8500E+06	55	13	2.5000E+04	95		5.9000E+01	135		7.1500E+00
16		1.5000E+06	56	14	1.7000E+04	96		5.3400E+01	136		7.0000E+00
17	9	1.4000E+06	57		1.3000E+04	97		5.2000E+01	137		6.7500E+00
18		1.3560E+06	58		9.5000E+03	98		5.0600E+01	138		6.5000E+00
19		1.3170E+06	59		8.0300E+03	99		4.9200E+01	139		6.2500E+00
20		1.2500E+06	60		6.0000E+03	100		4.8300E+01	140	21	6.0000E+00
21		1.2000E+06	61		3.9000E+03	101		4.7000E+01	141		5.4000E+00
22		1.1000E+06	62		3.7400E+03	102		4.5200E+01	142		5.0000E+00
23		1.0100E+06	63	15	3.0000E+03	103		4.4000E+01	143	22	4.7500E+00
24		9.2000E+05	64		2.5800E+03	104		4.2400E+01	144		4.0000E+00
25	10	9.0000E+05	65		2.2900E+03	105		4.1000E+01	145		3.7300E+00
26		8.7500E+05	66		2.2000E+03	106		3.9600E+01	· 146		3.5000E+00
27		8.6110E+05	67		1.8000E+03	107		3.9100E+01	147		3.1500E+00
28		8.2000E+05	68		1.5500E+03	108		3.8000E+01	148		3.0500E+00
29		7.5000E+05	69		1.5000E+03	109		3.7000E+01	149	23	3.0000E+00ª
30		6.7900E+05	70		1.1500E+03	110		3.5500E+01	150		2.9700E+00
31		6.7000E+05	71		9.5000E+02	111		3.4600E+01	151		2.8700E+00
32		6.0000E+05	72		6.8300E+02	112		3.3750E+01	152		2.7700E+00
33		5.7300E+05	73		6.7000E+02	113		3.3250E+01	153		2.6700E+00
34		5.5000E+05	74	16	5.5000E+02	114		3.1750E+01	154		2.5700E+00
35		4.9952E+05	75		3.0500E+02	115		3.1250E+01	155		2.4700E+00
36		4.7000E+05	76		2.8500E+02	116	18	3.0000E+01	156		2.3800E+00
37		4.4000E+05	77		2.4000E+02	117		2.7500E+01	157		2.3000E+00
38		4.2000E+05	78		2.1000E+02	118		2.5000E+01	158		2.2100E+00
39	11	4.0000E+05	79		2.0750E+02	119		2.2500E+01	159		2.1200E+00
40		3.3000E+05	80		1 9250E+02	120		2 1000E+01	160		2 0000E+00

Table M4.2.2 Neutron energy group structure for the SCALE ENDF/B-V libraries

238 group	44 group	Upper energy (eV)									
161		1.9400E+00	181		1.0900E+00	201		6.0000E-01	221		6 0000F-02
162		1.8600E+00	182		1.0800E+00	202		5.5000E-01	222	38	5.0000E-02
163	24	1.7700E+00	183		1.0700E+00	203		5.0000E-01	223	39	4.0000E-02
164		1.6800E+00	184		1.0600E+00	204		4.5000E-01	224	40	3 0000E-02
165		1.5900E+00	185		1.0500E+00	205	27	4.0000E-01	225	41	2.5300E-02
166		1.5000E+00	186		1.0400E+00	206	28	3.7500E-01	226	42	1.0000E-02
167		1.4500E+00	187		1.0300E+00	207	29	3.5000E-01	227	43	7.5000E-03
168		1.4000E+00	188		1.0200E+00	208	30	3.2500E-01	228		5.0000E-03
169		1.3500E+00	189		1.0100E+00	209		3.0000E-01	229		4.0000E-03
170		1.3000E+00	190	25	1.0000E+00	210	31	2.7500E-01	230	44	3.0000E-03
171		1.2500E+00	191		9.7500E-01	211	32	2.5000E-01	231		2.5000E-03
172		1.2250E+00	192		9.5000E-01	212	33	2.2500E-01	232		2.0000E-03
173		1.2000E+00	193		9.2500E-01	213	34	2.0000E-01	233		1.5000E-03
174		1.1750E+00	194		9.0000E-01	214		1.7500E-01	234		1.2000E-03
175		1.1500E+00	195		8.5000E-01	215	35	1.5000E-01	235		1.0000E-03
176		1.1400E+00	196		8.0000E-01	216		1.2500E-01	236		7.5000E-04
177		1.1300E+00	197		7.5000E-01	217	36	1.0000E-01	237		5.0000E-04
178		1.1200E+00	198		7.0000E-01	218		9.0000E-02	238		1.0000E-04
179		1.1100E+00	199		6.5000E-01	219		8.0000E-02			1.0000E-05 ^b
180		1.1000E+00	200	26	6.2500E-01	220	37	7.0000E-02			

Table M4.2.2 (continued)

"Upper energy boundary for ENDF/B-V libraries thermal range.

Lower energy boundary for ENDF/B-V libraries.

SCALE 18-group gamma structure	Upper energy (eV)
1	1.0000+7
2	8.0000+6
3	6.5000+6
4	5.0000+6
5	4.0000+6
6	3.0000+6
7	2.5000+6
8	2.0000+6
9	1.6600+6
10	1.3300+6
11	1.0000+6
12	8.0000+5
13	6.0000+5
14	4.0000+5
15	3.0000+5
16	2.0000+5
17	1.0000+5
18	5.0000+4
	1.0000+4ª

Table M4.2.3 SCALE gamma energy group structure

"Lower energy boundary of gamma libraries.

NUREG/CR-0200, Vol. 3, Rev. 6

.

Standard composition	, , , , , , , , , , , , , , , , , , , ,
alphanumeric name	Nuclide ID No.
Na	11023
Mn	25055
Fe	26000
Co	27059
Co-59	27059
Cu	29000
Br-79	35079
Br-81	35081
ZIRCALLOY	40302
Nb-93	41093
Мо	42000
Ag-107	47107
Ag-109	47109
In-113	49113
In-115	49115
Cs-133	55133
	64000
Dy-104	00104
Lu-175	71175
T_{2}	71170
W_182	73161
W-182 W-183	74182
W-183	74184
W-186	74186
Re-185	75185
Re-187	75187
Au	79197
Th-232	90232
Pa-233	91233
U-233	92233
U-234	92234
U-235	92235
U-236	92236
U-238	92238
Np-237	93237
Pu-238	94238
Pu-239	94239
Pu-240	94240
Pu-241	94241
Pu-242	94242
Am-241	95241
Am-243	95423
Cm-244	96244

Table M4.2.4 Resonance nuclides in the ENDF/B-IV libraries

1.

NUREG/CR-0200, Vol. 3, Rev. 6

Standard composition alphanumeric name	Nuclide ID No.	Temperatures (K) for which thermal- scattering cross-section data are available
Н	1001	293, 550
• D	1002	293, 550
Be	4009	296, 900, 1000, 1200
B-10	5010	293, 550
B-11	5011	293, 550
С	6012	293, 900, 1000, 1200

Table M4.2.5 N	uclides in	ENDF/B-IV	libraries	with	multiple	sets
	of the	rmal-scatteri	ng data			

chosen such that, for the systems considered, the broad-group calculations meet an acceptance criterion of $? k_{eff}/k_{eff} < 0.3\%$ when compared with the reference 218-group calculation using the XSDRN code.⁴ This criterion was relaxed to 1% for ²³⁸U in systems where the median fission energy was greater than 1 eV and less than 100 eV. The resonance data and the thermal scattering data carried with the 27-group library and the 218-group library are the same and are processed by NITAWL-II. The library was conceived as a general-purpose criticality analysis library with a special interest in applicability toward shipping cask analysis and thermal neutron systems.

The 27-group library has been extensively validated against critical experiments.⁵⁻¹³ Areas of validation include highly enriched uranium-metal, compound and solution systems, moderated low-enriched uranium, heterogeneous and homogeneous systems, and plutonium metal and solution systems. The 27-group ENDF/B-IV cross-section set is known to have a 1 to 2% positive bias for highly thermal ²³⁹Pu systems. Negative bias of 1 to 2% has been observed for light-water-reactor (LWR) fuel lattice depending on the degree of lattice moderation. Other areas of bias tend to be geometry and composition dependent (the reader is referred to the various validation reports for specific areas of applicability). Refer to Sect. M4.B for more information on ORNL experience with the 27-group ENDF/B-IV library.

M4.2.3 THE 27-GROUP DEPLETION LIBRARY (27BURNUPLIB)

The 27-group depletion library is a criticality library originally developed for use in the SAS2 depletion/shielding control module. The library consists of the 27-group ENDF/B-IV library discussed in Sect. M4.2.2 supplemented with data from a pre-release version of ENDF/B-V for a large number of fission products. Prior to the release of the 44-group library, this library was the preferred library for use with SAS2 (Shielding Analysis Sequence 2, Sect. S2) because of the large number of nuclides that can be processed explicitly in XSDRNPM for use in the ORIGEN-S depletion code. This processing eliminates the cross-section dependence on the ORIGEN-S library for those nuclides that are treated in XSDRNPM. Because the base library was the 27-group ENDF/B-IV library, all the comments in Sects. M4.2.2 and M4.2.9 are directly applicable here.

M4.2.4 THE 238-GROUP ENDF/B-V LIBRARY (238GROUPNDF5)

The 238-group ENDF/B-V library is a general-purpose criticality analysis library and the most complete library available in SCALE. This library is also known as the LAW (Library to Analyze Radioactive Waste) Library. The library contains data for all nuclides (more than 300) available in ENDF/B-V processed by the AMPX-77 systems.¹⁴ It also contains data for ENDF/B-VI evaluations of ¹⁴N, ¹⁵N, ¹⁶O, ¹⁵⁴Eu, and ¹⁵⁵Eu, as discussed in Sect. M4.2.5.

A special nuclide set, identified by nuclide ID number 900, contains dose factors based on the ANSI/ANS 6.1.1-1977 standard (dose factor ID 9029) and on the more recent ANSI/ANS 6.1.1-1991 standard (dose factor ID 9031).

The library has 148 fast groups and 90 thermal groups (below 3 eV). The group structure is listed in Table M4.2.2.

Most resonance nuclides in the 238 group and 44 group have resonance data (to be processed by NITAWL-II) in the resolved resonance range and Bondarenko factors (to be processed by BONAMI) for the unresolved range. Both libraries contain resolved resonance data for s-wave, p-wave, and d-wave resonances ($\ell = 0$, $\ell = 1$, and $\ell = 2$, respectively) as shown in Table M4.2.6. These data can have a significant effect on results for undermoderated, intermediate-energy problems. Resonance structures in several light-to-intermediate mass "nonresonance" ENDF nuclides (i.e., ⁷Li, ¹⁹F, ²⁷Al, ²⁸Si) are accounted for using Bondarenko shielding factors. These structures can also be important in intermediate energy problems. Nuclides with thermal scattering data are listed in Table M4.2.7.

All nuclides in the 238-group LAW Library use the same weighting spectrum, consisting of

- 1. Maxwellian spectrum (peak at 300 K) from 10⁻⁵ to 0.125 eV,
- 2. a 1/E spectrum from 0.125 eV to 67.4 keV,
- 3. a fission spectrum (effective temperature at 1.273 MeV) from 67.4 keV to 10 MeV, and
- 4. a 1/E spectrum from 10 to 20 MeV.

A plot of this spectrum is shown in Fig. M4.2.1.

All nuclides use a P_3 Legendre expansion to fit the elastic and discrete level inelastic scattering processes in the fast range, thereby making the library suitable for both reactor and shielding applications. A P_3 fit was used for thermal-scattering. All other scattering processes use P_0 fits.

A special material is included in the library with an identifier of 99, which contains 238-group weighting spectra for collapsing the 238-group library using the MALOCS module to produce an application-specific collapsed library.

Several spectra are included, as listed below:

- 1. spectrum based on a fuel cell from a 17 × 17 Westinghouse LWR assembly and identified by 9001,
- 2. spectrum designed for use with the Molten Salt Reactor Experiment (MSRE) fuel storage tanks at ORNL and identified by 9002,
- 3. average spectrum in a 27-cm carbon steel shield for use in cask shielding studies and identified by 9003,
- 4,5. average spectra in an 18.6-cm lead/13-cm resin shield for use in shielding cask studies (the flux in the lead region is identified by 9004 and that in the resin region by 9005), and
- 6. average spectrum in a 50-cm concrete shield for cask shielding studies and identified by 9006.
- 7. spectrum in an infinite medium of hydrogen and 235 U with H/X = 300.

NUR	E	G/CR	-0200,
Vol.	3,	Rev.	6

Standard composition		Highest order resonance
alphanumeric name	Nuclide ID No.	(l value)
NA	11023	0
S	16000	0
CR	24000	0
CR (1/EsigT)	24301	0
CRSS	24304	0
MN	25055	0
FE	26000	1
FE (1/EsigT)	26301	0
FESS	26304	0
CO-59	27059	1
NI	28000	0
NI (I/EsigT)	28301	0
NISS	28304	0
CU CD 70	29000	1
GE-72	32072	1
GE-73	32073	1
GE-74	32074	1
GE-76	32076	0
AS-75	33075	1
SE-74	34074	1
SE-76	34076	2
SE-77	34077	1 .
SE-78	34078	1
SE-80	34080	1
SE-82	34082	1
BR-79	35079	1
BR-81	35081	1
KR-78	36078	1
KR-80	36080	1 .
KR-82	36082	2
KR-83	36083	1
KK-84 VD 96	36084	1
NK-00	36086	U
KB-85 DD 97	37085	0
KD-0/	37087	0
SK-84 SD 94	38084	0
SK-60	38086	0
SK-8/ SD 99	38087	0
SK-00 V_80	38088	0
70	37087	U O
ZR-90	40000 40000	0
7P_01	40090	U 1 0
ZR-71 78-97	40031	0
7D_0/	40092	0
7R-96	40024	0
	410020	0
NR-94	41000	0 ·
MO	42000	0
MO-92	42000	ů.
MO-94	42032	0
MO-95	42024	0
MO-96	42095	õ

Table M4.2.6 Resonance nuclides in the ENDF/B-V libraries

Standard composition		Highest order resonance
alphanumeric name	Nuchae ID No.	(l value)
MO-97	42097	0
MO-98	42098	Ō
MO-100	42100	Ō
TC-99	43099	Ō
RU-99	44099	0
RU-100	44100	0
RU-101	44101	0
RU-102	44102	0
RU-104	44104	0
RH-103	45103	0
PD-104	46104	0
PD-105	46105	0
PD-106	46106	0
PD-108	46108	0
AG-107	47107	0
AG-109	47109	0
CD-110	48110	0
CD-111	48111	0
CD-112	48112	0
CD-113	48113	0
CD-114 CD 116	48114	0
CD-110	48116	0
IN-115 TN 115	49113	U
SN 112	49115	0
SN-112 SN-114	50112	U
SN-114 SN 115	50114	0
SN-115 SN-116	50115	0
SN-117	50110	U
SN-118	50118	0
SN-119	50119	0
SN-120	50120	0
SN-122	50120	0
SN-124	50122	Ő
SB-121	51121	ő
SB-123	51123	Ő
TE-122	52122	ő
TE-123	52123	õ
TE-124	52124	Õ .
TE-125	52125	õ
TE-126	52126	Ō
TE-128	52128	Õ.
TE-130	52130	Ō
I-127	53127	Ō
I-129	53129	0
XE-124	54124	0
XE-126	54126	0
XE-128	54128	0
XE-129	54129	0
XE-130	54130	0
XE-131	54131	0
XE-132	54132	0
XE-134	54134	0

Table M4.2.6 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

Standard composition		Highest order resonance
alphanumeric name	Nuclide ID No.	(l value)
CS-133	55133	0
US-130 DA 124	55136	U
DA-134 DA 125	56134	Ŭ
DA-135	50135	0
DA-130 DA 127	50130	0
DA-137	50137	0
DD 141	57139	0
ND 142	59141	0
ND-142 ND 143	00142 C0142	0
ND-143	00143	0
ND-144 ND 145	60145	0
ND-145	60145	0
	60140	0
ND-148M ND 150	60150	0
DA 147	60150	0
PIVI-147	01147	0
F 141-140	61001	0
SM-147 SM-140	62147	0
SIM-149	62149	0
SM-150 SM 151	62150	0
SM-152	62152	0
SIVI-152 SNA 154	62152	0
51VI-154 FII	62000	0
EU 151	62151	0
EU-151 FIL152	63153	0
EU-152 EU 152	62152	0
EU-133 EU-154ª	62154	0
EU-154 FIL155 ^a	62155	0
GD-153	64152	0
GD-152	64154	0
GD-155	64155	0
GD-156	64156	0
GD-157	64157	0
GD-158	64159	0
GD-160	64160	0
TB-159	65159	0
DY-160	66160	Ő
DY-161	66161	ů 0
DY-162	66162	Ő
DY-163	66163	0
DY-164	66164	ŏ
HO-165	67165	Ő
ER-166	68166	õ
ER-167	68167	ň
LU-175	71175	ŏ
LU-176	71176	ŏ
HF	72000	õ
HF-174	72174	0

Table M4.2.6 (continued)

Standard composition alphanumeric name	Nuclide ID No.	Highest order resonance (ℓ value)
HF-180	72180	0
TA-181	73181	Õ
TA-182	73182	õ
W	74000	ŏ
W-182	74182	Ō
W-183	74183	õ
W-184	74184	Ő
W-186	74186	õ
RE-185	75185	ů
RE-187	75187	Ő
AU	79197	0
TH-230	90230	0
TH-232	90232	Ő
PA-231	91231	0
PA-233	01233	0
11-232	02232	0
U-234	022232	0
U_235	72234 000025	0
U-235	92233	U
11 227	92230	U
U-237 11.238	92237	U
NP-237	92238	U
DII 226	93237	U
FU-230 DIL 239	94236	0
DI 220	94238	0
PU-239	94239	U
DII 242	94240	0
PU-242 DII 242	94242	0
FU-243 DIL-244	94243	0
1 0-244 A M 241	94244	0
AM-241	95241	0
AW-245	95243	0
AM-242M	95601	0
CM-242	96242	0
CM-243	96243	0
CM-244	96244	0
CM-245	96245	0
CM-246	96246	0
CM-247	96247	0
CM-248	96248	0
BK-249	97249	0
CF-249	98249	0
CF-250	98250	0
CF-251	98251	0
CF-252	98252	0
ES-253	99253	Ō
EU-154 (ENDF/B-V)	631541	ŏ
EU-155 (ENDF/B-V)	631551	0

Table M4.2.6 (continued)

" ENDF/B-VI data.

NUREG/CR-0200, Vol. 3, Rev. 6

Standard composition		Temperatures (K) for which thermal-scattering
alphanumeric name	Nuclide ID No.	cross-section data are available
н	1001	296 500 900
D	1002	296,500,900
H-3	1002	296,500,900
HFREEGAS	1801	296,500,900
DFREEGAS	1802	296, 500, 900
H-POLY	1901	296, 500, 900
HE-3	2003	296,400,500,600,700,800,1000,1200
HE	2004	296 400 500 600 700 800 1000 1200
LI-6	3006	296, 500, 900, 200, 700, 200, 1000, 1200
LI-7	3007	296,500,900
BE	4009	296,500,900
BEBOUND	4309	296,500,900
B-10	5010	296,500,900
B-11	5011	296, 500, 900
C-12	6012	296, 500, 900
C-GRAPHITE	6312	296, 500, 900
N-14	7014	296,500,900
N-15	7015	296,500,900
O-16ª	8016	296,500,900
0-17	8017	296, 500, 900
F	9019	296,500,900
NA	11023	300,500,900
MG	12000	296,500,900
ΔΪ	13027	296,500,900
SI	14000	296,500,900
P	15031	296, 500, 900
S	16000	296, 500, 900
S-32	16032	296, 500, 900
CL	17000	300, 500, 900
v v	19000	300, 500, 500, 2100.1
C A	20000	296 500 900
TI	22000	296,500,900
v	22000	296, 500, 900
ĊR	24000	296, 500, 900
CR (1/EsigT)	24000	290, 500, 500
CRSS	24301	290, 500, 500
MN	24304	296, 500, 900
FF	20000	296, 500, 900
FE (1/EsioT)	26301	290, 500, 900
FESS	26304	296,500,900
CO-59	20004	296,500,900
NI	28000	296, 500, 900
NI (1/EsioT)	28301	296,500,900
NISS	28301	296,500,900
CU	20204	296 500 900
GA	31000	200, 500, 500
GE-72	32072	296 500 900
GE-73	32072	296,500,900
GE-74	32075	296,500,900
GE-76	32074	296,500,900
ΔS-75	32070	296, 500, 900
SE-74	34074	290, 500, 500 296, 400, 500, 600, 700, 800, 1000, 1200, 1600, 2000
71-11	34074	270, TUU, JUU, UUU, 700, 800, 1000, 1200, 1000, 2000

Table M4.2.7 Nuclides in ENDF/B-V libraries with multiple sets of thermal-scattering data

NUREG/CR-0200, Vol. 3, Rev. 6

Standard composition alphanumeric name	Nuclide ID No.	Temperatures (K) for which thermal-scattering cross-section data are available
SE-76	34076	296 500 900
SE-77	34077	296 500 900
SE-78	34078	206, 200, 200
SE-80	34090	270, 350
SE-00 SE-87	24080	290, 350, 400, 450, 500, 600, 800, 1000
BP 70	35070	290, 550, 400, 450, 500, 600, 800, 1000
DR-73 DD 91	35079	296, 500, 900
DR-01 VD 79	35081	296, 500, 900
NR-78 KD 90	36078	296, 500, 900
KR-80	36080	296, 500, 900
KK-82	36082	296, 500, 900
KR-83	36083	296, 500, 900
KK-84	36084	296, 500, 900
KR-85	36085	296, 500, 900
KR-86	36086	296, 500, 900
RB-85	37085	296, 500, 900
RB-86	37086	296, 500, 900
RB-87	37087	296, 500, 900
SR-84	38084	296, 500, 900
SR-86	38086	296, 500, 900
SR-87	38087	296, 500, 900
SR-88	38088	296, 500, 900
SR-89	38089	296 500 900
SR-90	38090	296,500,900
Y-89	39089	296,500,900
Y-90	39090	296,500,900
Y-91	30001	206,500,000
7.R	40000	270, 500, 700
7B-90	40000	290, 500, 900
21(-)0 78_01	40090	296, 500, 900
ZIC-71 7D 07	40091	296, 500, 900
ZIX-72 70 02	40092	296, 500, 900
ZR-93	40093	296, 500, 900
ZR-94	40094	296, 500, 900
ZR-95	40095	296, 500, 900
ZR-96	40096	296, 500, 900
NB-93	41093	296, 500, 900
NB-94	41094	296, 500, 900
NB-95	41095	296, 500, 900
MO	42000	296, 500, 900
MO-92	42092	296, 500, 900
MO-94	42094	296, 500, 900
MO-95	42095	296, 500, 900
MO-96	42096	296, 500, 900
MO-97	42097	296, 500, 900
MO-98	42098	296, 500, 900
MO-99	42099	296, 500, 900
MO-100	42100	296, 500, 900
TC-99	43099	296,500,900
RU-96	44006	206,500,500
RU-98	44098	290, 500, 500
RU-99	44000	220, 500, 500
RI-100	1077 AA100	270, JUU, JUU 204 500 000
RILIOI	44100	270, 300, 300
RU-101 RIL102	44101 44100	250, 500, 500
10-102	44102	290, 000, 900

Table M4.2.7 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

Standard composition		Temperatures (K) for which thermal-scattering
alphanumeric name	Nuclide ID No.	cross-section data are available
RU-103	44103	295 500 900
RU-104	44104	296,500,900
RU-105	44105	296,500,900
RU-106	44106	296, 500, 900
RH-103	45103	296, 500, 900
RH-105	45105	296,500,900
PD-102	46102	296,500,900
PD-104	46102	296,500,900
PD-105	46105	296,500,900
PD-106	46106	296,500,900
PD-107	46107	296,500,900
PD-108	46108	296,500,900
PD-110	46110	296,500,900
AG-107	47107	296,500,900
AG-109	.47109	296,500,900
AG-111	47111	296,500,900
CD	48000	296,500,900
CD-106	48106	296,500,900
CD-108	48108	296,500,900
CD-110	48110	296,500,900
CD-111	48111	296,500,900
CD-112	48112	296,500,900
CD-113	48112	296,500,900
CD-114	48114	296,500,900
CD-116	48116	296,500,900
CD-115M	48601	296,500,900
IN-113	49113	296,500,900
IN-115	49115	296,500,900
SN-112	50112	296,500,900
SN-114	50114	296,500,900
SN-115	50115	296,500,900
SN-116	50115	296,500,900
SN-117	50117	296, 500, 900
SN-118	50118	296, 500, 900
SN-119	50119	296 500 900
SN-120	50120	296 500 900
SN-122	50122	296 500 900
SN-123	50123	296,500,900
SN-124	50125	296, 500, 900
SN-125	50125	296, 500, 900
SN-126	50126	296, 500, 900
SB-121	51121	296,500,900
SB-123	51123	296 500 900
SB-124	51124	296, 500, 900
SB-125	51125	296, 500, 900
SB-126	52126	296. 500. 900
		, -,,

.

Table M4.2.7 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6
Standard composition		Temperatures (K) for which thermal-scattering
alphanumeric name	Nuclide ID No.	cross-section data are available
TE-120	52120	206 500 000
TE-122	52120	270, 300, 900 206 500 000
TE-123	52122	290, 500, 900
TE-124	52123	270, 500, 500
TE-125	52124	290, 500, 900
TE-126	52125	220, 500, 500
TE-130	52120	220, 500, 500
TE-132	52130	290, 500, 900
TE-127M	52601	290, 500, 500
TE-129M	52611	296, 500, 900
I-127	53127	296,500,900
I-129	53129	296 500 900
I-130	53130	296, 500, 900
I-131	53131	296, 500, 900
I-135	53135	296, 500, 900
XE-124	54124	296, 500, 900
XE-126	54126	296, 500, 900
XE-128	54128	296, 500, 900
XE-129	54129	296, 500, 900
XE-130	54130	296, 500, 900
XE-131	54131	296, 500, 900
XE-132	54132	296, 500, 900
XE-133	54133	296, 500, 900
XE-134	54134	296, 500, 900
XE-135	54135	296, 500, 900
XE-136	54136	296, 500, 900
CS-133	55133	296, 500, 900
CS-134	55134	296, 500, 900
CS-135	55135	296, 500, 900
CS-136	55136	296, 500, 900
CS-137	55137	296, 500, 900
BA-134	56134	296, 500, 900
BA-135	56135	296, 500, 900
BA-136	56136	296, 500, 900
BA-137 DA 139	56137	296, 500, 900
DA-136	56138	296, 500, 900
BA-140 I.A. 120	56140	296, 500, 900
LA-139	57139	296, 500, 900
LA-140 CE 140	5/140	296, 500, 900
CE-141	JO140	270, 200, 900
CE-142	Jõ141 50140	250, 500, 500 206, 500, 000
CE-142	J8142	290, 200, 900
CE_144	38143 59144	270, 200, 900 206, 500, 000
PR-141	J0144 50141	270, 200, 900 206, 500, 000
PR-142	50141	270, 300, 900 206 500 000
PR-143	501/2	270, JUU, 700 706 500 000
ND-142	60140	270, 300, 300
ND-143	60142 601/2	270, JVV, JVV 206, 500, 000
ND-144	60143	290, 500, 900
ND-145	60145	296 500 900
ND-146	60145	296,500,900
ND-147	60147	296,500,900
ND-148	60142	200, 500, 500
ND-150	60150	296 500 900
PM-147	- 61147	296,500,900
PM-148	61148	296, 500, 900
	~~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	

Table M4.2.7 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

M4.2.22

Standard composition	Nuclide ID M.	Temperatures (K) for which thermal-scattering
 alphanumene name	Nuclide ID No.	cross-section data are available
PM-149	61149	296, 500, 900
PM-148M	61601	296, 500, 900
SM-144	62144	296, 500, 900
SM-147	62147	296, 500, 900
SM-148	62148	296, 500, 900
SM-149	62149	296, 500, 900
SM-150	62150	296, 500, 900
SM-151	62151	296, 500, 900
SM-152	62152	296, 500, 900
SM-153	62153	296, 500, 900
SM-154	62154	296, 500, 900
EU	63000	296, 500, 900
EU-151	63151	296, 500, 900
EU-152	63152	296, 500, 900
EU-155 EU 1549	03153	296, 500, 900
EU-134	63154	296, 500, 900
EU-155 EU 156	03155	296, 500, 900
EU-150	63156	296, 500, 900
EU-157	03157	296, 500, 900
GD-152 CD-154	04152	296, 500, 900
OD-154	04154	296, 500, 900
GD-155 CD-156	04155	296, 500, 900
GD-150	64156	296, 500, 900
GD-15/	64157	296, 500, 900
CD-158 CD-160	04158	290, 500, 900
TD 160	04100	290, 500, 900
1B-139 TD 160	05159	290, 500, 900
DV 160	05100	290, 500, 900
DI-100 DV 161	0010U 66161	290, 300, 900
DV-162	66162	290, 300, 900
DY 162	66162	290, 300, 900
DI-105 DV-164	66164	290, 300, 900
UO 165	60104	290, 300, 900
FP-166	68166	290, 300, 900
FR-167	68167	250, 500, 500
LIL 175	71175	270, 500, 500
LU-175 LIL176	71175	290, 500, 900
LUE	77000	250, 500, 500
HF-174	72000	290, 500, 900
HF-176	72174	206, 500, 900
HF-177	72170	206, 500, 500
HF-178	72178	206, 500, 500
HF-179	72170	296, 500, 900
HF-180	72180	296 500 900
TA-181	73181	296,500,900
TA-182	73182	296,500,900
Ŵ	74000	296,500,900
W-182	74182	296,500,900
W-183	74183	296, 500, 900
W-184	74184	296, 500, 900
111 106	74104	
W-180	/41/0	29D. DUAL 91AL

.

.

Table M4.2.7 (continued)

.

Standard composition	• • • • • • • • • • • • • • • • • • •	Temperatures (K) for which thermal contraring
alphanumeric name	Nuclide ID No.	cross-section data are available
RE-187	75187	296, 500, 900
AU	79197	296, 500, 900
PB	82000	296, 500, 900
BI-209	83209	296,500,900
TH-230	90230	296,500,900
TH-232	90232	296,500,900
PA-231	91231	296, 500, 900
PA-233	91233	206, 500, 500
U-232	92232	206, 500, 500
Ŭ-233	92233	296, 500, 900
U-234	92234	296, 500, 900
U-235	02235	206, 500, 900
U-236	92235	220, 500, 500
U-237	022230	
11-238	92237	290, 500, 900
NP-237	02227	270, 500, 500
PIL-236	93237	290, 500, 900
PI 1-237	94230	290, 500, 900
DI 1 229	94237	296, 500, 900
PU-230	94238	296, 500, 900
PU-239	94239	296, 500, 900
DU 241	94240	296, 500, 900
PU-241 DU-242	94241	296, 500, 900
DU 242	94242	296, 500, 900
PU-243 DU 244	94243	296, 500, 900
FU-244 AM 241	94244	296, 500, 900
	95241	296, 500, 900
AM-242M	95243	296, 500, 900
AM-243	95601	296, 500, 900
CM-241	96241	296, 500, 900
CM-242	96242	296, 500, 900
CIVI-243	96243	296, 500, 900
CM-244	96244	296, 500, 900
CM-245	96245	296, 500, 900
CM-240	96246	296, 500, 900
CIVI-247	96247	296, 500, 900
UNI-240 DV 240	96248	296, 500, 900
BK-249 CE 240	97/249	296, 500, 900
CF-249	98249	296, 500, 900
CF-250	98250	296, 500, 900
CF-251 CF 353	98251	296, 500, 900
UF-232	98252	296, 500, 900
ES-253	99253	296, 500, 900
EU-154 (ENDF/B-V)	631541	296, 500, 900
EU-155 (ENDF/B-V)	631551	296, 500, 900
N-14 (ENDF/B-VI)	701401	296, 500, 900
N-15 (ENDF/B-VI)	701501	296, 500, 900
0-16 (ENDF/B-V)	801601	296, 500, 900

Table M4.2.7 (continued)

A .__

11

" ENDF/B-VI data.

NUREG/CR-0200, Vol. 3, Rev. 6

M4.2.24



Figure M4.2.1 Weighting function for 238-group LAW Library

M4.2.25

In cases 3 through 6, the spent fuel source was a  $15 \times 15$  Westinghouse LWR assembly with initial enrichment of 3.0 wt % and burned to 30 GWd/MTU and cooled for 5 years.

Data testing has been performed for 33 benchmarks, including 28 Cross Section Evaluation Working Group (CSEWG) benchmarks. Results obtained for these benchmarks are very close to those obtained by other data testers using different ENDF/B-V-based cross-section libraries. There is considerable improvement in the trend of  $k_{eff}$  vs leakage obtained with the use of the ENDF/B-VI oxygen evaluation. The LAW-238 library appears to be acceptable for general use in criticality and reactor physics applications. The library has had minimal testing for shielding applications and should be evaluated by the user for applicability.

#### M4.2.5 THE 44-GROUP ENDF/B-V LIBRARY (44GROUPNDF5)

The 44-group ENDF/B-V library has been developed for use in the analysis of fresh and spent fuel and radioactive waste systems. Collapsed from the fine-group 238GROUPNDF5 cross-section library, this broad-group library contains all nuclides (more than 300) from the ENDF/B-V data files. Broad-group boundaries were chosen as a subset of the parent 238GROUPNDF5 boundaries, emphasizing the key spectral aspects of a typical LWR fuel package. Specifically, the broad-group structure was designed to accommodate the following features: two windows in the oxygen cross-section spectrum; a window in the cross section of iron; the Maxwellian peak in the thermal range; and the 0.3-eV resonance in ²³⁹Pu (which, due to its low energy, cannot be properly modeled via the SCALE Nordheim Integral Treatment module NITAWL-II). The resulting boundaries represent 22 fast and 22 thermal energy groups; the full group structure is compared to that of the 238-group library in Table M.4.2.2. The fine-group 238GROUPNDF5 cross sections were collapsed into this broad-group structure using a fuel cell spectrum calculated based on a  $17 \times 17$  Westinghouse pressurized-water reactor (PWR) assembly.

Because of the significantly improved and conservative behavior of the ENDF/B-VI ¹⁶O evaluation under conditions where higher-order scattering terms are important (e.g., high leakage geometries), this cross section has been included in the 238-group and 44-group libraries as the default for ¹⁶O. The ENDF/B-V evaluation is available within the library as cross-section number 801601, and may be copied into an AMPX working library using AJAX for subsequent use in calculations. Similarly, ENDF/B-VI evaluations of ¹⁴N and ¹⁵N are included in the library; however, ENDF/B-V versions remain the default for these isotopes. The ENDF/B-VI nitrogen data were processed using the same methods used for 16O, and, like oxygen, were tested to see if significant differences between ENDF/B-V and ENDF/B-VI could be identified. No significant differences have been identified; however, because they had already been processed into AMPX master library format and were readily available, ENDF/B-VI 14N and 15N cross sections are included in the library as cross sections 701401 and 701501, respectively. Finally, ENDF/B-VI evaluations of ¹⁵⁴Eu and ¹⁵⁵Eu are also included in the library as default cross sections 63154 and 63155, respectively. The more recent ENDF/B-VI evaluations include resonance parameters not included in previous evaluations and yield energy-dependent cross sections significantly different from those obtained using ENDF/B-V cross sections. Comparisons of depletion/decay calculations to experimental isotopic measurements have indicated that the ENDF/B-VI europium evaluations are more accurate than those available in ENDF/B-V. However, as with 16O, ENDF/B-V cross sections are available within the library, as isotopes 631541 and 631551.

The 44GROUPNDF5 library was tested against its parent library¹⁵ using a set of 33 benchmark problems in order to demonstrate that the collapsed set was an acceptable representation of 238GROUPNDF5, except for intermediate energy systems. Validation of the library within the SCALE system was based on a comparison of calculated values of  $k_{eff}$  with that of 93 experiments: 92 critical and 1 subcritical experiments.¹⁵ The experiments primarily consisted of various configurations of light-water-reactor-type fuel representative

of transportation and storage conditions. Additional experiments were included to allow comparison with results obtained in earlier validation of the 27GROUPNDF4 library.

Results show that the broad 44-group structure is an acceptable representation of its parent 238-group library for thermal as well as hard fast spectrum systems. Accurate broad-group analyses of intermediate spectrum systems will require either a more detailed group structure in this energy range or a more appropriate collapsing spectrum. Further, validation calculations indicate that the 44-group library is an accurate tool in the prediction of criticality for arrays of light-water-reactor-type fuel assemblies, as would be encountered in fresh or spent fuel transportation or storage environments. Validation results for LWR-type  $UO_2$  fuel show virtually no bias. A positive bias of 0.5 to 1% has been observed for very thermal mixed-oxide systems. The bias is caused by inadequate representation of plutonium cross sections, possibly in the ENDF/B-V data. These validation results are consistently better than those seen for the same cases using the 27GROUPNDF4 library and make the 44GROUPNDF5 library the recommended library for thermal and many hard fast spectrum systems. For intermediate energy systems, the parent 238GROUPNDF5 library is recommended.

#### M4.2.6 THE HANSEN-ROACH LIBRARY (HANSEN-ROACH)

The Hansen-Roach 16-group library is based on the original Los Alamos report by Hansen and Roach.¹⁶ Important nuclides not available in the original library were added by collapsing the 218-group ENDF/B-IV library to the 16-group structure. Table M4.A.6 in Appendix M4.A gives a complete list of the nuclides available in this library and the source of the data.

Resonance nuclides in the original Hansen-Roach library had cross sections tabulated at several  $s_p$  values. To make these cross sections compatible with the SCALE system, an infinite dilution library was defined for each resonance nuclide and Bondarenko data were generated for the remaining values of  $s_p$ . The implementation of the Hansen-Roach library in SCALE departs significantly from historical use of the Hansen-Roach library. In the past the shielded cross-section set used in a Hansen-Roach calculation was determined by calculating a  $s_p$  value using a single value of the potential scatter cross section. Cross-section shielding is then done on a group-wise basis. The original Hansen-Roach library did not carry total cross sections, per se, but had a total cross section that included a transport correction. In order to implement the Hansen-Roach library in SCALE, an infinite dilute 16-group total cross-section was generated from the SCALE 27-group library and added to the Hansen-Roach library as MT-201. The Bondarenko iteration in BONAMI automatically uses MT-201 when it is present in a library. The addition of the 16-group total cross-section processing using BONAMI.

The Hansen-Roach library was developed primarily for fast systems. There are 12 fast groups and 4 thermal groups (groups below 3 eV). However, thermal upscatter is not included in the original Hansen-Roach data. The cross sections are generally  $P_0$  cross sections that are transport corrected to account for leakage. The exceptions are hydrogen and deuterium, which are  $P_1$  transport-corrected cross sections. All of the nuclides added to the original library were generated to  $P_3$ . One significant modification was made to ²³⁸U in the original library such that the library more accurately calculated low-enriched uranium systems. This was the Knight modification to the  $s_p$  data for ²³⁸U such that the 2% enriched green block experiments were accurately calculated.¹⁷

While the library was originally developed for fast systems, the Knight modification has allowed it to be successfully used as a general-purpose library. The areas of applicability have been periodically documented at the Oak Ridge facilities in validations against critical experiments.^{5-11,18-20} The library continues to be widely

used because it is well known. Areas of validation include highly enriched uranium-metal, compounds and solutions, moderated low-enriched uranium systems, and plutonium-metal and solution systems. The Hansen-Roach cross-section set is known to have a 1.5 to 2% negative bias for some highly enriched uranyl nitrate systems and to have a 1 to 1.5% positive bias for highly thermal ²³⁹Pu systems. Other areas of bias tend to be geometry and composition dependent (the reader is referred to the various validation reports for specific areas of applicability). Tables M4.2.8 and M4.2.9 show Hansen-Roach nuclides that have resonance and thermal scattering data, respectively.

#### M4.2.7 THE 18-GROUP GAMMA LIBRARY (18GROUPGAMMA)

The 18-group gamma energy group structure available in SCALE is given in Table M4.2.3. The SCALE gamma energy group structure is available in the stand-alone 18-group gamma library (18GROUPGAMMA), the 27n-18g coupled library (27N-18COUPLE), and the 22n-18g coupled library (22N-18COUPLE).

The standard SCALE 18-group gamma library was originally based on the OGRE point-data library.²¹ The OGRE library, in turn, was originally based on photon cross sections available through the National Bureau of Standards. The OGRE library was periodically updated as ENDF/B data became available. The group cross sections were generated by the SMUG1 code. At the time the data were generated for the 18-group gamma cross sections, the OGRE library contained the same data as the HPICE library, DLC-7E.²² Subsequently, data in the HPICE library were approved as ENDF/B-IV by the Cross Section Evaluation Working Group (CSEWG). In SCALE-4, the gamma data released in the 22n-18g Straker-Morrison library are ENDF/B-V data processed by SMUG. Both of these libraries have been widely used in shielding applications. No formal validation has been done for these libraries against experiments or analytic benchmarks.

# M4.2.8 THE 22n-18g STRAKER-MORRISON LIBRARY (22N-18COUPLE)

The 22-group neutron library was developed and introduced in conjunction with air-over-ground radiation transport studies done in the late 1960s.²³ The library is a P₃ radiation shielding library with secondary gamma-ray production data coupled to an 18-group gamma library. The source of the neutron cross sections was the ENDF/B-II library. The neutron cross sections were generated at infinite dilution (1/E weighting) into a 104 fine-group structure using SUPERTOG.²⁴ The 104-group structure was then collapsed to the 22 broad-group structure using the flux from a fine-group ANISN²⁵ calculation for a uranium-water mixture.²⁶ There are 19 fast groups, tailored to weapons radiation transport, and 3 thermal groups (below 3 eV). The 18-group gamma data are discussed in Sect. M4.2.5. The gamma-ray data were generated for SCALE 4 so as to preserve the pair-production cross section. This cross section is needed by the Klein-Nishina estimator in MORSE-SGC.

The 22n-18g library is a widely used radiation shielding library. No resonance data are located in the library, and the group collapse of the cross sections has tailored the cross sections to water-filled shipping-cask-type calculations. The library used in SCALE was converted from an ANISN working format to an AMPX master format library. The library should not be expected to give good results for general criticality calculations or in shielding calculations where fission neutrons are important.

Standard composition alphanumeric name	Nuclide ID No.
Mn	25055
Ag-107	47107
Ag-109	47109
In-113	49113
In-115	49115
Dv-164	66164
Lu-175	71175
Lu-176	71176
W-182	74182
W-183	74183
W-184	74184
W-186	74186
Re-185	75185
Re-187	75187
Au	79197
Th-232	90232ª
Pa-233	91233
U-233	92233ª
U-234	92234
U-235	92235ª
U-236	92236
U-238	92238ª
Np-237	93237
Pu-238	94338ª
Pu-239	94239°
Pu-240	94240ª
Pu-241	94241
Pu-242	94242
Am-241	95241
Am-243	95243
Cm-244	96244

# Table M4.2.8 Resonance nuclides found on the Hansen-Roach library

^aDenotes nuclides having Bondarenko data in lieu of resonance parameters.

Standard composition alphanumeric name	Nuclide ID No.	Temperature (K) for which different sets of thermal scattering cross-section data are available	
B-10	5010	293,550	
B-11	5011	293,550	

# Table M4.2.9 Nuclides in Hansen-Roach library with multiple sets of thermal scattering data

# M4.2.9 THE 27n-18g COUPLED LIBRARY (27N-18COUPLE)

The 27n-18g library is a coupled 27 neutron group, 18 gamma-ray group library for shielding calculations. The neutron data were taken from the 27-group ENDF/B-IV library discussed in Sect. M4.2.8, and the gamma-ray data were taken from the standard SCALE gamma library discussed in Sect. M4.2.5. Secondary gamma production data from ENDF/B-IV were processed by LAPHNGAS and added to the library. As shown in Table M4.2.10, several potentially important nuclides have no gamma-ray production matrices because ENDF/B-IV provided no production data for these nuclides. For many problems in which these nuclides occur, this will not cause a problem, but the user should be aware that these nuclides have no gamma production matrices and should verify that this is not important for the particular problem of interest. The neutron library used in this coupled library is primarily a criticality analysis library and has only one group in the 6- to 20-MeV range. Thus the user should determine that the group structure is adequate for the particular shielding application being considered. A recent shielding analyses study²⁷ that compared the 27n-18g library structure against other group structures indicated that the 27n-18g library performs satisfactorily for LWR spent fuel sources. This library has been widely used in LWR spent fuel shielding applications and has been validated against experimental data in Ref. 28.

NUREG/CR-0200, Vol. 3, Rev. 6

M4.2.30

Standard composition alphanumeric name	Nuclide ID No.
TT	0004
He D 11	2004
D-11	5011
Br-79	35079
Br-81	35081
Ag-107	47107
Ag-109	47109
Cd	48000
In-113	49113
In-115	49115
Sn	50000
Xe-135	54135
Cs-133	55133ª
Gd	64000
Dy-164	66164
Lu-175	71175
Lu-176	71176
Hf	72000
Re-185	75185
Re-187	75187
Au-197	79197
Th-232	90232
Pa-233	91233ª
U-233	92233
U-234	92234
U-236	92236
Np-237	93237°
Pu-238	94238
Pu-241	94241
Pu-242	94242
Am-241	95241ª
Am-243	· 95243ª
Cm-244	96244ª

Table M4.2.10 List of nuclides in the 27n-18g library with no gamma-ray production cross sections

"These nuclides have no gamma-ray data at all.

#### M4.3 REFERENCES

- N. M. Greene et al., AMPX-II: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries from ENDF/B, PSR-63, ORNL/TM-3706, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., March 1976.
- W. E. Ford, III et al., A 218-Group Neutron Cross-Section Reference Library in the AMPX Master Interface Format for Criticality Safety Studies, DLC-43 ORNL/CSD/TM-4, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., July 1976.
- W. E. Ford III et al., "A 218-Neutron-Group Master Cross-Section Library for Criticality Safety Studies," Trans. Am. Nucl. Soc. 22, 290-291 (1975).
- 4. R. M. Westfall et al., "Procedures for Determining Broad-Group Energy Structure for Criticality Safety Calculations," *Trans. Am. Nucl. Soc.* 22, 291–292 (1975).
- 5. R. M. Westfall and J. R. Knight, "SCALE System Cross Section Validation with Shipping Cask Critical Experiments," *Trans. Am. Nucl. Soc.* 33, 368 (1979).
- J. R. Knight, Validation of the Monte Carlo Criticality Program KENO V.a for Highly Enriched Uranium Systems, ORNL/CSD/TM-221, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1984.
- M. E. Easter, Validation of KENO V.a and Two Cross-Section Libraries for Criticality Calculations of Low-Enriched Uranium Systems, ORNL/CSD/T-223, K/HS-74, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1985.
- 8. L. M. Petrie and J. T. Thomas, Assessment of Computational Performance in Nuclear Criticality, ORNL/CSD/TM-224, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1985.
- 9. W. C. Jordan et al., Validation of KENO V.a Comparison with Critical Experiments, ORNL/CSD/TM-238, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., December 1986.
- 10. M. E. Easter and R. T. Primm, III, Validation of the SCALE Code System and Two Cross-Section Libraries for Plutonium Benchmark Experiments, ORNL/TM-9402, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., January 1985.
- 11. H. R. Dyer, Recalculation of a Few Bare Plutonium Critical Arrays, ORNL/CDS/TM-242, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., April 1987.
- H. R. Dyer and R. M. Westfall, "KENO V.a Validation of Fuel Pin Experiments," Trans. Am. Nucl. Soc. 55, 382-385 (1987).
- 13. G. R. Smolen and H. Funabashi, "Validation Studies Performed with Low-Concentration Mixed Pu+U Aqueous Critical Experiments," *Trans. Am. Nucl. Soc.* 55, 380–381 (1987).

- 14. N. M. Greene, J. W. Arwood, R. Q. Wright, and C. V. Parks, The LAW Library-A Multigroup Cross-Section Library for Use in Radioactive Waste Analysis Calculations, ORNL/TM-12370, August 1994.
- 15. M. D. DeHart and S. M. Bowman, Validation of the SCALE Broad Structure 44-Group ENDF/B-V Cross-Section Library for Use in Criticality Safety Analyses, NUREG/CR-6102 (ORNL/TM-12460), September 1994.
- 16. G. E. Hansen and W. H. Roach, Six and Sixteen Group Cross-Sections for Fast and Intermediate Critical Assemblies, LA-2543-MS, Los Alamos Scientific Laboratory, November 1961.
- 17. J. T. Mihalczo et al., Preliminary Report on 2%²³⁵U Enriched UF₄-C₂₅H₂₅ Critical Assemblies, ORNL/CF-59-4-120, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., 1956.
- 18. G. R. Handley and C. M. Hopper, Validation of the KENO Code for Nuclear Criticality Safety Calculations of Moderated Low-Enriched Uranium Systems, Y-1948, Union Carbide Corp., Nucl. Div., Oak Ridge Y-12 Plant, 1974.
- 19. G. R. Handley et al., Validation of the Monte Carlo Criticality Program KENO IV and the Hansen-Roach Sixteen-Energy-Group Cross Sections for High Assay Uranium Systems, Y-2234, Union Carbide Corp., Nucl. Div., Oak Ridge Y-12 Plant, 1981.
- R. L. Sanders, Validation of the SCALE Code System and One Cross-Section Library for Plutonium and Gadolinium Systems, ORNL/CFRP-84/20, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., July 1985.
- 21. RSIC Computer Code Collection, OGRE, General-Purpose Monte Carlo Gamma-Ray Transport Code System, CCC-46, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab. (updated July 1981).
- 22. RSIC Data Library Collection, HPICE: Evaluated Photon Interaction Library ENDF/B File 23 Format, DLC-7, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab. (updated September 1986).
- 23. E. A. Straker and M. L. Gritzner, Neutron and Secondary Gamma-Ray Transport in Infinite Homogeneous Air, ORNL-4464, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., December 1969.
- 24. R. Q. Wright et al., SUPERTOG: A Program to Generate Fine Group Constants and P_n Scattering Matrices from ENDF/B, ORNL/TM-2679, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab, 1969.
- 25. W. W. Engle, Jr., A User's Manual for ANISN: A One-Dimensional Discrete Ordinates Transport Code With Anisotropic Scattering, K-1693, Union Carbide Corp., Nucl. Div., Oak Ridge Gaseous Diffusion Plant, March 1967.
- RSIC Data Library Collection, CASK-81: 22-Neutron, 18-Gamma-Ray Group, P₃, Cross Sections for Shipping Cask Analysis, DLC-23, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab. (updated September 1987).

- 27. C. V. Parks et al., "Intercomparison of Cross-Section Libraries Used for Spent Fuel Cask Shielding Analyses," pp. 559-569 in *Proceedings of Theory and Practices in Radiation Protection and Shielding*, Knoxville, Tenn., April 22-24, 1987.
- 28. B. L. Broadhead, J. S. Tang, R. L. Childs, C. V. Parks, H. Taniuchi, Evaluation of Shielding Analysis Methods in Spent Fuel Cask Environments, EPRI TR-104329, Electric Power Research Institute, May 1995.

#### M4.A TABLE OF CONTENTS LISTING FOR SCALE LIBRARIES

#### M4.A.1 THE 218-GROUP ENDF/B-IV LIBRARY

table of contents for /scale4.4/data/scale.rev04.xn218 on logical unit 1 tape id 4321 number of nuclides 79 number of neutron groups 218 first thermal group 141 number of gamma groups 0 scale 4.2 - 218 group neutron library based on endf-b version 4 data compiled for nrc 1/27/89 last updated 08/12/94 1.m.petrie - ornl 999 1/v cross sections normalized to 1.0 at 0.0253 ev updated 08/12/94 . 1001 hydrogen endf/b-iv mat 1269/thrm1002 updated 08/12/94 endf/b-iv mat 1120 1002 deuterium updated 08/12/94 2004 endf/b-iv mat 1270 helium-4 updated 08/12/94 3006 lithium-6 endf/b-iv mat 1271 updated 08/12/94 3007 lithium-7 endf/b-iv mat 1272 updated 08/12/94 endf/b-iv mat 1289/thrm1064 4009 beryllium-9 updated 08/12/94 b-10 1273 218ngp 042375 p-3 293k 5010 updated 08/12/94 5011 boron-11 endf/b-iv mat 1160 updated 08/12/94 6012 c-12 1274f,1065t 218 gp 030476(7) updated 08/12/94 7014 n-14 1275 218 gp 030476(7) updated 08/12/94 8016 oxygen-16 endf/b-iv mat 1276 updated 08/12/94 9019 f 1277 218gp 030476(7) updated 08/12/94 11023 endf/b-iv mat 1156 sodium-23 updated 08/12/94 12000 mg 1280 218 gp 1/e*sigt 040375(5) updated 08/12/94 13027 al-27 1193 218 gp 040375(5) updated 08/12/94 14000 silicon endf/b-iv mat 1194 updated 08/12/94 phosphorus-31 endf/b-iv mat 7019 15031 updated 08/12/94 16000 sulfur lend1 mat 7020 updated 08/12/94 19000 potassium endf/b-iv mat 1150 updated 08/12/94 20000 calcium endf/b-iv mat 1195 updated 08/12/94 22000 ti 1286 218 gp wt 1/est 042375 p3 293k updated 08/12/94 23051 v 1196 218 gp 1/e*sigt 040375(5) updated 08/12/94 24000 cr 1191 218ngp wt 1/e p-3 293k sigp=5+4 re(042375) updated 08/12/94 24304 cr 1191 wt ss-304(1/est) p-3 293k sp=5+4(42375) updated 08/12/94 24404 endf/b-iv mat 1191 cr (inconel) updated 08/12/94 25055 manganese-55 endf/b-iv mat 1197 updated 08/12/94 26000 endf/b-iv mat 1192 iron updated 08/12/94 26304 fe 1192 wt ss-304(1/est) p-3 293k sp=5+4(42375)' updated 08/12/94 26404 fe 1192 wt inconl(1/est) p-3 293k sp=5+4(42375)' updated 08/12/94 updated 08/12/94 27059 cobalt-59 endf/b-iv mat 1199 28000 ni 1190 218ngp wt 1/e p-3 293k sigp=5+4 re(042375) updated 08/12/94 nickel (ss304) endf/b-iv mat 1190 updated 08/12/94 28304 28404 ni 1190 wt inconl(1/est) p-3 293k sp=5+4(42375)' updated 08/12/94 29000 endf/b-iv mat 1295 updated 08/12/94 copper 35079 bromine-79 endf/b-iv mat 108 updated 08/12/94 35081 bromine-81 endf/b-iv mat 112 updated 08/12/94 40000 zirconium endf/b-iv mat 7141 updated 08/12/94 40302 zircalloy endf/b-iv mat 1284 updated 08/12/94 41093 niobium-93 endf/b-iv mat 1189 updated 08/12/94 42000 molybdenum endf/b-iv mat 1287 updated 08/12/94 47107 silver-107 endf/b-iv mat 1138 updated 08/12/94 47109 silver-109 endf/b-iv mat 1139 updated 08/12/94 updated 08/12/94 48000 cadmium endf/b-iv mat 1281 49113 endf/b-iv mat 445 indium-113 updated 08/12/94 49115 indium-115 endf/b-iv mat 449 updated 08/12/94 50000 sn 7039 wt 1/est 218ngp p-3 293k re(042375) updated 08/12/94 56138 barium-138 endf/b-iv mat 7040 updated 08/12/94 64000 gd (1030) sig0=1.+5p3 293k f-1/e-m vb 61479 updated 08/12/94 66164 dyprosium-164 endf/b-iv mat 1031 updated 08/12/94 lutetium-175 endf/b-iv mat 1032 71175 updated 08/12/94

> NUREG/CR-0200, Vol. 3, Rev. 6

72000hf (nat) 1034 218ngp wt 1/e p-3 sigp=5+4 293k re(042375)updated 08/12/9473181tantalum-181endf/b-iv mat 1285updated 08/12/9474182w-182 1128 sigp=5+4 newxlacs 218ngp p-3 293kupdated 08/12/9474183tungsten-183endf/b-iv mat 1129updated 08/12/9474184tungsten-184endf/b-iv mat 1130updated 08/12/9474185rhenium-186endf/b-iv mat 1130updated 08/12/9474186tungsten-186endf/b-iv mat 1083updated 08/12/9475185rhenium-185endf/b-iv mat 1084updated 08/12/9475187rhenium-187endf/b-iv mat 1283updated 08/12/9479197gold-197endf/b-iv mat 1283updated 08/12/9482000pb1288 218ngp 042375 p-3 293kupdated 08/12/9492232thorium-232endf/b-iv mat 1296updated 08/12/9492233u-233 1260 sigp=5+4 newxlacs 218ngp p-3 293kupdated 08/12/9492234u-234 1043 sigo=5+4 newxlacs 218ngp p-3 293kupdated 08/12/9492235uranium-236endf/b-iv mat 1261updated 08/12/9492236uranium-237endf/b-iv mat 1263updated 08/12/9492237neptunium-237endf/b-iv mat 1264updated 08/12/9494238plutonium-239endf/b-iv mat 1265updated 08/12/9494240plutonium-240endf/b-iv mat 1265updated 08/12/9494241plutonium-241endf/b-iv mat 1265updated 08/12/9494242plutonium-244endf/b-iv mat 1264updated 08/12/94	71176	lutetium-176 endf/b-iv mat 1033	updated	08/12/94
73181tantalum-181endf/b-ivmat 1285updated 08/12/9474182w-1821128sigp=5+4newxlacs218ngpp-3293kupdated 08/12/9474183tungsten-183endf/b-ivmat 1129updated 08/12/9474184tungsten-184endf/b-ivmat 1130updated 08/12/9474186tungsten-184endf/b-ivmat 1131updated 08/12/9475185rhenium-185endf/b-ivmat 1083updated 08/12/9475187rhenium-187endf/b-ivmat 1283updated 08/12/9479197gold-197endf/b-ivmat 1283updated 08/12/9482000pb1288218ngp 042375p-3293kupdated 08/12/9490232thorium-232endf/b-ivmat 1296updated 08/12/9491233upladium-231endf/b-ivmat 1261updated 08/12/9492234u-2341043sigo=5+4newxlacs218ngp p-392234u-2341043sigo=5+4newxlacs128ngp p-392235uranium-235endf/b-ivmat 1261updated 08/12/9492236uranium-238endf/b-ivmat 1263updated 08/12/9492237neptunium-237endf/b-ivmat 1263updated 08/12/9492238uranium-238endf/b-ivmat 1263updated 08/12/9492239plutonium-239endf/b-ivmat 1264updated 08/12/9494239plutonium-239endf/b-ivmat 1265updated 08/12/9494	72000	hf(nat) 1034 218ngp wt $1/e p-3 sigp=5+4 293k re(042375)$	undated	08/12/94
74182w-1821128sigp=5+4newxlacs218ngpp-3293kupdated08/12/9474183tungsten-183endf/b-ivmat1129updated08/12/9474184tungsten-184endf/b-ivmat1130updated08/12/9474184tungsten-184endf/b-ivmat1131updated08/12/9474186tungsten-186endf/b-ivmat1083updated08/12/9475185rhenium-185endf/b-ivmat1084updated08/12/9475187rhenium-187endf/b-ivmat1283updated08/12/9490232thorium-232endf/b-ivmat1296updated08/12/9490232thorium-231endf/b-ivmat1296updated08/12/9491233paladium-231endf/b-ivmat1297updated08/12/9492234u-2331260sigp=5+4newxlacs218ngpp-3293kupdated08/12/9492235uranium-235endf/b-ivmat1263updated08/12/9492236uranium-236endf/b-ivmat1263updated08/12/9492237neptunium-238endf/b-ivmat1263updated08/12/9492236uranium-238endf/b-ivmat1263updated08/12/9492237neptunium-238endf/b-ivmat1263updated08/12/9492236uranium-238endf/b	73181	tantalum-181 endf/b-iv mat 1285	updated	08/12/94
74183tungsten-183endf/b-iv mat 1129updated 08/12/9474184tungsten-184endf/b-iv mat 1130updated 08/12/9474186tungsten-186endf/b-iv mat 1130updated 08/12/9474186tungsten-186endf/b-iv mat 1081updated 08/12/9475187rhenium-185endf/b-iv mat 1084updated 08/12/9479197gold-197endf/b-iv mat 1283updated 08/12/9490232thorium-232endf/b-iv mat 1296updated 08/12/9491233paladium-231endf/b-iv mat 1297updated 08/12/9492234u-2331260 sigp=5+4newxlacs 218ngp p-3 293kupdated 08/12/9492235uranium-235endf/b-iv mat 1261updated 08/12/9492236uranium-236endf/b-iv mat 1261updated 08/12/9492237neptunium-237endf/b-iv mat 1263updated 08/12/9492238uranium-238endf/b-iv mat 1263updated 08/12/9492234plutonium-239endf/b-iv mat 1265updated 08/12/9492235uranium-239endf/b-iv mat 1263updated 08/12/9492236uranium-239endf/b-iv mat 1263updated 08/12/9494238plutonium-239endf/b-iv mat 1265updated 08/12/9494240plutonium-241endf/b-iv mat 1265updated 08/12/9494241plutonium-242endf/b-iv mat 1265updated 08/12/9495241am-241 1056 sigp=5+4newxlacs 218ngp p-3 293kupdated 08/12/9495243am-241 105718 gp wt f-1/em 090376 p3 293kupdated	74182	w-182 1128 sigp=5+4 newslacs 218ngp p-3 293k	undated	08/12/94
74184tungsten-184endf/b-iv mat 1130updated 08/12/9474186tungsten-186endf/b-iv mat 1131updated 08/12/9475185rhenium-185endf/b-iv mat 1083updated 08/12/9475187rhenium-187endf/b-iv mat 1083updated 08/12/9479197gold-197endf/b-iv mat 1084updated 08/12/9482000pb1288218ngp042375p-39232thorium-232endf/b-iv mat 1296updated 08/12/9492232thorium-231endf/b-iv mat 1296updated 08/12/9492233u-2331260sigp=5+4newxlacs92234u-2341043sigo=5+4newxlacsp-392235uranium-235endf/b-iv mat 1261updated 08/12/9492236uranium-236endf/b-iv mat 1262updated 08/12/9492238uranium-238endf/b-iv mat 1263updated 08/12/9492239plutonium-238endf/b-iv mat 1263updated 08/12/9494239plutonium-239endf/b-iv mat 1264updated 08/12/9494240plutonium-240endf/b-iv mat 1265updated 08/12/9494241plutonium-241endf/b-iv mat 1266updated 08/12/9495241am-2411056sigp=5+4newxlacs 218ngp p-395243am-2431057218gp wt f-1/e-m 090376g2 93k96244curium-244endf/b-iv mat 1162updated 08/12/9496244curium-244endf/b-iv mat 1162updated 08/12/9496244curium-244e	74183	tungsten-183 endf/b-iv mat 1129	undated	08/12/94
74186       tungsten-186       endf/b-iv       mat 1131       updated       08/12/94         75185       rhenium-185       endf/b-iv       mat 1083       updated       08/12/94         75187       rhenium-187       endf/b-iv       mat 1084       updated       08/12/94         79197       gold-197       endf/b-iv       mat 1283       updated       08/12/94         90200       pb       1288       218ngp       042375       p-3       293k       updated       08/12/94         90232       thorium-232       endf/b-iv       mat 1296       updated       08/12/94         91233       paladium-231       endf/b-iv       mat 1296       updated       08/12/94         92234       u-233       1260       sigp=5+4       newxlacs       218ngp       p-3       293k       updated       08/12/94         92235       uranium-235       endf/b-iv       mat 1261       updated       08/12/94         92236       uranium-238       endf/b-iv       mat 1262       updated       08/12/94         92238       uranium-238       endf/b-iv       mat 1263       updated       08/12/94         94239       plutonium-239       endf/b-iv       mat 1264       updat	74184	tungsten-184 endf/b-iv mat 1130	undated	08/12/04
75185       rhenium-185       endf/b-iv       mat 1083       updated       08/12/94         75187       rhenium-187       endf/b-iv       mat 1084       updated       08/12/94         79197       gold-197       endf/b-iv       mat 1283       updated       08/12/94         82000       pb       1288       218ngp       042375       p-3       293k       updated       08/12/94         90232       thorium-232       endf/b-iv       mat 1296       updated       08/12/94         91233       paladium-231       endf/b-iv       mat 1297       updated       08/12/94         92234       u-233       1260       sigp=5+4       newxlacs       p-3       293k       updated       08/12/94         92235       uranium-235       endf/b-iv       mat 1261       updated       08/12/94         92236       uranium-236       endf/b-iv       mat 1262       updated       08/12/94         92237       neptunium-237       endf/b-iv       mat 1263       updated       08/12/94         94239       plutonium-239       endf/b-iv       mat 1264       updated       08/12/94         94239       plutonium-240       endf/b-iv       mat 1264       updated       0	74186	tungsten-186 endf/b-iv mat 1131	updated	08/12/94
75187       rhenium-187       endf/b-iv       mat 1084       updated       08/12/94         79197       gold-197       endf/b-iv       mat 1283       updated       08/12/94         82000       pb       1288       218ngp       042375       p-3       293k       updated       08/12/94         90232       thorium-232       endf/b-iv       mat 1296       updated       08/12/94         91233       paladium-231       endf/b-iv       mat 1297       updated       08/12/94         92234       u-233       1260       sigp=5+4       newxlacs       218ngp       p-3       293k       updated       08/12/94         92234       u-234       1043       sigo=5+4       newxlacs       p-3       293k       updated       08/12/94         92236       uranium-235       endf/b-iv       mat 1261       updated       08/12/94         92236       uranium-238       endf/b-iv       mat 1262       updated       08/12/94         92237       neptunium-237       endf/b-iv       mat 1263       updated       08/12/94         94239       plutonium-239       endf/b-iv       mat 1264       updated       08/12/94         94240       plutonium-240 <td< td=""><td>75185</td><td>rhenium-185 endf/b-iv mat 1083</td><td>updated</td><td>08/12/94</td></td<>	75185	rhenium-185 endf/b-iv mat 1083	updated	08/12/94
79197       gold-197       endf/b-iv mat 1283       updated 08/12/94         82000       pb 1288 218ngp 042375 p-3 293k       updated 08/12/94         90232       thorium-232       endf/b-iv mat 1296       updated 08/12/94         91233       paladium-231       endf/b-iv mat 1297       updated 08/12/94         92234       u-233 1260 sigp=5+4 newxlacs 218ngp p-3 293k       updated 08/12/94         92235       uranium-235       endf/b-iv mat 1261       updated 08/12/94         92236       uranium-236       endf/b-iv mat 1261       updated 08/12/94         92237       uranium-236       endf/b-iv mat 1262       updated 08/12/94         92238       uranium-238       endf/b-iv mat 1262       updated 08/12/94         92237       neptunium-237       endf/b-iv mat 1263       updated 08/12/94         94238       plutonium-239       endf/b-iv mat 1264       updated 08/12/94         94239       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94240       plutonium-241       endf/b-iv mat 1265       updated 08/12/94         94241       plutonium-240       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94241       pluto	75187	rhenium-187 endf/b-iv mat 1084	updated	08/12/94
82000       pb       1288 218ngp 042375 p-3 293k       updated 08/12/94         90232       thorium-232       endf/b-iv mat 1296       updated 08/12/94         91233       paladium-231       endf/b-iv mat 1297       updated 08/12/94         92233       u-233       1260 sigp=5+4 newxlacs 218ngp p-3 293k       updated 08/12/94         92234       u-234       1043 sigo=5+4 newxlacs p-3 293k f=1/e=m(1.+5)       updated 08/12/94         92235       uranium-235       endf/b-iv mat 1261       updated 08/12/94         92236       uranium-236       endf/b-iv mat 1262       updated 08/12/94         92238       uranium-237       endf/b-iv mat 1263       updated 08/12/94         92239       plutonium-237       endf/b-iv mat 1263       updated 08/12/94         94238       plutonium-237       endf/b-iv mat 1263       updated 08/12/94         94239       plutonium-239       endf/b-iv mat 1265       updated 08/12/94         94240       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94241       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1266       updated 08/12/94         95241       am-241       1056 sigp=544       newxlacs 218ngp p-3 293k	79197	gold-197 endf/b-iv mat 1283	undated	08/12/94
90232       thorium-232       endf/b-iv mat 1296       updated 08/12/94         91233       paladium-231       endf/b-iv mat 1297       updated 08/12/94         92233       u-233       1260 sigp=5+4 newslacs 218ngp p-3 293k       updated 08/12/94         92234       u-234       1043 sigo=5+4 newslacs p-3 293k f-1/e-m(1.+5)       updated 08/12/94         92235       uranium-235       endf/b-iv mat 1261       updated 08/12/94         92236       uranium-236       endf/b-iv mat 1261       updated 08/12/94         92237       neptunium-236       endf/b-iv mat 1262       updated 08/12/94         92238       uranium-237       endf/b-iv mat 1263       updated 08/12/94         94239       plutonium-238       endf/b-iv mat 1263       updated 08/12/94         94239       plutonium-239       endf/b-iv mat 1264       updated 08/12/94         94240       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94241       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1161       updated 08/12/94         94241       plutonium-241       endf/b-iv mat 1164       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1161       updated 08/12/94 <td>82000</td> <td>pb 1288 218ngp 042375 p-3 293k</td> <td>updated</td> <td>08/12/94</td>	82000	pb 1288 218ngp 042375 p-3 293k	updated	08/12/94
91233paladium-231endf/b-ivmat1297updated08/12/9492233u-2331260sigp=5+4newxlacs218ngpp-3293kupdated08/12/9492234u-2341043sigo=5+4newxlacsp-3293kf-1/e-m(1.+5)updated08/12/9492235uranium-235endf/b-ivmat1261updated08/12/9492236uranium-236endf/b-ivmat1163updated08/12/9492237neptunium-237endf/b-ivmat1263updated08/12/9494238plutonium-238endf/b-ivmat1263updated08/12/9494239plutonium-239endf/b-ivmat1263updated08/12/9494240plutonium-240endf/b-ivmat1265updated08/12/9494241plutonium-240endf/b-ivmat1266updated08/12/9494242plutonium-241endf/b-ivmat1161updated08/12/9495243am-2411056sigp=5+4newxlacs218ngpp-3293kupdated08/12/9495243am-2431057218gptf-1/e-m00376p3293kupdated08/12/9496244curium-244endf/b-ivmat1162updated08/12/9417000chlorine(mat1149from versioniv)using1/sigtweightiupdated08/12/94	90232	thorium-232 endf/b-iv mat 1296	undated	08/12/94
92233u-2331260 sigp=5+4 newslacs218ngp p-3293kupdated08/12/9492234u-2341043 sigo=5+4 newslacsp-3293kf-1/e-m(1.+5)updated08/12/9492235uranium-235endf/b-iv mat1261updated08/12/9492236uranium-236endf/b-iv mat1163updated08/12/9492237neptunium-237endf/b-iv mat1262updated08/12/949238plutonium-238endf/b-iv mat1263updated08/12/9494239plutonium-239endf/b-iv mat1264updated08/12/9494240plutonium-240endf/b-iv mat1265updated08/12/9494241plutonium-240endf/b-iv mat1266updated08/12/9494242plutonium-241endf/b-iv mat1266updated08/12/9495241am-2411056sigp=5+4 newslacs218ngp p-3293kupdated08/12/9495243am-2431057218gp wt f-1/e-m090376p3293kupdated08/12/9496244curium-244endf/b-iv mat1162updated08/12/9417000chlorine (mat1149from version iv)using 1/sigt weightiupdated08/12/94	91233	paladium-231 endf/b-iv mat 1297	undated	08/12/94
92234 $u-234$ 1043 sigo=5+4 newxlacs p-3 293k f-1/e-m(1.+5)updated 08/12/9492235 $uranium-235$ endf/b-iv mat 1261 $updated 08/12/94$ 92236 $uranium-236$ endf/b-iv mat 1163 $updated 08/12/94$ 92237 $neptunium-238$ endf/b-iv mat 1262 $updated 08/12/94$ 9238 $uranium-237$ endf/b-iv mat 1262 $updated 08/12/94$ 9239 $plutonium-237$ endf/b-iv mat 1263 $updated 08/12/94$ 94239 $plutonium-239$ endf/b-iv mat 1264 $updated 08/12/94$ 94240 $plutonium-239$ endf/b-iv mat 1265 $updated 08/12/94$ 94241 $plutonium-240$ endf/b-iv mat 1266 $updated 08/12/94$ 94242 $plutonium-241$ endf/b-iv mat 1266 $updated 08/12/94$ 95241 $am-241$ 1056 sigp=5+4 newxlacs 218ngp p-3 293k $updated 08/12/94$ 95243 $am-243$ 1057 218 gp wt f-1/e-m 090376 p3 293k $updated 08/12/94$ 96244 $curium-244$ endf/b-iv mat 1162 $updated 08/12/94$ 17000chlorine (mat 1149 from version iv) $using 1/sigt$ weightiupdated 08/12/94	92233	u-233 1260 sigp=5+4 newslacs 218ngp p-3 293k	undated	08/12/94
92235       uranium-235       endf/b-iv mat 1261       updated 08/12/94         92236       uranium-236       endf/b-iv mat 1163       updated 08/12/94         92238       uranium-237       endf/b-iv mat 1262       updated 08/12/94         93237       neptunium-237       endf/b-iv mat 1263       updated 08/12/94         94238       plutonium-237       endf/b-iv mat 1263       updated 08/12/94         94239       plutonium-239       endf/b-iv mat 1263       updated 08/12/94         94240       plutonium-239       endf/b-iv mat 1264       updated 08/12/94         94241       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1161       updated 08/12/94         95241       am-241 1056 sigp=5+4 newxlacs 218ngp p-3 293k       updated 08/12/94         95243       am-243 1057 218 gp wt f-1/e-m 090376 p3 293k       updated 08/12/94         96244       curium-244       endf/b-iv mat 1162       updated 08/12/94         17000       chlorine (mat 1149 from version iv)       using 1/sigt weightiupdated 08/12/94 <td>92234</td> <td>u-234 1043 sigo=5+4 newslacs p-3 293k f-1/e-m(1.+5)</td> <td>updated</td> <td>08/12/94</td>	92234	u-234 1043 sigo=5+4 newslacs p-3 293k f-1/e-m(1.+5)	updated	08/12/94
92236       uranium-236       endf/b-iv mat 1163       updated 08/12/94         92238       uranium-238       endf/b-iv mat 1262       updated 08/12/94         93237       neptunium-237       endf/b-iv mat 1263       updated 08/12/94         94238       plutonium-238       endf/b-iv mat 1263       updated 08/12/94         94239       plutonium-239       endf/b-iv mat 1264       updated 08/12/94         94240       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94241       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-241       endf/b-iv mat 1161       updated 08/12/94         95241       am-241 1056 sigp=5+4 newxlacs 218ngp p-3 293k       updated 08/12/94         95243       am-243 1057 218 gp wt f-1/e-m 090376 p3 293k       updated 08/12/94         96244       curium-244       endf/b-iv mat 1162       updated 08/12/94         17000       chlorine (mat 1149 from version iv)       using 1/sigt weightiupdated 08/12/94	92235	uranium-235 endf/b-iv mat 1261	undated	08/12/94
92238         uranium-238         endf/b-iv         mat         1262         updated         08/12/94           93237         neptunium-237         endf/b-iv         mat         1262         updated         08/12/94           94238         plutonium-238         endf/b-iv         mat         1050         updated         08/12/94           94239         plutonium-239         endf/b-iv         mat         1264         updated         08/12/94           94240         plutonium-240         endf/b-iv         mat         1265         updated         08/12/94           94241         plutonium-241         endf/b-iv         mat         1266         updated         08/12/94           94242         plutonium-242         endf/b-iv         mat         1266         updated         08/12/94           94243         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp         updated         08/12/94	92236	uranium-236 endf/b-iv mat 1163	updated	08/12/94
93237       neptunium-237       endf/b-iv mat 1263       updated 08/12/94         94238       plutonium-238       endf/b-iv mat 1050       updated 08/12/94         94239       plutonium-239       endf/b-iv mat 1264       updated 08/12/94         94240       plutonium-240       endf/b-iv mat 1265       updated 08/12/94         94241       plutonium-241       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1266       updated 08/12/94         94241       plutonium-242       endf/b-iv mat 1266       updated 08/12/94         94242       plutonium-242       endf/b-iv mat 1161       updated 08/12/94         95241       am-241 1056 sigp=5+4 newxlacs 218ngp p-3 293k       updated 08/12/94         95243       am-243 1057 218 gp wt f-1/e-m 090376 p3 293k       updated 08/12/94         96244       curium-244       endf/b-iv mat 1162       updated 08/12/94         17000       chlorine (mat 1149 from version iv) using 1/sigt weightiupdated 08/12/94	92238	uranium-238 endf/b-iv mat 1262	undated	08/12/94
94238         plutonium-238         endf/b-iv         mat 1050         updated         08/12/94           94239         plutonium-239         endf/b-iv         mat 1050         updated         08/12/94           94240         plutonium-240         endf/b-iv         mat 1264         updated         08/12/94           94241         plutonium-241         endf/b-iv         mat 1265         updated         08/12/94           94242         plutonium-241         endf/b-iv         mat 1266         updated         08/12/94           94241         plutonium-242         endf/b-iv         mat 1161         updated         08/12/94           94242         plutonium-242         endf/b-iv         mat 1161         updated         08/12/94           95241         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp wt f-1/e-m         090376         p3         293k         updated         08/12/94           96244         curium-244         endf/b-iv         mat 1162         updated         08/12/94           17000         chlorine         (mat 1149         from version iv) <td>93237</td> <td>neptunium-237 endf/b-iv mat 1263</td> <td>undated</td> <td>08/12/04</td>	93237	neptunium-237 endf/b-iv mat 1263	undated	08/12/04
94239         plutonium-239         endf/b-iv         mat         1264         updated         08/12/94           94240         plutonium-240         endf/b-iv         mat         1265         updated         08/12/94           94241         plutonium-241         endf/b-iv         mat         1266         updated         08/12/94           94242         plutonium-241         endf/b-iv         mat         1266         updated         08/12/94           94241         plutonium-242         endf/b-iv         mat         1161         updated         08/12/94           95241         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp wt         f-1/e-m         090376         p3         293k         updated         08/12/94           96244         curium-244         endf/b-iv         mat         1162         updated         08/12/94           17000         chlorine         (mat         1149         from version         iv)         using         1/sigt         weightiupdated         08/12/94	94238	plutonium-238 endf/b-iv mat 1050	updated	08/12/94
94240         plutonium-240         endf/b-iv         mat         1265         updated         08/12/94           94241         plutonium-241         endf/b-iv         mat         1265         updated         08/12/94           94242         plutonium-242         endf/b-iv         mat         1161         updated         08/12/94           95241         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp wt f-1/e-m         090376         p3         293k         updated         08/12/94           96244         curium-244         endf/b-iv         mat         1162         updated         08/12/94           17000         chlorine (mat         1149         from version iv)         using         1/sigt         weightiupdated         08/12/94	94239	plutonium-239 endf/b-iv mat 1264	undated	08/12/94
94241         plutonium-241         endf/b-iv         mat         1266         updated         08/12/94           94242         plutonium-242         endf/b-iv         mat         1161         updated         08/12/94           95241         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp wt         f-1/e-m         090376         p3         293k         updated         08/12/94           96244         curium-244         endf/b-iv         mat         1162         updated         08/12/94           17000         chlorine (mat         1149         from version iv)         using         1/sigt         weightiupdated         08/12/94	94240	plutonium-240 endf/b-iv mat 1265	undated	08/12/94
94242         plutonium-242         endf/b-iv         mat         1161         updated         08/12/94           95241         am-241         1056         sigp=5+4         newxlacs         218ngp         p-3         293k         updated         08/12/94           95243         am-243         1057         218         gp         wt         f-1/e-m         090376         p3         293k         updated         08/12/94           96244         curium-244         endf/b-iv         mat         1162         updated         08/12/94           17000         chlorine (mat         1149         from version iv)         using         1/sigt         weightiupdated         08/12/94	94241	plutonium-241 endf/b-iv mat 1266	undated	08/12/94
95241         am-241 1056 sigp=5+4 newxlacs 218ngp p-3 293k         updated 08/12/94           95243         am-243 1057 218 gp wt f-1/e-m 090376 p3 293k         updated 08/12/94           96244         curium-244         endf/b-iv mat 1162         updated 08/12/94           17000         chlorine (mat 1149 from version iv) using 1/sigt weightiupdated 08/12/94	94242	plutonium-242 endf/b-iv mat 1161	undated	08/12/94
95243         am-243 1057 218 gp wt f-1/e-m 090376 p3 293k         updated 08/12/94           96244         curium-244         endf/b-iv mat 1162         updated 08/12/94           17000         chlorine (mat 1149 from version iv) using 1/sigt weightiupdated 08/12/94	95241	am-241 1056 sigp=5+4 newslacs 218ngp p-3 293k	undated	08/12/94
96244curium-244endf/b-ivmat 1162updated 08/12/9417000chlorine (mat 1149 from version iv) using 1/sigt weightiupdated 08/12/94	95243	am-243 1057 218 gp wt f-1/e-m 090376 p3 293k	updated	08/12/94
17000 chlorine (mat 1149 from version iv) using 1/sigt weightiupdated 08/12/94	96244	curium-244 endf/b-iv mat 1162	undated	08/12/94
	17000	chlorine (mat 1149 from version iv) using 1/sigt weight	updated	08/12/94

1. ....L.E.

# M4.A.2 THE 27-GROUP ENDF/B-IV LIBRARY

table of conter	nts for /scale4.4/d	lata/scale.rev04.xn27	on log:	ical unit	1
tape id		4321	-		_
number of nucli	ides	83			
number of neuti	con groups	27			
first thermal of	Jroup	15			
number of gamma	a groups	0			
scale 4	1.2 - 27 group neut	ron group library			
base	ed on endf-b versio	on 4 data			
c	compiled for nrc	1/27/89			
	last updated			08/	/12/94
	l.m.petrie	- ornl .			
900	dose factors f	rom ansi/ans-6.1.1-1977	updated	9/07/89	
999	1/v cross sect	ions normalized to 1.0 at 0.0253	ev	updated	08/12/94
1001	hydrogen	endf/b-iv mat 1269/thrm1002		updated	08/12/94
1002	deuterium	endf/b-iv mat 1120		updated	08/12/94
2004	helium-4	endf/b-iv mat 1270		updated	08/12/94
3006	li-6 1271 218	gp 1/e*sigt 040375(5)		updated	08/12/94
3007	li-7 1272 218	gp 1/e*sigt 040375(5)		updated	08/12/94
4009	beryllium-9	endf/b-iv mat 1289/thrm1064		updated	08/12/94
5010	b-10 1273 218n	gp 042375 p-3 293k		updated	08/12/94
5011	boron-11	endf/b-iv mat 1160		updated	08/12/94
6012	carbon-12	endf/b-iv mat 1274/thrm1065		updated	08/12/94
7014	nitrogen-14	endf/b-iv mat 1275		updated	08/12/94
8016	oxygen-16	endf/b-iv mat 1276		updated	08/12/94
9019	fluorine	endf/b-iv mat 1277		updated	08/12/94
11023	sodium-23	endf/b-iv mat 1156		updated	08/12/94
12000	mg 1280 218 gp	1/e*sigt 040375(5)		updated	08/12/94
13027	al-27 1193 218	gp 040375(5)		updated	08/12/94
14000	silicon	endf/b-iv mat 1194		updated	08/12/94
15031	p-31 7019 218n	gp wt 1/est 042375 p3 293k		updated	08/12/94
16000	sulfur lendl	mat 7020		updated	08/12/94
19000	potassium	endf/b-iv mat 1150		updated	08/12/94
20000	calcium endf/b	-iv mat 1195		updated	08/12/94
22000	titanium -	endf/b-iv mat 1286		updated	08/12/94
23051	v 1196 218 gp	1/e*sigt 040375(5)		updated	08/12/94
24000	cr 1191 218ngp	wt 1/e p-3 293k sigp=5+4 re(042	375)	updated	08/12/94

NUREG/CR-0200, Vol. 3, Rev. 6

24304	cr 1191 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
24404	cr 1191 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
25055	manganese-55 endf/b-iv mat 1197	updated	08/12/94
26000	iron endf/b-iv mat 1192	updated	08/12/94
26304	fe 1192 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
26404	fe 1192 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
27059	cobalt-59 endf/b-iv mat 1199	updated	08/12/94
28000	ni 1190 218ngp wt 1/e p-3 293k sigp=5+4 re(042375)	updated	08/12/94
28304	ni 1190 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
28404	ni 1190 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
29000	copper endf/b-iv mat 1295	updated	08/12/94
35079	bromine-79 endf/b-iv mat 108	updated	08/12/94
35081	bromine-81 endf/b-iv mat 112	updated	08/12/94
40000	zirconium endf/b-iv mat 7141	updated	08/12/94
40302	zircalloy endf/b-iv mat 1284	updated	08/12/94
41093	niobium-93 endf/b-iv mat 1189	updated	08/12/94
42000	mo (1287) sigp=5+4 newxlacs 218ngp f-1/e-m p-3 293k	updated	08/12/94
47107	silver-107 endf/b-iv mat 1138	updated	08/12/94
47109	silver-109 endf/b-iv mat 1139	updated	08/12/94
48000	cd 1281 wt 1/est 218ngp p-3 293k re(042375)	updated	08/12/94
49113	indium-113 endf/b-iv mat 445	updated	08/12/94
49115	indium-115 endf/b-iv mat 449	updated	08/12/94
50000	sn 7039 wt 1/est 218ngp p-3 293k re(042375)	updated	08/12/94
54135	xenon-135 endf/b-iv mat 1294	updated	08/12/94
55133	cesium-133 endf/b-iv mat 1141	updated	08/12/94
56138	ba-138 7040 218ngp wt 1/est 042375 p3 293k	updated	08/12/94
64000	gd (1030) sig0=1.+5p3 293k f-1/e-m vb 61479	updated	08/12/94
66164	dyprosium-164 endf/b-iv mat 1031	updated	08/12/94
71175	lutetium-175 endf/b-iv mat 1032	updated	08/12/94
71176	lutetium-176 endf/b-iv mat 1033	updated	08/12/94
72000	hf(nat) 1034 218ngp wt 1/e p-3 sigp=5+4 293k re(042375)	updated	08/12/94
73181	tantalum-181 endf/b-iv mat 1285	updated	08/12/94
74182	tungsten-182 endf/b-iv mat 1128	updated	08/12/94
74183	tungsten-183 endf/b-iv mat 1129	updated	08/12/94
74184	tungsten-184 endf/b-iv mat 1130	updated	08/12/94
74186	tungsten-186 endf/b-iv mat 1131	updated	08/12/94
75185	rhenium-185 endf/b-iv mat 1083	updated	08/12/94
75187	rhenium-187 endf/b-iv mat 1084	updated	08/12/94
79197	gold-197 endf/b-iv mat 1283	updated	08/12/94
82000	pb 1288 218ngp 042375 p-3 293k	updated	08/12/94
90232	thorium-232 endf/b-iv mat 1296	updated	08/12/94
91233	pa-233 1297 218 gp wt f-1/e-m 090376 p3 293k	updated	08/12/94
92233	u-233 1260 sigp=5+4 newxlacs 218ngp p-3 293k	updated	08/12/94
92234	uranium-234 endf/b-iv mat 1043	updated	08/12/94
92235	uranium-235 endf/b-iv mat 1261	updated	08/12/94
92236	u-236 1163 sigo=5+4 newxlacs p-3 293k f-1/e-m(1.+5)	updated	08/12/94
92238	uranium-238 endf/b-iv mat 1262	updated	08/12/94
93237	neptunium-237 endf/b-iv mat 1263	updated	08/12/94
94238	pu-238 1050 sigo=5+4 newxlacs p-3 293k f-1/e-m(1.+5)	updated	08/12/94
94239	plutonium-239 endf/b-iv mat 1264	updated	08/12/94
94240	plutonium-240 endf/b-iv mat 1265	updated	08/12/94
94241	plutonium-241 endf/b-iv mat 1266	updated	08/12/94
94242	plutonium-242 endf/b-iv mat 1161	updated	08/12/94
95241	am-241 1056 sigp=5+4 newxlacs 218ngp p-3 293k	updated	08/12/94
95243	am-243 1057 218 gp wt t-1/e-m 090376 p3 293k	updated	08/12/94
96244	curium-244 endf/b-iv mat 1162	updated	08/12/94
500000	jrk's neutron(9029) dose factors from ansi/ans-6.1.1-19	// <b>.</b>	
17000	chiorine (mat 1149 from version iv) using 1/sigt weight:	updated	<b>U8/12/94</b>

# M4.A.3 THE 27-GROUP BURNUP LIBRARY

table of contents for /sca	ale4.4/data/scale.rev05.xn27burn	on logical unit	1
tape id	27		
number of nuclides	252		
number of neutron groups	· 27		
first thermal group	15		
number of gamma groups	0		

	scale - 27 group neutron burnup library		
	based on endf-b version 4 data with endf-b version 5 fission	products	
	compiled for nrc 1/27/89	•	
	last updated 1/14/98		
	l.m.petrie - ornl		
900	dose factors from ansi/ans-6.1.1-1977	9/15/89	
999	1/v cross sections normalized to 1.0 at 0.0253 ev	undated	08/12/94
1001	hydrogen endf/b-iv mat 1269/thrm1002	undated	08/12/04
1002	deuterium endf/b-iv mat 1120	undated	08/12/94
2004	he-4 1270 218 gp wt f-1/est-m 042375 n3 293k	updated	00/12/94
3006	li-6 1271 218 gp 1/e*sigt 040375(5)	updated	08/12/94
3007	li=7 1272 218 gp 1/e sigt 040375(5)	updated	08/12/94
4009	bervllium-9 endf/b-iv mat $1289/thrm1064$	updated	08/12/94
5010	b = 10 1273 218  mar 042375  m = 3 293  k	updated	00/12/94
5011	boron-11 $endf/b-iv mat 1160$	updated	08/12/94
6012	carbon=12 and $f/b = iv mat = 1274/thrm 1065$	updated	08/12/94
7014	pitrogen-14 endf/b-iv mat 1275	updated	08/12/94
8016	Area and the second first and the second first second first second first second first second first second s	updated	08/12/94
0010	fluening and the mat 1276	updated	08/12/94
11022	and the ending of the set 12/7	updated	08/12/94
12000	soulum-25 end/d-1v mat 1156	updated	08/12/94
12000	mg 1280 218 gp 1/e*sigt 0403/5(5)	updated	08/12/94
14000	a1-27 1193 218 gp 040375(5)	updated	08/12/94
14000	silicon endf/b-iv mat 1194	updated	08/12/94
15031	p-31 7019 218ngp wt 1/est 042375 p3 293k	updated	08/12/94
16000	sulfur lendl mat 7020	updated	08/12/94
19000	potassium endf/b-iv mat 1150	updated	08/12/94
20000	calcium endf/b-iv mat 1195	updated	08/12/94
22000	titanium endf/b-iv mat 1286	updated	08/12/94
23051	v 1196 218 gp 1/e*sigt 040375(5)	updated	08/12/94
24000	cr 1191 218ngp wt 1/e p-3 293k sigp=5+4 re(042375)	updated	08/12/94
24304	cr 1191 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
24404	cr 1191 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
25055	manganese-55 endf/b-iv mat 1197	updated	08/12/94
26000	iron endf/b-iv mat 1192	updated	08/12/94
26304	fe 1192 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
26404	fe 1192 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
27059	cobalt-59 endf/b-iv mat 1199	updated	08/12/94
28000	ni 1190 218ngp wt 1/e p-3 293k sigp=5+4 re(042375)	updated	08/12/94
28304	ni 1190 wt ss-304(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
28404	ni 1190 wt inconl(1/est) p-3 293k sp=5+4(42375)'	updated	08/12/94
29000	copper endf/b-iv mat 1295	updated	08/12/94
32072	ge-72 mt=102	updated	08/12/94
32073	ge-73 mt=102	updated	08/12/94
32074	ge-74 mt=102	updated	08/12/94
32076	ge-76 mt=102	updated	08/12/94
33075	as-75 mt=102	undated	08/12/94
34076	se-76 mt=102	undated	08/12/94
34077	se-77 mt=102	undated	08/12/94
34078	se-78 mt=102	undated	08/12/94
34080	se-80 mt = 102	updated	08/12/04
34082	se-82 mt=102	updated	08/12/94
35079	bromine-79 endf/briv mat 108	updated	00/12/94
35081	bromine-81 endf/b-iv mat 112	updated	00/12/94
36080	kr = 80 $mt = 102 103 104 105 106 107$	updated	00/12/94
36082	$kr = 82 \qquad mt = 102, 103, 104, 105, 106, 107$	updated	00/12/94
36083	kr = 92 mt = 102, 103, 104, 105, 106, 107	updated	00/12/94
36084	$\frac{100}{100} = \frac{100}{100} = $	updated	08/12/94
36085	mc = 102, 103, 104, 105, 106, 107 $kr = 85$ $mt = 102$	updated	08/12/94
36086	$m_{\rm r} = 102$	updated	08/12/94
37005	$m_{L} = 00$ $m_{L} = 102, 103, 104, 103, 107$	updated	08/12/94
37005		updated	08/12/94
27007	LD-00 MT=1U2	updated	08/12/94
30004		updated	08/12/94
20000	$m_{\tau} = 102$	updated	08/12/94
38087	sr-6/mt=102	updated	08/12/94
38088	sr - bs $mt = 102$	updated	08/12/94
38089	sr-89 mt=102	updated	08/12/94
38090	sr-90 mt=102	updated	08/12/94
39089	y-89 mt=102	updated	08/12/94
39090	y-90 mt = 102	updated	08/12/94
39091	y-91 mt=102	updated	08/12/94

40000	zirconium	endf/b-iv mat 7141
40090	zr-90	mt= 102
40091	zr-91	mt= 102
40092	zr-92	mt=102
40093	zr-93	mt= 102
40094	zr-94	mt=102
40095	zr-95	mt = 102
40096	zr-96	mt= 102
40302	zircallov	endf/b-iv mat 1284
41093	nichium-93	endf/b-iv mat 1199
41093	nb-94	mt = 102
41095	nb-95	mt = 102
42000	$m_{0} / 1227$ sign-	mc = 102
42094	mo-94	mt- 102
42094	mo-95	mt=102
12000	mo-96	mt-102
42090	mo=97	mt=102
42000	mo-09	mt-102
42000	mo-98	mt-102
42099	mo-100	mt=102 mt=102
42100	10-100 to 00	mt=102
43033		mt=102
44099	10-99	mt=102
44100	ru-100	mt=102
44101	ru-101	mt=102
44102	ru-102	mt=102
44103	ru-103	
44104	ru-104	mt=102
44105	ru-105	mt=102
44100	ru-106	mt=102
45105	rn-105	mt = 102
46104	pa-104	
46105	pd-105	mt=102
40100	pa-106	mt=102
46107	pd-107	mt=102
40108	pa=108	mt=102
40110	pa-110	
4/10/	silver-10/	endi/b-iv mat 1138
47109	S11Ver-109	endi/b-iv mat 1139
4/111	ag-111	mt=102
40000		endi/D-10 mat 1281
40100	ca-108	mt=102
40110	cd-110	mt=102
40111		mt=102
40112	ca-112	mt=102
40113	cu-115	mc = 102, 103, 107
48114	CG-114	
40001	cd-115m	mt= 102
40110	cu-110	mc = 102
49115	indium-115	endi/beiv mat 445
50000	$r_{1101000} = 115$	endi/D=1V mat 449 = 218pap p=3 202k ro(042275)
50115	on_115	mt-102
50115	sn-116	mt = 102
50117	on-117	mc = 102
50118	SD-117 SD-118	mt-102
50110	sn~110	mt-102
50120	SU-119 sp-120	mt-102
50120	311-120 cm-122	mt-102
50122	SII-122 SII-123	mt-102
50123	sn=124	mt-102
50125	sn-125	mt=102
50126	sp=126	mt=102
51121	sh-121	mt=102
51123	sh-123	mt=102
51124	sb-124	mt=102
51125	sh-125	mt = 102
51126	sb-126	mt=102
52122	to-122	mt =102
52123	to-123	mt-102
52123	te-123	mt=102

updated 08/12/94 updated 08/12/94

> NUREG/CR-0200, Vol. 3, Rev. 6

52125	te-125	mt=102
52126	te-126	mt=102
52601	te-127m	mt= 102
52128	te-128	mt=102
52611	te-129m	mt= 102
52130	te-130	mt=102
52132	te-132	mt=102
53127	1-127	mt=102
53129	1-129	mt=102
53131	1-130	mt = 102
53135	1-131 ÷_125	mt = 102
54128	1-135 vo-128	mt= 102 mt=102 102 104 105 106 107
54129	xe-120	mc = 102, 103, 104, 105, 106, 107
54130	xe-129	mt = 102, 103, 104, 105, 106 mt = 102, 103, 104, 105, 106
54131	xe-131	mt = 102, 103, 104, 105, 106
54132	xe-132	mt=102,103,104,105,106 mt=102,103,104,105,106
54133	xe-133	mt= 102
54134	xe-134	mt = 102, 103, 104, 105, 106
54135	xenon-135	endf/b-iv mat 1294
54136	xe-136	mt = 102, 103, 104, 105, 107
55133	cesium-133	endf/b-iv mat 1141
55134	cs-134	mt=102
55135	cs-135	mt= 102
55136	cs-136	mt = 102
55137	cs-137	mt=102
56134	ba-134	mt=102
56135	ba-135	mt= 102
56136	ba-136	mt=102
56137	ba-137	mt= 102
56138	ba-138 7040	218ngp wt 1/est 042375 p3 293k
56140	ba-140	mt= 102
57139	la-139	mt=102
5/140	1a-140	mt=102
58140	ce-140	mt≃102
50141	Ce-141	mt=102
50142	Ce-142	mt=102
58144	Ce-143	mt = 102
59141	Dr-141	mt= 102 mt=102 102 104 105 106 107
59142	$p_{1-141}$	m = 102, 103, 104, 105, 106, 107
59143	pr-143	mt = 102 mt = 102
60142	nd-142	mt=102
60143	nd-143	mt=102
60144	nd-144	mt=102
60145	nd-145	mt=102
60146	nd-146	mt= 102, 103, 104, 105, 106, 107
60147	nd-147	mt=102
60148	nd-148	mt=102
60150	nd-150	mt=102
61147	pm-147	mt=102
61148	pm-148	mt= 102
61149	pm-149	mt=102
61151	pm-151	mt=102
62147	sm-147	endf/b-v fission product
62148	sm-148	mt= 102
62149	sm-149	mt=102,103,107
62150	sm-150	mt=102
02151	sm-151	mt=102,103,104,105,106,107
02152 62152	sm-152	mt=102, 103, 104, 105, 106, 107
62123	Sm-153	
63151	Sm-154	mt=102 103 104 105 105 107
63152	eu=152	mt=102,103,104,105,106,107
63152	eu-152	mt=102,103,104,105,106,107
63154	eu-155	mc = 102, 103, 104, 105, 106, 107
63155	eu-154 An-155	mt=102,103,104,105,106,107 mt=102,103,104,105,106,107
63156	eu-155 eu-156	mt-102,103,104,105,106,107
63157	eu~150 .	$m_{-102}$
64000	ad (1030) si	.a0=1.+5p3 293k f-1/e-m vh 61479
	,~~~// VA	

updated 08/12/94 updated 08/12/94

NUREG/CR-0200, Vol. 3, Rev. 6

64154	gd-154 mt≃102	updated	08/12/94
64155	gd-155 mt=102	updated	08/12/94
64156	gd-156 mt=102	updated	08/12/94
64157	gd-157 mt=102	updated	08/12/94
64158	gd-158 mt=102	updated	08/12/94
64160	gd-160 mt=102	updated	08/12/94
65159	tb-159 mt=102	updated	08/12/94
65160	tb-160 mt= 102	updated	08/12/94
66160	dy-160 mt=102	updated	08/12/94
66161	dy-161 mt=102	updated	08/12/94
66162	dy-162 mt=102	updated	08/12/94
66163	dy-163 mt=102	updated	08/12/94
66164	dyprosium-164 endf/b-iv mat 1031	updated	08/12/94
67165	ho-165 mt=102	updated	08/12/94
68166	er-166 mt=102	updated	08/12/94
68167	er-167 mt=102	updated	08/12/94
71175	lutetium-175 endf/b-iv mat 1032	updated	08/12/94
71176	lutetium-176 endf/b-iv mat 1033	updated	08/12/94
72000	hf(nat) 1034 218ngp wt 1/e p-3 sigp=5+4 293k re(042375)	updated	08/12/94
73181	tantalum-181 endf/b-iv mat 1285	updated	08/12/94
74182	tungsten-182 endf/b-iv mat 1128	updated	08/12/94
74183	tungsten-183 endf/b-iv mat 1129	updated	08/12/94
74184	tungsten-184 endf/b-iv mat 1130	updated	08/12/94
74186	tungsten-186 endf/b-iv mat 1131	updated	08/12/94
75185	re-185 1083 sigp=5+4 newxlacs 218ngp p-3 293k	updated	08/12/94
75187	rhenium-187 endf/b-iv mat 1084	updated	08/12/94
79197	gold-197 endf/b-iv mat 1283	updated	08/12/94
82000	pb 1288 218ngp 042375 p-3 293k	updated	08/12/94
90232	th-232 1296 sigp=5+4 newxlacs 218ngp p-3 293k	updated	08/12/94
91233	pa-233 1297 218 gp wt f-1/e-m 090376 p3 293k	updated	08/12/94
92233	u-233 1260 sigp=5+4 newxlacs 218ngp p-3 293k	updated	08/12/94
92234	u-234 1043 sigo=5+4 newx1acs p-3 293k f-1/e-m(1.+5)	updated	08/12/94
92235	uranium-235 endf/b-iv mat 1261	updated	08/12/94
92236	u-236 1163 sigo=5+4 newslacs p-3 293k f-1/e-m(1.+5)	updated	08/12/94
92238	uranium-238 endf/b-iv mat 1262	updated	08/12/94
93237	neptunium-23/ endi/b-iv mat 1263	updated	08/12/94
94238	pu-238 1050 sigo=5+4 newslacs $p-3$ 293k f-1/e-m(1.+5)	updated	08/12/94
94239	plutonium-239 endr/b-1v mat 1264	updated	08/12/94
94240	plutonium-240 endi/b-1v mat 1265	updated	08/12/94
94241	plutonium-241 endi/b-iv mat 1266	updated	08/12/94
94242	plutonium-242 endi/D-1V mat 1161	updated	08/12/94
95241	am - 241 1056 Sigp=5+4 newx1acs 218ngp p-3 293k	updated	08/12/94
95243	am-243 105/ 218 gp wt 1-1/e-m 0903/6 p3 293k	updated	08/12/94
96244	curium-244 endi/b-iv mat 1162	updated	08/12/94
500000	jrk's neutron(9029) dose factors from ansi/ans-6.1.1-19		
17000	chiorine (mat 1149 from version iv) using 1/sigt weight:	lupdated	08/12/94
45103	45rn103 ned1 baw evainov/8 schenter 11vols mod1 (	91/03/38	

#### M4.A.4 THE 238-GROUP ENDF/B-V LIBRARY

table of contents for scale.rev08.xn238 on logical unit 1 tape id 238 number of nuclides 315 number of neutron groups 238 first thermal group 149 number of gamma groups 0 scale - 238 neutron group library based on endf-b version 5 data generated with a chi-1/e-maxwellian weight spectrum compiled for doe 8/18/94 last updated 7/29/99 n.m.greene & l.m.petrie nuclear eng. appl. - cped - ornl 24CR BNL EVALDEC77 A.PRINCE AND T. 24301 (1/esigt) MOD2 11/18/91 24CR BNL EVALDEC77 A.PRINCE AND T. 24304 (1/esigtSS304) MOD2 11/18/91 26FE 0 ORNL EVALOCT77 C.Y.FU F.G.PE (1/esigt) MOD3 11/18/91 26FE 0 ORNL EVALOCT77 C.Y.FU F.G.PE (1/esigtSS304) MOD3 11/18/91 26301 26304 28NI O BNL NNDC EVALMAR77 M.DIVADEENAM (1/esigt) MOD2 11/18/91 28NI O BNL NNDC EVALMAR77 M.DIVADEENAM (1/esigtSS304) MOD2 11/18/91 28301 28304

> NUREG/CR-0200, Vol. 3, Rev. 6

1701	smiler for h-1 (hzrh) tape 132, mat 7 5-14	-98		
40701	smiler for zr (in zrh) tape 133, mat 58 5-	15-98		
19000	19k gga evalfeb67 m.k.drake	mod1	lupdated	01/18/95
92232	92u232 hedl evalnov77 mann	modl	11/14/97	
33075	33as 75 hedl evalapr74 r.e.schenter an	mod1	04/02/97	
56135	56bal35 hedl evalapr74 r.e.schenter an	mod1	04/02/97	
48110	48cd110 hedl evalapr74 r.e.schenter an	mod1	04/02/97	
48114	48cd114 hedl evalapr74 r.e.schenter an	mod1	04/02/97	
96244	96cm244 hedisrilli evalapr78 mann benjamin h	mod2	11/14/97	
96248	96cm248 hedisrilli evalapr78 mann benjamin h	modl	11/14/97	
66160	66dy160 hedl evalapr/4 r.e.schenter an	modl	04/08/97	
69165	680r166 bodl evalapr/4 r.e.schenter an	modl	04/09/97	
32074	32go 74 bod) evalapr74 r.e.schenter an	modi	04/23/97	
42096	42mo 96 hedl ron evalfeb80 r o schontor an	modi	04/23/97	
60145	60nd145 hedl bnl+ evaltebb0 f.e.schenter an	modi	04/23/9/	
60146	60nd146 hedl bnl+ evalfeb80 schenter schmit	modi	04/23/9/	
60150	60nd150 hedl bn]+ evalfeb80 schenter schmit	modi	04/24/97	
46108	46pd108 hedl rcn evalfeb80 r e schenter an	modi	04/24/97	
34076	34se 76 hedl evalapr74 r.e.schenter an	mod1	04/24/97	
34078	34se 78 hedl evalapr74 r.e.schenter an	mod1	04/24/97	
62152	62sm152 hedl bnl+ evalfeb80 schenter schmit	modl	04/29/97	
62154	62sm154 hedl evalapr74 r.e.schenter an	mod1	04/29/97	
52122	52te122 hedl evalapr74 r.e.schenter an	mod1	04/29/97	
4309	be metal 13041064	mod2	04/29/97	
60143	60nd143 hedl bnl+ evalfeb80 schenter schmit	mod1	04/23/97	
62147	62sm147 hedl bnl+ evalfeb80 schenter + man	mod2	04/24/97	
99	collected weight functions for use in collapsing	upo	dated 5/12	2/95
900	neutron dose factors from ansl/ans 6.1.1-1977	upo	dated 5/12	2/95
1802	1d 201as1 eval nov67 1.stewart las1 mod2 12/11/92	2 free	gas	
2003	2he 301as1 evaljun68 leona stewart mod1 12/23/92	free	jas	
2004	21e 401asi evaloct/3 hisley hale young modu 12/2:	5/92 II	ree gas	
3007	31i 7 land ovaldooll n g young rod 12/11/02 for	1/92 1	tree gas	
4009	Abe 9 free day 111 avalact76 howarten /narking	e gas		
5010	5b 1001as1 evaldec76 g hale 1 stewart mod1 12/11	100 U0 102 fra	3/1//94	
5011	5bll gebnl evalsen71 c cowan modi 12/11/92 free c	72 IIC	ee yas	
6012	6c ornl evaldec73 c.v.fu and f.g. perev mod2 12/1	1/92 1	free das	
7015	7n 15 lasl evalmar77 e.arthur p.voun	mod1	12/16/88	
40096	40zr 96 sai evalapr76 m.drake d.sa	mod2	01/04/89	
74183	74w183 las anl brcevaldec80 arthur young sm	mod2	01/04/89	
74184	74w184 las anl brcevaldec80 arthur young sm	mod2	01/05/89	
92238	92U 238 ANL+ EVALJUN77 E.PENNINGTON A.	MOD3	02/13/92	
701501	7n 15 from version 6 evaluation			
14000	14si 0 ornl evalfeb74 larson perey dr	mod3	12/20/88	
63154	EU-154 FROM VERSION 6 OF ENDFB (2/9/93)			
63155	EU-155 FROM VERSION 6 OF ENDFB (6/30/93)			
631541	63eu154 bhl evaldec73 h.takahashi	modl	12/28/88	
94241	MARY MACTER FILE FOR FURE MAR 1203 tht DU 041 t	modi	01/16/89	
92233	AMPX MASTER FILE FOR ENDE MAT 1381 *** PU-241 *			
43099	ARC 99 HEDL BAN FURINOUZS SCHENTED I TUDIS	MOD2	01/10/01	
40091	40ZR 91 SAT EVALAPR76 M. DRAKE D SA	MOD2	01/18/91	
13027	13al 270[as] evaldec73 p.g. young d.g.	mod1	11/20/20	
27059	27co 59 bnl evaljun77 s.mughabghab	mod3	12/20/88	
24000	24cr bnl evaldec77 a.prince and t.	mod2	11/29/88	
9019	9f 19 ornl evaljul74 c.y.fu d.c.lars	mod3	12/16/88	
26000	26fe 0 ornl evaloct77 c.y.fu f.g.pe	mod3	11/29/88	
25055	25mn 55 bnl evalmar77 s.f. mughabghab	mod2	12/20/88	
42000	42mo 111 hed1 evalfeb79 howerton schmit	mod1	02/17/89	
11023	llna 23 ornl evaldec77 d. c. larson	mod3	11/29/88	
41093	41nb 93 anl 111 evalmay74 r.howerton 111	mod1	12/28/88	
28000	28ni 0 bnl nndc evalmar77 m.divadeenam	mod2	11/29/88	
37085	37rb 85 bnlbrc evaloct79 a. prince	mod1	01/03/89	
3/08/	3/rD 8/ Dnibrc evaloct79 a. prince	mod1	12/29/88	
45103	45rn103 hedl baw evalnov78 schenter livols	modl	12/28/88	
70000	TO S U DHI EVALAPT/9 GIVAGEENAM	modl	12/20/88	
40000	Alar sei oveleer// bhat smith leon	mod2	01/05/89	
40090	40zr 90 sai evalapr76 m drake d.sa	mod2	01/03/89	
	the se per clarebrie wintere d'se	mouz	U1/U4/09	

....

NUREG/CR-0200, Vol. 3, Rev. 6

40092	40zr 92 sai evalapr76 m.drake d.sa	mod2	01/04/89
40094	40zr 94 sai evalapr76 m.drake d.sa	mod2	01/04/89
6312	graphite 1306/1065 96 angles 10/21/92 jpr eval.		
61601	61PM148MHEDL INEL EVALDEC79 SCHENTER SCHMIT	MOD1	01/22/91
8016	80 16 from version 6 evaluation		
1901	hydrogen in ch2 1301/1114 11/25/92		
1002	deuterium in d2o 1302/1004 96 angles 11/13,	/92	
1001	hydrogen in water 1301/1002 mod1 11/23/92		
999 .	I/V function (normalized to 1.0 at 2200m/s<==>0.03	253ev)	
96242	SOCM242 HEDLSKLLLL EVALAPKIS MANN BENJAMIN H	MODI	01/18/91
63151	63FH151 BNL EVALUENCO S. F. MUCHABCHAR	MODI	01/10/91
64155	64GD155 BNL EVALUAN77 B.A MAGURNO	MODI	01/21/91
64157	64GD157 BNL EVALJAN77 B.A.MAGURNO	MOD1	01/18/91
72176	72HF176 SAI EVALAPR76 M.DRAKE D.SA	MOD1	01/18/91
72179	72HF179 SAI EVALAPR76 M. DRAKE D. SA	MOD1	01/18/91
60144	60ND144 HEDL EVALFEB80 SCHENTER SCHMIT	MOD1	01/22/91
93237	93NP237 HEDL SRL + EVALAPR78 MANN BENJAMIN S	MOD2	01/23/91
91231	91PA231 HEDL EVALNOV77 MANN	MOD1	01/18/91
94236	94PU236 HEDL SRL EVALAPR78 MANN SCHENTER B	MOD1	01/18/91
94237	94PU237 HEDL EVALAPR78 MANN AND SCHENT	MOD1	01/18/91
94238	94PU238 HEDL AI + EVALAPR78 MANN SCHENTER A	MOD3	01/18/91
94242	94PU242 HEDL SRL + EVALOCT78 MANN BENJAMIN M	MOD2	01/21/91
94243	94PU243 BNL SRL LLLEVALJUL76 KINSEYASSEMBLE	MOD1	01/18/91
94244	94PU244 HEDL SRL EVALAPR78 MANN SCHENTER B	MOD1	01/18/91
73181	73TA181 LLL EVALJAN72 HOWERTON PERKI	MOD2	01/22/91
90230	90TH230 HEDL EVALNOV77 MANN	MODI	01/18/91
92234	920 234 BNL HEDL + EVALUATO DIVADEENAM MANN	MOD3	01/10/91
92230	47ag107 bpl hedl evaljung3 a prince r o so	MOD3	01/23/91
47109	47ag109 bnl hedl evaljun83 a prince r e sc	mod2	01/04/89
47111	47ag111 hedl inel evaldec79 schenter schmit	modil	01/12/89
95241	95am241 hedl ornl evalapr78 mann schenter	mod2	01/10/90
95601	95am242mhedlsrllll evalapr78 mann benjamin h	modl	01/16/90
95243	95am243 hedlsrllll evalapr78 mann benjamin h	mod2	01/10/90
79197	79au197 bnl evalfeb77 s.f.mughabghab	mod3	01/04/89
56134	56ba134 hedl evalapr74 r.e.schenter an	mod1	01/13/89
56136	56ba136 hedl evalapr74 r.e.schenter an	mod1	01/13/89
56137	56ba137 hedl evalapr74 r.e.schenter an	mod1	01/13/89
56138	56ba138 111 evalaug78 howerton	mod1	01/03/89
56140	56bal40 hedl inel evaldec79 schenter schmit	modl	01/13/89
83209	83D1209 and 111 evalapr80 d.smith a.smith	modi	01/04/89
35079	35Dr /9 hedi evalapr/4 r.e.schenter an	modi	01/11/89
20000	20ca orpl evalaug71 c v fu and d m	mod3	12/20/89
48000	48cd bnl evalauy/1 c.y.10 and u.m.	modil	12/20/88
48106	48cd106 hedl evalfeb80 f.m.mann	mod2	01/12/89
48108	48cd108 hedl evalapr74 r.e.schenter an	mod1	01/12/89
48111	48cd111 hedl evalapr74 r.e.schenter an	mod1	01/12/89
48112	48cd112 hedl evalapr74 r.e.schenter an	mod1	01/12/89
48113	48cd113 bnl hedl evalnov78 pearlstein mann	mod1	01/03/89
48601	48cd115mhedl inel evaldec79 schenter schmit	mod1	01/12/89
48116	48cd116 hedl evalapr74 r.e.schenter an	mod1	01/12/89
58140	58ce140 hedl evalapr74 r.e.schenter an	mod1	01/13/89
58141	58cel41 hedl inel evaldec/9 schenter schmit	modi	01/13/89
58142	58ce142 hedi evalapr/4 r.e.schenter an	modi	01/13/89
50145	58cel45 hedl incl evaldec79 schenter schmit	modi	01/13/89
98249	cf249 hpl srl llevalaec/9 schenter schmit	modi	01/10/89
98251	98cf251 bnl srl llevaljul76 kinsevassemble	modi	01/10/89
98252	98cf252 bnl srl lllevaljul76 kinsevassemble	modl	01/10/89
17000	17cl gga evalfeb67 m.s.allen and m	mod1	03/14/89
96241	96cm241 hedl evalapr78 mann and schent	mod1	01/10/90
96243	96cm243 hedlsrllll evalapr78 mann benjamin h	mod1	01/10/90
96245	96cm245 srl 111 evaljan79 benjamin and ho	mod2	01/05/89
96246	96cm246 bnl srl lllevaljul76 kinseyassemble	mod1	01/10/90
96247	96cm247 bnl srl lllevaljul76 kinseyassemble	modl	01/10/89
55133	55cs133 hedl bnl evalnov78 schenter bhat p	mod1	01/03/89
55134	55cs134 hedl inel evaldec79 schenter schmit	mod1	01/13/89
55135	55CS135 hedl inel evaldec79 schenter schmit	mod1	01/13/89

55136	55CS136 hed1 inel evaldec79 schenter schmit	mod1	01/13/89
55137	55cs137 hedl inel evaldec79 schenter schmit	mod1	01/13/89
29000	29cu ornl sai evaldec73 fu drake fricke	mod1	12/20/88
66161	66dv161 hedl evalanr74 r o schenter an		12/20/00
66162	66dy162 hedl evalapi74 r.e.schenter an	moul	01/16/89
00102	oody102 hedi evalapri4 r.e.schenter an	modl	04/03/89
68167	68er167 hedl evalapr74 r.e.schenter an	modl	04/03/89
99253	99es253 bnl srl evaljul76 kinsev benjamin	mod1	01/10/89
63000	63eu nndc evalaug81 autocombined	modil	01/04/89
63152	63eu152 bpl evaldec73 b takabachi		01/04/09
63163	Cleuisz bai evaldet/S h.takanashi	modz	02/28/89
03133	63eu153 bhí evalleb/8 s.mughabghab	modl	01/03/89
63156	63eu156 hedl inel evaldec79 schenter schmit	mod1	01/16/89
63157	63eu157 hedl evalfeb80 r.e.schenter an	mod1	01/17/89
31000	31ga 111 las1 evalmav80 howerton young	mod1	12/21/88
64152	64gd152 bpl evalian77 b a magurno		12/21/00
64364	Gardled bal avaliation D.a. magurno	modz	01/03/89
04134	64gd154 bhi evaljan// b.a.magurno	modl	01/03/89
64156	64gd156 bnl evaljan77 b.a.magurno	mod2	01/04/89
64158	64gd158 bnl evaljan77 b.a.magurno	mod1	01/04/89
64160	64gd160 bnl evalian77 b.a.magurno	mod1	01/04/99
32072	22go 72 bodi evolore74 e e esterter en	mout	01/04/09
22072	Szge 72 heul evalapr74 r.e.schenter an	modi	01/11/89
32073	32ge /3 hedl evalapr/4 r.e.schenter an	modl	01/11/89
32076	32ge 76 hedl evalapr74 r.e.schenter an	mod1	01/11/89
1801	1h 101asl evalaug70 1.stewart r.j.	mod1	12/16/88
72000	72hf sai evalapr76 m.drake d.sa	mod1	01/04/89
72174	72hf174 gai ovalapr76 m drake d ea		01/04/09
70177	72h1174 Sal evalapi76 m.ulake u.Sa	moal	03/21/89
12177	/2h11// sai evalapr/6 m.drake d.sa	modl	03/21/89
72178	72hf178 sai evalapr76 m.drake d.sa	mod1	03/21/89
72180	72hf180 sai evalapr76 m.drake d.sa	mod1	01/04/89
67165	67ho165 hedl evalapr74 r.e.schenter an	mod1	01/16/89
53127	53i 127 hedl ron evalfab80 r a scherter an	madi	01/10/09
53120	531 127 hedi ich evallebou r.e.schenter an	modi	01/13/89
53129	531 129 hedi inel+ evalieb80 schenter schmit	mod1	01/13/89
53130	53i 130 hedl inel evaldec79 schenter schmit	mod1	01/13/89
53131	53i 131 hedl inel evaldec79 schenter schmit	mod1	01/13/89
53135	53i 135 hedl inel evaldec79 schenter schmit	mod1	01/13/89
49113	49in113 hedl evalapr74 r e schenter an	modi	01/10/00
10115	Agin115 hedl incl and de 70 schenter an	mour	01/12/89
49113	Additional and the evalue of schenter schmit	modi	01/12/89
36078	36kr /8 bhl evalapr/8 a.prince	mod1	12/29/88
36080	36kr 80 bnl evalapr78 a.prince	mod1	12/29/88
36082	36kr 82 bnl evalapr78 a.prince	mod1	12/29/88
36083	36kr 83 bnl evalapr78 a.prince	modi	12/29/88
36084	36kr 84 bpl evalapr78 a prince	modi	12/20/00
36085	26km 85 bodl incl coulds 20 schember schult	moor	12/29/00
36085	Jokr 85 hedi inel evaldec/9 schenter schmit	modl	01/11/89
36086	36kr 86 bnl evaljul72 a.prince	modl	12/30/88
57139	571a139 hedl rcn evalfeb80 r.e.schenter an	mod1	01/13/89
57140	571a140 bedl inel evaldec79 schenter schmit	modil	01/13/99
71175	711u175 how evaluated h r loopand in	moor	12/22/09
71176	711u175 bas evaluation D.1.1eonato jr.	moar	12/22/00
/11/0	filui/o bhw evaljuno/ b.r.ieonard jr.	modi	12/22/88
12000	12mg orn1 evalteb78 d.c.larson	modl	12/16/88
42092	42mo 92 hedl evalfeb80 f.m.mann	mod1	01/12/89
42094	42mo 94 hedl rcn evalfeb80 r.e.schenter an	mod1	01/11/89
42095	42mo 95 hedl rcn evalfeb80 r e schenter an	mod1	01/11/00
42097	Almo 97 hodi von ovolfob90 v o ochenter an	11001	01/11/09
42057	42mo 37 nedi ich evalleboo i.e.schenter an	moar	01/12/89
42098	42mo 98 hedl rch evalieb80 r.e.schenter an	modl	01/12/89
42099	42mo 99 hedl inel evaldec79 schenter schmit	mod1	01/12/89
42100	42mo100 hedl rcn evalfeb80 r.e.schenter an	mod1	01/12/89
7014	7n 14 lasl evaljul73 p.young d.fost	mod2	11/28/88
41094	Alph 94 hodl incl avaldan70 schenter achmit		01/11/00
41005	Alab OF hedl inel evaluero schencer schalt	modi	01/11/89
41035	41nb 95 nedi inel evaldec/9 schenter schmit	moal	01/11/89
60142	60nd142 hedl evalapr74 r.e.schenter an	modl	01/16/89
60147	60nd147 hedl inel evaldec79 schenter schmit	mod1	01/16/89
60148	60nd148 hedl bnl+ evalfeb80 schenter schmit	modi	03/21/89
8017	80 17 bnl evaljan78 b.a.magurno	modi	12/20/00
15031	15p 21 111 ovoloot77 houset		10/00/00
10001	TOP ST TIL EVALUEL// NOWERTON	modi	12/20/88
02000	<pre>szpp orni evaljul/l c.y.fu and f.g.</pre>	mod2	01/04/89
46102	46pd102 hedl evalfeb80 f.m.mann	mod2	01/12/89
46104	46pd104 hedl rcn evalfeb80 r.e.schenter an	modl	01/12/89
46105	46pd105 hedl rcn evalfeb80 r.e.schenter an	modil	01/12/89
46106	46pd106 hed] ron evalfeb80 r o schenter an	mod1	01/10/09
46107	Acadion heat ten evallebou f.e.Schencel an	mout	01/12/09
40107	"opulu/ neui inei+ evaliebsu schenter schmit	modl	U1/12/89
46110	46pd110 hedl rcn evalfeb80 r.e.schenter an	mod1	01/12/89
61147	61pm147 hedl inel +evalfeb80 schenter + rei	mod1	01/16/89

1.____LL

NUREG/CR-0200,

Vol. 3, Rev. 6

61148 61pm148 hedl inel evaldec79 schenter schmit 61149 61pm149 hedl inel evaldec79 schenter schmit 61151 61pm151 hedl inel evaldec79 schenter schmit 59141 59pr141 hedl bnl+ evalfeb80 schenter schmit 59142 59pr142 hedl inel evaldec79 schenter schmit 59143 59pr143 hedl inel evaldec79 schenter schmit 94239 94pu239 lanl jun83 e.arthur p.you 94240 94pu240 ornl evalapr77 1.w. weston 37086 37rb 86 hedl inel evaldec79 schenter schmit 75re185 ge nmpo evaljan68 w.b.henderson a 75185 75187 75re187 ge nmpo evaljan68 w.b.henderson a 45105 45rh105 hedl inel evaldec79 schenter schmit 44096 44ru 96 hedl evalfeb80 f.m.mann 44098 44ru 98 hedl evalfeb80 f.m.mann 44099 44ru 99 hedl evalapr74 r.e.schenter an 44100 44ru100 hedl rcn evalfeb80 r.e.schenter an 44ru101 hedl rcn evalfeb80 r.e.schenter an 44101 44102 44ru102 hedl rcn evalfeb80 r.e.schenter an 44103 44ru103 hedl inel evaldec79 schenter schmit 44104 44ru104 hedl rcn evalfeb80 r.e.schenter an 44105 44ru105 hedl inel evaldec79 schenter schmit 44106 44ru106 hedl inel evaldec79 schenter schmit 16032 16s 32 111 evaloct77 howerton 51121 51sb121 hedl rcn evalfeb80 r.e.schenter an 51123 51sb123 hedl rcn evalfeb80 r.e.schenter an 51124 51sb124 hedl inel evaldec79 schenter schmit 51125 51sb125 hedl inel evaldec79 schenter schmit 51126 51sb126 hedl inel evaldec79 schenter schmit 34se 74 hedl evalfeb80 f.m.mann 34074 34077 34se 77 hedl evalapr74 r.e.schenter an 34080 34se 80 hedl evalapr74 r.e.schenter an 34082 34se 82 hedl evalapr74 r.e.schenter an 62144 62sm144 hedl evalfeb80 f.m.mann 62148 62sm148 hedl evalfeb80 schenter schmit 62149 62sm149 hedl bnw evalnov78 schenter leonar 62sm150 hedl evalapr74 r.e.schenter an 62150 62151 62sm151 hedl inel +evalfeb80 schenter + rei 62153 62sm153 hedl inel evaldec79 schenter schmit 50112 50sn112 hedl evalfeb80 f.m.mann 50114 50sn114 hedl evalfeb80 f.m.mann 50115 50sn115 hedl evalapr74 r.e.schenter an 50sn116 hedl evalapr74 r.e.schenter an 50116 50sn117 hedl evalapr74 r.e.schenter an 50117 50118 50sn118 hedl evalapr74 r.e.schenter an 50119 50sn119 hedl evalapr74 r.e.schenter an 50120 50sn120 hedl evalapr74 r.e.schenter an 50122 50sn122 hedl evalapr74 r.e.schenter an 50123 50sn123 hedl inel evaldec79 schenter schmit 50124 50sn124 hedl evalapr74 r.e.schenter an 50sn125 hedl inel evaldec79 schenter schmit 50125 50sn126 hedl inel evaldec79 schenter schmit 50126 38084 38sr 84 hedl evalfeb80 f.m.mann 38086 38sr 86 hedl evalapr74 r.e.schenter an 38087 38sr 87 hedl evalapr74 r.e.schenter an 38088 38sr 88 hedl evalapr74 r.e.schenter an 38089 38sr 89 hedl inel evaldec79 schenter schmit 38sr 90 hedl inel evaldec79 schenter schmit 38090 1003 1t 301asl evalfeb65 leona stewart 73182 73ta182 ai evalapr71 j.otter c.dunfo 65159 65tb159 hedl rcn evalfeb80 r.e.schenter an 65tb160 hedl inel evaldec79 schenter schmit 65160 52120 52te120 hed1 evalfeb80 f.m.mann 52123 52te123 hedl evalapr74 r.e.schenter an 52124 52te124 hedl evalapr74 r.e.schenter an 52125 52te125 hedl evalapr74 r.e.schenter an 52126 52te126 hedl evalapr74 r.e.schenter an 52601 52te127mhedl inel evaldec79 schenter schmit 52128 52tel28 hedl evalapr74 r.e.schenter an 52611 52te129mhedl inel evaldec79 schenter schmit 52tel30 hedl evalapr74 r.e.schenter an 52130

mod1 01/16/89 mod1 01/16/89 mod1 01/16/89 mod1 03/21/89 mod1 01/16/89 mod1 01/16/89 mod2 02/28/89 mod3 12/12/88 mod1 01/11/89 mod1 12/22/88 mod1 12/22/88 mod2 01/12/89 mod2 01/12/89 mod2 01/12/89 mod1 12/20/88 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod2 03/21/89 mod1 01/11/89 mod1 03/21/89 mod1 01/11/89 mod2 01/16/89 mod1 01/16/89 mod1 01/03/89 mod1 03/21/89 mod1 01/16/89 mod1 01/16/89 mod2 01/12/89 mod2 01/12/89 mod1 01/13/89 mod1 01/12/89 mod2 01/11/89 mod1 01/11/89 mod1 01/11/89 modl 01/11/89 mod1 01/11/89 mod1 01/11/89 mod2 12/16/88 mod1 12/22/88 mod1 01/16/89 mod1 01/16/89 mod2 01/13/89 mod1 03/21/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89

> NUREG/CR-0200, Vol. 3, Rev. 6

		,		
	52132	52te132 hedl inel evaldec79 schenter schmit	mod1	01/13/89
	22000	22ti buranllll evalaug77 c.philis a.smit	mod1	12/20/88
	92235	92u 235 bnl evalapr77 m.r.bhat	mod3	02/28/89
	92237	92u237 bnl srl 111evalju176 kinseyassemble	mod1	01/10/89
	23000	23v anlllhedl evaljan77 a.smith+ h.howe	mod1	12/20/88
	74000	74w lanl evalmar82 e.d.arthur	mod1	01/04/89
	74182	74w182 las anl brcevaldec80 arthur young sm	mod2	01/04/89
	74186	74w186 las anl brcevaldec80 arthur young sm	mod2	01/05/89
	54124	54xe124 bnl evalmar78 m.r.bhat and s.	mod1	12/29/88
	54126	54xe126 bnl evalmar78 m.r.bhat and s.	mod1	12/29/88
	54128	54xe128 bnl evalmar78 m.r.bhat and s.	mod1	12/30/88
	54129	54xe129 bnl evalmar78 m.r.bhat and s.	mod1	01/03/89
	54130	54xe130 bnl evalmar78 m.r.bhat and s.	mod1	12/30/88
	54131	54xe131 bnl evalmar78 m.r.bhat and s.	mod1	01/03/89
	54132	54xe132 bnl evalmar78 m.r.bhat and s.	mod2	01/03/89
	54133	54xe133 hedl inel evaldec79 schenter schmit	mod1	01/13/89
	54134	54xe134 bnl evalmar78 m.r.bhat and s.	mod1	01/03/89
	54135	54xe135 bnw evaljun67 b.r.leonard jr.	mod1	12/28/88
	54136	54xe136 bnl evalmar78 m.r.bhat and s.	mod1	01/03/89
	39089	39y 89 hedl evalapr74 r.e.schenter an	mod1	01/11/89
	39090	39y 90 hedl inel evaldec79 schenter schmit	mod1	01/11/89
	39091	39y 91 hedl inel evaldec79 schenter schmit	modl	01/11/89
	40093	40zr 93 hedl inel evaldec79 schenter schmit	mod1	01/11/89
	40095	40zr 95 hedl inel evaldec79 schenter schmit	mod1	01/11/89
8	301601	8o 16 lasl evalaug73 p.young d.fost	mod2	12/16/88
7	01401	7n 14 from version 6 evaluation		
	98250	98cf250 bnl srl lllevaljul76 kinseyassemble	mod1	11/14/97
	91233	91PA233 HEDL INEL EVALMAY78 MANN SCHENTER R	MOD2	01/18/91
	97249	97bk249 bnl srl lllevaljul76 kinseyassemble	mod1	01/11/89

...I.....

# M4.A.5 THE 44-GROUP ENDF/B-V LIBRARY

table of cont	tents for scale.rev10.xn44	on log	ical unit 1
tape id	44	3	
number of nuc	clides 315		
number of new	utron groups 44		
first thermal	l group 23		
number of gam	mma groups 0		
scale	e - 44 neutron group library bas	ed on endf-b version	on 5 data
co.	llapsed with a light water reactor cell flu	ix spectrum from 23	8 groups
(	compiled for nrc 9/01/94		
	last updated 7/29/99		
	m.d.dehart & l.m.petrie nuclear eng.	appl cped - or:	nl
24301	24CR BNL EVALDEC77 A.PRINCE AND T.	(1/esigt) MOD2	11/18/91
24304	24CR BNL EVALDEC77 A.PRINCE AND T.	(1/esigtSS304)	MOD2 11/18/91
26301	26FE 0 ORNL EVALOCT77 C.Y.FU F.G.PE	: (1/esigt) MOD3	11/18/91
26304	26FE 0 ORNL EVALOCT77 C.Y.FU F.G.PE	: (1/esigtSS304)	MOD3 11/18/91
28301	28NI O BNL NNDC EVALMAR77 M.DIVADEE	NAM (1/esigt) MOD2	11/18/91
28304	28NI 0 BNL NNDC EVALMAR77 M.DIVADEE	NAM (1/esigtSS304)	MOD2 11/18/91
1701 '	smiler for h-1 (hzrh) tape 132,	mat 7 5-14-98	
40701	smiler for zr (in zrh) tape 133,	mat 58 5-15-98	
19000	19k gga evalfeb67 m.k.drake	mod1	lupdated 01/18/95
92232	92u232 hedl evalnov77 mann	mod1	11/14/97
33075	33as 75 hedl evalapr74 r.e.schenter	an modl	04/02/97
56135	56ba135 hedl evalapr74 r.e.schenter	an modl	04/02/97
48110	48cd110 hedl evalapr74 r.e.schenter	an modl	04/02/97
48114	48cd114 hedl evalapr74 r.e.schenter	an modl	04/02/97
96244	96cm244 hedlsrllll evalapr78 mann b	enjamin h mod2	11/14/97
96248	96cm248 hedlsrllll evalapr78 mann b	enjamin h modl	11/14/97
66160	66dy160 hed1 evalapr74 r.e.schenter	an modl	04/08/97
66163	66dy163 hedl evalapr74 r.e.schenter	an modl	04/09/97
68166	68er166 hedl evalapr74 r.e.schenter	an mod1	04/23/97
32074	32ge 74 hedl evalapr74 r.e.schenter	an modl	04/23/97
42096	42mo 96 hedl rcn evalfeb80 r.e.sche	nter an modl	04/23/97
60145	60nd145 hed1 bn1+ evalfeb80 schente	r schmit modl	04/23/97
60146	6Und146 hed1 bn1+ evalfeb80 schente	r schmit modl	04/24/97
60150	60nd150 hedl bnl+ evalfeb80 schente	r schmit modl	04/24/97
46108	46pd108 hedl rcn evalfeb80 r.e.sche	inter an modl	04/24/97

NUREG/CR-0200, Vol. 3, Rev. 6

34076	34se 76 hedl evalapr74 r.e.schenter an	mod1	04/24/97	
34079	34co 78 hodi ovolopz74 z o pohonter en		04/24/07	
59070	Sase to head evalapita file. Schenter an	moal	04/24/9/	
62152	62Sm152 hedi bhi+ evaliebsu schenter schmit	moai	04/29/9/	
62154	62sm154 hedl evalapr74 r.e.schenter an	mod1	04/29/97	
52122	52te122 hedl evalapr74 r.e.schenter an	mod1	04/29/97	
4309	be metal 13041064	mod2	04/29/97	
60143	60nd143 hedl bnl+ evalfeb80 schenter schmit	mod1	04/23/97	
62147	62sm147 hed] bn]+ evalfeb80 schenter + man	mod2	04/24/97	
99	collected weight functions for use in collapsing	11002	dated 5/12/9	5
900	noutron does footors from anal (and C 1 1 1077	upt	Jaceu 3/12/3	5
1900	Id 201221 ourst new67 1 stought last med 12/11/02	upo	Dated 5/12/9	5
1802	10 2010SI EVAL NOVE/ 1.Stewart 18SI modz 12/11/92	Iree	gas	
2003	Zhe Sulasi evaljun68 leona stewart modi 12/23/92	iree q	gas	
2004	2he 401as1 evaloct/3 hisley hale young mod0 12/23	/92 fi	ree gas	
3006	3li0060lasl eval sep77 g.hale l.stewart mod1 12/1	1/92 1	free gas	
3007	31i 7 lanl evaldec81 p.g.young mod1 12/11/92 free	gas		
4009	4be 9 free gas. 111 evaloct76 howerton/perkins	mod 08	8/17/94	
5010	5b 1001asl evaldec76 g.hale 1.stewart mod1 12/11/	92 fre	ee gas	
5011	5b11 gebnl evalsep71 c.cowan mod1 12/11/92 free g	as	-	
6012	6c ornl evaldec73 c.v.fu and f.g. perev mod2 12/1	1/92 1	free das	
7015	7n 15 lasl evalmar77 e.arthur p.voun	mod1	12/16/88	
40096	40zr 96 sai evalapr76 m drake d sa	mod2	01/04/89	
74183	74w183 las and breewalders0 arthur young sm	mod2	01/04/09	
74103	74w105 Tas and Dicevaldecob archur young sm	11002	01/04/09	
/4104	74W164 las ani brcevaldecs0 artnur young sm	modz	01/05/89	
92238	920 238 ANL+ EVALJUN// E.PENNINGTON A.	MOD3	02/13/92	
701501	7n 15 from version 6 evaluation			
14000	14si 0 ornl evalfeb74 larson perey dr	mod3	12/20/88	
63154	EU-154 FROM VERSION 6 OF ENDFB (2/9/93)			
63155	EU-155 FROM VERSION 6 OF ENDFB (6/30/93)			
631541	63eu154 bnl evaldec73 h.takahashi	mod1	12/28/88	
631551	63eu155 bnl hedl + evaldec79 princeschenter	mod1	01/16/89	
94241	AMPX MASTER FILE FOR ENDE MAT 1381 *** PU-241 *	**		
92233	AMPX MASTER FILE FOR ENDE MAT 1393 *** 11-233 *	**		
13099	ARC QQ HEDI DAW FUALNOUTS SCUENTED I TUOIS	MOD2	01 /10 /01	
40091	ADAD OI SAI EANINDALE D'SCHEMIER FLACTO	MOD2	01/10/91	
10091	1201 2701001 eveldes72 a success d a	PIODZ	11/10/91	
13027	13al 2701asi evaldec73 p.g. young d.g	moai	11/29/88	
27039	2700 59 Dhi evaljun77 S.mughabghab	moas	12/20/88	
24000	24cr bhl evaldec// a.prince and t.	mod2	11/29/88	
9019	91 19 orni evaljul/4 c.y.fu d.c.lars	mod3	12/16/88	
26000	26fe 0 ornl evaloct77 c.y.fu f.g.pe	mod3	11/29/88	
25055	25mn 55 bnl evalmar77 s.f. mughabghab	mod2	12/20/88	
42000	42mo 111 hed1 evalfeb79 howerton schmit	mod1	02/17/89	
11023	11na 23 ornl evaldec77 d. c. larson	mod3	11/29/88	
41093	41nb 93 anl 111 evalmay74 r.howerton 111	mod1	12/28/88	
28000	28ni 0 bnl nndc evalmar77 m.divadeenam	mod2	11/29/88	
37085	37rb 85 bnlbrc evaloct79 a, prince	mod1	01/03/89	
37087	37rb 87 bnlbrc evaloct79 a prince	modi	12/29/88	
45103	45rh103 hed] haw evaluou78 schenter livels	modi	12/29/00	
16000	16 n 0 hnl evelenn70 divedeenen	mod1	12/20/00	
10000	10 S U DHI EValapi/9 divadeenam 00th222 hsl ovaldoo77 hbst omith loos	modi	12/20/00	
90232	Soch252 bhi evaluec// bhat Smith leon	modz	01/05/89	
40000	40zr sal evalapr/6 m.drake d.sa	moaz	01/03/89	
40090	402r 90 sal evalapr/6 m.drake d.sa	mod2	01/04/89	
40092	40zr 92 sai evalapr76 m.drake d.sa	mod2	01/04/89	
40094	40zr 94 sai evalapr76 m.drake d.sa	mod2	01/04/89	
6312	graphite 1306/1065 96 angles 10/21/92 jpr eval.			
61601	61PM148MHEDL INEL EVALDEC79 SCHENTER SCHMIT	MOD1	01/22/91	
8016	80 16 from version 6 evaluation			
1901	hydrogen in ch2 1301/1114 11/25/92			
1002	deuterium in d2o 1302/1004 96 angles 11/13	/92		
1001	hydrogen in water 1301/1002 mod1 11/23/92			
999	1/v function (normalized to 1.0 at 2200m/s<==>0.0	253ev	)	
96242	96CM242 HEDLSRLLLL EVALAPR78 MANN BENJAMIN H	MODI	01/18/91	
66164	66DY164 BNW EVAL-TIN67 B R LEONARD TR	MODI	01/18/91	
63151	63EU151 BNI EVALDEC77 S F MUCHABCHAB	MODI	01/21/01	
61155	CACDISS BNI FUNITANTT D & MACUDNO	NODI	VI/2I/JI	
04100	CACDIEZ DNL EVALUAN// B.A.MAGUKNU	MODI	01/21/91	
0415/	04GDID/ BNL EVALJAN// B.A.MAGURNO	MOD1	01/18/91	
72176	72HF176 SAI EVALAPR76 M.DRAKE D.SA	MOD1	01/18/91	
72179	72HF179 SAI EVALAPR76 M.DRAKE D.SA	MOD1	01/18/91	
60144	60ND144 HEDL EVALFEB80 SCHENTER SCHMIT	MOD1	01/22/91	
93237	93NP237 HEDL SRL + EVALAPR78 MANN BENJAMIN S	MOD2	01/23/91	
91231	91PA231 HEDL EVALNOV77 MANN	MOD1	01/18/91	

04026			
94236	94PU236 HEDL SRL EVALAPR78 MANN SCHENTER B	MOD1	01/18/91
94237	94PU237 HEDL EVALAPR78 MANN AND SCHENT	MOD1	01/18/91
94238	94PU238 HEDI. AT + EVALAPR78 MANN SCHENTER A	MOD3	01/19/01
94242	OADUSAS HEDI ODI : DUNIORTO MANN DONDATOR A	10005	01/10/91
34242	94P0242 HEDL SRL + EVALOCT/8 MANN BENJAMIN M	MOD2	01/21/91
94243	94P0243 BNL SRL LLLEVALJUL76 KINSEYASSEMBLE	MOD1	01/18/91
94244	94PU244 HEDL SRL EVALAPR78 MANN SCHENTER B	MOD1	01/18/91
73181	73TA181 LLL EVALJAN72 HOWERTON PERKT	MOD2	01/22/01
00000	COMPOSE AND AVIIDANCE NONDATION FERRI	MODZ	01/22/91
90230	90THZ30 HEDL EVALNOV// MANN	MOD1	01/18/91
92234	92U 234 BNL HEDL + EVALJUL78 DIVADEENAM MANN	MOD3	01/10/91
92236	920 236 BNL HEDL + EVALUIL78 DIVADEENAM MANN	MOD3	01/23/01
47107	A7ag107 bpl bedl ovalius02 a prince a a	1000	01/23/91
47100	4/agrov bhi neur evarjunos a.prince r.e.sc	moaz	01/04/89
4/109	47ag109 bnl hedl evaljun83 a.prince r.e.sc	mod2	01/04/89
47111	47ag111 hedl inel evaldec79 schenter schmit	modl	01/12/89
95241	95am241 hed] orn] evalapr78 mann schenter	mod2	01/10/00
95601	95pm2/2mbodler1111 ownlaps70 mann beniewie b	10002	01/10/90
55001	ssamzyznaleuisiiii evalaprio mann benjamin n	moar	01/16/90
95243	95am243 hedisriili evalapr78 mann benjamin h	mod2	01/10/90
79197	79au197 bnl evalfeb77 s.f.mughabghab	mod3	01/04/89
56134	56hal34 hedl evalanr74 r e schenter an	modil	01/12/00
E 61 3 6	Echaloc had analage 74 mental	moor	01/13/09
20130	Sobal36 nedi evalapr/4 r.e.schenter an	modl	01/13/89
56137	56bal37 hedl evalapr74 r.e.schenter an	mod1	01/13/89
56138	56ba138 111 evalaug78 howerton	mod1	01/03/89
56140	56bal40 bedl inel evalder79 schoptor achmit	modi	01/03/03
00000	Sobarto neur iner evaluec/s schenter schmitt	moar	01/13/89
83209	8351209 and 111 evalapr80 d.smith a.smith	modl	01/04/89
35079	35br 79 hedl evalapr74 r.e.schenter an	modl	01/11/89
35081	35br 81 hedl evalapr74 r e schenter an	modil	01/11/00
20000	20on ownl ownlows71 a w fu and d -	mout	01/11/09
20000	Zuca offil evalaug/1 c.y.fu and d.m.	mod3	12/20/88
48000	48cd bnl evalmay74 s.pearlstein tr	mod1	01/03/89
48106	48cd106 hedl evalfeb80 f.m.mann	mod2	01/12/89
48108	48cd108 hedl evalapr74 r e schontor an	modil	01/12/00
40111	Apedili hadi evalapiri i.e. Schencer an	aoui	01/12/09
40111	46Culli hedi evalapr/4 r.e.schenter an	modi	01/12/89
48112	48cd112 hedl evalapr74 r.e.schenter an	mod1	01/12/89
48113	48cd113 bnl hedl evalnov78 pearlstein mann	mod1	01/03/89
48601	48cd115mbed1 inel evaldec79 schentor cobmit	mod 1	01/10/00
40116	Abediic had an lange a state of schemer schemer	mour	01/12/09
40110	46Cullo neul evalapr/4 r.e.schenter an	moal	01/12/89
58140	58ce140 hedl evalapr74 r.e.schenter an	mod1	01/13/89
58141	58ce141 hedl inel evaldec79 schenter schmit	mod1	01/13/89
58142	58cel42 hedl evalanr74 r e schenter an	mod 1	01/12/00
501/2	50cc142 hedl evaluation 70 setenter and	mour	01/13/09
20142	Jocerds hear ther evaluecry schenter schmit	moar	01/13/89
58144	58cel44 hedl inel evaldec79 schenter schmit	mod1	01/16/89
98249	cf249 bnl srl lllevaljul76 kinsevassemble	mod1	01/12/89
98251	98cf251 hnl srl lllevaljul76 kinsevassemble	modil	01/10/99
98252	Operate bal or literaljuite kinecyassemble	mour	01/10/09
302.32	Soci252 Dai Sil illevaljul/o kinseyassemble	moai	01/10/89
17000	17cl gga evalfeb67 m.s.allen and m	mod1	03/14/89
96241	96cm241 hedl evalapr78 mann and schent	mod1	01/10/90
96243	96cm243 hedisrilli evalapr78 mann benjamin b	modil	01/10/00
06245	Of an of the set of th	mour	01/10/90
96245	96cm245 Sri iii evaljan/9 benjamin and ho	mod2	01/05/89
96246	96cm246 bnl srl lllevaljul76 kinseyassemble	mod1	01/10/90
96247	96cm247 bnl srl lllevaljul76 kinsevassemble	mod1	01/10/89
55133	55cs133 hedl bol evaloov78 schenter bhat o	modil	01/03/89
55124	EFeel24 hedl deel emeldee20 estender black	mour	01/05/05
55135	Success and the evalue of schenter schmit	modi	01/13/89
22122	5505135 nedi inel evaldec79 schenter schmit	mod1	01/13/89
55136	55cs136 hedl inel evaldec79 schenter schmit	mod1	01/13/89
55137	55cs137 hedl inel evaldec79 schenter schmit	mod 1	01/13/89
29000	29cu orni sai evaldos72 fu drako frieko		10/20/00
66261	Contra sar evalueers in urake iricke	modi	12/20/88
00101	obdylol nedl evalapr/4 r.e.schenter an	modl	01/16/89
66162	66dy162 hedl evalapr74 r.e.schenter an	mod1	04/03/89
68167	68er167 hedl evalapr74 r.e.schenter an	mod1	04/03/89
99253	99es253 hpl srl evaljul76 kincov honiamir		01/10/00
63000	62ou mada avalaur01	moat	01/10/89
03000	oseu inuc evalaugsi autocombined	modl	01/04/89
63152	63eu152 bnl evaldec73 h.takahashi	mod2	02/28/89
63153	63eu153 bnl evalfeb78 s.mughabghab	nod1	01/03/89
63156	63eu156 hedl inel evaldes79 schenter scheit		01/10/00
62157	62ou157 hedl analf-boo statuec/y schenter schmit	moar	01/10/83
03137	obeuib; nedi evaliebsu r.e.schenter an	modl	01/17/89
31000	31ga 111 lasl evalmay80 howerton young	mod1	12/21/88
64152	64qd152 bnl evaljan77 b.a.magurno	mod2	01/03/89
64154	64ad154 bpl evalian77 b a maguano		01/02/02
64156	Gladiff bal avalian77 b	modi	01/03/89
OTTO	vaguijo bni evaljan// D.a.magurno	mod2	01/04/89
64158	64gd158 bnl.evaljan77 b.a.magurno	mod1	01/04/89
64160	64gd160 bnl evaljan77 b.a magurno	modi	01/04/80
32072	32ge 72 hedl evalant74 r e schontor on		01/11/02
		1001	01/11/03

4-----

NUREG/CR-0200, Vol. 3, Rev. 6

.

32073	32ge 73 hedl evalapr74 r.e. schenter an
	and the second and th
32076	32ge 76 hedl evalapr74 r.e.schenter an
1801	16 101261 ovalaug70 1 stouast s a
1001	in iolasi evalaug/o i.stewalt I.j.
72000	72hf sai evalapr76 m.drake d.sa
72174	72hf174 ani ounlang76 m denka d an
12114	Ziriya sar evalapiyo m.urake u.sa
72177	72hf177 sai evalapr76 m.drake d.sa
72170	72bf17P and ownlaws76 m durks d an
12110	/2011/6 Sai evalapr/6 m.drake d.sa
72180	72hf180 sai evalapr76 m.drake d sa
C71 CF	
6/165	6/noi65 nedi evalapr/4 r.e.schenter an
53127	531 127 hedl ron evalfeb80 r e schenter an
50100	
53129	531 129 hedi inel+ evalteb80 schenter schmit
53130	53; 130 hedl inel evaldec79 schenter schmit
60101	
53131	531 131 hedl inel evaldec79 schenter schmit
53135	531 135 hedl inel evaldec79 schenter schmit
	to the second seco
49113	491n113 hedi evalapr/4 r.e.schenter an
49115	49in115 hedl inel evaldec79 schenter schmit
10110	solution heat their evalueers schencer schmitt
36078	36kr 78 bnl evalapr78 a.prince
36080	36kr 90 bpl evalapr79 a prince
30000	Soki oo bhi evalapito a.piince
36082	36kr 82 bnl evalapr78 a.prince
36083	36kr 83 hnl ovolonn78 o nainco
50005	Sont of bhi evalaptio a.plince
36084	36kr 84 bnl evalapr78 a.prince
36085	36kr 85 hodl incl ovaldoo70 ophonton actuat
50005	Jokt 55 neur iner evaluec/9 Schenter Schmit
36086	36kr 86 bnl evaljul72 a.prince
57130	5715120 hodl was avalfated a anti-
2122	Silaiss neur fon evallebou r.e.schenter an
57140	571a140 hedl inel evaldec79 schenter schmit
71176	
11113	filui/5 bhw evaljun6/ b.r.ieonard jr.
71176	711u176 bnw evaljun67 b.r.leonard ir.
12000	12mg anal aval fob 20 d a langes
12000	izing offit evalled/8 d.C.tarson
42092	42mo 92 hedl evalfeb80 f.m.mann
42094	12mg 94 hodi yen ovolfob90 m o ochonton on
42034	42mo 94 neur fon evallebou r.e.schenter an
42095	42mo 95 hedl rcn evalfeb80 r.e.schenter an
12007	Almo 07 hadl men avalfah00 m a achantan an
42097	42mo 97 hedi rch evalleb80 r.e.schenter an
42098	42mo 98 hedl rcn evalfeb80 r.e.schenter an
42000	
42099	42mo 99 hedi inel evaldec/9 schenter schmit
42100	42mo100 hedl rcn evalfeb80 r.e schenter an
7014	7 14 leal evaluation of the second of the second se
7014	in 14 last evaljulis plyoung ditost
41094	41nb 94 hedl inel evaldec79 schenter schmit
41005	Alah Of hedl dash analdes70 schenter schult
41095	41nd 95 hedi inel evaldec/9 schenter schmit
60142	60nd142 hedl evalanr74 r e schenter an
00112	
60147	bund14/ hedi inei evaldec/9 schenter schmit
60148	60nd148 hedl bnl+ evalfeb80 schenter schmit
0017	
8017	so 1/ bni evaljan/8 b.a.magurno
15031	15p 31 111 evaloct77 howerton
82000	82pb orn1 evaljul71 c.y.fu and f.g.
46102	46pd102 hedl evalfeb80 f.m.mann
46104	46pd104 hedl rcn evalfeb80 r.e.schenter an
46105	46pd105 hedl rcn evalfeb80 r e schenter an
46106	Acadlog hadl and analysical and
40100	<pre>%opaiuo neal rcn evalleb80 r.e.schenter an</pre>
46107	46pd107 hedl inel+ evalfeb80 schenter schmit
46110	Acadiio hadi ana analestoo
40110	vopulto neul ron evallebsu r.e.schenter an
61147	61pm147 hedl inel +evalfeb80 schenter + rei
61149	61mm148 hodl incl ownlds 70 ophenter activity
01140	orburso nent thet exatdecia scheuter schuit
61149	61pm149 hedl inel evaldec79 schenter schmit
61151	61mm151 had) incl ovaldoo70 ophonton ophot
01101	orbuior neur iner evaluec/a schenter schmit
59141	59pr141 hedl bnl+ evalfeb80 schenter schmit
59142	50mr142 had incl evalder 70 ochester echait
55142	Spring neur mer evaluec/9 schenter schmit
59143	59pr143 hedl inel evaldec79 schenter schmit
94239	Qdrug230 lanl jung3 o arthur a waw
27632	sepuess fant junos elartnur p.you
94240	94pu240 ornl evalapr77 l.w. weston
37086	37rb 86 hodl incl ownldge70 ochester activit
51000	Silb of neur ther evalued/9 schenter schmit
75185	75re185 ge nmpo evaljan68 w.b.henderson a
75187	
10101	75rol97 ro mmo ovolion(0 L Londonco -
	75re187 ge nmpo evaljan68 w.b.henderson a
45105	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit
45105	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit
45105 44096	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann
45105 44096 44098	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann
45105 44096 44098 44099	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann
45105 44096 44098 44099	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an
45105 44096 44098 44099 44100	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an 44ru100 hedl rcn evalfeb80 r.e.schenter an
45105 44096 44098 44099 44100	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an 44ru100 hedl rcn evalfeb80 r.e.schenter an
45105 44096 44098 44099 44100 44101	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an 44ru100 hedl rcn evalfeb80 r.e.schenter an 44ru101 hedl rcn evalfeb80 r.e.schenter an
45105 44096 44098 44099 44100 44101 44102	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an 44ru100 hedl rcn evalfeb80 r.e.schenter an 44ru101 hedl rcn evalfeb80 r.e.schenter an 44ru102 hedl rcn evalfeb80 r.e.schenter an
45105 44096 44098 44099 44100 44101 44102 44103	75re187 ge nmpo evaljan68 w.b.henderson a 45rh105 hedl inel evaldec79 schenter schmit 44ru 96 hedl evalfeb80 f.m.mann 44ru 98 hedl evalfeb80 f.m.mann 44ru 99 hedl evalapr74 r.e.schenter an 44ru100 hedl rcn evalfeb80 r.e.schenter an 44ru101 hedl rcn evalfeb80 r.e.schenter an 44ru103 hedl inel evaldec79 schenter schmit

mod1 01/11/89 mod1 01/11/89 mod1 12/16/88 mod1 01/04/89 mod1 03/21/89 mod1 03/21/89 mod1 03/21/89 mod1 01/04/89 mod1 01/16/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/12/89 mod1 01/12/89 mod1 12/29/88 mod1 12/29/88 mod1 12/29/88 mod1 12/29/88 mod1 12/29/88 mod1 01/11/89 mod1 12/30/88 mod1 01/13/89 mod1 01/13/89 mod1 12/22/88 mod1 12/22/88 mod1 12/16/88 mod1 01/12/89 mod1 01/11/89 mod1 01/11/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod2 11/28/88 mod1 01/11/89 mod1 01/11/89 mod1 01/16/89 mod1 01/16/89 mod1 03/21/89 mod1 12/20/88 mod1 12/20/88 mod2 01/04/89 mod2 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/16/89 mod1 01/16/89 mod1 01/16/89 mod1 01/16/89 mod1 03/21/89 mod1 01/16/89 mod1 01/16/89 mod2 02/28/89 mod3 12/12/88 mod1 01/11/89 mod1 12/22/88 mod1 12/22/88 mod2 01/12/89 mod2 01/12/89 mod2 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 01/12/89

> NUREG/CR-0200, Vol. 3, Rev. 6

44104	44ru104 hed] rcn evalfeb80 r.e.schenter an
44105	44rul05 hedl inel evaldec79 schentor schmit
44106	44rul06 hedl inel evaldec79 schenter schult
16032	16s 32 111 ourlost 77 hourston
51121	51sh121 hod] rop ouplieb80 m a schember en
51122	Sisbizi neur ron evaltebeo r.e.schenter an
51125	Sisbizs hedi rch evallebsu r.e.schenter an
51124	51Sb124 hedi inel evaldec/9 schenter schmit
51125	51sb125 hedl inel evaldec79 schenter schmit
51126	51sb126 hedl inel evaldec79 schenter schmit
34074	34se 74 hedl evalfeb80 f.m.mann
34077	34se 77 hedl evalapr74 r.e.schenter an
34080	34se 80 hedl evalapr74 r.e.schenter an
34082	34se 82 hedl evalapr74 r.e.schenter an
62144	62sm144 hedl evalfeb80 f.m.mann
62148	62sm148 hedl evalfeb80 schenter schmit
62149	62sm149 hedl bnw evalnov78 schenter leonar
62150	62sm150 hedl evalapr74 r.e.schenter an
62151	62sm151 hedl inel +evalfeb80 schenter + rei
62153	62sm153 hedl inel evaldec79 schenter schmit
50112	50sn112 hedl evalfeb80 f.m.mann
50114	50sn114 hedl evalfeb80 f.m.mann
50115	50sn115 hedl evalapr74 r.e.schenter an
50116	50sn116 hedl evalapr74 r.e.schenter an
50117	50sn117 hedl evalapr74 r.e.schenter an
50118	50sn118 hedl evalapr74 r.e.schenter an
50119	50sn119 hedl evalapr74 r.e.schenter an
50120	50sn120 hedl evalapr74 r.e.schenter an
50122	50sn122 hedl evalapr74 r.e.schenter an
50123	50sn123 hedl inel evaldec79 schenter schmit
50124	50sn124 hedl evalapr74 r.e.schenter an
50125	50sn125 hedl inel evaldec79 schenter schmit
50126	50sn126 hedl inel evaldec79 schenter schmit
38084	38sr 84 hedl evalfeb80 f.m.mann
38086	38sr 86 hedl evalapr74 r.e.schenter an
38087	38sr 87 hedl evalapr74 r.e.schenter an
38088	38sr 88 hedl evalapr74 r.e.schenter an
38089	38sr 89 hedl inel evaldec79 schenter schmit
38090	38sr 90 hedl inel evaldec79 schenter schmit
1003	1t 301asl evalfeb65 leona stewart
73182	73ta182 ai evalapr71 j.otter c.dunfo
65159	65tb159 hedl rcn evalfeb80 r.e.schenter an
65160	65tb160 hedl inel evaldec79 schenter schmit
52120	52te120 hedl evalfeb80 f.m.mann
52123	52te123 hedl evalapr74 r.e.schenter an
52124	52te124 hedl evalapr74 r.e.schenter an
52125	52te125 hedl evalapr74 r.e.schenter an
52126	52te126 hedl evalapr74 r.e.schenter an
52601	52te127mhedl inel evaldec79 schenter schmit
52128	52te128 hedl evalapr74 r.e.schenter an
52611	52te129mhedl inel evaldec79 schenter schmit
52130	52te130 hedl evalapr74 r.e.schenter an
52132	52te132 hedl inel evaldec79 schenter schmit
22000	22ti buranllll evalaug77 c.philis a.smit
92235	92u 235 bnl evalapr77 m.r.bhat
92237	92u237 bnl srl lllevalju176 kinsevassemble
23000	23v anlllhedl evalian77 a smitht h howe
74000	74w lanl evalmar82 e.d.arthur
74182	74w182 las and breevaldee80 arthur young sm
74186	74w186 las and breevaldec80 arthur young sm
54124	54xe124 bnl evalmar78 m r bhat and s
54126	54xe126 bnl evalmar78 m.r.bhat and s
54128	54xe128 bnl evalmar78 m.r.bhat and s
54129	54xe129 bnl evalmar78 m.r.bhat and s
54130	54xe130 hnl evalmar78 m r bhat and s
54131	54xe131 bnl evalmar78 m r bhat and s
54132	54xe132 hnl evalmar78 m r bhat and e
54133	54xe133 hedl inel evaldec79 schenter schmit
54134	54xe134 hnl. evaluar78 m r bhat and e
54135	54 val35 bow evaluation and a loonand in
54136	54xe136 bnl evalmar78 m.r.bhat and s

mod1 01/12/89 mod1 01/12/89 mod1 01/12/89 mod1 12/20/88 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod1 01/13/89 mod2 03/21/89 mod1 01/11/89 mod1 03/21/89 mod1 01/11/89 mod2 01/16/89 mod1 01/16/89 mod1 01/03/89 mod1 03/21/89 mod1 01/16/89 mod1 01/16/89 mod2 01/12/89 mod2 01/12/89 mod1 01/13/89 mod1 01/12/89 mod2 01/11/89 mod1 01/11/89 mod1 01/11/89 mod1 01/11/89 mod1 01/11/89 mod1 01/11/89 mod2 12/16/88 mod1 12/22/88 mod1 01/16/89 mod1 01/16/89 mod2 01/13/89 mod1 03/21/89 mod1 01/13/89 mod1 12/20/88 mod3 02/28/89 mod1 01/10/89 mod1 12/20/88 mod1 01/04/89 mod2 01/04/89 mod2 01/05/89 mod1 12/29/88 mod1 12/29/88 mod1 12/30/88 mod1 01/03/89 mod1 12/30/88 mod1 01/03/89 mod2 01/03/89 mod1 01/13/89 mod1 01/03/89 mod1 12/28/88 mod1 01/03/89

NUREG/CR-0200, Vol. 3, Rev. 6

39089	39y 89 hedl evalapr74 r.e.schenter an	mod1 01/11/89
39090	39y 90 hedl inel evaldec79 schenter schmit	mod1 01/11/89
39091	39y 91 hedl inel evaldec79 schenter schmit	mod1 01/11/89
40093	40zr 93 hedl inel evaldec79 schenter schmit	mod1 01/11/89
40095	40zr 95 hedl inel evaldec79 schenter schmit	mod1 01/11/89
801601	80 16 lasl evalaug73 p.young d.fost	mod2 12/16/88
701401	7n 14 from version 6 evaluation	
98250	98cf250 bnl srl lllevaljul76 kinseyassemble	mod1 11/14/97
91233	91PA233 HEDL INEL EVALMAY78 MANN SCHENTER R	MOD2 01/18/91
97249	97bk249 bnl srl lllevaljul76 kinseyassemble	mod1 01/11/89

# M4.A.6 THE 16-GROUP HANSEN-ROACH LIBRARY

table of cc tape id	ntents for /scale4.4/data/scale.re 4016000	ev03.xn16 c	n logical unit 1
number of n	uclides 84		
number of n	eutron groups 16		
first therm	al group 13		
number of a	amma groups 0		
	$1e^4 = 16$ peutron group criticali	tu safatu lihraru	
3Ca h	ansen-roach data with knight modi	ty salety library	h 4 data
••	compiled for pro 1/27/89	ricacions and some endir	D 4 Uala
	last undated		08/12/04
	l m petrie ornl		08/12/94
999	1/w cross sections normal	ized to 1 0 at 0 0253 av	
1001	hydrogen de/e	hanson-wooch	
1301	hydrogen x(e)	hansen-roach	updated 08/12/94
1002	deuterium x(e)	hansen Toach	updated 08/12/94
2004	holium_4 ondf (b_ium mat 1)	nansen toach	updated 08/12/94
2004	lithium-6	270 hanson reach	updated 08/12/94
3000	1i+bium-7	hansen roach	updated 00/12/94
3007	horullium	hansen roach	updated 08/12/94
4009	bergilldm	hansen roach	updated 08/12/94
5000	boron_10 ondf/b_iv mat 1	nansen roach	updated 08/12/94
5010	boron-11 and the in	273	updated 08/12/94
5011	Doron-11 endr/D-1V	mat 1160	updated 08/12/94
7014		hansen roach	updated 08/12/94
9016	nitrogen	hansen roach	updated 08/12/94
0010	fluoring	hansen roach	updated 08/12/94
11023	sodium	hansen roach	updated 08/12/94
12000	sourdan and the in mate	nansen roach	updated 08/12/94
12000	magnesium enui/b-iv mat .	1280	updated 08/12/94
14000	aiuminum cilicon codf (b in	nansen roach	updated 08/12/94
15021	silicon endi/b-iv	mat 1194	updated 08/12/94
16000	phosphorus-si tendi mat	1019	updated 08/12/94
17000	chloring	honcon reach	updated 08/12/94
19000	chiorine	hansen roach	updated 08/12/94
20000	calcium andf/h-iv mat 110	nansen-roach	updated 08/12/94
22000	titanium endf/b-iv	mat 1286	updated 08/12/94
23051	vapadium endf/b-iv mat 1	196	updated 08/12/94
24000	chromium	aerojet '	updated 08/12/94
24304	chromium endf/b-iv mat 1	191 ss-304 wt	updated 08/12/94
24404	chromium endf/b-iv mat 1	191 incomel wt	updated 08/12/94
25055	manganese=55 endf/b=jy m	at 1197	updated 08/12/94
26000	iron	hansen roach	updated 08/12/94
26304	iron endf/briv mat 1192	se-304 wt	updated 00/12/34
26404	iron endf/b-iv mat 1192	inconel wt	updated 08/12/94
27059	cobalt	hansen roach	updated 08/12/94
28000	nickel	hansen roach	updated 08/12/94
28304	nickel endf/b-iv mat 119	0 ss=304 wt	updated 09/12/94
28404	nickel endf/b-iv mat 119	0 inconel wt	updated 08/12/94
29000	copper endf/b-iv mat 129	5	updated 09/12/94
30000	zinc	gam-2	updated 08/12/94
40000	zirconium	hansen roach	updated 08/12/94
40302	zircallov-2 endf/b-iv ma	t 1284	updated 08/12/94
41093	niobium	hansen roach	updated 08/12/94
42000	molybdenum	hansen roach	updated 08/12/94
	-		

NUREG/CR-0200, Vol. 3, Rev. 6

47109       silver-109 endf/b-iv mat 1139       updated 08/12/94         48000       cadmium       endf/b-iv mat 1281       updated 08/12/94         49113       indium-113       endf/b-iv mat 445       updated 08/12/94         49115       indium-115       endf/b-iv mat 449       updated 08/12/94         50000       tin lendl mat 7039       updated 08/12/94         56138       barium-138 lendl mat 7040       updated 08/12/94         58000       cerium       hansen roach         62000       samarium       gam-2         63000       europium       gam-2         63000       europium       gam-2         64000       gadolinium endf/b-iv mat 1030       updated 08/12/94         66164       dyprosium-164       endf/b-iv mat 1031       updated 08/12/94         71175       lutetium-175       endf/b-iv mat 1032       updated 08/12/94         72000       hafnium endf/b-iv mat 1034       updated 08/12/94         73181       tantalum       hansen roach       updated 08/12/94	47107	silver-107 endf/b-iv mat 11	L38		updated	08/12/94
48000       cadmium       endf/b-iv mat 1281       updated 08/12/94         49113       indium-113       endf/b-iv mat 445       updated 08/12/94         49115       indium-115       endf/b-iv mat 449       updated 08/12/94         5000       tin lendl mat 7039       updated 08/12/94         56138       barium-138       lendl mat 7040       updated 08/12/94         58000       cerium       hansen roach       62000       samarium       gam-2         63000       europium       gam-2       updated 08/12/94         64000       gadolinium endf/b-iv mat 1030       updated 08/12/94         66164       dyprosium-164       endf/b-iv mat 1031       updated 08/12/94         71175       lutetium-175       endf/b-iv mat 1032       updated 08/12/94         72000       hafnium endf/b-iv mat 1034       updated 08/12/94         73181       tantalum       hansen roach       updated 08/12/94	47109	silver-109 endf/b-iv mat 1139			updated	08/12/94
49113       indium-113       endf/b-iv mat 445       updated 08/12/94         49115       indium-115       endf/b-iv mat 449       updated 08/12/94         50000       tin lendl mat 7039       updated 08/12/94         56138       barium-138       lendl mat 7040       updated 08/12/94         58000       cerium       hansen roach       62000         63000       europium       gam-2       updated 08/12/94         64000       gadolinium endf/b-iv mat 1030       updated 08/12/94         66164       dyprosium-164       endf/b-iv mat 1031       updated 08/12/94         71175       lutetium-175       endf/b-iv mat 1032       updated 08/12/94         71176       lutetium-176       endf/b-iv mat 1033       updated 08/12/94         72000       hafnium endf/b-iv mat 1034       updated 08/12/94         73181       tantalum       hansen roach       updated 08/12/94	48000	cadmium endf/b-iv mat 12	281		updated	08/12/94
49115       indium-115 endf/b-iv mat 449       updated 08/12/94         50000       tin lendl mat 7039       updated 08/12/94         56138       barium-138 lendl mat 7040       updated 08/12/94         58000       cerium       hansen roach         62000       samarium       gam-2         63000       europium       gam-2         64000       gadolinium endf/b-iv mat 1030       updated 08/12/94         66164       dyprosium-164 endf/b-iv mat 1031       updated 08/12/94         71175       lutetium-175 endf/b-iv mat 1032       updated 08/12/94         71176       lutetium-176 endf/b-iv mat 1033       updated 08/12/94         72000       hafnium endf/b-iv mat 1034       updated 08/12/94         73181       tantalum       hansen roach       updated 08/12/94	49113	indium-113 endf/b-iv mat 44	15		updated	08/12/94
50000         tin lendl mat 7039         updated 08/12/94           56138         barium-138 lendl mat 7040         updated 08/12/94           58000         cerium         hansen roach           62000         samarium         gam-2           63000         europium         gam-2           64000         gadolinium endf/b-iv mat 1030         updated 08/12/94           66164         dyprosium-164         endf/b-iv mat 1031         updated 08/12/94           71175         lutetium-175         endf/b-iv mat 1032         updated 08/12/94           71176         lutetium-176         endf/b-iv mat 1033         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	49115	indium-115 endf/b-iv mat 449			updated	08/12/94
56138         barium-138 lendl mat 7040         updated 08/12/94           58000         cerium         hansen roach           62000         samarium         gam-2           63000         europium         gam-2           63000         gadolinium endf/b-iv mat 1030         updated 08/12/94           66164         dyprosium-164 endf/b-iv mat 1031         updated 08/12/94           71175         lutetium-175 endf/b-iv mat 1032         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach	50000	tin lendl mat 7039			updated	08/12/94
58000ceriumhansen roach62000samariumgam-263000europiumgam-264000gadolinium endf/b-iv mat 1030updated 08/12/9466164dyprosium-164 endf/b-iv mat 1031updated 08/12/9471175lutetium-175 endf/b-iv mat 1032updated 08/12/9471176lutetium-176 endf/b-iv mat 1033updated 08/12/9472000hafnium endf/b-iv mat 1034updated 08/12/9473181tantalumhansen roachupdated 08/12/94	56138	barium-138 lendl mat 7040			updated	08/12/94
62000         samarium         gam-2           63000         europium         gam-2         updated 08/12/94           64000         gadolinium endf/b-iv mat 1030         updated 08/12/94           66164         dyprosium-164         endf/b-iv mat 1031         updated 08/12/94           71175         lutetium-175         endf/b-iv mat 1032         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	58000	cerium	hansen	roach		
63000         europium         gam-2         updated 08/12/94           64000         gadolinium endf/b-iv mat 1030         updated 08/12/94           66164         dyprosium-164         endf/b-iv mat 1031         updated 08/12/94           71175         lutetium-175         endf/b-iv mat 1032         updated 08/12/94           71176         lutetium-176         endf/b-iv mat 1033         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	62000	samarium	gam-2			
64000         gadolinium endf/b-iv mat 1030         updated 08/12/94           66164         dyprosium-164 endf/b-iv mat 1031         updated 08/12/94           71175         lutetium-175 endf/b-iv mat 1032         updated 08/12/94           71176         lutetium-176 endf/b-iv mat 1033         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	63000	europium	gam-2		updated	08/12/94
66164         dyprosium-164         endf/b-iv mat 1031         updated         08/12/94           71175         lutetium-175         endf/b-iv mat 1032         updated         08/12/94           71176         lutetium-176         endf/b-iv mat 1033         updated         08/12/94           72000         hafnium endf/b-iv mat 1034         updated         08/12/94           73181         tantalum         hansen roach         updated         08/12/94	64000	gadolinium endf/b-iv mat 1030	<b>J -</b>		updated	08/12/94
71175         lutetium-175         endf/b-iv mat 1032         updated 08/12/94           71176         lutetium-176         endf/b-iv mat 1033         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	66164	dyprosium-164 endf/b-iv mat 10	)31		updated	08/12/94
71176         lutetium-176 endf/b-iv mat 1033         updated 08/12/94           72000         hafnium endf/b-iv mat 1034         updated 08/12/94           73181         tantalum         hansen roach         updated 08/12/94	71175	lutetium-175 endf/b-iv mat 10	032		updated	08/12/94
72000hafnium endf/b-iv mat 1034updated 08/12/9473181tantalumhansen roachupdated 08/12/94	71176	lutetium-176 endf/b-iv mat 1033	3		updated	08/12/94
73181 tantalum hansen roach updated 08/12/94	72000	hafnium endf/b-iv mat 1034			updated	08/12/94
	73181	tantalum	hansen	roach	updated	08/12/94
74182 tungsten-182 endf/b-iv mat 1128 updated 08/12/94	74182	tungsten-182 endf/b-iv mat 13	28		updated	08/12/94
74183 tungsten-183 endf/b-iv mat 1129 updated 08/12/94	74183	tungsten-183 endf/b-iv mat 11	129		undated	08/12/94
74184 tungsten-184 endf/b-iv mat 1130 updated 08/12/94	74184	tungsten-184 endf/b-iv mat 11	30		updated	08/12/94
74186 tungsten-186 endf/b-iv mat 1131 updated 08/12/94	74186	tungsten-186 endf/b-iv mat 11	31		updated	08/12/94
75185 rhenium-185 endf/b-iv mat 1083 updated 08/12/94	75185	rhenium-185 endf/b-iv mat 1083			undated	08/12/94
75187 rhenium-187 endf/b-iv mat 1084 updated 08/12/94	75187	rhenium-187 endf/b-iv mat 10	084		updated	08/12/94
79197 gold-197 endf/b-iv mat 1283 updated 08/12/94	79197	gold-197 endf/b-iv mat 12	283		undated	08/12/94
82000 lead endf/b-iv mat 1288 updated 08/12/94	82000	lead endf/b-iv mat 1288			updated	08/12/94
90232 th-232 infinite dilution hapsen roach undated 08/12/94	90232	th-232 infinite dilution	hansen	roach	undated	08/12/94
91233 protactinium-233 endf/b-iv mat 1297 updated 08/12/94	91233	protactinium-233 endf/b-iv mat	1297		updated	08/12/94
92233 u-233 hansen roach undated 08/12/94	92233	u-233	hansen	roach	undated	08/12/94
92234 u-234 endf/b-iv mat 1043 updated 08/12/94	92234	u-234 endf/b-iv mat 1043			updated	08/12/94
92235 u-235 yr hansen roach undated 08/12/94	92235	u-235 yr	hansen	roach	undated	08/12/94
92236 u-236 endf/b-iv mat 1163 updated 08/12/94	92236	u-236 endf/b-iv mat 1163			updated	08/12/94
92238 u-238 y hansen roach updated 08/12/94	92238	u-238 y	hansen	roach	updated	08/12/94
93237 neptunium-237 endf/b-iv mat 1263 updated 08/12/94	93237	neptunium-237 endf/b-iv mat 12	263		updated	08/12/94
94238 pu-238 hansen roach updated 08/12/94	94238	pu-238	hansen	roach	updated	08/12/94
94338 pu-238 y persimmon	94338	pu-238 y	persimm	non		
94239 pu-239 hansen roach updated 08/12/94	94239	pu-239	hansen	roach	updated	08/12/94
94240 pu-240 hansen roach updated 08/12/94	94240	pu-240	hansen	roach	updated	08/12/94
94241 pu-241 endf/b-iv mat 1266 updated 08/12/94	94241	pu-241 endf/b-iv mat 1266			updated	08/12/94
94242 plutonium-242 endf/b-iv mat 1161 updated 08/12/94	94242	plutonium-242 endf/b-iv mat 11	61		updated	08/12/94
95241 am-241 endf/b-iv mat 1056 updated 08/12/94	95241	am-241 endf/b-iv mat 1056			updated	08/12/94
95243 am-243 endf/b-iv mat 1057 updated 08/12/94	95243	am-243 endf/b-iv mat 1057			updated	08/12/94
96244 cm-244 endf/b-iv mat 1162 updated 08/12/94	96244	cm-244 endf/b-iv mat 1162			updated	08/12/94

__1__

#### M4.A.7 THE 18-GROUP GAMMA LIBRARY

table of content	s for /scale4.4/data/scale.rev05.x	g18 on	logical unit 1
tape id	18000		-
number of nuclio	les 180		
number of neutro	on groups 0		
first thermal gi	roup 22		
number of gamma	groups 18		
scale 4	- 18 gamma group shielding library		
based	on ogre library data		
COM	biled for nrc 1/27/89		
la	ast updated		02/24/97
	l.m.petrie ornl		
900	dose factors		updated 02/24/97
1001	hydrogen		updated 08/12/94
1002	deuterium		updated 08/12/94
1003	tritium		updated 08/12/94
1901	hydrogen in polyethylene		updated 08/12/94
2003	helium-3		updated 08/12/94
2004	helium-4		updated 08/12/94
3006	lithium-6		updated 08/12/94
3007	lithium-7		updated 08/12/94
4009	beryllium		updated 08/12/94
5000	boron		updated 08/12/94
5010	boron-10		updated 08/12/94

NUREG/CR-0200, Vol. 3, Rev. 6

5011	boron-11
6012	carbon
6312	graphite
/014	nitrogen
0010	oxygen fluorino
10000	neon
11023	sodium
12000	magnesium
13027	aluminum
14000	silicon
14028	silicon-28
15031	phosphorus-31
16000	sulfur
16032	sulfur-32
1000	Chlorine
19000	notassium
19039	potassium-39
20000	calcium
20040	calcium-40
21045	scandium
22000	titanium
23000	vanadium
23051	vanadium-51
24000	chromium
24304	chromium in ss304
25055	manganese=55
26000	iron
26304	iron in ss304
26404	iron in inconel
27059	cobalt-59
28000	nickel
28304	nickel in ss304
28404	nickel in inconel
30000	zinc
31000	gallium 72
32072	germanium-73
32074	germanium-74
32076	germanium-76
33075	arsenic-75
34076	selenium-76
34077	selenium-77
34078	selenium-78
34080	selenium-80
34082	selenium-82
35091	bromine=79
36080	krypton-80
36082	krypton-82
36083	krypton-83
36084	krypton-84
36086	krypton-86
37085	rubidium-85
37086	rubidium-86
37087	rubidium-87
20007	strontium-86
38088	strontium-88
38089	strontium-89
38090	strontium-90
39089	yttrium-89
39090	yttrium-90
39091	yttrium-91
40000	zirconium
40302	zircalloy .
41093	niobium-93
47300	molybdnum

	updated	08/12/94
	updated	08/12/94
	undated	08/12/94
undated	10/13/89	00,12,94
apaacea	undated	08/12/94
	undated	08/12/94
	updated	00/12/94
	updated	08/12/94
	updated	00/12/94
	updated	00/12/94
	updated	00/12/94
	updated	08/12/94
	upuated	00/12/94
	updated	08/12/94
updated	10/13/89	
	updated	08/12/94
	undated	08/12/94
	updated	08/12/94
	updated	08/12/94
	updated	08/12/94
	undated	08/12/94
	updated	08/12/94
	updated	08/12/94
	undated	08/12/94
	updated	09/12/04
	updated	08/12/94
	updated	00/12/04
	updated	00/12/94
	updated	00/12/34
	updated	00/12/34
	updated	00/12/24
	updated	00/12/94
	upuated	00/12/94
	upuated	00/12/94
	updated	00/12/94
	updated	00/12/94
	updated	08/12/94

43099	technetium-99	
44100	ruthonium-100	
44101	muthenium 101	
44101	Inchemian 101	
44102	ruthenium-102	
44106	ruthenium-106	
45103	rhodium-103	
45105	rhodium-105	
46104	nalladium-104	
46105	palladium-104	
40103	parradium=105	
46106	palladium-106	
46108	palladium-108	
47107	silver-107	
47109	silver-109	
48000	cadmium	
40000	cadmium_112	
40113		
49113	indium-113	
49115	indium-115	
50118	tin-118	
51124	antimonv-124	
52126	tellurium-126	
53120	iodino-129	
52123	iodine 123	
55151	1001ne-131	
54124	xenon-124	
54126	xenon-126	
54128	xenon-128	
54129	xenon-129	
54130	venon=130	
54130	xenon 130	
54151	Xenon-131	
54132	xenon-132	
54134	xenon-134	
54135	xenon~135	
54136	xenon-136	
55133	cesium-133	
55134	cesium-134	
55125	00010	
56130	Cestum=135	
56138	Darium-138	
57139	lanthanium-139	
58000	cerium	
59141	praseodynium-141	
59143	praseodvnium-143	
60143	neodynium-143	
60144	neodynium-145	
60149	neodynium-144	
00148	neodynium-148	
61147	promethium-147	
61148	promethium-148	
61548	promethium-148m	
62147	samarium-147	
62148	samarium-148	
62149	comprise_140	
62150	Samarium 150	
62150	samarium-150	
62151	samarium-151	
62152	samarium-152	
62154	samarium-154	
63151	europium-151	
63152	europium-152	
63153	ouropium 162	
62354	europium 155	
63134	europium-154	
64000	gadolium	
65159	terbium-159	
66164	dysprosium-164	
67165	holmium-165	
68166	erbium-166	
68167	arbium-167	
00107	ernit.	
69000	Thulium	
70000	ytterbium	
71175	lutetium-175	
71176	lutetium-176	
72000	hafnium .	
73181	tantalum_107	
73102	tantalum-101	
10102		

	updated	08/12/94
	updated	08/12/94
•	updated	08/12/94
	undated	08/12/94
	undated	08/12/94
	updated	08/12/04
	updated	08/12/94
	updated	00/12/94
	updated	00/12/94
	updated	00/12/94
	updated	08/12/94
	updated	00/12/94
	updated	08/12/94
	updated	00/12/94
	updated	08/12/94
	updated	08/12/94
	updated	08/12/94
updated	10/13/83	
	updated	08/12/94
updated	10/13/89	
	updated	08/12/94
	undated	08/12/94
	updated	08/12/94
undated	10/12/00	50/12/34
undated	10/13/09	
upuated	10/13/09	00/10/04
	updated	00/12/94
	updated	00/12/94
	updated	08/12/94
	updated	08/12/94
	updated	08/12/94

* .--

NUREG/CR-0200, Vol. 3, Rev. 6

74000	tungsten	updated 08/12/94
74182	tungsten-182	updated 08/12/94
74183	tungsten-183	updated 08/12/94
74184	tungsten-184	updated 08/12/94
74186	tungsten-186	updated 08/12/94
75185	rhenium-185	updated 08/12/94
75187	rhenium-187	updated 08/12/94
76000	osmium	updated 10/13/89
77191	iridium-191	updated 08/12/94
77193	iridium-193	updated 08/12/94
78000	platinum	updated 10/13/89
79197	gold-197	updated 08/12/94
80000	mercury	updated 10/13/89
81000	thallium	updated 10/13/89
82000	lead	updated 08/12/94
83000	bismuth	updated 10/13/89
86000	radon	updated 10/13/89
90232	thorium-232	updated 08/12/94
92233	uranium-233	updated 08/12/94
92234	uranium-234	updated 08/12/94
92235	uranium-235	updated 08/12/94
92236	uranium-236	updated 08/12/94
92238	uranium-238	updated 08/12/94
94238	plutonium-238	updated 08/12/94
94239	plutonium-239	updated 08/12/94
94240	plutonium-240	updated 08/12/94
94241	plutonium-241	updated 08/12/94
94242	plutonium-242	updated 08/12/94

# M4.A.8 THE 22n/18g STRAKER-MORRISON LIBRARY

table of contents	s for (scale) $A/data/scale rev02 vr22c19$	on logical write 1
tape id	4022018	on logical unit 1
number of nuclide		
number of neutron	13 50 n groups 22	
first thermal gro	22 21	
number of gamma o	groups 18	
scale 4 -	~ 22 neutron 18 gamma group shielding libra	arv
based c	on straker-morrison data with regenerated of	gamma cross sections
compi	iled for nrc 1/27/89	
las	st updated	08/12/94
1	l.m.petrie ornl	
900	dose factors	updated 9/07/89
1001	hydrogen	updated 08/12/94
2004	helium	updated 08/12/94
3006	lithium-6	updated 08/12/94
3007	lithium-7	updated 08/12/94
4009	beryllium	updated 08/12/94
5010	boron-10	updated 08/12/94
5011	boron-11	updated 08/12/94
6012	carbon	updated 08/12/94
7014	nitrogen	updated 08/12/94
8016	oxygen	updated 08/12/94
9019	fluorine	updated 08/12/94
11023	sodium	updated 08/12/94
12000	magnesium	updated 08/12/94
13027	aluminum	updated 08/12/94
14000	silicon	updated 08/12/94
17000	chlorine	updated 08/12/94
19000	potassium	updated 08/12/94
20000	calcium	updated 08/12/94
22000	titanium	updated 08/12/94
24000	chromium	updated 08/12/94
25055	manganese	updated 08/12/94
26000	iron	updated 08/12/94
28000	nickel -	updated 08/12/94
29000	copper	updated 08/12/94
40000	zirconium	updated 08/12/94

42000	molybdenum	updated 08/12/94
50000	tin	updated 08/12/94
73181	tantalum	updated 08/12/94
74000	tungsten	updated 08/12/94
82000	lead	updated 08/12/94
92235	1000 11722 jun-235	updated 08/12/94
92238		updated 08/12/94
94239	alatonium 220	updated 08/12/94
94239	plutonium-239	updated 08/12/94
54240	plutonium-240	updated 08/12/94
500000	Take data set w/dose factors 10-17-77(1)	

# M4.A.9 THE 27n/18g COUPLED ENDF/B-IV LIBRARY

table of d	contents for /scale4.4/dat	ta/scale.r	ev04	.xn27g18	on logical unit	1
tape id	4027	018		2		
number of	nuclides	83				
number of	neutron groups	27				
first the	mal group	15				
number of	gamma groups	18				
so	cale4 - 27 neutron 18 gamm	na group sl	hield	ding library		
	based on endf-b version 4	4 data				
	compiled for nrc	1/27/89				
	last updated				08	3/12/94
	l.m.petrie d	ornl				
900	dose factors				updated 9/07/89	
999	1/v cross section	ons normal:	ized	to 1.0 at 0.0253	ev updated	1 08/12/94
1001	hydrogen	endf/b-iv	mat	1269/thrm1002	updated	08/12/94
1002	deuterium	endf/b-iv	mat	1120	updated	08/12/94
2004	helium-4	endf/b-iv	mat	1270	updated	08/12/94
3006	lithium-6	endf/b-iv	mat	1271	updated	08/12/94
3007	Lithium-/	endf/b-iv	mat	1272	updated	08/12/94
4009	beryllium-9	endi/b-iv	mat	1289/thrm1064	updated	08/12/94
5010	boron-10	endi/b-iv	mat	1273	updated	08/12/94
5011	boron-11	endi/b-iv	mat	1160	updated	08/12/94
7014		endi/b-iv	mat	12/4/thrm1065	updated	08/12/94
8016	nitrogen-14	endi/b-iv	mat	1275	updated	08/12/94
9010	fluoring	endi/D-1V	mat	1276	updated	08/12/94
11023	sodium-23	endi/b-iv	mat	12/7	updated	08/12/94
12000	sourda-25	endi/b-iv	mat	1156	updated	08/12/94
13027	aluminum	endf/b-iv	mat	1280	updated	08/12/94
14000	silicon	endf/b-iv	mat	1195	updated	08/12/94
15031	phosphorus-31	lendl	mat	7019	updated	08/12/94
16000	sulfur	lendl	mat	7020	updated	00/12/94
17000	chlorine	endf/b-iv	mat	1149	upuaced	08/12/94
19000	potassium	endf/b-iv	mat	1150	updated	08/12/94
20000	calcium	endf/b-iv	mat	4152	updated	08/12/94
22000	titanium	endf/b-iv	mat	1286	updated	08/12/94
23051	vanadium	endf/b-iv	mat	1196 -	updated	08/12/94
24000	chromium	endf/b-iv	mat	1191	updated	08/12/94
24304	chromium(ss304)	endf/b-iv	mat	1191	updated	08/12/94
24404	chromium(incon]	lendf/b-iv	mat	1191	updated	08/12/94
25055	manganese	endf/b-iv	mat	1197	updated	08/12/94
26000	iron	endf/b-iv	mat	1192	updated	08/12/94
26304	iron(ss304)	endf/b-iv	mat	1192	updated	08/12/94
26404	iron(inconel)	endf/b-iv	mat	1192	updated	08/12/94
27059	cobalt-59	endf/b-iv	mat	1199	updated	08/12/94
28000	nickel	endf/b-iv	mat	1190	updated	08/12/94
28304	nickel(ss304)	endf/b-iv	mat	1190	updated	08/12/94
28404	nickel(inconel)	endf/b-iv	mat	1190	updated	08/12/94
29000	copper	endf/b-iv	mat	1295	updated	08/12/94
35001	bromine Ci	enar/b-iv	mat	108	updated	08/12/94
30001	Dromine-81	endi/b-iv	mat	112	updated	08/12/94
40202	Zirconium	enar/D-1V	mat	/141	updated	08/12/94
41092	zicalloy	endi/b-iv	mat	1284	updated	08/12/94
42000	molubdooum	endt/b=1V	mat	1702	updated	08/12/94
47107	silver-107	enul/D-1V	mat	1120	updated	08/12/94
	011401 107	cuar/D-IA	mac	1130	updated	08/12/94

NUREG/CR-0200,

Vol. 3, Rev. 6

47109	silver-109	endf/b-iv mat	1139		updated	08/12/94
48000	cadmium	endf/b-iv mat	1281		updated	08/12/94
49113	indium-113	endf/b-iv mat	445		updated	08/12/94
49115	indium-115	endf/b-iv mat	449		updated	08/12/94
50000	tin	endf/b-iv mat	7039		updated	08/12/94
54135	xenon-135	endf/b-iv mat	1294		updated	08/12/94
55133	cesium-133	endf/b-iv mat	1141		updated	08/12/94
56138	barium-138	endf/b-iv mat	7040		updated	08/12/94
64000	gadolinium	endf/b-iv mat	1030		updated	08/12/94
66164	dyprosium-164	endf/b-iv mat	1031		updated	08/12/94
71175	lutetium-175	endf/b-iv mat	1032		updated	08/12/94
71176	lutetium-176	endf/b-iv mat	1033		updated	08/12/94
72000	hafnium	endf/b-iv mat	1034		updated	08/12/94
73181	tantalum-181	endf/b-iv mat	1285		updated	08/12/94
74182	tungsten-182	endf/b-iv mat	1128		updated	08/12/94
74183	tungsten-183	endf/b-iv mat	1129		updated	08/12/94
74184	tungsten-184	endf/b-iv mat	1130		updated	08/12/94
74186	tungsten-186	endf/b-iv mat	1131		updated	08/12/94
75185	rhenium-185	endf/b-iv mat	1083		updated	08/12/94
75187	rhenium-187	endf/b-iv mat	1084		updated	08/12/94
79197	gold-197	endf/b-iv mat	1283		updated	08/12/94
82000	lead	endf/b-iv mat	1288		updated	08/12/94
90232	thorium-232	endf/b-iv mat	1296		updated	08/12/94
91233	pa-233 1297 218	gp wt f-1/e-m	090376	p3 293k	updated	08/12/94
92233	uranium-233	endf/b-iv mat	1269		updated	08/12/94
92234	uranium-234	endf/b-iv mat	1043		updated	08/12/94
92235	uranium-235	endf/b-iv mat	1261		updated	08/12/94
92236	uranium-235	endf/b-iv mat	1163		updated	08/12/94
92238	uranium-238	endf/b-iv mat	1262		updated	08/12/94
93237	neptunium-237	endf/b-iv mat	1263		updated	08/12/94
94238	plutonium-238	endf/b-iv mat	1050		updated	08/12/94
94239	plutonium-239	endf/b-iv mat	1264		updated	08/12/94
94240	plutonium-240	endf/b-iv mat	1265		updated	08/12/94
94241	plutonium-241	endf/b-iv mat	1266		updated	08/12/94
94242	plutonium-242	endf/b-iv mat	1161		updated	08/12/94
95241	am-241 1056 sig	p=5+4 newxlacs	218ngp	p-3 293k	updated	08/12/94
95243	am-243 1057 218	gp wt f-1/e-m	090376	p3 293k	updated	08/12/94
96244	curium-244	endf/b-iv mat	1162		updated	08/12/94
500000	fake data set o	f dose factors				
### M4.B LOCAL EXPERIENCE WITH THE 218- AND 27-GROUP ENDF/B-IV LIBRARIES

Continuous efforts are made at ORNL to identify the cause of any calculational bias observed when using the SCALE system. Bias exists when a calculated value differs from an experimental value or a value calculated by another code or cross-section library for the same system. Cross-section bias is routinely studied when two calculations of the same system or a calculation of an experiment disagree by more than about 0.5%. (Agreement between calculation and experiment to about 0.5% appears to be an acceptable limit considering that the SCALE codes and cross sections are intended for very general applications.) One way to study cross-section bias is to change suspected cross sections and then demonstrate that the bias diminishes or disappears. This process has led to discovery of some deficiencies in the 218- and 27-group ENDF/B-IV libraries currently in SCALE. These deficiencies are discussed in this section.

### M4.B.1 CHARACTERISTICS OF THE ENDF/B-IV LIBRARIES

The ENDF/B-IV libraries have generally displayed a negative bias of approximately 1%, and in some cases as much as 2%, for low-enriched, water-moderated UO₂ rods. The bias appears to be greatest for epithermal systems (e.g., borated water and/or closely spaced rods) and less significant for more thermalized systems. The bias has been traced to the lack of data in the unresolved resonance region for ²³⁸U in ENDF/B-IV. The unresolved resonance region in the SCALE ENDF/B-IV libraries was processed at s_p = 50,000 barns, compared to s_p values of 3500 barns for ²³⁵U and 65 barns for ²³⁸U in a typical LWR lattice. Improved data in ENDF/B-V eliminated this bias in the 44-group library.

A positive bias has been routinely observed in the 27-group library for thermal ²³⁹Pu systems (up to 2%) and mixed oxide (MOX) fuel rods (up to 1%). The bias increases with increasing thermalization. One problem identified in the 27-group library was inadequate group structure to account for flux changes across the 0.3-eV resonance of ²³⁹Pu. This problem has been rectified in the 44-group library by the addition of more energy groups in this energy range. However, the positive bias still exists in the 44-group library as well.

Carbon system numerical benchmarks have shown a negative bias of as much as 2.5% with the ENDF/B-IV libraries when compared to the Hansen-Roach and ENDF/B-V libraries. Analysis of the 218-group crosssection data has revealed an incorrect scatter matrix for carbon in energy group 10.

#### M4.B.2 KNOWN CROSS-SECTION IRREGULARITIES

The hafnium cross-section data available in the 218- and 27-group ENDF/B-IV libraries are not ENDF/B-IV data (ENDF/B-IV did not include hafnium). Known irregularities are present in the cross section, and no resonance data are available with the nuclide. The cross sections are infinite dilution (1/E weighting) across the resonance range. Use of the above sets of hafnium data should be done with caution.

Systems containing gadolinium have not calculated well with the 27-group library. The problem stems from the characteristic of the gadolinium data in the thermal range. Gadolinium has low-energy resonance data down to  $10^{-5}$  eV. The resonances are so broad that the implementation of the Nordheim treatment in NITAWL-II fails to have a mesh point in group 27 of the 27-group structure. This has been addressed by setting the bottom energy of the resonance data to that of group 26 and carrying infinite dilution cross sections in group 27 of the master library. Use of the gadolinium data in the 27-group library, especially for very dilute systems, should be done with caution.

### M4.B.3 THERMAL-SCATTERING DATA LIMITATION

A discrepancy was discovered in comparing KENO V.a calculations using the 27-group library and CASMO-3¹ calculations for LWR fuel assemblies in a storage configuration as a function of temperature. The two codes were in relative agreement at low temperatures (20°C) and small water gaps between assemblies. However, as the temperature of the system was increased to 120°C, the CASMO calculations gave increasingly larger values of  $k_{eff}$  relative to KENO. Larger water gaps (between assemblies) enhanced the temperature effects on calculated  $k_{eff}$ . The KENO results were as much as 3% lower than CASMO at 120°C.

The cause of this discrepancy has been identified as a limitation in processing the thermal-scattering data when NITAWL makes a working library in versions of SCALE prior to 4.3. The SCALE 27-group ENDF/B-IV hydrogen has scattering matrices at 293 K and 550 K (20°C and 277°C). When NITAWL processes hydrogen, the scattering matrix with a temperature closest to that specified is used. It was determined that the temperature dependence of the scattering can increase the multiplication factor by as much as 2.5%. Users of earlier versions of SCALE should be aware of this problem and ensure that the hydrogen-scattering matrices used in their analyses are either appropriate or conservative with respect to  $k_{\rm ff}$ .

With regard to other nuclides or the other criticality libraries in SCALE, information on the thermal kernels may be found in Tables M4.2.5, M4.2.7, and M4.2.9.

#### **REFERENCE OF APPENDIX B**

1. M. Edenius, A. Ahlin, and B. Forssen, "CASMO-3G, A Fuel Assembly Burnup Program," User's Manual, STUDSVIK/NFA-86/7, November 1986.

NUREG/CR-0200 Revision 6 Volume 3, Section M5 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

## THERMAL MATERIAL PROPERTIES LIBRARY

A. L. Edwards^{*} P. T. Williams

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

*Lawrence Livermore National Laboratory.

### ABSTRACT

The thermal property data compiled and prepared at Lawrence Livermore National Laboratory by Dr. A. L. Edwards have long been used in conjunction with the HEATING series of codes. The thermal property data including density, specific heat, and thermal conductivity were tabulated against temperature, transition temperatures, and latent heats of transition for more than 1000 materials. These data were collected from over 50 references, most of which contain extensive data tabulations and bibliographies. In addition to the data obtained from the sources listed, estimates were also made for many materials for which data could not be found. These estimates were done wherever the estimates appeared to be as accurate as measured values for similar materials. The data library is arranged such that materials are identified numerically according to a general and flexible classification system. An accompanying alphabetical index describes each material, assigns it an identification number, references the sources of the data by code number, and codes the quality or reliability of the data.

This collection of thermal data makes up the thermal material properties library distributed with the SCALE system for use by the HEATING and HTAS1 modules. This section of the SCALE Manual relies heavily on the text of UCRL-50589 to provide SCALE users with a thorough description of the available thermal material properties library.

# CONTENTS

# Page

ABSTRACT N	<b>Л</b> 5.ііі
LIST OF TABLES	A5.vi
ACKNOWLEDGMENT M	15.vii
M5.1 INTRODUCTION M	5.1.1
M5.2 DESCRIPTION OF THE LIBRARY M	5.2.1
M5.3 LIBRARY DATA SOURCES M	5.3.1
M5.4 MATERIAL CLASSIFICATION SYSTEM M	5.4.1
M5.5 QUALITY INDICATOR SYSTEM M	5.5.1
M5.6 MATERIAL INDEX M	5.6.1
M5.7 MATERIAL DATA LIST M	5.7.1
M5.8 REFERENCES M	5.8.1

# LIST OF TABLES

Z. .

<u>Table</u>		Page
M5.3.1	Data sources	M5.3.2
M5.4.1	Material classification system	M5.4.2
M5.6.1	Material index	M5.6.3

NUREG/CR-0200, Vol. 3, Rev. 6

M5.vi

## ACKNOWLEDGMENT

The developers of HEATING and the SCALE system gratefully acknowledge A. L. Edwards' consent to use an edited version of his earlier published document, A Compilation of Thermal Property Data for Computer Heat-Conduction Calculations, UCRL-50589 (1969), as the basis for this section of the SCALE Manual.

NUREG/CR-0200, Vol. 3, Rev. 6

M5.vii

#### M5.1 INTRODUCTION

The availability of computer programs for solving problems in transient and steady-state heat conduction makes it possible to rapidly and accurately solve large numbers of problems involving a wide variety of materials, provided that accurate input data are used. In particular, the thermal properties of the materials, including density, specific heat, and thermal conductivity and the dependence of these properties on temperature, temperatures, latent heats of transition, and the temperature ranges for specific applications, should be known as accurately as possible. Some of these properties are difficult to measure and may vary from sample to sample, depending on the method of fabrication and previous history. Therefore, when used in calculations, the possible inaccuracy or variability of thermal data should be accounted for in interpreting the results. For this reason, Dr. A. L. Edwards of the Lawrence Livermore National Laboratory (LLNL) compiled a library of thermal property data (see Ref. 1) in the late 1960s that is still being widely used in heat transfer calculations.

For many years, this LLNL library of thermal material properties has been used by the HEATING series of codes developed at Oak Ridge National Laboratory (ORNL). Therefore, this library was selected for inclusion in, and subsequent distribution with, the SCALE computational system that contains HEATING as one of its functional modules (see Sect. F10). The HTAS1 control module (see Sect. H1), which accesses HEATING, also uses the material properties library. The HEATING and HTAS1 programs give the user the option of inputting thermal data for a problem on the material input cards or of allowing the program to extract the properties from the LLNL material properties library. The material properties available in the library are density, thermal conductivity, specific heat, transition temperature, and latent heat. The density of the material is typically either the value at or near room temperature or the lowest temperature for which specific heat or conductivity is tabulated, whichever is highest. The thermal conductivity and specific heat of the material are given if they are constant or if the temperature dependence is unknown. When a table of thermal conductivity or specific heat vs temperature is listed in the library, the table will be stored and used as a tabular function by HEATING. The transition temperature is the temperature at which either a phase change or a solid-state transition occurs. The latent heat is the amount of heat absorbed by the material when the temperature is increased past the transition temperature.

The material properties library is available in SCALE with the centimeter gram second-calorie-degrees Celsius (cgs-cal-°C) system. Conversion to any other unit system can be controlled through HEATING (see Sect. F10) input data. HEATING accesses logical unit IMATLB (currently equal to 78) whenever the input specifies that data be extracted from the material properties library. Conversion to the English units employed in HTAS1 is handled automatically.

This section of the SCALE Manual provides documentation on the format and contents of the LLNL thermal material properties library provided with the SCALE system. Information and tables describing the format and contents are taken directly from Ref. 1 with the permission of the author, Dr. A. L. Edwards.

### M5.2 DESCRIPTION OF THE LIBRARY

Thermal property data for over 1000 materials have been compiled in the material properties library. The compilation includes (1) a numbered list of data sources, primarily those containing extensive data tabulations and bibliographies; (2) a numerical classification system used as a guide in assigning a permanent identification number to each material included in the system; (3) a system of quality indicators used to show the general reliability or accuracy of data included in the compilation; (4) thermal property data sheets for each material, including all tabular and graphical data collected or estimated by A. L. Edwards and converted to a standard system of units; (5) an alphabetical index of materials that includes the identification number assigned to each material, an alphanumeric designator for auxiliary identification, a list of data sources by number, and a quality indicator for each type of data given for the material; and (6) a list of material property data arranged according to the material identification numbers. These material properties data include the material identification numbers data given for the system; specific heat, thermal conductivity, phase-change or transition temperature, latent heat effect, and tables of specific heat and thermal conductivity vs temperature.

The data compilation described herein was completed about 1969 and, even at that time, no claim of completeness or comprehensiveness was made. However, developers of the HEATING codes never updated the library. Analysts should check subsequent tables in this document for the source of the data for a given material to be used. Also, the analysts can disregard the material properties library and input original or updated data into HEATING. Thermal data for new or special materials not in the library should also be obtained by the analyst.

### M5.3 LIBRARY DATA SOURCES

The sources for most of the data included in the compilation and several other general sources are listed in abbreviated form in Table M5.3.1. The numbers of the first column are used in the alphabetical material index to cross-reference the sources. Asterisks indicate the data sources actually used for the compilation. Classified data sources were omitted from Ref. 1 and this report. The source used most extensively for the compilation is that edited by Touloukian (No. 20) of Table M5.3.1.

Reference 1 provides an estimate of the thermal properties for a large number of materials for which no reliable data could be found. These estimates have been included whenever the estimates appeared to be as accurate as available data for similar materials.

Many errors were found in the literature and corrected before including the data in the original compilation (Ref. 1). Most of these errors were introduced by incorrect conversion from one unit system to another, incorrect labelling or interpretation of axes labels or scales on graphs, and confusion between units of mass or gram-molecular weight used for specific heats.

# Table M5.3.1 Data sources

	Μ	ATERIAL PROPERTIES REFE	ERENCES.	
1	*	PERRY J H	CHEMICAL ENGINEERS HANDBOOK 4TH ED	1063
2	*	MCADAMS W H	HEAT TRANSMISSION 3RD ED	1054
3	*		LIQUID METALS HANDBOOK 2ND ED	1052
4	*	MARKS L S	MECHANICAL ENGINEERS HANDBOOK 5TH ED	1952
5	*	FLEMING P	PRIVATE COLLECTION OF PLASTICS DATA	1049
6	*		MATERIALS ENGR MATL SELECTOR ISSUE	1906
7		PFEIFER H	PRIVATE COLLECTION OF MATERIALS DATA	1907
8	*	JAMES E	PROPERTIES OF CHEMICAL EXPLOSIVES LICEL 14502	1908
9			ASRE DATA BOOK	1905
10				1050
11				1952
12		IOHNSON A I	THERMAL CONDUCTIVITY CHAPTEON CASES	1920
13		HILSENRATH I	TABLES OF THEPMAL PROPERTIES OF CASES NOS 564	1954
14	*	TIPTON C R IR	THE REACTOP HANDBOOK 2ND ED VOL 1	1955
15		KUONGIE		1960
16		Recite 1	THE REACTOR HANDROOK VOL 2 ENGREEDING	1963
17			THE REACTOR HANDBOOK VOL 3 ENGINEERING	1963
18		HOVTSI	METAL DATA	1962
10		AUDIVEVENTVVC		1952
20	*		FUNDLS OF HEAT TRANSFER IN AV AND KKT ENGR	1962
20		IOOLOOKIAN I S	THERMOPH I SICAL PROP OF HIGH TEMP SOLID MATLS	1967
21			PRELIM REPT ON THE PROP OF LIBE MG AL NBS6297	1959
22		KOWAI CZYK I S	TH PROP OF SELD LIGHT ELEMENT CPDS NBS7437	1962
23		KUWALCZIK LS	THERMAL COND AND ITS VARN WITH T AND P	1955
24		JOHNSON V J	A COMPDM OF PROP OF MATL AT LOW TEMP NBS	1960
25			JANAF THERMOCHEMICAL TABLES	
20		KELLEY K K	ENTROPIES OF ELEMENTS AND INORG CPDS BM592	1961
27	Ţ	WEAST R C	HANDBOOK OF CHEMISTRY AND PHYSICS 47TH ED	1966
28	*	JESTER M	PRIVATE COLLECTION OF LIQUID METAL PROPERTIES	1968
29	*	WICKS C E	THERMODYN PROP OF 65 ELEMENTS BU MINES 605	1963
30	*	PETERS R L	MATERIALS DATA NOMOGRAPHS	1965
31	*	THOMPSON B	ENERGY CONTENT VS TEMP FOR D-PU A-PU AND U	
32	*	KELLEY K K	ENTHALPY PLOTS DWG K38745 BU MINES 584	1960
33	*	KELLEY K K	BU MINES 371	1939
34	*	LABER D	BMI FINAL REPT ON SANL TASKS 309/032A 401/027	1967
35	*		Y-12 DATA SHEETS	
36	*	SCHAUER D	WEAPONS MATL DATA BOOK	
37	*	SCHORSCH R H	ENGINEERING PROPERTIES OF SELECTED MATLS	1966
38	*		MODERN PLASTICS ENCYCLOPEDIA	1968
39	*		HANDBOOK OF MOLDED AND EXTR RUBBER GOODYEAR	
40	*		MACHINE DESIGN REFERENCE ISSUE PLASTICS	1964
41	*		METALS HANDBOOK 8TH ED	1961
42	*	STULL D R	THERMODYNAMIC PROPERTIES OF THE ELEMENTS ACS	1956
43	*	HAMPEL C A	RARE METALS HANDBOOK 2ND ED	1961
44	*	MOYER J	PRIVATE COLLECTION OF THERMAL DATA	1968
45	*	HODGE A W	PROP OF HIGH TEMP TI ALLOYS DMIC MEMO 230	1968
46	*	CARSLAW H JAEGER J	CONDUCTION OF HEAT IN SOLIDS 2ND ED OXFORD	1959
47	*	SMITHELLS C J	METALS REFERENCE BOOK 4TH ED VOL 3	1967
48	*	LYNCH J F RUDERER	ENGR PROP OF SEL CERAM KATLS BMI AM CER SOC	1966
49	*		PROP OF KENNAMETAL HARD CARRIDE ALLOYS	1063
50	*		PROP HANDBOOK CARBOLOY ETC GE MET PROD	1052
51	*	CLARK S P JR	HANDBOOK OF PHYSICAL CONSTANTS GEOL SOC AMED	1066
52	*	STEPHENS DR MAIMO	THE THERMAL COND OF ROCK SALT LICEL 6804.	106/
53	*	SEDDON B J	PHYS PROP OF PU CERAMIC CPDS TRG1601	1049
54	*	STORMS E K	THE REER ACTORY CARBIDES	1900
~ '			THE REFRACTORT CARDINES	1301

## M5.4 MATERIAL CLASSIFICATION SYSTEM

The material classification system tabulated in Table M5.4.1 was used to assign identification numbers to the materials included in this report. The classification of many materials was arbitrary. The range of numbers in each category of materials is sufficient to include most materials of interest and importance. Many unused numbers remain within each category for new materials that can be included in the compilation.

The alphanumeric identifiers assigned to each material aid in identifying the materials on the material data list. In the cases of the elements and most simple compounds, the atomic or molecular formulae are used. In most other cases, acronyms or mnemonics are used.

1000	ELEMENTS	
	1001-1499	SOLIDS LIQUIDS
	1501-1599	GASES
	1601-1999	NOT USED
2000	ALLOYS	
	2001-2099	ALUMINUM ALLOYS
	2101-2399	COPPER ALLOYS
	2401-2499	MAGNESIUM ALLOYS
	2501-2599	NICKEL ALLOYS
	2601-2699	COBALT ALLOYS
	2701-2799	TITANIUM ALLOYS
	2801-2999	NOT USED
3000	ALLOYS (CON	(INUED)
	3001-3099	IRON ALLOYS
	3101-3299	STEELS
	3301-3499	SUPER ALLOYS (CR-NI-FE)
	3501-3599	BERYLLIUM ALLOYS
	3601-3649	LEAD, TIN, AND INDIUM ALLOYS
	3651-3679	NOLYBDENUM ALLOYS
	3681-3699	NIOBIUM (COLUMBIUM) ALLOYS
	3701-3749	PLUTONIUM ALLOYS
	3751-3779	SILVER ALLOYS
	3781-3799	TANTALUM ALLOYS
	3801-3829	TUNGSTEN ALLOYS
	3831-3859	URANIUM ALLOYS
	3861-3879	ZINC ALLOYS
	3881-3899	ZIRCONIUM ALLOYS
	3901-3999	MISCELLANEOUS ALLOYS
1000	INORGANIC CO	OMPOUNDS
	4001-4199	OXIDES (SINGLE)
	4201-4299	OXIDES (MIXED)
	4301-4399	SILICATES
	4401-4499	NITRIDES
	4501-4599	CARBIDES
	4001-4099	BORIDES
	4701-4739	BERYLLIDES
	4741-4759	SULFIDES
	4761-4769	PHOSPHIDES
	4771-4799	SILICIDES
	4801-4899	HALIDES
	4901-4949	INTERMETALLICS, METALLOIDS
	4951-4999	MISCELLANEOUS COMPOUNDS
5000	INORGANIC M	IXTURES
	5001-5199	GLASSES
	5201-5299	CERAMICS, BRICKS
	5301-5399	NOT USED
	5401-5499	CERMETS
	5501-5799	GAS MIXTURES
~~~~	5801-5999	NOT USED
5000	INORGANIC CC	DMPOSITES
	6001-6099	ROCKS, MINERALS, SANDS, SOILS
1000	6101-6999	NOT USED
/000	ORGANIC COM	POUNDS AND MIXTURES
	7001-7499	POLYMERS (INCLUDING FOAMS)
	7501-7599	HIGH EXPLOSIVES (INCLUDING MOCK H. E.)
	7601-7699	NOT USED
3000	ORGANIC COM	POSITES AND NATURAL MATERIALS
	8001-8499	MISCELLANEOUS
	8501-8599	WOODS
	8601-8999	NOT USED
4000	MISCELLANEO	US
	9001-9099	IDEALIZED MATERIALS
	9101-9999	NOT USED

Table M5.4.1 Material classification system

NUREG/CR-0200, Vol. 3, Rev. 6

M5.4.2

M5.5 QUALITY INDICATOR SYSTEM

The data for each material were chosen as the best values. For cases in which conflicting or inaccurate data were found in the literature, Ref. 1 provided the best values available for each material. The numerical quality indicators are necessarily crude and general but may be interpreted approximately as follows:

Quality Type 0 (or Blank)

Data were good, or no statement was made in data source restricting their accuracy. No conflicting data were found in any other data sources. Most data in this category are probably accurate to within 1-2% for density, 5-10% for specific heat, and 10-20% for thermal conductivity. When tables or specific heat vs temperature or thermal conductivity vs temperature are included, the constant values are included only for information and generally apply only to temperatures ranging from 0-100 °C or at the lower end of the indicated temperature range of the table, whichever is higher.

Quality Type 1

Good data but specific heat or thermal conductivity were reported only for a limited temperature range. The temperature range has been extended by extrapolation, and the resulting values are probably as accurate as reported values.

Quality Type 2

Either the accuracy of the data was poor, or values reported by different sources disagreed. The best values were used whenever a judgment could be made, or average values were used with consideration given to data for similar materials.

Quality Type 3

No data could be found in the literature; however, the author made an estimate based on theoretical or empirical grounds or on data for similar materials. These estimates were included whenever they appeared to be about as accurate as reported data for similar materials.

Quality Type 4

No data could be found in the literature, and no accurate estimate could be made. The data, therefore, are considered to be a rough estimate based, in most cases, on data for similar materials.

Quality Type 5

No data could be found in the literature, and no estimate was made. A minimum requirement for inclusion of a material in the alphabetical index and material data list is the availability of at least estimated constant values of density, specific heat, and thermal conductivity.

M5.6 MATERIAL INDEX

Table M5.6.1 is an alphabetical index of material descriptions that are available in the library. The format used for the information on each card-image record is as follows:

Columns 1-5

Alphanumeric identifier that always starts in column 1 and begins with a letter. This identifier is provided as an aid in identifying the material on the material data list. The atomic or molecular formulae are used for all elements and most simple compounds; short names, abbreviations, acronyms, or mnemonics are used in other cases.

Column 6

Always left blank.

Columns 7-10

Material identification number, in the range from 1001–9999, and never exactly divisible by 1000. Each material is assigned its own identification number.

Column 11

Always left blank.

<u>Columns 12–50</u>

Material description, including as much information as necessary to identify the specific material. Many abbreviations are used, such as these examples: HP (hot pressed), SINT (sintered), 89 D (89% of theoretical density), 22 P (22% porosity), PRSD (pressed), FRD (fired), and HT (hot treated). A number of other standard abbreviations also are used for special alloys. Mass percentages follow component names. Atomic percentages precede the name of the molecular species.

Column 51

Normally left blank except when more than one card is used to list the data source numbers. In these cases, the additional cards have a + in column 51.

<u>Columns 52–72</u>

Data source numbers, specified in the list of data sources or other information identifying the sources of the compiled data. No classified data sources are listed. For all data estimated by the author or obtained from unknown data sources, a data source number is not indicated.

NUREG/CR-0200, Vol. 3, Rev. 6

Columns 73-79

The numerical quality indicators for the data. One column is provided for each of the following properties: density (b), constant specific heat (c), constant thermal conductivity (k), temperature of transition or maximum service temperature (t), latent heat of transition (h), table of specific heat vs temperature (c), and table of thermal conductivity vs temperature (k). The one-letter abbreviation for each property is listed in Table M5.6.1 over the column containing the corresponding quality indicator.

<u>Column 80</u>

Always left blank.

Many materials appear more than once in the index. The reason for this duplication is that several common names exist for the same material or additional identifying information is included under separate entries.

Table M5.6.1 Material index

ID	No	Material	Defense	Quality Index
<u>m</u>	NO.	Material	Keferences	DCKTHCK*
ALOXD	4012	ALUMINUM OXIDE (AL 203) (POL VYTAL 100 D)	1 20 27 32 47 48 51	200
ALOXP	4014	ALIMINUM OXIDE (AL203) (POLYXTAL 55 D)	1 20 27 32 47 48 51	200
ALOXS	4016	ALUMINUM OXIDE (AL203) (SINGLE XTAL)	1 20 27 32 47 48 51	200
ALCR1	5412	ALIMINIM OXIDE + CR (ΔI 203 23 CR 77)	20 48	302520
ALCR2	5413	ALIMINUM OXIDE + CR (AL203 70, CR 30)	20,40	302535
ANDAL	4312	ALUMINUM SULCATE (AL 203 SIO2) (ORTHO)	20,40	20505
KYAN	4314	ALUMINUM SILICATE (AL203 SIO2) (TRICL)	20,27,47,51	500
MULL	4316	ALUMINUM SILICATE (3AL203.2SIO2) (100 D)	20,27,47,48,51	500
AM	1430	AMERICIUM	20,27	342555
NH3	4881	AMMONIA (NH3) (GAS)	1.27.47	0
NH3LO	4880	AMMONIA (NH3) (LIOUID UNDER PRESSURE)	1.27.47	500
NH4BR	4812	AMMONIUM BROMIDE (NH4BR) (PRSD 8 KB)	27.47	300530
NH4CL	4814	AMMONIUM CHLORIDE (NH4CL) (PRSD 8 KB)	27.47	10
ANALC	4329	ANALCITE (NA20.AL203.4SIO2.4H2O) (XTAL)	27.51	305555
ANDAL	4312	ANDALUSITE (AL203.SIO2) (ORTHO XTAL)	20.27.51	20505
SB	1006	ANTIMONY	20.1.32.42.27	0
SBLIO	1007	ANTIMONY (LIQUID)	1.47.42.27.20.14	õ
SBTEC	4913	ANTIMONY TELLURIDE (SB2TE3) (CPR, N DR)	20.27	300555
SBTEP	4912	ANTIMONY TELLURIDE (SB2TE3) (POLYXTAL)	20.27	300555
ARGAS	1501	ARGON (GAS)	27.2.42.41	0
AS	1008	ARSENIC, GREY	1.27.41.42	40005
ASTEX	4914	ARSENIC TELLURIDE (AS2TE3) (V ZONE MLT)	20	3305555
ART1	9001	ARTIFICAL MATERIAL 1 (D=C=K=0)	0	
ART2	9002	ARTIFICAL MATERIAL 2 (D=C=0, K=10**9)		0
ART3	9003	ARTIFICAL MATERIAL 3 (D=C=K=1)		Ō
ART4	9004	ARTIFICAL MATERIAL 4 (D=C=1, K=10**9)		Ō
ART5	9005	ARTIFICAL MATERIAL 5 (D=1, C=K=10**9)		Ó
ART6	9006	ARTIFICAL MATERIAL 6 (D=C=K=TM=HM=1)		Ō
ART7	9007	ARTIFICAL MATERIAL 7 (DCKTM=1,HM=10**91		Ó
AT	1437	ASTITINE	42	3343335
BRTOL	7501	BARATOL H.E. (TNT 26, BA NITRATE 76)	8	555
BA .	1241	BARIUM	20,27,29,42,43	40005
BAB6	4612	BARIUM BORIDE (BAB6)	27,48	300555
BAF2	4816	BARIUM FLUORIDE (BAF2) (SINGLE CRYSTAL)	20,27,51	300230
BANO3	4952	BARIUM NITRATE (BA(NO3)2) (PRSD 8 K8)	1,27	300050
BASO4	4954	BARIUM SULFATE (BASO4) (CRYSTAL)	27,51	300550
BATIS	4213	BARIUM TITANATE (BAO.TIO2) (SINTERED)	20,27,48	500
BATIT	4212	BARIUM TITANATE (BAO.TIO2) (100 D)	20,27,48	500
BATIM	4214	BARIUM TITANATE (BAO.TIO2) (+MN,NB OX)	20,27,48	500
BK	1440	BERKELIUM	27	4445555
BERYL	, 4318	BERYL (3BEO.AL203.6SIO2)	20,27,51	320502
BE	1011	BERYLLIUM	20,6,1,32,34,27,36,42	22
BEBEO	5420	BERYLLIUM + BEO (BE, BEO 0.6-1.7)	20	3300
BE96A	3501	BERYLLIUM ALLOY (BE96.5) (AS RECEIVED)	20	303331
BE96H	3502	BERYLLIUM ALLOY (BE96.5) (ANNEALED)	20	303331
BE98A	3503	BERYLLIUM ALLOY (BE98.5) (AS RECEIVED)	20	303331
BE98H	3504	BERYLLIUM ALLOY (BE98.5) (ANNEALED)	20	303331
BE995	3505	BERYLLIUM ALLOY (BE99.5)	20	3033313
BERYL	4318	BERYLLIUM ALUMINOSILICATE (BERYL)	20,27,51	320502
BE2C	4512	BERYLLIUM CARBIDE (BE2C) (HP OR SNT)	14,20,28,47	2220022
CUBER	2181	BERYLLIUM COPPER (CU BAL, BE 0.38-0.55)	1	331
CUBEH	2182	BERYLLIUM COPPER (CU BAL, BE1.7-1.9)	1,6,41	2335
BE3N2	4414	BERYLLIUM NITRIDE (BE3N2) (PRSD 3.4 KB)	20,47	5
BEOXP	4024	BERYLLIUM OXIDE (BEO) (76 PC DENS)	14,20,27,36,43,44,	0
BEOXP	4024	BERYLLIUM OXIDE (BEO) (76 PC DENS)	+47,48,51	0

4

.I.L.,

			····	Quality Index
ID	No.	Material	References	DCKTHCK*
BEO	4022	BERYLLIUM OXIDE (BEO) (96 PC DENS)	14 20 27 36 43 44	0
BEO	4022	BERYLLIUM OXIDE (BEO) (96 PC DENS)	±47 48 51	0
BEOBE	5414	BERYLLIUM OXIDE + BE (BEO, BE 3-12)	20	5500
BEOMO	5416	BERYLLIUM OXIDE + BE + MO (BE 7 MO 7)	20	5500
BEOSI	5418	BERYLLUIM OXIDE + BE + SI	20	205520
PORBE	5280	BERYLLIUM OXIDE PORCELAIN 4811	20	205520
BSPOD	4320	BETA-SPODIMENE (1/20 AL 203 ASIO2) (TET)	20 27 51	305550
BI	1016	BISMITH	20,27,31	202220
BILIO	1017	BISMUTH (LIOLID)	2,1,27,43,41,42,47	0
BITEP	4916	BISMITH TELLIRIDE (BI2TE3-P) (PLANE DP)	1,14,27,43,47	000500
BITES	4918	BISMUTH TELLICRIDE (DILTEST) (ILAREDR)	20,47	220522
ZRB2Z	5498	BORIDE 7 CERMET (7882 81-87 MOSI2 13)	20	3303330
ZRB2B	5496	BOROLITE 101 CERMET (ZRB2 93-96 B 4-7)	47,48	2000300
BORON	1266	BORON	70 77 20 47 42 49	20205
B4C-D	4514	BORON CARBIDE (B4C) (DENSE)	20,27,30,42,43,48	20203
B4C-P	4515	BORON CARBIDE (B4C) (DENSE)	20,27,40	2002500
RN	4416	BORON NITRIDE (RN) (PERP PR AVIS OS D)	20,27,40	2002500
BNPPA	4418	BORON NITRIDE (BN) (PRS AVIS 94 D)	20,27,30,47,40	500 -
BNAC	4424	BORON NITRIDE (BN 80 C 20) (PPS AVIS)	20,27,30,47,48	500
BNOX2	4420	BORON NITRIDE (BN 97 BN203 2) (PEPP P)	20	5500
BNOXP	4422	BORON NITRIDE (BN 97, BN203 2) (PERF F)	20	5500
SIB4	4614	BORON SILICIDE (BASI)	20	200520
BRALM	2101	BRASS ALUMINUM (CU76 ZN22 AL2)	27,48	500550
BRCAR	2105	BRASS, CARTRIDGE (CU70, ZN30)	1 2 20 41 46	200
BRPBL	2111	BRASS, LEADED	6 4 1	2555
BRMUM	2116	BRASS. MUNTZ METAL	1 41	5555
BRRDC	2121	BRASS, RED. CAST (CU85, ZN5, PB5, SN3)	1 41	3555
BRRDW	2122	BRASS, RED, WROUGHT (CU85, ZN15)	1 41	20555
BRTIN	2126	BRASS, TIN (NAVAL AND ADMIRALTY)	1241	20333
BRYEL	2131	BRASS, YELLOW (CU65, ZN35)	1641	555
BRICR	5232	BRICK, CHROME (CR203 32)	1.27.41	5530
BRCRM	5234	BRICK, CHROME MAGNESITE (SEE REF 47)	20.47	330
DIATA	5246	BRICK, DIATOMACEOUS EARTH (ACCR STRATA)	4	305530
DIATH	5249	BRICK, DIATOMACEOUS EARTH (HIGH BURN)	4	305530
DIATM	5248	BRICK, DIATOMACEOUS EARTH (MOLDED, FRD)	4	305530
DIATP	5247	BRICK, DIATOMACEOUS EARTH (PRLL STRATA)	4	305530
DIATT	5251	BRICK, DIATOMACEOUS EARTH (USE TO 1100)	4	305530
DIATL	5250	BRICK, DIATOMACEOUS EARTH (USE TO 850C)	4	305530
BRIEF	5256	BRICK, EGYPTIAN FIRE (SIO2 64-71)	20	2323532
BRICF	5224	BRICK, FIRED CARBON	1.20.27.42.47	5505
BRIFR	5262	BRICK, FORSTERITE (MGO 58 SIO2 38)(20P)	20.47	335
BRALF	5212	BRICK, FUSED ALUMINA (AL203 96)(22 P)	1.20.47	2330
BRISI	5294	BRICK, HARD FIRED SILICA (SIO2 94-95)	20	330
BRAL1	5214	BRICK, HIGH ALUMINA (AL203 53) (20 P)	47	322335
BRAL2	5215	BRICK, HIGH ALUMINA (AL203 83) (28 P)	47	322335
BRAL3	5216	BRICK, HIGH ALUMINA (AL203 87) (22 P)	20	303330
BRIKB	5265	BRICK, KAOLIN INSULATING ($D = 0.30$)	1,20	5510
BRIKA	5264	BRICK, KAOLIN INSULATING ($D = 0.43$)	1,20	5510
MAGNP	5267	BRICK, MAGNESITE (MGO 87)	1,20,27,47,48	330
MAGNA	5268	BRICK, MAGNESITE A (MGO 90) (14.5 P)	1,20,27,47,48	330
MAGNB	5269	BRICK, MAGNESITE B (MGO 93) (22.6 P)	1,20,27,47,48	330
MAGNC	5270	BRICK, MAGNESITE C (MGO 86) (17.8 P)	1,20,27,47,48	330
MAGNS	5266	BRICK, MAGNESITE SPALL RES (MGO 89)	1,20,27,47,48	335
BRIMM	5218	BRICK, MASONRY, MEDIUM	1,2,27,46	2025535
BRIFM	5259	BRICK, MISSOURI FIRECLAY	1,47	3300530

NUREG/CR-0200, Vol. 3, Rev. 6

3

				Quality Index
ID	No.	Material	References	DCKTHCK*
BRIFN	5258	BRICK, NORMAL FIRECLAY (22 P)	47	535
BRISL	5296	BRICK, SILICEOUS (SIO2 89 AL203 9)(25P)	47	335
BRIFS	5260	BRICK, SILICEOUS FIRECLAY (23 P)	47	535
BRISK	5298	BRICK, SILLIMANITE (22 PC POROSITY)	20	300530
BRIDS	5254	BRICK, STABILIZED DOLOMITE (22 P)	147	530
VERMI	4986	BRICK, VERMICULITE	20	305550
BRGAS	1546	BROMINE (GAS)	27 1 42	000000
BRONZ	2141	BRONZE (CU75, SN25)	12	305555
BROAL	2146	BRONZE, ALUMINUM (CU92, AL8)	1.6.41	2000555
BROAR	2151	BRONZE, ARCHITECTURAL	1.41	2300555
BROCM	2156	BRONZE, COMMERCIAL	1.2.38.41	555
BROMN	2161	BRONZE, MANGANESE	1.41	555
BROPH	2166	BRONZE, PHOSPHER 10 PERCENT	1.41	5555
BROPL	2168	BRONZE, PHOSPHER 1.25 PERCENT	6,41	555
BROPM	2167	BRONZE, PHOSPHER 5 PERCENT	6,41	555
BRSIH	2171	BRONZE, SILICON, HIGH	1.6.41	550
BRSIL	2172	BRONZE, SILICON, LOW	1,6,41	555
BRSNH	2176	BRONZE, TIN (CAST), HIGH LEADED	6,41	23555
BRSNL	2177	BRONZE, TIN (CAST), LEADED	6	3555
BUACR	7026	BUTADIENE-ACRYLONITRILE RUBBER + C	20	5555
BUTYR	7031	BUTYL RUBBER	6,39	555
CD	1041	CADMIUM	2,1,32,42,43,27,41,47	0
CDLIQ	1042	CADMIUM (LIQUID)	2,1,32,42,43,27,41,47	0
CACCP	4957	CALCITE (CACO3) (CRYSTAL) (C AXIS)	1,27,51	0
CACCS	4958	CALCITE (CACO3) (CRYSTAL) (A AXIS)	1,27,51	0
CA	1306	CALCIUM	27,1,42,43,41	5
CAB6	4616	CALCIUM BORIDE (CAB6)	27,48	300555
CACCP	4957	CALCIUM CARBONATE (CACO3) (CALCITE) (C)	1,27,51	0
CACCS	4958	CALCIUM CARBONATE (CACO3) (CALCITE) (A)	1,27,51	0
CACON	4956	CALCIUM CARBONATE (CACO3) (NATURAL)	1,27,51	5
CAF2A	4820	CALCIUM FLUORIDE (CAF2) (MINERAL AGGR)	1,20,27,47,51	205
CAF2	4818	CALCIUM FLUORIDE (CAF2) (SINGLE XTAL)	1,20,27,47,51	200
DOLOM	4960	CALCIUM MAGNESIUM CARBONATE (CAMGC206)	1,27,51	20515
CAO	4026	CALCIUM OXIDE (CAO) (PRESSED, 91 DENS)	1,20,27,47,48,51	200
CAOPP	4028	CALCIUM OXIDE (CAO) (PACKED PWD, 50 D)	1,20,27,47,48	200
GYPSM	4962	CALCIUM SULFATE DIHYDRATE (CASO4.4H2O)	1,27,51	555
CATIT	4216	CALCIUM TITANATE (CAO.TIO2)	20,27,48,51	500
CF	1443	CALIFORNIUM		4445555
CAMOR	1071	CARBON, AMORPHOUS (CARBON STOCK)	27,1	22
CGEM1	1061	CARBON, DIAMOND GEM QUALITY TYPE 1	1,20,27	500
CGRAF	1066	CARBON, GRAPHITE (TYPICAL K)	1,2,20,27,32,42,51	2000002
BRICF	5224	CARBON BRICK, FIRED	1,20,27,42,47	5505
002	4027	CARBON DIOXIDE	1,2,27	0
CUGAS	4029	CARBON MONOXIDE	1,27	300030
CELA2	7037	CELLULOSE ACETATE (HIGH K)	6,38	20555
CELAI	7036	CELLULOSE ACETATE (LOW K)	6,38	20555
CEAB2	7042	CELLULOSE ACETATE BUTYRATE (HIGH K)	6,38	225555
CEABI	7041	CELLULUSE ACEIAIE BUI I KAIE (LOW K)	0,38	220000
CENIP	7040	CELLULUSE NITKATE (PTKUXTLIN)	0,38	200555
CEPKI	7051	CELLULUSE PROPRIONATE (LOW K)	0,38 6 29	220000
CETRA	1032	CELLULUSE PROPRIONATE (HIGH K)	0,3ð 29	220000
CEIKA	1020	CELLULUSE IKIACEIAIE	38	2222
CERC	1320		41,27,20,42	20205
CEBO	4020	CENIUM BUKIDE (CEBO) (99.0 PC DENSE)	48	300222
CEO2	4030	CERIUM OXIDE (CEO2) (PRSD, SNTRD, 86 D)	1,20,47	201

NUREG/CR-0200, Vol. 3, Rev. 6

				Quality
ID	No.	Material	References	DCKTHCK ^a
CES	4742	CERIUM SULFIDE (CES)	20,48	22505
CE2S3	4744	CERIUM SULFIDE (CE2S3)	20.48	20512
CS	1231	CESIUM	1,14,27,28.32.43.47	40005
CSLIQ	1232	CESIUM (LIQUID)	14,27,28,32,43,47	22
CHALK	6018	CHALK (AV PROP)	1,46	25555
CLGAS	1506	CHLORINE (GAS)	27,1,42,2	0
CRALM	4973	CHROME ALUM (CR2(SO4)3.K2SO4.24H2O)	1,27	550
BRICR	5232	CHROME BRICK (CR2O3 32)	1,27,41	5530
BRCRM	5234	CHROME MAGNESITE BRICK (SEE REF 47)	20,47	330
CNISA	3312	CHROME-NICKEL-IRON SUPERALLOYS	6	555
CR	1201	CHROMIUM	20,1,27,32,43,42	0
CHCNI	5422	CHROMIUM CARBIDE + NI (CR(X)C(Y), NI)	48	2000555
CUCHR	2183	CHROMIUM COPPER (CU BAL, CRO.5)	6,20,47	2330
CRN	4426	CHROMIUM NITRIDE (CRN) (PRSD, 100 PC D)	27,47,48	505
CR2N	4428	CHROMIUM NITRIDE (CR2N) (PRSD, 100 D)	27,47,48	200505
CRS12	4772	CHROMIUM SILICIDE (CRSI2)	20,27,48	500
CO	1046	COBALT	20,27,1,32,43,30,41,	0 ·
CO	1046	COBALT	+42	0
COCKW	2646	COBALT ALLOY (CO64,CR30,W6)	20	330333
CO	0(1)		20	3300
COH21	2614	COBALT ALLOY HS-21 (AS CAST)	1,14,20,41	310
COHZA	2615	COBALT ALLOY HS-21 (AGED)	1,14,20,41	310
COH23	2616	COBALT ALLOY HS-23	14,20	303330
COH25	2018	COBALT ALLOY HS-25 (L-605) (WROUGHT)	1,14,41	330
COH2/	2620	COBALT ALLOY HS-27 (AS CAST)	14,20	303330
COH30	2022	COBALT ALLOY HS-30 (422-19) (AS CAST)	14,20	333333
COH26	2024	COPALT ALLOY HS-31 (X-40) (AS CAS1)	1,14,20,41	300330
COIG3	2020	COPALT ALLOY TESSOD C 22	1,14,20	333
CO105	2620	CODALT ALLOY JESSOP G-32	20	303330
COK42	2630		20	3333330
COMTL	2636	COBALT ALLOY MILTIMET (NI 155) (LOW C)	14	3323332
COMTM	2634	COBALT ALLOY MULTIMET (N 155) (DOW C)	1,14,20,41	330
COSS9	2638	COBALT ALLOT MOLTIMET (N-155) (WROUGHT)	1,14,20,41	330
COS81	2640	COBALT ALLOY S-816 (WROUGHT)	14,41	330
COV36	2642	COBALT ALLOY V-36 (WROUGHT)	1,14,20,41	222222
COW52	2644	COBALT ALLOY WL52	41	2222220
COW5G	2645	COBALT ALLOY WI-52 (CR COATED SAMPLE)	20	2222220
CNLOX	4218	COBALT NICKEL OXIDE (46COO 46NIO 8LIO)	20 27	3305555
COBOX	4034	COBALT OXIDE (COO)	20,27 47 48	2005
COS	4774	COBALT SILICIDE (COS)	20,27,47,40	305555
NBTAW	3681	COLOMBIUM ALLOY (CB61.TA28.W10.ZR0.5)	20	3300
NBWMO	3684	COLOMBIUM ALLOY (CB80, W15, MO5)	20	3300
NBTIZ	3682	COLOMBIUM ALLOY (CBS5, TI10, ZR5)	20	3300
NBTA5	3683	COLOMBIUM ALLOY (CB95, TA5)	20	3303330
CMB-3	7502	COMPOSITION B-3 H.E. (RDX 60, TNT 40)	8	555
CMC-4	7503	COMPOSITION C-4 H.E. (RDX 90, BINDERS)	8	5555
CONCN	5240	CONCRETE, CINDER	1.2.20.27.46	25535
CONLW	5243	CONCRETE, LIGHTWEIGHT	1.2.20.27.46	5530
CONCS	5241	CONCRETE, STONE (1-2-4 MIX)	1.2.20.27.46	25535
CON14	5242	CONCRETE, 1-4 DRY	1.2.20.27.46	25535
CU	1051	COPPER	20.1.27.32.34.37.42	0
CU	1051	COPPER	+47	õ
CUWGT	2191	COPPER, WROUGHT (ETP. DHP. TE0.5, PB1)	41	3535
CUBER	2181	COPPER ALLOY (CUBAL BE 0.38-0.55)	1	331

NUREG/CR-0200, Vol. 3, Rev. 6

				Quality Index
ID	No.	Material	References	DCKTHCK
CURFH	2182	COPPER ALLOY (CURAL DE 17-10)	1641	2225
CUCHP	2102	COPPER ALLOI (CUBAL, BE 1.7-1.5)	1,0,41	2333
CUERR	2105	COPPER ALLOT (CUBAL, CRU.5)	0,20,47	2550
CUPRS	2203	COPPER ALLOY (CU10, NISO)	1,0,41	2555
CUFKI CUAL 1	2202	$\begin{array}{c} \text{COPPER ALLOY} (CU90, NI10) \\ \text{COPPER ALLOY} (CU90, ALLO2, 700.27) \\ \end{array}$	1,0,41	2555
NICON	2201	COPPER ALLOY (CONSTANTANI (CUSS NULS)	20	3303331
CIDAN	2300	COPPER ALLOT CONSTANTAN (COSS, NI45)	1,2,14,41,47	331
CUMAN	2195	COPPER ALLOY MANGANIN	2	3305550
CUCZN	2105	COPPER ALLOT NICKEL SILVER (NI 10-20)	1,2,0,41,47	2222555
CUOLI	4220	COPPER GILDING METAL (CU95, ZN5)	1,41	2205550
	4220	COPPER LITHIOM UNDE (90CUU.4LIU)	20,27	3305550
CUSOA	4030	COPPER UNDE (CUC) (TENORITE)	1,20,27,47,31	2002220
DI LIEV	4900	COPPER SULFATE (CUS04) (CKISIAL)	27	550
COPDP	4207	COPPER SULFATE HIDRATE (CUS04.5H2O)	1,27,51	200
CORDE	4522	CORDIERTTE (2MGO.2AL205.55102)	20,51	5510
CORKO	0014	CORK, UKUUND CORK CROUND DECRANUT ATED	2,40	2222
CURKK	2202	CURK, GROUND, REGRANULATED	2,40	2222
CUPRS	2203	CUPRONICKEL (CU00, NISO)	1,0,41	2555
CUPRI	2202	CUPRONICKEL (CU90, NIIO)	1,0,41	2555
CM DAN25	1440	DANDELION 25	20,27	4445555
DAINSS	3901	DANDELIUN 33	34,30	5500
DAIB	/504	DATE H.E. (DIANINO TRINITROBENZENE)	8	300555
D-GAS	1551	DEUTERIUM	21	3305530
DLADC	4118	DEUTERIUM OXIDE (D20) (LIQUID)	14,27	300
DIABG	5020	DIABASIC GLASS (ARTIFICIAL)	27,51	3305530
DAPUN	7061	DIALLYL PHTHALATE (DAPON)	35	2025555
DIATA	5246	DIATOMACEOUS EARTH BRICK (ACCR STRATA)	4	305530
DIATH	5249	DIATOMACEOUS EARTH BRICK (HIGH BURN)	4	305530
DIATM	5248	DIATOMACEOUS EARTH BRICK (MOLDED, FRD)	4	305530
DIATP	5247	DIATOMACEOUS EARTH BRICK (PRLL STRATA)	4	305530
DIATI	5251	DIATOMACEOUS EARTH BRICK (USE TO TIOUC)	4	305530
DIAIL	5250	DIATOMACEOUS EARTH BRICK (USE TO 850C)	4	305530
DOLOM	4960	DOLOMITE (CAMG(CO3)2) (AVG PROP)	1,27,51	20555
BRIDS	5254	DOLOMITE BRICK, STABILIZED (22 P)	1,47	530
DY	1391	DYSPROSIUM	41,27,20,42	35
BRIEF	5256	EGYPTIAN FIRE BRICK (SIO2 64-71)	20	2323532
ES	1449	EINSTEINIUM	· · · · ·	4445555
EPCR1	7066	EPOXY, DER 332 (C), HYSOL 6000-OP (K)	6,20,38	2220505
EPGFM	7071	EPOXY, GLASS FIBER FILLED (MOLDED)	20,38	25552
EPSFC	7076	EPOXY, SILICA FILLED, CAST	38	2225555
EPUNC	7081	EPOXY, UNFILLED, CAST	38	2025555
EPSOM	4971	EPSOMITE (MGSO4.7H2O) (CRYSTAL)	1,27,51	555
ER	1401	ERBIUM	41,27,20,42	5 .
ETHCE	7086	ETHYL CELLULOSE (WIDE RANGE OF C, K)	6,38	225555
ETHVA	7091	ETHYL VINYL ACETATE	38	25555
EU	1376	EUROPIUM	20,27,41,43	30005
EUB6	4634	EUROPIUM BORIDE (EUB6) (93.0 PC DENSE)	48	305555
FM	1452	FERMIUM		4445555
FBRFX	8201	FIBERFAX PAPER (CARBORUNDUM CO.)	44	5500
BRIFM	5259	FIRECLAY BRICK, MISSOURI	1,47	3300530
BRIFN	5258	FIRECLAY BRICK, NORMAL (22 P)	47	535
BRIFS	5260	FIRECLAY BRICK, SILICEOUS (23 P)	47	535
FLINT	5022	FLINT GLASS	1,27,46	25532
ART5	9005	FLUID, HEAT SINK (D=1, C=K=10**9)		0
ART4	9004	FLUID, WELL STIRRED (D=C=1, K=10**9)		0
F-GAS	1511	FLUORINE (GAS)	27,42	0

Table M5.6.1	(continued)
--------------	-------------

	 ·		<u> </u>	Quality
ID	No.	Material	References	DCKTHCK*
FCCTF	7101	FLUOROCARBONS, CFE AND CTFE	6 38	666
FCFEP	7106	FLUOROCARBONS FEP	6 3 9	333
FCTFE	7111	FLUOROCARBONS TEE (TEELON)	1,600,20	222
GLASE	5024	FOAMED GLASS (D = 0.144)	1,0,20,38	2500
FORST	4324	FORSTERITE $(2MGO SIO2)$ (100 PC DENSE)	1	305532
BRIER	5262	FORSTERITE (2MGO.SIO2) (100 FC DENSE)	1,20,27,51	0
FD	1455	EDANCHINA	20,47	335
SIO2	4062		42	4343335
SIO2	4062	FUSED OLIADTZ GLASS (SIO2)	1,20,27,47,51	2200
GD	1321	GADOLINIUM	1,20,27,47,51	2200
GDR6	4636	GADOLINIUM GADOLINIUM PODIDE (CDD4) (05 4 DC DENS)	41,27,20,42	5
GD203	4038	GADOLINIUM BURIDE (GDB0) (95.0 PC DENS)	48	300555
GD205	1211	CALLING OADE (OD203) (MONOC) (98 D)	20,47,48	2000505
GALIO	1212		27,42,43,1	20005
CEIP	1312	CEDIANUBA (NEDINGIC DENOD	1,14,27,43,47	20005
GE N	1201	CERMANIUM (INTRINSIC, P-1 TPE)	20,27,42,43,1,48	. 2
CLASS	5012	CLASS (SEE DED 07 DDES E0) (ANG DD OD)	20,27,42,43,1,48	0
CLASS	5012	CLASS (SEE REP 27, PP ES-E8) (AVG PROP)	27	2225555
ULABC DVDCC	5014	GLASS, BOROSILICATE CROWN	27,51	25502
PIRCO	5018	GLASS, CERAMIC, PYROCERAM 9606	20	5500
PIRCS	5019	GLASS, CERAMIC, PYROCERAM 9608	20	5500
DIABG	5020	GLASS, DIABASE (ARTIFICIAL)	27,51	3305530
FLINI	5022	GLASS, FLINT	1,27,46	25532
GLASF	5024	GLASS, FOAMED ($D = 0.144$)	1	305532
5102	4062	GLASS, FUSED QUARTZ (SIO2)	1,20,27,47,51	2200
SIOZ	4062	GLASS, FUSED SILICA OR VITROUS SILICA	1,20,27,47,51	2200
GLASL	5026	GLASS, LEAD	20	305530
GLASW	5028	GLASS, LIME WINDOW	20	305530
OBSID	5030	GLASS, OBSIDIAN	27,51	305530
PYREX	5016	GLASS, PYREX	2,20,27,51	500
GLASP	5034	GLASS, SODA PLATE	20,51	305532
GLASC	5032	GLASS, SODA-LIME	20,27	3325532
VYCOR	5036	GLASS, VYCOR	20,27	500
AU	1056	GOLD	20,6,1,32,27,42,41,2	0
AULIQ	1057	GOLD (LIQUID)	14,20,27,42,43	40005
GRNTM	6014	GRANITE (AV PROP) (SEE REF 51)	1,2,27,46,51	25555
GRNTH	6013	GRANITE (HIGH K)	1,2,27,46,51	25555
GRNTL	6012	GRANITE (LOW K)	1,2,27,46,51	25555
GYPSM	4962	GYPSUM (CASO4.4H2O) (MINERAL) (HIGH D)	1,27,51	555
GYPSA	4964	GYPSUM (CASO4.4H2O) (ARTIFICIAL)	1,27	555
HF	1271	HAFNIUM	20,32,27,42,43,41	0
HFB2	4618	HAFNIUM BORIDE (HFB2)	20,27,48	20502
HFC	4518	HAFNIUM CARBIDE (HFC)	20,27,48,54	22502
HFN	4430	HAFNIUM NITRIDE (HFN) (HP STRD 78-92 D)	20,27,48	2020502
HFO2	4040	HAFNIUM OXIDE (HFO2) (MONOC) (94 D)	20,27,48	21
D2O	4118	HEAVY WATER (D2O) (LIQUID)	14,27	300
HEGAS	1516	HELIUM (GAS)	27,1,2,42	0
FE203	4042	HEMATITE (FE203)	1,27,32,47,48,51	20505
HO	1396	HOLMIUM	20,27,41,42,43	30005
H-GAS	1521	HYDROGEN (GAS)	27,2,42,1	0
ICE	4116	ICE (H2O) (SOLID)	27,46,51	0
IN	1211	INDIUM	1,27,43,30.42.41	20005
INLIQ	1212	INDIUM (LIQUID)	1,42,43,47	5
SOLD1	3611	INDIUM ALLOY (IN25, SN37.5, PB37.5)	36	3355
INSBP	4920	INDIUM ANTIMONIDE (INSB) (IMP 0.16)	20,27	3000000
INSBS	4921	INDIUM ANTIMONIDE (INSB) (IMP 0.33-1.2)	20,27	300000

NUREG/CR-0200, Vol. 3, Rev. 6

Table M5.6.1	(continued)
--------------	-------------

				Quality Index
ID	No.	Material	References	DCKTHCK ^a
INASP	4922	INDUM ADSENIDE (INAS) (POL VY IMP 2 0)	20.27	2000500
INASS	4922	INDIAN ARSENIDE (INAS) (FOLTA, IMF 5.0)	20,27	3000500
INTE	4923	INDIAM TELLURIDE (INAS) (FORE, S-DOFED)	20,27	200550
LSOL	1316	IODINE (SOLID)	20,27	500550
IR	1276	IRIDIUM	27,42,41,1	20002
FEFUR	1083	IRON (0 TO 3000 DEG C)	20,132,27,42,45	20002
FECRY	1082	IRON (-273 TO 763 DEG C)	20,1,32,27,42,44,51	0
FE	1081	IRON (-51 TO 1537 DEG C)	20,1,32,27,42,44,51	0
INDO2	3022	IRON. DUCTILE (MG CONTAINING)	1	300355
INDO3	3023	IRON, DUCTILE (MG CONTAINING, HEAT RES)	ī	300355
INDO1	3021	IRON, DUCTILE (0.06 MG)	1.6	323333
GCIO1	3001	IRON, GREY CAST, FERRITIC (2.3-3.0 C)	1.2.6.20.27.33.46	3300
GCIO2	3002	IRON, GREY CAST, FERRITIC (3.2-3.8 C	1.2.6.20.27.33.46	303330
GCIO3	3003	GREY CAST, PEARLITIC (2.3-3.0 C)	1,2,6,20,27,33,46	303330
GCIO4	3004	IRON, GREY CAST, PEARLITIC (3.0-3.2 C)	1,2,6,20,27,33,46	303330
GCIO5	3005	IRON, GREY CAST, PEARLITIC (3.4 C)	1,2,6,20,27,33,46	303330
GCIO6	3006	IRON, GREY CAST, PEARLITIC (3.7-3.8 C)	1,2,6,20,27,33,46	303330
GCIO7	3007	IRON, GREY CAST, PEARLITIC (4.12 C)	1,2,6,20,27,33,46	303330
FE	1081	IRON, INGOT (FE99.9+)	1,20,27,32,42,44	0
KOVAR	3031	IRON, NI-HARD TYPES 1 AND 2 (KOVAR)	1,20	200320
INNRD	3035	IRON, NI-RESIST, TYPE D2 (CAST)	1	300355
INNR3	3033	IRON, NI-RESIST, TYPE 3 (CAST)	1	355
INNR4	3034	IRON, NI-RESIST, TYPE 4 (CAST)	1	355
INNIR	3032	IRON, NI-RESIST, TYPES 1 AND 2 (CAST)	1,20	325
INNIT	3041	IRON, NI-TENSYLIRON (CAST, HEAT TREAT)	1	300355
INCFB	3026	IRON, NODULAR CAST, FERRITIC BASE	1,2,20	303330
INCPB	3027	IRON, NODULAR CAST, PEARLITIC BASE	1,2,20	303330
INKAL	3036	IRON, MALLEABLE (2.5 C)	1,6	5555
INWRT	3037	IRON, WROUGHT (VARIOUS)	1,2,6,27	2330
NINVR	2501	IRON ALLOY INVAR (FE64, NI36)	6,41,47	20355
FE2O3	4042	IRON OXIDE (FE2O3) (HEMATITE)	1,27,32,47,48,51	20505
FE304	4044	IRON OXIDE (FEO.FE2O3) (MAGNATITE)	20,27,47,51	2000005
FES2	4746	IRON SULFIDE (FES2) (SINGLE CRYSTAL)	27,47,51	505
BRIKB	5265	KAOLIN BRICK, INSULATING ($D = 0.30$)	1,20	5510
BRIKA	5264	KAOLIN BRICK, INSULATING ($D = 0.43$)	1,20	5510
KRGAS	1556	KRYPIUN (GAS)	27,1,42	0
KIAN LA	4314	KYANITE (AL2O3.SIO2) (TRICL CRYSTAL)	20,27,51	500
	1551	LANTHANUM	41,27,1,20,42	200555
LABO	4024	LAWDENCIUM	48	300555
DB	1491	LAWRENCIUM	0 1 20 07 27 40	4445555
PRIIO	1091		2,1,32,27,37,37,42 1 0 1 / 07 27 / 0 / 32 /7	2
PR	1092	LEAD (0.07 CA)	36	2
PRANT	3601	LEAD ANTIMONIAL (PR SR 4-6) (HARD)	1641	355
PBSBH	3602	LEAD ANTIMONIAL (PR SB 8-9)	1641	355
PB	1091	LEAD ANTIMONIAL (PR SB1)	1 41	0
PB	1091	LEAD TELLIRIUM	1	ň
SOLD1	3611	LEAD ALLOY (PB37.5, SN37.5, IN25)	36	3355
SOLD2	3612	LEAD ALLOY (PB39.2, SN60.8) (SOLDER)	34.41	5
SOLD4	3613	LEAD ALLOY (PB50, SN50) (SOLDER)	1.41	50
SOLD3	3614	LEAD ALLOY (PB60, SN40) (SOLDER)	1.41	55
GLASL	5026	LEAD GLASS	20	305530
PBO	4046	LEAD OXIDE (PBO) (YELLOW)	1,20,27,32.47	201
PBTEP	4927	LEAD TELLURIDE (PBTE) (POLYXTAL)	20,27	300550
PBTES	4926	LEAD TELLURIDE (PBTE) (SINGLE CRYSTAL)	20,27	300550

ID	No.	Material	References	Quality Index
		A 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	References	DUKTHUK
LIMST	6016	LIMESTONE (DENSE, DRY)	1.2.27.46.51	5555
LIMSW	6017	LIMESTONE (H2O 15.3)	1,2,27,46,51	5555
LI	1216	LITHIUM	1.27.28.41.43.42.47	0
LILIQ	1217	LITHIUM (LIQUID)	1,27,28,41,42,43,47	202
BSPOD	4320	LITHIUM ALUMINUN SILICATE (B-SPODUMENE)	20,27,51	305550
CNLOX	4218	LITHIUM COBALT NICKEL OXIDE (8-46-46 M)	20,27	3305555
CUOLI	4220	LITHIUM COPPER OXIDE (4LIO.96CUO)	20,27	3305550
LIH	4882	LITHIUM HYDRIDE (LIH) (CAST, VAC VOIDS)	20	200
LIH	4882	LITHIUM HYDRIDE (LIH) (POWDER COMPACT)	20	200
LIHCG	4884	LITHIUM HYDRIDE (LIH) (CAST GAS VOIDS)	20	200
LIF	4822	LITHIUM FLUORIDE (LIF) (SINGLE CRYSTAL)	1,20,27,47,51	20202
LIFPB	4824	LITHIUM FLUORIDE (LIF 96) (PLASTIC BND)	1,20,27,47,51	200
MNSEL	4928	LITHIUM MANGANESE SELENIDE (97MN.3LI)	20,27	3305530
NIOLI	4222	LITHIUM NICKEL OXIDE (5LIO.95NIO)	20,27	3305550
LITBR	4968	LITHIUM TETRABORATE (LI2O.2B2O3) (EPOX)	27	555
LU	1416	LUTETIUM	20,27,41	230025
LX041	7505	LX-04-1 H.E. (HMX 85, VITON A 15)	8	200551
FE304	4044	MAGNATITE (FEO.FE203)	20,27,47,51	2000005
MAGNA	5268	MAGNESITE A BRICK (MGO 90) (14.5 P)	1,20,27,47,48	330
MAGNB	5269	MAGNESITE B BRICK (MGO 93) (22.6 P)	1,20,27,47,48	330
MAGNP	5267	MAGNESITE BRICK (MGO 87)	1,20,27,47,48	330
MAGNS	5266	MAGNESITE BRICK, SPALL RES (NGO 89)	1,20,27,47,48	335
MAGNC	5270	MAGNESITE C BRICK (MGO 86) (17.8 P)	1,20,27,47,48	330
MG	1096	MAGNESIUM	20,1,32,27,42	0
MGLIQ	1097	MAGNESIUM (LIQUID)	1,14,20,27,32,43	30005
MG042	2462	MAGNESIUM ALLOY (MG,AG2.5,CE2,ZR0.6)	47	333
MGUUI	2421	MAGNESIUM ALLOY AMIOUA (CASTING)	41	33
MG002	2422	MAGNESIUM ALLOY AZ31(X,S) (WROUGHT)	14,20,47	10
NGOUS	2423	MAGNESIUM ALLOY AZ31B(P,S) (WROUGHT)	1,20,41	0
MG004	2424	MAGNESIUM ALLOY AZ61A(X), AZM (WROUGHT)	14,41,47	33
MCOOS	2423	MAGNESIUM ALLOY AZOSA(AC,F) (CASTING)	14,41	33
MG000	2420	MAGNESIUM ALLOY AZSOA(X,FKGD) (WKOUGHT)	1,20,37,41	303
MG007	2427	MAGNESIUM ALLOY AZSIA(14) (CASTING)	41	300333
MG000	2420	MAGNESIUM ALLOY AZOLA D (DO) (CARTINO)	4/	333
MG010	2423	MAGNESIUM ALLOY AZOIC(AC) (CASTING)	1,14,41,47	31
MG010 MG011	2430	MAGNESIUM ALLOY AZOZA(AC) (CASTING)	1,41	33
MG012	2431	MAGNESIUM ALLOY A2A (MDOLICHT)	1,14,41	33
MG013	2432	MAGNESIUM ALLOY AS((WROOOHI))	41	22222
MG014	2433	MAGNESIUM ALLOY B733A(AC AN) (CASTING)	47	333
MG015	2435	MAGNESIUM ALLOY EX30A H812 (CASTING)	1 20.41	333
MG017	2437	MAGNESIUM ALLOY EK33A H811 (CASTING)	20,41	21
MG016	2436	MAGNESUM ALLOY EKALA(TS T6) (CASTING)	20,41 A1	32
MG018	2438	MAGNESIUM ALLOY HK31A(H2A) (CASTING)	1 20 41	222
MG019	2439	MAGNESIUM ALLOY HK314(0) (CASTING)	1,20,41	0
MG020	2440	MAGNESHIM ALLOY HK31A(T6) (CASTING)	1 20 41	0
MG021	2441	MAGNESIUM ALLOY HM21A(0 H24) (WROUGHT)	A1	212
MG022	2442	MAGNESIUM ALLOY HM31A (WROUGHT)	20.41	313
MG023	2443	MAGNESIUM ALLOY HZ32A(AC) ZT1 (CASTING)	1 20 41 47	33
MG024	2444	MAGNESIUM ALLOY MAGNOX A12(X) (WROUGHT)	A7	333
MG025	2445	MAGNESIUM ALLOY MILACY (CASTING)	14 47	222
MG026	2446	MAGNESIUM ALLOY MI(X S) (WROUGHT)	14 47	222
MG027	2447	MAGNESIUM ALLOY MIA (WROUGHT)	41	222
MG028	2448	MAGNESIUM ALLOY PE (WROUGHT)	41	30033
MG029	2449	MAGNESIUM ALLOY ZA(AC) (CASTING)	47	3333

NUREG/CR-0200, Vol. 3, Rev. 6

-

īD	No	Material	References	Quality Index DCKTHCK ^a
<u>ID</u>	110.	Iviaterial	Keleicites	DERINER
MG030	2450	MAGNESIUM ALLOY ZE10A(O,H24) (WROUGHT)	41	33
MG031	2451	MAGNESIUM ALLOY ZE41A(T5,HT) (CASTING)	20,41,47	330
NG032	2452	MAGNESIUM ALLOY ZH42 (CASTING)	41	33
MG033	2453	MAGNESIUM ALLOY ZH62A(AC), TZ6 (CASTING)	20,41,47	31
MG034	2454	MAGNESIUM ALLOY ZK20A (WROUGHT)	20,41	3303333
MG035	2455	MAGNESIUM ALLOY ZK51A, H807 (CASTING)	20,41,47	0
MG036	2456	MAGNESIUM ALLOY ZK60A, B, ZW6 (CASTING)	1,14,20,41,47	1
MG037	2457	MAGNESIUM ALLOY ZRE0 (EZ30) (CASTING)	20	303331
NG038	2458	MAGNESIUM ALLOY ZRE1(AA) (CASTING)	47	333
MG039	2459	MAGNESIUM ALLOY ZTY(X) (HK11) (WROUGHT)	20,47	331
MG040	2460	MAGNESIUM ALLOY ZW1(X) (ZK11) (WROUGHT)	47	333
MG041	2461	MAGNESIUM ALLOY ZW3(X) (ZK31) (WROUGHT)	47	333
MG043	2463	MAGNESIUM ALLOY 1959 (MG,CE4.33)	20	3303335
MG044	2464	MAGNESIUM ALLOY 1960 (MG,CE6.7)	20	3303330
MG045	2465	MAGNESIUM ALLOY 1961 (MG,CE11.85)	20	3303330
MG046	2466	MAGNESIUM ALLOY 1964 (MG,CE5,CO2,MN0.8)	20	3303330
MG047	2467	MAGNESIUM ALLOY 1992 (MG,CE4.45,CO3)	20	3303330
SPINX	4224	MAGNESIUM ALUMINATE (MGO.AL2O3) (XTAL)	20,27,47,48,51	500
SPINL	4225	MAGNESIUM ALUMINATE (MGO.AL2O3) (100 D)	20,27,47,48,51	500
CORDR	4322	MAGNESIUM ALUMINUM SILICATE (CORDIERIT)	20,51	5510
MGOPX	4050	MAGNESIUM OXIDE (MGO) (POLYXTAL, 100 D)	1,20,27,47,48,51	2000
MGOX	4048	MAGNESIUM OXIDE (MGO) (SINGLE CRYSTAL)	1,20,27,47,48	0
FORST	4324	MAGNESIUM SILICATE (2MGO.SIO2) (100 D)	1,20,27,51	0
STEAT	4326	MAGNESIUM SILICATE (MGO.SIO2) (COMMERC)	1,20,27,51	505
MG2SI	4776	 MAGNESIUM SILICIDE (MG2SI) 	20,27,48	300530
MGSO4	4970	MAGNESIUM SULFATE (MGSO4) (CRYSTAL)	1,27	50
EPSOM	4971	MAGNESIUM SULFATE HYDRATE (MGSO4.7H2O)	1,27,51	555
PORMT	5283	MAGNESIUM TITANATE PORCELAIN	20,48	305530
MNCRY	1101	MANGANESE	20,1,32,27,43,42	0
MNO	4052	MANGANESE OXIDE (MNO) (SINGLE XTAL)	1,27,48	5
MN304	4054	MANGANESE OXIDE (MN3O4) (87 PC DENSE)	20,27,48,51	22005
MNSEL	4928	MANGANESE SELENIDE (97MNSE.3LISE)	20,27	3305530
MNSI2	4778	MANGANESE SILICIDE (MNSI2)	20,27,48	300530
MNTEA	4930	MANGANESE TELLURIDE (95MNTE.5MNAS)	20	3305530
MNTEN	4931	MANGANESE TELLURIDE (99MNTE.NATE)	20	3305530
CUMAN	2195	MANGANIN (CU84, NI4, MN12)	2	3305550
MARBL	6021	MARBLE (AV PROP) (SEE REF 51)	1,27,51	25555
MARBD	6020	MARBLE DIELECTRIC (XTAL) (CACO3-99.99)	1,27,51	5550
MELM2	7122	MELAMINE (HIGH DENS, HIGH K)	6,38	2022555
MELM1	7121	MELAMINE (LOW DE14S, LOW K)	6,38	2022555
MELAC	7123	MELAMINE, ALPHA CELLULOSE FILLED	38	22555
MELAS	7124	MELAMINE, ASBESTOS FILLED (MST 95-205)	38	2022555
MELAF	7125	MELAMINE, CELLULOSE FILLED (MST 95-205)	38	22555
MELFF	7127	MELAMINE, FABRIC OR FLOCK FILLED	6,38	555
MELGF	7126	MELAMINE, GLASS FIBER FILLED (MST 205)	6,38	555
MD	1461	MENDELEVIUM		4445555
HGLIQ	1207	MERCURY (LIQUID)	1,27,28,42,43,47,14	0
HGCL2	4826	MERCURY CHLORIDE (HGCL2) (PRSD 8 KB)	1,27,47	10
CH4	4890	METHANE (CH4) (GAS)	1,27	0
MEMAC	7131	METHYL METHACRYLATE	1,38	25550
MICAX	4982	MICA (SINGLE CRYSTAL) (A OR B AXES)	20,51	305555
MICAC	4983	MICA (SINGLE CRYSTAL) (C AXIS)	20,51	305555
MICAS	4984	MICA (SINGLE CRYSTAL) (SYNTHETIC) (98D)	20	305550
MICAB	4985	MICA BRICK (RED OR WHITE) (AVG PROP)	20	305552
MICAP	4987	MICA INSULATING POWDER	20	305550

ID	N-			Quality Index
1D	NO.	Material	References	DCKTHCK*
HEM01	7514		C 0	
HEM02	7515	MOCK HE I M.04.0 H7.048.4522 1	2,8 6 9	5530
HEM03	7506	MOCK HE PM.04 PC (I X 04 1 MCCH MOCK)	5,8	5500
HEM04	7507	MOCK HE 90010 (DRY 9404 MECH MOCK)	8	5555
MO	1106	MOLY RDENILM	8	5555
MO	1106	MOLYPDENIN	20,6,1,32,41,43,42,	0
MOAFE	3672	MOLYPDENIM ALLOY (MO DAL FEA 20)	+47,14	0
MOW30	3673	MOLTBDENOM ALLOT (MO BAL, FE 0.25)	20	333311
MOATI	3671	MOLTBELLION ALLOT (MO/0, W30)	20	3300
MORED	4712	MOLTBDENUM ALLOT (MO99.5, 110.5)	1,0,41	300
MO2C	4520	MOLIBDENOM BERILLIDE (MUBELZ)	20,48	500
MO2N	4320	MOLIDDENUM CARBIDE (MUZC)	20,27,48	2022502
MOSE2	4932	MOLTBDENUM NITRIDE (MOZN) (PR SRD 100 D)	47,48	2000505
MOSIZ	4732	MOLIBDENUM SELENIDE (MOSEZ)	20	3303555
MOTE2	4/00	MOLTBDENUM SILICIDE (MUSIZ)	20,27,48	2500
MUIDV	4734	MULIBDENUM TELLUKIDE (MUTEZ)	20	3305555
MINI	3031	MULBERKI (U90, NB7.5, ZK2.5)	34,36,37	. 0
ND	4310	MULLITE (SAL203.25102) (100 PC DENSE)	20,27,48,51	500
NDR6	1500		41,20,42	30225
NECAS	4030	NEOD Y MIOM BORIDE (NDB6) (97.3 PC DENSE)	48	300555
NEODD	1520		27,2,1,42	20000
NEOFK	/130	NEOPRENE RUBBER	6,38,39	555
NE	1404	NEPTUNIUM	20,27	2440555
INI NUATO	1111	NICKEL	20,2,1,32,37,41,42,51	2
NIALS	2388	NICKEL ALLOY (NI35,CR20,FE45)	41	5533
NIALZ	2580	NICKEL ALLOY (NI60,CR16,FE24)	41	5533
NIALI	2584	NICKEL ALLOY (NI62,CR12,FE26)	2,41	3305533
NICVA	2390	NICKEL ALLOY (NI99.5) LOW C, 220, 225	1,14	320
NICAN	2505	NICKEL ALLOY A (NI99.4) (ANNEALED)	1,14,20	2
NICHS	2502	NICKEL ALLOY CALIFE N	14	333
NICON	2504	NICKEL ALLOY CHLOKIMET 3	14	3333
NICOD	2500	NICKEL ALLOY CONDONET	1,2,14,41,47	331
NIDAE	2500	NICKEL ALLOY DAND D	14	333
NIDAL	2592	NICKEL ALLOY DUD AND E	1	30
NIDUS	2512	NICKEL ALLOY DURANICKEL (AND -R) (HARD)	1,14,47	333
NID20	2510	NICKEL ALLOY DURANICKEL (AND-R) (SOFT)	1,14,47	333
NILLSA	2514	NICKEL ALLOY DURIMET 20 (CAST)	1	303333
NILLED	2510	NICKEL ALLOY HASTELLOY A (ANNEALED)	1,14,20	20332
NIUSC	2510	NICKEL ALLOY HASTELLOY B	1,14,20,41,47	300
NIHSD	2320	NICKEL ALLOY HASTELLOY C	1,14,41,47	302
NILISN	2522	NICKEL ALLOY HASTELLOY D	1,14,41,47	333
NILISD	2523	NICKEL ALLOY HASTELLOY NANDINOR-8	20,41	330
NIUSY	2524	NICKEL ALLOY HASTELLOY K-235	1,14,20	300
NIHSO	2520	NICKEL ALLOY HX MIL 00	1,14,20,41	330
NILLG	2520	NICKEL ALLOY HINDLO	14	200333
NILLO	2530	NICKEL ALLOY ILLIUM G	1,14,20,41,47	2002333
NINCI	2532	NICKEL ALLOY ILLIUM K	1,14,41,47	2000333
NINCO	2334	NICKEL ALLOY INCOLOY	1,14	323
NINCN	2530	NICKEL ALLOY INCOLUY 901	1,20	3310
NINCA	2340	NICKEL ALLOY DICONTRACTIONS	1,14,20,41,47	302
NINCW	2000	NICKEL ALLOY INCONEL (WROUGHT, ANNLD)	1,14,20,41,47	302
NINCY	2342	NICKEL ALLOY INCOMEL W	1	333
NINCE	2044	NICKEL ALLOY INCOMEL X AND X-750	1,20,41	301
NINCT	2343	NICKEL ALLOY INCONEL 600 (ANNEALED)	1,47	2003330
NINCO	2340	NICKEL ALLOY INCOMEL 700	1,14,20,41	330
MINC2	2343	NICKEL ALLOY INCONEL 702 (ANNEALED)	1,20	3320

NUREG/CR-0200, Vol. 3, Rev. 6

.

ID	No	Mataial	Defense	Quality Index
<u>u</u>	INO.	material	Keterences	DCKTHCK
NIN7C	2547	NICKEL ALLOY INCONEL 713C (CAST)	1.20	200320
NINVR	2501	NICKEL ALLOY INVAR (HOT-ROLLED OR FRGD)	6.41.47	20355
COK42	2632	NICKEL ALLOY K-42B	14	3323332
NIMOC	2551	NICKEL ALLOY MONEL (CAST)	1.41	200333
NIMOU	2549	NICKEL ALLOY MONEL (COLD-DRAWN)	1.14.20.41	333
NIMON	2548	NICKEL ALLOY MONEL (HOT-ROLLED)	1.14.41.44.47	0.
NIMLH	2552	NICKEL ALLOY MONEL, H (AS CAST)	1.41	220333
NIMHU	2555	NICKEL ALLOY MONEL, H (CAST, VAR COMP)	1.20.41	220333
NIMLK	2554	NICKEL ALLOY MONEL, K (ANNEALED)	1,14,20,41,44	200300
NIMKR	2556	NICKEL ALLOY MONEL, KR (ANNEALED)	1.14	200333
NIMLR	2558	NICKEL ALLOY MONEL, R (HOT-ROLLED)	1,20,41	200330
NIMLS	2560	NICKEL ALLOY MONEL, S (CAST, ALL COND)	1.14.20	200330
NIMOW	2553	NICKEL ALLOY MONEL WELDABLE ALLOY	1	200333
NIM4H	2557	NICKEL ALLOY MONEL 400	47	205533
NIML4	2550	NICKEL ALLOY MONEL 403 (HOT-ROLLED)	1	203333
COMTL	2636	NICKEL ALLOY MULTIMET (N-155) (LOW C)	1.14.20.41	330
COMTM	2634	NICKEL ALLOY MULTIMET (N-155) (WROUGHT)	1.14.20.41	330
NIM25	2561	NICKEL ALLOY M-252 (GE J-1500)	20	3310
NICHR	2562	NICKEL ALLOY NICHROME V (NI80, CR 20)	1.47	23302
NIMND	2564	NICKEL ALLOY NIMONIC DS	47	303333
NIM15	2575	NICKEL ALLOY NIMONIC 105	47	3330
NIM75	2566	NICKEL ALLOY NIMONIC 75	1.14.20	330
NIMSO	2568	NICKEL ALLOY NIMONIC 80	1 14 20 41 47	330
NIM8A	2570	NICKEL ALLOY NIMONIC BOA	1 20 41 47	330
NIM90	2572	NICKEL ALLOY NIMONIC 90	1 14 20 41	330
NIM95	2573	NICKEL ALLOY NIMONIC 95	20 47	303330
NIPER	2574	NICKEL ALLOY PERMANICKEL	1 14	335
NIREN	2576	NICKEL ALLOY RENE 41	20.41	303320
NIUDM	2578	NICKEL ALLOY UDIMET 500 (WROUGHT)	1 20 41	300330
NIWSP	2580	NICKEL ALLOY WASPALLOY	1 20 41	300330
NI330	2582	NICKEL ALLOY 330 (NI99 55) (ANNEALED)	1	335
CNLOX	4218	NICKEL COBALT OXIDE (46NIO 46COO 8LIO)	20.27	3305555
NIOLI	4222	NICKEL LITHUM OXIDE (95NIO 5LIO)	20.27	3305550
NIOPL	4060	NICKEL OXIDE (NIO) (POLYXTAL 68-74 D)	20,27 32 47 48 51	0
NIOPX	4058	NICKEL OXIDE (NIO) (POLYXTAL 88-100 D)	20,27,32,47,48,51	0
NIO	4056	NICKEL OXIDE (NIO) (SINGLE YTAL)	20,27,32,47,48,51	5
CUNIS	2185	NICKEL SH VER (CU RAL NI 10.20)	126 A1 A7	222255
NIZNE	4226	NICKEL ZINC EEPDITE (NICZNI) EE203)	20	2025502
NR	1246	NICRIEZINE FERRITE (M(ZIV)0.12203)	20 27 22 43 44 42	2023302
NRTAW	3681	NICHIM ALLOY (NR61 TA28 W10 7005)	20,27,52,45,44,42	2200
NRWMO	3684	NIORIUM ALLOY (NB80 W15 MO5)	20	3300
NETIZ	3682	NIORIUM ALLOY (NB85, W15, MOS)	20	3300
NRTAS	3683	NIORIIM ALLOY (NB05 TAS)	20	3203330
NBRED	4714	NIORIIM REPVI I DE (NRRE12) (HP 03.07D)	20 48	2000500
NBBES	4716	NIOBILM REPVILIDE (NB2RE17)	20,40	2000500
NBB2	4620	NIOBILM BORIDE (NBR2) (PRESSED SNTPD)	20,48	2500
NBC	4520	NIOBIUM CAPRIDE (NBC)	20,27,40	2500
NRN	4121	NIORIUM NITRIDE (NRN)	20,27,40,34	20302
NR2N	4436	NIORIIM NITRIDE (NR2N)	20,47,40	200525
NRSI2	4787	NIGRIUM SILICIDE (NIRSI2)	20,47,40	200222
NOGAS	4061	NITRIC OVIDE (NO) (GAS)	1 27	200222
NITED	71/1	MITONE (MO) (GAS)	6 30	300 6666
NITRC	7500		5,57 6	3333
NCAS	1521	NITROCELLULUSE H.E. (12.7 N)	o 07.0.40.1	ccccoc
11-049	1321	MILKOUEN (UAS)	∠ <i>1</i> ,∠,4∠,1	U

•

				Quality Index
ID	No.	Material	References	DCKTHCK*
NYLON	7151	NYLON 6, 11, 66, 610 (POLYCAPROLACTAM)	1638	500
NYLGF	7156	NYLON GLASS FILLED	1,0,56	202555
OBSID	5030	OBSIDIAN GLASS	27 51	202333
ORTHC	4328	ORTHOLIASE (KOO ALOO3 (STO)) (CRYSTAL)	27,51	305530
05	1114	OSMITM	27,51	325555
0.645	1536	OYVGEN (CAS)	27,20,42,41	U
pn of the second	1006		27,42,1,2	0
E0011	7500	PALLADIUM DDV 0011 U.F. (ID (V 00 DOT 4) D 10)	20,41,42,27,43	0
E9011	7507	PDA-9011 R.E. (RMA 90, ESTANE 10)	8	555
DETN	7510	PBA-9404-05 H.E. (HMA 94, NC 3, BIND 3)	8,44	511
PUCAE	7311	PEIN N.E.	8	555
PRICAP	7172	PHENOLIC, CAST, ASBESTOS FILLER	6,38	2555
PRONE	/1/1	PHENOLIC, CAST, NO FILLER	6,38	222555
PHMHD	/1//	PHENOLIC, MOLDED (HIGH DENSITY, K)	6	22555
PHMLD	11/6	PHENOLIC, MOLDED (LOW DENSITY, K)	6	22555
PHKPD	7181	PHENOLIC RESIN, PRESSED, TYPES 40, 50	20	305555
PFPPF	7161	PHENOL-FORMALDEHYDE + PHENOL-FURFURAL	20	2225555
PHNXY	7191	PHENOXY	6,38	2000555
P	1321	PHOSPHORUS (WHITE)	27	40005
PLASL	4963	PLASTER, BUILDING (MOLDED, DRY)	1,27	555
PLAMT	7201	PLASTIC LAMINATE, VARIOUS TYPES	6,20	2222555
GLASP	5034	PLATE GLASS	20,51	305532
PT	1116	PLATINUM	20,1,32,27,41,43,42	0
PU	1121	PLUTONIUM	20,31,3,27,43,42,41,	Ō
PU	1121	PLUTONIUM	+36,44	õ
PUSTD	3701	PLUTONIUM ALLOY (DELTA PHASE)	20.27.31.44	200
PUC	4524	PLUTONIUM CARBIDE (PUC) (ARCM OR CAST)	20.48.53.54	2025502
PUN	4438	PLUTONIUM NITRIDE (PUN)	27.48.53	300530
PUP	4762	PLUTONIUM PHOSPHIDE (PUP) (90 PC DENSE)	53	500
PUS	4747	PLUTONIUM SULFIDE	53	550
UPUOX	4242	PLUTONIUM URANIUM OXIDE (PUO2 4UO2) SEE	53	303530
PO	1473	POLONIUM	20 27	20005
PALLO	7211	POLYALLOMER	6 38	20005
PCARB	7221	POLYCARBONATE, VARIOUS FILLERS	6 38	22333
PESTG	7231	POLYESTER GLASS FIBER REINFORCED TAC	20	2022333
PETHH	7243	POLYFTHYI ENE HIGH DENSITY	6 29	2333
PETHL	7241	POLYETHYLENE I OW DENSITY	6.39	2000
PETHM	7242	POLYETHYLENE MEDUM DENSITY	6 29	2000
PIMHE	7251	POLVIMIDE LEUM KAPTON	0,30	2000
MEMAC	7131	POI VMETHVI METHACOVI ATE	1 20	222
PPROC	7262		1,30	200555
PPROP	7262	POLYDDODYLENE ETLED	0,38	20555
PPROM	7203	DOI VEDORVI ENE MODI IN	0	20555
DETVE	7201	POLIFROPILENE, MOPLAN	6,38	555
DETVC	7271	POLISTIKENE, FUAMED-IN-PLACE, KIGID	6	2020555
DETVM	7270	POLISIIKENE, GENERAL PURPOSE	6,20,38	2550
DETVD	7281	POLISIIKENE, MUDIFIED	6	22555
PSIIP	7280	POLYSTYKENE, PREFOAMED, RIGID, DOW Q103	6,20	2002550
rolil Detvu	1287	FOLYSTYRENE FOAM $(D = 0.038)$ (1 ATM)	1	20552
PSIIV	7289	POLYSTYRENE FOAM ($D = 0.046$) (VACUUM)	1	20552
PSITH	7288	POLYSTYRENE FOAM ($D = 0.046$) (1 ATM)	1	20552
PSULF	7291	POLYSULFONE	5,6,38	555
PURRF	7302	POLYURETHANE FOAMED-IN-PLACE, RIGID	6,20	2320555
PUREF	7301	POLYURETHANE FOAM, FLEXIBLE	6,20,38	2020555
PURER	7311	POLYURETHANE RUBBER L-100	6,38	20555
PVINA	7321	POLYVINYL ALCOHOL	6	5555
PVINB	7331	POLYVINYL BUTYRAL	6,38	555

-

NUREG/CR-0200, Vol. 3, Rev. 6

				Quality Index
ID	No.	Material	References	DCKTHCK*
PVINC	7341	POLYVINYL CARBAZOLE	20	5555
PVCAF	7356	POLYVINYL CHLORIDE ACYTATE ELEXIBLE	20	22255
PVCAR	7357	POLYVINYI, CHI ORIDE ACYTATE RIGID	38	2225555
PVCFL.	7351	POLYVINYL CHLORIDE FLEXIBLE	6 38 20	2223333
PVCRD	7352	POLYVINYL CHLORIDE, RIGID	6 38 20	2222555
PVTPX	7371	POLYVINYI, TPX-R	5 38	5555
PVDCM	7362	POLYVINYLIDENE CHI ORIDE	6 38	22555
PVDCF	7361	POLYVINYLIDENE CHLORIDE FILM	6 38	555
PVDCK	7366	POLYVINYLIDENE FLUORIDE (KYNAR)	5 38	5555
PORAL	5281	PORCELAIN, HIGH ALUMINA	20	3005500
PORZR	. 5282	PORCELAIN, HIGH ZIRCON	20	305535
PORMT	5283	PORCELAIN, MAGNESIUM TITANATE	20.48	305530
PORCE	5286	PORCELAIN, ORDINARY	1.20	3325535
PORBE	5280	PORCELAIN 4811 (BEO)	20	305530
PORC5	5284	PORCELAIN 576	20	325535
K	1226	POTASSIUM	1.27.28.42.41.43.51	0
KLIO	1227	POTASSIUM (LIQUID)	14.27.28.43.47.51	22
KALUM	4972	POTASSIUM ALUM (K2SO4 AL2(SO4)3 24H2O)	1.27	550
ORTHC	4328	POTASSIUM ALUMINUM SILICATE (ORTHOCLAS)	27 51	325555
KRR	4828	POTASSIUM REOMINE (KBR) (PRSD & KR)	1 27 47	210
KRRX	4830	POTASSIUM BROMIDE (KBR) (SINGLE XTAL)	1 27 47 51	210
KBR50	4833	POTASSIUM BROMIDE (KBR 50 KCL 50)	1 27 47 51	3303330
KBR75	4832	POTASSIUM BROMIDE (KBR 75, KCL 25)	1 27 47 51	3303330
KCI	4836	POTASSIUM CHI ORIDE (KCT) (PRSD 8 KR)	1 27 47 51	10
KCISV	4030	POTASSIUM CHLORIDE (KCL) (IKSD & KD)	1 27 47 51	10
KBRSO	4837	POTASSIUM CHLORIDE (KCL) (STEVILE XIAE)	1 27 47 51	3303330
KCI 50	4838	POTASSIUM CHLORIDE (KCL 50, KBK 50) POTASSIUM CHLORIDE (KCL 50, NACL 50)	1 27 47 51	303330
KCL 75	4838	POTASSIUM CHI ODIDE (KCL 35, NACE 30)	1 27 47 51	3303330
KCL/J	4034	POTASSIUM CHI ODIDE (KCL 10, KBR 20)	1 27 47 51	3303330
KCROM	4033	POTASSIUM CHROMATE (KOO 20003) (M AYIS)	1 27	300050
KCRON	4233	POTASSIUM CHROMATE (K20.2CR03) (MAXIS)	1,27	300050
KEKOA	4252	POTASSIUM ELUORIDE (KE) (PRSD 8 KR)	1 27 47	10
KI KI	4842	POTASSIUM IODIDE (KI) (PRSD 8 KR)	1,27,47	10
KEECN	4042	POTASSIOM IODIDE (KI) (PKSD 8 KD) POTASSII IM FERROCYANIDE (KAFE(CN) 6 3H2())	1,27,47	550
KNO3	4076	POTASSIUM NITPATE (KNO3) (PP 2000 KB)	1,27	550
NNO3	4970	PD ASEODVMILIM	41 27 20 A2	205
PK DDD6	1501	DDASEOD IMIUM DODIDE (DDDA) (05 DC DENS)	41,27,20,42	305555
PKDO	4028	PRASEOD I MIUM BORIDE (PRB0) (95 PC DENS)	40 20.27 /2	3332035
	1421	PROMETRION DDOTACTINII DA	20,27,42	30005
FA DVDEV	5016		20,27	50005
PYPC6	5010	PYRACER AM OGOG CER AMIC GI ASS	2,20,27,51	5500
PVPCS	· 5010	PVDCCED AM 0602 CED AMIC CLASS	20	5500
PVPOP	1000	DVDODUVI I ITE (DADALI EL TO REDDING)	27 51	2305530
PVPON	4990	DVDODUVI I ITE (DEDDEND TO BEDDING)	27,51	2305530
SIO2A	4991	OIIAPTZ CRYSTAL & AYIS (SIO2)	1 2 20 27 37 47 51	2200000
SIO2A	4000	OUADTZ CRISTAL, A AAIS (SIO2)	1 2 20 27 37 47 51	2200
SIOLC	6022	OUARTZ ELOUD EINE (DPV)	51	205535
SANQE	6032	OUARTZ FLOUR, FINE (DRT)	51	305555
SANQIN	4062	OUARTZ FLOOR, FINE (H2O 21 FC)	1 20 27 47 51	2200
SANOD	4002	QUARIZ ULASS, FUSED (SIU2) Oliaditz Downed (Coadse (U20 24)	1,20,27,47,JI 51	2200
SANUP	6024	QUARIZ FUWDER, CUARSE (RZU 24) OUARTZ SAND (DDV) (AV DDOD) (SEE DED)	JI 61	202222
SANDI	6024	QUARIZ SAND (DRI) (AV PROP) (SEE REP)	51	2323333
SANDQ	0030	QUAKIZ SAND (WEI) (M20 4-23) (AV PKOP)	31	2323333
KA	14/9		21	2040020
KNGAS	1561	RADON GAS	21	40505
KATTN	8211	KAIIAN	44	20000

1._

I L

				Quality Index
ID	No.	Material	References	DCKTHCK*
RE	1251	RHENIUM	27 42 41 42	
RH	1281	RHODEM	21,43,41,42	2
ROCKS	6022	ROCK OR STONE (AVERAGE PROPERTIES)	20,27,43,42,41	0
STBRC	7431	RUBBER BUNA WITH CAPBON DI ACK	1,40	3335555
BUTYR	7031	RUBBER, BUTYI	6,20,39	200555
RUBBD	7382	RUBBER DIELECTRIC MIX	6 20	222
RUBBK	7383	RUBBER HIGH K	6,20	550
RUBBN	7381	RUBBER NATURAL	6	550
RUBBF	7386	RUBBER, NATURAL, FOAM	620	220555
NEOPR	7136	RUBBER, NEOPRENE	6 38 30	520555
NITRR	7141	RUBBER, NITRILE	0,58,55	333
PURER	7311	RUBBER, POLYURETHANE ELASTOMER 1-100	6 38	2222
RB	1291	RUBIDIUM	1 27 28 42 43 47	20555
RBLIO	1292	RUBIDIUM (LIOUID)	1 14 27 28 43 47	40024
RBCL	4844	RUBIDIUM CHLORIDE (RBCL) (PRSD 8 KB)	1 27 47	20022
RBI	4846	RUBIDIUM IODIDE (RBI) (PRSD 8 KB)	1 27 47	10
RU	1301	RUTHENIUM	20 42 1 27	202020
SM	1371	SAMARIUM	20,72,1,27	202020
SMB6	4632	SAMARIUM BORIDE (SMB6) (96.8 PC DENSE)	48	300555
SMS	4748	SAMARIUM SULFIDE (SMS)	20.48	300550
SANDY	6034	SAND (DRY) (D = 1.36 TO 1.84) (AV PROP)	51	2325555
SANDN	6038	SAND, NORTHWAY (H2O 4-10) (AV PROP)	51	2325555
SANDQ	6036	SAND, OUARTZ (WET) (H2O 4-23) (AV PROP)	2.51	2325555
SANDM	6026	SANDSTONE (AV PROP) (SEE REF 51)	2.27.46.51	25555
SANDL	6025	SANDSTONE (LOW DENSITY)	2.27.46.51	25555
ALOXD	4012	SAPPHIRE (AL2O3) (POLYXTAL) (100 PC D)	1.20.27.32.47.48.51	200
ALOXS	4016	SAPPHIRE (AL2O3) (SINGLE XTAL) (AV DIR)	1.20.27.32.47.48.51	202
SC	1341	SCANDIUM	20.27.41.43	30005
SE	1326	SELENIUM (GREY)	27.43.42.1	20005
SHALE	6028	SHALE (AV PROP) (SEE REF 51)	51	2225555
BRISI	5294	SILICA BRICK, HARD FIRED (SIO2 94-95)	20	330
SIO2	4062	SILICA GLASS, FUSED OR VITROUS	1,20,27,47,51	2200
BRISL	5296	SILICEOUS BRICK (SIO2 89, AL2O3 9)(25P)	47	335
SI	1256	SILICON	20,1,27,41,43,42,48	0
SIB4	4614	SILICON BORIDE (SIB4)	27,48	300530
SICAL	4539	SILICON CARBIDE (SIC) (BRICK AL2O3 1.7)	20,27,32,47	2500
SICCF	4535	SILICON CARBIDE (SIC) (CARBOFRAX BRICK)	20,27,32,47	2500
SICFV	4542	SILICON CARBIDE (SIC) (FOAM, IN VACUUM)	20,32,47	2500
SICFB	4536	SILICON CARBIDE (SIC) (FRIT BND BRICK)	20,27,32,47	2500
SICKT	4534	SILICON CARBIDE (SIC) (KT GRADE)	20,27,32,47,48	2500
SICNB	4541	SILICON CARBIDE (SIC) (NITRIDE BONDED)	20,32,47,48	2503
SICPA	4543	SILICON CARBIDE (SIC) (POWDER, IN AIR)	20,32,47	2500
SICPH	4544	SILICON CARBIDE (SIC) (POWDER, IN HE)	20,32,47	2500
SICRD	4540	SILICON CARBIDE (SIC) (REFRACTORY D-30)	20,27,32,47	2500
SICRP	4538	SILICON CARBIDE (SIC) (REXTAL, 65-70 D)	1,20,27,32,47	2500
SICRX	4537	SILICON CARBIDE (SIC) (REXTAL, 80-100 D)	20,27,32,47,48	2500
SICX1	4531	SILICON CARBIDE (SIC) (SINGLE XTAL)	20,27,32,47	22500
SICX2	4532	SILICON CARBIDE (SIC) (SINGLE XTAL)	20,32,47,48	22505
SICSB	4533	SILICON CARBIDE (SIC) (SLF BND, HE ATM)	20,27,32,47	2500
SICSI	5424	SILICON CARBIDE + SI (SIC 76, SI 24)	20	3305550
SI3NL	4444	SILICON NITRIDE (SI3N4) (70 PC DENSE)	20,27,47,48	20502
SI3N4	4442	SILICON NITRIDE (SI3N4) (85 PC DENSE)	20,27,47,48	20502
SIO2F	4068	SILICON OXIDE (SIO2) (FOAM, 1 ATM AIR)	1,20,27,47	2200
SIO2	4062	SILICON OXIDE (SIO2) (FUSED QUARTZ)	1,20,27,47,51	2200
SIO2A	4066	SILICON OXIDE (SIO2) (QUARTZ, A AXIS)	1,2,20,27,37,47,51	2200

NUREG/CR-0200, Vol. 3, Rev. 6

ID.	NT-			Quality Index
	NO.	Material	References	DCKTHCK*
SIO2C	4064	SILICON OXIDE (SIO2) (OHARTZ CAXIS)	1 2 20 27 37 47 51	2200
SITE	4936	SILICON TELLURIDE (SITE)	20	305555
SILFE	7401	SILICONE FOAM FLEXIBLE (LRL)	6.20	2022222
SILFR	7402	SILICONE FOAM RIGID VARIOUS	6 20	2022555
SILRH	7423	SILICONE RUBBER HIGH K (SEE REE 5)	5 6 41 44	2022555
SILRI	7421	STLICONE RUBBER I OW K (SEE REE 5)	564144	220555
SILRM	7422	SILICONE RUBBER, MEDUIM K (SEE DEE 5)	564144	220555
SIL R1	7422	SILICONE RUBBER, MEDION R (SEE REF 5)	56111	220333
SILMD	7411	SILICONE MOLDED VARIOUS EN LEPS	5 20 38	220333
BRISK	5298	SILLIMANITE BRICK (22 PC POROSITY)	20	300530
AG	1126	SILVER	20 20 20 20 20 20 20 20 20 20 20 20 20 2	00000
AG	1126	SILVER	±11 13	0
AGUIO	1120		717,40	20005
	3751	SILVER (EIGOID)	27,32,42,43 1	30003
SNTE?	4940	SILVER ANTIMONY TELLIDIDE (SNTE 25 PC)	20	323
AGCI	4240	SILVER ANTIMONT TELEVRICE (SATE 2) FC	20	3303333
AG2SE	4040	SILVER CHEORIDE (ACCE) (SINGLE CRISTAL)	27,47,31	10
SI ATE	6030	SILVER SELENIDE (AUZSE) SI ATE (AV DDOD) (SEE DEE S1)	20,27,47 51	20502
GLASC	5030	SODA LINE CLASS	51	2225555
ULASC NA	10052	SODA-CIME GLASS	20,27	3323332
NALIO	1221	SODIUM (LOUD)	2,1,27,28,41,42,43,51	
NALIQ	1222	SODIUM (LIQUID)	1,14,27,28,42,43,47,	1
NALIQ	1222		+51	1
ANALC	4329	SODIUM ALUMINUM SILICATE HYDRATE (XTAL)	27,51	305555
NABK	4850	SODIUM BROMIDE (NABR) (PRSD 8 KB)	1,27,47	10
NACLO	4978	SODIUM CHLORATE (NACLO3) (CRYSTAL)	1,27,51	505
NACL	4852	SODIUM CHLORIDE (NACL) (CLEAR CRYSTAL)	1,27,47,51,52	10
NACLR	4854	SODIUM CHLORIDE (NACL) (OPAQUE, IMPURE)	1,27,47,51,52	10
KCLS0	4838	SODIUM CHLORIDE (NACL 50, KCL 50)	1,27,47,51	303330
NAF	4856	SODIUM FLUORIDE (NAF) (PRSD 8 KB)	1,27,47	10
SOILS	6046	SOIL (AV PROPS) (SEE REFS)	2,46,51	2225555
SOIL3	6044	SOIL, CLAY (WET)	51	2225555
SANQF	6032	SOIL, FINE QUARTZ FLOUR (DRY)	51	305535
SANQW	6033	SOIL, FINE QUARTZ FLOUR (H2O 21 PC)	51	305555
SOIL1	6042	SOIL, LOAM (DRY) (AV PROP) (SEE REFS)	2,51	2225555
SOIL2	6043	SOIL, LOAM (H2O 4-27 PC) (AV, SEE REFS)	2,51	2225555
SOILM	6048	SOIL, MARS SURFACE (SEE UCRL-50309)		5555
SOLID	6050	SOIL, SANDY DRY	46	5555
SOILW	6052	SOIL, SANDY (H2O 8)	46	5555
ART	7007	SOLID, REGULATING (D=C=K=TM=1,HM=10**9)		0
ART6	9006	SOLID, UNIT LATENT HEAT (D=C=K=TM=HM=1)		0
ART3	9003	SOLID, UNIT PROPERTY (D=C=K=1)		0
SNOWF	8231	SNOW, FRESH	2,27	55
SNOWP	8232	SNOW, PACKED	27,46	55
SOLD1	3611	SOLDER (PB37.5, SN37.5, IN25)	36	3355
SOLD2	3612	SOLDER (PB39.2, SN60.8)	34,41	5
SOLD4	3613	SOLDER (PB50, SN50)	1,41	50
SOLD3	3614	SOLDER (PB60, SN40)	1,41	55
SPINX	4224	SPINEL (MGO.AL2O3) (SINGLE CRYSTAL)	20,27,47,48,51	500
SPINL	4225	SPINEL (MGO.AL2O3) (100 PC DENSE POLYX)	20,27,47,48,51	500
H2OGS	4113	STEAM (H2O) (GAS) (SATD)	1,2,14,27,46	205550
H2OG1	4112	STEAM (H2O) (GAS) (1 ATM)	1,2,14,27,46	200050
STEAT	4326	STEATITE (MGO.SIO2) (COMMERCIAL GRADES)	1,20,27,51	505
STALL	3101	STEEL, ALLOY AND MILD (4130, 4340)	6,41,46	3302
STALC	3106	STEEL, ALLOY, CAST	6	3355
STCAR	3116	STEEL, CARBON, TYPE 1020 (0.2 - 0.6 C)	1,20,37	300

•-----

			······································	Quality Index
ID	No.	Material	References	DCKTHCK*
STCEC	2111	STEEL EREE CUTTING ELITECTOD	2 4 6 20 41	200
STUCE	3121	STEEL, IKEE COTTING, BOTECTOID	2,4,0,20,41	300
COMTI	2626	STEEL, MULTHET (N 155) (LOW C)	20	3303355
CONTL	2030	STEEL, MULTIMET (N-155) (LUW C)	1,14,20,41	330
COMINI STSTA	2034	STEEL, MULTIMET (N-155) (WROUGHT)	1,14,20,41	330
01014 CTCT2	2121	STEEL, STAINLESS (CK 12-13, NI 0-3)	1,2,4,14,20	300
31313	3131	STEEL, STAINLESS (CK 10-20, NI 8-36)	1,2,4,6,20,37	2023333
SSC08	3208	STEEL, STAINLESS CAIS, CA40 (CAST)	1	355
55009	3209	STEEL, STAINLESS CB30, CC50 (CAST)	1	355
SSC13	3213	STEEL, STAINLESS CK, CH, HI (CAST)	1	355
55012	3212	STEEL, STAINLESS CF (CAST)	1	355
SSC04	3204	STEEL, STAINLESS CN-7M (CAST)	1	355
SSC06	3206	STEEL, STAINLESS HA (CAST)	1	355
SSC07	3207	STEEL, STAINLESS HC, HD (CAST)	1	355
SSCII	3211	STEEL, STAINLESS HE (CAST)	1	355
SSC05	3205	STEEL, STAINLESS HF (CAST)	1	355
SSC10	3210	STEEL, STAINLESS HH, HL, HK (CAST)	1	355
SSC03	3203	STEEL, STAINLESS HT (CAST)	1	355
SSC02	3202	STEEL, STAINLESS HU (CAST)	1	355
SSC01	3201	STEEL, STAINLESS HW (CAST)	1	355
STST3	3131	STEEL, STAINLESS SERIES 300	1,2,4,6,20,37	2023333
STST4	3141	STEEL, STAINLESS SERIES 400	1,2,4,20	300
STPH4	3171	STEEL, STAINLESS 17-4PH	20,14	23302
STPH7	3176	STEEL, STAINLESS 17-7PH	20,14	2003300
ST199	3186	STEEL, STAINLESS 19-9DL	. 41	2300
STST2	3126	STEEL, STAINLESS 201 AND 202	1	3355
ST304	3133	STEEL, STAINLESS 304	1,4,37	300
ST347	3135	STEEL, STAINLESS 321 AND 347	1,2,4,20,37,14	300
STS4A	3146	STEEL, STAINLESS 430, 430F, AND 431	1,2,4,6,20,14	302
STS4B	3151	STEEL, STAINLESS 446	1,14,20	302
STST5	3161	STEEL, STAINLESS 501 AND 502	2,4	2303330
WCCO2	5453	STEEL, TOOL, TUNGSTEN CARBIDE CA2	20	3300530
WCCO1	5452	STEEL, TOOL, TUNGSTEN CARBIDE CA4	20	3300530
STUHS	3181	STEEL, ULTRA HIGH STRENGTH TYPE 300-M	1	355
SR	1296	STRONTIUM	20,28,42,27	240024
SRS04	4980	STRONTIUM SULFATE (SRSO4) (CRYSTAL)	1,27,51	550
SRTIT	4234	STRONTIUM TITANATE (SRO.TIO2) (100 D)	20,48	500
SRTIP	4235	STRONTIUM TITANATE (SRO.TIO2) (80 D)	20,48	500
STCO1	5426	STRONTIUM TITANATE + CO (CO 10)	20	3300535
STCO2	5427	STRONTIUM TITANATE + CO (CO 20)	20	3300535
STCO3	5428	STRONTIUM TITANATE + CO (CO 30)	20	3300535
STCO4	5429	STRONTIUM TITANATE + CO (CO 40)	20	3300535
STBRC	7431	STYRENE-BUTADIENE RUBBER + CARBON BLK	6.20.39	200555
S	1331	SULFUR	27.1.42.30.2.41	10001
SO2	4071	SULFUR DIOXIDE (SO2) (GAS)	1	5500
TALC	4994	TALC	20.27.51	5505
TA	1161	TANTALUM	20.1.27.32.37.43	20002
TANBV	3784	TANTALUM ALLOY (TA62, NB30, V7.5)	20	3300
TAWHF	3785	TANTALUM ALLOY (TA89, W9, HF2)	20	300
TA10W	3781	TANTALUM ALLOY (TA90, W10)	20.36	500
TACUZ	3783	TANTALUM ALLOY (TA98 CHO 7 ZRO 7)	20,20	2200
TANB1	3782	TANTALUM ALLOY (TA99 5 NRO 5)	20	3303330
TASB	4944	TANTALIM ANTIMONIDE (TASB)	20	3305557
TARED	4719	TANTAL LIM RERVI LIDE (TARE19) (UD)	20 48	2202224
TABED	4720	TANTALIM RERVILIDE (TADE12) (HF)	20,40	500
TAR	4647	TANTALIIM RORIDE (TABLED STIT	20,70	200
	-0-12	I I I I I I I I I I I I I I I I I I I	£U,£1,41,40	500

NUREG/CR-0200, Vol. 3, Rev. 6

				Quality Index
ID	No.	Material	References	DCKTHCK*
TAB2	4644	TANTALUM BORIDE (TAB2)	20.27.47.48	2020502
TAC	4562	TANTALUM CARBIDE (TAC)	20.27.48.54	2020502
WCC05	5456	TANTALUM CARBIDE + WC CERMET K601	49	300530
TAN	4446	TANTAL UM NITRIDE (TAN)	20 27 48	2220525
TA2N	4448	TANTAL UM NITRIDE (TA2N)	20,27,40	2220323
TASI2	4784	TANTAL UM SILICIDE (TASI2)	20,27	300535
TC	1164	TECHNICIIM	20,27	40025
ECTEE	7111	TEELON	1 6 20 29	40023
ECTED	7112	TEMON DEINEODCED	1,0,20,36	2500
TE	1499	TELLON, REINFORCED	20	2000
	1400	TEDDUD	27,20,42,41,1	20002
ID TDD4	1360	TERDIUM TERDIUM DOBIDE (TRDA) (04.2 DO DENOE)	20,27,41,42,43	30205
1880	4038	TERBIUM BORIDE (TBBO) (94.5 PC DENSE)	48	302222
TEIRL	/512	IBIRIL H.E.	8	300555
IL	1330	I HALLIUM	41,27,1,42,47	0
TLLIQ	1337	THALLIUM (LIQUID)	1,14,27,42,43,47	55
TH	1166	THORIUM	20,32,34,27,37,43,44,	2
TH	1166	THORIUM	+41	2
THB4	4646	THORIUM BORIDE (THB4)	20,27,48	2002502
THB6	4648	THORIUM BORIDE (THB6)	20,27,48	2000535
THC	4564	THORIUM CARBIDE (THC) (80 PC DENSE)	20,27,48,54	300530
THC2	4565	THORIUM CARBIDE (THC2) (69 PC DENSE)	20,27,48,54	300530
TH02	4072	THORIUM OXIDE (TH02) (96-100 PC DENSE)	1,20,27,47,48,51	2002300
TM	1406	THULIUM	20,27,41,42,43	30005
SN	1171	TIN	2,1,27,32,42,41,47	0
SNLIQ	1172	TIN (LIQUID)	1,14,27,32,41,42,43	0
SOLDI	3611	TIN ALLOY (SN37.5, PB37.5, IN25)	36	3355
SOLD3	3614	TIN ALLOY (SN40, PB60) (SOLDER)	1,41	55
SOLD4	3613	TIN ALLOY (SN50, PB50) (SOLDER)	1,41	50
SOLD2	3612	TIN ALLOY (SN60.8, PB39.2) (SOLDER)	34.41	5
SNO2	4074	TIN OXIDE (SNO2) (93-95 PC DENSE)	1,20,27,47,48	2300
SNTE2	4940	TIN TELLURIDE (SNTE 25, AGSBTE2 75)	20	3305555
SNTE6	4939	TIN TELLURIDE (SNTE 60, AGSBTE2 40)	20	3305555
SNTE8	4938	TIN TELLURIDE (SNTE 80, AGSBTE2 20)	20	3305555
TI	1176	TITANIUM	20.27 32 37 42 43 41	20002
TI	1176	TITANIIM	±1	20002
TIAT 1	2712	TITANUM ALLOY (TIBAL AL2 MN2)	20	3303330
TIAL 2	2716	TITANIUM ALLOY (TI BAL ALA (TI) 7D2)	20	3203330
TIAL 7	2730	TITANIUM ALLOY (TI BAL, ALA, CU2, 202)	20	3303330
	2730	TITANIUM ALLOY (TI DAL, ALA, CO4, SA2) TITANIUM ALLOY (TI DAL, ALA, MO2, $V(1)$	20	2022202
TIALS	2732	TITANUM ALLOT (TIDAL, ALA, MOS, VI)	20	2202220
TIALO	2720	TITANIUM ALLOT (TI BAL, ALA, $V1$, MOUO) TITANIUM ALLOY (TI BAL, ALA, $V2$ MOI)	20	2202220
TIALA	2714	TITANUM ALLOT (TIDAL, ALA, $V2$, MOI) TITANUM ALLOY (TIDAL ALA, $V2$ MOI)	20	3203330
TIALA	2710	$\frac{111}{111} \frac{110}{110} \frac{110}{110} \frac{110}{110} \frac{110}{100} 11$	20	2202220
TIALO	2120	TITANULM ALLOY (TIDAL, ALA, ZKS.S)	20	202220
TIAL	2130	TITANIUM ALLUI (II BAL, ALS, SN2.5)	41,45	303330
11555	2738	TITANIUM ALLUI (TIBAL, ALS, SNS, ZKS)	40	303330
TIAI3	2/40	ITTANIUM ALLOY (ITBAL, ALO, V4)	20,37,45	300
IIAIS	2142	TITANIUM ALLOY (11 BAL, ALX, MOI, VI)	45	3330
TIA14	2746	TITANIUM ALLOY (TI BAL, CR3.4, MO2.1)	20	3303330
TIALS	2752	TITANIUM ALLOY (TI BAL, SN4.8, AL4.5)	20	3303330
TIAL9	2754	TITANIUM ALLOY (TI BAL, SN5.5, AL2)	20	3303330
TIV14	2768	TITANIUM ALLOY (TI BAL, V14, CR10, AL4)	20	3003300
TIV15	2766	TITANIUM ALLOY (TI BAL, V15, AL2.8)	20	3003300
TIA10	2770	TITANIUM ALLOY (TI BAL, ZR3, AL2)	20	3303330
TI100	2750	TITANIUM ALLOY C100M (RC130A) (MN7.9)	20	203320
TIH40	2722	TITANIUM ALLOY HYLITE 40 C130AM, RC130B	1,20,41	303330

NUREG/CR-0200, Vol. 3, Rev. 6

.

.

				Quality
ID	No.	Material	References	DCKTHCK*
TIH50	2724	TITANIUM ALLOY HYLITE 50 (IMI550)	20.45	303330
TIH51	2726	TITANIUM ALLOY HYLITE 51 (IMI551)	45	303330
TIH55	2760	TITANIUM ALLOY HYLITE 55 (IMI)	20,45	303330
TIH6 0	2758	TITANIUM ALLOY HYLITE 60 (IMI)	20.45	303330
TIH65	2756	TITANIUM ALLOY HYLITE 65 (IMI)	45	303330
TI679	2764	TITANIUM ALLOY IMI 679 (SN11, ER5, AL2)	45	303330
TI680	2762	TITANIUM ALLOY IMI 680 (SN11, M04, AL2)	45	303330
TI140	2748	TITANIUM ALLOY TI140A (FE2, CR2, MO2)	20	3303330
TI150	2744	TITANIUM ALLOY TI150A (CR2.7, FE1.4)	20	3003300
T1155	2734	TITANIUM ALLOY TI155A (AL5, FE2, CR1, MO1)	1.20	3303330
TIBED	4722	TITANIUM BERYLLIDE (TIBE12) (HP, 95D)	20.48	2500
TIB2	4650	TITANIUM BORIDE (TIB2) (HP, 95 PC DENS)	20.27.47.48	500
TIC93	4567	TITANIUM CARBIDE (TIC) (93 PC DENSE)	20.27.47.48.54	22502
TIC96	4566	TITANIUM CARBIDE (TIC) (96 PC DENSE)	20.27.47.48.54	22502
TICC2	5431	TITANIUM CARBIDE + CO (CO18 NBC.TAC15)	20	3305535
TICC1	5430	TITANIUM CARBIDE + CO (TIC 80, CO 20)	20	305535
TICC3	5432	TITANIUM CARBIDE + NBC + NI	20	3305535
TICCR	5442	TITANIUM CARBIDE + NI OR CO (AVG PROP)	48	2220555
TICC5	5434	TITANIUM CARBIDE CERMET K138A	49	305530
TICC6	5435	TITANIUM CARBIDE CERMET K151A	49	305530
TIC10	5439	TITANIUM CARBIDE CERMET K161B	20	3005500
TICC4	5433	TITANIUM CARBIDE CERMET K162B	49	305530
TICC7	5436	TITANIUM CARBIDE CERMET K163B1	49	305530
TICC8	5437	TITANIUM CARBIDE CERMET K164B	49	305530
TICC9	5438	TITANIUM CARBIDE CERMET K165	49	305530
TINIT	4452	TITANIUM NITRIDE (TIN) (HP, 70-90 DENS)	20.27.47.48	2020502
TIO2A	4084	TITANIUM OXIDE (TIO2) (RUTILE, A AXIS)	1.20.27.32.47.48.51	20202
TIO2C	4082	TITANIUM OXIDE (TIO2) (RUTILE, CAXIS)	1.20.27.32.47.48.51	20202
TIO2	4086	TITANIUM OXIDE (TIO2) (RUTILE, 100 D)	1.20.27.32.47.48.51	200
TNT	7513	TNT H.E. (2, 4, 6-TRINITROTOLUENE) (CAST)	8	555
TOPAZ	4301	TOPAZ (2ALFO.SIO2) (A-AXIS)	27.51	305550
TOPAC	4302	TOPAZ (2ALFO.SIO2) (C-AXIS)	27.51	305551
TOURM	4996	TOURMALINE	27.51	305550
T-GAS	1566	TRITIUM GAS		3335533
W	1181	TUNGSTEN	20.1.32.34.27.37.42	0
W	1181	TUNGSTEN	+41 43	Ň
W25RE	3801	TUNGSTEN ALLOY (W75, RE25)	142,45	3303330
WNICU	3802	TUNGSTEN ALLOY (W90, NI6, CU2-4)	20	303330
WB	4652	TUNGSTEN BORIDE (WB)	20 27 47 48	2500
WC	4568	TUNGSTEN CARBIDE (WC)	20.27.47.48.54	2500
WCC12	5463	TUNGSTEN CARBIDE CERMET CARBOLOY 883	50	300530
WCC11	5462	TUNGSTEN CARBIDE CERMET CARBOLOY 905	50	300530
WCC10	5461	TUNGSTEN CARBIDE CERMET CARBOLOY 999	50	300530
WCCO2	5453	TUNGSTEN CARBIDE CERMET CA2 TOOL STEEL	20	3300530
WCC01	5452	TUNGSTEN CARBIDE CERMET CAA TOOL STEEL	20	3200520
WCCO3	5454	TUNGSTEN CARBIDE CERMET K6 AND K96	20 20 20 20 20 20 20 20 20 20 20 20 20 2	300530
WCCO5	5456	TUNGSTEN CARBIDE CERMET K601	49	300530
WCC08	5459	TUNGSTEN CARBIDE CERMET Y701	49	200220
WCC09	5460	TUNGSTEN CARBIDE CERMET KR01 (WC + NI)	40	200220
WCC07	5458	TUNGSTEN CARBIDE CERMET KO2	49	200520
WCCOA	5457	TINGSTEN CARRIDE CERMET KOA AND KI	47	300530
W03	4002	TINGSTEN ONDE (WOR) (DOI VYTAL DODOUS)	47 20 27 47 49	20202
WSE2	4072 1016	TUNGSTEN SELENIDE (NOS) (POLIATAL, POKOUS)	20,27,47,48	20305
WSI2	4740	TINCCTEN SH ICTDE (WSE2)	20,27,49	3303550
WTEO	4/00	TINGSTEN TELLUDE (WOLZ) (HP, 95 DENSE)	20,27,48	2002500
11 1 1 1 2	474/	TUNGSTEN TELLUKIDE (WTEZ)	20,27	3303555

NUREG/CR-0200, Vol. 3, Rev. 6

......

		······································		Quality Index
	No	Material	References	DCKTHCK*
WTICS	5470	THNGSTEN TITANIHM CADRIDE VM	40	200520
WCCO4	5465	TINGSTEN TITANUM CARBIDE KYS	49	200520
WTIC7	5472	TINGSTEN TITANUM CARDIDE K25	20,49	300330
WTIC6	5471	TUNGSTEN TITANIIM CARBIDE KAH	49	300330
WTIC4	5469	TUNGSTEN TITANUM CARBIDE KSH	49	200520
WTIC3	5468	TINGSTEN TITANII M CAPRIDE K91	49	200520
WTIC2	5467	TINGSTEN TITANIUM CARBIDE KM	49	200520
WTICI	5466	TINGSTEN TITANIIM CAPRIDE KS6 K7H K3H	49	200520
U	1186	IRANIIM	-+	500550
ŭ	1186	URANIIM	±A1 A2 AA 3A	0
MULBY	3831	IRANUM ALLOY MIL BERRY	34 36 37	0
UI8ZR	3833	URANIUM ALLOY (US2 7R18)	20,37	202220
U9OFS	3837	URANIUM ALLOY (U90 FS10)	20,54	303330
UI0MO	3832	URANIUM ALLOY (U90, MO10)	20 25 26	300
UFSZR	3838	URANIUM ALLOY (U93, FS5, ZR2)	20,55,50	303330
UCREU	3835	URANIUM ALLOY (U94 4 CR5 6) (EUTECTIC)	20	3003300
UZRO5	3840	URANIUM ALLOY (U95 7R5)	20	30303330
UO4NB	3834	URANIUM ALLOY (196 NR4)	20 34	202220
U97FS	3836	URANIUM ALLOY (U97, FS3)	20,34	303330
UZRO2	3839	URANIUM ALLOY (U98 5 ZR1 5)	20	303330
UBE13	4724	URANIUM RERYLLIDE (URE13) (SNTRD 61D)	20 48	305550
UB4	4654	LIRANIUM BORIDE (UBA)	20,48	200555
UCAMC	4572	URANIUM CARBIDE (UC) (ARCM OR CAST 90D)	20,40	300333
UCAVG	4574	URANIUM CARRIDE (UC) (AVG VAR TYPES)	20,48,53,54	2502
UCSNT	4573	URANIUM CARBIDE (UC) (SINTERED 90D)	20,48,53,54	2502
UC2	4576	URANIUM CARBIDE (UC2)	20,46,55,54	2000500
UN	4454	URANIUM NITRIDE (UN) (HP 95-98 DENSE)	20,27,40,54 20,27,48 PW AC481_65	2000500
UO2PX	4096	URANIUM OXIDE (UO2) (POLYXTAL 97 DENS)	20,27,48,1 (7,40,401-05	500
UO2	4094	URANIUM OXIDE (UO2) (SINGLE CRYSTAL)	20,27,47,48,51	500
U3O8L	4099	URANIUM OXIDE (U308) (PRSD AT 100 PSD)	1 20 27 47 48	2002500
U3O8H	4098	URANIUM OXIDE (U308) (PRSD AT 4200 PSI)	1 20 27 47 48	2002500
UO2CR	5482	URANIUM OXIDE + CR (UO2 80 VOL) (97 D)	20	4305550
UOMO3	5486	URANIUM OXIDE + MO (UO2 70 VOL) (92 D)	20	4305550
UOMO2	5485	URANIUM OXIDE + MO (UO2 80 VOL) (91 D)	20	4305550
UOMO1	5484	URANIUM OXIDE + MO ($IIO2 80 VOL$) (94 D)	20	4305550
UO2NB	5488	URANIUM OXIDE + NB (UO2 80 VOL)	20	4305550
UO2S1	5490	URANIUM OXIDE + ST STEEL (UO2 70 VOL)	20	4305550
UO2S2	5491	URANIUM OXIDE + ST STEEL (UO2 80 VOL)	20	4305550
UO2Z1	5492	URANIUM OXIDE + ZR (UO2 43.ZR 57)(59 P)	20	4305530
UO2Z2	5493	URANIUM OXIDE + ZR (UO2 $80.ZR 20$)	20	305535
UPUOX	4242	URANIUM PLUTONIUM OXIDE (4UO2.PUO2) SEE	53	303530
U3SI	4788	URANIUM SILICIDE (U3SI)	20.48	20525
URFMA	7442	UREA-FORMALDEHYDE, ALPHA CELLULOSE FLLR	38	25555
URFMN	7441	UREA-FORMALDEHYDE, MOLDED	38	25555
ART2	9002	VACUUM, CONDUCTING (D=C=0, K=10**9)		0
ART1	9001	VACUUM, INSULATING (D=C=K=0)		õ
V	1286	VANADIUM	20 32 27 41 42 43	õ
VBE12	4726	VANADIUM BERYLLIDE (VBE12) (85 PC DENS)	20.48	505
VB2	4656	VANADIUM BORIDE (VB2)	20,27,48	20555
VC	4578	VANADIUM CARBIDE (VC)	20.27.47.48.54	2022502
VN	4456	VANADIUM NITRIDE (VN) (PR. STRD. 100 D)	20.27.47.48	22505
VERM2	5292	VERMICULITE, EXPANDED $(m = 0.19-0.25)$	20	305530
VERM3	5293	VERMICULITE, EXPANDED ($D = 0.3$)	20	305530
VERMI	4986	VERMICULITE BRICK	20	305550
VERMP	4988	VERMICULITE INSULATING POWDER	20	305550
_				

1____

				Quality Index
ID	No.	Material	References	DCKTHCK [*]
SIO2	4062	VITROUS SILICA GLASS	1 20 27 47 51	2200
VYCOR	5036	VYCOR GLASS	1,20,27,47,51	2200
H2OGS	4113	WATER (H2O) (GAS) (SATD)	20,27	500
H20G1	4112	WATER (1120) (CAS) (SATD) WATER (1120) (CAS) (1 ATM)	1,2,14,27,40	205550
WATER	4112	WATER (H2O) (UAS) (TATM)	1,2,14,27,40	200050
ICE	4116	WATER (H2O) (LIQUID)	2,14,27,46	0
D2O	4110	WATER (H2O)(SOLID) (ICE)	27,46,51	0
CI ASW	4110	WATER, HEAVI (D20) (LIQUID)	14,27	300
DAL CI	9516	WINDOW GLASS, LIME	20	305530
DALSI	0510	WOOD, BALSA (ACROSS GRAIN)	1,2,27	305555
CYDDC	0517	WOOD, BALSA (ACROSS GRAIN)	1,2,27	305555
CIPKS	8108	WOOD, CYPRESS (ACROSS GRAIN)	1,27	305555
MARUG	8520	WOOD, MAHOGANY (ACROSS GRAIN)	1,27	305555
MAPLE	8522	WOOD, MAPLE (ACROSS GRAIN)	1,2,27	305555
PINEW	8526	WOOD, NORWAY PINE (ACROSS GRAIN)	1,2,27	305555
OAKLD	8525	WOOD, OAK, RED, BLACK (ACROSS GRAIN)	1,2,27	05555
OAKHD	8524	WOOD, OAK, WHITE, LIVE (ACROSS GRAIN)	1,2,27	05555
PINEL	8527	WOOD, OREGON PINE (ACROSS GRAIN)	1,2,27	305555
PINEW	8529	WOOD, PINE (WITH GRAIN)	1,2,27	305555
WOOD2	18513	WOOD, SPRUCE (ACROSS GRAIN)	46	5555
WOODI	8512	WOOD, SPRUCE (WITH GRAIN)	46	5555
TEAK	8530	WOOD, TEAK (ACROSS GRAIN)	1,2	305555
PINEV	8528	WOOD, VIRGINIA PINE (ACROSS GRAIN)	1,2,27	305555
FIRWH	8532	WOOD, WHITE FIR (ACROSS GRAIN)	1,2	305555
PINEA	8534	WOOD, WHITE PINE (ACROSS GRAIN)	1,2,27	305555
XE	1541	XENON	27,42	30000
YB	1411	YTTERBIUM	20,27,41,42,43	30205
YBB6	4640	YTTERBIUM BORIDE (YBB6) (90.6 PC DENS)	48	305555
Y	1346	YTTRIUM	41,27,1,20,42,43	20005
YB6	4622	YTTRIUM BORIDE (YB6) (98.4 PC DENSE)	48	300555
Y2O3	4102	YTTRIUM OXIDE (Y2O3) (96-100 PC DENSE)	20,27,47,48	300
ZNFEO	4252	ZINC FERRITE (ZNO.FE203) (PR, FRD, VAC)	20,27	500
ZNO	4104	ZINC OXIDE (ZNO) (PRSD, FIRED, 100 D)	1,20,27,47,48,51	2000
ZNS	4750	ZINC SULFIDE (ZNS) (CUBIC CRYSTAL)	1,27,47,48,51	310
ZINC3	3863	ZINC-ALUMINUM ALLOY ASTM 23	1,6,41	355
ZINC4	3864	ZINC-ALUMINUM-COPPER ALLOY ASTM 25	1,6,41	355
ZIRCN	4330	ZIRCON (ZRO2.SIO2) (SINGLE CRYSTAL)	20,27,48,61	2505
PORZR	5282	ZIRCON PORCELAIN, HIGH	20	305535
ZR	1196	ZIRCONIUM	20,27,32,37,43,42,41	20002
ZR3ZI	3882	ZIRCONIUM ALLOY 3ZI (ZR97, AL1, SN1, MO1)	20	303330
ZIRCA	3881	ZIRCONIUM ALLOYS ZIRCALLOY 2 AND 3	1.6.14	200355
ZRBET	4728	ZIRCONIUM BERYLLIDE (ZRBE13)	20,48	500
ZRB2	4658	ZIRCONIUM BORIDE (ZRB2) (HP, 97 PC DEN)	20.27.47.48	20502
ZRB2B	5496	ZIRCONIUM BORIDE + BORON (BOROLITE 101)	47.48	505
ZRB2Z	5498	ZIRCONIUM BORIDE + MOSI2 (BORIDE Z)	47.48	2000500
ZRC	4580	ZIRCONIUM CARBIDE (ZRC) (HP OR SNT.94D)	20.27.48.54	22502
ZRH12	4892	ZIRCONIUM HYDRIDE (ZRH + ZRH2)	20	225522
ZRNPF	4458	ZIRCONIUM NITRIDE (ZRN) (PR SR 88-90 D)	20 27 47 48	500
ZRNPS	4459	ZIRCONIUM NITRIDE (ZRN) (PR SR 93 D)	20,27,47,48	20502
ZROYZ	5495	ZIRCONIUM OXIDE (Y203 12 7R 8) (97 D)	20	120502
ZRO2	4106	ZIRCONIUM OXIDE (FR02) (NONOC 100 D)	1 20 27 47 49 51	000000 0
ZRO2C	4108	ZIRCONILIM OXIDE (ZRO2 % CAO 6 01 D)	1,40,47,47,40,21	0
ZROTI	5494	$ZIRCONTIN OXIDE + TI CEPMET 7T_15M$	1,40,47,47,40,21 20	U 5500
ZIRCN	4330	ZIRCONUM SILICATE (ZDO) SION (VTAL)	20 27 48 41	3300
ZIRCP	4332	7IRCONIIM SILICATE (2RO2 SIO2) (100 D)	20,27,40,01	2000
	7334	ZINCOMON SILICATE (ZRUZ.SIUZ) (100 D)	20,27,40,01	2500

*See text description of columns 73-79 for explanation of property abbreviation used in each column.
M5.7 MATERIAL DATA LIST

The data for each material are contained on one to seven card-image records. A listing of the material data in the cgs-cal-°C units system may be found in Ref. 1 or read from the appropriate file in the SCALE code package. The following format is used:

MATERIAL IDENTIFICATION CARD:

Columns 1-5

Alphanumeric identifier (same as in material index).

Column 6

Always left blank.

Columns 7-10

Material identification number (same as in material index).

<u>Columns 11-20</u>

Always left blank. (Used in TRUMP program² to specify identification numbers of any chemical reactants associated with the material. Such numbers, if required, must be added manually.

Columns 21-25

Number of data pairs listed in the table of specific heat vs temperature. This number does not exceed 12. If the number is not zero, it is always two or more.

<u>Columns 26–30</u>

Number of data pairs listed in the table of thermal conductivity vs temperature. This number does not exceed 12. If this number is not zero, it is always two or more.

Columns 31-40

Density of material in grams per cubic centimeter (g/cm³). This value is normally the value at or near room temperature or the lowest temperature for which specific heat or thermal conductivity is tabulated, whichever is highest. For use in codes that assume a fixed geometry, both the density and specified dimensions should correspond to the same conditions of temperature and pressure.

<u>Columns 41-50</u>

Specific heat of the material, in cal/g-°C, if constant or if the temperature dependence is unknown. When a table of specific heat vs temperature is listed, the value given here is normally the value at or near room temperature or at the lowest temperature tabulated, whichever is higher.

<u>Columns 51-60</u>

Thermal conductivity of the material, in cal/s-cm-°C, if constant or if the temperature dependence is unknown. When a table of thermal conductivity vs temperature is listed, the value given here is normally the value at or near room temperature or the lowest temperature listed in the table, whichever is higher.

<u>Columns 61-70</u>

Transition temperature of maximum temperature, in °C, at which material may be used. If a latent heat is specified in columns 71-80, this is the transition temperature at which either a phase-change or solid-state transition occurs. If a material has more than one transition with a latent-heat effect, others are included in the table of specific heat vs temperature as a triangular peak superimposed over the actual specific heat curve.' This triangular peak has a base width of 10° C and a height of 115 of the latent heat of transition, in cal/g, and is centered at the transition temperature.

<u>Columns 71-80</u>

Latent heat absorbed by the material, in cal/g, when the temperature is increased past the transition temperature specified in columns 61-70. Other latent-heat effects may be included in the specific heat table as described in the previous description (columns 61-70).

SPECIFIC HEAT TABLE CARDS

Only included if at least two data pairs are listed (no blank cards are needed).

Column 1

Always left blank.

<u>Columns 2–10</u>

Specific heat of the material, in cal/g-°C, at the temperature specified in columns 11-20.

<u>Columns 11–20</u>

Temperature, in °C, at which the material has the specific heat specified in columns 2-10.

<u>Columns 21-30</u>

Specific heat of the material, in cal/g-°C, at the temperature specified in columns 31-40.

Columns 31-40

Temperature, in °C, at which the material has the specific heat specified in columns 21–30. Always equal to or greater than the preceding temperature in the table.

The specific heat table card may list up to four data pairs using ten columns for each value of specific heat or temperature. As many as three cards with the same format can be used to list the number of data pairs specified in columns 21-25.

THERMAL CONDUCTIVITY TABLE CARDS

Only included if at least two data pairs are listed (no blank cards are needed).

Column 1

Always left blank.

<u>Columns 2–10</u>

Thermal conductivity of the material, in cal/s-cm-°C, at the temperature specified in columns 11-20.

Columns 11-20

Temperature, in °C, at which the material has the thermal conductivity specified in columns 2-10.

<u>Columns 21–30</u>

Thermal conductivity of the material, in cal/s-cm-°C, at the temperature specified in columns 31-40.

Columns 31-40

Temperature, in °C, at which the material has the thermal conductivity specified in columns 21-30. Always equal to or greater than the preceding temperature in the table.

The thermal conductivity table card may list up to four data pairs using ten columns for each value of thermal conductivity. As many as three cards with the same format can be used to list the number of data pairs specified in columns 26–30.

M5.7.3

M5.8 REFERENCES

- 1. A. L. Edwards, A Compilation of Thermal Property Data for Computer Heat-Conduction Calculations, UCRL-50589, University of California Lawrence Radiation Laboratory, February 24, 1969.
- 2. A. L. Edwards, *TRUMP: A Computer Program for Transient and Steady-State Temperature Distributions in Multidimensional Systems*, UCRL-14754, Rev. 3, University of California Lawrence Livermore Laboratory, September 1, 1972.

NUREG/CR-0200 Revision 6 Volume 3, Section M6 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

ORIGEN-S DATA LIBRARIES

J. C. Ryman O. W. Hermann

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

The ORIGEN-S code can use three kinds of data libraries: (1) card-image libraries containing nuclear and photon yield data, (2) binary data libraries containing nuclear transition and photon yield data, and (3) the Master Photon Data Base containing detailed photon energy and intensity data.

The first kind of library includes the card-image nuclear data libraries, which contain the basic data required to run ORIGEN-S. The nuclear data libraries are contained in two files. The first file includes decay parameters, natural abundances of nuclides, and radioactivity concentration guides. The second file contains six libraries of which the first three are nuclear data libraries for (a) 689 light elements, (b) 129 actinides, and (c) 879 fission products. Each nuclear data library contains cross sections for four kinds of reactors (HTGR, LWR, LMFBR, and MSBR); the fission-product library also contains fission-product yields from five fissionable nuclides for each kind of reactor. The last three libraries of the second card-image file are photon yield libraries for light-element, actinide, and fission-product nuclides. They contain multigroup photon spectra for decay gamma and X-rays, for prompt and equilibrium fission-product gamma rays from spontaneous fission, for gamma rays associated with (α ,n) reactions in oxide fuel, and for bremsstrahlung from decay beta (negatron and positron) particles slowing down in a UO₂ fuel matrix.

The second kind of library is the binary (unformatted) ORIGEN-S data library. It contains the same kinds of data as the card-image nuclear data and photon yield libraries, but for only one kind of reactor (e.g., LWR). The nuclear data are stored in the binary library in the form of a transition matrix, and may be present for one or more burnups, in which case the library is known as a multiburnup binary data library. The binary library format was developed especially for ORIGEN-S and is the kind of library normally used for production runs. It has the significant advantage, as compared to the card-image libraries, that the cross sections in a binary library can be replaced with cross sections derived from detailed multigroup neutronics calculations. Cross-section updating is performed with the COUPLE code which reads the multigroup cross sections from an AMPX-format weighted cross-section library. The SAS2H control module (see Sect. S2) is used for automated generation of burnup-dependent multiburnup binary data libraries. A second advantage is that any portion of the photon yield data from the Master Photon Data Base can be placed in a binary library with any desired energy group structure. A further advantage is that almost any item of data in a binary library can be replaced with a user-specified value by running the COUPLE code.

The third kind of library is the ORNL Master Photon Data Base, originally developed for the ORIGEN2 code. It contains energies and intensities for (a) decay gamma- and X-ray line data, (b) spectra for gamma rays accompanying spontaneous fission and (α,n) reactions, and (c) bremsstrahlung spectra from decay beta (negatron and positron) particles slowing down both in a UO₂ fuel matrix and in water. This is the most comprehensive and up-to-date photon library available to ORIGEN-S. It can be used to generate multigroup photon source spectra, to make card-image photon yield libraries, or to update photon yield data in a binary data library. The multigroup source spectra and photon yield data can be generated in any energy group structure for all light-element, actinide, and fission-product nuclides having photon data. The ORNL Master Photon Data Base is available in both card-image and binary formats.

Noteworthy improvements to the ORIGEN-S data libraries were made at the time of the SCALE-4.2 release both to the decay data and to the structures of the library data files. The number of card-image library files was reduced from six to two, and the file structure for the card-image files was made uniform for all computer systems. The SAS2H method of generating burnup-dependent libraries was improved to combine the data for multiple burnups into a single file. The decay data, including half-lives, branching fractions, and recoverable decay energies, were updated for all but 18 nuclides, principally from ENDF/B-VI data.

This document describes the formats, data sources, and uses of the libraries outlined above.

CONTENTS

		Page
ABST	RACT	Мб.ііі
LIST	OF TABL	ES M6.vii
ACKN	IOWLEDO	GMENTS M6.ix
M6.1	INTROI	DUCTION
	M6.1.1	FILE STRUCTURE OF CARD-IMAGE LIBRARIES
	M6.1.2	MULTIBURNUP BINARY DATA LIBRARY
M6.2	CARD-I	MAGE NUCLEAR DATA LIBRARIES
	M6.2.1	DECAY DATA LIBRARY
	M6.2.2	LIGHT-ELEMENT CROSS-SECTION LIBRARY
	M6.2.3	ACTINIDE CROSS-SECTION LIBRARY
	M6.2.4	FISSION-PRODUCT CROSS-SECTION AND FISSION-YIELD LIBRARY M6.2.8
	M6.2.5	CONSTRUCTION OF THE TRANSITION MATRIX
	M6.2.6	SOURCES OF DECAY DATA M6.2.11
	M6.2.7	SOURCES OF CROSS-SECTION DATA M6.2.13
	M6.2.8	SPECIAL TREATMENT OF CERTAIN NUCLIDES
M6.3	CARD-I	MAGE PHOTON YIELD LIBRARIES
	M6.3.1	FORMATS
	M6.3.2	SOURCE OF DATA M6.3.3
M6.4	DATA P	PROGRAMMED INTO ORIGEN-S AND COUPLE
M6.5	MASTE	R PHOTON DATA BASE
	M6.5.1	CARD-IMAGE DATA BASES M6.5.1
	M6.5.2	BINARY DATA BASES
M6.6	ENDF/B	-IV FISSION-PRODUCT DATA BASE M6.6.1
M6.7	BINARY	ORIGEN-S DATA LIBRARIES
	M6.7.1	DESCRIPTION
	M6.7.2	FORMATS M6.7.2
	M6.7.3	LIBRARY CONVERSION PROGRAMS M6.7.5
	M6.7.4	GENERATION OF SOME USEFUL LIBRARIES
M6.8	ORIGEN	N-S LIBRARIES AT ORNL M6.8.1
M6.9	REFERI	ENCES M6.9.1
		NUREG/CR-0200

Vol. 3, Rev. 6

LIST OF TABLES

<u>Table</u>	. 1	<u>Page</u>
M6.2.1	Units of half-life indicated by the variable IU Me	6.2.3
M6.2.2	Definitions of branching fraction variables Mo	6.2.3
M6.2.3	Definitions of nuclear data variables in light-element libraries for a thermal reactor Me	6.2.4
M6.2.4	Reactor type as a function of variable IT Me	6.2.5
M6.2.5	Definitions of spectral indices for thermal reactors Me	6.2.6
M6.2.6	Definitions of nuclear data variables in the actinide library for a thermal reactor Mo	6.2.7
M6.2.7	Fissionable nuclides having yield data Mo	6.2.8
M6.2.8	Summary of decay data sources	.2.12
M6.2.9	Unique nuclides updated with decay data from ENSDF	.2.12
M6.2.10	Nuclides not updated with decay data or changed to stable	.2.13
M6.3.1	Group structures for ORIGEN-S photon yield libraries	6.3.1
M6.3.2	FORMATS for original photon yield libraries	6.3.2
M6.3.3	FORMATS for current ORIGEN-S photon yield libraries	6.3.3
M6.7.1	Data in first record of binary data library Me	6.7.2
M6.7.2	Structure of binary data library Mo	6.7.3
M6.7.3	Input description for OSBICO Me	6.7.6
M6.7.4	Input description for OSBIRE Me	6.7.7
M6.7.5	Initial uranium composition of typical PWR assembly	.7.11
M6.7.6	Nuclides with updated cross sections in typical PWR and BWR libraries	.7.12
M6.8.1	Card-image ORIGEN-S libraries at ORNL	6.8.1
M6.8.2	Some binary ORIGEN-S libraries at ORNL M	6.8.2

ACKNOWLEDGMENTS

Special thanks are due to S. B. Ludwig of the Oak Ridge National Laboratory (ORNL) Chemical Technology Division, who sponsored the latest update of decay data for both ORIGEN2 and ORIGEN-S, and to P. R. Daniel of the University of Florida, who produced the updated decay libraries from ENDF/B-VI decay data.

M. A. Bjerke wrote the original version of the computer program which retrieves decay data from ENDF/B files. R. W. Roussin and J. E. White of the Radiation Shielding Information Center kindly provided access to the ENDF decay data files. M. J. Martin and M. R. Lay of the ORNL Physics Division provided advice and ENSDF decay data files for many nuclides.

A. G. Croff, K. J. Notz, and C. W. Alexander of the ORNL Chemical Technology Division provided the ORNL Master Photon Data Base originally developed for ORIGEN2.

M. J. Bell developed the original ORIGEN and its nuclear data libraries. C. W. Kee, G. W. Morrison, and R. E. Schenter developed the large light-element and/or fission-product libraries for the original ORIGEN.

S. M. Bowman, L. M. Petrie, J. P. Renier, and N. M. Greene of the ORNL Computational Physics and Engineering Division (CPED) offered many helpful suggestions. K. F. Eckerman of the ORNL Health Sciences Research Division provided invaluable consulting on decay data. G. E. Whitesides (retired division director), R. M. Westfall, and especially C. V. Parks, also of the ORNL CPED, provided timely encouragement and supervision. C. V. Parks and S. M. Bowman also reviewed the manuscript.

At the U. S. Nuclear Regulatory Commission (NRC), R. H. Odegaarden (now retired), and M. G. Bailey, the current technical monitor for SCALE, have sponsored the development and maintenance of ORIGEN-S. P. Worthington was the NRC technical monitor for an earlier project which sponsored the original update of the ORIGEN-S card-image nuclear data libraries.

L. F. Norris (now retired) and W. C. Carter, ORNL CPED, provided timely and excellent manuscript preparation.

M6.1 INTRODUCTION

The original version of the ORIGEN code¹ used two kinds of data libraries in card-image format. The nuclear data libraries contained decay data, natural abundances of nuclides, radioactivity concentration guides, cross sections, and fission yields. The photon yield libraries contained multigroup photon yields (photons per disintegration) for decay gamma and X-rays, for bremsstrahlung from beta particles slowing down in a UO_2 fuel matrix, and for some gammas accompanying (α ,n) reactions in oxide fuels. There were three libraries of each kind: one for 253 light-element nuclides (structural materials and activation products), one for 101 actinide nuclides (fuel materials, transplutonium nuclides, and decay daughters), and one for 461 fission-product nuclides. The nuclear data libraries included cross sections and fission yields for four reactor types: the high-temperature gas-cooled reactor (HTGR), the light-water reactor (LWR), the liquid metal fast breeder reactor (LMFBR), and the molten salt breeder reactor (MSBR). Since the original ORIGEN code and its libraries were primarily intended for use in generic studies of spent fuel and waste characteristics, cross sections for a number of nuclides were adjusted to give agreement between calculated and measured fuel mass balances.

As the ORIGEN code became widely used for more complex applications, two additional data libraries were added. A large light-element library^{2,3} for 674 nuclides was created, with cross sections for HTGRs and LWRs. At about the same time, a large fission-product library^{3,4} for 821 nuclides, with cross sections and fission yields for LWRs and LMFBRs, was generated from ENDF/B-IV data.⁵ Revised versions of these libraries (including a 687-nuclide large light-element library) having updated decay data were generated in the early 1980s and were included in releases of SCALE up through SCALE 4.0. For SCALE 4.1, the small (461 nuclides) fission-product library was removed and the LWR fission-product yields of the large (821 nuclides) library for all nuclides except tritium were updated from ENDF/B-V.⁶ New tritium yields were taken from Boumahraz⁷ and from Wagemans et al.⁸

A further expansion in the size of the ORIGEN-S libraries and an update⁹ in the decay, energy, and fission-product yield data were included for the SCALE-4.2 release. The sizes of the libraries were increased to 689 light-element nuclides, 129 actinides, and 879 fission products; all smaller libraries were removed. Decay data, principally from ENDF/B-VI,¹⁰ were used to update half-lives, branching fractions, and recoverable energies per disintegration. Fission-product yields for all of the fissile nuclides included for the four reactor types (HTGR, LWR, LMFBR, and MSBR) were updated from ENDF/B-V. Although the decay data update was undertaken primarily for the ORIGEN2 code, the resulting decay data base is now used to generate decay libraries with the same nuclides for ORIGEN-S and ORIGEN2.

Most revisions of the card-image nuclear data libraries have involved updating decay data. Most cross-section data have been left the same as in the original ORIGEN libraries. Updating of cross-section data for the binary data libraries discussed later is performed with the COUPLE code (Sect. F6), using problem-dependent multigroup cross sections from a detailed neutronics calculation. The photon-yield libraries have data taken from the ORNL Master Photon Data Base¹¹ discussed later. In addition to using the photon-yield libraries described in this report, the user of ORIGEN-S can generate photon-yield libraries in any desired energy-group structure (Sect. F7.6).

In addition to the card-image nuclear data and photon-yield libraries, the ORIGEN-S code can use data from two other kinds of libraries: a binary (unformatted) data library and the ORNL Master Photon Data Base.

The use of a binary library is perhaps the most significant feature of ORIGEN-S. A binary data library is generated with the COUPLE code (Sect. F6). It contains, in a single library, the same kinds of data as the card-image nuclear data and photon-yield libraries, but for only one reactor type. The ORIGEN-S code

NUREG/CR-0200, Vol. 3, Rev. 6

M6.1.1

is typically run with a multiburnup binary data library for the reactor type of interest. The binary data library has many advantages over the card-image data libraries. Its principal advantage is that the cross sections within the library can be replaced with cross sections derived from a detailed multigroup neutronics (e.g., unit cell) calculation. Cross-section updating is performed with the COUPLE code which reads the multigroup cross sections from an AMPX¹² weighted (working) cross-section library (Sect. F2.3.8). Automated generation of time-dependent (i.e., burnup-dependent) binary data libraries can be performed with the SAS2H control module (Sect. S2), which invokes the BONAMI, NITAWL-II, XSDRNPM, COUPLE, and ORIGEN-S codes (Sects. F1, F2, F3, F6, and F7, respectively). Another advantage is that any portion of the photon-yield data from the ORNL Master Photon Data Base can be placed in the binary library with any desired energy group structure. Furthermore, most data items in a binary library can be replaced with user-specified values by running the COUPLE code.

The ENDF/B-IV photon-yield library formerly distributed with ORIGEN-S has been removed because improved and more complete data described below are available.

The ORNL Master Photon Data Base¹¹ was originally developed for the ORIGEN2 code.¹³ In its cardimage form, it consists of six data files for six kinds of photon sources. One file contains decay gamma- and X-ray line data from the Evaluated Nuclear Structure Data File (ENSDF).^{14,15} Another file contains spectra for gamma rays accompanying spontaneous fission and (α ,n) reactions. Two files contain bremsstrahlung spectra from decay beta (negatron and positron) particles slowing down in a UO₂ fuel matrix. The last two files contain bremsstrahlung spectra from decay betas slowing down in water. These files can be concatenated in any user-chosen combination to form a card-image master photon data base for use with ORIGEN-S. In addition, ORIGEN-S can be used (Sect. F7.6) to create a binary (unformatted) master photon data base, containing data from any combination of the card-image data files, for use in subsequent ORIGEN-S runs. It has been customary at ORNL to run ORIGEN-S with a binary master photon data base, since execution is somewhat more efficient for that mode of operation. The ORNL Master Photon Data Base is the most comprehensive and up-to-date photon library available to ORIGEN-S. It can be used (Sect. F7.6) to generate multigroup photon source spectra, to make card-image photon-yield libraries, or to update photon-yield data in a binary data library. The spectra and photon-yield data can be generated in any energy group structure for all light-element, actinide, and fission-product nuclides having photon data.

The remainder of this document describes in detail the file structures, formats, data sources, and uses of the different kinds of ORIGEN-S libraries outlined above.

M6.1.1 FILE STRUCTURE OF CARD-IMAGE LIBRARIES

The ORIGEN-S card-image libraries are divided between two data files. The first file contains the decay data library, which includes natural nuclide abundances and radioactivity concentration guides in addition to decay parameters. The second file contains the following six libraries in the order specified:

- 1. the light-element cross-section library,
- 2. the actinide cross-section library,
- 3. the fission-product cross-section and yield library,
- 4. the light-element photon-yield library,
- 5. the actinide photon-yield library, and
- 6. the fission-product photon-yield library.

NUREG/CR-0200, Vol. 3, Rev. 6

M6.1.2

The card-image libraries are divided into two broad classifications. The decay data library and the cross-section and fission-yield libraries are called the nuclear data libraries and are described in Sect. M6.2. The second category is just the photon yield libraries, which are described in Sect. M6.3.

M6.1.2 MULTIBURNUP BINARY DATA LIBRARY

A multiburnup binary data library is a binary (unformatted) data library containing multiple sets of updated cross sections for different burnups.

A typical sequence of steps to produce a multiburnup library is as follows. First, data for a specific type of reactor from the card-image libraries is converted to a binary ORIGEN-S library by running the COUPLE code. Next, using that binary library as input, the SAS2H control module is executed to update the cross sections of all nuclides having data in the SCALE 27-group depletion library. This SAS2H case typically uses a single burnup interval for the entire lifetime of a fuel assembly. The resulting library is called a preliminary SAS2H, or preSAS, binary data library. The preSAS library, in turn, is used as the standard input ORIGEN-S binary data library for SAS2H cases for the same reactor type. An example of a preSAS case is shown in Sect. M6.7.4.

The multiburnup binary data library is produced by running a SAS2H case having multiple burnup intervals or cycles. The preSAS library is used as input, and cross sections are updated for user-specified nuclides of interest. The resulting multiburnup binary data library contains (within a single file) updated cross-section data for each burnup interval or cycle specified in the input power history.

A multiburnup binary data library is obviously useful as input to a wide variety of ORIGEN-S cases. An important advantage of the multiburnup format is that it requires less effort to keep track of a single library with many burnups than it does to keep track of many libraries with a single burnup.

M6.2 CARD-IMAGE NUCLEAR DATA LIBRARIES

The card-image nuclear data libraries consist of three cross-section libraries and the decay data library. The cross-section libraries are (1) a light-element library for 689 nuclides, (2) an actinide library for 129 nuclides, and (3) a fission-product library for 879 nuclides. The decay data base contains (for all nuclides in the three cross-section libraries) decay data, percent natural abundances, and radioactivity concentration guides. The decay data for a nuclide include the half-life, branching fractions, recoverable energy per decay, and the fraction of recoverable energy from photons. The data for each nuclide in the cross-section libraries are contained on five card-image records. The first card-image record contains information identifying the nuclide. The last four card images contain cross-section, and for fission-product nuclides, fission-yield data for four reactor types (HTGR, LWR, LMFBR, and MSBR), with one card image for each reactor type.

The card-image nuclear data libraries are the basic libraries for ORIGEN-S. The code can be run using these libraries directly, or it can be run from a binary data library which (prior to any cross-section or other nuclear data updating) was created by running the COUPLE code (Sect. F6) to convert the data for a specific reactor type.

When ORIGEN-S is run with these card-image libraries, the customary procedure is to use the lightelement library, the actinide library, and the fission-product library. However, ORIGEN-S can be run with only one or two nuclear data libraries if the user wishes (Sect. F7.6). All the decay data are obtained from a separate data file referenced by unit 27. The card-image cross-section data and photon-yield libraries are referenced by another logical unit number. The libraries are read in the following order: light-element, actinide, and fission-product decay and cross-section data libraries, followed by light-element, actinide, and fission-product photon-yield libraries.

The remainder of this section is devoted to describing the data formats and sources for the decay data library and the three cross-section data libraries. Much of the description has been taken from the original ORIGEN report.

M6.2.1 DECAY DATA LIBRARY

The decay data library contains decay data, atom percent natural abundances, and radioactivity concentration guides for both air and water. These data are in a single data file broken into three segments: light elements, actinides, and fission products. There is an exact one-to-one correspondence in the order of the decay-data-library nuclides and those in the three cross-section libraries. In processing these nuclear data libraries, first the nuclide identification (ID) number is read into variable NUCL(I) from the cross-section library, next the data from the decay data library for the same nuclide are read, and then the cross-section data for the specified type of reactor are read. The decay data are read with a list-directed read statement as follows:

READ(LIBDEC,*) LIB, NUC1, IU, HALFL, FB1, FP, FP1, FA, FT, LI2, *FSF, FN, Q(I), ABUND(I), AMPC(I), WMPC(I), LI3, FG(I), FB.

During the processing, the nuclide data are stored in several arrays at locations indicated by the index I. The value of the ID number in both NUCL(I) and NUC1 is given by

$$NUCL(I) = Z * 10000 + W * 10 + IS, \qquad (M6.2.1)$$

NUREG/CR-0200, Vol. 3, Rev. 6

M6.2.1

where Z is the atomic number, W is the atomic mass number, and IS is 0 for a ground state or 1 for the first metastable state. In principle, IS could be greater than 1 for a nuclide in a higher metastable state, but none of the libraries currently contain data for any such nuclides.

The variable HALFL is the physical half-life in units designated by the variable IU, as shown in Table M6.2.1. The definitions of eight variables for branching fractions are given in Table M6.2.2.

The variable Q(I) is the total amount of recoverable energy (MeV) per disintegration released by radioactive decay. It does not include the energy of neutrinos emitted during beta decay transitions.

The variable FG(I) is the fraction of recoverable energy per disintegration that comes from gamma and X rays. In the ORIGEN-S libraries this fraction includes the energy from all decay gamma and X rays and from all gamma rays associated with spontaneous fission. Using an approximation¹¹ for the combined spectra of prompt and equilibrium fission-product gamma rays from spontaneous fission, a value of 12.56 MeV per spontaneous fission transition was calculated for use in determining FG for any nuclide having a spontaneous fission fraction exceeding 10⁻⁷. Note that the definition of FG is not the same as that for the original ORIGEN libraries. In those libraries, ¹ FG included only those photons with energies greater than 200 keV. In addition, it included the bremsstrahlung radiation from beta particles slowing down in a UO₂ fuel matrix. Bremsstrahlung radiation is **not** included in the values of FG in the ORIGEN-S libraries, since the bremsstrahlung spectrum depends on the medium that contains the decaying nuclide. Neither is the energy from gamma rays accompanying (α ,n) reactions included, since it too depends on the medium.

The variable ABUND(I) is the atom percent abundance of naturally occurring isotopes. It is read by ORIGEN-S for light-element nuclides but is ignored for the actinide and fission-product nuclides.

The variables WMPC(I) and AMPC(I) are the radioactivity concentration guides for continuous ingestion (from water) and inhalation (from air) in unrestricted areas, in units of curies per cubic meter (Ci m⁻³). The RCG values, as defined in the pre-1991 version of Part 10, Title 20, of the *Code of Federal Regulations*¹⁶ (10CFR20), specify the maximum permissible concentrations of an isotope in soluble and insoluble forms, for both ingestion and inhalation, and for occupational and unrestricted exposure. When the activity (in curies) of a given isotope is divided by WMPC (or AMPC) for that isotope, the result is the volume of water (or air) required to dilute that quantity of the isotope to its maximum permissible concentration. The dilution volume is a measure of the radioactive toxicity of the nuclide for cases of direct ingestion or inhalation. The values of WMPC and AMPC are defined to be the smaller (i.e., more toxic) of the values for soluble and insoluble forms of the isotope.

The variables LIB, LI2, and LI3 contain the library ID numbers read first from each card image. They are for accounting purposes and may be ignored.

M6.2.2 LIGHT-ELEMENT CROSS-SECTION LIBRARY

The light-element card-image cross-section data library contains data for structural materials, activation products, and their decay daughters. The library has data for 689 nuclides.

As indicated earlier, there are five card-image records for each nuclide. The first record contains the nuclide ID number defined by Eq. (M6.2.1) in an I7 format plus other information not used by the code. The next four records contain data for neutron-induced reactions, with one record for each of the four reactor types. The data in these four records are referred to collectively as cross-section data, even though some items are not cross sections. The data are read using the following READ statement and FORMAT:

150 READ(L,11500) SIGTH, FNG1, FNA, FNP, RITH, FINA, *FINP, SIGMEV, FN2N1, FFNA, FFNP, IT 11500 FORMAT(7X, F9.2, 3F5.3, F9.2, 2F5.3, F9.2, 3F5.3, 5X, I1) .

IU	Units of half-life
1	seconds
2	minutes
3	hours
4	days
5	years
6	stable
7	10 ³ years
8	10 ⁶ years
9	10 ⁹ years

Table M6.2.1 Units of half-life indicated by the variable IU

Table M6.2.2	Definitions of branching fraction variables
ma D	

Variable name	Definition
FB	Fraction of decay transitions that take place by beta (negatron) emission and lead to a product nuclide in the ground state
FB1	Fraction of decay transitions that take place by beta emission and lead to a product nuclide in an excited (metastable) nuclear state
FP	Fraction of decay transitions that take place by positron emission or orbital electron capture and lead to a product nuclide in the ground state
FP1	Fraction of decay transitions that take place by positron emission or orbital electron capture and lead to a product nuclide in an excited nuclear state
FA	Fraction of decay transitions that take place by alpha particle emission
FT	Fraction of decay transitions that take place by isomeric transition
FSF	Fraction of decay transitions that take place by spontaneous fission
FN .	Fraction of decay transitions that take place by the emission of both a beta particle and a neutron

Definitions of the nuclear data variables are given in Table M6.2.3 for the case of a thermal reactor (HTGR, LWR, or MSBR). For an LMFBR, the cross-section variables have different definitions than those of Table M6.2.3. In that case, either SIGTH or RITH is the spectrum-averaged radiative capture (n,γ) cross section. When one is nonzero, the other is always zero. The variable SIGMEV is the sum of the spectrum-averaged (n,2n), (n,α) , and (n,p) cross sections.

Variable name	Definition		
SIGTH	Total absorption cross section (barns) for thermal (2200 m s ⁻¹) neutrons		
FNG1	Fraction of radiative capture (n, γ) reactions that produce a product nuclide in an excited (metastable) nuclear state		
FNA	Fraction of SIGTH that produces (n, α) reactions		
FNP	Fraction of SIGTH that produces (n,p) reactions		
RITH	Resonance integral (barns) for all epithermal (above 0.5 eV) neutron absorption,		
· · · ·	$\int_{0.5 \text{ eV}}^{\infty} \frac{1}{E} \sigma_{a}(E) dE$		
FINA	Fraction of RITH that produces (n, α) reactions		
FINP	Fraction of RITH that produces (n;p) reactions		
SIGMEV	Fission-spectrum-averaged cross section (barns) for all reactions with a threshold above 1 MeV		
FN2N1	Fraction of (n,2n) reactions that produce a product nuclide in an excited (metastable) nuclear state		
FFNA	Fraction of SIGMEV that produces (n, α) reactions		
FFNP	Fraction of SIGMEV that produces (n,p) reactions		

Table M6.2.3 Definitions of nuclear data variables in light-element libraries for a thermal reactor

The last variable on the card-image record, IT, is used to indicate the reactor type for which the data have been compiled. Possible values are shown in Table M6.2.4. In the original ORIGEN libraries, a value of zero for IT indicated that no data were present for that reactor type. In the ORIGEN-S libraries, a

<u></u>	Reactor type	
1	HTGR	
2	LWR	
3	LMFBR	
_4	MSBR	

 Table M6.2.4 Reactor type as a function of variable IT

nonzero value is always used, even if all other data on the card-image record are zero. This gives the same number of nuclides for every reactor type, which is necessary for full utilization of the blended fuel option in ORIGEN-S.

Three additional pieces of data are computed from the data on the card image, as shown in the following equations:

$$FNG = 1.0 - FNA - FNP, \qquad (M6.2.3)$$

$$FING = 1.0 - FINA - FINP, \qquad (M6.2.4)$$

and

$$FN2N = 1.0 - FFNA - FFNP$$
. (M6.2.5)

In these equations, FNG and FING are the fractions of SIGTH and RITH, respectively, which produce (n,γ) reactions. The variable FN2N is the fraction of SIGMEV which produces (n,2n) reactions.

For all reactor types, the effective one-group cross sections are obtained by weighting the cross sections from the card-image record, as described below. The (n,α) , (n,p), (n,γ) , and (n,2n) cross sections are given by

$$\sigma_{n,\alpha}$$
 = THERM * SIGTH * FNA + RES * RITH * FINA + FAST * SIGMEV * FFNA, (M6.2.6)

$$\sigma_{n,p}$$
 = THERM * SIGTH * FNP + RES * RITH * FINP + FAST * SIGMEV * FFNP, (M6.2.7)

$$\sigma_{n,v} = \text{THERM} * \text{SIGTH} * \text{FNG} + \text{RES} * \text{RITH} * \text{FING},$$
 (M6.2.8)

and

$$\sigma_{n,2n} = FAST * SIGMEV * FN2N . \tag{M6.2.9}$$

The (n,γ) and (n,2n) cross sections are further divided into cross sections for product nuclides in ground and excited states by using the variables FNG1 and FN2N1. The total capture cross section is computed from the relation

$$\sigma_{\rm c} = \sigma_{\rm n,\alpha} + \sigma_{\rm n,p} + \sigma_{\rm n,y} + \sigma_{\rm n,2n} \,. \tag{M6.2.10}$$

NUREG/CR-0200, Vol. 3, Rev. 6

M6.2.5

For thermal reactors, the variables THERM, RES, and FAST in Eqs. (M6.2.6) through (M6.2.9) are spectral indices (weight factors) defined in Table M6.2.5. It can be seen that all reaction rates for thermal reactors are computed with the thermal neutron flux. A more complete discussion of THERM, RES, and FAST for thermal reactors and alternative definitions based upon the use of multigroup neutron fluxes and cross sections are given in both the COUPLE (Sect. F6.2.1) and ORIGEN-S (Sects. F7.2.6 and F7.2.12) documentation.

Index (weight factor)	Definition			
THERM	Ratio of the neutron reaction rate for a 1/v absorber with a population of neutrons that has a Maxwell-Boltzmann distribution at absolute temperature T, to the reaction rate given by the product of the thermal neutron flux and the 2200 m s ⁻¹ cross section			
RES	Ratio of the resonance neutron flux per unit lethargy to the thermal neutron flux			
FAST	1.45 times the ratio of the neutron flux above 1 MeV to the thermal neutron flux			

Table M6.2.5 Definitions of spectral indices for thermal reactors

For the LMFBR, the spectral indices are all equal to 1.0 since the cross sections are already spectrumaveraged. In this case, all reaction rates are computed with the total neutron flux. The values of FNA, FNP, FINA, and FINP are always zero for the LMFBR, since SIGTH (or RITH) is only the (n,γ) cross section.

Three steps are used in reading the nuclear data for each nuclide in the library. First, the card-image record containing only the nuclide ID number is read from the cross-section library. Second, the decay data are read from the decay library. Then, the card-image records containing cross-section data are read from the cross-section library until the value of the variable IT is equal to the value of the input parameter NLIBE (Sect. F7.6.10). The remaining records, if any, containing cross-section data are then processed as described in Sect. M6.2.5. When data for all nuclides in the library have been read, processing of the actinide and/or fission-product libraries begins.

M6.2.3 ACTINIDE CROSS-SECTION LIBRARY

The actinide library contains data for 129 fuel, transplutonium, and decay daughter nuclides. Again, the first card-image record for each nuclide contains the ID and the last four records contain cross-section data for four reactor types. These cross-section data are read with the following READ and FORMAT statements:

READ(L,11700) SIGNG, RING, FNG1, SIGF, RIF, SIGFF, *SIGN2N, FN2N1, SIGN3N, IT

11700 FORMAT(7X, 2F9.2, F5.3, 4F9.2, F4.3, F9.2, I1)

Definitions of the nuclear data variables for thermal reactors are given in Table M6.2.6. For an LMFBR, the variables RING, RIF, and SIGFF are not used. In addition, the variables SIGNG, SIGF, SIGN2N, and SIGN3N are then reactor-spectrum-averaged cross sections for (n,γ) , fission, (n,2n), and (n,3n) reactions, respectively.

Variable name	Definition
SIGNG	Radiative capture (n,γ) cross section (barns) for thermal (2200 m s ⁻¹) neutrons
RING	Resonance integral (barns) for (n, γ) reaction
FNG1	Fraction of (n,γ) reactions that produce a product nuclide in an excited (metastable) nuclear state
SIGF	Thermal neutron (n, fission) cross section (barns)
RIF	Resonance integral (barns) for (n, fission) reaction
SIGFF	Fission-spectrum-averaged (n,fission) cross section (barns) for nuclides having a high-energy threshold for fission
SIGN2N	Fission-spectrum-averaged (n,2n) cross section (barns)
FN2N1	Fraction of (n,2n) reactions that produce a product nuclide in an excited (metastable) nuclear state
SIGN3N	Fission-spectrum-averaged (n,3n) cross section (barns)

Table M6.2.6 Definitions of nuclear data variables in the actinide library for a thermal reactor

The variable IT identifies the reactor type, as explained in Sect. M6.2.2 (Table M6.2.4).

If the input variable LPU (Sect. F7.6.10) is greater than zero, the cross-section data for LPU actinide nuclides, whose ID numbers are specified in the input array NEWCX, are read from cards in the input stream. These data are read with a READ statement and FORMAT identical to the ones for the card-image library, as described above.

Again, the effective one-group cross sections are obtained by weighting the cross sections from the card-image record. The (n,γ) , (n,fission), (n,2n), and (n,3n) cross sections are given by

 $\sigma_{n,\gamma} = \text{THERM} * \text{SIGNG} + \text{RES} * \text{RING}, \qquad (M6.2.11)$

 σ_{f} = THERM * SIGF + RES * RIF + FAST * SIGFF, (M6.2.12)

$$\sigma_{n,2n} = FAST * SIGN2N , \qquad (M6.2.13)$$

and

$$\sigma_{n,3n} = FAST * SIGN3N . \tag{M6.2.14}$$

As for the light-element library, the (n,γ) and (n,2n) cross sections are divided into cross sections for product nuclides in ground and excited states by using the variables FNG1 and FN2N1. The total capture cross section is found from

$$\sigma_{\rm c} = \sigma_{\rm n,\gamma} + \sigma_{\rm f} + \sigma_{\rm n,2n} + \sigma_{\rm n,3n} \,. \tag{M6.2.15}$$

For thermal reactors, the variables THERM, RES, and FAST are the spectral indices, as defined in Table M6.2.5. Again, these indices are all 1.0 for an LMFBR, since the cross sections on the card-image record are already spectrum-averaged.

The nuclear data records for the actinide library are read and processed in the same manner as those for the light-element library.

M6.2.4 FISSION-PRODUCT CROSS-SECTION AND FISSION-YIELD LIBRARY

The fission-product library contains data for 879 fission-product nuclides. As for the light-element and actinide libraries, the first card-image record for each nuclide contains the ID. In the fission-product libraries, the last four records contain fission yield as well as cross-section data. These data are read with the following READ and FORMAT statements:

```
620 READ(L, 11800) SIGNG, RING, FNG1, (Y(I), I=1,5), IT
11800 FORMAT(7X, 2F9.2, F5.3, 5F9.2, 4X,II) .
```

All the nuclear data variables except Y have the same definitions as for the actinide library (Table M6.2.6). Radiative capture is the only neutron absorption reaction considered for fission products, and the effective one-group (n,γ) cross section is given by Eq. (M6.2.11). As in the actinide library, the variable RING is not used for the LMFBR, and the spectral indices are all 1.0 for that reactor. As before, the variable FNG1 is used to divide the one-group (n,γ) cross section into cross sections for product nuclides in ground and excited states.

The array Y contains energy-dependent direct fission-product yields for five fissionable nuclides. The fissionable nuclides for the four reactor types are shown in Table M6.2.7.

Table M6.2.7 Fissionable nuclides having yield data						
Reactor	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	
HTGR LWR LMFBR MSBR	²³³ U ²³³ U ²⁴¹ Pu ^a ²³³ U	²³⁵ U ²³⁵ U ²³⁵ Uа ²³⁵ U	²³² Th ^a ²⁴¹ Pu ²⁴⁰ Pu ^a ²³² Th ^a	²³⁸ U ^a 238U ^a ²³⁸ U ^a	²³⁹ Pu ²³⁹ Pu ²³⁹ Pu ^a ²³⁹ Pu	

"Yield is for fission-spectrum-energy neutrons.

In the table, any yields not footnoted "a" are for thermal-neutron-induced fission. All fission-product yields for all nuclides except ³H, ⁶Li, ⁷Li, ⁹Be, ¹⁰Be, and ¹⁴C are from ENDF/B-V⁶. The tritium yield from²³⁸ U fission is the average of data from Boumahraz.⁷ The tritium yields from fission of ²³³U, ²³⁵U, ²³⁹Pu, and ²⁴¹Pu are from measurements described by Wagemans et al.⁸ Yield data for ⁶Li, ⁷Li, ⁹Be, ¹⁰Be, and ¹⁴C were taken from the ORIGEN2 fission-product yield library.¹³

The nuclear data records for the fission-product libraries are read and processed in the same manner as for the light-element and actinide libraries.

M6.2.5 CONSTRUCTION OF THE TRANSITION MATRIX

In general, the ORIGEN-S code solves a coupled set of linear, nonhomogeneous, first-order differential equations with constant coefficients (Sect. F7.2) which can be written in matrix form as

$$\dot{\tilde{N}} = A \tilde{\tilde{N}} + B . \tag{M6.2.16}$$

In this equation, N is a vector of nuclide concentrations, A is the transition matrix, and B is a vector of userspecified rate changes (which are zero if the chemical processing options are not used).

In the transition matrix, each element a_{ij} is the first-order rate constant for the formation of nuclide i from nuclide j. Each rate constant is defined by one of the following equations:

$$a_{ij} = \ell_{ij} \lambda_j , \qquad (M6.2.17)$$

$$\mathbf{a}_{ij} = \mathbf{f}_{ij} \boldsymbol{\sigma}_{j} \boldsymbol{\phi} , \qquad (M6.2.18)$$

$$a_{ii} = -(\lambda_i + \sigma_i \phi) . \tag{M6.2.19}$$

In these equations, λ_i is the radioactive decay constant (s⁻¹) for nuclide j, σ_i is the effective one-group neutron absorption (total capture) cross section (cm²), and ϕ is the neutron flux (cm⁻² s⁻¹). The variables ℓ_{ij} and f_{ij} are the fractions of radioactive decay and neutron absorption of nuclide j which lead to the formation of nuclide i. Note that the term $f_{ij} \sigma_j$ in Eq. (M6.2.18) is general enough to include the formation of fission-product nuclides as well as the daughter products of any other kind of neutron capture reaction.

The transition matrix elements are constructed from the information in the card-image nuclear data libraries described in the preceding subsections. In addition, the nuclear data in an ORIGEN-S binary data library are stored in transition matrix format. Therefore, this subsection is devoted to a description of how the transition matrix and its associated nuclide locator vectors are constructed. These operations are performed in subroutine XNUDAT of ORIGEN-S or COUPLE.

Since the transition matrix is normally very sparse, and since straightforward construction of this matrix would require the storage of a very large number of matrix elements (~2.9 million words for the large libraries), a different approach was taken when the original ORIGEN code¹ was developed. Only the diagonal elements and nonzero off-diagonal elements of the matrix are stored. The location of each nonzero off-diagonal element (i.e., row and column in the full transition matrix) is recorded using three nuclide locator vectors.

NUREG/CR-0200, Vol. 3, Rev. 6

or

The information needed to construct the diagonal elements a_{ii} is stored in two one-dimensional (1-D) arrays. The radioactive decay constant λ_i , computed from the half-life, is stored in array element DIS(I). The total capture cross section for nuclide i is stored in array element TOCAP(I).

The processing of information for the nonzero off-diagonal elements a_{ij} is described below. The firstorder rate constant for a decay transition is calculated by multiplying the decay constant λ_j of the parent nuclide by the fraction of transitions to the final state of interest. Next, the product nuclide of the transition is identified by addition of a suitable constant to the six-digit identification number NUCL(J). For example, NUCL(J)+10000 identifies the product nuclide following β^2 decay of nuclide j, and NUCL(J)-1 identifies the product of isomeric transition. Two temporary arrays are constructed. In the first, each element NPROD(M,J) contains the six-digit identifier of the product nuclide formed by transition M of nuclide J. In the second array, the element COEFF(M, J) contains the first-order rate constant for the corresponding transition.

For nonfission neutron capture transitions, a slightly different procedure is followed. Since the neutron flux is not known, only that portion of the rate constant given by $f_{ij}\sigma_j$ is computed. For example, the product of FN2N1 and the one-group (n,2n) cross section gives $f_{ij}\sigma_j$ for an (n,2n) transition from nuclide j to metastable product nuclide i. Again, the product nuclide identifier is found by adding a suitable constant to the six-digit parent nuclide identifier NUCL(J). For the example under consideration, the metastable product nuclide from the (n,2n) reaction is given by NUCL(J)-9. As before, the temporary array element NPROD(M, J) contains the six-digit product nuclide identifier. For neutron capture transitions, the element COEFF(M, J) of the second array contains only the $f_{ij}\sigma_j$ portion of the rate constant.

After the arrays NPROD and COEFF have been constructed, a search is made of the NPROD array to identify all the parents of a given nuclide I. Nuclide J is a parent of I if NPROD(M,J) equals NUCL(I) for any reaction type M. When a parent of nuclide I has been located, the value of the corresponding transition matrix element a_{ij} is just COEFF(M, J). The nonzero, off-diagonal matrix elements a_{ij} are stored sequentially in a 1-D array A. Each time a matrix element is stored in array element A(N), the index N is incremented by one. At the same time, the value of J identifying the parent nuclide is stored in array element LOC(N) of a second 1-D array. The total number of parents for production of nuclide I is stored in array element I of a third array NON0. Finally, the number of parents for production of nuclide I by radioactive decay is stored in array element I of the last locator vector KD.

When the nonzero, off-diagonal matrix elements for nuclide I are stored in array A, all those for radioactive decay transitions are grouped first. These elements are followed by those for formation of I by neutron capture. The number of neutron capture transitions for formation of nuclide I is given by NON0(I)-KD(I).

Since the matrix elements for nuclide I are grouped by transition type, the information in the locator vectors LOC, NON0, and KD is sufficient to identify the location of any array element A(N) in the expanded transition matrix. Note that NON0(I) is the number of nonzero, off-diagonal elements in row I of the expanded matrix and LOC(N) is the column number of array element A(N).

After the matrix elements for all nuclides have been stored, the elements of the NON0 array are converted (in subroutine XORIGN of ORIGEN-S) to indicate the cumulative number of matrix elements for all nuclides up to and including the nuclide of interest. The array element NON0(I+1) is set equal to NON0(I) + NON0(I+1) for all I greater than 1. The elements of the KD array are also adjusted such that NON0(I) - KD(1) still gives the number of neutron capture transitions for formation of nuclide I.

The construction of the matrix elements a_{ij} corresponding to the production of fission-product nuclides is slightly different. When the yield Y_{ij} (for direct formation of nuclide i from fission of nuclide j) is multiplied by the fission cross section σ_{fj} , the result is just the $f_{ij}\sigma_j$ portion of the first-order rate constant a_{ij} . The product $Y_{ij}\sigma_{fj}$ is entered directly into the proper array element A(N), J is entered into LOC(N), and there is no need for the temporary arrays NPROD and COEFF.

M6.2.6 SOURCES OF DECAY DATA

An extensive decay-data update⁹ was completed prior to the release of the SCALE-4.2 version of ORIGEN-S. The primary source of the radioactive decay data was ENDF/B-VI.¹⁰ Approximately 24% of the library nuclides are stable. About 66% of the nuclides were completely updated with decay half-lives, branching fractions, recoverable energy per decay, and gamma energy per decay from ENDF/B-VI. The decay data for most of the remaining nuclides were taken from ENSDF.^{14,15} Only 21 nuclides were not fully updated. Here, the number of nuclides represents the number of nuclide positions or locations in the libraries. The number of unique nuclides would be smaller because some isotopes or isomers are included in more than one of the three library segments (light elements, actinides, and fission products).

Improved decay data were placed in the ORIGEN-S and ORIGEN2 libraries during the same project.⁹ The decay data libraries of both codes were made the same size, and the same data were put into each library, with one exception. The ORIGEN2 data for each nuclide are read from two card images. A third card image is added in the ORIGEN-S library that contains the library ID, the β (negatron) branching fraction, and the fraction of the recoverable photon energy per decay. At the time this is written, ORIGEN2 calculates the negatron branching fraction from the other branching fractions and does not compute recoverable photon energies. However, all decay data common to both codes are identical.

Table M6.2.8 summarizes nuclides according to their change status (updated or unchanged), their decay data source, and their decay nature (stable or radioactive). The nature of ²⁰⁴Pb was changed to stable because it was reevaluated since the previous update. Most nuclides were updated from ENDF/B-VI data files. Nuclides that were updated from ENSDF data are listed in Table M6.2.9. The half-life of ⁷⁹Se (from ENDF/B-VI) was changed because it was determined to be in error. It was discovered that the conversion of measured disintegrations per second to half-life in one of the source reports for ⁷⁹Se was in error by a factor of 10. Also, the half-life of ^{86m}Br was changed back to the initial value because it was inadvertently given the ⁸⁶Br value. The corrected half-lives were placed in the ORIGEN-S decay library prior to the release of SCALE 4.3.

All the remaining nuclides for which all data items were not updated, or which were given special treatment, are listed in Table M6.2.10. Although these are taken from the last 26 nuclides in the listing in Table M6.2.8, note that only 22 are shown in Table M6.2.10. The reason for the difference in numbers is because four of the different nuclides in Table M6.2.10 are in two library segments, and the values in Table M6.2.8 represent the number of nuclide positions in the entire library. The pseudonuclides ^{155m}Gd and ²⁵⁰S are not real nuclides, but are locations for neutron counters used by ORIGEN2. The special purpose of ⁴H is explained in Sect. M6.2.8. The decay data for nuclides in Table M6.2.10 which are not specifically footnoted were taken from either the library for the original version of ORIGEN¹ or the first expansion of the light-element and fission-product libraries.^{2,4} The source of most of the decay data in those libraries was either the Table of Isotopes²⁰ or the Chart of the Nuclides,²¹ although the source of some of the data remains unknown.

A part of the recoverable energy per decay not included in the ENDF/B-VI and ENSDF data was that from spontaneous fission. This quantity was calculated as the product of spontaneous fission branching fraction and recoverable energy per fission and added to the ENDF or ENSDF recoverable energy. A value (consistent with that used in unchanged data) of 200 MeV per fission¹¹ was assumed. A value of 12.56-MeV gamma energy per fission¹¹ was used in computing the fraction of recoverable energy from photons.

In addition to radioactive decay data, the decay database contains two other kinds of data. Atom percent natural isotopic abundances were taken from Holden,²² and maximum permissible radioactivity concentration guides (RCGs) for air and water were taken from the *Code of Federal Regulations*, 10 CFR 20.¹⁶

Number of nuclides	Stability, change status, and data source
404	Stable, unchanged
1126	Radioactive, updated (ENDF/B-VI ¹⁰)
2	Radioactive, required half-life revision after ENDF/B-VI update
139	Radioactive, updated (ENSDF ^{14,18,19})
1	Stable, updated (Table of Radioactive Isotopes ^a)
21	Radioactive, partial ^b or no change (prior ORIGEN2 ^c)
4	Special purpose (pseudonuclide) positions, unchanged
1697	Total library size
"Taken	from Ref. 17.
^b Not all	data items were changed.

Table M6.2.8 Summary of decay data sources

Taken from Ref. 11.

Table M6.2.9 Unique nuclides updated with decay data from ENSDF

17 11				
4Be 11	25Mn 57	58Ce139m	72Hf178m	78Pt195m
5 B 12	25Mn 58	59Pr139	72Hf179m	78Pt197m
7 N 13	27Co 58m	59Pr140	72Hf180m	78Pt197
6 C 15	27Co 61	60Nd141	73Ta180	80Hg197m
11Na 24m	27Co 62	63Eu149	72Hf181	89Hg197
11Na 25	28Ni 65	66Dy157	73Ta182m	78Pt199m
13Al 29	28Ni 66	66Dy159	73Ta183	78Pt199
13Al 30	29Cu 67	67Ho163	74 W183m	79Au199
14Si 32	30Zn 69m	68Er163	74 W185m	79Au200
15 P 33	30Zn 69	68Er165	76Os185	80Hg205
15 P 34	31Ga 70	68Er169	74 W188	84Po211m
16 S 35	30Zn 71	70ҮЪ169	75Re188m	88Ra222
16 S 37	30Zn 71m	69Tm170	75Re188	90Th226
17Cl 38m	32Ge 71	68Er171	74 W189	92 U230
17Cl 38	32Ge 71m	69Tm171	75Re189	92 U231
19 K 43	45Rh102	68Er172	76Os190m	91Pa235
19 K 44	47Ag106	69Tm172	76Os191m	93Np235
21Sc 46m	55Cs131	69Tm173	76Os191	95Am239
20Ca 49	56Ba131	70Yb175	78Pt191	93Np241
21Sc 49	56Ba131m	72Hf175	77Ir192	94Pu246
21Sc 50	55Cs132	71Lu176m	77Ir192m	95Am246
23 V 53	56Ba133m	70Yb177	76Os193	96Cm251
23 V 54	58Ce137	71Lu177m	78Pt193m	99Es254
24Cr 55	58Ce139	71Lu177	77Ir194m	

NUREG/CR-0200, Vol. 3, Rev. 6

M6.2.12

					_
1H4 <i>ª</i>	58Ce137m ^c	65Tb163m	96Cm250	99Es255	
4Be 8 ^{<i>b</i>}	58Ce142	69Tm170m	97Bk251	S250ª	
23V50°	62Sm149	70Yb175m	98Cf254		
34Se85m	65Tb162m	92 U241	99Es254m*		
35Br86m	64Gd155m ^a	/82Pb204 ^d	98Cf255		

Table M6.2.10 Nuclides not updated with decay data or changed to stable

"Special purpose pseudonuclides with no physical decay data.

^bHalf-life increased from 6.7×10^{-17} s to 2×10^{-6} s to require fewer changes in PC version.

'Half-lives and recoverable energies from ENSDF.

^dThe decay nature was specified as stable in Ref. 17.

'Gamma energies from Ref. 17.

M6.2.7 SOURCES OF CROSS-SECTION DATA

With the exception of the nuclides discussed later, all cross-section and fission-yield data for the HTGR, LMFBR, and MSBR were taken from the ORIGEN libraries.¹⁻⁴ However, some rearrangement of these data was undertaken at the time (early 1980s) of the first major data update, as explained below.

Cross sections were transferred from the small light-element library to the large light-element library for those nuclide and reactor-type combinations that previously had no cross-section data in the large light-element library.

The cross sections for those nuclide and reactor-type combinations that were already present in the large light-element library were transferred to the small light-element library, since these data were from more recent sources^{2,4} than those data originally in the small library.

Cross sections for ¹²⁹I were transferred from the original small fission-product library to the large (now the only) fission-product library for the HTGR and MSBR, since the large library had no data for these cases.

When data were transferred from the large to the small libraries, the transfers were performed only for those nuclides originally in the small libraries. No nuclides were added. As mentioned earlier in Sect. M6.2.2, 13 nuclides from the small light-element library were added to the original large light-element library during the updating.

The net result of all the transfers of cross-section data was to make the small light-element library a subset of the large light-element library. The small libraries were retired at the release of SCALE 4.2.

Later, cross-section data for ¹³³Cs were replaced for the HTGR, LWR, and MSBR in the large light-element and fission-product libraries. Values of the thermal (2200 m s⁻¹) (n, γ) cross section and the (n, γ) resonance integral were taken from an ENDF/B-V compilation.²³ For the LWR only, those cross sections were adjusted slightly to give an effective one-group (n, γ) cross section of 117 b for ¹³³Cs when used with the "typical" values of 0.632 for THERM and 0.333 for RES. This one-group cross section is more representative of a modern LWR than the old value, which consistently led to an overestimate of the afterheat power from ¹³⁴Cs.

The value of FINP for ³He in the old light-element libraries was erroneously given as zero. The correct value of 1.0 was used for the new libraries.

The values of (n,α) cross sections for the HTGR and LWR in the old light-element libraries were replaced for the following 11 nuclides: ¹H, ²H, ⁶Li, ⁷Li, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ¹⁴N, ¹⁶O, and ¹⁹F. The sum of the (n,α) and the (n,2n) cross sections from the original reference²⁴ had been misinterpreted as just the (n,α) cross

section, leading to erroneously high values for the (n,α) cross sections in the libraries. New cross-section data were taken either from a compilation²⁵ of ENDF/B-IV thermal cross sections and resonance integrals or from a collapse of the SCALE 218-group library (Sect. M4). A 1/E weighting in the resonance region and a fission spectrum weighting in the fast region were used for the collapse.

The thermal cross sections and resonance integrals for the (n,γ) and (n,fission) reactions were updated for the following nuclides in the actinide library: ^{242m}Am, ²⁴²Am, ²⁴²Cm, ²⁴³Cm, and ²⁴⁵Cm. New values were placed in the library for the HTGR, LWR, and MSBR. The new data were taken from an ENDF/B-V compilation.²³ Cross sections for these nuclides are sometimes not updated before running an ORIGEN-S case, and the new values should give better nuclide concentrations and neutron sources than those from the old actinide library.

M6.2.8 SPECIAL TREATMENT OF CERTAIN NUCLIDES

The data for certain nuclides in the ORIGEN-S card-image nuclear data libraries are not the same as the data taken from the original sources. Because this situation is potentially confusing to the user, explanations of these cases are presented here.

The first special case is that of the fictitious nuclide ⁴H. This nuclide has been added to the light-element library, so the following reaction can be represented for the HTGR and LWR:

$${}_{3}^{\prime}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{1}^{3}\text{H} + {}_{2}^{4}\text{He} + {}_{0}^{1}\text{n}$$
 (M6.2.20)

Since this fictitious nuclide is represented as being stable with a large $(9.9 \times 10^{10} \text{ b})$ (n,2n) cross section, the reaction of Eq. (M6.2.20) can be represented by the following two reactions:

$${}_{3}^{\prime}\text{Li} + {}_{0}^{1}n - {}_{1}^{4}\text{H} + {}_{2}^{4}\text{He}$$
, (M6.2.21)

$${}^{4}_{1}H + {}^{1}_{0}n \rightarrow {}^{2}_{0}n + {}^{3}_{1}H .$$
 (M6.2.22)

If the reaction of Eq. (M6.2.21) is given the same cross section as that of Eq. (M6.2.20), then the sum of the reactions of Eqs. (M6.2.21) and (M6.2.22) is a good approximation of the reaction in Eq. (M6.2.20).

The second special case is that of ⁹²Nb in the light-element library. The decay data shown for ⁹²Nb are actually the data for ^{92m}Nb, which is formed by the reaction

$${}^{92}_{42}\text{Mo} + {}^{1}_{0}\text{n} - {}^{1}_{1}\text{H} + {}^{92}_{41}\text{m}\text{Nb} .$$
(M6.2.23)

Since there is no provision for representing an (n,p) reaction leading to a metastable product nuclide, ^{92m}Nb has been represented as ⁹²Nb.

The third special treatment of certain nuclides involves the request for the option to solve for the time integral of fission-product concentrations (Sect. F7.2.7) during the decay-only type of time interval. The option is requested in ORIGEN-S input by specifying a nonzero value for NVERT, the 32nd entry in the 3\$ data array (Sect. F7.6.10). The model for the integral option requires that fission-product nuclides do not decay by the (β,n) or the α modes of decay. If the integral option is requested, the code sets the α decay and the (β,n) decay branching fractions to zero when processing the card-image libraries and does not change other branching fractions of the decay of the nuclide. The option is not permitted during irradiation, when the (β,n) emission can be important. Following the first hour after a reactor power shutdown, the nuclides that have (β,n)

NUREG/CR-0200, Vol. 3, Rev. 6

M6.2.14

emission have diminished to insignificance because their half-lives do not exceed 1 minute. The fission products that decay by α emission are ¹⁴²Ce, ¹⁴⁴Nd, ¹⁴⁶Sm, ¹⁴⁷Sm, ¹⁴⁸Sm, ¹⁴⁹Sm, and ¹⁵²Gd. The shortest half-life of these nuclides (for ¹⁴⁶Sm) exceeds 10⁸ years.

NUREG/CR-0200, Vol. 3, Rev. 6

M6.2.15

M6.3 CARD-IMAGE PHOTON YIELD LIBRARIES

The original card-image photon yield libraries for ORIGEN¹ contained multigroup photon yields (photons per disintegration) for decay gamma and X rays, for bremsstrahlung from decay beta rays slowing down in a UO₂ fuel matrix, and for some gammas accompanying (α ,n) reactions in oxide fuels. The yields for light elements and fission products were given in the 12-group structure of the PHOEBE code.²⁶ For the actinide library, the lowest energy group was divided into seven smaller groups with energies down to 20 keV, giving 18 groups in all.

There are three card-image photon yield libraries that were generated specifically for ORIGEN-S: (1) a light-element library for 323 nuclides, (2) an actinide library for 114 nuclides, and (3) a fission-product library for 298 nuclides. The photon yields in these libraries include decay gamma and X rays, prompt and equilibrium fission-product gamma rays from spontaneous fission, gamma rays accompanying (α ,n) reactions in oxide fuel, and bremsstrahlung from decay beta rays slowing down in a UO₂ fuel matrix. The light-element and fission-product photon yields were generated in a 12-group structure, and the actinide photon yields are given in an 18-group structure. Both group structures are shown in Table M6.3.1.

Group No.		Lower energy	Average energy
_LE,FP	ACT	(MeV)	(MeV)
	1	0.00	0.01
	2	0.02	0.03
	3	0.04	0.055
	4	0.07	0.085
	5	0.10	0.12
	6	0.14	0.17
1	7	0.20	0.30
2	8	0.40	0.65
3	9	0.90	1.125
4	10	1.35	1.575
5	11	1.80	2.00
6	12	2.20	2.40
7	13	2.60	2.80
8	14	3.00	3.25
9	15	3.50	3.75
10	16	4.00	4.25
11	17	4.50	4.75
_12	18	5.00	5.50

Table M6.3.1 Group structures for ORIGEN-S photon yield libraries

The lower energy bounds for the light-element and fission-product libraries are the same as in the original ORIGEN libraries. For the actinide library, the lower bounds are the same as in the original library for groups 8 to 18, but the group bounds have been revised for the seven lowest energy groups. The revised boundaries were chosen to give a relatively flat spectrum in these low energy groups.

NUREG/CR-0200, Vol. 3, Rev. 6

The standard setup for all computers is for the three nuclear data libraries and the three photon yield libraries to reside in a single data file, separated by blank cards, and to be referenced by a single logical unit number.

Note that the user can generate his own card-image photon yield libraries by the use of various options in ORIGEN-S (Sect. F7.6.10). Because of programming considerations, the number of energy groups in the light-element and fission-product libraries must be less than or equal to 12, and the number of groups in the actinide library must be in the range 10 to 18. Any energy group boundaries can be used.

Other ORIGEN-S options (Sect. F7.6.10) allow multigroup photon yield data to be placed in a binary data library (Sect. M6.7). In a binary data library, there are no limits on the number of energy groups which can be used.

The remainder of this section is devoted to describing (1) the data formats for the original libraries and for the ORIGEN-S photon libraries and (2) the data source for the ORIGEN-S libraries.

M6.3.1 FORMATS

The photon yields are read from the card-image libraries with a READ statement such as the following:

READ(NDSET, FOR, END=350) NUCLID, (GFRAC(N), N=1, NGP) ,

where NUCLID is the nuclide identification number of Eq. (M6.2.1), GFRAC(N) is the yield in group N, and NGP is the number of groups. The READ statement used for photon libraries in the input stream does not have the "END=" option. The FORMAT used is given in array FOR and varies according to the library being read. The FORMATS used for the original ORIGEN libraries are given in Table M6.3.2.

Table M6.3.2 FORMATS for original photon yield libraries			
Library	FORMAT		
Light element or fission product	(I6,12F6.4)		
Actinide	(I6,9E8.2,2X/6X,9E8.2)		

If the value of NUCLID on the first record is negative, subroutine XPHOLB assumes that an ORIGEN-S photon yield library is being used. The number of groups is -NUCLID. The FORMAT to be used in the READ statement above is then read in with the following statements:

READ(NDSET, 11000) FOR 11000 FORMAT(18A4) .

The FORMAT read into array FOR is read from the second record of an ORIGEN-S light-element or fissionproduct library. In an ORIGEN-S actinide photon library, the second record is ignored, and the FORMAT of array FOR is read from the third record.

Once the proper FORMAT has been set, the remaining records of a photon yield library are read by the first READ statement given above, for both the original ORIGEN and the ORIGEN-S libraries.

Any format compatible with the number of energy groups can be used for an ORIGEN-S photon yield library. The current ORIGEN-S libraries were generated by ORIGEN-S itself, using the FORMATS shown in Table M6.3.3.

Table M6.3.3 FORMATS for current ORIGEN-S photon yield libraries		
Library	FORMAT	
Light element	(I6,6E12.5,2X/6X,6E12.5)	
Actinide	(I6,6E12.5,2X/6X,6E12.5,2X/6X,6E12.5)	
Fission product	(I6,6E12.5,2X/6X,6E12.5)	

M6.3.2 SOURCE OF DATA

The ORIGEN-S card-image photon yield libraries were generated by ORIGEN-S itself from data in the ORNL Master Photon Data Base described in Sect. M6.5.

As an aid to those who may wish to generate their own libraries, and for completeness in documentation, the ORIGEN-S input data to generate these libraries are presented below:

```
#shell
 cat $ORCARD/mpdkxgam $ORCARD/mpsfangm $ORCARD/mpbru* > ft60f001
 rm ft35f001 ft36f001 ft37f001
 touch ft35f001
 touch ft36f001
 touch ft37f001
end
#origens
0$$ a9 60 e
 1t
case makes 12-group card-image light element photon library
3$$ a33 12 4** 0.632 0.333 2 e 2t
35$$ 0 4t
56$$ 0 1 a13 1 a16 35 4 e 5t
60**·1
73$$ 190400 74** 1 75$$ 1
81$$ 8 a3 60 e
83** 600000.0 500000.0 4500000.0 4000000.0 3500000.0 3000000.0
     2600000.0 2200000.0 1800000.0 1350000.0 900000.0 400000.0
     200000.0 6t
12-group card-image light element photon library
56$$ f0 t
end
#origens
0$$ a9 60 e
 1t
case makes 18-group card-image actinide photon library
3$$ a33 18 4** 0.632 0.333 2 e 2t
35$$ 0 4t
56$$ 0 1 a13 1 a16 36 4 e 5t
60** 1
```

```
73$$ 922380 74** 1 75$$ 2
81$$ 9 a3 60 e
83** 6000000.0 5000000.0 4500000.0 4000000.0 3500000.0 3000000.0
     2600000.0 2200000.0 1800000.0 1350000.0 900000.0
                                                       400000.0
     200000.0 140000.0 100000.0
                                    70000.0
                                              40000.0
                                                        20000.0
          0.0 6t
18-group card-image actinide photon library
56$$ f0 t
end
#origens
0$$ a9 60 e
 1t
case makes 12-group card-image fission product photon library
3$$ a33 12 4** 0.632 0.333 2 e 2t
35$$ 0 4t
56$$ 0 1 a13 1 a16 37 4 e 5t
60** 1
73$$ 360850 74** 1 75$$ 3
81$$ 10 a3 60 e
83** 6000000.0 5000000.0 4500000.0 4000000.0 3500000.0 3000000.0
     2600000.0 2200000.0 1800000.0 1350000.0 900000.0 400000.0
     200000.0 6t
12-group card-image fission product photon library
56$$ f0 t
end
#shell
 cp ft35f001 $RTNDIR/12_group_light_element_photon_lib
 cp ft36f001 $RTNDIR/18_group_actinide_photon_lib
 cp ft37f001 $RTNDIR/12_group_fission_product_photon_lib
end
```

All three cases shown in the input data are run back to back. Each case simulates a 1-day decay of some nuclide in the library of interest since ORIGEN-S must perform some calculation before generating a new library. The large light-element, actinide, and fission-product nuclear data libraries are read on unit 28. The card-image master photon data base for these runs was formed by concatenating the data sets for (1) decay gamma and X rays, (2) gamma rays accompanying spontaneous fission and (α,n) reactions, and (3) bremsstrahlung for betas and positrons slowing down in UO₂. This card-image master photon data base is read on unit 60. The light-element, actinide, and fission-product card-image photon yield libraries are written on units 35, 36, and 37, respectively. Further details of the input data may be found by studying Sect. F7.6 of the ORIGEN-S documentation.

When the data from the ORNL Master Photon Data Base¹¹ (Sect. M6.5) are converted to multigroup yields by ORIGEN-S, the intensities of the photons are adjusted to ensure conservation of the photon energy release rates calculated by ORIGEN-S. Experience has shown that conservation of energy yields photon dose rates outside shipping casks that are in better agreement with experiment than does conservation of photons. The adjusted group intensity is given by:

$$I_g = I_a(E_a/E_g)$$
, (M6.3.1)

where

 I_g = group photon intensity (photons per disintegration),

NUREG/CR-0200, Vol. 3, Rev. 6

M6.3.4

 I_a = actual photon intensity from the ORNL Master Photon Data Base (photons per disintegration), E_a = actual photon energy (MeV), and E_g = mean energy of the group (MeV).

If the actual photon energy E_a is near a group boundary, the group intensity may be split between two groups. To determine when this split occurs, a factor f is computed as

$$f = \frac{E_a - E_{\ell}}{E_u - E_{\ell}}$$
, (M6.3.2)

where

 E_{ℓ} = lower energy bound of the group (MeV), and E_{u} = upper energy bound of the group (MeV).

If $f \le 0.03$, the intensity I_g is split equally between group g and the next lower energy group, unless group g is the lowest group. If $f \ge 0.97$, the intensity I_g is split equally between group g and the next higher energy group, unless group g is the highest group. If 0.03 < f < 0.97, the intensity I_g is not split between adjacent groups.

M6.3.5

M6.4 DATA PROGRAMMED INTO ORIGEN-S AND COUPLE

Several items of nuclear data are programmed directly into ORIGEN-S and COUPLE. Descriptions of these data are presented here. Although these data are not part of the ORIGEN-S libraries, the user may on occasion wish to change these data or to understand explicitly how they are used.

The arrays EACTGP and EGROUP are defined by DATA statements in subroutine FLXDIM in ORIGEN-S and in subroutine CARDIM in COUPLE. The array EACTGP contains the average energies of the 18 groups in the original card-image actinide photon yield library. The array EGROUP contains the average energies of the 12 groups in the original card-image light-element and fission-product photon yield libraries. These are the average energies of Table M6.3.1. Note that the arrays EACTGP, EGROUP, and EFPGRP can be read as input data in the 36*, 37*, and 39* arrays of ORIGEN-S (Sect. F7.6.10) or COUPLE (Sect. F6.5.8). When read as input data, these arrays contain the energy group boundaries (**not** the average group energies) for the card-image light-element, actinide, and fission-product photon yield libraries. These data should be read in **only** when the user has made his own card-image photon yield libraries to be read using the **original** ORIGEN library FORMATS of Table M6.3.3, and then **only** if different energy group boundaries have been used. These data should **not** be read when photon yield libraries with the new ORIGEN-S variable FORMATS are used.

A number of data in the ORIGEN-S COMMON/SPECDT/ are defined by DATA statements in the BLOCK DATA ORGENS subroutine of ORIGEN-S. These data, used in the calculation of spontaneous fission and (α,n) neutron sources in UO₂ (Sect. F7.2.8), are described below in their order of appearance in the COMMON block.

- 1. The variable NGAL is the number of energy groups in which neutron spectra data are provided for (α,n) neutron sources due to ²⁴²Cm, ²⁴⁴Cm, and ²³⁸Pu.
- 2. The variable NGSP is the number of energy groups in which neutron spectra data are provided for spontaneous fission neutron sources from ²⁴²Cm and ²⁴⁴Cm.
- 3. The array GRPAL contains the energy group boundaries (MeV) for neutron spectra from (α,n) reactions.
- 4. The array GRPSP contains the energy group boundaries (MeV) for neutron spectra from spontaneous fission.
- 5. The array SA38 contains the neutron spectrum from (α, n) reactions due to alpha decays in ²³⁸Pu.
- 6. The array SA42 contains the neutron spectrum from (α, n) reactions due to alpha decays in ²⁴²Cm.
- 7. The array SA44 contains the neutron spectrum from (α, n) reactions due to alpha decays in ²⁴⁴Cm.
- 8. The array SS42 contains the neutron spectrum from spontaneous fission of 242 Cm.
- 9. The array SS44 contains the neutron spectrum from spontaneous fission of ²⁴⁴Cm.
- 10. The array EALPH contains the mean alpha energies (MeV) for those actinides which decay by alpha emission.
- 11. The array FA contains the alpha decay branching fractions for the actinides.
- 12. The array SPONU contains the values of the spontaneous fission yield, v_{SF} , for those actinides that have measured data.
- 13. The array HALFSP contains spontaneous fission half-lives (years) for a number of actinides.
- 14. The array AEK contains data for an empirical formula used to estimate the spontaneous fission yield for those actinides having no measured value of v_{SF} .

Data having the same variable names as those in COMMON/SPECDT/ are also present in COMMON/SPEBOR/. They are defined by DATA statements in the BLOCK DATA BORSIL subroutine of ORIGEN-S. These data are used in the calculation of (α, n) neutron sources in borosilicate glass.

The arrays YLD1, YLD2, YLD3, YLD4, and YLD5 from COMMON/NEUTYL/ of ORIGEN-S are defined in the BLOCK DATA BORSIL subroutine. These arrays contain spectrally dependent (α ,n) neutron yields in borosilicate glass for the 54 lightest elements in the ORIGEN-S libraries.

The arrays ST1, ST2, ST3, ST4, ST5, and ST6 from COMMON/STPOWR/ of ORIGEN-S are also defined in the BLOCK DATA BORSIL subroutine. They contain spectrally dependent stopping power data for alpha particles for the 99 elements in the ORIGEN-S libraries.

The array MSRS in subroutine FLXDI1 in ORIGEN-S, and in subroutine CARDIM in COUPLE, contains the identification numbers of the fissionable nuclides which have fission-product yield data in the card-image nuclear data libraries (Table M6.2.7).

A number of arrays defined by DATA statements in subroutine POWERF in ORIGEN-S contain data used to compute the recoverable energy (MeV per fission) for converting power to flux. The array IDL contains the identification numbers of ten light-element nuclides having values of recoverable energy per neutron capture in the array QCLIT. The array QNFISS contains values of recoverable energy per (n,fission) reaction for 30 actinides whose identification numbers are given in array IDA. The array QCACT contains values of recoverable energy per neutron capture for the same 30 actinides. The array IDF has identification numbers for 30 fission products whose values of recoverable energy per neutron capture are given in the array QCFPR. The recoverable energy values in arrays QCLIT, QCACT, QNFISS, and QCFPR were taken primarily from ENDF.^{5,6} The recoverable energy per neutron capture is assumed to be 5.0 MeV for all nuclides for which data are not given in the DATA statements.

Finally, the arrays YTNEUT, YRNEUT, and YFNEUT are defined by DATA statements in subroutine XNUDAT in ORIGEN-S and in COUPLE. These arrays contain values of v (neutrons per fission) for the thermal, resonance, and fast energy groups, respectively, for all 129 nuclides. These values are used in ORIGEN-S if the option to compute the infinite medium neutron multiplication factor has been invoked. The user has the option to read in his own values as input data in the 121*, 122*, and 123* arrays of ORIGEN-S (Sect. F7.6.10).

NUREG/CR-0200, Vol. 3, Rev. 6

M6.4.2

M6.5 MASTER PHOTON DATA BASE

The ORNL Master Photon Data Base¹¹ was originally developed for the ORIGEN2 code.¹³ It is maintained as six card-image data sets for ease in updating. However, ORIGEN-S can be used (Sect. F7.6.10) to create a binary (unformatted) master photon data base for use in subsequent ORIGEN-S runs. It has been customary at ORNL to run ORIGEN-S with a binary master photon data base, since execution is somewhat more efficient for that mode of operation. The ORNL Master Photon Data Base is the most comprehensive and up-to-date photon library available to ORIGEN-S. It can be used (Sect. F7.6.10) to generate multigroup photon source spectra, to make card-image photon yield libraries, or to update photon yield data in a binary data library. The spectra and photon yield data can be generated in any energy group structure for all light-element, actinide, and fission-product nuclides having photon data. The ORNL Master Photon Data Base is described in detail in Ref. 11. The remainder of this section is devoted to a summary description of the formats, data sources, and uses of this data base.

M6.5.1 CARD-IMAGE DATA BASES

There are six card-image data sets for six categories of photon sources. The first data set contains decay gamma and X-ray line data from ENSDF.^{14,15}

The second data set contains spectra for gamma rays accompanying spontaneous fission and for gamma rays accompanying (α,n) reactions in oxide fuels. The combined spectra for prompt and equilibrium fission-product gamma rays from spontaneous fission are computed from the following approximation:¹¹

N(E) ≅	11.5	$, 0.1 \le E < 0.6 MeV,$	
표	35.4	$exp(-1.78E), 0.6 \le E < 1.5 \text{ MeV},$	
8	12.6	$exp(-1.09E), 1.5 \le E \le 10.5$ MeV,	(10.5.1)
≅	0	E < 0.1; E > 10.5 MeV,	

where

N(E) = number of photons per unit energy per fission (photons MeV⁻¹ per fission) at energy E,

and

E = photon energy (MeV).

The spectrum of gamma rays accompanying (α, n) reactions is computed from the following approximation:¹¹

$$N(E) \approx 2.13 \times 10^{-8} \exp(-1.38E)$$
, (M6.5.2)

where

N(E) = number of photons per unit energy per alpha decay (photons MeV⁻¹ per disintegration) at energy E,

NUREG/CR-0200, Vol. 3, Rev. 6

M6.5.1

E = photon energy (MeV).

Two data sets contain bremsstrahlung spectra from decay negatrons and positrons slowing down in a UO₂ fuel matrix. The last two data sets contain bremsstrahlung spectra from decay negatrons and positrons slowing down in water. According to Ref. 11, all bremsstrahlung spectra were calculated using a computer program developed by Dillman et al.,²⁷ using beta spectra derived from ENSDF^{14,15} decay data with a computer program written by Gove and Martin.²⁸

The six data sets described above can be concatenated in any user-chosen combination to form a cardimage master photon data base for use with ORIGEN-S. All six data sets are constructed in the same cardimage format. The data are read in subroutine GSMAST of ORIGEN-S by READ and FORMAT statements such as

READ(NLIB, 10000, END=320) NUC, (RE(J), RI(J), J=1, 3) 1000 FORMAT(I6, 4X, 6F10.0) .

In the READ statement, NUC is the nuclide identification number, RE is the photon energy (MeV), and RI is the photon intensity (photons per disintegration).

There are several cards for each nuclide. The first card contains a nonzero value of NUC, and zero values for all the RE and RI entries. The remaining cards for a nuclide contain a zero entry for NUC and nonzero entries for the RE and RI values. These cards are repeated until all photon data for a nuclide have been given.

M6.5.2 BINARY DATA BASES

As mentioned earlier, a binary master photon data base can be created by ORIGEN-S from any combination of the six card-image data sets. All data in a binary master photon data base are read in subroutine GSMAST of ORIGEN-S by the following unformatted READ statement:

READ(NLIB, END=310) NUC, LINES, (RE(J), RI(J), J=1, LINES).

In this READ statement, LINES is the total number of entries for the nuclide. The variables NUC, RE, and RI have the same meanings as for a card-image master photon data base.

Three binary master photon data bases have been generated for use at ORNL. Each contains decay gamma and X-ray line data and the spectra for gamma rays accompanying spontaneous fission and (α,n) reactions. One contains no bremsstrahlung data, another contains bremsstrahlung spectra for a UO₂ fuel matrix, and the last contains bremsstrahlung spectra for a water medium.

The ORIGEN-S input data to create the three standard binary master photon data bases are given below. For each of the three cases, a card-image master photon data base is read on unit 59, 61, or 62. The card-image data base is then converted to a binary master photon data base written on unit 23, 24, or 26. The large light-element, actinide, and large fission-product card-image nuclear data and photon yield libraries are read on unit 28. Details of the input data can be determined by studying Sect. F7.6.10 of the ORIGEN-S documentation.

and
```
#shell
  cat $ORCARD/mpdkxgam $ORCARD/mpsfangm $ORCARD/mpbru* > ft59f001
  cat $ORCARD/mpdkxgam $ORCARD/mpsfangm $ORCARD/mpbrh* > ft61f001
  cat $ORCARD/mpdkxgam $ORCARD/mpsfangm > ft62f001
  rm ft23f001 ft24f001 ft26f001
 touch ft23f001
  touch ft24f001
 touch ft26f001
enđ
#origens
0$$ a4 0 28 a9 59 a11 26 e 1t
new card-image nuclear data libraries
3$$ 28 a33 12 e
4** 0.632 0.333 2 e 2t
4t
56$$ a2 1 a5 1 0 a13 1 a15 1 a17 1 e 5t
60** 1 73$$ 922380 74** 1 75$$ 2 81$$ 15 a3 59 e 6t
making binary master photon library with uo2 bremsstrahlung
1$$ 0 1t
end
#origens
0$$ a4 0 28 a9 61 a11 24 e 1t
new card-image nuclear data libraries
3$$ 28 a33 12 e
4** 0.632 0.333 2 e 2t
4t
56$$ a2 1 a5 1 0 a13 1 a15 1 a17 1 e 5t
60** 1 73$$ 922380 74** 1 75$$ 2 81$$ 15 a3 61 e 6t
making binary master photon library with h2o bremsstrahlung
1$$ 0 1t
enð
#origens
0$$ a4 0 28 a9 62 a11 23 e 1t
new card-image nuclear data libraries
3$$ 28 a33 12 e
4** 0.632 0.333 2 e 2t
4t
56$$ a2 1 a5 1 0 a13 1 a15 1 a17 1 e 5t
60** 1 73$$ 922380 74** 1 75$$ 2 81$$ 15 a3 62 e 6t
making binary master photon library with no bremsstrahlung
1$$ 0 1t
end
#shell
  cp ft23f001 $DATA/maphnobr
  cp ft24f001 $DATA/maphh2ob
  cp ft26f001 $DATA/maphuo2b
```

end

M6.6 ENDF/B-IV FISSION-PRODUCT DATA BASE

The ORIGEN-S card-image libraries formerly included an ENDF/B-IV fission-product data base containing fission-product decay data in ENDF/B-IV card-image format.²⁹ These data had been processed from file (MF) 1, reaction type (MT) 457 of the ENDF/B-IV fission-product tapes.⁵

It was possible for ORIGEN-S (Sect. F7.6.10) to use this library to generate multigroup fission-product photon source spectra, or to make a card-image or binary (unformatted) photon yield library for fission products.

As of the release of SCALE 4.3, this library has been removed from the ORIGEN-S card-image libraries, since it contained old data that were rarely used. The user should note that the ORIGEN-S routines which read those data will not work for decay data in ENDF/B-V⁶ or ENDF/B-VI¹⁰ formats, since the data formats are not the same as those for ENDF/B-IV.²⁹

M6.7 BINARY ORIGEN-S DATA LIBRARIES

The use of a binary data library is perhaps the most significant feature of ORIGEN-S. A binary data library is made or updated with the COUPLE code (Sect. F6). It contains, in a single library, the same kinds of data as the card-image nuclear data and photon yield libraries, but for only one reactor type. The ORIGEN-S code is normally run with one or more (time-dependent) binary data libraries for the reactor type of interest, since a binary data library has many advantages over the card-image libraries. Its principal advantage is that the cross sections in the library can be replaced by cross sections derived from a detailed multigroup neutronics (e.g., unit cell) calculation. Cross-section updating is performed by COUPLE, which reads the multigroup cross sections from an AMPX¹² weighted (working) cross-section library (Sect. F2.3.8). Automated generation of a multitime-dependent (i.e., multiburnup-dependent) binary data library can be performed with the SAS2H control module (Sect. S2) which invokes the BONAMI, NITAWL, XSDRNPM, COUPLE, and ORIGEN-S codes (Sects. F1, F2, F3, F6, and F7, respectively). Another advantage is that any portion of the photon yield data from the ORNL Master Photon Data Base can be placed in the binary data library can be replaced by a user-specified value by using COUPLE (Sect. F6.5.8).

The remainder of this section gives the description and formats of the two kinds of binary data libraries, as well as the input data necessary to generate some of the binary data libraries in use at ORNL.

M6.7.1 DESCRIPTION

There are two kinds of binary data libraries. A binary master library contains all the kinds of data present in the card-image nuclear data and photon yield libraries for a single reactor type. It does not contain one-group flux-weighted cross sections, so it cannot be used as an input library to run ORIGEN-S. A master library can be made by direct conversion from card-image libraries or by updating another master library using COUPLE with card-image data input by the user.

A binary working library contains all the data of a master library. In addition, it contains effective one-group flux-weighted cross sections that apply at one or more burnups so it can be used as an input library to run ORIGEN-S. It can be made by direct conversion from card-image libraries, by direct conversion from a master library, by updating either form of binary library with data input from card images, or by updating either form of binary library with cross sections from an AMPX weighted cross-section library. A multiburnup binary working library may be produced by the SAS2H control module (Sect. S2) of SCALE.

Every binary data library has a library identification number given by the variable NEWID. A master library has a value of NEWID < 950. A working library has a value of NEWID > 1000.

A binary data library is subdivided (unless deleted by special options) into three kinds of libraries: Library 1 for light elements, Library 2 for actinides, and Library 3 for fission products. The designations of Library 1, 2, or 3 are used in the discussion of different updating options in COUPLE (Sect. F6.5.8).

Additional details about the definitions, uses, and updating of binary data libraries are given in Sect. F6.5 of the COUPLE documentation.

M6.7.2 FORMATS

A master library contains 36 binary (unformatted) records; at least 40 binary records are found in a working library. A working library is identical to a master library except for the addition of at least four records containing effective one-group flux-weighted data. A working library produced by converting a card-image library contains only one set of an additional four records. However, if the library is produced during a SAS2H case, there is an additional set of four records for each burnup interval or cycle specified in the power history input to the SAS2H case.

The first records of a binary data library contain the header information described in Table M6.7.1. A summary description of the data in all the records of a binary data library is given in Table M6.7.2. Most of these data have been described in earlier sections of this report.

Variable name	Description
ITOT or ITMAX	Total number of nuclides in library
ILITE or ILMAX	Number of light-element nuclides in library
IACT or IAMAX	Number of actinide nuclides in library
IFP or IFMAX	Number of fission-product nuclides in library
NON or IZMAX	Number of nonzero off-diagonal elements in the transition matrix
NREACT	Maximum number of transitions for any single nuclide
NFISO	Number of fissionable nuclides for which fission-product yields
· · ·	are given
NELEM	Largest atomic number of nuclides in library
NMO	Month library was made
NDAY	Day of month library was made
NYR	Year library was made
NENAC	Number of energy groups for actinide photon yields
NENLE	Number of energy groups for light-element photon yields
NENFP	Number of energy groups for fission-product photon yields
THERM	Thermal group flux weighting factor for first burnup interval
RES	Resonance group flux weighting factor for first burnup interval
FAST	Fast-group flux weighting factor for first burnup interval
ERR	Truncation error limit below which values computed by
	ORIGEN-S are considered to be zero
IDREFS	ID number of nuclide in AMPX weighted cross-section library
	containing the weighting spectrum used to obtain the flux
	weighting factors THERM, RES, and FAST
NEWID	ID number of binary data library
ENERHI	Upper bound of resonance energy region (eV) for first burnup interval
ENERLO	Lower bound of resonance energy region (eV) for first burnup interval
FLXRAT	Ratio of total flux to thermal flux for first burnup interval

Table M6.7.1 Data in first record of binary data library

		Table M6.7.2	Structure of binary data library
Record	length ^a	Array	Description
1	23		Header information of Table M6.7.1
2	20*NTIT*	TITLE	Title cards containing descriptive information
3	NFISO	NUCFIS	ID numbers of fissionable nuclides having fission-
			product yields
4	3*NFISO	SIGFIS	Three-group fission cross sections for nuclides in
			NUCFIS array in the order ((SIGFIS(N,I),
			N=1,3),I=1,NFISO)
5	ITOT	NUCL	ID numbers for all nuclides in library
6	ITOT	KD ^c	KD(I) is the number of parents for production of
			nuclide I by decay transitions
7	ITOT	NON0 ^c	NON0(I) is the total number of parents for
			nuclide I
8	NON	LOC ^c	LOC(J) is the position in array NUCL of the parent of the
			transition stored in position J of the compressed transition
			matrix A
9	NON	A ₁ ^c	Compressed transition matrix for thermal group
	mom	magan	neutron capture transitions
10	TTOT	TOCAP ₁	Thermal group total capture cross sections
11	IACT	FISS ₁	Thermal group fission cross sections
12	ILITE+IACT	GENNEU ₁	Thermal group neutron yields, expressed as the sum of
			the product of neutrons per capture reaction times the
			capture cross section for that reaction, summed over all
10	NON	A C	neutron-producing reactions
15	INOIN	A ₂	Compressed transition matrix for resonance group
14	ITOT	TOCAD	Recommende group total conture cross sections
14		FISS	Resonance group fission cross sections
15		GENNEU	Resonance group neutron yields
10	NON		Compressed transition matrix for fast group
17	11011	113	neutron canture transitions
18	ITOT	TOCAP	Fast group total capture cross sections
19	IACT	FISS,	Fast group fission cross sections
20	ILITE+IACT	GENNEU ₄	Fast group neutron yields
21	NON	A, ^c	Compressed transition matrix for decay transitions
22	ITOT	DIS ^c	Radioactive decay constants
23°	NON	A ^{c,d}	Compressed transition matrix for effective one-group
			neutron capture transitions of first burnup interval and for
			decay transitions
24 °	ITOT	TOCAP c,d	Effective one-group capture cross sections of first burnup
			interval
25 °	IACT	FISS ^d	Effective one-group fission cross sections of first burnup
			interval
26°	ITOT+IACT	GENNEU ^d	Effective one-group neutron yields of first burnup interval
		Tab	le M672 (continued)

Record length ^a		Array	Description
27	ITOT	Q	Recoverable energy values
28	ITOT	FG ⁷	Fractions of Q-values due to photons
29	ITOT	AMPC	RCG values for air
30	ITOT	WMPC ^f	RCG values for water
31	ILITE	ABUND	Natural abundances of light-element nuclides
32	IACT	SPONF	Values of the product of the decay constant times
			the spontaneous fission branching fraction times
			Avagadro's number (no longer used)
33	IACT	ALPHAN	Values of the product of the decay constant times
			the alpha decay branching fraction times
			Avagadro's number times the number of neutrons per
			alpha decay (no longer used)
34	NENLE+1	EGROUP	Mean photon group energies (NENLE values) for light-
			element photon yield data, ordered from low energy to
			high. The last value is the lower energy bound of
			group 1.
35	NENAC+1	EACTGP	Mean photon group energies (NENAC values) for
			actinide photon yield data, ordered from low energy to
			high. The last value is the lower energy bound of
			group 1.
36	NENFP+1	EFPGRP	Mean photon group energies (NENFP values) for
			fission-product photon yield data, ordered from low
			energy to high. The last value is the lower energy
07			bound of group 1.
37	NENAC	SFGAMA	Multigroup photon yields for gamma rays
			accompanying spontaneous fission, in the group
			structure specified by EACTGP. See Sect. M6.4 for
20			details.
38	NENLE*ILITE	GAMGRP	Multigroup light-element photon yields, in the order
20		amana	((GAMGRP(N,I),N=1,NENLE),I=1,ILITE)
אָכ	NENFP*IFP	GFPGRP	Multigroup fission-product photon yields, in the
40	NIENIACUTACE		order ((GFPGRP(N,I),N=1,NENFP),I=1,IFP)
40	NENAC*IACT	ACTGRP	Multigroup actinide photon yields, in the order
A 1 8.h	NIONI	h cd	((ACTGRP(N,I),N=1,NENAC),I=1,IACT)
41 ***	NON	A ^{c,a}	Compressed transition matrix for effective one-group
			neutron capture transitions of the second burnup
	4		interval and for decay transitions
	U		THERM, RES, FAST, ENERHI, ENERLO, FLXRAT
138	TTOT	TOGAD	for second burnup interval
4 2 ~	1101	IUCAP","	Effective one-group capture cross sections of second
			burnup interval

£.___

1.1.

.

Record length ^a		Array	Description
43 ⁸	IACT	FISS ^d	Effective one-group fission cross sections of second burnup interval
44 ⁸	ILITE+IACT	GENNEU ^d	Effective one-group neutron yields of second burnup interval.
			•
			•
			•

Table M6.7.2 (continued)

(This last set of four records is continued for the third, fourth, and/or higher burnup intervals or cycles of the SAS2H power history producing the library, until the last burnup interval is completed.)

"Length in single-precision words.

^bNTIT is the number of title cards.

"These arrays are discussed in Sect. M6.2.5.

^dEffective one-group values for the burnup interval given.

Records 23 through 26 are present only in a binary working library.

^fThese variables are defined in Sect. M6.2.1.

⁸Records 41 and above are present only in a multiburnup binary working library.

^hLibraries created with older versions of SCALE may not contain the second part of Record 41 containing the six items given in the description column. These items are added by SAS2H. Their purpose is to allow conversion of one-group cross sections from a thermal flux basis to a total flux basis. Beginning in SCALE 4.4, these items are required by ORIGEN-S and ORIGEN-ARP.

M6.7.3 LIBRARY CONVERSION PROGRAMS

Two simple utility programs are distributed with SCALE to allow transmission of ORIGEN-S binary data libraries between different computer systems.

The OSBICO (<u>QRIGEN-S</u> <u>Binary</u> Library <u>Converter</u>) program converts one or more binary libraries to a card-image format which is readable on any computer system. The OSBIRE (<u>QRIGEN-S</u> <u>Binary</u> Library <u>Re</u>storer) program restores converted libraries to a binary format.

The input data for both programs are read as list-directed input. Input descriptions are provided in Tables M6.7.3 and M6.7.4. Although unit numbers and file names of binary and card-image libraries can be specified as input, a simplified input which suffices for most users and is identical for both programs is as follows:

n /

1

.

where line 1 contains an integer n that specifies the number of libraries to convert and is followed by twice that number of lines which have a / in column one. To convert or restore five libraries, the input is the following:

The maximum number of datasets which can be converted/restored with one execution of OSBICO/OSBIRE is twenty. Binary datasets are automatically allocated and incremented by one, beginning at unit number 30 (file ft30f001) and going to a maximum of unit number 49 (file ft49f001). Card-image files are automatically allocated and incremented by one beginning at unit number 50 (file ft50f001) and going to a maximum of unit number 50 (file ft50f001) and going to a maximum of unit number 50 (file ft69f001).

To use a binary library dataset in ORIGEN-S, it should be allocated to the file number specified by NDSET in the \$3 array. Because the BWR and PWR libraries are contained in multiple-library datasets, then the position of the library within the dataset must be specified by NTYPE in the \$3 array.

Record ^a	Variable	Description
1	NLIB	Number of libraries to convert
2	LIBTYP	Binary library type: 0 = SCALE 4.3 or before 1 = SCALE 4.4 or later (default)
2	BIFILE	Binary library file name (default = "ft30f001")
2	UNITBI	Binary library unit number (default = 30)
3	FRMSEL	Format selector for converted ASCII library: <0 = A4 format for all data 0 = 8110 for integer 105E14 6 for real, and 20044 for share the
		0 = 0110 for integer, 1P3E14.0 for real, and 20A4 for character $20 = 78$ format for all data
3	CVFILE	Converted ASCII library file name (default – "ft50f001")
3	UNITCV	Converted ASCII library unit number (default = 50)

Table M6.7.3 Input description for OSBICO

"Repeat records 2 and 3 for each library up to a maximum of 20. Default unit numbers and filenames are automatically incremented by one.

NUREG/CR-0200, Vol. 3, Rev. 6

1

M6.7.6

Record ^a	Variable	Description
1	NLIB	Number of libraries to restore
2	BIFILE UNITBI	Binary library file name (default = "ft30f001") Binary library unit number (default = 30)
3	CVFILE UNITCV	Converted ASCII library file name (default = "ft50f001") Converted ASCII library unit number (default = 50)

Table M6.7.4 Input description for OSBIRE

"Repeat records 2 and 3 for each library up to a maximum of 20. Default unit numbers and filenames are automatically incremented by one.

M6.7.4 GENERATION OF SOME USEFUL LIBRARIES

As an aid to the beginning user, this section presents the input data for COUPLE, ORIGEN-S, and SAS2H cases to generate some binary data libraries that have been useful at ORNL.

The user may find this section helpful in understanding part of the installation of a new version of SCALE on a computer. After the SCALE system is installed, it is typically executed by using a predefined procedure (e.g., a script). Some data for SCALE, required to be in the card-image mode for portability, are more efficiently utilized after conversion to the binary mode. Indeed, SCALE cases will not execute properly unless certain required files have been made. Several cases using COUPLE, ORIGEN-S, and SAS2H, required to install SCALE, have been combined into two somewhat large cases to make the various binary libraries referenced in a SCALE procedure. The user does not need to know the details or purposes of the large cases to perform the SCALE installation. The user needs to change only items such as names of files or volumes and other installation-dependent parameters in the case's job control language or script for the case to run properly. However, the user who would like to understand the purposes of the conversion cases may wish to read this section and the input instructions of the codes. Although the examples given here may not be precisely the same as the cases used in the installation of SCALE, the purposes of the cases are the same.

The first example contains back-to-back runs of COUPLE, ORIGEN-S, and SAS2H. The first COUPLE case converts the data in the card-image library to a binary working library for an LWR. The flux weighting factors used are THERM=0.632, RES=0.333, and FAST=2.0. The card-image cross-section data and photon-yield libraries are read from unit 28, and the decay data file is read from unit 27. The binary working library generated by this case is written on unit 42. The second COUPLE case generates an edit of the cross-section transitions in the binary working library on unit 42.

The ORIGEN-S case replaces the photon yield data in the binary working library with 18-group photon yields for the light elements, actinides, and fission products. The 18-group energy boundaries are those of Table M6.3.2. The photon yield data are read from a binary master photon data base on unit 26 which includes decay gamma and X rays, gamma rays accompanying spontaneous fission and (α ,n) reactions, and bremsstrahlung for a UO₂ fuel matrix. The input binary working library from COUPLE is read from unit 42. The final binary working library is written by ORIGEN-S on unit 21. Details of the input data given below can be determined by studying Sect. F6.5.8 of the COUPLE document and Sect. F7.6.10 of the ORIGEN-S document.

The SAS2H case in this example is commonly known as a "preSAS" case. The purpose of a preSAS case is to make the Preliminary LWR ORIGEN-S Binary Working Library to be input to subsequent SAS2H cases for LWR fuel assembly depletion analyses. The case updates all of the (more than 200) nuclides having cross-section data on the SCALE 44-group ENDF/B-V library, using the input design data for a typical modern PWR. Most SAS2H cases update only a fraction of the nuclides having data available in the SCALE depletion library. Thus, the remaining nuclides, updated on the preliminary library, will have data that are substantially improved over that on the initial card-image nuclear data libraries.

The SAS2H case in this example generates a single-burnup-interval binary working library at the midtime of an 800-day cycle for a 466.3-kgU, 17×17 pin assembly. The total burnup is 31.69 GWd/MTU, and the initial ²³⁵U enrichment of the fuel is 3.0 wt %. Densities, temperatures, design dimensions, and standard composition specifications for the nuclides to be updated are shown in the input for the case given below:

```
#shell
  rm ft21f001 ft33f001 ft71f001
  touch ft21f001
  touch ft33f001
  touch ft71f001
end
#couple
           prelim lwr origen-s binary working library--id = 1143
                  made from card-image origen-s libraries
*
      data from the light element, actinide, and fission product libraries
        decay data, including gamma and total energy, are from endf/b-vi
      neutron flux spectrum factors and cross sections were produced from
     the "presas2" case updating all nuclides on the scale "burnup" library
         . .
                 fission product yields are from endf/b-v
             photon libraries use an 18-energy-group structure
             the photon data are from the master photon data base,
             produced to include bremsstrahlung from uo2 matrix
        see information above this box (if present) for later updates
*****
0$$ a2 28 a6 42 e
1$$ 2r1 all 1142 e 2** a2 0.632 0.333 2.0 e 1t
3$$ 28 e 5$$ 2 3t
35$$ 0 5t
edit
0$$ a4 42 e
1$$ a2 1 a5 1 a13 -1 e 1t
done
end
#origens
0$$ a4 42 a8 26 a11 21 e 1t
3$$ 42 a3 1 a6 1 a33 18 2t
4t
56$$ a2 1 a5 2z a13 1 a17 1 e 5t
60** 1 73$$ 922380 74** 1 75$$ 2 81$$ 11 a3 26 1 e 82$$ 21
83** 6+6 5+6 4.5+6 4+6 3.5+6 3+6 2.6+6 2.2+6 1.8+6 1.35+6 9+5
    4+5 2+5 1.4+5 1+5 7+4 4+4 2+4 0 6t
1$$ 0 1t
end
NUREG/CR-0200,
```

Vol. 3, Rev. 6

M6.7.8

#sas2	parı	m='halt01,	skipship	data,size=300000'
presas2 c	ase:	typical p	wr 17x17	plant, 31.69 gwd/mtu, 466.3 kgu/assmb
,				
·		(june 1,	1993)	by o. w. hermann
			•.	
mixtu	res	of fuel-pi	n-unit-ce	ell:
	-			
44group	18	tticecell	0 005 0	
uoz 10.	9485	901 92234	0.025 9.	2235 3.0 92236 0.014 92238 96.961 end
u ho	1 0	1-20 901	end n-:	5 I 0 1-20 901 end
11-6	1 0	1-20 901	end	
11-7	1 0	1-20 901	end si	$1 0 1_{-2} 0 901 end$
he	1 0	1-20 901	end cl	101-20901 end
c	ĩũ	1-20 901	end k	1 0 1 - 20 901 end
n	10	1-20 901	end ca	1 0 1-20 901 end
f	1 0	1-20 901	end ti	1 0 1-20 901 end
na	1 0	1-20 901	end mg	1 0 1-20 901 end
ge-72	1 0	1-20 901	end	sb-124 1 0 1-20 901 end
ge-73	10	1-20 901	end	sb-125 1 0 1-20 901 end
ge-74	1 0	1-20 901	end	sb-126 1 0 1-20 901 end
- ·				te-120 1 0 1-20 901 end
ge-76	1 0	1-20 901	end	te-122 1 0 1-20 901 end
as-75	1 0	1-20 901	end	te-123 1 0 1-20 901 end
se-76	10	1-20 901	end	te-124 1 0 1-20 901 end
se-77	10	1-20 901	end	te-125 1 0 1-20 901 end
se-78	1 0	1-20 901	end	te-126 1 0 1-20 901 end
se-80	10	1-20 901	end	te-127m 1 0 1-20 901 end
se-82	10	1-20 901	end	te-128 1 0 1-20 901 end
br-79	1 0	1-20 901	end	te-129m 1 0 1-20 901 end
br-81	1 0	1-20 901	end	te-130 1 0 1-20 901 end
kr-80	10	1-20 901	end	te-132 1 0 1-20 901 end
kr-82	10	1-20 901	end	i-127 1 0 1-20 901 end
kr-83	10	1-20 901	end	i-129 1 0 1-20 901 end
kr-84	10	1-20 901	end	i-130 1 0 1-20 901 end
kr-85	10	1-20 901	end	1-131 1 0 1-20 901 end
Kr-86	10	1-20 901	end	1-135 I U $1-20$ 901 end
xe-124	1 0	1-20 901	end	xe - 120 = 1 = 0 = 1 - 20 = 901 = end
rD-05	1 0	1-20 901	end	$x_{0} = 120$ 1 0 1 $= 20$ 901 end
rb - 87	1 0	1-20 901	enu	$x_{0} = 123$ 1 0 1 $= 20$ 901 end
sr-84	1 0	1-20 901	end	$x_{e-130} = 10 1-20 901 end$
sr-86	ĩõ	1-20 901	end	xe-132 1 0 1-20 901 end
sr-87	1 0	1-20 901	end	xe-133 1 0 1-20 901 end
sr-88	1 0	1-20 901	end	xe-134 1 0 1-20 901 end
sr-89	1 0	1-20 901	end	xe-135 1 0 1-20 901 end
sr-90	1 0	1-20 901	end	xe-136 1 0 1-20 901 end
y-89	10	1-20 901	end	cs-134 1 0 1-20 901 end
y-90	1 0	1-20 901	end	cs-135 1 0 1-20 901 end
y-91	10	1-20 901	end	cs-136 1 0 1-20 901 end
zr-90	10	1-20 901	end	cs-137 1 0 1-20 901 end
zr-91	10	1-20 901	end	ba-134 1 0 1-20 901 end
zr-92	10	1-20 901	end	ba-135 1 0 1-20 901 end
zr-93	10	1-20 901	end	ba-136 1 0 1-20 901 end
zr-94	10	1-20 901	end	ba-137 1 0 1-20 901 end
zr-95	10	1-20 901	end	ba-138 1 0 1-20 901 end
zr-96	10	1-20 901	end	ba-140 1 0 1-20 901 end
nb-93	10	1-20 901	end	la-139 1 0 1-20 901 end
nb-94	10	1-20 901	end	la-140 1 0 1-20 901 end
np-95	10	1-20 901	end	ce-140 1 0 1-20 901 end
mo-92	10	1 20 901	ena	141 1 0 1 00 001 3
mo-94	1 0	1-20 901	end	ce-141 I U 1-20 901 end
mo-y5	10	1-20 901	ena.	ce-142 1 U 1-2U 9U1 end
mo-90	1 0	1-20 901	end	Ce-143 I U 1-2U 9UI ENG
mc 97	1 0	1-20 901	ena	CE-144 I U 1-20 901 ENG
110-20	V	1-20 201	end	DI-I4I I O I-ZO 20I GUG

mo-99	1	0	1-20	901	end		pr-	142	2 1	0	1-2	20	901	end
mo-10	0 1	0	1-20	901	end		pr-	143	3 1	0	1-2	20	901	end
tc-99	1	0	1-20	901	end		nđ-	142	2 1	0	1-2	20	901	end
ru-96	1	0	1-20	901	end		ru-	98	1	0	1-2	20	901	end
ru-99	1	0	1-20	901	end		nd-	143	31	0	1-2	20	901	end
ru-10	0 1	0	1-20	901	end		nd~	144	1	0	1-2	20	901	end
ru-10	1 1	0	1-20	901	end		nd-	145	51	0	1-2	20	901	end
ru-10	2 1	0	1-20	901	end		nd-	146	5 1	0	1-2	20	901	end
ru-10	3 1	0	1-20	901	end		nd-	147	1	0	1-2	20	901	end
ru-10	4 1	0	1-20	901	end		nđ-	148	3 1	0	1-2	20	901	enđ
ru-10	5 1	0	1-20	901	end		nd-	150) 1	0	1-2	20	901	end
ru-10	6 1	0	1-20	901	end		pm-	147	1	0	1-2	20	901	end
rh-10	3 1	0	1-20	901	end		-ma	148	3 1	Ó	1-2	20	901	end
rh-10	5 1	0	1-20	901	enđ		-ma	149	1	0	1-2	20	901	end
pd-10	2 1	0	1-20	901	end		pm-	151	. 1	Ō	1-2	20	901	end
pd-10	4 1	0	1-20	901	end		sm-	144	1	0	1-2	20	901	end
pd-10	5 1	0	1-20	901	enđ		sm-	147	1	õ	1-2	20	901	end
pd-10	61	0	1-20	901	end		sm-	148	1	ŏ	1-2	20	901	end
pd-10	71	0	1-20	901	end		sm-	149	1	ň	1-2	0	901	end
pd-10	8 1	0	1-20	901	end		sm-	150	1	õ	1-2	0	901	end
pd-11	0 1	0	1-20	901	end		sm-	151	1	ň	1-2	ñ	901	end
ag-10	7 1	0	1-20	901	end		sm-	152	1	ň	1-2	0	901	ond
ag-10	9 1	Ō	1-20	901	end		sm-	153	1	ň	1_2	λ.	901	end
ag-11	1 $\overline{1}$	ō	1-20	901	end		Sm-	154	1	ň	1-2	0	901	end
cd-10	 - 1	ŏ	1-20	901	end		011-	151	1	ň	1_2	0	901 001	and
cd-10	8 1	ō	1-20	901	end			152	1	ň	1_2	20	001	ond
cd-11	0 1	ŏ	1-20	901	end			152	1	ň	1_2	0	001	ond
cd-11	ĭ ī	ŏ	1-20	901	and		eu-	15/	1	2	1_2	0	901 001	end
cd-11	$\frac{1}{2}$ $\frac{1}{1}$	ŏ	1-20	901	end		eu-	155	1	ň	1_2	0	901	end
cd-11	$\frac{1}{3}$ $\frac{1}{1}$	ō	1-20	901	end		e11-	156	1	õ	1_2	0	001	end
cd-11	4 1	ŏ	1-20	901	end		eu -	157	1	ň	1_2	0	901	ond
cd-11	5m 1	õ	1-20	901	end		ad-	152	1	ň	1_2	n	001	ond
cd-11	6 1	.ŏ	1-20	901	end		ga-	15/	1	ň	1_2	0	901 901	end
in-11	x 1	ň	1-20	901	and		gu-	155	1	0	1_2	0	901	end
in-11	5 1	ň	1-20	901	and		gu-	155	1	0	1_2	0	901	end
sn-11	$\frac{3}{2}$ $\frac{1}{1}$	ň	1-20	901	end		gu-	118	1	0	1 2	0	901	ena
sn-11	5 1	ň	1-20	901	end		ad-1	157	1	0	1 2	0	901	end
en_11	5 I	ň	1_20	901	ond		gu~.	121	1	0	1 2	0	901	ena
en_11	7 1	ň	1-20	901	ond		gu	120	1	2	1-2	0	901	ena
en-11	0 1	0	1_20	001	end		gu-	100	-	2	1-2	0	901	ena
S11-11	0 I 0 1	0	1-20	901	ena		- CD-	123	1	ů.	1-2	0	901	end
511-11 cn_12	0 1	Ň	1_20	001	end		- CD-	100	1	0	1-2	0	901	ena
sn-12	0 I 0 1	0	1-20	901	end		ay-	100	1	0	1-2	0	901	end
SII-12 cn-12	6 I 7 1	~	1 20	901	end		ay-	7 0 T	. T	0	1-2	0	901	end
SII-12	2 I 1 1	~	1 20	901	ena		ay-	102		U O	1-2	0	901	end
SII-12	4 L E 1	0	1 20	901	end		ay-	103	Ţ	0	1-2	0	901	end
Sn-12	5 I 6 I	0	1 20	901	ena		ay-	164	1	0	1-2	0	901	end
Sn-12	, , , ,	0	1-20	901	end		no~	165	1	0	1-2	0	901	end
SD-12	1 1 1	0	1 20	901	end		er-	166	1	0	1-2	0	901	end
SD-12	5 I 5 I	0	1 20	901	end		er-	167	1	0	1-2	0	901	end
11-17	0 I 6 4	0	1-20	ADT	end		re-	182	1	0	1-2	0	901	end
10-1/	0 <u>1</u> 1 1	0	1 20	901	end		re-	184	1	Û	1-2	0	901	end
ta-18	7 1 T	0	1-20	901	end		au		1	0	1-2	0	901	end
w-18	6 I 2 2	0	1-20	901	ena		th-	232	1	0	1-2	0	901	end
w-18	3 I	0	1-20	901	end		pa-:	231	1	0	1-2	0	901	end
W-18	4 ⊥ c 1	0	1-20	901	end		pa-2	233	1	0	1-2	0	901	end
w-18	6 1	0	1-20	901	end		u-2	233	1	0	1-2	0	901	end
tn-23	0 1	0	1-20	901	end		u-2	232	1	0	1-2	0	901	end
zirc2	21	62	48 (and		-								
n20 3	aen=(0.7	/149	1 5'	79 er	nd								
al	3	0	1-20	579	end									
p	3	0	1-20	579	end									
mn	3	0	1-20	579	end									
co-59	3	0	1-20	579	end									
pb	2	•	1 20	570	~~~ .									
	. 3	U	1-20	5/9	ena									
bi-20	93	0	1-20	579 579	end									
bi-20 arbm-bo	93 rmod	0	1-20 1-20).7149	579 579 911	end end 0 0	5000	100	3	600.	0e	e-6	5	579	end

NUREG/CR-0200, Vol. 3, Rev. 6

M6.7.10

х.,

```
600 pm(wt) boron
end comp
        - - - - - - - - -
      fuel-pin-cell geometry:
            1.25984 0.81915 1 3 0.94966 2 0.83566 0 end
squarepitch
more data szf=0.6 end
    assembly and cycle parameters:
npin/assm=264 fuelnght=365.76 ncycles=1 nlib/cyc=1
printlevel=4 lightel=9 inplevel=1 ortube=0.61214 srtube=0.5715
numinstr=1 facmesh=0.65
                       end
power=18.4715 burn=800 down=1826.25
                                   end
  o 63 cr 2.8 mn 0.15
 fe 6.0 co 0.035 ni 4.6
 zr 103 nb 0.33 sn 1.7
          end
=shell
  cp ft33f001 $RTNDIR/prlimlwr
end
```

The second example is a SAS2H run to generate a three-burnup-interval binary working library for a "typical" PWR fuel assembly with a burnup of 33 GWd/MTU and the initial uranium composition of Table M6.7.5. The irradiation history is divided into three cycles having 80% full power irradiation at 37.5 MW/MTU and 20% downtime. Updated cross sections are computed from a 44-group unit cell calculation, at the midpoint of each irradiation cycle, for the nuclides given in Table M6.7.6. The resonance cross-section processing and unit cell calculations are performed for the geometry and operating conditions of a 17×17 PWR fuel assembly. The cross sections used in the calculations are read from the SCALE 44-group ENDF/B-V library (Sect. M4). The input binary library is the Preliminary LWR ORIGEN-S Binary Working Library generated in the example outlined above, which is read on unit 21. The burnup-dependent binary working libraries for cycles 1, 2, and 3 are written on unit 33. None of these libraries can be used with the integral option. Details of the SAS2H method and input data requirements can be found in Sects. S2.2 and S2.5, respectively, of the SAS2H documentation.

typical PWR assembly					
Nuclide Weight percent					
²³⁴ U	0.028				
²³⁵ U	3.200				
²³⁶ U	0.015				
²³⁸ U	96.757				

Table M6.7.5 Initial uranium composition of

	Table M6.7.6 Nuclide in typical PW	es with updated c R and BWR libra	ross sections aries
ΊH	¹⁰⁵ Rh	¹⁴³ Nd	²³⁵ U
$^{10}\mathbf{B}$	¹⁰⁶ Ru	¹⁴⁴ Ce	²³⁶ U
¹¹ B	¹²⁴ Sb	¹⁴⁵ Nd	²³⁸ U
¹⁶ O	¹³¹ Xe	¹⁴⁷ Nd	²³⁷ Np
⁵⁹ Co	¹³² Xe	¹⁴⁷ Pm	²³⁸ Pu
⁸⁵ Kr	¹³⁵ Xe	¹⁴⁷ Sm	²³⁹ Pu
⁹⁰ Sr	¹³⁶ Xe	¹⁴⁹ Sm	²⁴⁰ Pu
⁸⁹ Y	¹³³ Cs	¹⁵¹ Sm	²⁴¹ Pu
⁹⁴ Zr	¹³⁴ Cs	¹⁵² Sm	²⁴² Pu
⁹⁵ Zr	¹³⁷ Cs	¹⁵³ Eu	²⁴¹ Am
94Nb	¹³⁶ Ba	¹⁵⁴ Eu	²⁴³ Am
⁹⁹ Tc	¹³⁹ La	¹⁵⁵ Eu	²⁴⁴ Cm
¹⁰³ Rh	¹⁴³ Pr	²³⁴ U	

The input data for this SAS2H case are given below.

```
#shell
  rm ft33f001 ft71f001
  touch ft33f001
  touch ft71f001
end
#sas2h
          parm='halt03,skipshipdata'
pwr typical irradiation history - 3.2% enrich - 33 gwd/mtu
44group latticecell
        0.90180 811 92234 0.028 92235 3.2 92236 0.015 92238 96.757 end
uo2 1
kr-85
        1 0
               1-20
                     811
                            end
sr-90
        1
            0
               1-20
                     811
                            end
y-89
        1
            0
               1-20
                     811
                            end
zr-94
        1
            0
               1-20
                     811
                            end
zr-95
        1
            0
               1-20
                     811
                            end
            0
nb-94
        1
                     811
               1-20
                            end
tc-99
        1
            0
               1-20
                     811
                            end
rh-103
        1
            0
               1-20
                     811
                            end
rh-105
        1
            0
               1-20
                     811
                            end
ru-106
        1
            0
                     811
               1-20
                            end
sb-124
        1
            0
               1-20
                     811
                            end
xe-131
        1
            0
               1-20
                     811
                            end
xe-132
               1-20
        1
            0
                     811
                            end
xe-135
        1
            0
               8.72-9 811
                              end
        1
            0
xe-136
               1-20
                     811
                            end
cs-134
        1
            0
               1-20
                     811
                            enđ
cs-137
        1
            0
               1-20
                     811
                            end
ba-136
        1
            0
               1-20
                     811
                            end
la-139
        1
            0
               1-20
                     811
                            end
pr-143
        1
            0
               1-20
                     811
                            end
               1-20
nd-143
        1
            0
                     811
                            end
ce-144
        1
            0
               1-20
                     811
                            end
        1
            0
nd-145
               1-20
                     811
                            end
pm-147
        1
            0
               1-20
                     811
                            end
nd-147
        1
            0
               1-20
                     811
                            end
               1-20
sm-147
        1
            0
                     811
                            end
sm-149
        1
            0
               1-20
                     811
                            end
sm-151
        1
            0
               1-20
                     811
                            end
sm-152
        1
            0
               1-20
                     811
                            end
```

NUREG/CR-0200, Vol. 3, Rev. 6

M6.7.12

eu-153 1 0 1-20 811 end eu-154 1 0 1-20 811 end eu-155 1 0 1-20 811 end 2 1 zirc2 620 end b-10 3 0 4.190-6 570 end b-11 3 0 1.824-5 570 end h2o 3 0.73411 570 end 3 0 1-20 570 co-59 end end comp 1.25984 0.83566 1 3 0.94996 2 end squarepitch more data szf=0.7 end npin/assm=264 fuelngth=365.76 ncycles=3 nlib/cyc=1 printlevel=5 lightel=16 inplevel=1 numins=1 ortube=0.61214 srtube=0.57150 end power=17.3025 burn=293.3333 down=73.33333 end power=17.3025 burn=293.3333 down=73.33333 end power=17.3025 burn=293.3333 down=1826.25 end c 0.059994 n 0.033766 o 62.136 al 0.045689 si 0.065864 p 0.14216 ti 0.049833 cr 2.3398 mn 0.10963 fe 4.5992 co 0.033444 ni 4.4022 zr 100.84 nb 0.32754 mo 0.18156 sn 1.6519 end #shell cp ft33f001 \$DATA/pwr33gwd cp ft71f001 \$DATA/pwr33f71.sas1inp end

M6.8 ORIGEN-S LIBRARIES AT ORNL

This section gives a summary description of the card-image and binary ORIGEN-S libraries available on ORNL computing systems. Complete descriptions of most of these libraries were given in earlier sections of this report.

All libraries are maintained as separate data files on workstations and PCs. Names and descriptions of card-image libraries are given in Table M6.8.1; those for binary libraries are given in Table M6.8.2.

· · · · · · · · · · · · · · · · · · ·	
Library name ^a	Description
END6DEC	Decay data for the light elements, actinides, and fission products
MPBRH2OM	Master photon data for bremsstrahlung from negatrons slowing down in water
MPBRH2OP	Master photon data for bremsstrahlung from positrons slowing down in water
MPBRUO2M	Master photon data for bremsstrahlung from negatrons slowing down in UO_2
MPBRUO2P	Master photon data for bremsstrahlung from positrons slowing down in UO_2
MPDKXGAM	Master photon decay X- and gamma-ray line data
MPSFANGM	Master photon gamma ray spectra from spontaneous fission and (α,n) reactions
XSECTPHO	Nuclear data libraries and photon-yield libraries for the light elements, actinides, and fission products
^a Filename on a	workstation or PC.

Table M6.8.1 Card-image ORIGEN-S libraries at ORNL

Library name ^a	Description
PRLIMLWR	Preliminary LWR ORIGEN-S Binary Working Library described in Sect. M6.7.4. It has (β,n) decay data for fission products, so it cannot be used with the integral option.
BASLMFBR	Basic LMFBR ORIGEN-S Binary Working Library. This library was converted from the large light-element, actinide, and large fission-product card- image nuclear data libraries. It has the same (β,n) decay data and photon yield data as the Basic LWR Binary Working Library. It cannot be used with the integral option.
МАРНН2ОВ	Binary Master Photon Library with the photon data from members MPDKXGAM, MPSFANGM, MPBRH2OM, and MPBRH2OP of the card- image library
MAPHNOBR	Binary Master Photon Library with the photon data from members MPDKXGAM and MPSFANGM of the card-image library
MAPHUO2B	Binary Master Photon Library with the photon data from members MPDKXGAM, MPSFANGM, MPBRUO2M, and MPBRUO2P of the card- image library
PWR33GWD	Multi-burnup binary working library produced from the typical PWR 33-GWd/MTU SAS2H case described in Sect. M6.7.4

Table M6.8.2 Some binary ORIGEN-S libraries at ORNL

. 11

M6.9 REFERENCES

- 1. M. J. Bell, ORIGEN—The ORNL Isotope Generation and Depletion Code, ORNL-4628, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., May 1973.
- 2. C. W. Kee, A Revised Light Element Library for the ORIGEN Code, ORNL/TM-4896, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., May 1975.
- 3. Radiation Shielding Information Center (Oak Ridge National Laboratory) Data Package DLC-38/ORYX-E, ORIGEN Yields and Cross Sections—Nuclear Transmutation and Decay Data From ENDF/B, contributed by Oak Ridge National Laboratory, September 1979.
- 4. G. W. Morrison, C. R. Weisbin, and C. W. Kee, "Decay Heat Analysis for an LMFBR Fuel Assembly Using ENDF/B-IV Data," *Nuclear Cross Sections and Technology, Proceedings of a Conference, Washington, DC, March 3-7, 1975*, NBS Special Publication 425, Vol. 1, U.S. Department of Commerce, National Bureau of Standards, October 1975.
- 5. ENDF/B-IV Fission Product Library Tapes 414-419, National Neutron Cross Section Center, Brookhaven Natl. Lab. (December 1974, and Rev. 1 December 1975).
- 6. ENDF/B-V Library Tapes 513, 515, 521, 522, 532, and 541-546, National Neutron Cross Section Center, Brookhaven Natl. Lab.
- 7. L. Boumahraz, Enrichissement et Separation Isotopique du Tritium entre l'Hydrogene el l'Eau Liquide dans un Reacteur a Lit Fixe Arrose, Thesis, DE87-701990 (INIS-mf-10814), Centre d'Etudes Nucleaires et Solaires, Algeria, September 1986.
- 8. C. Wagemans, P. D'Hondt, P. Schillebeeckx, and R. Brissot, "Triton and Alpha Emission in the Ternary Fission of the Actinides," *Proceedings of the XV-th International Symposium on Nuclear Physics-Nuclear Fission*, ZfK-592, Technical University of Dresden, Gaussig, Germany (GDR), April 1986.
- 9. P. R. Daniel, "Analysis of Effects of Updated Decay and Fission Yield Data on ORIGEN2 Results," Trans. Am. Nucl. Soc. 68(A), 92 (1993).
- 10. ENDF/B-VI Radioactive Decay Data Sublibrary Tapes 200-208, National Neutron Cross-Section Center, Brookhaven National Laboratory.
- 11. A. G. Croff, R. L. Haese, and N. B. Gove, *Updated Decay and Photon Libraries for the ORIGEN Code*, ORNL/TM-6055, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., February 1979.
- 12. N. M. Greene et al., AMPX: A Modular Code System for Generating Coupled Multigroup Neutron-Gamma Libraries From ENDF/B-IV and/or ENDF/B-V, ORNL/CSD/TM-283, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., October 1992.
- 13. A. G. Croff, ORIGEN2- Revised and Updated Version of the Oak Ridge Isotope Generation and Depletion Code, ORNL-5621, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., July 1980.

M6.9.1

- W. B. Ewbank, M. R. Schmorak, F. E. Bertrand, M. Feliciano, and D. J. Horen, Nuclear Structure Data File: A Manual for Preparation of Data Sets, ORNL-5054, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., June 1975.
- 15. W. B. Ewbank, "Evaluated Nuclear Structure Data File (ENSDF) for Basic and Applied Research," *Fifth International CODATA Conference*, Boulder, Colorado, June 1976.
- 16. Code of Federal Regulations, Title 10, Part 20 (pre-1991 version).
- 17. Edgardo Browne, Richard Firestone, and V. S. Shirley (Editor), Table of Radioactive Isotopes, John Wiley and Sons, 1986.
- 18. M. J. Martin (Ed.), Nuclear Decay Data for Selected Radionuclides, ORNL-5114, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., March 1976.
- 19. Thomas W. Burrows, *The Program RADLST*, BNL-NCS-52142, Brookhaven Natl. Lab., February 29, 1988.
- 20. C. M. Lederer, J. M. Hollander, and S. Perlman, Table of Isotopes, 6th ed., Wiley, New York, 1967.
- 21. D. T. Goldman and J. R. Rosser, Chart of the Nuclides, 9th ed., General Electric Company, July 1966.
- 22. N. E. Holden, Isotopic Composition of the Elements and Their Variation in Nature: A Preliminary Report, BNL-NCS-50605, Brookhaven Natl. Lab.. March 1977.
- T. R. England, W. B. Wilson, R. E. Schenter, and F. M. Mann, Summary of ENDF/B-V Data for Fission Products and Actinides, EPRI NP-3787 (LA-UR 83-1285) (ENDF-322), Electric Power Research Institute (December 1984).
- 24. H. Alter and C. W. Weber, "Production of Hydrogen and Helium in Metals During Reactor Irradiation," J. Nucl. Mat. 16 (1965).
- 25. D. J. Garber and C. Brewster, *ENDF/B Cross Sections*, BNL-17100 (ENDF-200), 2nd ed., Brookhaven Natl. Lab., 1975.
- E. D. Arnold, PHOEBE—A Code for Calculating Beta and Gamma Activity and Spectra for ²³⁵U Fission Products, ORNL-3931, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab., July 1966.
- L. T. Dillman, W. S. Snyder, and M. R. Ford, "Nuclear Data Compilation of Utility in Medical and Biological Applications," *Proceedings of the Symposium on Application of Nuclear Data in Science and Technology*, IAEA-FM-170/43, Vol. 2, pp. 529-39 (March 1973).
- 28. N. B. Gove and M. J. Martin, "Log-f Tables for Beta Decay," Nucl. Data Tables 10, 206 (1971).
- 29. D. Garber, C. Dunford, and S. Pearlstein, *Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF*, BNL-NCS-50496 (ENDF-102), Brookhaven Natl. Lab., October 1975.

NUREG/CR-0200, Vol. 3, Rev. 6

M6.9.2

NUREG/CR-0200 Revision 6 Volume 3, Section M7 ORNL/NUREG/CSD-2/R6

Computational Physics and Engineering Division

THE MATERIAL INFORMATION PROCESSOR FOR SCALE

N. F. Landers* L. M. Petrie J. A. Bucholz

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

*Formerly with Oak Ridge National Laboratory.

ABSTRACT

The Material Information Processor was developed to utilize free-form input data consisting of easily visualized engineering parameters to derive and prepare input data for many of the functional modules used in SCALE. The processor creates an AMPX master format cross-section library that contains only those nuclides utilized in the problem. This library can then be used to create a problem-dependent cross-section library in the AMPX working format for use by SCALE modules.

CONTENTS

		·]	Page
ABST	RACT	M	17.iii
LIST (OF FIGUI	RES M	17.ix
LIST (OF TABL	ES M	17.xi
ACKN	IOWLED	GMENTS M7	7.xiii
M7.1	INTROI	DUCTION M7	7.1.1
M7.2	TECHN	IOUES	771
	M7.2.1	MATERIAL INFORMATION PROCESSOR FEATURES	72.1
	M7.2.2	APPLICABILITY OF THE MATERIAL INFORMATION PROCESSOR M7	1.2.1 7 つ つ
	M7.2.3	NUMBER DENSITY CRITERIA OF THE MATERIAL INFORMATION	1.2.2
		PROCESSOR	7 7 7
	M7.2.4	GEOMETRICAL CRITERIA OF THE MATERIAL INFORMATION	
		PROCESSOR	123
		M7.2.4.1 INFHOMMEDIUM (Infinite Homogeneous Medium) Treatment M7	723
		M7.2.4.2 LATTICECELL Treatment	7.2.3
		M7.2.4.3 MULTIREGION Treatment	7.2.4
	M7.2.5	APPLICABILITY OF PROBLEM-DEPENDENT CROSS-SECTION	
		PREPARATION M7	7.2.5
		M7.2.5.1 Applicability of the Bondarenko Method M7	7.2.6
		M7.2.5.2 Applicability of the Nordheim Integral Method	7.2.7
		M7.2.5.3 Applicability of the Dancoff Factor M7	7.2.7
		M7.2.5.4 The One-Dimensional Approximation With/Without Buckling M7.2	2.11
		M7.2.5.5 Use of XSDRNPM by the Material Information Processor M7.2	2.12
		M7.2.5.6 The Automatic Mesh Generator M7.2	2.12
		M7.2.5.7 The Automatic Quadrature Generator M7.2	2.14
		M7.2.5.8 XSDRNPM Convergence Criteria M7.2	2.15
M7.3	THE LO	GICAL PROGRAM FLOW	7.3.1
	M7.3.1	READ THE INPUT DATA	7.3.5
	M7.3.2	CONTROL DATA READING AND PROCESSING	7.3.7
	M7.3.3	READ THE STANDARD COMPOSITION SPECIFICATION DATA M7	7.3.8
	M7.3.4	READ THE LATTICECELL UNIT CELL SPECIFICATION	3.10
	M7.3.5	READ THE MULTIREGION UNIT CELL SPECIFICATION	3.11
	M7.3.6	READ THE OPTIONAL PARAMETER DATA	3.12
	M7.3.7	GENERATE THE MIXING TABLE	3.13
	M7.3.8	GENERATE RESONANCE DATA M7.2	3.15
	M7.3.9	COLLAPSE THE ENERGY GROUP STRUCTURE	3.17

M7.4	INPUT I	DATA GUIDE M7						
	M7.4.1	INPUT DATA SUMMARY FOR EXPERIENCED USERS						
	M7.4.2	PARAMETERS FOR DATA CHECKING AND SPACE ALLOCATION						
	M7.4.3	MATERIAL INFORMATION PROCESSOR DATA						
	M7.4.4	STANDARD COMPOSITION SPECIFICATION DATA						
	M7.4.5	OPTIONAL UNIT CELL SPECIFICATION FOR INFINITE						
		HOMOGENEOUS PROBLEMS						
	M7.4.6	UNIT CELL SPECIFICATION FOR LATTICECELL PROBLEMS M						
	M7.4.7	UNIT CELL SPECIFICATION FOR MULTIREGION PROBLEMS						
	M7.4.8	OPTIONA	L PARAMETER DATA	M7.4.32				
1176	NOTES							
M7.5	NOTES.	ABOUT TH	E MATERIAL INFORMATION PROCESSOR	. M7.5.1				
	M/.5.1	USE OF T	HE MATERIAL INFORMATION PROCESSOR	. M7.5.1				
	M7.5.2	MATERIA	L INFORMATION PROCESSOR TITLE	. M7.5.1				
	M7.5.3	CRUSS-SH	CTION LIBRARY NAME	. M7.5.1				
	M7.5.4	TYPEOF	CALCULATION	. M7.5.4				
		M7.5.4.1		. M7.5.5				
		M7.5.4.2		. M7.5.5				
		M7.5.4.3	MULTIREGION	. M7.5.5				
	M7.5.5	STANDAR	D COMPOSITION SPECIFICATION DATA	. M7.5.6				
		M7.5.5.1	Basic Standard Composition Specifications	. M7.5.8				
		M7.5.5.2	Arbitrary Material Specifications	M7.5.14				
		M7.5.5.3	Solution Specifications	M7.5.19				
		M7.5.5.4	Combinations of Basic Standard Compositions to Define a					
			Mixture	M7.5.21				
		M7.5.5.5	Combinations of Arbitrary Materials to Define a Mixture	M7.5.26				
		M7.5.5.6	Combinations of Solutions to Define a Mixture	M7.5.27				
		M7.5.5.7	Combinations of Basic and Arbitrary Standard Compositions					
			to Define a Mixture	M7.5.29				
	•	M7.5.5.8	Combinations of Basic and Solution Standard Compositions					
			to Define a Mixture	M7.5.34				
		M7.5.5.9	Combinations of Arbitrary Material and Solution					
			to Define a Mixture	M7.5.35				
	M7.5.6	EXAMPLE	S OF UNIT CELL SPECIFICATIONS	M7.5.38				
		M7.5.6.1	Infinite Homogeneous Medium Unit Cell Data	M7.5.38				
		M7.5.6.2	LATTICECELL Unit Cell Data	M7.5.39				
		M7.5.6.3	MULTIREGION Unit Cell Data	M7.5.51				
	M7.5.7	OPTIONA	L PARAMETER DATA OR MORE DATA	M7.5.57				
		M7.5.7.1	Sample Optional Parameter Data	M7.5.61				
	M7.5.8	EXAMPLE	ES OF COMPLETE MATERIAL INFORMATION PROCESSOR					
		INPUT DA	ΔΤΑ	M7.5.62				
		M7.5.8.1	Infinite Homogeneous Medium Input Data	M7.5.62				
		M7.5.8.2	LATTICECELL Input Data	M7.5.63				
		M7.5.8.3	MULTIREGION Input Data	M7.5.65				

×.....

	M7.5.9	THREE METHODS OF SPECIFYING A SOLUTION					
		M7.5.9.1 Comparison of Number Densities from the Three Methods M7.5.70					
	M7.5.10	MULTIPLE FISSILE CELLS IN A SINGLE PROBLEM					
	M7.5.11	5.11 MULTIPLE FISSILE MIXTURES IN A SINGLE PROBLEM M7.5					
	M7.5.12	2 CELL WEIGHTING					
		M7.5.12.1 Cell weighting an infinite homogeneous problem					
		M7.5.12.2 Cell weighting a LATTICECELL problem					
		M7.5.12.3 Cell weighting a MULTIREGION problem					
M7.6	DESCRI	PTION OF OUTPUT M7.6.1					
	M7.6.1	PROBLEM TITLE					
	M7.6.2	PROBLEM PARAMETERS					
	M7.6.3	PROBLEM COMPOSITION DESCRIPTION					
	M7.6.4	PROBLEM GEOMETRY SPECIFICATION M7 6 7					
		M7.6.4.1 Problem Geometry Description for an Infinite Homogeneous					
		Medium M7.6.7					
		M7.6.4.2 Problem Geometry Description for a LATTICECELL					
		M7.6.4.3 Problem Geometry Description for a MULTIREGION Cell M7.6.8					
	M7.6.5	OPTIONAL PARAMETER DATA OR MORE DATA					
	M7.6.6	ZONE SPECIFICATIONS FOR A LATTICECELL M7 6 9					
	M7.6.7	M7.6.7 LIBRARY INFORMATION TABLE M7.6.10					
	M7.6.8 ADDITIONAL DATA M7.6.10						
		M7.6.8.1 Mixing Table Data M7.6.10					
		M7.6.8.2 Resonance Data for NITAWI. M7.6.13					
		M7.6.8.3 Additional Data for NITAWL, XSDRNPM, and BONAMI M7.6.13					
M7.7	WARNIN	NG AND ERROR MESSAGES M7.7.1					
	M7.7.1	MATERIAL INFORMATION PROCESSOR MESSAGES					
	M7.7.2	STOP CODES					
	M7.7.3	MESSAGES ASSOCIATED WITH STOP 20 IN CSAS					
	M7.7.4	UNNUMBERED MESSAGES					
M7.8	REFERE	NCES					
M7.A	NOTES (ON SOME ELEMENTARY RESONANCE SELF-SHIELDING					
	TECHNIQUES USED IN SCALE						
	M7.A.1	THE NORDHEIM INTEGRAL METHOD FOR THE TWO-REGION					
		PROBLEM					
	M7.A.2	EXACT EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE					
	PROBABILITY USED IN THE NORDHEIM INTEGRAL METHOD						
	AND THE ROLE OF THE DANCOFF FACTOR (C) IN						
		LATTICECELL CALCULATIONS					
	M7.A.3	APPROXIMATE EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE					
	PROBABILITY. THE DEFINITION OF THE ESCAPE CROSS SECTIONS						
		AND THE RELATIONSHIP BETWEEN THE TWO OUANTITIES M7 A 9					
M7.A	NOTES (TECHNI M7.A.1	NCES M7.8.1 ON SOME ELEMENTARY RESONANCE SELF-SHIELDING QUES USED IN SCALE M7.A.1 THE NORDHEIM INTEGRAL METHOD FOR THE TWO-REGION PROPLEM M7.A.1					
	M7 A 1 THE NORDHEIM INTEGRAL METHOD FOR THE TWO_PEGION						
	DDORIEM						
		PROBLEM					
	M7.A.2	EXACT EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE					
	PROBABILITY USED IN THE NORDHEIM INTEGRAL METHOD,						
	AND THE ROLE OF THE DANCOFF FACTOR (C) IN						
		LATTICECELL CALCULATIONS					
	M7.A.3 APPROXIMATE EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE						
	PROBABILITY, THE DEFINITION OF THE ESCAPE CROSS SECTIONS.						
		AND THE RELATIONSHIP BETWEEN THE TWO OUANTITIES M7.A.9					

	M7.A.4	THE NARROW-RESONANCE APPROXIMATION FOR THE FLUX.
		AS DERIVED FROM A GENERALIZED FORM OF THE NORDHEIM
		INTEGRAL EQUATION
	M7.A.5	THE NARROW-RESONANCE/INFINITE-MASS APPROXIMATION
		FOR THE FLUX, AS DERIVED FROM THE NORDHEIM INTEGRAL
		EQUATION
	M7.A.6	THEORETICAL BASIS FOR THE BASIC BONDARENKO METHOD
		IN THE ABSENCE OF OVERLAPPING RESONANCES
	M7.A.7	THE EFFECT OF RESONANCE OVERLAP ON THE
		GROUP-AVERAGED CROSS SECTIONS
	M7.A.8	THE ITERATIVE BONDARENKO METHOD AND HOW IT
	٠	PARTIALLY ACCOUNTS FOR RESONANCE OVERLAP
		USING A MODIFIED DEFINITION OF THE BACKGROUND
		CROSS SECTION
	M7.A.9	SOME GENERAL COMMENTS ON THE GENERATION OF
		BONDARENKO SELF-SHIELDING FACTORS
	M7.A.10	DERIVATION OF THE SELF-SHIELDING FACTORS FOUND
		IN THE ORIGINAL HANSEN-ROACH CROSS-SECTION
		LIBRARY (0°K) M7.A.37
	M7.A.11	THE EFFECT OF RESONANCE SCATTERING ON THE
		GROUP-AVERAGED CROSS SECTIONS
	M7.A.12	THE EFFECT OF DOPPLER BROADENING ON THE
		GROUP-AVERAGED CROSS SECTIONS
		M7.A.12.1 Temperature Dependence of the Doppler-Broadened,
		Energy-Dependent, Cross-Section Data: A Qualitative
		Explanation and a Mathematical Description in Terms
		of the ψ and χ Functions
		M7.A.12.2 Temperature Dependence of the Resonance-Self-Shielded
		Group-Averaged Cross Sections: A Mathematical Description
		in Terms of the J Functions, a Qualitative Explanation
		Using a Simplified Model, and a Quantitative Assessment
		with Numerical Examples
	M7.A.13	THE KNIGHT-MODIFIED HANSEN-ROACH CROSS-SECTION
		LIBRARY
		M7.A.13.1 Modifications Made by J. R. Knight to the ²³⁸ U Capture
		Cross Section for Concentrated Systems ($\sigma_0 < 400$ barns) M7.A.64
		M7.A.13.2 Brief Description of the Experiments Upon Which the
		Knight Modifications Were Based M7.A.65
M7 B	ΔΙΡΗΔΒ	FTICAL SUBROUTINE INDEX AND CROSS DEEEDENCE
AVA 7 .1.J	CITE TILE	DITO: DOBROOTINE HADER AND CROSS REPERENCE

LIST OF FIGURES

Figure **Figure**

M7.2.1	Representation of a lump and its neighbor for cylindrical pins in a square lattice M7.2.8
M7.2.2	Representation of a lump and its neighbors for cylindrical pins in a
	triangular-pitch lattice
M7.2.3	Untreated fraction of solid angle $d = (0.710446)\lambda_{TR}$ M7.2.10
M7.2.4	Mesh spacing scheme used in material zone M7.2.12
M7.2.5	Angular directions associated with an S ₆ Gauss-Chebyschev quadrature set
	for cylindrical geometry M7.2.15
M7.3.1	Flow chart of the Material Information Processor
M7.3.2	Read the Material Information Processor input data
M7.3.3	Control Material Information Processor data reading and processing
M7.3.4	Flow chart for reading the Standard Compositions Specification data
M7.3.5	Flow chart for reading the unit cell specification for LATTICECELL M7.3.10
M7.3.6	Flow chart for reading the unit cell specification for MULTIREGION M7.3.11
M7.3.7	Flow chart for reading optional parameter data
M7.3.8	Flow chart for generating the mixing table M7.3.13
M7.3.9	Flow chart for generating resonance data M7.3.15
M7.3.10	Flow chart for collapsing the energy group structure for shielding analytical
	sequences M7.3.17
M7.4.1	Arrangement of materials in a SQUAREPITCH and SPHSQUAREP unit cell M7.4.26
M7.4.2	Arrangement of materials in a TRIANGPITCH and SPHTRIANGP unit cell M7.4.26
M7.4.3	Arrangement of materials in a SYMMSLABCELL unit cell having
	reflected left and right boundary conditions
M7.4.4	Arrangement of materials in an ASQUAREPITCH and ASPHSQUAREP unit cell . M7.4.27
M7.4.5	Arrangement of materials in an ATRIANGPITCH or ASPHTRIANGP unit cell M7.4.27
M7.4.6	Arrangement of materials in an ASYMSLABCELL unit cell
M7.6.1	Example of problem title and problem parameters
M7.6.2	Example of standard composition printout M7.6.3
M7.6.3	Example of geometry description printout for Infinite Homogeneous Medium M7.6.7
M7.6.4	Example of geometry description printout for LATTICECELL
M7.6.5	Example of geometry description printout for MULTIREGION cell
M7.6.6	Example of optional parameter printout M7.6.9
M7.6.7	Example of LATTICECELL zone specifications
M7.6.8	Example of data library information table M7.6.11
M7.6.9	Mixing table and parameters from the Material Information Processor data check M7.6.12
M7.6.10	Resonance data for NITAWL M7.6.13
M7.6.11	Additional data for NITAWL, XSDRNPM, and BONAMI M7.6.14
M7.A.1	Elastic scattering into dE about E when E lies inside a narrow resonance
M7.A.2	Transmission of an uncollided neutron through a lattice
M7.A.3	The escape probability (P _{FO}) and Wigner's rational approximation,
	as functions of the characteristic dimension $[\ell \Sigma_{tF}(E)]$

Page

M7.A.4	Elastic scattering into dE about E when E lies inside a narrow resonance M7.A.14
M7.A.5	Elastic scattering into dE about E when E lies inside a broad resonance or $\alpha \rightarrow 1$ M7.A.18
M7.A.6	Well-separated resonances in a mixture of UO ₂ M7.A.20
M7.A.7	Hypothetical case of resonance overlap in UO ₂ M7.A.23
M7.A.8a	Resonance overlap for ²³² Th, ²³³ U, and ²³⁸ U in the 4- to 10-eV energy range M7.A.24
M7.A.8b	Resonance overlap for ²³² Th, ²³² U, ²³⁵ U, and ²³⁸ U in the 10- to 25-eV energy range M7.A.25
M7.A.8c	Resonance overlap for ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, and ²⁴² Pu in the 4-
	to 10-eV energy range M7.A.26
M7.A.8d	Resonance overlap for ²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Pu, and ²⁴² Pu in the 10-
	to 25-eV energy range M7.A.27
M7.A.9	Resonance self-shielded group-averaged (η, γ) capture cross section for ²³⁸ U
	as a function of the background cross section (σ_0)
M7.A.10	Doppler broadening of the ²³⁸ U capture cross section near the 6.67 eV resonance M7.A.48
M7.A.11a	Actual profiles of the Doppler-broadened ²³⁸ U capture cross section
	near the 6.67-eV resonance M7.A.58
M7.A.11b	Idealized rectangular profiles for the Doppler-broadened ²³⁸ U capture cross section
	near the 6.67-eV resonance

.

• .• .

· · ·

· . ·

.

. . .

;-. . . .

nt Vees

•

. •

A state of the sta

.

ç

LIST OF TABLES

Table

M7.2.1	Control sequences and their associated functional modules
M7.2.2	Dancoff factor equations for various geometries
M7.2.3	I used in the Dancoff correction
M7.4.1	Description of I/O units utilized by the Material Information Processor
M7.4.2	Outline of Material Information Processor data (see Sect. M7.4.3 for details) M7.4.2
M7.4.3	Tables of Material Information Processor data requirements
M7.4.4	Outline of Material Information Processor data
M7.4.5	Outline of standard composition specification data M7.4.15
M7.4.6	Optional unit cell specification for INFHOMMEDIUM problems
M7.4.7	Unit cell specification for LATTICECELL problems M7.4.25
M7.4.8	Geometry specification for MULTIREGION problems
M7.4.9	Optional parameter data M7.4.34
M7.5.1	Organization of notes about the Material Information Processor
M7.7.1	STOP Codes Utilized in Material Information Processor
M7.A.1	Recommended "A" factors used in the modified Wigner approximation
M7.A.2	Comparison of the Dresner and Hansen-Roach resonance integrals $(I_D \text{ and } I_{HR})$
	for ²³⁸ U
M7.A.3a	Energy group structure used by Bondarenko, and some infinitely dilute data
	for ²³⁵ U and ²³⁸ U M7.A.61
M7.A.3b	Bondarenko self-shielding factors for ²³⁵ U M7.A.62
M7.A.3c	Bondarenko self-shielding factors for ²³⁸ U M7.A.63
M7.A.4	Values of the background cross section () for several different experiments
	in which k_{∞} of the homogeneous mixture was measured as a function
	of the H/U ratio (shown here in parentheses)
M7.B.1	Alphabetical index of Material Information Processor routines
M7.B.2	Commons used in the Material Information Processor

ACKNOWLEDGMENTS

The concept of a Material Information Processor using alphanumeric material specifications was initially proposed and developed by R. M. Westfall. J. R. Knight and J. A. Bucholz expanded and refined the Material Information Processor. J. R. Knight developed the Standard Composition Library and many of the associated data-processing routines. He also developed routines to calculate the Dancoff factor and other resonance parameters needed by the Material Information Processor. J. A. Bucholz implemented the Material Information Processor in CSAS1 and CSAS2. This work forms the basis of the current version of the Material Information Processor.

Special appreciation is expressed to L. F. Norris (ret.) and W. C. Carter for their effort in preparing this document and to Y. Y. Chan, J. R. Knight, R. C. Robinson, and W. C. Jordan for reviewing it.

M7.1 INTRODUCTION

The Material Information Processor was developed to utilize standardized engineering-type input data and standardized procedures to provide data to create problem-dependent cross-section libraries for use by the SCALE functional modules. Information provided by the Standard Compositions Library is used by the Material Information Processor to calculate the number densities (atoms/b-cm) of each material specified in the problem, to develop data used by the resonance processors, and to utilize the automatic mesh-generator to calculate the mesh intervals used in the cell-weighting calculation.

> NUREG/CR-0200, Vol. 3, Rev. 6

M7.1.1

M7.2 TECHNIQUES

M7.2.1 MATERIAL INFORMATION PROCESSOR FEATURES

The Material Information Processor reads and checks a unified set of engineering-type data and performs the calculations that are necessary to create binary input data files for use by the codes BONAMI, NITAWL, and, optionally, XSDRNPM and/or ICE to provide a problem-dependent cross-section library. If the control sequence that activates the Material Information Processor activates XSDRNPM, the eigenvalue for the designated problem is calculated. The control sequences that utilize the Material Information Processor and the codes they activate are listed in Table M7.2.1. The engineering-type data read by the Material Information Processor include (1) the standard composition data (a standardized alphanumeric name, mixture number, and other data to define materials, including volume fraction or percent theoretical density, temperature, and isotopic distribution) which is used in the standardized number density calculations, and (2) unit cell description defining the materials, dimensions, and boundary conditions of the geometry that will be used in the Dancoff factor calculations, the resonance self-shielding calculations, and the flux-weighting cell calculations used in cross-section processing.

Control sequence	Cross-section processing codes				Criticality, shielding, and burnup/decay codes		
CSASI CSASIX CSASIX CSAS1X CSAS25 CSAS25 CSAS2X CSAS4 CSAS4X SAS1 SAS1X SAS1X SAS2 SAS3 SAS3X	BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S BONAMI-S	NITAWL-II" NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II NITAWL-II	XSDRNPM-S XSDRNPM-S XSDRNPM-S XSDRNPM-S XSDRNPM-S XSDRNPM-S XSDRNPM-S	ICE-S ICE-S ICE-S ICE-S	KENO V.a KENO V.a KENO V.a KENO V.a XSDRNPM-S XSDRNPM-S COUPLE MORSE-SGC/S MORSE-SGC/S	MODIFY ^b MODIFY ^b XSDOSE XSDOSE ORIGEN-S XSDRNPM-S XSDOSE	

Table M7.2.1 Control sequences and their associated functional modules

"Although the text of this section (M7) refers only to NITAWL, the version available beginning with the SCALE-4 release is NITAWL-II.

^bMODIFY is a control module.

M7.2.2 APPLICABILITY OF THE MATERIAL INFORMATION PROCESSOR

The Material Information Processor is primarily used to prepare data for creating the problem-dependent cross-section libraries required by the criticality safety and/or shielding sequences listed in Table M7.2.1. The Material Information Processor creates the binary input files for the cross-section processing codes. It provides only a limited set of code options to these codes; thus, the options that are exercised are considerably more limited than when the codes are executed in a "stand-alone" mode. These problem-dependent cross-section libraries can be used with any code that requires (1) a microscopic or macroscopic AMPX working format library or (2) a Monte Carlo formatted macroscopic cross-section library in the MORSE/KENO format. The Material Information Processor is particularly applicable for large homogeneous systems and large regular lattices of slabs, pins, or spheres. In the case of large regular lattices, it can prepare data that allow the cross-section processing codes to create a homogenized cell-weighted cross section, denoted as mixture 500, that is capable of representing a heterogeneous system to be modeled as a single region composed of mixture 500, the homogenized cell-weighted mixture. The Material Information Processor can create data for only one cell-weighted mixture per problem. Other limitations are discussed in this section.

M7.2.3 NUMBER DENSITY CRITERIA OF THE MATERIAL INFORMATION PROCESSOR

A primary function of the Material Information Processor is to calculate the "number density" (atoms/b-cm) of every nuclide in each mixture defined in the problem. Known limitations in this process are listed below:

- The available nuclides are limited to those nuclides that are included in the Standard Composition Library, and then only to those available in the specified cross-section library with the correct nuclide identifier (ID). Section M8.2 lists the available nuclides. A new Standard Composition Library containing additional nuclides can be created by using COMPOZ. See Sect. M14 for additional information.
- 2. Temperature data are not available for any of the solution standard compositions except uranyl nitrate (SOLNUO2(NO3)2). Data for all other solutions are given at room temperature. Note that if the specific gravity of the solution is known at a temperature other than room temperature, and it is entered in the standard composition specification using SPG=, the temperature effect is accounted for in the calculated number densities. The temperature should still be entered in the standard composition data so it can be used in the resonance calculations for the individual nuclides. A solution standard composition is one whose standard composition name begins with SOLN. The available solutions are listed in Table M8.3.1 of the standard composition section of the SCALE document.
- 3. Mixed-oxide (MOX) solutions are particularly difficult to describe in a manner that will provide correct number densities. It is possible to obtain correct number densities if the specific gravity and molarity of the mixed solution are known and the mixture is described using a SOLN standard composition name for both solutions. The volume fractions of the two SOLN standard composition specifications must sum to 1.000. The volume fraction of the uranium solution must be entered as the weight fraction of the

fuel density that is uranium, and the volume fraction of the plutonium solution must be entered as the weight fraction of the fuel density that is plutonium. See Sect. M7.5.5.6, example 1, for a MOX solution specification.

M7.2.4 GEOMETRICAL CRITERIA OF THE MATERIAL INFORMATION PROCESSOR

The Material Information Processor offers three types of calculations: INFHOMMEDIU, LATTICECELL, and MULTIREGION. The method of specifying the desired calculation type is described in Sects. M7.4.3 and M7.5.4.

The Material Information Processor utilizes a unit cell description to provide information for the resonance self-shielding corrections and the Dancoff corrections that are applied to the cross sections to create a problem-dependent cross-section library.

M7.2.4.1 INFHOMMEDIUM (Infinite Homogeneous Medium) Treatment

The INFHOMMEDIUM treatment is best suited for large masses of materials where the size of each material is large compared with the average mean-free path of the material or where the fraction of the material that is a mean-free path from the surface of the material is very small. When the infinite homogeneous medium treatment is specified, every material specified in the problem is treated as an infinite lump. Systems composed of small fuel lumps should not be treated as an infinite homogeneous medium.

M7.2.4.2 LATTICECELL Treatment

The LATTICECELL treatment is appropriate for large arrays of slabs, fuel pins, or spherical pellets. Examples showing the use of the LATTICECELL treatment are given in Sect. M7.5.6.2. The input data are described in Sect. M7.4.6. When the LATTICECELL treatment is used, the mixtures specified in the cell have resonance self-shielding with Dancoff corrections applied to the cross sections of the nuclides utilized in the cell. All other mixtures and their nuclides are treated as INFHOMMEDIUM unless the appropriate resonance and Dancoff data are explicitly entered in the optional parameter data as described in Sects. M7.4.8, M7.5.7, and M7.5.10. Limitations of the LATTICECELL treatment are listed below:

- The cell description is limited to a one-dimensional (1-D) cell. Most physical systems consist of 3-D geometry, but in many instances a 1-D representation is adequate, as in the case of a large array of spheres in a regular lattice, a large array of slabs, or a large array of long uniform pins in a regular lattice. A 1-D representation is inadequate for systems that exhibit a two-dimensional (2-D) or 3-D spatial dependence.
- 2. Only one cell description is allowed in a problem. This limitation can be circumvented by entering the appropriate data in the optional parameter data. See Sects. M7.4.8 and M7.5.10 for details.
- 3. The LATTICECELL treatment assumes an infinite array of 1-D cells. This assumption is an excellent approximation for large arrays of long fuel pins or large arrays of spherical pellets. The approximation becomes less rigorous for short fuel pins and/or small arrays where multidimensional spatial dependence can become important.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.2.3

- 4. The choices of cell configurations are strictly limited. The available options are described in detail in Sect. M7.4.6 and are summarized below:
 - a. The first option is an infinite planar array of pin cells or an infinite array of spherical pellets. Cylindrical pins or spherical pellets consist of fuel, gap, clad, and moderator where the gap and clad are optional. The configuration of the cell requires that the innermost region must be the fuel, with subsequent regions being the gap, clad, and moderator in that order. The moderator fills the volume between the pins or pellets and the outer boundaries of the cell. The gap is the only component of the unit cell that can be a void, specified as mixture 0.
 - b. The second option is an infinite planar array of annular pin cells or an infinite array of annular spherical pellets. The annular cylindrical pins or annular spherical pellets have an annular fuel region with an optional gap and/or optional clad on both sides of the fuel. The second moderator is defined to be the innermost region, and the first moderator is present outside the other regions and inside the outer boundaries of the cell. The thickness and material of the gap are required to be the same on both sides of the fuel, as are the thickness and material of the clad. The moderator materials and the thicknesses of the two moderators need not be the same.
 - c. The third option is an infinite symmetric array of slabs, called a symmetrical slab cell. The configuration of a symmetric slab cell requires the fuel region to be the innermost region with an optional gap and/or optional clad outside the fuel region followed by a moderator region. The cell is defined to extend from the centerline of the fuel region to the center of the moderator region.
 - d. The fourth option is an infinite asymmetric array of slabs, called an asymmetrical slab cell. The configuration of an asymmetric slab cell requires the fuel region to be the innermost region with an optional gap and/or optional clad outside the fuel region. A moderator region exists on each side of the fuel/gap/clad region. The moderator materials and the thickness of the two moderators need not be the same. The cell is defined to extend from the centerline of one moderator region to the centerline of the second moderator region.

M7.2.4.3 MULTIREGION Treatment

The MULTIREGION treatment is appropriate for 1-D geometric regions where the geometry effects may be important, but the infinite homogeneous media treatment or LATTICECELL treatment are inappropriate. The MULTIREGION unit cell allows more flexibility in the placement of the fuel, but requires all regions of the cell to have the same geometric shape (i.e., slab, cylinder, sphere, buckled slab, or buckled cylinder). See Sects. M7.4.7 and M7.5.6.3 for more details. Limitations of the MULTIREGION cell treatment are listed below:

- 1. A MULTIREGION cell is limited to a 1-D approximation of the system being represented. This constraint is appropriate for a sphere, an infinitely long cylinder, a slab, or an infinite array of slabs.
- 2. The shape of the outer boundary of the MULTIREGION cell is the same as the shape of the inner regions. Cells with curved outer surfaces cannot be stacked to represent arrays.

- 3. The boundary conditions available in a MULTIREGION problem include vacuum (eliminated at the boundary), reflected (reflected about the normal to the surface at the point of impact), periodic (a particle exiting the surface effectively enters an identical cell having the same orientation and continues traveling in the same direction), and white (isotropic return about the point of impact). Reflected and periodic boundary conditions on a slab can represent a real physical situation, but are not valid on a curved outer surface.
- 4. A MULTIREGION cell represents a single cell if the outer boundary has a vacuum boundary condition applied to it. The cross-section treatment then uses an interlump Dancoff factor of zero in the geometric correction calculations.
- 5. If the outer boundary of a MULTIREGION cell has a boundary condition other than vacuum, the interlump Dancoff correction is approximated by homogenizing the adjacent zones and computing the transmission through the homogenized material. This value is correct for a slab having a reflected or periodic boundary condition, but is inexact for a curved surface.
- 6. The intralump Dancoff factor is determined using homogenized interior zones.

M7.2.5 APPLICABILITY OF PROBLEM-DEPENDENT CROSS-SECTION PREPARATION

Cross-section processing is briefly discussed here because the Material Information Processor is indirectly involved in cross-section processing by virtue of providing binary input data files to the cross-section processing codes. The problem-dependent AMPX working format cross-section library is created by executing BONAMI and NITAWL and, optionally, ICE and/or XSDRNPM.

The cross-section processing in SCALE utilizes the Bondarenko (or shielding factor) method¹ and the Nordheim Integral Treatment.² With the exception of the 16-group Hansen-Roach library, SCALE uses BONAMI primarily to shield unresolved resonances, while NITAWL is used for the resolved resonances. The assumptions and limitations shared by these methods include:

- 1. The simple two-zone model used in the formulation is not valid where strong 2-D effects occur [boiling-water reactor (BWR) fuel assemblies] or where double levels of heterogeneity exist (fuel grains in some gas reactor fuels).
- 2. The assumption of a spatially flat flux may not be good, especially at the peak of a large resonance.
- 3. Thermal upscatter into the resonance range cannot be accounted for. This may be important for the 0.3-eV resonance in ²³⁹Pu and/or the 1.0-eV resonance in ²⁴⁰Pu. For example, at 550 K, hydrogen may supply the 0.3-eV ²³⁹Pu resonance with approximately 40% as many neutrons via upscatter as via downscatter. Incoherent scattering with hydrogen may scatter neutrons up as high as 2.0 eV. Upscatter effects are also important when the moderating nuclide is bound in a crystalline lattice such as graphite or beryllium.

M7.2.5.1 Applicability of the Bondarenko Method

The Bondarenko method is basically an "infinite medium" method that parameterizes cross sections for a nuclide as a function of temperature, T, and σ_0 , the "background" cross section of all the other nuclides mixed with the nuclide. Section F1.2 contains a more-detailed discussion of this method. Simplistically, if the temperature and cross-section values are known, the self-shielded cross sections are determined by interpolating the tabulated parameterized data. Because self-shielding causes changes in the background cross sections that apply to a nuclide, an iterative procedure is used for each nuclide in the problem.

To account for geometric effects, the σ_0 value is augmented by an escape cross section, σ_e . This escape cross-section value is a function of the geometry and the total cross-section value in the medium. Many implementations of this approach use either the Wigner rational approximation ($\sigma_e = 1/\ell N_i$), or a modified form. BONAMI uses "exact" values of escape probabilities for the three simple geometries (slabs, cylinders, and spheres) as developed by Case, de Hoffman, and Placzek.³ These "exact" values are based on the assumption that the flux in each region is spatially flat and the scattering is isotropic. Multizone situations such as reactor lattices are accounted for by the use of Dancoff factors, which are used to modify the escape probability and, hence, the value of σ_e .

Several of the approximations used in the Bondarenko method are known to be inadequate in some situations. At low energies, many nuclides have resonances that are wide when compared with the scattering ranges for the mixtures in a particular configuration. This discrepancy typically leads to cross-section values that are too high in the resonances. Systems with nuclides whose resonances overlap also cause inaccuracies. In SCALE, the Bondarenko factors are used primarily in the unresolved energy region where the resonances are too narrow to be resolved into sets of resonance parameters. Although the flat flux and isotropic scattering approximations used to determine escape probabilities may have an effect on the group-averaged values, a potentially larger effect is possible because of the procedures used to generate the original Bondarenko factor tables. These tables may not have included all of the resonance-resonance overlap terms. However, given proper Bondarenko factors for the unresolved range, the treatment is probably adequate for treating an "unresolved" region.

SCALE uses the Bondarenko method to shield its 16-group Hansen-Roach cross-section library. As originally distributed, this library contained several sets of data for importance resonance nuclides that were characterized by various values of background cross sections, σ_0 . The basic sets were generated using narrow resonance approximations, and were adjusted to make them accurately calculate the multiplication factor for a variety of critical experiments. This adjustment accounts for the success of the Hansen-Roach library in accurately calculating many types of criticality problems. This library was converted into Bondarenko format by dividing the "shielded" cross-section sets by a reference infinite dilution set. Advantages of converting them to Bondarenko format include:

1. The user does not have to determine the appropriate value of σ_0 because BONAMI does it automatically.

2. Because σ_0 varies as a function of energy, the user is not restricted to a single set of data.

- 3. The σ_0 values can be interpolated rather than using only a set of discrete values.
- 4. σ_0 is modified to account for lattice and two-region geometrical effects.

Although there are many approximations in the basic cross sections used to create the 16-group Bondarenko factors, the Bondarenko treatment has significantly increased its utility for SCALE users.
M7.2.5.2 Applicability of the Nordheim Integral Method

The Nordheim Integral treatment is discussed in detail in Sect. F2.2. It is basically a two-region integral transport theory method for a fuel lump surrounded by a moderator region. The moderator region is assumed to have an asymptotic (1/E) flux at all energies and over all space. Escape probabilities are used to account for coupling between the two regions. As with BONAMI, NITAWL uses exact escape probabilities for slabs, cylinders, and spheres as developed by Case, de Hoffman, and Placzek,³ but which are based on the assumption of a flat flux and isotropic scattering in the fuel lump. To account for lattice effects, a Dancoff factor can be specified, though it is a single value that must be used at all energies. The Nordheim Integral Treatment considers only one resonance nuclide in its calculation (i.e., the overlap between resonances of different nuclides is not treated), and a separate calculation is performed for each resonance using the assumption that the resonances of a nuclide do not overlap.

Because NITAWL does not include resonance-resonance overlap, it does not accurately treat nuclides having large low-energy resonances (²³³U and ²⁴¹Pu) or multinuclide systems that contain many overlapping resonances such as (1) systems containing MOXs of uranium and plutonium ,and (2) advanced thorium converter systems. For fast reactor systems, the effects are not as severe as might be expected for criticality studies because the most important energy region is high relative to the resolved energy regions for most nuclides. For systems involving primarily ²³⁵U and ²³⁸U, such as the light-water reactor (LWR), the Nordheim treatment is quite good because the resonance overlap effect for these two nuclides is small.

An area in which the Nordheim method is particularly weak is that of calculating small, tightly packed lattices, where the flux in the moderator is significantly different from the assumed asymptotic value, for example, gas-reactor fuel where tiny fuel pellets are coated with a graphite moderator.

The use of escape probabilities based on the flat flux and isotropic scattering assumptions used in NITAWL introduce errors in some cases. Fix-ups^{4,5} (not available in NITAWL) involving the use of transport corrections to the scattering have been tried but have not been entirely satisfactory. Cohen⁶ derived probabilities based on a hyperbolic cosine-shaped source which should be more accurate for some cases.

The fact that the Nordheim method only treats free atom elastic scattering may introduce errors where inelastic sources are important or where upscattering effects for low-energy resonances are important. The Nordheim treatment as implemented in SCALE has been shown to be adequate for treating a variety of critical experiment problems and other problems. The user should be aware of the limitations inherent in the Material Information Processor and the cross-section processing performed by SCALE and use them accordingly.

M7.2.5.3 Applicability of the Dancoff Factor

The Nordheim method was designed to treat a single fuel lump in an infinite moderator. To account for the heterogeneous effects of a lattice of fuel lumps, a correction known as the Dancoff factor is applied to the leakage probability from the lump. The interlump Dancoff factor (C) is the probability that a neutron emitted isotropically from the surface of one absorber lump will pass through the external media and enter a nearby absorber lump. In the case of an annular region, the total Dancoff factor is a weighted sum of the interlump factor and the probability of a neutron emitted on the inner surface of the annulus reentering the annulus without experiencing a collision. The weighting factors are the inner and outer surface areas of the annular region.

$$C = (A_o C_o + A_i C_i)/(A_o + A_i),$$
 (M7.2.1)

NUREG/CR-0200, Vol. 3, Rev. 6

where

- C is the total Dancoff factor,
- A_o is the outer surface area of the region,
- C_o is the Dancoff factor associated with the outer surface,
- A_i is the inner surface area of the region,
- C_i is the Dancoff factor associated with the inner surface.

Interaction probabilities are calculated for lattices of spheres, infinitely long cylinders, or infinite slabs. The algorithms used in SCALE for LATTICECELL problems were developed in SUPERDAN,⁷ a program that uses a double numerical integration to analytically determine the Dancoff factor of spheres, cylinders, and slabs. In each case, the program accounts for any cladding that might be present. For a particular fuel lump, the total Dancoff factor (C) is calculated for the appropriate lattice. The overshadowing of one neighboring lump by another is accounted for analytically and includes all nearest and second-nearest neighbors. Figure M7.2.1 represents cylindrical pins in a square lattice, and Fig. M7.2.2 represents cylindrical pins in a triangular lattice. The Dancoff factor is the summation of the Dancoff factors of all fuel regions visible to the lump. See Table M7.2.2 for the appropriate equations used to determine the Dancoff factor.

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M7.2.2 Representation of a lump and its neighbors for cylindrical pins in a triangular-pitch lattice

		Nı			
Fuel lump	Type of lattice pitch	Nearest	Second nearest	Third nearest	- Dancoff
Cylinder	Square	4	4	8 ^a	$C = \sum_{i=1}^{8} C_i$
Cylinder	Triangular	6	6	12 ^a	$C = \sum_{i=1}^{12} C_i$
Sphere	Square	6	12	8	$C = \sum_{i=1}^{26} C_i$
Sphere	Triangular	12	6	8	$C = \sum_{i=1}^{26} C_i$
Slab	-	2	-	-	$C = \sum_{i=1}^{2} C_{i}$

Table M7.2.2 Dancoff factor equations for various geometries

"Not included in the SUPERDAN treatment.

NUREG/CR-0200, Vol. 3, Rev. 6 In order to treat the interaction to the third and subsequent nearest neighbors, a correction factor, CF, is added to the Dancoff factor, C, calculated using the SUPERDAN algorithm. The CF is determined by repeating the Dancoff calculation using a void in the place of the moderator. This computation yields a Dancoff factor, D_0 , which represents the fraction of the solid angle that is being treated by the SUPERDAN algorithm. Since the true solid angle should be 1.0, the untreated solid angle is $1.0 - D_0$. An exponential attenuation based on the total cross section, Σ_T , of the moderating media and an estimated distance l is applied to the untreated solid angle, that is,

$$CF = (1.0 - D_0)e^{-\Sigma_{T_m} \tilde{\ell}}$$
, (M7.2.2)

$$DF = C + CF, \qquad (M7.2.3)$$

where l is given in Table M7.2.3 and the untreated fraction of the solid angle is shown graphically in Fig. M7.2.3.

Table M7.2.3 7 used in the Dancoff correction				
System geometry	Į			
Cylindrical square pitch	Pitch $\times \sqrt{5}$			
Cylindrical triangular pitch	Pitch $\times \sqrt{7}$			
Spherical square pitch	Pitch × $(\sqrt{5} + \sqrt{7})/2$			
Spherical triangular pitch	Pitch $\times \sqrt{3}$			

NUREG/CR-0200, Vol. 3, Rev. 6

The magnitude of the correction, CF, and the effect on a calculated k_{eff} will depend on both the geometry of the system and the moderator cross section. This Dancoff treatment calculates the correct limits for cases in which the particle size and/or the moderator cross section are very small. The ratio CF/(1-DF) provides a quantity that can be used to estimate the importance of the correction. For a typical LWR lattice, this ratio is on the order of 10⁻³, with a change in k_{∞} of < 10⁻⁵. Other studies with LWR fuel indicate ratios less than 0.01 lead to changes in k_{∞} of less than 0.1%, and ratios less than 0.2 lead to changes in k_{∞} of less than 2%.

M7.2.5.4 The One-Dimensional Approximation With/Without Buckling

The Material Information Processor assumes that the physical system may be adequately represented in one dimension. For most LATTICECELL calculations, this is a reasonable approximation since the leakage out the ends of a fuel rod is almost negligible and the effect of neighboring fuel rods may be accounted for by using the appropriate boundary condition. For MULTIREGION calculations, however, the implications of the approximation should be examined more carefully. In 1-D calculations, cylinders are assumed to be infinitely long and slabs are assumed to be of infinite extent in both of the transverse directions. Hence, a true 1-D calculation in these geometries would tend to overestimate the k_{eff} of the physical system.

To partially alleviate this difficulty, it is possible to use a buckling correction that accounts for the leakage out of the system in the transverse direction(s). To do this, the leakage in each group is calculated as $D_g B_g^2 \varphi_g$ and treated as an absorption term in the transport equation. Here, D_g is the diffusion coefficient:

$$D_g = 1/(3\Sigma_{TR_g}),$$
 (M7.2.4)

and the buckling, B_g^2 , is given by

$$B_g^2 = (\pi/DY_g^*)^2 + (\pi/DZ_g^*)^2$$
(M7.2.5)

in slab geometry, and

$$B_g^2 = (\pi/DY_g^*)^2$$
 (M7.2.6)

in cylindrical geometry. DY_g^* and DZ_g^* are the extrapolated dimensions of the assembly defined by

$$DY_{g}^{*} = DY + 2d_{g},$$
 (M7.2.7)

and

$$DZ_{g}^{*} = DZ + 2d_{g},$$
 (M7.2.8)

where DY and DZ are the actual dimensions of the assembly and
$$d_g$$
 is the extrapolation distance from the surface of the assembly. For a semi-infinite system in planar geometry, the analytic solution to the Milne

M7.2.11 NUREG/CR-0200, Vol. 3, Rev. 6 problem yields $d = (0.710446)\lambda_{TR}$. For smaller systems, d can be shown to lie between $(0.7104)\lambda_{TR}$ and $(1.3333)\lambda_{TR}$. Within the XSDRNPM code, d is calculated as

$$d_{g} = (\frac{1}{2})(BKL)\lambda_{TR_{g}} = (\frac{1}{2})(BKL)(1/\Sigma_{TR_{g}}), \qquad (M7.2.9)$$

where BKL is an optional parameter that the user may supply. A default value of BKL = 1.420892 is typically supplied by the control module. Even though it is true that underestimating the extrapolation distance (i.e., using a value of BKL that is too small) will cause a buckling-corrected transport calculation to underestimate k_{eff} by a slight amount, that is nearly always a second- or third-order effect. In systems with transverse dimensions small enough for d to be much greater than $(0.7104)\lambda_{TR}$, the 1-D approximation is no longer valid and a 2-D model of the physical system is probably required.

M7.2.5.5 Use of XSDRNPM by the Material Information Processor

The Material Information Processor prepares data that are used by the 1-D discrete-ordinates code XSDRNPM. XSDRNPM performs the dual functions of (1) criticality safety analyses and (2) cross-section processing to create a homogenized cell-weighted mixture cross section. The Material Information Processor utilizes an automatic mesh generator and an automatic quadrature generator to supply data for XSDRNPM. The automatic mesh generator creates a mesh across the material zones used to calculate the fluxes that are used in calculating λ , the neutron multiplication factor, and in creating the homogenized cell-weighted mixture cross section. The angular quadrature is used to divide the directions of the angular flux into discrete bins defined by the direction cosines. Appropriate weights are defined to be used in the numerical integration of the angular-dependent flux to obtain a scalar flux used in the calculation.

M7.2.5.6 The Automatic Mesh Generator

The Material Information Processor determines the number and location of mesh boundaries within a zone using an algorithm based on the total epithermal cross section and asymptotic diffusion length in each mixture. The number of mesh intervals used in a calculation may be increased or decreased by entering a value for the parameter SZF= in the optional parameter data.

Within a particular material zone, the mesh boundaries are logarithmically symmetric about the midpoint of the zone as shown in Fig. M7.2.4.

Figure M7.2.4 Mesh spacing scheme used in material zone

NUREG/CR-0200, Vol. 3, Rev. 6

Assuming a total of N mesh intervals in a zone, the size of each mesh interval (Δr_n) is given by

$$\Delta r_n = 0.5(r_0 r_i) \log_{10} \{ [N + 18(n)] / [N + 18(n - 1)] \} . n = 1, 2, ..., N/2 .$$
(M7.2.10)

This logarithmically symmetric distribution has the advantage of providing more mesh intervals near the material zone interfaces where greater flux gradients are likely to exist. To determine N, the size of the largest mesh interval must be less than some specified number of mean free paths or asymptotic diffusion lengths. Specifically, N is determined by applying the requirement that

$$(\Delta r_{max}) \leq (SZF)(0.06)(\lambda_T)$$
 for LATTICECELL calculations, or
 $(\Delta r_{max}) \leq (SZF)(0.25)(L)$ for MULTIREGION calculations,
(M7.2.11)

where the size factor (SZF) is an optional control parameter that may be specified by the user, and L is the asymptotic diffusion length for the mixture defined by

$$(1/L)^2 = 3\Sigma_A \Sigma_S (1 - \bar{\mu})(1 - 4\Sigma_A / 5\Sigma_T)$$
. (M7.2.12)

The asymptotic diffusion length is computed using epithermal cross-section data from the Standard Composition Library (see Sect. M8). The constants [0.06 and 0.25 in Eq. (M7.2.11)] were chosen to ensure an adequate mesh size when SZF is set to its default value of 1.0. The size of the largest mesh interval can be adjusted by entering a value for SZF in the optional parameter data. For LATTICECELL calculations, the number of mesh intervals in a zone is given by

$$N = 18/(10^{x} - 1), \qquad (M7.2.13)$$

where

$$x = 2(0.06)(\lambda_T)(SZF)/(r_o - r_i)$$
. (M7.2.14)

A similar expression is obtained for the MULTIREGION case. For optically thin regions such as voids or thin cladding, N is assigned a value of 4 whenever the equation yields a smaller value. N is always defaulted to 1 for an infinite-homogeneous-media calculation.

M7.2.5.7 The Automatic Quadrature Generator

The discrete-ordinates code, XSDRNPM, solves for the angular flux (ψ_m) in a number of discrete directions $(\bar{\Omega}_m = \mu_m \bar{i} + \eta_m \bar{j} + \xi_m \bar{k})$ in each spatial mesh. The scalar flux in each mesh (ϕ) is then computed using a numerical quadrature of the form:

$$\phi = \sum_{m} W_{m} \psi_{m}, \qquad (M7.2.15)$$

where W_m is the weight associated with direction $\overline{\Omega}_m$.

XSDRNPM automatically calculates the direction cosines and the associated weights for the specified geometry. The number of discrete directions (MM) generated for a quadrature of order ISN is given by

MM = ISN + 1 for slab or spherical geometry (M7.2.16)

and

$$MM = ISN*(ISN + 4)/4 \quad \text{for cylindrical geometry.}$$
(M7.2.17)

In spherical geometry, the calculated directions and weights correspond to those of a simple Gaussian quadrature set of order ISN.* In slab geometry, XSDRNPM calculates a Gaussian quadrature set of order ISN/2, compresses it from 180° down to 90° (for symmetry), and uses this compressed quadrature in combination with its mirror image.** (In both slab and spherical geometry, one additional direction having an associated weight of 0.0 is also included.) In cylindrical geometry, the polar angles (θ) correspond to the positive angles of a Gaussian quadrature of order ISN while the azimuthal angles (ϕ) are equally spaced as shown in Fig. M7.2.5.*** This equal spacing of the azimuthal angles corresponds to a Chebyschev quadrature in ϕ . Note that one additional angular direction having an associated weight of 0.0 is also included for each of the polar angles (θ).

The quadrature order (ISN) is an optional control parameter that may be specified by the user. The SCALE criticality safety analysis sequences normally default to ISN = 8. The user may increase or decrease the quadrature order to verify the accuracy of a particular calculation. ISN = 8 has been found to be adequate for most LATTICECELL calculations. In MULTIREGION calculations having a reflector, ISN = 8 will generally be adequate, although the user may wish to compare the resulting k_{eff} and/or scalar fluxes with those of another calculation using ISN = 12. Accurate determination of the scalar fluxes deep in a thick shield may require ISN = 16.

**More precisely: $\mu_i = \pm (1 \pm x_j)/2$, where $\{x_j\}$ are the (m/2) positive roots of $P_m(x) = 0.0$, where m = ISN/2; and $w_i = W_j/4$, where $\{W_j\}$ are the Gaussian weights associated with $\{x_j\}$. The starting direction, $\mu_o = -1$, is assigned a zero weight.

***More precisely: $\eta_i = \cos(\theta_i)$ are the (m/2) positive roots of $P_m(\eta) = 0.0$ where m = ISN; $\mu_{i,j} = \pm \sqrt{1-\eta_i^2} \cos[\pi(j-0.5)/2i]$ where j = 1, 2, ..., i; and $w_{i,j} = W_i/(2i)$ where $\{W_i\}$ are the Gaussian weights associated with $\{\eta_i\}$. The starting direction, $\mu_{i,o} = -\sqrt{1-\eta_i^2}$, is assigned a zero weight.

NUREG/CR-0200, Vol. 3, Rev. 6

More precisely: $\mu_i = \pm x_j$, where $\{x_j\}$ are the (m/2) positive roots of $P_m(x) = 0.0$, where m = ISN; and $w_i = W_j/2$, where $\{W_j\}$ are the Gaussian weights associated with $\{x_j\}$. The starting direction, $\mu_o = -1$, is assigned a zero weight.

Figure M7.2.5 Angular directions associated with an S_6 Gauss-Chebyschev quadrature set for cylindrical geometry

M7.2.5.8 XSDRNPM Convergence Criteria

The convergence criteria for the XSDRNPM calculation used to create the cell-weighted cross sections are the optional control parameters EPS and PTC in the Material Information Processor input. Terms useful in describing the convergence criteria are defined below:

Q = total fixed source in system

 $F \equiv total fission neutron source$

D = total outscatter =
$$\sum_{i} \sum_{g} \sum_{g' \neq g} \phi_{i,g} \sigma_{g \neq g'} V_{i}$$

 $\phi_{i,g} \equiv \text{scalar flux in group g, interval i}$

 $V_i \equiv$ volume of interval i

 $\sigma_{g-g'} \equiv \text{group g to group g' transfer cross section}$

NUREG/CR-0200, Vol. 3, Rev. 6

IGM \equiv number of energy groups

 $q_g \equiv$ fixed source in group g

 $f_g \equiv fission source in group g$

$$\epsilon'_{p} \equiv \left(\frac{q_{g} + f_{g}}{IGM}\right) EPS$$

k \equiv outer iteration number (do not confuse with the multiplication factor)

$$\lambda_{k} \equiv \frac{Q + F_{k}}{Q + F_{k-1}}$$
 (SOURCE RATIO in output)

$$G_{k} \equiv \frac{D_{k}}{Q + F_{k}}$$

$$\lambda'_{k} \equiv \frac{G_{k-1}}{G_{k}}$$
 (SCATTER RATIO in output)

$$U_{k} = \text{total upscatter rate} = \sum_{i} \sum_{g} \sum_{g' < g} \varphi_{i,g} \sigma_{g - g'} V_{i} .$$

An inner iteration consists of sweeping one time through the entire spatial mesh and calculating the flux for all the S_n angles in one energy group. A sweep through all energy groups is called an outer iteration.

When the fluxes for a particular group are being calculated, the inner iterations will continue until (1) the number of inner iterations in this outer exceed IIM (the inner iteration maximum), or (2) until the following criteria are met:

(1)
$$\sum_{i} \left| \left(\phi_{i,g}^{k} - \phi_{i,g}^{k-1} \right) \right| \sigma_{g \rightarrow g'} V_{i} \le \epsilon_{g}'$$

(2)
$$\sum_{i} \left| \left(\dot{\Phi}_{i,g}^{k} - \Phi_{i,g}^{k-1} \right) \right| \left(\sigma_{t} - \sigma_{g \star g'} \right) V_{i} \leq \epsilon_{g}^{'}$$

If PTC (the point flux convergence criteria) is greater than zero, XSDRNPM also requires

(3)
$$\max_{i} \left| \frac{\Phi_{i,g}^{k} - \Phi_{i,g}^{k-1}}{\Phi_{i,g}^{k}} \right| \le PTC$$

NUREG/CR-0200, Vol. 3, Rev. 6

At the end of an outer iteration, the following checks are made:

$$(4) \quad |1.0 - \lambda_k| \le EPS$$

(5)
$$R|1.0 - \lambda_k| \le EPS$$

(6) Rl1.0 -
$$\frac{U_{k-1}}{U_k} \le EPS$$

R is a convergence relaxation factor that is automatically set to 0.5 within XSDRNPM. If all the convergence criteria are met or if the maximum allowed number of outer iterations is reached, the XSDRNPM calculation will terminate with full output. Otherwise, another outer iteration will be started.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3 THE LOGICAL PROGRAM FLOW

The general flow of the Material Information Processor is given in this section. An abbreviated representation, rather than a formal flow chart, is used to outline the program flow. A flow chart may show a subroutine or library routine only once, even though it may be called several times. The text usually states when multiple calls are made to a subroutine or library routine. Each flow chart is accompanied by an explanation of the purpose of that segment of the program and text describing the subroutines referenced in the flow chart.

The segment of the program shown in Fig. M7.3.1 activates the Material Information Processor. The Material Information Processor reads data that specify the cross-section library, defines the materials to be used in the problem, and provides data used to apply resonance corrections to the cross sections. The data are read and checked, and calculations are performed to create a mixing table and provide data to the functional modules that are invoked by the control module.

- C4DATA This is the subroutine through which the Material Information Processor is activated. It opens the units that will be used to pass data to the functional modules. Throughout the subroutine, pointers are defined for various types of data, and STOP is called to write a message if the data arrays require more storage than is available. The call to subroutine KNIGHT initiates the reading and preparation of data for use in the functional modules involved in cross-section preparation. All other subroutines called by C4DATA carry out operations to prepare and check data that will be used by the functional modules activated by the sequence.
- AXSDRN This subroutine is used by the SAS4 sequence and is replaced by a dummy for the CSAS sequences.
- STOP This library routine may be called many times from C4DATA. If the computer storage is insufficient to contain the data arrays, it is called to write an error message. Depending on the arguments passed to it, this routine can also do any or all of the following: print a traceback, execute a stop, or return to the calling program.
- KNIGHT This subroutine initiates the preparation of data for use in the functional modules involved in cross-section preparation. It is described in more detail in Sect. M7.3.1.
- SMMTBA This subroutine is called to set the unit number corresponding to the specified master cross-section library.
- SHORTX The purpose of this subroutine is to copy only those nuclides utilized in the standard composition specification data to unit 11 for processing by the functional module BONAMI and to print the Data Information Table. LOGID determines if the composition name from the standard composition library was specified in the standard composition specification data. OPNFIL is used to open the specified cross-section library and unit 11. COPY is used to copy the cross-section data to unit 11.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3.1

Figure M7.3.1 Flow chart of the Material Information Processor

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3.2

The library routine OPENDA is called to open the direct-access data set. IOWRT is a library routine that prints the data set name and the volume where the data set resides for the specified unit number. It is called several times to generate and print portions of the Data Library Information Table. The library routine DTASET is called to set the data set name and volume serial number associated with a specified unit number. The library routine CLOSDA is called to close the direct-access data set.

- PRELPS This subroutine defines the collapsed group structure for the shielding analytical sequences. It should not be used in the criticality safety analytical sequences. The call to PRELPS is triggered by entering COLL in MORE DATA. PRELPS calls NFLUX to generate a neutron flux spectrum and GFLUX to generate a gamma flux spectrum.
- CLAPSE This subroutine controls the collapsing of the appropriate AMPX master format library to the new group structure. It is described in more detail in Sect. M7.3.9.
- CLEAR This library routine is called to zero the volume fraction array.
- VERIFY This subroutine checks the mixture-by-zone array. A warning message is written if the same mixture number is specified for more than one zone. It also determines the number of void zones in the 1-D model for use in the BONAMI mixing table.
- VOLJB This function is used in calculating volume fractions. It returns the volume for a sphere, the volume per unit height for a cylinder, and the thickness for a slab.
- BONAMI This subroutine prepares binary input data for the functional module BONAMI-S. The binary data are written on unit 96 by subroutines BINRCX and BINRCF.
- LCHKMX This logical function returns a value of true if a variable is referenced. BONAMI, NITAWL, CALCMS, and CELLMX utilize this function to determine if a mixture is referenced in the mixture-by-zone array.
- BINRCX Each time this subroutine is called, it writes a binary integer data array on a specified data file. This data array is part of the binary input data used by certain functional modules for processing the cross sections. BINRCX is called with six arguments. The first argument is the array identification number for FIDO-type data. The second argument is the starting point of the data to be written in the array defined by the first argument. The third argument is the end point of the data to be written in the array defined by the first argument. The fourth argument is the offset of the first location of the array defined by the first argument, from the beginning of the base array. The fifth argument is the name of the base array that contains the data to be written. The sixth argument is the unit number where the data is to be written. For example, arguments of (13,1,4,0,L,40) writes the first four entries of array L on unit 40 as the first four entries of the 13\$\$ array. Arguments of (13,1,4,20,L,40) would write entries 21 through 24 of array L on unit 40 as the first four entries in the 13\$\$ array.
- BINRCF Each time this subroutine is called, it writes a binary floating-point data array on a specified data file. This array is part of the binary data used by certain functional modules for processing the cross sections. BINRCF is called with six arguments that are identical in function to those

for BINRCX. For example, arguments of (13,1,4,0,B,40) write the first four entries of array B on unit 40 as the first four entries of the 13** array. Arguments of (13,1,4,20,B,40) would write entries 21 through 24 of array B on unit 40 as the first four entries in the 13** array.

- NITAWL This subroutine prepares binary input data for the functional module NITAWL-II. Subroutine ISCAN is called to return the nuclide number. The library routine CLEAR is called to zero the data array before loading data. The binary data are written on unit 97 for NITAWL-II by subroutines BINRCX and BINRCF.
- CALCMS This subroutine corrects the mixing table length to account for mixtures that are to be passed through XSDRNPM-S without being cell-weighted. LCHKMX is used to determine whether a mixture occurs in the mixture-by-zone array.
- EPSIG This subroutine is called only if a cell-weighted mixture is to be created. It calculates the total epithermal cross section and the corresponding asymptotic relaxation factor for use in determining the number of spatial mesh intervals. SQRT is used in determining the asymptotic relaxation factor.
- XSMESH This subroutine is called only if a cell-weighted mixture is to be created. It calculates the number of spatial intervals and their corresponding locations for XSDRNPM-S. STOP is called if more storage is required than is available. LOG10 is used in determining the interval boundary locations. MAX and MIN are used to determine the larger of two values and the smaller of two values, respectively.
- XSDRN This subroutine is called only if a cell-weighted mixture is to be created. It prepares binary input data for the functional module XSDRNPM-S. The binary input data are written on unit 98. LCHKMX is used to determine if a mixture is in the mixture-by-zone array, STOP is called if an error is recognized, CLEAR is used to zero arrays, BINRCX is used to write the binary integer data arrays, BINRCF is used to write the binary floating-point data arrays, and BINFIL is used to load an array with a specified number and write it on a specified unit number.
- ICE This subroutine is called only when the control modules CSASI and CSASIX are executed. It prepares binary input data for the functional module ICE-S. VOLFRC returns the volume fraction of a mixture in a cell. BINRCX writes the binary integer data arrays, BINRCF writes the binary floating-point data arrays, and BINFIL is used to fill an array with a number and write it on the specified unit number. The binary input data for ICE-S are written on unit 92.
- VOLFRC This function is used to determine the volume fraction of a mixture in the cell.
- CELLMX This subroutine is used to determine the number of components in a cell-weighted mixture. LCHKMX is used to determine if a mixture is in the mixture-by-zone array.
- MIPCHK This subroutine is activated if PARM=CHECK is specified on the analytical sequence indicator as shown by the following example:

=CSAS25 PARM=CHECK

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3.4

MIPCHK prints additional information including the mixing table, resonance data, data for BONAMI-S and NITAWL-II, and all KENO V.a data that are printed prior to creating the initial source distribution. The library routine WOT8 is used to print part of the data.

M7.3.1 READ THE INPUT DATA

Figure M7.3.2 illustrates the beginning of the data reading and processing segment of the program known as the Material Information Processor.

Figure M7.3.2 Read the Material Information Processor input data

- KNIGHT This subroutine initiates the data-reading portion of the Material Information Processor. It defines the output unit for the analytical sequence and sets up storage for various data arrays needed by the Material Information Processor. STOP is called if the available storage is too small to contain the data arrays. Data from the Standard Composition Library (see Sect. M8) are loaded for use by the Material Information Processor. SETUPA is called to control the data reading. CLOSDA is called to close out the standard compositions specification data file when the Material Information Processor is finished.
- MESAGE This library routine is called with two arguments: an eight-character hollerith argument and an output unit. Additional library routines are called from MESAGE to print a header page in block letters and the Program Verification Information Table for quality- assurance purposes.

The header page includes the eight-character hollerith argument defining the analytical sequence being executed, the date and time execution was begun, and the job name. The program verification information table includes the program name, its creation date, the library name, the job name, and the date and time of execution.

- OPENDA This library routine initializes the direct-access files.
- REED This library routine is called to load data from the Standard Composition Library into data arrays.
- SETUPA This subroutine is responsible for reading the standard composition specification data and geometry description data from the input unit and determining the number of mixtures specified in the data, the number of standard composition specifications entered as data, the number of solutions specified in the standard composition specification data, and the number of material zones to be used by XSDRNPM-S. The input unit is rewound so it can be read by subroutine SETUPB. Then the problem parameters are printed, and pointers are established for subsequent information storage. The library routine STOP is called to print a message if more computer storage is required for the problem.
- AREAD This library routine is used to read the standard composition names and other alphanumeric data.
- SCANON This library routine is called to activate the feature that allows scanning for the word END, when reading data.
- CSPARM This subroutine uses the library routine AREAD to read the problem title, cross-section library name, and type of calculation to be performed. It is called twice from SETUPA: once at the beginning, and again before calling SETUPB.
- SMMTBA This subroutine sets the logical cross-section unit number based on the cross-section library specified in the input data.
- LCOMPR This library routine is called from CSPARM to verify that the cross-section library name specified in the data matches one of the available libraries. It is called from SETUPA to determine if infinite homogeneous cell data and/or optional parameter data are to be read.
- FREAD This library routine is called as needed to read floating-point data in the standard composition specification data and geometry description data.
- IREAD This library routine is used to read integer data in the standard composition specification data and geometry description data.
- LREAD This library routine returns a value of "true" if the next character in a free-form reading buffer is a numeric digit. It is called from SETUPA to determine if DEN= or SPG= was entered in the standard composition data.
- SETUPB This subroutine is described in more detail in the following section.

NUREG/CR-0200),
Vol. 3, Rev. 6	

M7.3.6

M7.3.2 CONTROL DATA READING AND PROCESSING

Figure M7.3.3 illustrates the control of the data reading and processing for the Material Information Processor.

Figure M7.3.3 Control Material Information Processor data reading and processing

- SETUPB This subroutine controls reading the standard composition data, the unit cell specification data, and the optional parameter data. It is responsible for generating the mixing table information and determining the resonance parameters required for NITAWL-S. Various consistency checks are made as the data are read and processed. STOP is called if more storage is needed for the resonance treatment data arrays than is available.
- CLEAR This library routine is called to clear storage arrays.
- LCOMPR This library routine is called many times to compare character strings of input data with the allowed data names specified in the program. It compares as many characters as are supplied in the input data, thus allowing terse input of variable length.
- STDCMP This subroutine is called from SETUPB to read the standard compositions data. See Sect. M7.3.3 for more details.
- LATCEL This subroutine reads the unit cell specification associated with a LATTICECELL problem. See Sect. M7.3.4 for more details.
- MULTRG This subroutine reads the unit cell specification for a MULTIREGION problem. See Sect. M7.3.5 for more details.
- AREAD This library routine is called from SETUPB to read the alphanumeric data used to define the cell mixture for an infinite homogeneous medium problem.

NUREG/CR-0200, Vol. 3, Rev. 6

- IREAD This library routine is called from SETUPB to read the mixture number used in the cell mixture definition in an infinite homogeneous medium problem.
- MOREDT This subroutine reads the optional parameter data as described in Sect. M7.3.6.
- CINIT This subroutine is called to clear the offsets into the pointer storage array and set the CSAS and KENO V.a offsets. OPENDA is called to open the random access units or devices, RITE writes the offsets on a random access unit, and INQUIR returns the number of the next random access block.
- MIXTAB This subroutine is called to generate mixing table information. It is described in more detail in Sect. M7.3.7.
- STOP This library routine is called to write error messages.
- POKE This subroutine uses the geometry description data to calculate the outer boundary of each zone. The zone boundary and mixture by zone data are then loaded in the appropriate arrays.
- RESDA This subroutine creates the resonance data required by NITAWL-S. It is described in more detail in Sect. M7.3.8.

M7.3.3 READ THE STANDARD COMPOSITION SPECIFICATION DATA

Figure M7.3.4 illustrates the program flow for reading the standard composition specification data. The data format is discussed in Sect. M7.4.4.

Figure M7.3.4 Flow chart for reading the Standard Compositions Specification data

STDCMP - This subroutine is called from SETUPB to read and process the standard composition specification data for a problem.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3.8

- AREAD This library routine is called to read the standard composition names, the END for each standard composition, and the END COMP that terminates the standard composition specification data.
- SLNAME This subroutine returns the standard composition name of the fuel used in a solution.
- REED This library routine is used to load the table of contents from the Standard Composition Library into temporary storage before calling subroutines FIX and FOX.
- FIX This subroutine loads the data for an arbitrary material into the appropriate data arrays.
- IREAD This library routine is used to read integer data encountered in the standard composition specification data and the unit cell specification data.
- SCDATA This subroutine checks the standard composition material for multiple nuclides and sets up temporary storage for the nuclide data.
- FREAD This library routine is used to read floating-point data encountered in the standard composition specification data and unit cell specification data.
- LREAD This library routine is used to determine if the next character is a numeric digit. A value of true is returned if it is a numerical digit. Otherwise, a value of false is returned.
- ISCAN This subroutine is used to determine if a nuclide ID specified in the input data is found on the specified cross-section library. The cross-section library is scanned, and a value of true is returned if a match is found. Otherwise, a value of false is returned.
- SCDATA This subroutine checks the input for multi-isotope nuclides. If multi-isotope nuclides are specified, one of three things occur: (1) if isotopic data are specified in the material that is used, else (2) if it is in the cross-section library that is used, else (3) isotope distributions are read from the standard composition library.
- FOX This subroutine is called to provide the nuclide IDs and corresponding natural abundance in weight percent if the isotopic distribution is not specified in the input data.
- SLNS When a solution is specified in the standard composition specification data, this subroutine is used to calculate the volume fraction corresponding to the water, acid, and heavy metal according to the empirical formula applicable to the specified solution.
- FAX This subroutine is called from SETUPB to read the standard composition information for an arbitrary material. IREAD is used to read the integer data, and FREAD is used to read the floating-point data. Entry FAXPRT prints the standard composition specification data for an arbitrary material.
- FAXPRT This subroutine is responsible for printing the nuclide IDs and either the corresponding abundance in weight percent or the number of atoms in the compound. If multi-isotope nuclides are specified, a list of the isotopes and weight percents is printed for each multi-isotope nuclide.

SCANOF - This library routine is called to disable the ability to scan ahead for the word END.

M7.3.4 READ THE LATTICECELL UNIT CELL SPECIFICATION

Figure M7.3.5 shows the program flow for reading the unit cell specification for a LATTICECELL problem. The input data for this option are described in Sect. M7.4.6.

Figure M7.3.5 Flow chart for reading the unit cell specification for LATTICECELL

- LATCEL This subroutine is called from SETUPB to control reading and processing the unit cell specification for a LATTICECELL problem.
- SCANON This library routine is used to activate the feature that allows scanning for the word END while reading data.
- AREAD This library routine is called from LATCEL to read the type of cell to be used in a LATTICECELL problem.
- LCOMPR This library routine is used to compare the type of cell entered in the data with the allowed cell names. It checks as many characters as are entered in the input data. A value of true is returned if a match is found.
- FREAD This library routine is used to read the floating-point data encountered in the unit cell description of a LATTICECELL problem.
- IREAD This library routine is used to read the integer data encountered in the unit cell description of a LATTICECELL problem.

MIXERR - This subroutine is used to verify that mixture numbers utilized in the geometry description data have been defined in the standard composition specification data.

SCANOF - This library routine is called to disable the ability to scan ahead for the word END.

M7.3.5 READ THE MULTIREGION UNIT CELL SPECIFICATION

Figure M7.3.6 shows the program flow for reading the unit cell specification for a MULTIREGION problem. The input data for this option are described in Sect. M7.4.7.

Figure M7.3.6 Flow chart for reading the unit cell specification for MULTIREGION

- MULTRG This subroutine is called from SETUPB to control reading and processing the unit cell specification for a MULTIREGION problem.
- SCANON This library routine is used to activate the feature that allows scanning for the word END while reading data.
- AREAD This library routine is called from MULTRG to read the type of cell to be used in a MULTIREGION problem.
- LCOMPR This library routine is used to compare the type of cell entered in the data with the allowed cell names. It checks as many characters as are entered in the input data. A value of true is returned if a match is found.
- FREAD This library routine is used to read the floating-point data encountered in the unit cell description of a MULTIREGION problem.

NUREG/CR-0200, Vol. 3, Rev. 6

- IREAD This library routine is used to read the integer data encountered in the unit cell description of a MULTIREGION problem.
 LREAD This library routine returns a value of true if the next data entry is a numeric digit. It is used to test whether the optional moderator index data are present.
 MIXERR This subroutine is used to verify that mixture numbers utilized in the geometry description data have been defined in the standard compositions specification data.
- SCANOF This library routine is called to disable the ability to scan ahead for the word END.

M7.3.6 READ THE OPTIONAL PARAMETER DATA

The optional parameter data in the CSAS4 family of control modules allow certain parameters to be adjusted as described in Sect. M7.4.8. The program flow for this option is given in Fig. M7.3.7. This portion of the code is entered if the words MORE DATA are encountered after reading all of the other Material Information Processor data.

Figure M7.3.7 Flow chart for reading optional parameter data

- SCANON This library routine is used to activate the feature that allows scanning for the word END while reading data.
- AREAD This library routine is used to read the parameter names and other alphanumeric data used in the optional parameter data.
- IREAD This library routine is used to read integer data in the standard composition specification data and geometry description data.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.3.12

- FREAD This library routine is called as needed to read floating-point data in the standard composition specification data and geometry description data.
- ALLOWC This library routine is called to cause the numeric data reading routines to terminate a number when a non-numerical character is encountered.
- RESETC This library routine is called to reset the numeric data reading routines to cause a number to be terminated only when a blank or a comma is encountered.
- MIXERR This subroutine is used to verify that mixture numbers specified in the resonance and/or Dancoff parameter data have been defined in the standard composition specification data.
- SCANOF This library routine is called to disable the ability to scan ahead for the word END.

M7.3.7 GENERATE THE MIXING TABLE

Figure M7.3.8 shows the subroutines used in generating the mixing table for the Material Information Processor.

Figure M7.3.8 Flow chart for generating the mixing table

- MIXTAB This subroutine is responsible for generating the mixing table information required for the analytical sequence. It uses information from the Standard Composition Library and standard composition specification data to calculate the number density in atoms/b-cm for each nuclide in each mixture. STOP is called if the code needs more computer storage than is available. The final mixing table consists of a mixture number array, a nuclide ID array, and a number density array.
- MTABLE This subroutine is responsible for generating a mixing table containing a set of data for every isotope in every mixture. Each set of data consists of a mixture number, nuclide ID, and

number density in atoms/b-cm. Some nuclides may occur more than once in a mixture. STOP is called if the code needs more computer storage than is available. IDENTS is called to calculate the number density for each nuclide in each mixture.

- IDENTS This subroutine calculates the number density for each occurrence of each nuclide. ISCAN is used to locate the input nuclide in the Standard Composition Library. NOFRAC calculates the number fraction for each isotope in an element from the weight fraction data and atomic mass.
- ISCAN This function scans a vector to locate a matching component.
- NOFRAC This subroutine is called for compounds containing multiple isotope elements. It uses the weight fractions and atomic masses to determine the number fraction of each isotope in an element. Subroutine WTINV inverts the matrix.
- WTINV This subroutine inverts the weight-fraction matrix using the Gauss-Jordan reduction.
- ARRAY3 This subroutine divides the mixing table into separate arrays for the mixture number array, the nuclide ID array, and the number density array. It also compacts the mixing table, combining the number densities for duplicate nuclide IDs that appear in the same mixture.
- INQUIR Returns the number of the next random access block.
- RITE Writes the offsets on a random access unit.
- REORDR This subroutine reorders the mixing table based on isotope rather than mixture number. Therefore, all entries for a given isotope are loaded consecutively.
- ISCAN This function is used by subroutine REORDR to determine if a nuclide ID occurs in the Standard Composition Library.
- MODIFY This subroutine modifies the nuclide ID array portion of the mixing table to provide unique IDs for each appearance of a resonance nuclide and/or a nuclide for which multiple sets of thermal-scattering data are available.

M7.3.8 GENERATE RESONANCE DATA

Figure M7.3.9 shows the portion of the Material Information Processor that is responsible for generating the resonance data required by the analytical sequence.

Figure M7.3.9 Flow chart for generating resonance data

- RESDA This subroutine is responsible for determining the resonance data required by NITAWL-II and BONAMI for each nuclide having resonance information in the master cross-section library. CLEAR is called to clear arrays. ALOG is used in calculating the average logarithmic slowing-down decrement for determining the first and second moderator for NITAWL-II. DANCOF is called to provide Dancoff factors^{1,8} for resonance materials. BONDA is called to provide a factor to be used in calculating the escape cross section for materials having Bondarenko data.
- CLEAR This library routine is called to clear storage arrays.
- DANCOF This subroutine controls the calculation of the Dancoff factors for the different zones in the cell. It determines the Dancoff factor across the inner surface for a curvilinear coordinate system and calculates the Dancoff factor to an outer curved surface that has a white boundary condition applied to it. E3 is used to determine the Dancoff factor for slabs, and SHELC is used to determine the Dancoff factor across cylindrical shells. DANDAD is called to provide the Dancoff factor for a LATTICECELL problem.
- STOP This library routine is called to write error messages.
- E3 This library routine is a third-order exponential integral function.

- SHELC This library routine evaluates the transmission probabilities for a cylindrical shell.
- DANDAD This subroutine provides Dancoff factors between fuel lumps in a LATTICECELL calculation. DAN provides Dancoff factors for cylindrical geometry; SDAN, for slab geometry; and BALL, for spherical geometry. The Dancoff factors are part of the resonance data required by NITAWL-II and BONAMI to reduce the effective escape probability from the fuel in a heterogeneous lattice. See Sect. M7.2.5.3 for additional information concerning Dancoff factors.
- DAN This subroutine provides the Dancoff factors for the nearest and next-nearest cylinders in an array having a square or triangular pitch. ERRSET is used to trap errors caused by invalid arguments to the arcsine or arccosine routines by invoking subroutine ARCHK. ACOS, SQRT, and COS are used in determining the limits for the outer integration loop to be provided to AGAUSS.
- AGAUSS This subroutine uses a Gaussian quadrature to numerically evaluate the outer integral of the double integral defining the Dancoff factor.
- ADAN This function provides point-by-point values of the outer integral of the Dancoff equation for cylindrical geometry. COS, SQRT, ACOS, SIN, and ASIN are used in evaluating this Dancoff equation. ADAN also provides the limits for the inner integration.
- GAUSS This subroutine uses a Gaussian quadrature to numerically evaluate the inner integral of the double integral defining the Dancoff factor.
- GDAN This subroutine provides point-by-point values of the inner integral of the Dancoff equation for cylindrical geometry. COS, SQRT, ACOS, SIN, and ASIN are used in evaluating the Dancoff equation. The library routine KI3 is used to evaluate the third-order Bickley function, which evaluated the effect of the moderating material between the cylinders.
- SDAN This subroutine determines the Dancoff factor for slab geometry. ALOG and ABS are used in this determination.
- BALL This subroutine computes the Dancoff factor for spherical geometry in an array having a square or triangular pitch.
- SPHDAN This subroutine sets up the double integration required in the evaluation of the Dancoff factor in spherical geometry.
- OUTER This function provides point-by-point values for the outer integral of the Dancoff equation for spherical geometry.
- FINNER This function provides point-by-point values for the inner integral of the Dancoff equation for spherical geometry. COS, SIN, ABS, ACOS, SQRT, and EXP are utilized in this evaluation.

BONDA - This subroutine provides a geometry-dependent factor that is used in calculating the escape cross section for isotopes having Bondarenko data associated with them. ALOG and SQRT are utilized in the calculations.

M7.3.9 COLLAPSE THE ENERGY GROUP STRUCTURE

Figure M7.3.10 illustrates the portion of the Material Information Processor that collapses the master library to the specified group structure for the SAS sequences.

Figure M7.3.10 Flow chart for collapsing the energy group structure for shielding analytical sequences

- CLAPSE This subroutine is responsible for collapsing the master library to the specified group structure for the Shielding Analytical Sequences. It should not be invoked by the Criticality Safety Analytical Sequences. The call to CLAPSE is triggered by entering COLL in MORE DATA. See Sect. M7.4.8 for input data details.
- CLEAR This library routine is used to zero the work space.
- DEAN This subroutine reads the energy group boundaries.
- KAUL This subroutine generates the collapsed energy group boundaries and the collapsed flux spectrum. It is called once to process neutron data and once to process gamma data.
- COPY This library routine is used to copy data from one library to another.
- BOND This subroutine controls processing the Bondarenko data to obtain collapsed Bondarenko data.
- IO This library routine is called several times to read and write data.

- FOLD This subroutine multiplies the Bondarenko factors by the cross sections.
- AVGB This subroutine collapses the folded Bondarenko factors and the cross sections.
- UNFOLD This subroutine divides the collapsed and folded Bondarenko factors by the collapsed cross sections to obtain collapsed Bondarenko factors.
- AVG1 This subroutine collapses the 1-D neutron and gamma cross sections.
- TWODXS This subroutine collapses the 2-D neutron and gamma cross sections. IO4 is used to read and write the 2-D scattering matrix directory. COPY is used several times to copy data from the old library to a scratch file and from the scratch file to the new library. CLEAR is used to zero working arrays. IO is used several times reading and writing data to various units.
- AVG2 This subroutine is used to collapse the 2-D scattering or transfer arrays. The library routine MGCWRD is used to decipher "magic" words that define the contents of subsequent cross-section data strings.
- PATCH This subroutine defines the first group transfer of every empty array to be zero.
- TWODYS This subroutine governs the collapsing of the gamma production arrays. IO4 is used to read and write the production array directory. MOVE is called to move data from one array to another. STOP is called to write error messages. IO is used several times for reading and writing data. CLEAR is used to zero arrays and COPY is used to copy the weighted yield libraries from the scratch unit to the new library.
- HOGGIE This subroutine generates flux integrated fine- and broad-group cross sections for converting the yield arrays to cross-section arrays. STOP is called to write an error message.
- AVGY This subroutine collapses the 2-D gamma production array. The library routine MGCWRD is used to decipher "magic" words within cross-section arrays. These words define the contents of subsequent data strings. STOP is called to write an error message.

M7.4 INPUT DATA GUIDE

This section describes the input data required for the Material Information Processor.

All data are entered in free form, allowing alphanumeric data, floating-point data, and integer data to be entered in an unstructured manner. Eighty columns of data entry are allowed, simulating a card of data. Data can usually start or end in any column. Each data entry must be followed by one or more blanks to terminate the data entry. For numeric data, either a comma or a blank can be used to terminate each data entry. Integers may be entered for floating values. For example, 10 will be interpreted as 10.0. Imbedded blanks are not allowed within a data entry unless an E precedes a single blank as in an unsigned exponent in a floating-point number. For example, 1.0E 4 would be correctly interpreted as 1.0×10^4 .

The word "END" is a special data item. An "END" may have a name or label associated with it. The name or label associated with an "END" is separated from the "END" by a single blank and is a maximum of 12 characters long. At least 2 blanks MUST follow every labeled and unlabeled "END." It is the user's responsibility to assure compliance with this restriction. Failure to observe this restriction can result in the use of incorrect or incomplete data without the benefit of warning or error messages.

Multiple entries of the same data value can be achieved by specifying the number of times the data value is to be entered, followed by either R, *, or \$, followed by the data value to be repeated. Imbedded blanks are not allowed between the number of repeats and the repeat flag. For example, 5R12, 5*12, 5*12, or 5R 12, etc., will enter five successive 12's in the input data. Multiple zeros can be specified as nZ where n is the number of zeroes to be entered. The SCALE free-form reading routines are described in more detail in Sect. M3.

The major function of the Material Information Processor is to create binary input data files for BONAMI, NITAWL, and XSDRNPM and/or ICE. Table M7.4.1 lists the I/O units for the cross-section libraries, Standard Composition Library, temporary files, and the binary input data files. Optional files that can be defined include (1) the unit from which XSDRNPM may read fluxes, (2) the unit on which XSDRNPM may write fluxes, (3) unit 7, where ICE may write a card-image ANISN library, and (4) the unit on which ICE may write a binary ANISN library (see Sect. M7.4.8 on optional parameter data).

Unit No.	Type of data	Type of file
5	Input	Sequential
11	Short master xsec library	Sequential
70	User-supplied xsecs	AMPX Master Format Library
81	16-group xsecs	AMPX Master Format Library
82	27-group xsecs	AMPX Master Format Library
83	44-group xsecs	AMPX Master Format Library
84	238-group xsecs	AMPX Master Format Library
85	22 neutron-18 gamma xsecs	AMPX Master Format Library
86	18 gamma xsecs	AMPX Master Format Library
87	27-group xsecs for burnup	AMPX Master Format Library
88	27 neutron-18 gamma xsecs	AMPX Master Format Library
89	Standard Composition Library	Direct or random access data file
90	Scratch file	Direct or random access
92	ICE input data	Sequential
96	BONAMI input data	Sequential
97	NITAWL input data	Sequential
98	XSDRNPM input data	Sequential
99	Printed output	Sequentials

Table M7.4.1 Description of I/O units utilized by the Material Information Processor

M7.4.1 INPUT DATA SUMMARY FOR EXPERIENCED USERS

Section M7.4.1 is provided for the convenience of experienced users. Other users should skip to Sect. M7.4.2, p. M7.4.8.

All the input data for the Material Information Processor are summarized in Table M7.4.2 and presented in more detail in Table M7.4.3. Each component table of Table M7.4.3 is repeated and discussed in detail in Sects. M7.4.3 through M7.4.8.

The Material Information Processor allows terse data input for all data except the standard composition names and the keyword entries in the optional parameter data (MORE DATA). Terse data entry requires the user to enter only as many characters as are necessary to uniquely define the data entry. However, as many characters as are specified by the user must match the name allowed by the code. For example, refer to Table M7.4.2, **Outline of Material Information Processor data**, data position 3. The available choices for the type of calculation are: INFHOMMEDIUM, LATTICECELL, and MULTIREGION. Therefore, I would be sufficient to specify an infinite homogeneous medium, L would be sufficient for LATTICECELL, and M would specify MULTIREGION. If it is desirable to use more characters, the user is free to do so. However, as many characters as are entered must match the name allowed by the code. For example, if INFHOMMEDIUM is to be specified, INFH is correct, but INFI is not.

WARNING: If several choices begin with the same letters, sufficient characters should be entered to uniquely define the name. For example, ASPHSQUAREP and ASPHTRIANGP are identical through the first four characters. If only ASPH is entered, the code will accept the first name whose first four characters are ASPH. This may not be the one the user intended to use.

Data			
position	Type of data	Data entry	Comments
1	TITLE	Enter a title	80 characters
2	Cross-section library name	HANSEN-ROACH 27GROUPNDF4 44GROUPNDF5 238GROUPNDF5 27BURNUPLIB etc.	The currently available libraries are listed in Table M4.1.1.
3	Type of calculation	INFHOMMEDIUM LATTICECELL MULTIREGION	These are the available options. See the explanation in Sect. M7.4.3.
4	Standard Composition specification data	Enter the appropriate data	Terminate this data block with END COMP. See Sect. M7.4.4.
5	Unit cell geometry specification	Enter the appropriate data (optional for INFHOMMEDIUM)	Optional for INFHOMMEDIUM. See Sect. M7.4.5 for INFHOMMEDIUM. See Sect. M7.4.6 for LATTICECELL. See Sect. M7.4.7 for MULTIREGION.
6	Optional parameter data	Enter the desired data	Precede this data block by MORE DATA if more parameter data are to be entered. Otherwise, omit these data entirely. See Sect. M7.4.8.

Table M7.4.2 Outline of Material Information Processor data (see Sect. M7.4.3 for details)

	Outline of standard compositions specification data (see Sect. M7.4.4 for details)						
Entry No.	Variable name	Type of data	Entry requirement	Comments			
1	SC	Standard composition component name	Always	Enter once for each standard composition. Enter the alphanumeric description from Sect. M8.2. Additional allowed names include those beginning with ARBM for arbitrary materials, and SOLN for solutions.			
A1	ROTH	Theoretical density of material (g/cc)	ARBM	Enter once for each arbitrary material.			
A2	NEL	Number of elements or nuclides in the material	ARBM	Enter once for each arbitrary material.			
A3	IVIS	No longer used but must still be entered	ARBM	Enter once for each arbitrary material. Enter 0 or 1.			
A4	ICP	Compound indicator	ARBM	Enter once for each arbitrary material. Enter 1 for a chemical compound, 0 for alloys, mixtures, etc.			
A5	IRS	No longer used but must still be entered	ARBM	Enter once for each standard composition component that is an arbitrary material. Enter 0 or 1.			
A6	NCZA	ID number (from far right column of Table M8.2.1 or M8.2.2)	ARBM	Repeat the sequences A6 and A7 for each element in the arbitrary material before entering entry number 2. Enter the number from the far right column of Table M8.2.1 or M8.2.2. (Premixed standard compositions cannot be used in an arbitrary material definition.)			
A7	ATPM	Number of atoms of this element per molecule of arbitrary material or Weight percent of this element in this arbitrary material	ARBM & ICP = 1 or ARBM & ICP = 0	Repeat the sequence A6 and A7 for each element in the arbitrary material before entering entry number 2. Do not enter a value unless ICP = 1. or Repeat the sequence A6 and A7 for each element in the arbitrary material before entering entry number 2. Do not enter a value unless			
		arbitrary material	ICP = 0	entry number 2. Do not enter a value unless $ICP = 0$.			

Table M7.4.3 Tables of Material Information Processor data requirements

M7.4.3

NUREG/CR-0200, Vol. 3, Rev. 6

Entry	Variable		Entry	
No.	name	Type of data	requirement	Comments
2	МХ	Mixture ID number	Always	Enter once for each standard composition component.
S1	FD	Fuel density (grams of U or Pu per liter of solution)	SOLN	Enter once for a solution.
S2	AML	Acid molarity of the solution	SOLN	Enter once for a solution. $AML = 0$ if there is no acid in the solution.
O1	SPGR	Specific gravity of the solution or	Optional	If the specific gravity (SPGR) of the solution is known, it should be entered as SPG = SPGR.
	ROTH	Density of the basic standard composition		If the density of a basic standard composition (ROTH) is to be entered, use DEN = ROTH.
3	VF	Density multiplier	See comment column	Enter the density multiplier (density fraction, volume fraction, or a combination). Default value is 1. This item can be omitted if entries 4, 5, 6a, and 6b are also omitted. $VF = 0$ is not allowed for SOLN or ARBM.
4	ADEN	Number density (atoms/b-cm) for the nuclide	VF = 0	Enter only if $VF = 0.0$.
5	TEMP	Temperature, in degrees K	See comment column	Default value is 293 K. This entry can be omitted if entries 6a and 6b are also omitted.
6a	IZA	Isotope's ZA number	VF ≠ 0	Enter for each isotope in a multiple isotope nuclide. Omit if $VF = 0$. Entries 6a and 6b are entered in pairs until each isotope in the nuclide is defined.
6b	WTP	Weight percent of the isotope	VF ≠ 0	Enter for each isotope in a multiple isotope nuclide. Omit if $VF = 0.0$. Entries 6a and 6b are entered in pairs until each isotope in the nuclide is defined.
7	END	Terminate a standard composition	Always	Enter once for each standard composition component. This terminates the data for a standard composition component. Enter END to terminate the component. Repeat entries 1 through 7 until all the mixtures have been defined. At least two blanks must separate entry 7 from the next entry.
	END COMP	Terminate the data block	Terminus	Enter once for a problem. Enter the words END COMP when all the standard composition components have been described. At least two blanks must follow the END COMP.

Table M7.4.3 (continued) Outline of standard compositions specification data (continued)

NOTE: Entry 7 should not begin in column 1 unless a name is associated with it. At least two blanks should separate the last entry 7 from the END COMP.

Table M7.4.3 (continued)

Optional unit cell specifications for INFHOMMEDIUM problems (see Sect. M7.4.5 for details)

Entry number	Variable name	Type of data	Data entry	Comments
1	NAME	Keyword	CELLMIX	Initiate reading cell data for INFHOMMEDIUM.
2	MFUEL	Mixture number in the cell	Mixture number	Specifies the mixture number to be used in the cell. Defaults to the smallest mixture number entered in the Standard Composition Data.

NOTE: Unit cell data are necessary for INFHOMMEDIUM only if a mixture number other than the smallest mixture number is to be used in the cell and a control sequence that executes XSDRNPM has been specified. If mixtures 1, 2, and 3 are specified and mixture 3 is to be used in the cell, enter CELLMIX 3.

Unit cell specification for LATTICECELL problems (see Sect. C4.4.6 for details)

Entry	Variable		Entry		
<u>No.</u>	name	Type of data	requirement	Data entry	Comments
1	CTP	Type of lattice	Always	:	Describes the type of lattice or array configuration.
				SOUAREPITCH	Use for cylindrical rods in a square pitch.
				ASQUAREPITCH	Use for annular cylindrical rods in a square pitch.
				ASQP	Use for annular cylindrical rods in a square pitch.
				TRIANGPITCH	Use for cylindrical rods in a triangular pitch.
				ATRIANGPITCH	Use for annular cylindrical rods in a triangular pitch.
				ATRP	Use for annular cylindrical rods in a triangular pitch.
				SPHSQUAREP	Use for spherical pellets in a cubic lattice.
				ASPHSQUAREP	Use for annular spherical pellets in a cubic lattice.
				ASSP	Use for annular spherical pellets in a cubic lattice.
				SPHTRIANGP	Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice.
				ASPHTRIANGP	Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice.
				ASTP	Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice.
				SYMMSLABCELL	Use for a symmetric array of slabs.
				ASYMSLABCELL	Use for a periodic, but asymmetric array of slabs.
2	РІТСН	Агтау pitch (ст)	Always	Appropriate dimension	The center-to-center spacing (cm) between fuel lumps. For asymmetric slab cell, enter the distance from the center of one moderator to the center of the other moderator (cm).

Entry	Variable		Entry	(000 00	
No.	name	Type of data	requirement	Data entry	Comments
3	FUELOD	Outside dimension of fuel (cm)	Always	Appropriate dimension	Outside diameter of fuel (cm), or the thickness of the fuel in a slab.
4	MFUEL	Fuel mixture number	Always	Mixture number	Mixture number representing the fuel.
5	MMOD	Moderator mixture number	Always	Mixture number	Mixture number representing the moderator
6	MMOD2	2nd moderator mixture number	Annular cell	Mixture number	Mixture number representing the second moderator.
7	TKMOD2	2nd moderator thickness	ASYMSLABCELL or	Thickness	Thickness of the second moderator (cm) for ASYMSLABCELL.
		2nd moderator diameter (cm)	If clad	Diameter	Diameter of inner moderator (cm) for other annular cells.
8	CLADOD	Outside diameter of clad (cm)		Clad OD	OMIT IF NO CLAD. For a slab, CLADOD is the sum of thickness of the fuel, gap, and clad.
•		Clad minturethe-	If clad		
,	MCLAD	Clad mixture number	16	witxture number	representing the clad.
10	CLADID	Inside diameter of clad (cm)	11 gap	Ciad ID	OMIT IF NO GAP between the fuel and clad.
11	MGAP	Gap mixture number	If gap	Mixture number	OMIT IF NO GAP between the fuel and clad A mixture number of zero is often used.
12	END	Terminate LATTICECELL data	Always	END	Terminate the LATTICECELL input data by entering the word END. Do not start in column 1. At least two blanks must follow entry No. 12.

Table M7.4.3 (continued)

Unit cell specification for LATTICECELL problems (see Sect. C4.4.6 for details) (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

M7.4.6

Entry No.	Variable name	Type of data	Entry requirement	Data entry	Comments
1	CS	Type of geometry	Always	SLAB CYLINDRICAL SPHERICAL BUCKLEDSLAB BUCKLEDCYL	Describes the type of geometry. The options are listed below. Use for slab geometry. Use for cylindrical geometry. Use for slab geometry with a buckling correction for the two transverse directions. Use for cylindrical geometry with a buckling correction in the axial direction.
2	BR	Right boundary condition	Required for BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	VACUUM REFLECTED PERIODIC WHITE	 Default is VACUUM. Describes the right/outside boundary condition. This provides a non-return condition at the boundary. Do not use for cylindrical or spherical. Do not use for cylindrical or spherical. This provides isotopic return at the boundary.
3	BL	Left boundary condition	Required for BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	VACUUM REFLECTED PERIODIC WHITE	 Default is REFLECTED. Describes the left boundary condition. This provides a non-return condition at the boundary. Recommended for cylindrical or spherical. Do not use for cylindrical or spherical. This provides isotropic return at the boundary.
4	ORGN	Location of left boundary on the x-axis (cm)	BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	Appropriate dimension	Default is 0.0. Should not be changed for cylindrical or spherical geometry. A value must be entered if subsequent data are to be entered.
5	DY	Buckling height (cm)	BUCKLEDSLAB & BUCKLEDCYL	Appropriate dimension	OMIT FOR SLAB, CYLINDRICAL, and SPHERICAL. This corresponds to one of the transverse dimensions of an actual 3-D slab assembly or to the length of a finite cylinder.
6	DZ	Buckling depth (cm)	BUCKLEDSLAB	Appropriate dimension	OMIT UNLESS BUCKLEDSLAB WAS SPECIFIED. This is the buckling depth corresponding to the second transverse dimension of a 3-D slab assembly.
7	END	End geometry parameters	Always	END	Enter the word END. Do not start in column 1. At least two blanks must separate entry 7 from the first entry 8.
8	MXZ	Mixture number in the zone	Always	Mixture number	Repeat entry numbers 8-10 until all zones are defined. Enter the mixture number for this zone.

Table M7.4.3 (continued) Unit cell specification for MULTIREGION problems (see Sect. C4.4.7 for details)
Table M7.4.3 (continued)

Entry	Variable		Entry		
No.	name	Type of data	requirement	Data entry	Comments
9	RZ	Outside radius of the zone (cm)	Always	Appropriate dimension	Repeat entry numbers 8-10 until all zones are defined. Enter the outside dimension of the zone (cm).
10	XMOD	External moderator	Optional		Repeat entry numbers 8-10 until all zones are defined.
		index			Entry 10 is optional and can be omitted. If it is omitted, repeat entry numbers 8 and 9 until all zones are defined.
				NOEXTERMOD	No moderating materials in the adjacent zones.
				ONEEXTERMOD	A moderating material is present in one adjacent zone.
				TWOEXTERMOD	Moderating materials are present in two adjacent zones.
	END ZONE	Terminate zone data		END ZONE	Enter when all zones have been defined by repeating entry numbers 8 through 10 for each zone. At least two blanks must follow this entry.

Unit cell specification for MULTIREGION problems (see Sect. C4.4.7 for details)

NUREG/CR-0200, Vol. 3, Rev. 6

Table M7.4.3 (continued)
Summary of available optional parameter data (see Sect. C4.4.8)

Entry	Keyword	-	Applicable	
No.	name	Type of data	module	Comments
1	MORE DATA	Input flag		This signals that optional parameter data will be entered. Enter only those parameters you wish to change.
2	ISN=	Order of angular	XSDRNPM	The default value is 8. This allows using another value.
3	SZF=	quamanne		
		Spatial mesh size factor	XSDRNPM	The default value is 1.0. 0 <szf<1.0 a="" finer="" gives="" mesh.<br="">SZF>1.0 gives a coarser mesh. SZF ≤0 user specifies the number of mesh intervals in each zone.</szf<1.0>
4	IIM=	Max. number of inner iterations	XSDRNPM	The default value is 20. This allows using another value.
5	ICM=	Max. number of outer iterations	XSDRNPM	The default value is 25. This allows using another value.
6	EPS=	Overall convergence criteria	XSDRNPM	The default value is 0.0001. This allows using another value.
7	PTC=	Point convergence criteria	XSDRNPM	The default value is 0.0001. This allows using another value.
8	BKL=	Buckling factor	XSDRNPM	The default value is 1.420892. Use ONLY for a MULTIREGION problem that specifies BUCKLEDSLAB or BUCKLEDCYL.
9	IUS=	Upscatter scaling factor	XSDRNPM	The default value is zero. IUS=0 doesn't utilize upscatter scaling. IUS=1 uses upscatter scaling to accelerate the solution and/or speed convergence.
10	RES=	Resonance data	BONAMI NITAWL	Enter the mixture number, geometry type (SLAB, CYLINDER, SPHERE) and the thickness of the slab or radius of the sphere or cylinder, in cm. Optionally enter the inner radius (cm) to specify an annular cylinder or sphere.
11	DAN(mm)=	Dancoff factor for the specified mixture	BONAMI NITAWL	Enter the mixture number, mm, to which the Dancoff factor applies inside the parentheses; enter the Dancoff factor after the equal sign.
				Repeat entry numbers 10 and 11 for all resonance mixtures used in the problem that are not treated in the LATTICECELL or MULTIREGION description.
12	BAL=	Key to print balance tables	XSDRNPM	The default value is FINE. BAL=NONE suppresses printing the balance table. BAL=ALL prints all balance tables. BAL=FINE prints only the fine-group balance tables.
13	DY=	First transverse dimension	XSDRNPM	The first transverse dimension, in cm, used in a buckling correction to calculate leakage normal to the principal calculation direction (i.e., the height of a slab or a cylinder).
14	DZ=	Second transverse dimension	XSDRNPM	The second transverse dimension in centimeters used for a buckling correction (i.e., the width of a slab).
15	COF=	Diffusion coefficient option for transverse leakage corrections	XSDRNPM	The default is 0. See Sect. F3.5, 3\$ array, variable IPN.
16	FRD=	Unit from which fluxes will be read	XSDRNPM	Enter the unit number from which the flux guess for XSDRNPM will be read.

Table M	17.4.3	(contin	ued)
---------	--------	---------	------

Entry	Keyword		Applicable	
No.	name	Type of data	module	Comments
* 17	FWR=	Unit on which fluxes will be written	XSDRNPM	Enter the unit number where the binary fluxes from XSDRNPM will be written.
18	ADJ=	Adjoint mode flag	XSDRNPM	Enter a 1 to cause XSDRNPM to solve the problem in adjoint mode
19	NBU=	Unit on which balance tables will be written	XSDRNPM	Enter the unit number where the balance tables from XSDRNPM will be written
20	WGT=	Cross-section weighting flag	XSDRNPM	Enter a 0 to suppress doing the cross-section weighting in XSDRNPM
21	ZMD(iz)=	Zone width modifier for the specified zone	XSDRNPM	Enter the zone number for which the modifier applies inside the parentheses; enter the zone width modifier after the equal sign. Repeat number 20 to specify all zones to be modified in a search.
22	INT(iz)=	Number of intervals for the specified zone	XSDRNPM	Enter the zone number inside the parentheses; enter the number of intervals after the equal sign. Repeat number 22 to specify all needed zones.
23	KEF=	Value of k _{eff} to be searched for	XSDRNPM	Enter the value of k_{eff} that it is desired to search for. The default is 1.0.
24	KFM=	Value of the eigenvalue modifier	XSDRNPM	Enter the value of the eigenvalue modifier (i.e., the relative change for the first guess of a search). The default is -0.1.
25	DAB=	Number of direct access data blocks	MI₽	The default is 200. Number of blocks allocated for direct access unit 90.
26	AXS=	Unit on which a mixed ANISN library will be written	ICÈ	Enter the unit number where ICE is to write a mixed ANISN library.
27	MSH=	Maximum number of mesh points/resonance	NITAWL	The default value is 2001. This allows using another value.
28	MLV=	Highest resonance <i>l</i> -value for self-shielding	NITAWL	The default value is 2. This allows using another value.
29	ID1=	Print control for scalar fluxes	XSDRNPM	The default value is -1. See Sect. F3.5, 2\$ array, variable ID1.
30	COLL	Key to activate collapse of thermal groups	MIP ²	Enter COLL to collapse all thermal groups into one group for the shielding sequences.
31	END	Terminus		Terminate the optional parameter data. Do not start in column 1. At least two blanks must follow this entry.

Summary of available optional parameter data (see Sect. C4.4.8)

^aMIP is the Material Information Processor.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.4.2 PARAMETERS FOR DATA CHECKING AND SPACE ALLOCATION

To check the Material Information Processor input data, run CSASN and specify PARM=CHECK or PARM=CHK starting after column 10 of the analytical sequence specification as shown below.

=CSASN PARM=CHK or #CSASN PARM=CHK

The data are checked, the problem description is printed, appropriate error and warning messages are printed, and a table of additional data is printed. These data include the mixing table, resonance data, NITAWL data, CSAS(XSDRN) data, and BONAMI data. An example of this output is given in Sect. M7.6. The region size for a problem can be specified by the user by entering PARM=SIZE=nnnn starting after column 10 of the analytical sequence specification. The region size, nnnn, is specified in words. The following examples run CSASN and set the region size to 120,000 words.

=CSASN PARM=SIZE=120000 #CSASN PARM=SIZE=120000

To run CSASN and utilize data checking with the region size set to 120,000 words, enter an analytical sequence specification as shown below. PARM should start after column 10.

=CSASN	PARM=(CHECK,SIZE=120000)
=CSASN	PARM=(SIZE=120000,CHECK)
=CSASN	PARM='CHECK,SIZE=120000'
=CSASN	PARM='SIZE=120000,CHECK'

M7.4.3 MATERIAL INFORMATION PROCESSOR DATA

The Material Information Processor reads the standard composition specification data and the unit cell geometry specifications. It then produces the mixing table and unit cell information necessary for processing the cross sections. Table M7.4.4 outlines the input data for the Material Information Processor.

The input data for the Material Information Processor are identical to the input for CSAS1 of SCALE 3.1 and older versions of SCALE with the following exceptions:

- The analytical sequence card is considered to be part of the overall data input.
- Items 2, 3, 4, 6, and 7 from Sect. C1.6 of SCALE 3.1 and older versions of SCALE are omitted from the parameter card.
- The words END COMP are entered to signal the completion of the standard composition specification data.
- The MULTIREGION zone description data are terminated by the words END ZONE.
- If optional control parameters are entered, the words MORE DATA must precede the first optional parameter data entry.

Data position	Type of data	Data entry	Comments
1	TITLE	Enter a title	80 characters
2	Cross-section library name	HANSEN-ROACH 27GROUPNDF4 44GROUPNDF5 238GROUPNDF5 27BURNUPLIB etc.	The currently available libraries are listed in Table M4.1.1.
3	Type of calculation	INFHOMMEDIUM LATTICECELL MULTIREGION	These are the available options. See the explanation in Sect. M7.4.3.
4	Standard Composition specification data	Enter the appropriate data	Terminate this data block with END COMP. See Sect. M7.4.4.
5	Unit cell geometry specification	Enter the appropriate data (optional for INFHOMMEDIUM)	Optional for INFHOMMEDIUM. See Sect. M7.4.5 for INFHOMMEDIUM. See Sect. M7.4.6 for LATTICECELL. See Section M7.4.7 for MULTIREGION.
6	Optional parameter data	Enter the desired data	Precede this data block by MORE DATA if more parameter data are to be entered. Otherwise, omit these data entirely. See Sect. M7.4.8.

Table M7.4.4 Outline of Material Information Processor data

Outline of Material Information Processor Data (see Sect. C4.4.3 for details)

Note that the CSAS1 program is not included in SCALE beginning with the SCALE-4 release.

The Material Information Processor allows terse data input for all data except the standard composition names and the keyword entries in the optional parameter data (MORE DATA). Terse data entry requires the user to enter only as many characters as are necessary to uniquely define the data entry. However, as many characters as are specified by the user must match the name allowed by the code. For example, refer to Table M7.4.4, **Outline of Material Information Processor data**, data position 3. The available choices for the type of calculation are: INFHOMMEDIUM, LATTICECELL, and MULTIREGION. Therefore, it would be sufficient to specify I for an infinite homogeneous medium, L for LATTICECELL, and M for MULTIREGION. If it is desirable to use more characters, the user is free to do so. However, as many characters as are entered must match the name allowed by the code. For example, if INFHOMMEDIUM is to be specified, INFH is correct, but INFI is not.

WARNING: If several choices begin with the same letters, sufficient characters should be entered to uniquely define the name. For example, ASPHSQUAREP and ASPHTRIANGP are identical through the first four characters. If only ASPH is entered, the code will accept the first name whose first four characters are ASPH. This may not be the one the user intended to use.

The types of data required for the Material Information Processor are given in Table M7.4.4. The individual entries are explained in the text following the table.

- 1. TITLE...An 80-character title is required. The title is the first 80 characters of the Material Information Processor data.
- 2. CROSS-SECTION LIBRARY NAME...This item specifies the cross-section library that is to be used in the calculation. See Sect. M4, Table M4.1.1, for a discussion of the available libraries.
- 3. TYPE OF CALCULATION...The options are INFHOMMEDIUM, LATTICECELL, and MULTIREGION.

INFHOMMEDIUM is used for an infinite homogeneous medium. It provides cross sections to represent large homogeneous pieces. The cross sections are treated as if each mixture is infinite. Thus, the self-shielding calculations will not account for any geometrical effects. By default, the smallest mixture number will be used in the cell. A different mixture can be specified as described in Sect. M7.4.5 and Table M7.4.6.

LATTICECELL is used when the geometry can be described as a lattice. It is especially suited for arrays of cylindrical rods or spherical pellets. The use of LATTICECELL requires the entry of additional geometry information (unit cell specification), which is described in Sect. M7.4.6 and Table M7.4.7. When the problem consists of an array of fuel bundles or similar geometry, the cross sections are corrected for resonance self-shielding, including geometry effects. If cell-weighted cross sections are desired, an appropriate control sequence must be used (CSAS2X, for example). A flux disadvantage factor is then applied to the cross sections of the materials that are used in the unit cell.

MULTIREGION may be used to define a geometric configuration that is more complicated than that allowed by LATTICECELL. It can also be used for a system involving large geometric regions where geometry effects may be minimal. The cross sections utilized in the unit cell are corrected for resonance self-shielding, and an appropriate Dancoff factor is applied (see Sect. M7.2.4.3). If a cell-weighted mixture is generated, it is derived from homogenizing the entire MULTIREGION unit cell. The additional geometry information (Unit Cell Specification) required for a MULTIREGION problem is described in Sect. M7.4.7 and Table M7.4.8.

- 4. STANDARD COMPOSITIONS...These data are used to define the mixtures that will be used in the problem. See Sect. M7.4.4 and Table M7.4.5 for a description of the standard composition specification data. These data are required for every problem.
- 5. CELL GEOMETRY SPECIFICATION...See Sect. M7.4.5, and Table M7.4.6 for an explanation of the optional unit cell data associated with an INFHOMMEDIUM problem. See Sect. M7.4.6 and Table M7.4.7 for an explanation of the data associated with LATTICECELL problems. Section M7.4.7 and Table M7.4.8 explain the data required for a MULTIREGION problem.

6. OPTIONAL PARAMETER DATA...This option allows certain defaulted parameters to be respecified by the user. Omit these data unless they are needed. If data are to be entered, see Sect. M7.4.8 and Table M7.4.9 for assistance.

M7.4.4 STANDARD COMPOSITION SPECIFICATION DATA

The standard composition specification data are used to define mixtures that are to be utilized in the problem. These data can be considered to be a mixing table that defines mixtures in terms of standard composition specification data (available from Sect. M8.2, Table M8.2.1). The required input for the standard composition specification data varies, depending on the standard composition component name. However, every standard composition specification must include the following:

1. a standard composition component name (SC),

- 2. the mixture that contains this component (MX), and
- 3. a terminator for the standard composition specification data (enter the word END).

Enter as many standard composition specifications as necessary to define all the mixtures needed for the problem. When all the necessary mixtures have been described, enter the words END COMP to signal the completion of this type of data.

The data required to define a standard composition specification are contained in Table M7.4.5. In the column entitled "Entry Requirement," "ARBM" is used to denote entries required only for arbitrary materials, and "SOLN" is used for entries required only for solutions.

The input data for standard composition specifications are arranged with entry numbers 1 through 7 that apply to all standard composition data. Entries A1 through A7 apply only to arbitrary materials. Entries S1 and S2 apply only to solutions. Entry O1 is optional information that applies to both basic standard composition and solutions. The individual entries specified in Table M7.4.5 are explained in more detail in the text following the table.

SC STANDARD COMPOSITION COMPONENT NAME...The names of the standard composition components (the alphanumeric identifiers) may be (1) chosen from Sect. M8.2, which contains the list of elements, compounds, and alloys found in the Standard Composition Library; (2) chosen from the table of available solutions, Sect. M8.3; or (3) designated as an arbitrary material (ARBM). An error message will be printed if the user enters an invalid standard composition component name as if the composition does not exist in the specified library.

For standard compositions taken from Sect. M8.2 of the Standard Composition Library (basic standard composition), certain data such as the volume fraction or theoretical density and other engineering-type data may need to be entered. For standard compositions containing more than one isotope of an element (such as UO_2), the user is free to specify the weight percent for each isotope, such that they total 100%. See Sect. M7.5.5.1 for examples of basic standard compositions.

NUREG/CR-0200, Vol. 3, Rev. 6

Table M7.4.5 Outline of standard composition specification data

Entry number	Variable name	Type of data	Entry requirement	Comments
1	SC	Standard composition component name	Always	Enter once for each standard composition. Enter the alphanumeric description from Sect. M8.2. Additional allowed names include those beginning with ARBM for arbitrary materials and SOLN for solutions
A1	ROTH	Theoretical density of material (g/cc)	ARBM	Enter once for each standard composition component that is an arbitrary material
A2	NEL	Number of elements in the material	ARBM	Enter once for each standard composition component that is an arbitrary material
A3	IVIS	No longer used but must still be entered	ARBM	Enter once for each standard composition component that is an arbitrary material. Enter 0 or 1
A4	ICP	Compound indicator	ARBM	Enter once for each standard composition component that is an arbitrary material. Enter 1 for a compound, 0 for alloys, mixtures, etc.
A5	IRS	No longer used but must still be entered	ARBM	Enter once for each standard composition component that is an arbitrary material. Enter 0 or 1
A6	NCZA	ID number (from far right column of Table M8.2.1)	ARBM	Repeat the sequences A6 and A7 for each element or isotope in the arbitrary material before entering entry number 2. Enter the number from the far right column of Table M8.2.1 or M8.2.2. (Premixed standard compositions cannot be used in an arbitrary material definition)
A7	ATPM	Number of atoms of this element per molecule of arbitrary material	ARBM & ICP=1	Repeat the sequence A6 and A7 for each element in the arbitrary material before entering entry number 2. Do not enter a value unless ICP=1
		or Weight percent of this element in this arbitrary material	or ARBM & ICP=0	or Repeat the sequence A6 and A7 for each element in the arbitrary material before entering entry number 2. Do not enter a value unless ICP=0

Outline of standard compositions specification data (see Sect. C4.4.4 for details)

Table M7.4.5 (continued)

Entry number	Variable name	Type of data	Entry requirement	Comments
2	МХ	Mixture ID number	Always	Enter once for each standard composition component
S1	FD	Fuel density (grams of U or Pu per liter of solution)	SOLN	Enter once for a solution
S2	AML	Acid molarity of the solution	SOLN	Enter once for a solution. AML=0 if there is no acid in the solution
01	SPGR	Specific gravity of the solution	Optional	If the specific gravity (SPGR) of the solution is known, it should be entered as SPG=SPGR
	or ROTH	or Density of the basic standard composition		or if the density of a basic standard composition (ROTH) is to be entered, use DEN=ROTH
3	VF	Density multiplier	See comment column	Enter the density multiplier (density fraction, volume fraction, or a combination). Default value is 1. This item can be omitted if entries 4, 5, 6a, and 6b are also omitted. VF=0 is not allowed for SOLN or ARBM
4	ADEN	Number density (atoms/b-cm) for the nuclide	VF=0	Enter only if VF=0.0
5	TEMP	Temperature, in K	See comment column	Default value is 293 K. This entry can be omitted if entries 6a and 6b are also omitted
6a	IZA	Isotope's ZA number	VF≠0	Enter for each isotope in the standard composition component. Omit if VF=0. Entries 6a and 6b are entered in pairs until each isotope in the component is defined
бЪ	WTP	Weight percent of the isotope	VF≠0	Enter for each isotope in the standard composition component. Omit if VF=0.0. Entries 6a and 6b are entered in pairs until each isotope in the component is defined
7ª	END	Terminate a standard composition	Always	Enter once for each standard composition component. This terminates the data for a standard composition component. Enter END to terminate the component. Repeat entries 1 through 7 until all the mixtures have been defined. At least two blanks must separate entry 7 from the next entry
	END COMP	Terminate the data block	Terminus	Enter once for a problem. Enter the words END COMP when all the standard composition components have been described. At least two blanks must follow the END COMP

Outline of standard compositions specification data (continued)

^aNOTE: Entry 7 should not begin in column 1 unless a name is associated with it. At least two blanks should separate the last entry 7 from the END COMP.

NUREG/CR-0200, Vol. 3, Rev. 6

Solutions require the specification of the density of the heavy metal in the solution and the acid molarity of the solution. The alphanumeric specification of a solution starts with the four characters "SOLN." Some common fissile solutions are SOLNUO2(NO3)2, SOLNPU(NO3)4, and SOLNUO2F2. See Sect. M8.3 for a complete listing of the available solutions. Sections M7.5.5.3 and M7.5.9 contain examples of the input data for solutions.

Arbitrary materials require the user to provide all the information normally found in the Standard Composition Library. The arbitrary material option allows specifying a compound or alloy not available in the Standard Composition Library by utilizing the standard composition available in the library.

An arbitrary material name must start with the four characters "ARBM." A maximum of twelve characters is allowed for the standard composition component name. Imbedded blanks are not allowed in a standard composition component name. Section M7.5.5.2 contains input data for arbitrary materials.

An additional example of an arbitrary material specification is given below:

Consider a mixture of boral having 35 wt % B_4C , 65 wt % Al and an overall density of 2.64 g/cc. If neither BORAL nor B4C were available in the Standard Composition Library, the components BORON, C, and AL could be used as basic standard compositions to describe the boral. The necessary volume fractions would have to be determined as shown in Sect. M7.5.5.4, examples 3 and 4. By utilizing the arbitrary material option, both B_4C and Al can be described as a component of the same mixture (assume it is desired to be mixture 3), both have a density of 2.64 g/cc and the volume fractions are 0.35 for the B_4C and 0.65 for the Al. The resulting standard composition specification data do not require any calculations (see example 1, Sect. M7.5.5.5 for a similar situation) and could be entered as:

ARBMTL-B4C 2.64 2 1 1 0 5000 4 6012 1 3 0.35 END ARBMTL-AL 2.64 1 0 0 0 13027 100.0 3 0.65 END

A1. ROTH THEORETICAL DENSITY OF MATERIAL...Enter ONLY for arbitrary materials. The density of the arbitrary material is entered in units of g/cc. NOTE: ROTH can be entered for a basic standard composition as shown by entry O1.

A2. NEL NUMBER OF ELEMENTS IN THE MATERIAL...Enter ONLY for arbitrary materials. Enter the number of components from the Standard Composition Library that are to be used to define this arbitrary material. In the above example, the ARBMTL-B4C contains two components, the B and the C. Therefore, NEL is 2 for the B₄C arbitrary material. The ARBMTL-AL contains only one component, so NEL is 1 for it.

- A3. IVIS UNUSED VARIABLE...Enter ONLY for an arbitrary material. Enter 0 or 1. Previously used to indicate multiple-isotope nuclide. These data are now automatically obtained from the standard composition library. An arbitrary material may contain more than one multiple-isotope indicator.
- A4. ICP COMPOUND INDICATOR...Enter ONLY for arbitrary materials. A compound is a substance containing more than one constituent element and having properties different from those which their constituents had as elementary substances. The composition of a pure compound is perfectly definite and is always the same, regardless of the method of formation. Examples of compounds are: H₂O, B₄C, CO₂, Ca(OH)₂, C₂H₆, Fe₂S₃, Cr₂O₃, etc. ICP is 1 for a compound. ICP is 0 for alloys (stainless steel, Monel, etc.), and conglomerates or mixtures such as concrete.

In the B_4C arbitrary material example, ICP is 1; in the aluminum arbitrary material example, ICP is 0. These examples are given in the explanation of entry number 1, SC.

- A5. IRS UNUSED VARIABLE...Enter ONLY for arbitrary materials. Enter 0 or 1. Previously used to indicate a resonance nuclide. These data are now automatically obtained from the cross-section library. An arbitrary material may contain more than one resonance nuclide.
- A6. NCZA ID NUMBER... Enter ONLY for arbitrary materials. This is the "ZA" ID number for the element or isotope. Usually, NCZA=A+1000*Z, where A is the atomic mass or weight of the nuclide, and Z is the atomic number.

REPEAT THE SEQUENCE NCZA and ATPM (A6 and A7) FOR EVERY ELEMENT IN THE ARBITRARY MATERIAL.

A7. ATPM Enter ONLY for arbitrary materials. Repeat the sequence A6 and A7 for every element in the arbitrary material before going on to entry 2.

If ICP is 1 (entry A4) enter the NUMBER OF ATOMS PER MOLECULE. If the arbitrary material is a compound (entry A4, ICP is 1), enter the number of atoms of this element per molecule of arbitrary material.

If ICP is 0 (entry A4) enter the WEIGHT PERCENT OF THIS ELEMENT IN THE ARBITRARY MATERIAL. If the arbitrary material is not a compound (entry A4, ICP is 0), enter the weight percent of this element in the arbitrary material. If ICP is 0, the sum of all the weight percents for the arbitrary material MUST be 100.0.

2. MX MIXTURE ID NUMBER...A mixture number is required on every standard composition specification. It defines the mixture that contains the material defined by the standard composition specification data. The mixture numbers are utilized in the Unit Cell Specification for INFHOMMEDIUM, LATTICECELL, or MULTIREGION problems and the KENO V.a geometry data.

- S1. FD FUEL DENSITY...Enter ONLY for a solution. The standard composition component name for a solution starts with the four characters "SOLN." The available solution names are listed in Sect. M8.3. Enter the fuel density in units of grams of heavy metal (fissile material) per liter of solution.
- S2. AML ACID MOLARITY...Enter ONLY for a solution. If there is no acid in the solution, enter zero. If acid is present in the solution, enter the molarity of the solution.
- O1. SPGR OPTIONAL DATA...Does NOT apply to ARBITRARY MATERIALS. These optional data can be entered for a solution or for a basic standard composition using a keyword in the form: SPG=SPGR, DEN=SPGR,DEN=ROTH, or SPG=ROTH. The keywords SPG= and DEN= are interchangeable. SPGR is the specific gravity of the fuel solution. If the standard composition name begins with SOLN and the specific gravity of the solution is known, it should be entered. Otherwise the code has to interpolate in a table to obtain a specific gravity to use in the calculation. ROTH is the specified density of the standard composition in g/cc and can be entered if desired. It should always be entered for materials that contain enriched multi-isotopic nuclides. The interaction between ROTH, the density of the standard composition, and VF (entry 3) is demonstrated in Sect. M7.5.5.

VOLUME FRACTION...The default value of the volume fraction is 1.0. It can be omitted if entries 4, 5, 6a, and 6b are also omitted. The volume fraction can be interpreted as:

a. the volume fraction of this standard composition component in the mixture,

- b. the density of the standard composition component in this application, divided by the theoretical density listed in the Standard Composition Library (Sect. M8.2), or
- c. the product of (a) and (b).

Section M7.5.5 discusses the interaction between ROTH and VF. For example, assume a homogenized mixture representing the water moderator and Zircaloy cladding around a fuel pin is to be described. If the volume of the clad is 5.32 cc and the volume of the water moderator is 44.68 cc, the mixture can be described using H_2O with a volume fraction of 0.8936 [i.e., 44.68/(44.68+5.32)] and ZIRCALOY with a volume fraction of 0.1064 [i.e., 5.32/(44.68+5.32)].

For UO₂ fuel at 95% theoretical density, the volume fraction is 0.95. For the coolant water in an operating PWR, the volume fraction might typically be 0.71.

To describe a mixed-oxide fuel pin with a density of 10.5 g/cc, that is 17.8 wt % PuO₂ and 82.2 wt % UO₂, two standard composition specifications must be entered: one for the PuO₂ component and one for the UO₂ component. From the Standard Composition Library, Table M8.2.1, the theoretical density of the PuO₂ is 11.46 g/cc, and that of the UO₂ is 10.96 g/cc. Therefore, the volume fraction for the PuO₂ is 0.1631 (i.e.,

M7.4.19

NUREG/CR-0200, Vol. 3, Rev. 6

3. VF

0.178 * 10.50/11.46), and the volume fraction for the UO₂ is 0.7875 (i.e., 0.822 * 10.50/10.96).

Occasionally, a special mixture will be desired for which the determination of the component volume fractions will not be so straightforward. Consider a mixture of boral having 35 wt % B₄C, 65 wt % Al, and an overall density of 2.64 g/cc. Assume that neither BORAL nor B₄C is in the Standard Composition Library. The volume fractions corresponding to BORON, C, and AL may be computed as illustrated in Sect. M7.5.5.4, examples 3 and 4. Note that the calculation is complicated by the fact that B₄C is a compound and boron has two isotopes. It might be simpler to enter B₄C and Al as arbitrary materials as illustrated in example 1 of Sect. M7.5.5.5. Examples 1 and 2 of Sect. M7.5.5.4 illustrate the use of B₄C and aluminum to describe a boral mixture. If the volume fraction is set to 0.0, the user can enter the number density for the nuclide (in atoms per barn-cm) for entry 4. Number densities cannot be entered for standard compositions that represent multiple nuclides.

4. ADEN NUMBER DENSITY...Enter a value for the number density ONLY if the volume fraction (VF, entry 3) was entered as zero. The number density is entered in units of atoms per barn-cm.

5. TEMP TEMPERATURE...The default value of the temperature is 293 K. The temperature can be omitted if entries 6a and 6b are also omitted.

The temperature is used for Doppler broadening and/or the selection of the proper set of thermal scattering data.

The resonance self-shielding calculation performed by NITAWL uses the Nordheim Integral Method and can account for Doppler broadening of the resonances at any specified temperature. If this material is known to contain a resonance nuclide, the user should enter the temperature of the material.

For each of the light nuclides (A \leq 20 a.m.u.), the master cross-section library may contain one or more sets of thermal-scattering data, each set corresponding to a different temperature. Section M4.2 lists the available sets of data for the SCALE cross-section libraries. Scattering matrices for nuclides in media at elevated temperatures are generally fuller than those at lower temperatures. If multiple sets of thermal-scattering data are available, the user should enter the temperature of the material.

6a. IZA ISOTOPE ZA NUMBER...Enter a value for each isotope in the standard composition component, entry 1. Do not enter a value if the volume fraction, VF, is zero (entry 3).

The ZA number of the isotope is entered if the user wishes to specify the isotopic distribution. This is done by entering 6a and 6b for each isotope until all the desired isotopes have been described. The "ZA" ID number is (A+1000*Z), where A is the atomic mass or weight of the isotope, and Z is the atomic number.

NUREG/CR-0200, Vol. 3, Rev. 6

Entries 6a and 6b can be skipped if the default values listed in the isotopic distribution, Sect. M8.2, are acceptable.

6b. WTP WEIGHT PERCENT OF THE ISOTOPE...Do not enter a value if the volume fraction, VF, entry 3, is zero. If entry 6a is entered, a value must also be entered for 6b. The weight percent of the isotope is the percent of this isotope in the element.

The user need not input entries 6a and 6b for each isotope listed for the element in Sect. M8.2. The only requirement is that the sum of entries 6b for the element must sum to 100.0. Thus, uranium could be specified as 92235 3.2 92238 96.8 to represent 3.2% enriched uranium and ignore the 234 and 236 isotopes. However, 92235 3.0 and 92238 96.8 would not be correct because the 3.0 and 96.8 do not sum to 100.0. 92235 3.0 92234 0.2 92238 96.8 would be correct.

REPEAT THE SEQUENCE 6a and 6b until all the isotopes of the element have been defined as desired.

- 7. END The word END is entered to terminate the input data for a standard composition component. This END can have a label associated with it that can be as long as 12 characters. The label is optional, and if entered must be preceded from the END by a single blank. At least two blanks must separate item 7 from the next data entry.
- END COMP The words END COMP are entered only once for a problem. Their purpose is to signal the end of all the standard composition specification data that will be used in the problem. At least two blanks should separate entry 7 from the END COMP. Note that COMP is a label associated with this END. This label can be as long as 12 characters, but the first four characters <u>must</u> be COMP.

M7.4.5 OPTIONAL UNIT CELL SPECIFICATION FOR INFINITE HOMOGENEOUS PROBLEMS

This section describes the unit cell data that can be entered for an INFHOMMEDIUM problem (data position 3 of Table M7.4.4). By default, the smallest mixture number is the mixture that will be used for the cell in XSDRNPM. In order to calculate the eigenvalue of the system, the mixture should contain fissionable material. Unit cell data are required for an infinite homogeneous medium problem ONLY if XSDRNPM is utilized by the control sequence and a mixture number other than the smallest mixture number is to be used in the cell. Control sequences that end in X, (CSAS1X, etc.) utilize XSDRNPM. Additional information is available in Sect. M7.5.12.

The data required to specify the unit cell for an INFHOMMEDIUM problem are given in Table M7.4.6. The individual entries are explained in the text following the table.

NUREG/CR-0200, Vol. 3, Rev. 6

Entry No.	Variable name	Type of data	Data entry	Comments
1	NAME	Keyword	CELLMIX	Initiates reading cell data for INFHOMMEDIUM.
2	MFUEL	Mixture number in the cell	Mixture number	Specifies the mixture number to be used in the cell. Defaults to the smallest mixture number entered in the Standard Composition Data.

Table M7.4.6 Optional unit cell specification for INFHOMMEDIUM problems

- 1. NAME KEYWORD...The keyword CELLMIX is entered to indicate that unit cell data will be entered. If this entry is entered, entry 2 must also be entered. These data can be entered ONLY if entry 3, the Type of Calculation from Table M7.4.4, is entered as INFHOMMEDIUM.
- 2. MFUEL MIXTURE NUMBER...The mixture number that defines the mixture to be used in the cell. The default value is the smallest mixture number specified in the standard composition specification data. If either item 1 or 2 is entered, the other must also be entered.

To enter the above data, enter the keyword CELLMIX, one or more blanks, and the desired mixture number, MFUEL, as shown below.

CELLMIX MFUEL

To specify mixture 5 to be used in the cell, enter the following data.

CELLMIX 5

WARNING: If unit cell data are to be entered for an infinite homogeneous problem, the word CELLMIX must be spelled correctly. If it is misspelled, the code will not give an error message and will attempt to use the smallest mixture number. The input data will get out of phase for CSAS and SAS sequences that expect to read data after the unit cell specification.

M7.4.6 UNIT CELL SPECIFICATION FOR LATTICECELL PROBLEMS

This section describes the unit cell data that must be entered for a LATTICECELL problem (data position 3 of Table M7.4.4). Additional information is available in Sects. M7.5.4, M7.5.4.2, M7.5.6.2, and M7.5.8.2. The LATTICECELL description is especially suited to large arrays of identical cells. The code is limited to a single unit cell description for each problem. The unit cell data are used to provide the lump shape and dimensions for resonance cross-section processing, to provide lattice corrections for cross-section processing, and to provide data used by XSDRNPM to create cell-weighted cross sections. Thus the unit cell specification plays a major role in providing problem-dependent cross sections. The configuration of the unit

cell is determined by the specified "type of lattice." The unit cells are limited to infinitely long cylindrical rods in a square or triangular lattice, spheres in a cubic or triangular lattice, a symmetric array of slabs, or an asymmetric array of slabs. Two distinct types of cells ("Regular" and "Annular") are available to be used in a LATTICECELL problem. "Regular" cells allow a concentric spherical, cylindrical, or symmetric slab configuration constrained to a central fuel region surrounded by an optional gap, an optional clad, and an external moderator. The outer boundary of the cell is limited to provide an array having a square or triangular pitch. "Annular" cells allow a concentric spherical, cylindrical, or asymmetric slab configuration constrained to a central (second) moderator region surrounded by a fuel region having an optional gap and optional clad on each side of the fuel. The gap, if present, is identical on both sides of the fuel. The clad, if present, is identical in dimension and composition on both sides of the fuel. The clad, if present, is identical in dimension and composition on both sides of the fuel. The outer region of the cell is filled with an external (first) moderator. The outer boundary of the cell is limited to provide an array having a square or triangular pitch.

Regular cells are: SQUAREPITCH, TRIANGPITCH, SPHSQUAREP, SPHTRIANGP, and SYMMSLABCELL.

Annular cells are: ASQUAREPITCH, ASQP, ATRIANGPITCH, ATRP, ASPHSQUAREP, ASSP, ASPHTRIANGP, ASTP, and ASYMSLABCELL

The unit cell data are utilized by the code to define the geometric and resonance self-shielding corrections that will be applied to the cross sections. Cell-weighted cross sections are created only if XSDRNPM is invoked by executing a control sequence ending in X, (CSAS1X, CSAS2X, etc.). The cell-weighted cross sections have a flux disadvantage factor applied to them. Because this weighting is applied to each mixture used in the cell, these cell-weighted mixtures should not be used in the geometry description of a subsequent module. However, the cell-weighted mixture that is created is always assigned a mixture number of 500 and can be used in a subsequent module.

The unit cell geometry data required to specify a LATTICECELL problem are given in Table M7.4.7. The individual entries are explained in the text accompanying the table.

1. CTP TYPE OF LATTICE...This defines the type of lattice or array configuration. Any one of the following alphanumeric descriptions may be used. Note that the alphanumeric description must be separated from subsequent data entries by one or more blanks. Figures M7.4.1 through M7.4.6 are used to illustrate the type of lattice configurations available in a LATTICECELL problem. The fuel region is labeled F; the gap, G; the clad, C; and the moderator, M. If two moderators are present, M1 is the first moderator, and M2 is the second moderator. Both "regular" and "annular" unit cells are available. The arrangement of the materials in the unit cell is strictly constrained. Regular cells are limited to a minimum of two regions and a maximum of four regions. The innermost region must be fuel, which is surrounded by an optional gap and/or optional clad. The outer region is moderator. Annular cells are limited to a minimum of three regions. The innermost region must be the second moderator. The annular fuel region is outside the second moderator. If a clad is present, it must be identical in thickness and composition on both sides of the fuel. If a gap is present, it is the same thickness on both sides of the fuel. If the first and second moderators are the same material at the same density and temperature, and do not contain resonance nuclides, the same mixture number can be used for both moderators. Otherwise, different mixture numbers must be used for the two moderators.

Regular and annular cell configurations are specified as shown below.

Regular Cells

SQUAREPITCH is used for an array of cylinders arranged in a square lattice, as shown in Fig. M7.4.1. The clad and/or gap can be omitted.

TRIANGPITCH is used for an array of cylinders arranged in a triangular-pitch lattice as shown in Fig. M7.4.2. The clad and/or gap can be omitted.

SPHSQUAREP is used for an array of spheres arranged in a square-pitch lattice. A cross-section view through a cell is represented by Fig. M7.4.1. The clad and/or gap can be omitted.

SPHTRIANGP is used for an array of spheres arranged in a triangular-pitch (dodecahedral) lattice. A cross-section view through a cell is represented by Fig. M7.4.2. The clad and/or gap can be omitted.

SYMMSLABCELL is used for an infinite array of symmetric slab cells, as shown in Fig. M7.4.3. The clad and/or gap can be omitted.

Annular Cells

ASQUAREPITCH or ASQP is used for annular cylindrical rods in a square-pitch lattice as shown in Fig. M7.4.4. The gap on both sides of the fuel must be identical, as must the clad. The clad and/or gap can be omitted.

ATRIANGPITCH or ATRP is used for annular cylindrical rods in a triangular-pitch lattice as shown in Fig. M7.4.5. The gap on both sides of the fuel must be identical, as must the clad. The clad and/or gap can be omitted.

ASPHSQUAREP or ASSP is used for spherical shells in a square-pitch lattice as shown in Fig. M7.4.4. The gap on both sides of the fuel must be identical, as must the clad. The clad and/or gap can be omitted.

ASPHTRIANGP or ASTP is used for spherical shells in a triangular-pitch (dodecahedral) lattice as shown in Fig. M7.4.5. The gap on both sides of the fuel must be identical, as must the clad. The clad and/or gap can be omitted.

ASYMSLABCELL is used for a periodic, but asymmetric, array of slabs as shown in Fig. M7.4.6. The gap on both sides of the fuel must be identical, as must the clad. The clad and/or gap can be omitted.

NUREG/CR-0200, Vol. 3, Rev. 6

Entry	Variable	Type of data	Entry Type of data requirement		Commente
			requirement	Data chu y	Conniens
1	СТР	Type of lattice	Always	SQUAREPITCH ASQP TRIANGPITCH ATRIANGPITCH ATRIANGPITCH ATRP SPHSQUAREP ASPHSQUAREP ASPHSQUAREP ASPHTRIANGP ASPHTRIANGP ASTP SYMMSLABCELL	Describes the type of lattice or array configuration. Use for cylindrical rods in a square pitch. Use for annular cylindrical rods in a square pitch. Use for annular cylindrical rods in a square pitch. Use for cylindrical rods in a triangular pitch. Use for annular cylindrical rods in a triangular pitch. Use for annular cylindrical rods in a triangular pitch. Use for spherical pellets in a cubic lattice. Use for annular spherical pellets in a cubic lattice. Use for annular spherical pellets in a cubic lattice. Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice. Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice. Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice. Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice. Use for spherical pellets in a bi-centered or face centered hexagonal close-packed lattice. Use for a symmetric array of slabs. Use for a symmetric array of slabs.
2	рітсн	Array pitch (cm)	Always	Appropriate dimension	The center-to-center spacing (cm) between fuel lumps. For asymmetric slab cell, enter the distance from the center of one moderator to the center of the other moderator (cm).
3	FUELOD	Outside dimension of fuel (cm)	Always	Appropriate dimension	Outside diameter of fuel (cm), or the thickness of the fuel in a slab.
4	MFUEL	Fuel mixture number	Always	Mixture number	Mixture number representing the fuel.
5	MMOD	Moderator mixture number	Always	Mixture number	Mixture number representing the moderator
6	MMOD2	2nd moderator mixture number	Annular cell	Mixture number	Mixture number representing the second moderator.
7	TKMOD2	2nd moderator thickness	ASYMSLABCELL	Thickness	Thickness of the second moderator (cm) for ASYMSLABCELL.
		or 2nd moderator diameter (cm)	or annular cell	or Diameter	or Diameter of inner moderator (cm) for other annular cells.
8	CLADOD	Outside diameter of clad (cm)	If clad	Clad OD	OMIT IF NO CLAD. For a slab, CLADOD is the sum of thickness of the fuel, gap, and clad.
9	MCLAD	Clad mixture number	If clad	Mixture number	OMIT IF NO CLAD. Mixture number representing the clad.
10	CLADID	Inside diameter of clad (cm)	If gap	Clad ID	OMIT IF NO GAP between the fuel and clad.
11	MGAP	Gap mixture number	If gap	Mixture number	OMIT IF NO GAP between the fuel and clad. A mixture number of zero is often used.
12	END	Terminate LATTICECELL data	Always	END	Terminate the LATTICECELL input data by entering the word END. Do not start in column 1. At least two blanks must follow entry number 12.

Table M7.4.7 Unit cell specification for LATTICECELL problems

Figure M7.4.1 Arrangement of materials in a SQUAREPITCH and SPHSQUAREP unit cell

Figure M7.4.2 Arrangement of materials in a TRIANGPITCH and SPHTRIANGP unit cell

Figure M7.4.3 Arrangement of materials in a SYMMSLABCELL unit cell having reflected left and right boundary conditions

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M7.4.4 Arrangement of materials in an ASQUAREPITCH and ASPHSQUAREP unit cell

Figure M7.4.5 Arrangement of materials in an ATRIANGPITCH or ASPHTRIANGP unit cell

ORNL-DWG 88M-8706A/dgc

Figure M7.4.6 Arrangement of materials in an ASYMSLABCELL unit cell

NUREG/CR-0200, Vol. 3, Rev. 6

- 2. PITCH ARRAY PITCH...This is the center-to-center spacing between the fuel lumps (rods, pellets, or slabs) in cm, as shown in Figs. M7.4.1 through M7.4.6. For an ASYMSLABCELL, enter the distance from the center of one moderator to the center of the other moderator. (See Fig. M7.4.6.)
- 3. FUELOD OUTSIDE DIMENSION OF FUEL...This is the outside diameter of the fuel in cm, as shown in Figs. M7.4.1 through M7.4.6. In slab geometry, enter the thickness of the fuel (see Figs. M7.4.1 through M7.4.6).
- 4. MFUEL FUEL MIXTURE NUMBER...This is the mixture number representing the fuel (F in Figs. M7.4.1 through M7.4.6).
- 5. MMOD MODERATOR MIXTURE NUMBER...This is the mixture number representing the moderator (M or M1 in Figs. M7.4.1 through M7.4.6).
- 6. MMOD2 SECOND MODERATOR MIXTURE NUMBER...Enter ONLY for annular cells. This is the mixture number representing the second moderator (M2 in Figs. M7.4.4 through M7.4.6).
- 7. TKMOD2 SECOND MODERATOR THICKNESS...Enter ONLY for annular cells. This is the thickness or diameter of the second moderator in cm (see Figs. M7.4.4 through M7.4.6).
- 8. CLADOD OUTSIDE DIAMETER OF CLAD...Enter ONLY if a clad is present. Enter the diameter of the clad in cm. For a slab, CLADOD is the sum of the fuel thickness, twice the gap thickness, and twice the clad thickness. See Figs. M7.4.1 through M7.4.6.
- 9. MCLAD CLAD MIXTURE NUMBER...Enter ONLY if a clad is present. Enter the mixture number that represents the clad (C in Figs. M7.4.1 through M7.4.6).
- 10. CLADID INSIDE DIAMETER OF CLAD...Enter ONLY if a gap is present between the fuel and the clad. Omit if there is no gap. If a gap is present, enter the inside diameter of the clad in cm. This corresponds to the outside diameter of the gap. In slab geometry, CLADID is the sum of the fuel thickness and twice the gap thickness. See Figs. M7.4.1 through M7.4.6.
- 11. MGAP GAP MIXTURE NUMBER...Enter ONLY if a gap is present between the fuel and the clad. Omit if there is no gap. Enter the mixture number representing the gap (G in Figs. M7.4.1 through M7.4.6). Zero is often used to represent a void.
- 12. END The word END is entered to terminate the LATTICECELL data. An optional label can be associated with this END. The label can be as many as 12 characters long and is separated from the END by a single blank. At least two blanks must follow entry number 12.

M7.4.7 UNIT CELL SPECIFICATION FOR MULTIREGION PROBLEMS

These data are entered only if the problem is defined as a MULTIREGION problem. They describe the additional geometry data that are required for a MULTIREGION problem (data position 3 of Table M7.4.4). A MULTIREGION problem can be used to define a geometric arrangement that is more complicated than is allowed by a LATTICECELL. It can also be used for large geometric regions where the geometry effects for the cross sections are minimal. Additional information is available in Sects. M7.5.4, M7.5.4.3, M7.5.6.3, and M7.5.8.3. BE FULLY AWARE THAT CROSS SECTIONS GENERATED USING MULTIREGION IGNORE THE LATTICE GEOMETRY EFFECTS IN PROCESSING THE RESONANCE CORRECTIONS.

The additional data required for a MULTIREGION problem are given in Table M7.4.8 and explained in the text following the table.

1. CS TYPE OF GEOMETRY...The type of geometry must always be specified for a MULTIREGION problem. The cross-section corrections do not account for lattice effects. The available geometry options are listed below.

SLAB...This is used to describe a slab geometry.

CYLINDRICAL...This is used to describe cylindrical geometry."

SPHERICAL...This is used to describe spherical geometry.

- BUCKLEDSLAB...This is used for slab geometry with a buckling correction for the two transverse directions.
- BUCKLEDCYL...This is used for cylindrical geometry with a buckling correction in the axial direction.
- 2. BR RIGHT BOUNDARY CONDITION...This is defaulted to vacuum. A value for BR MUST be entered for BUCKLEDSLAB and BUCKLEDCYL, but is optional for SLAB, CYLINDRICAL, or SPHERICAL. The available options and their qualifications are listed below:

VACUUM...This imposes a vacuum at the boundary of the system.

- REFLECTED...This imposes mirror image reflection at the boundary. Do not use for CYLINDRICAL or SPHERICAL.
- PERIODIC...This imposes periodic reflection at the boundary. Do not use for CYLINDRICAL or SPHERICAL.

WHITE...This imposes isotropic return at the boundary.

Entry No.	Variable name	Type of data	Entry requirement	Data entry	Comments
1	CS	Type of geometry	Always		Describes the type of geometry. The options are listed
				SLAB CYLINDRICAL SPHERICAL BUCKLEDSLAB BUCKLEDCYL	below. Use for slab geometry. Use for cylindrical geometry. Use for spherical geometry. Use for slab geometry with a buckling correction for the two transverse directions. Use for cylindrical geometry with a buckling correction in the axial direction.
2	BR	Right/outside boundary condition	Required for BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	VACUUM REFLECTED PERIODIC WHITE	This provides a nonreturn condition at the boundary. Do not use for cylindrical or spherical. Do not use for cylindrical or spherical. This provides isotopic return at the boundary. Default is VACUUM.
3	BL	Left/inside boundary condition	Required for BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	VACUUM REFLECTED PERIODIC WHITE	This provides a non-return condition at the boundary. Recommended for cylindrical or spherical. Do not use for cylindrical or spherical. This provides isotropic return at the boundary. Default is REFLECTED.
4	ORGN	Location of left boundary on the x-axis (cm)	BUCKLEDSLAB & BUCKLEDCYL Optional for other geometries	Appropriate dimension	Default is 0.0. Should not be changed for cylindrical or spherical geometry. A value must be entered if subsequent data are to be entered.
5	DY	Buckling beight (cm)	BUCKLEDSLAB & BUCKLEDCYL	Appropriate dimension	OMIT FOR SLAB, CYLINDRICAL, and SPHERICAL. This corresponds to one of the transverse dimensions of an actual 3-D slab assembly or to the length of a finite cylinder.
6	DZ	Buckling depth (cm)	BUCKLEDSLAB	Appropriate dimension	OMIT UNLESS BUCKLEDSLAB WAS SPECIFIED. This is the buckling depth corresponding to the second transverse dimension of a 3-D slab assembly.
7	END	End geometry parameters	Always	END	Enter the word END. Do not start in column 1. At least two blanks must separate entry 7 from the first entry 8.
8	MXZ	Mixture number in the zone	Always	Mixture number	Repeat entry numbers 8-10 until all zones are defined. Enter the mixture number for this zone.
9	RZ ·	Outside radius of the zone (cm)	Always	Appropriate dimension	Repeat entry numbers 8-10 until all zones are defined. Enter the outside dimension of the zone (cm).
10	XMOD	External moderator index	Optional	NOEXTERMOD ONEEXTERMOD TWOEXTERMOD	Repeat entry numbers 8-10 until all zones are defined. Entry 10 is optional and can be omitted. If it is omitted, repeat entry numbers 8 and 9 until all zones are defined. No moderating materials in the adjacent zones. A moderating material is present in one adjacent zone. Moderating materials are present in two adjacent zones.
	END ZONE	Terminate zone data		END ZONE	Enter when all zones have been defined by repeating entry numbers 8 through 10 for each zone. At least two blanks must follow this entry.

Table M7.4.8 Geometry specification for MULTIREGION problems

• ----

NUREG/CR-0200, Vol. 3, Rev. 6

3. BL LEFT BOUNDARY CONDITION...This is defaulted to reflected. A value for BL MUST be entered for BUCKLEDSLAB, but is optional for SLAB, CYLINDRICAL, or SPHERICAL. The available options and their qualifications are listed below:

VACUUM...This imposes a vacuum at the boundary of the system.

- REFLECTED...This imposes mirror image reflection at the boundary. For CYLINDRICAL or SPHERICAL, this is the only valid boundary condition because the left boundary corresponds to the centerline.
- PERIODIC...This imposes periodic reflection at the boundary.

WHITE...This imposes isotropic return at the boundary.

- 4. ORGN LOCATION OF LEFT BOUNDARY ON THE ORIGIN...The default value of ORGN is 0.0. This is the only value allowed for CYLINDRICAL or SPHERICAL geometry. Enter the location of the left boundary on the x-axis perpendicular to the slab (in cm).
- 5. DY BUCKLING HEIGHT...Enter ONLY for BUCKLEDSLAB or BUCKLEDCYL. This is the buckling height in cm. It corresponds to one of the transverse dimensions of an actual 3-D slab assembly or the length of a finite cylinder.
- 6. DZ BUCKLING DEPTH...Enter ONLY for BUCKLEDSLAB. This is the buckling width in cm. It corresponds to the second transverse dimension of an actual 3-D slab assembly.
- 7. END The word END is entered to terminate these data before entering the zone description data. It must not be entered in columns 1 through 3 and at least two blanks must separate it from the zone description. A label can be associated with this END. The label can be a maximum of 12 characters and is separated from the END by a single blank. At least two blanks must follow entry number 7.

The zone description data are entered at this point. Entries 8, 9, and 10 are entered for each zone, and the sequence is repeated until all the desired zones have been described. To terminate the data, enter the words END ZONE.

- 8. MXZ MIXTURE NUMBER IN THE ZONE...Enter the mixture number of the material that is present in the zone. Enter a zero for a void. Repeat the sequence of entries 8 through 10 for each zone.
- 9. RZ OUTSIDE RADIUS OF THE ZONE...Enter the outside dimension of the zone in cm. In slab geometry, RZ is the location of the zone's right boundary on the x-axis. Repeat the sequence of entries 8 through 10 for each zone.

- 10. XMOD Optional EXTERNAL MODERATOR INDEX...This optional entry describes the conditions existing in the zones adjacent to the present zone. Appropriate conditions are provided by default. The available options are listed below:
 - NOEXTERMOD...This means there are no moderating materials between this zone and either boundary.
 - ONEEXTERMOD...This means one of the zones between this zone and one of the boundaries contains a material.
 - TWOEXTERMOD...This indicates that at least one zone on either side of this zone contains a material.

CAUTION: User-provided entries do not always supersede the default values.

(1) For SLAB geometry, user-supplied values will be used everywhere except zone 1. If the left boundary is reflected, the default value of ONEEXTERMOD will be used unless NOEXTERMOD is specified.

(2) For SPHERICAL and CYLINDRICAL geometry, default values will be used for all zones unless NOEXTERMOD is specified. NOEXTERMOD allows the user to "turn off" geometric corrections.

Repeat the sequence of entries 8 and 9 or 8 through 10 for each zone. When all the zones have been described, enter the words END ZONE.

END ZONE is used to terminate the MULTIREGION zone data. Enter the words END ZONE when all the zones have been described. Note that ZONE is a label associated with this END. This label can be as long as 12 characters, but the first four characters <u>must</u> be ZONE. At least two blanks must follow this entry.

M7.4.8 OPTIONAL PARAMETER DATA

Most of the parameter data for the Material Information Processor are determined by the code and cannot be adjusted. However, certain parameters can be altered. If the default parameters are acceptable, this section of input data should be omitted in its entirety. Nondefault values for one or more of the parameters can be specified by entering the words MORE DATA followed by the desired keyworded parameters and their associated values. One or more of the parameters can be entered in any order. Default values are used for parameters that are not entered. Each parameter is entered by spelling its name, followed immediately by an equal sign and the value to be entered. There should not be a blank between the parameter name and the equal sign. Each parameter specification must be separated from the rest by at least one blank. For example:

MORE DATA ISN=16 EPS=0.00008 END

would result in using an S16 angular quadrature set and tightening the convergence criteria to 0.00008 in the XSDRNPM calculation.

Table M7.4.9 describes the optional parameters that can be entered as data and the code or codes where the parameters apply. A description of each entry is given.

- 1. MORE DATA...These words, followed by one or more blanks, are entered ONLY if optional parameter data are to be entered. They must precede all other optional parameter data. Entries 2 through 28 can be entered in any order.
- 2. ISN ORDER OF ANGULAR QUADRATURE FOR XSDRNPM...Quadrature sets are geometry-dependent quantities that are defaulted to order 8 by the Material Information Processor. See Sects. M7.2.5.7 and M7.5.7 for a more detailed explanation.
- 3. SZF SPATIAL MESH SIZE FACTOR FOR XSDRNPM...The size of the largest mesh interval can be adjusted by entering a value for SZF. The default value is 1.0. A value between zero and 1.0 yields a finer mesh; a value greater than 1.0 yields a coarser mesh. See Sects. M7.2.5.6 and M7.5.7 for more details. If SZF ≤0, the user specifies the number of mesh intervals in each zone immediately following the MORE DATA block. If SZF = 0, the interval spacing is generated as described in M7.2.5.6, while if SZF <0 the intervals are equally spaced intervals in each zone.
- 4. IIM MAXIMUM NUMBER OF INNER ITERATIONS FOR XSDRNPM...This is the maximum number of inner iterations to be used in the XSDRNPM calculation. The default value is 20. See Sect. M7.5.7 for a more detailed explanation.
- 5. ICM MAXIMUM NUMBER OF OUTER ITERATIONS FOR XSDRNPM...This is the maximum number of outer iterations to be used in the XSDRNPM calculation. The default value is 25. If the calculation reaches the outer iteration limit, a larger value should be used. See Sect. M7.5.7 for a more detailed explanation.
- 6. EPS OVERALL CONVERGENCE CRITERIA FOR XSDRNPM...This is used by XSDRNPM after each outer iteration to determine if the problem has converged. The default value of EPS is 0.0001. A value less than 0.0001 tightens the convergence criteria; a larger value loosens the convergence criteria. See Sects. M7.2.5.8 and M7.5.7 for additional information.
- 7. PTC POINTWISE CONVERGENCE CRITERIA FOR XSDRNPM...This is the point flux convergence criteria used by XSDRNPM to determine if convergence has been achieved after an inner iteration. The default value is 0.00001. A smaller value tightens convergence; a larger value loosens it. See Sects. M7.2.5.8 and M7.5.7 for a more detailed explanation.
- 8. BKL BUCKLING FACTOR FOR XSDRNPM...A buckling factor should be used ONLY for a MULTIREGION BUCKLEDSLAB or BUCKLEDCYL problem. Because cylinders are assumed to be infinitely long and slabs are assumed to be infinite in both transverse directions, the analytic sequence may tend to overestimate the total flux for a finite system. A buckling correction can be used to approximate the leakage from the system in the transverse direction(s). The extrapolation distance factor, BKL, is defaulted to 1.420892. See Sects. M7.2.5.4 and M7.5.7 for additional details.

Entry No.	Keyword name	Type of data	Applicable module	Comments
1	MORE DATA	Input flag		This signals that optional parameter data will be entered. Enter only those parameters you wish to change.
2	ISN=	Order of angular quadrature	XSDRNPM	The default value is 8. This allows using another value.
3	SZF=	Spatial mesh size factor	XSDRNPM	The default value is 1.0. 0 <szf<1.0 a="" finer="" gives="" mesh.<br="">SZF>1.0 gives a coarser mesh. SZF ≤ user specifies the number of mesh intervals in each zone.</szf<1.0>
4	IIM=	Max. number of inner iterations	XSDRNPM	The default value is 20. This allows using another value.
5	ICM=	Max. number of outer iterations	XSDRNPM	The default value is 25. This allows using another value.
6	EPS=	Overall convergence criteria	XSDRNPM	The default value is 0.0001. This allows using another value.
7	PTC=	Point convergence criteria	XSDRNPM	The default value is 0.00001. This allows using another value.
8	BKL=	Buckling factor	XSDRNPM	The default value is 1.420892. Use ONLY for a MULTIREGION problem that specifies BUCKLEDSLAB or BUCKLEDCYL.
9	IUS=	Upscatter scaling factor	XSDRNPM	The default value is zero. IUS=0 doesn't utilize upscatter scaling. IUS=1 uses upscatter scaling to accelerate the solution and/or speed convergence.
10	RES=	Resonance data	BONAMI NITAWL	Enter the mixture number, geometry type (SLAB, CYLINDER, SPHERE) and the thickness of the slab or radius of the sphere or cylinder, in cm. Optionally enter the inner radius (cm) to specify an annular cylinder or sphere.
11	DAN(mm)=	Dancoff factor for the specified mixture	BONAMI NITAWL	Enter the mixture number, to which the Dancoff factor applies, mm, inside the parentheses; enter the Dancoff factor after the equal sign.
				Repeat entries 10 and 11 for all resonance mixtures used in the problem that are not treated in the LATTICECELL or MULTIREGION description.
12	BAL=	Key to print balance tables	XSDRNPM	The default value is FINE. BAL=NONE suppresses printing the balance table. BAL=ALL prints all balance tables. BAL=FINE prints only the fine-group balance tables.

Table M7.4.9 Optional parameter data

Entry No.	Keyword name	Type of data	Applicable module	Comments
13	DY=	First transverse dimension	XSDRNPM	The first transverse dimension, in cm, used in a buckling correction to calculate leakage normal to the principal calculation direction (i.e., the height of a slab or a cylinder).
14	DZ=	Second transverse dimension	XSDRNPM	The second transverse dimension, in cm, used for a buckling correction (i.e., the width of a slab).
15	COF=	Diffusion coefficient option for transverse leakage correction	XSDRNPM	The default is 0. See Sect. F3.5, 3\$ array, variable IPN.
16	FRD=	Unit from which fluxes will be read	XSDRNPM	Enter the unit number from which the flux guess for XSDRNPM will be read.
17	FWR=	Unit on which fluxes will be written	XSDRNPM	Enter the unit number where the binary fluxes from XSDRNPM will be written.
18	ADJ=	Adjoint mode flag	XSDRNPM	Enter a 1 to cause XSDRNPM to solve the problem in adjoint mode
19	NBU=	Unit on which balance tables will be written	XSDRNPM	Enter the unit number where the balance tables from XSDRNPM will be written
20	WGT=	Cross-section weighting flag	XSDRNPM	Enter a 0 to suppress doing the cross-section weighting in XSDRNPM
21	ZMD(iz)=	Zone width modifier for the specified zone	XSDRNPM	Enter the zone number for which the modifier applies inside the parentheses; enter the zone width modifier after the equal sign. Repeat number 21 to specify all zones to be modified in a search
22	INT(iz)	Number of intervals in the specified zone	XSDRNPM	Enter the zone number inside the parenthesis; enter the number of intervals after the equal sign. Repeat number 22 to specify all needed zones.
23	KEF=	Value of k_{eff} to be searched for	XSDRNPM	Enter the value of k_{eff} that it is desired to search for
24	KFM=	Value of the eigenvalue modifier	XSDRNPM	Enter the value of the eigenvalue modifier (i.e., the relative change for the first guess of a search)
25	DAB=	Number of direct access data blocks	MIP ^a	The default is 200. Number of blocks allocated for direct access unit 90.
26	AXS=	Unit on which a mixed ANISN library will be written	ICE	Enter the unit number where ICE is to write a mixed ANISN library.
27	MSH=	Maximum number of mesh points/resonance	NITAWL	The default value is 2001. This allows using another value.

Table M7.4.9 (continued)

 \sim

.

Entry	Keyword	Type of data	Applicable	Commente
110.	manic	Type of data	moune	Contrients
28	MLV=	Highest resonance <i>l</i> -value for self-shielding	NITAWL	The default value is 2. This allows using another value.
29	ID1=	Print control for scalar fluxes	XSDRNPM	The default value is -1. See Sect. F3.5, 2\$ array, variable ID1.
30	COLL	Key to activate collapse of thermal groups	MIP ^a	Enter COLL to collapse all thermal groups into one group for the shielding sequences.
31	END	Terminus		Terminate the optional parameter data. Do not start in column 1. At least two blanks must follow this entry.

Table M7.4.9 (continued)

^aMIP is the Material Information Processor.

- 9. IUS UPSCATTER SCALING FLAG FOR XSDRNPM...This option allows the use of upscatter scaling to accelerate the solution or force convergence. The default value is zero, in which case upscatter scaling is not used. IUS=1 facilitates upscatter scaling. Guidelines are not available to indicate when upscatter scaling is needed. Some problems will not converge with it, and some will not converge without it. See Sect. M7.5.7 for a more detailed explanation.
- 10. RES RESONANCE DATA FOR BONAMI AND NITAWL...This parameter allows overriding the default resonance data for <u>materials that are not used in the unit cell</u>. The default resonance data are infinite homogeneous media, which may not accurately represent the geometry (for example, an additional fuel mixture, a thin clad, or a container region). The resonance data are entered in the form:

RES= mixture number geometry type thickness [inner radius]

The mixture number is the material for which the resonance data apply. The geometry type can be a sphere, slab, or cylinder, and defines the third entry of the 3* array in NITAWL. The thickness is the thickness of a slab or the radius of a sphere or cylinder in cm and defines the fourth entry of the 3* array in NITAWL. An inner radius, in cm, may optionally be entered to treat a cylinder or sphere as an annular geometry. It defines the sixth entry in the 3* array in NITAWL. This entire data sequence should be entered for each material for which the default data are inadequate. See Sect. M7.5.7 for additional details. WARNING: If this parameter is used to enter resonance data for a mixture that is used in the unit cell specification, it will NOT be used. Information provided in the unit cell data will be used instead.

11. DAN(mm)= DANCOFF FACTOR for the specified mixtures. This allows entering a Dancoff factor to be used in the resonance correction for the specified mixture. The Dancoff data are entered in the form:

DAN(mm) = Dancoff factor

Note that the parentheses must be entered as part of the data. The mixture number, mm, to which the Dancoff factor applies, must be enclosed in the parentheses. The Dancoff factor to be used is entered after the equal sign. See Sect. M7.5.7 for additional details.

Items 10 and 11 should be entered for each resonance mixture that is not specified in the LATTICECELL or MULTIREGION unit cell specification data. See Sect. M7.5.10.

- 12. BAL BALANCE TABLE PRINT FLAG FOR XSDRNPM...This allows control of the balance table print from XSDRNPM. The default value is FINE. BAL=NONE suppresses the balance table print. BAL=ALL prints all of the balance tables. BAL=FINE prints only the fine-group balance tables. See Sect. M7.5.7 for additional details.
- 13. DY= FIRST TRANSVERSE DIMENSION FOR XSDRNPM...This is the first transverse dimension, in centimeters, used in a buckling correction to calculate the leakage normal to the principal calculation direction (the height of a slab or cylinder). It should only be entered if XSDRNPM is to create cell-weighted cross sections and/or calculate the eigenvalue of a cylinder or slab system of finite height for a LATTICECELL problem. DY= is defaulted to an infinite height, or is set to DY for a buckled MULTIREGION cell description. See Sects. M7.2.5.4 and M7.5.7 for additional details. A value entered here overrides any buckling height value entered in the MULTIREGION data.
- 14. DZ= SECOND TRANSVERSE DIMENSION FOR XSDRNPM...This is the second transverse dimension, in centimeters, used for a buckling correction for a slab of finite width. It should only be entered if XSDRNPM is to create cell-weighted cross sections and/or calculate the eigenvalue of a LATTICECELL slab of finite width. DZ= is defaulted to an infinite width, or is set to DZ for a buckled MULTIREGION slab cell of finite width.

See Sects. M7.2.5.4 and M7.5.7 for additional details. A value entered here overrides any buckling depth value entered in the MULTIREGION data.

- 15. COF= DIFFUSION COEFFICIENT FOR TRANSVERSE LEAKAGE CORRECTIONS IN XSDRNPM...The default value is 0. The available options are:
 - COF=0 sets a transport-corrected cross section for each zone
 - COF=1 use a spatially averaged diffusion coefficient for each zone
 - COF=2 use a diffusion coefficient for all zones that is one-third the diffusion coefficient determined from the spatially averaged transport cross section for all zones

COF=3 use a flux and volume weighting across all zones

See Sect. M7.5.7 or Sect. F3.5, 3\$ array, variable IPN for more details.

- 16. FRD= UNIT FROM WHICH FLUXES ARE READ FOR XSDRNPM. If fluxes are to be used for the initial flux guess, enter the unit number from which they are to be read. The user is responsible for supplying job control language data that are necessary for reading the flux data set. See Sect. M7.5.7 for more details.
- 17. FWR= UNIT ON WHICH FLUXES WILL BE WRITTEN FOR XSDRNPM. If binary fluxes are to be saved from this XSDRNPM calculation, enter the unit number where they will be written. The user is responsible for supplying job control language data that are necessary for creating and saving the flux data set. See Sect. M7.5.7 for more details.
- 18. ADJ= Adjoint mode flag for XSDRNPM. Set to 1 to cause XSDRNPM to solve the adjoint problem.
- 19. NBU= Unit on which the balance tables will be written from XSDRNPM. If the balance tables file is to be saved, enter the unit number where they are to be written. The user is responsible for supplying job control data necessary to create and save the balance table dataset.
- 20. WGT= Cross-section weighting flag for XSDRNPM. The default is to do cross-section weighting. If a user needs to not do cross-section weighting, then a value of 0 should be entered.
- 21. ZMD(iz)= Zone width modifiers for an XSDRNPM search problem. This allows entering a zone width modifier for zone iz in the XSDRNPM problem description. The zone width data are entered in the form:
 ZMD(iz)=modifier
 Note that the parentheses must be entered as part of the keyword. The zone number iz, to

which the modifier is applied must be enclosed in the parentheses. The modifier is entered after the equal sign. See Sect. F3.2.8 for more information.

22. INT(iz)= Number of mesh intervals for zone iz in XSDRNPM. The default is 0, which causes the number to be calculated. The data are entered in the form: INT(iz)=number Note that the parentheses must be entered as part of the keyword. The zone number iz, for which the number of intervals is specified must be enclosed in the parenthesis. The number

which the number of intervals is specified, must be enclosed in the parenthesis. The number of intervals is entered after the equal sign.

- 23. KEF= The desired value of k_{eff} for an XSDRNPM zone width search. The default value is 1.0. If it is desired to search for some other value, such as 0.9, then input it here.
- 24. KFM= The first eigenvalue modifier used in an XSDRNPM search. This value is used to make the first change in the XSDRNPM search. The default value is -0.1. A user may sometimes need to change this to make the search converge.

NUREG/CR-0200,	
Vol. 3, Rev. 6	M7.4.38

- 25. DAB= NUMBER OF DIRECT-ACCESS DATA BLOCKS FOR THE MATERIAL INFORMATION PROCESSOR. These are the number of blocks allocated for direct access on unit 90. The default is 200. See Sect. M7.5.7 for additional details. If the job fails in the Material Information Processor with an LMP005 DA ERROR, then DAB must be used to enter a larger value. See Sect. M7.7.3 for additional details.
- 26. AXS= LOGICAL UNIT NUMBER FOR ICE. Write a mixed ANISN library on this unit. The default is zero (no library). If the unit number is input as 7, the ANISN library will be in free-form card image. For any other unit number, the library will be binary. The user is responsible for supplying job control language data that are necessary for creating and saving the ANISN cross-section library. An ANISN cross section can only be created by the control sequences CSASI, CSASIX, and SAS3. See Sect. M7.5.7 for additional details.
- 27. MSH= THE MAXIMUM NUMBER OF MESH POINTS PER RESONANCE. The default value is 2001. This is the maximum number of mesh points allowed for the Simpson's rule integration in NITAWL. This should be an odd number. See Sect. M7.5.7 for additional details.
- 28. MLV= HIGHEST RESONANCE l-VALUE FOR SELF-SHIELDING. The default value is 2. This is the highest resonance l-value for which a self-shielding calculation will be performed in NITAWL. See Sect. M7.5.7 for additional details.
- 29. ID1= SCALAR FLUX PRINT CONTROL. The default value is -1, which suppresses printing the scalar fluxes in XSDRNPM. See Sect. F3.5, 2\$ array, variable ID1 for allowed values and corresponding actions.
- 30. COLL ACTIVATE COLLAPSE OF THERMAL GROUPS. This parameter should only be used with the shielding analysis sequences (SAS1, etc.). It causes the Material Information Processor to instruct XSDRNPM to collapse all thermal groups into one group. See Sect. M7.5.7 for additional details.
- 31. END The word END is entered to terminate the optional parameter data. A label can be associated with this END. The label can be as long as 12 characters, but must be preceded by a single blank. If this END is entered without a label, it must not begin in column 1. At least two blanks must follow this entry.

M7.5 NOTES ABOUT THE MATERIAL INFORMATION PROCESSOR

This section provides tips about the use of the Material Information Processor utilized by many of the SCALE modules. To assist in locating specific data in this section, see Table M7.5.1.

M7.5.1 USE OF THE MATERIAL INFORMATION PROCESSOR

The Material Information Processor performs the functions of (1) reading user-specified input data about material specifications and unit cell geometry pertinent to cross-section processing and (2) accessing information from the Standard Composition Library to determine nuclide atom densities and resonance data.

M7.5.2 MATERIAL INFORMATION PROCESSOR TITLE

The first information required by the Material Information Processor is a title. The title is a maximum of 80 characters and is the first entry after the Analytical Sequence Indicator record. The Analytical Sequence Indicator begins in column 1. The title also begins in column 1. An example is

=CSASN THIS IS THE TITLE

M7.5.3 CROSS-SECTION LIBRARY NAME

There are several cross-section libraries available for use with SCALE. They are in the AMPX master library format and are specified as the first data following the Material Information Processor title. The libraries that are available in SCALE are discussed in Sect. M4. The available libraries include:

HANSEN-ROACH 27GROUPNDF4 44GROUPNDF5 218GROUPNDF4 18GROUPGAMMA 27BURNUPLIB 27N-18COUPLE 22N-18COUPLE 238GROUPNDF5

The first five libraries listed above are criticality safety libraries, and the last three are shielding libraries. The 27BURNUPLIB library is used for depletion analyses or criticality safety analyses where higher-order actinides or fission products are needed. Terse input is accepted for the cross-section library name, so only the number of characters necessary to uniquely define the library need be entered. However, the entered name must be an exact match for the number of characters that are entered. Thus, 27G is sufficient to define the 27GROUPNDF4 library. Entering 27GRP is incorrect because the fifth character does not match, but 27GR or 27GRO are correct.

Page	Section	Торіс	-	
M7.5.1	M7.5.1	USE OF THE MATERIAL INFORMATION PROCESSOR	-	
M7.5.1	M7.5.2	MATERIAL INFORMATION PROCESSOR TITLE		
M7.5.1	M7.5.3	CROSS-SECTION LIBRARY NAME		
M7.5.4	M7.5.4	TYPE OF CALCULATION		
M7.5.5		M7.5.4.1 INFHOMMEDIUM		
M7.5.5		M7.5.4.2 LATTICECELL		
M7.5.5		M7.5.4.3 MULTIREGION		
M7.5.6	M7.5.5	STANDARD COMPOSITION SPECIFICATION DATA		
M7.5.8		M7.5.5.1 Basic Standard Composition Specifications		
M7.5.9		GENERIC EXAMPLE		
M7.5.10		EXAMPLE 1. Material name is given		
M7.5.10		EXAMPLE 2. Material name and density (g/cm ³) are given		
M7.5.10		EXAMPLE 3. Material name and number density (atoms/b-cm) are given		
M7.5.11		EXAMPLE 4. Material name, density (g/cm ³), and isotopic abundance are giver	1	
M7.5.12		EXAMPLE 5. Material name, density (g/cm ³), and isotopic abundance are giver	1	
M7.5.12		EXAMPLE 6. Material name, density (g/cm ³), and isotopic abundance are giver	1	
M7.5.13		EXAMPLE 7. Material name, density (g/cm ³), and isotopic abundance are giver	1	
M7.5.14		M7.5.5.2 Arbitrary Material Specifications		
M7.5.14		GENERIC EXAMPLE		
M7.5.15		EXAMPLE 1. Density and weight percents are given		
M7.5.16		EXAMPLE 2. Density, weight percents, and isotopic abundance are given		
M7.5.17		EXAMPLE 3. Density and chemical equation are given		
M7.5.18		EXAMPLE 4. Density and chemical equation are given		
M7.5.19		M7.5.5.3 Solution Specifications		
M7.5.19		GENERIC EXAMPLE		
M7.5.20		EXAMPLE 1. Fuel density, specific gravity, excess acid, and isotopic abundance	•	
		are given		
M7.5.21		M7.5.5.4 Combinations of Basic Standard Compositions to Define a Mixture		
M7.5.21		EXAMPLE 1. Boral from B_4C and Aluminum		
M7.5.22		EXAMPLE 2. Boral from B_4C and Aluminum		
M7.5.22		EXAMPLE 3. Boral from Boron, Carbon, and Aluminum		
M7.5.24		EXAMPLE 4. Boral from ¹⁰ B, ¹¹ B, Carbon, and Aluminum		
M7.5.25		EXAMPLE 5. Specify all of the number densities in a mixture		
M7.5.26		M7.5.5.5 Combinations of Arbitrary Materials to Define a Mixture		
M7.5.26		EXAMPLE 1. Specify boral using two arbitrary materials		
M7.5.27		M7.5.5.6 Combinations of Solutions to Define a Mixture		
M7.5.28		EXAMPLE 1. Solution of uranyl nitrate and plutonium nitrate		

Table M7.5.1 Organization of notes about the Material Information Processor

Table M7.5.1 (continued)

Page		S	Section and topic		
M7.5.29		M7.5.5.7 Combina	Combinations of Basic and Arbitrary Standard Compositions to Define a		
		Mixture	•		
M7.5.29		EXAMPLE 1.	Burnable poison from B_4C and Al_2O_3		
M7.5.30		EXAMPLE 2.	Borated water from H ₃ BO ₃ and water		
M7.5.34		M7.5.5.8 Combina	tions of Basic and Solution Standard Compositions to Define a		
		Mixture			
M7.5.34		EXAMPLE 1.	Uranyl nitrate solution containing gadolinium		
M7.5.35		M7.5.5.9 Combina	tions of Arbitrary Material and Solution to Define a Mixture		
M7.5.35		EXAMPLE 1.	Uranyl nitrate solution with gadolinium nitrate		
M7.5.38	M7.5.6	EXAMPLES OF UN	VIT CELL SPECIFICATIONS		
M7.5.38		M7.5.6.1 Infinite H	Iomogeneous Medium Unit Cell Data		
M7.5.39		EXAMPLE 1.	A single mixture		
M7.5.39		EXAMPLE 2.	Two mixtures		
M7.5.39		EXAMPLE 3.	Two mixtures and specify the cell		
M7.5.39		M7.5.6.2 LATTICE	CELL Unit Cell Data		
M7.5.41		EXAMPLE 1.	SQUAREPITCH (cylindrical pins in a square-pitched array)		
M7.5.42		EXAMPLE 2.	TRIANGPITCH (cylinders in a triangular-pitched array)		
M7.5.43		EXAMPLE 3.	SPHSQUAREP (spheres in a square-pitched array)		
M7.5.43		EXAMPLE 4.	SPHTRIANGP (spheres in a triangular-pitched array)		
M7.5.44		EXAMPLE 5.	SYMMSLABCELL (slabs repeated in a symmetric fashion)		
M7.5.44		EXAMPLE 5a.	SYMMSLABCELL (slabs repeated in a symmetric fashion)		
M7.5.45		EXAMPLE 6.	ASOUAREPITCH (annular cylindrical rods in a square-pitched		
			array)		
M7.5.46		EXAMPLE 6a.	ASQUAREPITCH (annular cylindrical rods in a square-pitched		
			array)		
M7.5.47		EXAMPLE 7.	ATRIANGPITCH (annular cylindrical rods in a triangular-		
			pitched array)		
M7.5.48		EXAMPLE 8.	ASPHSOUAREP (spherical annuli in a square-pitched array)		
M7.5.48		EXAMPLE 9.	ASPHTRIANGP (spheres in a triangular-pitched array)		
M7.5.49		EXAMPLE 10.	ASYMSLABCELL (repeated slabs having different moderator		
			conditions)		
M7.5.50		EXAMPLE 10a.	ASYMSLABCELL (repeated slabs having different moderator		
			conditions)		
M7.5.51		M7.5.6.3 MULTIR	EGION Unit Cell Data		
M7.5.53		EXAMPLE 1.	SLAB		
M7.5.54		EXAMPLE 2.	CYLINDRICAL		
M7.5.55		EXAMPLE 3.	SPHERICAL		
M7.5.55		EXAMPLE 4.	BUCKLEDSLAB		
M7.5.56		EXAMPLE 5.	BUCKLEDCYL		
M7.5.57	M7.5.7	OPTIONAL PARAM	METER DATA OR MORE DATA		
M7.5.61	4	M7.5.7.1 Sample C	Optional Parameter Data		

Page		Section and topic		
M7.5.62	M7.5.8	EXAMPLES OF COMPLETE MATERIAL INFORMATION PROCESSOR INPUT DATA		
M7.5.62		M7.5.8.1 Infinite Homogeneous Medium Input Data		
M7.5.62		EXAMPLE 1. Default Cell Definition		
M7.5.63		EXAMPLE 2. Specify the Cell Definition		
M7.5.63		M7.5.8.2 LATTICECELL Input Data		
M7.5.63		EXAMPLE 1. SOUAREPITCH		
M7.5.64		EXAMPLE 2. SOUAREPITCH		
M7.5.64		EXAMPLE 3. SPHTRIANGP		
M7.5.65		M7.5.8.3 MULTIREGION Input Data		
M7.5.65		EXAMPLE 1. SPHERICAL		
M7.5.66		EXAMPLE 2. BUCKLEDSLAB		
M7.5.66	M7.5.9	THREE METHODS OF SPECIFYING A SOLUTION		
M7.5.67		METHOD 1		
M7.5.68		METHOD 2		
M7.5.69		METHOD 3		
M7.5.70		M7.5.9.1 Comparison of Number Densities from the Three Methods		
M7.5.70	M7.5.10	MULTIPLE FISSILE CELLS IN A SINGLE PROBLEM		
M7.5.72	M7.5.11	MULTIPLE FISSILE MIXTURES IN A SINGLE PROBLEM		
M7.5.73	M7.5.12	CELL WEIGHTING		
M7.5.73		M7.5.12.1 Cell weighting an infinite homogeneous problem		
M7.5.73		EXAMPLE 1		
M7.5.73		M7.5.12.2 Cell weighting a LATTICECELL problem		
M7.5.74		EXAMPLE 1		
M7.5.74		M7.5.12.3 Cell weighting a MULTIREGION problem		
M7.5.75		EXAMPLE 1		

Table M7.5.1 (continued)

M7.5.4 TYPE OF CALCULATION

The type of calculation specifies the basic geometry description that is used for cross-section processing. The type of calculation is very important because it can substantially affect the calculated results. The available options are:

INFHOMMEDIUM LATTICECELL MULTIREGION

Terse input is accepted so only the number of characters necessary to uniquely define the type of calculation need be entered. However, the entered name must be an exact match for the number of characters that are entered. Thus, I is sufficient to specify an infinite homogeneous medium treatment. However, it may be more informative to use names such as INF, LAT or MULT.
M7.5.4.1 INFHOMMEDIUM

The choice of infinite homogeneous medium means that the cross sections are treated as if each mixture is an infinite lump. Thus the self-shielding calculations do not account for any geometrical effects. Because the geometric effect to the cross-section resonance correction is a surface effect, infinite homogeneous medium is an appropriate choice if the volume of the material is very large. The fraction of the fuel that is within a mean-free path of the surface is the governing consideration. If the fraction is large, the geometric effect is very important. If the fraction is very small, the geometric effect is unimportant. Therefore, infinite homogeneous medium is a good choice if the size of the material is large relative to the mean-free path in the material. Infinite homogeneous medium is a very poor choice for large arrays of small lumps or fuel pins where the geometric correction for each fuel pin is extremely important. The unit cell specification is optional in an infinite homogeneous medium problem. If it is to be entered, it follows the standard compositions specification data. Examples of **INFHOMMEDIUM** unit cell specifications are given in Sect. M7.5.6.1. Examples of problems using the infinite homogeneous medium treatment are given in Sect. M7.5.8.1.

M7.5.4.2 LATTICECELL

The choice of LATTICECELL is used when the geometry can be described as a lattice. The LATTICECELL treatment assumes an infinite array of identical cells. It is especially suited for large arrays of cylindrical rods or spherical pellets. The use of LATTICECELL requires a unit cell specification following the last entry of the standard composition specification data. The use of LATTICECELL assures that the cross sections are corrected for both geometric and resonance self-shielding. The geometric correction for a LATTICECELL specification utilizes the Dancoff correction factor in order to approximate the effects of a lattice of fuel lumps. NOTE THAT ONLY ONE UNIT CELL SPECIFICATION IS ALLOWED IN A PROBLEM. Thus if a problem utilizes more than one kind of fuel pin (different dimensions, different enrichments, etc.) special procedures must be invoked to assure adequate cross-section treatment as described in Sect. M7.5.10. The unit cell specification associated with the choice of LATTICECELL is used to provide information used in processing the cross sections. Only those mixtures used in the unit cell specification have geometric corrections applied to their cross sections. ALL OTHER MIXTURES SPECIFIED IN THE PROBLEM ARE TREATED AS INFINITE HOMOGENEOUS MEDIA unless otherwise specified as described in Sect. M7.5.7 using the parameter keywords RES= and DAN()=. Section M7.5.10 demonstrates this procedure. The unit cell configurations available as a LATTICECELL specification are described in Sect. M7.5.6.2.

M7.5.4.3 MULTIREGION

MULTIREGION can be used for a system of geometric regions where the geometry effects may be important but infinite homogeneous media treatment or LATTICECELL treatment are inappropriate. It can also be used to define a geometric configuration that is more complicated than that allowed by the LATTICECELL. The MULTIREGION treatment assumes a single cell and does not allow a true lattice geometry. Therefore, the cross sections are corrected for resonance self-shielding and the geometric size and shape, but the Dancoff factor is an approximation. The use of MULTIREGION requires a unit cell specification following the standard composition specification data. Only one unit cell specification is allowed in a problem. Examples of MULTIREGION geometries are given in Sect. M7.5.6.3.

M7.5.5 STANDARD COMPOSITION SPECIFICATION DATA

The standard composition specification data are used to define mixtures using standardized engineering data entered in a free-form format. The Material Information Processor uses the standard composition specification data and information from the Standard Composition Library to provide number densities for each nuclide of every defined mixture according to Eq. (M7.5.1):

$$NO = \frac{RHO \times AVN \times C}{AWT} , \qquad (M7.5.1)$$

where

NO	is the number density of the nuclide in atoms/b-cm,,					
RHO	is the actual density of the nuclide in g/cm^3 ,					
AVN	is Avogadro's number in atoms/mol,					
С	is a constant, 10^{-24} cm ² /b,					
AWT	is the atomic or molecular weight of the nuclide in g/mol.					
The actual	The actual density, RHO, is defined by					
	$RHO = ROTH \times VF \times WGTF,$	(M7.5.2)				

where

Vol. 3, Rev. 6

RHO	is the actual density of the standard composition in g/cm ³ ,				
ROTH	is either the specified density of the standard composition or the theoretical density of the standard composition in g/cm ³ ,				
VF	is a density multiplier compatible with ROTH as defined by Eq. (M7.5.3),				
WGTF	is the weight fraction of the nuclide in the standard composition. This value is automatically obtained by the code from the Standard Composition Library. WGTF is 1.0 for a single nuclide standard composition.				
	$VF = DFRAC \times VFRAC$, (M7.5.3)				
where					
VF	is the density multiplier,				
DFRAC NUREG/C	is the density multiplier, CR-0200.				

VFRAC is the volume fraction.

To illustrate the interaction between ROTH and VF, consider an Inconel having a density of 8.5 g/cm^3 . It is 7.0% by weight iron, 15.5% chromium, and 77.5% nickel. The Inconel occupies a volume of 4 cm³.

Method 1: To describe the iron, enter 8.5 for ROTH and 0.07 for VF. To describe the chromium, enter 8.5 for ROTH and 0.155 for VF. To describe the nickel, enter 8.5 for ROTH and 0.775 for VF.

Method 2: Do not enter the density, and by default the theoretical density of each component will be used for ROTH. DFRAC will be the ratio of the specified density to the theoretical density. The specified density of each component is the density of the Inconel × the weight fraction of that component. Thus, the density of the iron is $8.5 \times 0.07 = 0.595$ g/cm³

chromium is $8.5 \times 0.155 = 1.318$ g/cm³ nickel is $8.5 \times 0.775 = 6.588$ g/cm³

To calculate DFRAC, the theoretical density of each material must be obtained from Table M8.2.3. These values are

7.86 g/cm³ for iron
8.90 g/cm³ for nickel
7.20 g/cm³ for chromium

The DFRAC entered for the iron is 0.595/7.86 = 0.0757for the nickel is 1.318/8.90 = 0.1481for the chromium is 6.588/7.20 = 0.9163

Since there are no volumetric corrections, VFRAC is 1.0 and the values of DFRAC are entered for VF.

Method 3: Assume the Inconel, which occupies 4 cm^3 , is to be spread over a volume of 5 cm^3 . Then the volume fraction, VFRAC, is $4 \text{ cm}^3/5 \text{ cm}^3 = 0.8$ and can be combined with the density fraction, DFRAC, to obtain the density multiplier, VF, according to Eq. (M7.5.3).

To describe the iron, enter 8.5 for ROTH and $0.07 \times 0.8 = 0.056$ for VF or chromium, enter 8.5 for ROTH and $0.155 \times 0.8 = 0.124$ for VF for nickel, enter 8.5 for ROTH and $0.775 \times 0.8 = 0.620$ for VF

Alternatively, the volume fraction can be applied to the density before it is entered. Then the ROTH can be entered as $8.5 \text{ g/cm}^3 \times 0.8 = 6.8 \text{ g/cm}^3$, and DFRAC is entered for the density multiplier, VF.

To describe the iron, enter 6.8 for ROTH and 0.07 for VF for chromium, enter 6.8 for ROTH and 0.155 for VF

for nickel, enter 6.8 for ROTH and 0.775 for VF

NUREG/CR-0200, Vol. 3, Rev. 6

Method 4: Assume the Inconel, which occupies 4 cm^3 , is to be spread over a volume of 5 cm^3 . Then the volume fraction, VFRAC, is $4 \text{ cm}^{3}/5 \text{ cm}^3 = 0.8$. Do not enter the density, and by default the theoretical density of each component will be used for ROTH.

VF is then entered as the product of VFRAC and DFRAC according to Eq. (M7.5.3). The specified density of each component is the density of the Inconel \times the weight fraction of that component.

Thus, the density of the iron is $8.5 \times 0.07 = 0.595$ g/cm³ chromium is $8.5 \times 0.155 = 1.318$ g/cm³ nickel is $8.5 \times 0.775 = 6.588$ g/cm³

To calculate DFRAC, the theoretical density of each material must be obtained from Table M8.2.3. These values are

7.86 g/cm³ for iron
8.90 g/cm³ for nickel
7.20 g/cm³ for chromium

Then DFRAC for the iron is 0.595/7.86 = 0.0756 for nickel is 1.318/8.90 = 0.1481 for chromium is 6.588/7.20 = 0.9150

Then VF is DFRAC × VFRAC VF for the iron is $0.0757 \times 0.8 = 0.0606$ for nickel is $0.1481 \times 0.8 = 0.1185$ for chromium is $0.9150 \times 0.8 = 0.7320$

The number densities calculated by the Material Information Processor are used in processing the problem-specific working format cross-section libraries created for use by many of the SCALE functional modules. Three types of input data are allowed for the standard composition specification data: basic, arbitrary materials, and solutions. Each standard composition is terminated by entering the word END. The code continues to read standard composition data until the words END COMP are encountered. The basic data are described in Sect. M7.5.5.1, the arbitrary materials are described in Sect. M7.5.5.2, and the solutions are described in Sect. M7.5.5.3. Many mixtures can be described using only basic, arbitrary, or solution specifications. However, the description of some mixtures can be greatly simplified by using a combination of those specifications as shown in Sects. M7.5.5.4 through M7.5.5.9.

M7.5.5.1 Basic Standard Composition Specifications

Basic standard compositions are those whose standard composition name is found in the Standard Composition Library. The input data for basic standard compositions are discussed in more detail in Sect. M7.4.4. Examples of basic standard compositions are given below.

GENERIC EXAMPLE

Input data for the basic standard compositions are entered as follows:

SC	MX	DEN=ROTH	VF	ADEN	TEMP	(IZA _i WTP _i) END				
or										
SC	MX	SPG=ROTH	VF	ADEN	TEMP	(IZA _i WTP _i) END				
wher	e									
SC		is the standard composition component name (see Sect. M8.2).								
MX		is the mixture	is the mixture number (defined by the user).							
ROT	Ή	is the density of the material. THESE DATA ARE OPTIONAL AND ARE ENTERED USING THE KEYWORD SPG= or DEN=.								
VF		is the density multiplier for this standard composition (enter 0 if the number density is to be entered for this standard composition).								
ADE	N	is the number density (atoms/b-cm). Enter only if $VF = 0$.								
TEM	IP	is the temperature in Kelvin.								
IZA		is the isotope	is the isotope ID number (see Sect. M8.2).							
WT	•	is the weight	is the weight percent of the isotope in the material. WTP must be between 0 and 100.							
		Repeat the se	auenc	e IZA W	ΓP until th	e sum of the WTPs sum to 100. IZA and WTP are used				

to specify the isotopic abundance of a standard composition that has multiple isotopes. IZA identifies the isotope, and WTP specifies its abundance in weight percent. The sequence IZA WTP is repeated until all of the desired isotopes have been specified.

EXAMPLE 1. Material name is given.

Create a mixture 3 that is Plexiglas. Since no other information is given, the information on the Standard Composition Library can be assumed to be adequate. Therefore, the only data to be entered are the standard composition name and the mixture number. The minimum generic input specification for the Plexiglas follows:

SC MX END

where

SC is the standard composition component name (PLEXIGLAS; see Table M8.2.4).

MX is the mixture number (enter a 3). The input data for the Plexiglas are given below.

PLEXIGLAS 3 END

EXAMPLE 2. Material name and density (g/cm³) are given.

Create a mixture 3 that is Plexiglas at a density of 1.15 g/cm^3 . Since no other data are specified, the defaults from the Standard Composition Library will be used. Therefore, the only data to be entered are the standard composition name, the mixture number, and the density. The minimum generic input specification for the Plexiglas is given below:

SC MX DEN=ROTH END

where

SC is the standard composition component name (PLEXIGLAS; see Table M8.2.4).

MX is the mixture number (enter a 3).

ROTH is the density of the material (enter DEN=1.15).

The input data for the Plexiglas are given below.

PLEXIGLAS 3 DEN=1.15 END

EXAMPLE 3. Material name and number density (atoms/b-cm) are given. Create a mixture 2 that is aluminum having a number density of 0.060244.

The generic standard composition specification is

SC MX VF ADEN END

where

NUREG/CR-0200, Vol. 3, Rev. 6

SC is the standard composition component name (AL; see Table M8.2.2).

MX is the mixture number (2).

VF is the density multiplier (enter 0 because the number density is to be used).

ADEN is the number density of the standard composition (0.060244).

The input data for the aluminum are given below:

AL 2 0 .060244 END

EXAMPLE 4. Material name, density (g/cm³) and isotopic abundance are given.

Create a mixture 1 that is uranium metal at 18.76 g/cm³ whose isotopic composition is 93.2 wt % ²³⁵U, 5.6 wt % ²³⁸U, and 1.0 wt % ²³⁴U, and 0.2 wt % ²³⁶U. This example uses the DEN= keyword to enter the density and define the standard composition. Example 5 demonstrates another method of defining the standard composition.

The generic standard composition specification is

SC MX DEN=ROTH VF TEMP (IZA_i WTP_i) END

where

SC is the standard composition component name (URANIUM; see Table M8.2.3).

MX is the mixture number (enter a 1).

ROTH is the density of the material (enter DEN = 18.76).

- VF is the density multiplier (enter 1 because the density was entered using DEN=).
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number (92235 for ²³⁵U, 92238 for ²³⁸U, 92234 for ²³⁴U, and 92236 for ²³⁶U).
- WTP is the weight percent of the isotope in the material (93.2 for ²³⁵U, 5.6 for ²³⁸U, 1.0 for ²³⁴U, and 0.2 for ²³⁶U). Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the uranium metal follow:

URANIUM 1 DEN=18.76 1 293 92235 93.2 92238 5.6 92234 1.0 92236 0.2 END

NUREG/CR-0200, Vol. 3, Rev. 6

EXAMPLE 5. Material name, density (g/cm³) and isotopic abundance are given.

Create a mixture 1 that is uranium metal at 18.76 g/cm³ whose isotopic composition is 93.2 wt % ²³⁵U, 5.6 wt % ²³⁸U, and 1.0 wt % ²³⁴U, and 0.2 wt % ²³⁶U. This method illustrates the standard composition specification without using the DEN= option.

The generic standard composition specification is

SC MX VF TEMP (IZA_i WTP_i) END

where

- SC is the standard composition component name (URANIUM; see Table M8.2.3).
- MX is the mixture number (enter a 1).
- VF is the density multiplier (the density multiplier is the ratio of actual to theoretical density (18.76/19.05 = 0.985). The theoretical density (19.05 g/cm³) is obtained from Table M8.2.3.
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number (92235 for ²³⁵U, 92238 for ²³⁸U, 92234 for ²³⁴U, and 92236 for ²³⁶U).
- WTP is the weight percent of the isotope in the material (93.2 for ²³⁵U, 5.6 for ²³⁸U, 1.0 for ²³⁴U, and 0.2 for ²³⁶U). Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the uranium metal follow:

URANIUM 1 0.985 293 92235 93.2 92238 5.6 92234 1.0 92236 0.2 END

EXAMPLE 6. Material name, density (g/cm³) and isotopic abundance are given. Create a mixture 7 defining B₄C with a density of 2.45 g/cm³. The boron is 40 wt % ¹⁰B and 60 wt % ¹¹B. This example utilizes the DEN= keyword. Example 7 illustrates an alternative description. The minimum generic input specification for this standard composition is

SC MX DEN=ROTH VF TEMP (IZA; WTP;) END

where

SC is the standard composition component name (B4C; Table M8.2.4).

MX is the mixture number (7).

NUREG/CR-0200, Vol. 3, Rev. 6

ROTH is the density of the material (enter DEN=2.45).

- VF is the density multiplier (enter 1.0 because the density was entered).
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number (5010 for 10 B and 5011 for 11 B).
- WTP is the weight percent of the isotope in the material (40 for ¹⁰B and 60 for ¹¹B). Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the B_4C are given below.

B4C 7 DEN=2.45 1.0 293 5010 40.0 5011 60.0 END

EXAMPLE 7. Material name, density (g/cm³) and isotopic abundance are given.

Create a mixture 7 defining B_4C with a density of 2.45 g/cm³. The boron is 40 wt % ¹⁰B and 60 wt % ¹¹B. This example incorporates the known density into the density multiplier, VF, rather than using the DEN= keyword. The minimum generic input specification for this standard composition is

SC MX VF TEMP (IZA_i WTP_i) END

where

- SC is the standard composition component name (B4C; Table M8.2.4).
- MX is the mixture number (7).
- VF is the density multiplier (the density multiplier is the ratio of actual to theoretical density (2.45/2.52 = 0.9722)). The theoretical density (2.52 g/cm^3) is obtained from Table M8.2.1.
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number (5010 for ${}^{10}B$ and 5011 for ${}^{11}B$).
- WTP is the weight percent of the isotope in the material (40 for ¹⁰B and 60 for ¹¹B). Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the B_4C are given below.

B4C 7 0.9722 293 5010 40.0 5011 60.0 END

NUREG/CR-0200, Vol. 3, Rev. 6

Note in the above examples, that the actual density is input for materials containing enriched multiisotope nuclides (uranium in examples 4 and 5 and boron in examples 6 and 7). The default density should never be used for enriched materials, especially low atomic mass neutron absorbers such as boron and lithium. The default density is a fixed value for nominal conditions and naturally occurring distributions of isotopes. Use of the default density for enriched materials will likely result in incorrect number densities.

M7.5.5.2 Arbitrary Material Specifications

The arbitrary material option allows the user to specify materials that are not found in the Standard Composition Library. To define an arbitrary material, the first four characters of the standard composition component name must be ARBM. The remaining characters of the standard composition component name are chosen by the user. The maximum length of the standard composition name is 16 characters. All the information that would normally be found in the Standard Composition Library must be entered in the arbitrary material specification. Section M7.4.5 contains data input details for arbitrary materials.

GENERIC EXAMPLE

The generic input data for arbitrary materials are entered as follows:

SC	ROTH	NEL	IVIS	ICP	IRS	$(NCZA_i$	$ATPM_i$)	MX	VF	TEMP	(IZA _j	WTP;)	END
where	e	•				•							
SC	i	is the standard composition component name (maximum length is 16 characters, the first four characters must be ARBM, the remaining characters are determined by the user).											
ROT	H i	is the density of the compound in g/cm^3 .											
NEL	i	is the number of elements or nuclides in the material.											
IVIS	i	is an unused variable. Enter 0 or 1.											
ICP	i	is the compound indicator (enter a 1 for a compound represented by a chemical formula; a 0 for an alloy or mixture).											
IRS	i	is an unused variable. Enter 0 or 1.											
NCZ		is the isotope ID number (see Sect. M8.2 to determine the isotope ID number). For example, aluminum has a standard composition component of AL and an isotope ID number of 13027 so 13027 would be entered for aluminum. If a multiple-isotope nuclide is to be used, enter Z*1000 where Z is the atomic number. For example, 92000 would be entered for uranium or 5000 would be entered for boron.											
ATP	M i	is the weight percent of the isotope (NCZA) in this material.											

NUREG/CR-0200,	
Vol. 3, Rev. 6	

Repeat the sequence NCZA ATPM until the NEL elements in the arbitrary material have been specified.

- MX is the mixture number (chosen by the user).
- VF is the fraction of this arbitrary material in the mixture. (The relationship between VF and ROTH is given in Sect. M7.5.5.)
- TEMP is the temperature in Kelvin.

IZA is the isotope ID number. ENTER ONLY IF MULTIPLE-ISOTOPE NUCLIDE(s) HAVE BEEN SPECIFIED, in which case one or more of the NCZAs was a multiple-isotope nuclide. Then IZA and WTP are used to specify the isotopic abundance of the multiple-isotope nuclide.

WTP is the weight percent of the isotope (NCZA) in the multiple-isotope nuclide.

Repeat the sequence IZA WTP until the sum of the WTPs sum to 100. IZA and WTP are used to specify the isotopic abundance of the multiple-isotope nuclide. IZA identifies the isotope, and WTP specifies its abundance in weight percent. The sequence IZA WTP is repeated until all of the desired isotopes have been specified.

EXAMPLE 1. Density and weight percents are given.

Create a mixture 5 that defines a borated aluminum that is 2.5 wt % natural boron. The density of the borated aluminum is 2.65 g/cm^3 . The minimum generic input specification for this arbitrary material is

SC ROTH NEL IVIS ICP IRS (NCZA; ATPM;) MX END

where

- SC is the standard composition component name. (ARBMBAL is used as the standard composition name in this example. The first 4 characters **MUST** be ARBM. The remaining characters are chosen by the user.)
- ROTH is the density of the compound in g/cm^3 (enter 2.65).
- NEL is the number of elements in the material (enter a 2; aluminum and boron).
- IVIS is an unused variable. A value must be entered, and 1 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator (enter 0 because this material is not defined by a chemical formula).

- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the isotope ID number [enter 5000 for the boron (1000*Z is entered for multiple-isotope nuclides)]. (Enter 13027 for the aluminum.)
- ATPM is the weight percent of the isotope in the material (enter 2.5 for the boron and 97.5 for the aluminum). Repeat the sequence NCZA ATPM until the NEL elements in the arbitrary material have been specified.
- MX is the mixture number (enter 5).

Because natural boron was specified in the problem, no further data need be specified. EXAMPLE 2 illustrates the situation where the isotopic abundance of boron must be specified.

The input data for this arbitrary material are given below.

ARBMBAL 2.65 2 1 0 0 5000 2.5 13027 97.5 5 END

EXAMPLE 2. Density, weight percents, and isotopic abundance are given.

Create a mixture 5 that defines a borated aluminum that is 2.5 wt % boron. The boron is 90 wt % ¹⁰B and 10 wt % ¹¹B. The density of the borated aluminum is 2.65 g/cm³. The minimum generic input specification for this arbitrary material is

SC ROTH NEL IVIS ICP IRS (NCZA: ATPM:) MX VF TEMP (IZA; WTP;) END

where

SC is the standard composition component name. The first 4 characters MUST be ARBM (enter ARBMBAL).

ROTH is the density of the compound in g/cm^3 (enter 2.65).

- NEL is the number of elements in the material (enter 2).
- IVIS is an unused variable. A value must be entered, and 1 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator. (Enter 0 because this material is not defined by a chemical formula.)
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.

NUREG/CR-0200, Vol. 3, Rev. 6

- NCZA is the isotope ID number [Enter 5000 for the boron (1000*Z is entered for multiple-isotope nuclides). Enter 13027 for the aluminum.]
- ATPM is the weight percent of the isotope in the material. (Enter 2.5 for the boron and 97.5 for the aluminum.)

Repeat the sequence NCZA ATPM until the NEL elements in the arbitrary material have been specified.

- MX is the mixture number (enter 5).
- VF is the density multiplier (use 1 or 1.0 since the density of the material was entered as the theoretical density, ROTH).
- TEMP is the temperature in Kelvin. (Enter 293. The temperature must be entered because the isotopic abundance of boron must be specified.)
- IZA is the isotope ID number for the isotopes in the multiple-isotope nuclide (enter 5010 for ¹⁰B and 5011 for ¹¹B).
- WTP is the weight percent of the isotope in the multiple-isotope nuclide (enter 90 for ¹⁰B and 10 for ¹¹B).

Repeat the sequence IZA WTP until the sum of the WTPs sum to 100 and all of the isotopes present in the multiple-isotope nuclide have been entered.

The input data for this arbitrary material are given below.

ARBMBAL 2.65 2 1 0 0 5000 2.5 13027 97.5 5 1 293 5010 90. 5011 10. END

EXAMPLE 3. Density and chemical equation are given.

Create a mixture 3 that is a hydraulic fluid, C_2H_6SiO , with a density of 0.97 g/cm³. The minimum generic input specification for this arbitrary material is

SC ROTH NEL IVIS ICP IRS (NCZA; ATPM;) MX END

where

SC is the standard composition component name. The first 4 characters MUST be ARBM (enter ARBMC2H6SIO).

ROTH is the theoretical density of the compound in g/cm^3 (0.97).

NEL is the number of elements in the material (there are 4 elements in this material, C, H, Si, and O).

NUREG/CR-0200, Vol. 3, Rev. 6

- IVIS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator (enter a 1 because this material is defined by a chemical formula).
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the element ID number. (Tables M8.2.2 and M8.2.3 list the element ID numbers. Enter 6012 for carbon, 1001 for hydrogen, 14000 for silicon and 8016 for oxygen.)
- ATPM is the number of atoms of this element per molecule of arbitrary material. (Enter 2 for carbon, 6 for hydrogen, 1 for silicon and 1 for oxygen.)

Repeat the NCZA ATPM sequence until the chemical formula of a molecule has been defined.

MX is the mixture number (3).

The input data for this arbitrary material are given below:

ARBMC2H6SIO 0.97 4 0 1 0 6012 2 1001 6 14000 1 8016 1 3 END

EXAMPLE 4. Density and chemical equation are given.

Create a mixture 7, TBP, also known as phosphoric acid tributyl ester or tributylphosphate, $(C_4H_9O)_3PO$, having a density of 0.973 g/cm³.

SC ROTH NEL IVIS ICP IRS (NCZA; ATPM;) MX END

where

- SC is the standard composition component name. The first 4 characters MUST be ARBM (enter ARBMTBP).
- ROTH is the theoretical density of the compound in g/cm^3 (0.973).
- NEL is the number of elements in the material. (There are 4 elements in TBP, C, H, O, and P.)
- IVIS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.

- ICP is the compound indicator. (Enter a 1 because TBP is defined by a chemical formula.)
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the nuclide/isotope ID number. (Section M8.2 lists the nuclide/isotope ID numbers. Use 1001 for hydrogen, 6012 for carbon, 8016 for oxygen and 15031 for phosphorus.)
- ATPM is the number of atoms of each element in the arbitrary material. (Enter 27 for hydrogen, 12 for carbon, 4 for oxygen, and 1 for phosphorus.)

Repeat the NCZA ATPM sequence until the NEL elements have been described.

MX is the mixture number (7).

The input data for the TBP are given below:

ARBMTBP 0.973 4 0 1 0 1001 27 6012 12 8016 4 15031 1 7 END

M7.5.5.3 Solution Specifications

Solutions of fissile materials are available in the Material Information Processor. A list of the available solutions are given in Table M8.3.1. When the Material Information Processor processes a solution, it breaks the solution up into its component parts (basic standard composition specifications) and uses the specific gravity to calculate the volume fractions. If the specific gravity is not explicitly entered in the solution specification, the Material Information Processor uses a fitted equation to determine the specific gravity. The specific gravity should be entered if it is known. Section M7.4.4 contains data input details for solutions. See Sect. M7.5.9 for a comparison of three different methods of specifying a uranyl nitrate solution.

GENERIĆ EXAMPLE

The generic input data for solutions are entered as follows:

or	SC	MX	FD	AML	SPG=:	SPGR	VF	TEMP	(IZA _i	WTP _i)	END
an	SC	MX	FD	AML	DEN=	SPGR	VF	TEMP	(IZA _i	WTP _i)	END
or		SC	MX	FD	AML	VF	TEMP	$(IZA_i$	WTP _i)	END	

where

SC

is the standard composition component name.

MX	is the mixture number.
FD	is the fuel density in grams of U or Pu per liter of solution.
AML	is the acid molarity of the solution.
SPGR	is the specific gravity of the solution. THESE DATA ARE OPTIONAL AND ARE ENTERED USING THE KEYWORD SPG= or DEN=.
VF	is the density multiplier (ratio of actual to theoretical density of the solution).
TEMP	is the temperature in Kelvin.
IZA	is the isotope ID number.
WTP	is the weight percent of the isotope in the material.
Repeat the	sequence IZA WTP until the sum of the WTPs sum to 100.

Examples of solution specifications follow:

EXAMPLE 1. Fuel density, specific gravity, excess acid and isotopic abundance are given.

Create a mixture 2 that is highly enriched uranyl nitrate solution at 415 g/L, a specific gravity of 1.555 and 0.39 mg of excess nitrate per gram of solution. The uranium isotopic content is 92.6 wt % ²³⁵U, 5.9 wt % ²³⁸U, 1.0 wt % ²³⁴U, and 0.5 wt % ²³⁶U.

A generic input specification for this solution is

SC MX FD AML SPG=SPGR VF TEMP ($IZA_i WTP_i$) END

where

- SC is the standard composition component name from Table M8.3.1 of Sect. M8.3 (enter SOLNUO2(NO3)2).
- MX is the mixture number (enter 2).
- FD is the fuel density in grams of U or Pu per liter of solution (enter 415).
- AML is the acid molarity of the solution. The molecular weight of the NO₃ is 61.9895. The molarity is (0.39 mg nitrate/g soln) × (1000 cm³ soln/L soln) × (1 g/1000 mg) × (1.555 g soln/cm³ soln) = 0.60645 g excess nitrate/L soln. (0.60645 g nitrate/L soln)/(61.9895 g nitrate/mol nitrate) = 9.783 × 10⁻³ mols nitrate/L soln. The mols of nitrate per liter is identical to mols of acid per liter, which is identical to molarity.

NUREG/CR-0200, Vol. 3, Rev. 6

- SPGR is the specific gravity of the solution. The specific gravity is optional data and is entered using the keyword SPG=SPGR or DEN=SPGR. (Enter SPG=1.555 or DEN=1.555.)
- VF is the density multiplier of the solution in the mixture. (Enter a 1 because this mixture is composed entirely of this solution.)
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number. (Enter 92235 for ²³⁵U, 92238 for ²³⁸U, 92234 for ²³⁴U, and 92236 for ²³⁶U.)
- WTP is the weight percent of the isotope in the material. (Enter 92.6 for ²³⁵U, 5.9 for ²³⁸U, 1.0 for ²³⁴U, and 0.5 for ²³⁶U.)

Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the uranyl nitrate solution are

SOLNUO2(NO3)2 2 415 9.783-3 SPG=1.555 1.0 293 92235 92.6 92238 5.9 92234 1.0 92236 0.5 END

M7.5.5.4 Combinations of Basic Standard Compositions to Define a Mixture

Frequently more than one standard composition is required to define a mixture. This section contains such examples.

EXAMPLE 1. Boral from B₄C and Aluminum.

Create a mixture 6 that is boral, 15 wt % B_4C and 85 wt % Al, having a density of 2.64 g/cm³. Natural boron is used in the B_4C . Boral can be described in several ways. Example 1 of Sect. M7.5.5.5 illustrates how to describe boral using arbitrary materials. Because both B_4C and Al are available in the Standard Composition Library, it is not necessary to use arbitrary materials. Using basic standard compositions is much easier as shown by this example. Example 2 demonstrates the use of the keyword DEN= to enter the density of the mixture and avoid having to look up the theoretical density from Table M8.2.1 and calculate the density multiplier (VF). The generic specification for this example is

SC MX VF END

where

- SC is the standard composition component name (enter B4C for B_4C and AL for aluminum).
- MX is the mixture number (enter 6).

NUREG/CR-0200, Vol. 3, Rev. 6

VF is the density multiplier. (The density multiplier is the ratio of actual to theoretical density. For B₄C, the density multiplier is $(0.15 \times 2.64)/2.52$, and for the aluminum the density multiplier is $(0.85 \times 2.64)/2.6989$. The theoretical density (2.52 g/cm³ for B₄C and 2.6989 g/cm³ for aluminum) is obtained from Table M8.2.1.

The standard compositions input data for the boral are given below.

B4C 6 0.1571 END AL 6 0.8314 END

EXAMPLE 2. Boral from B_4C and Aluminum.

This is the same problem as example 1 using a different method of specifying the input data. Create a mixture 6 that is boral, 15 wt % B_4C and 85 wt % Al, having a density of 2.64 g/cm³. Natural boron is used in the B_4C . Boral can be described in several ways. Example 1 of Sect. M7.5.5.5 illustrates how to describe boral using arbitrary materials. Because both B_4C and Al are available in the Standard Composition Library, it is not necessary to use arbitrary materials. Using standard compositions is much easier as shown by this example. The generic specification for this problem is

SC MX DEN=ROTH VF END

where

SC is the standard composition component name (enter B4C for B_4C and AL for aluminum).

MX is the mixture number (enter 6).

- ROTH is the density of the material. (Enter DEN=2.64 for both B_4C and Al).
- VF is the weight fraction of the mixture that is this standard composition. (Enter 0.15 for B_4C and 0.85 for Al.)

The standard composition input data for the boral are given below:

B4C 6 DEN=2.64 0.15 END AL 6 DEN=2.64 0.85 END

EXAMPLE 3. Boral from Boron, Carbon, and Aluminum

If neither boral nor B_4C were available in the Standard Composition Library, boral could be described as follows:

Create a mixture 2 that is boral composed of 35 wt % B_4C and 65 wt % aluminum with an overall density of 2.64 g/cm³. The boron is natural boron. The generic specification for this problem is

NUREG/CR-0200, Vol. 3, Rev. 6

where

- SC is the standard composition name (enter BORON for boron, C for carbon, and AL for aluminum).
- MX is the mixture number (2 for each standard composition).
- VF is the density multiplier. (The density multiplier is the ratio of actual to theoretical density. From the Standard Composition Library, Table M8.2.1, the theoretical density of aluminum is 2.6989 g/cm³; boron is 2.373 g/cm³; and carbon is 2.30 g/cm³. The density multiplier, VF, for Al is (0.65)(2.64)/2.6989 = 0.63581. From Table M8.4.1 of Sect. M8.4, the natural boron is 18.3022 wt % ¹⁰B at 10.0129 amu and 81.6978 wt % ¹¹B at 11.0096 amu. C is 12.000 amu.

Convert the weight percents to atom percents for the natural boron where w denotes weight fraction, a denotes atom fraction, and M denotes atomic mass:

$$w_{10B} = 0.183022 = \frac{a_{10B} M_{10B}}{a_{10B} M_{10B} + a_{11B} M_{11B}} =$$

$$\frac{a_{10B}(10.0129)}{a_{10B}(10.0129) + (1 - a_{10B})(11.0096)}$$

$$a_{10}B\left[\left(\frac{10.0129}{0.183022}\right) - 10.0129 + 11.0096\right] = 11.0096$$

$$a_{10B} = 0.19764 = 19.764$$
 atom % .

Similarly,

$$a_{11}B = 80.236$$
 atom %.

The mass of the B₄C molecule is

 $[(0.19764 \times 4 \times 10.0129) + (0.80236 \times 4 \times 11.0096) + (12.000)] = 55.25045$ amu. The mass of the boron is (55.25045 - 12.000) = 43.25045 amu.

The VF of boron would be
$$\left(\frac{43.25045}{55.25045}\right) \left[\frac{(0.35)(2.64)}{2.373}\right] = 0.30481$$
.

The VF of C would be
$$\left(\frac{12.000}{55.25045}\right) \left[\frac{(0.35)(2.64)}{2.30}\right] = 0.08725$$
.

The standard composition input data for the boral follow:

AL	2	0.63581	END
BORON	2	0.30481	END
C	2	0.08725	END

EXAMPLE 4. Boral from ¹⁰B, ¹¹B, Carbon, and Aluminum

Create a mixture 2 that is boral composed of 35 wt % B₄C and 65 wt % aluminum. The boral density is 2.64 g/cm³. The boron is natural boron. The generic specification for this problem is

where

SC is the standard composition name (enter B-10 for ¹⁰B, B-11 for ¹¹B, C for carbon, and AL for aluminum).

MX is the mixture number (2 for each standard composition).

VF is the density multiplier. Enter 0.63581 for AL and 0.08725 for C as explained in Example 3 above. From the Standard Composition Library, Table M8.2.1, the theoretical density of ¹⁰B is 1.00 g/cm³ and ¹¹B is 1.00 g/cm³. As computed in Example 3, the mass of the B₄C molecule is 55.25045 amu, and the boron is 19.764 atom % ¹⁰B and 80.236 atom % ¹¹B. The mass of ¹⁰B is 10.0129 amu and the ¹¹B is 11.0096. Thus, the VF of ¹⁰B is

$$\frac{(4)(0.19764)(10.0129)}{55.25045} \left[\frac{(0.35)(2.64)}{1.00} \right] = 0.13238 .$$

NUREG/CR-0200, Vol. 3, Rev. 6

The VF of ¹¹B is

(4)(0.80236)(11.0096)	(0.35)(2.64)]	0 50002	
55.25045	1.00	-	0.57072	•

The standard composition input data for the boral are given as

AL	2	0.63581	END
B-10	2	0.13238	END
B-11	2	0.59092	END
С	2	0.08725	END

EXAMPLE 5. Specify all of the number densities in a mixture.

Create a mixture 1 that is vermiculite, defined as

hydrogen	at a number density of 6.8614-4 atoms/b-cm
oxygen	at a number density of 2.0566-3 atoms/b-cm
magnesium	at a number density of 3.5780-4 atoms/b-cm
aluminum	at a number density of 1.9816-4 atoms/b-cm
silicon	at a number density of 4.4580-4 atoms/b-cm
potassium	at a number density of 1.0207-4 atoms/b-cm
iron	at a number density of 7.7416-5 atoms/b-cm

The generic standard composition specification is

SC MX VF ADEN END

where

SC is the standard composition component name.

MX is the mixture number.

VF is the density multiplier (enter 0 because number densities are to be used).

ADEN is the number density of the standard composition.

The standard composition input data for the vermiculite are given below:

H	1	0	6.8614-4	END
0	1	0	2.0566-3	END
MN	1	0	3.5780-4	END
AL	1	0	1.9806-4	END
SI	1	0	4.4580-4	END
к	1	0	1.0207-4	END
FE	1	0	7.7406-5	END

M7.5.5.5 Combinations of Arbitrary Materials to Define a Mixture

Mixtures can usually be created using only basic standard composition specifications. Occasionally, it is convenient to create two or more arbitrary materials for a given mixture. This procedure is demonstrated in the following example.

EXAMPLE 1. Specify boral using two arbitrary materials.

Create a mixture 6 that is boral, 15 wt % B_4C and 85 wt % Al, having a density of 2.64 g/cm³. Natural boron is used in the B_4C . Boral can be described in several ways. For demonstration purposes, it will be described as an arbitrary material. This is not necessary, because both B_4C and Al are available as standard compositions. A method of describing the boral without using arbitrary materials is given in Examples 1 and 2 of Sect. M7.5.5.4. The minimum generic input specification for this arbitrary material is

SC ROTH NEL IVIS ICP IRS (NCZA; ATPM;) MX VF END

where

SC is the standard composition component name. The first four characters must be ARBM (enter ARBM-B4C for B_4C and ARBM-AL for aluminum).

ROTH is the theoretical density of the compound (2.64 g/cm³).

- NEL is the number of elements in the material (there are two elements in B_4C , B & C; there is one element in aluminum).
- IVIS is an unused variable. A value must be entered, and 1 was chosen for B4C because it is correct for older versions of SCALE, while 0 was correct for AL.
- ICP is the compound indicator (enter a 1 for the B_4C because it is defined by a chemical formula; enter a 0 for the aluminum because it is not defined by a chemical formula).
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the isotope ID number (Table M8.2.1 lists the isotope ID numbers) (enter 5000 for boron, 6012 for carbon, and 13027 for aluminum).
- ATPM is the number of atoms of each element in the arbitrary material. For the B_4C enter 4 for the boron and 1 for the carbon. For the aluminum, ATPM is the weight percent of the element in the arbitrary material. Repeat the NCZA ATPM sequence until the chemical formula of B_4C has been defined. Repeat the NCZA ATPM sequence until the weight percents sum to 100.

NUREG/CR-0200, Vol. 3, Rev. 6

- MX is the mixture number (enter 6).
- VF is the density multiplier. (Use 0.15 for the B_4C and 0.85 for the Al because the density of the boral, 2.64 g/cm³, was entered as the theoretical density, ROTH.)

The input data for the boral are given below:

ARBM-B4C	2.64	2	1	1	0	5000	4	6012	1	6	0.15	END
ARBM-AL	2.64	1	0	0	0	13027	1	00.0	6	0.85	END	

M7.5.5.6 Combinations of Solutions to Define a Mixture

This section demonstrates the use of more than one solution definition to describe a single mixture. The assumptions used in processing the cross sections are likely to be inadequate for solutions of mixed oxides of uranium and plutonium (see Sect. M7.2.5.2). Therefore, this section is given purely for demonstration purposes. The use of this method is not recommended and should be carefully evaluated for each specific application. The input data for a solution are entered as follows:

SC MX FD AML SPG=SPGR VF TEMP ($IZA_i WTP_i$) END

where

SC	is the standard composition component name from Table M8.3.1 of Sect. M8.3.
MX	is the mixture number.
FD	is the fuel density in grams of U or Pu per liter of solution.
AML	is the acid molarity of the solution.
SPGR	is the specific gravity of the solution.
VF	is the density multiplier (ratio of actual to theoretical density of the solution).
TEMP	is the temperature in Kelvin.
IZA	is the isotope ID number from Table M8.3.1.
WTP	is the weight percent of the isotope in the material.
	Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

EXAMPLE 1. Solution of uranyl nitrate and plutonium nitrate.

Note that the assumptions used in processing the cross sections are likely to be inadequate for mixed-oxide solutions. This example is given purely for demonstration purposes. Create a mixture 1 consisting of a mixture of plutonium nitrate solution and uranyl nitrate solution. The specific gravity of the mixed solution is 1.4828. The solution contains 325.89 g (U + Pu)/L soln. The acid molarity of the solution is 0.53. The solution is 77.22 wt % uranium. The isotopic abundance of the uranium is 0.008% ²³⁴U, 0.7% ²³⁵U, 0.052% ²³⁶U, and 99.24% ²³⁸U. The isotopic abundance of the plutonium is 0.028% ²³⁸Pu, 91.114% ²³⁹Pu, 8.34% ²⁴⁰Pu, 0.426% ²⁴¹Pu, and 0.092% ²⁴²Pu.

The generic input specification for this solution is

SC MX FD AML SPG=SPGR VF TEMP (IZA; WTP;) END

where

- SC is the standard composition name from Table M8.3.1 (enter SOLNPU(NO3)4 for the plutonium nitrate and SOLNUO2(NO3)2 for the uranyl nitrate).
- MX is the mixture number (enter 1 for both solutions).
- FD is the fuel density in grams of U or Pu per liter of solution (enter 325.89 for the plutonium nitrate and 325.89 for the uranyl nitrate).
- AML is the acid molarity (enter 0.53 for both solutions).
- SPGR is the specific gravity of the solution (enter SPG=1.4828 for both solutions).
- VF is the density multiplier (ratio of actual to theoretical density of the solution).

TEMP is the temperature in Kelvin (enter 293).

- IZA is the isotope ID number from Table M8.3.1 (enter 94238 for ²³⁸Pu, 94239 for ²³⁹Pu, 94240 for ²⁴⁰Pu, 94241 for ²⁴¹Pu, 94242 for ²⁴²Pu, 92234 for ²³⁴U, 92235 for ²³⁵U, 92236 for ²³⁶U, and 92238 for ²³⁸U).
- WTP is the weight percent of the isotope in the material (enter 0.028 for ²³⁸Pu, 91.114 for ²³⁹Pu, 8.34 for ²⁴⁰Pu, 0.426 for ²⁴¹Pu, 0.092 for ²⁴²Pu, 0.008 for ²³⁴U, 0.7 for ²³⁵U, 0.052 for ²³⁶U, and 99.24 for ²³⁸U).

SOLNPU(NO3)4 1	325.89	0.53	SPG=1.	4828 0	.2278	293.	94238	.028
94239	91.114	94240	8.34	94241	.426	94242	.092	END
SOLNUO2 (NO3) 2 1 92235	325.89 .700 9	0.53 2236	SPG=1. .052	4828 C 92238).7722 99.24	293. 0 END	92234	.008

NUREG/CR-0200, Vol. 3, Rev. 6

M7.5.5.7 Combinations of Basic and Arbitrary Standard Compositions to Define a Mixture

EXAMPLE 1. Burnable poison from B_4C and Al_2O_3 .

Create a mixture 6 that is a burnable poison with a density of 3.7 g/cm³ and composed of Al_2O_3 and B_4C . The material is 1.395 wt % B_4C . The boron is natural boron. This material can be easily specified using a combination of an arbitrary material to describe the Al_2O_3 and a simple standard composition to define the B_4C . The minimum generic input specification for this arbitrary material and the standard composition are

SC ROTH NEL IVIS ICP IRS (NCZA_i ATPM_i) MX VF END SC MX VF END

where

- SC is the standard composition component name (enter ARBMPOIS1 for the Al_2O_3 and enter B4C for B_4C).
- ROTH is the theoretical density of the compound (3.70 g/cm^3) .
- NEL is the number of elements in the material (there are 2 elements in Al_2O_3).
- IVIS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator (enter a 1 for the Al₂O₃ because it is defined by a chemical formula).
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the isotope ID number. Table M8.2.1 lists the isotope ID numbers. (Enter 13027 for aluminum and 8016 for oxygen.)
- ATPM is the number of atoms of each element in the arbitrary material (enter 2 for aluminum and 3 for oxygen).
- MX is the mixture number (6).
- VF is the density multiplier (the density multiplier of the B_4C is the density of the material times the weight percent, divided by the theoretical density of B_4C ((3.7 × 0.01395)/2.52) or 0.02048; the density multiplier of the Al_2O_3 is 1.0 0.01395 or 0.98605 (the theoretical density of B_4C was obtained from Table M8.2.1).

The input data for the burnable poison are given below:

ARBMPOIS1 3.70 2 0 1 0 13027 2 8016 3 6 0.98605 END B4C 6 2.048-2 END

The input can be specified using the DEN= parameter as shown below:

ARBMPOIS1 3.70 2 0 1 0 13027 2 8016 3 6 0.98605 END B4C 6 DEN=3.7 0.01395 END

The density of the Al_2O_3 can be calculated. The fraction of B_4C in the mixture is $((3.7 \times 0.01395)/2.52) = 0.02048$. The fraction of Al_2O_3 in the mixture is 1.0 - 0.02048 = 0.979518.

 $F_{Al_2O_3} * Density_{Al_2O_3} + 0.020482 * 2.52 = 3.7 = Density of the mixture$ $Density_{Al_2O_3} = \frac{3.7 - 0.020482 * 2.52}{0.979518} = 3.72467$

Input data using the density of Al_2O_3 are given below:

ARBMPOIS1 3.72467 2 0 1 0 13027 2 8016 3 6 0.97952 END B4C 6 2.048-2 END

EXAMPLE 2. Borated water from H₃BO₃ and water.

Create a mixture 2 that is borated water at 4350 parts per million by weight, resulting from the addition of boric acid, H_3BO_3 to water. The density of the borated water is 1.0078 g/cm³ (see Ref. 9). The solution temperature is 15 °C and the boron is natural boron.

An easy way to describe this mixture is to use a combination of an arbitrary material to describe the boric acid, and a basic composition to describe the water.

STEP 1. INPUT DATA TO DESCRIBE THE ARBITRARY MATERIAL

The generic input data for the boric acid arbitrary material are given below. The actual input data are derived in steps 2 through 5.

SC ROTH NEL IVIS ICP IRS (NCZA_i ATPM_i) MX VF TEMP END

where

SC is the standard composition component name.

- ROTH is the theoretical density of the compound (enter 0.025066 and see step 2 auxiliary calculations for the arbitrary material input data below).
- NEL is the number of elements in the material (enter 3, for the H, B, and O).

NUREG/CR-0200, Vol. 3, Rev. 6

- IVIS is an unused variable. A value must be entered, and 1 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator (enter 1 because the boric acid is defined by a chemical formula, H3BO3).
- IRS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- NCZA is the isotope ID number obtained from Table M8.2.1 (enter 5000 for boron, 1001 for hydrogen, 8016 for oxygen). Note: Boron is a multiple-isotope nuclide, so the ID number is obtained from Table M8.4.1.
- ATPM is the number of atoms of this element per molecule of arbitrary material (enter 1 for boron, 3 for hydrogen, and 3 for oxygen). Repeat the NCZA ATPM sequence until the NEL elements in the arbitrary material have been specified.
- MX is the mixture number (enter 2).
- VF is the density multiplier (enter 1 since the density of the H3BO3 in the borated water is used as the theoretical density).

TEMP is the temperature in Kelvin (enter 288.15).

The input data for this arbitrary material are given below.

ARBMH3BO3 0.025066 3 1 1 0 5000 1 1001 3 8016 3 2 1 288.15 END

STEP 2. AUXILIARY CALCULATIONS FOR THE ARBITRARY MATERIAL INPUT DATA

In calculating the molecular weights, use the atomic weights from SCALE, which are available in the output from COMPOZ. COMPOZ is used to create the Standard Composition Library for SCALE. The atomic weights used in SCALE may differ from some periodic tables. The SCALE atomic weights used in this problem are listed below:

H	1.0078
0	15.9954
^{10}B	10.0129
¹¹ B	11.0096

NUREG/CR-0200, Vol. 3, Rev. 6

The natural boron abundance obtained from Table M8.4.1 in Sect. M8.4 is given in weight percent:

¹⁰ B	18.30219
¹¹ B	81.69782

The molecular weight of natural boron is given by:

DEN nat B/AWT nat B = DEN ¹⁰B/AWT ¹⁰B + DEN ¹¹B/AWT ¹¹B DEN ¹⁰B = WTF ¹⁰B × DEN nat B DEN ¹¹B = WTF ¹¹B × DEN nat B

where

DEN is density in g/cm^3 ,

AWT is the atomic weight in g/mol,

WTF is the weight fraction of the isotope.

Substituting,

DEN nat B/AWT nat B = DEN nat B × ((WTF 10 B/AWT 10 B) + (WTF 11 B/AWT 11 B))

Solving for AWT nat B yields:

AWT nat $B = 1/((WTF^{10}B/AWT^{10}B) + (WTF^{11}B/AWT^{11}B))$

The atomic weight of natural boron is thus

1.0/((0.1830219 g 10 B/g nat B/10.0129 g 10 B/mol 10 B) + (0.8169782 g 11 B/g nat B/11.0096 g /mol 11 B)) = 10.81261 g nat B/mol nat B

The molecular weight of the boric acid, H₃BO₃ is given by:

 $(3 \times 1.0078) + 10.81261 + (3 \times 15.9954) = 61.8222$

Calculate the grams of boric acid in a gram of solution:

Boric acid, H₃BO₃ is 61.8222 g/mol Natural boron is 10.81261 g/mol

 $(4350 \times 10^{-6} \text{ g B/g soln}) \times (1 \text{ mol}/10.81261 \text{ g B}) \times (61.8222 \text{ g boric acid/mol}) = 0.024872 \text{ g boric acid/g soln} (2.4872 \text{ wt \%})$

NUREG/CR-0200, Vol. 3, Rev. 6

Interpolating from ref. 9, the specific gravity of the boric acid solution at 2.4872 weight percent is 1.0087. This value is based on water at 15°C. The density of pure air free water at 15°C is 0.99913 g/cm³. Therefore, the density of the boric acid solution is 1.0087×0.99913 g/cm³ = 1.0078 g soln/cm³.

Calculate ROTH, the theoretical density of the boric acid.

 $1.0078 \text{ g soln/cm}^3 \times 0.024872 \text{ g boric acid/g soln} = 0.025066 \text{ g boric acid/cm}^3$

Calculate TEMP, the temperature in Kelvin:

273.15 + 15 = 288.15

STEP 3. DESCRIBE THE BASIC STANDARD COMPOSITION INPUT DATA

The generic input data for the basic standard composition are given below:

SC MX VF TEMP END

where

SC is the standard composition component name from Table M8.2.1 (enter H2O).

MX is the mixture number (enter 2).

VF is the density multiplier (enter the volume fraction, 0.984507, and see step 4 auxiliary calculations for the basic standard composition input data below).

TEMP is the temperature in Kelvin (enter 288.15).

The input data for this standard composition are given below.

H2O 2 0.984507 288.15 END

STEP 4. AUXILIARY CALCULATIONS FOR THE BASIC STANDARD COMPOSITION INPUT DATA

Calculate the volume fraction of the water in the solution. Each gram of solution contains 0.024872 g of boric acid, so there is 0.975128 g of water in each gram of solution. The volume fraction of water is then given by:

 $(1.0078 \text{ g soln/cm}^3 \times 0.975128 \text{ g water/g soln})/0.9982 \text{ g water/cm}^3 = 0.984506$

The 0.9982 is the theoretical density of water from Table M8.2.1.

Calculate TEMP, the temperature in Kelvin:

273.15 + 15 = 288.15

STEP 5. CREATE THE MIXTURE FOR BORATED WATER

ARBMH3BO3 0.025066 3 1 1 0 5000 1 1001 3 8016 3 2 1 288.15 END H2O 2 0.984506 288.15 END

M7.5.5.8 Combinations of Basic and Solution Standard Compositions to Define a Mixture

The solution specification is the easiest way of specifying the solutions listed in Table M8.3.1. A combination of solution and basic standard compositions can be used to describe a mixture that contains more than just a solution as demonstrated in the following example.

EXAMPLE 1. Uranyl nitrate solution containing gadolinium.

Create a 4.306% enriched uranyl nitrate solution containing 0.184 g gadolinium per liter. The uranium in the nitrate is 95.65% 238 U, 0.022% 236 U, 4.306% 235 U, and 0.022% 234 U. The uranium concentration is 195.8 g U/L and the specific gravity of the uranyl nitrate is 1.254. There is no excess acid in the solution. The presence of the gadolinium is assumed to produce no significant change in the solution density. The solution is defined to be mixture 3.

The input data for a solution are entered as follows:

SC MX FD AML SPG=SPGR VF TEMP $(IZA_i WTP_i)$ END

where

- SC is the standard composition component name from Table M8.3.1 (enter SOLNUO2(NO3)2).
- MX is the mixture number (enter 3).
- FD is the fuel density in grams of U or Pu per liter of solution (enter 195.8).
- AML is the acid molarity of the solution (enter 0 because there is no excess acid in the solution).
- SPGR is the specific gravity of the solution (enter SPGR=1.254).
- VF is the density multiplier, the volume fraction of the solution that is uranyl nitrate (enter 1.0).
- TEMP is the temperature in Kelvin (enter 293).
- IZA is the isotope ID number from Table M8.31 (enter 92238 for ²³⁸U, 92236 for ²³⁶U, 92235 for ²³⁵U, and 92234 for ²³⁴U).
- WTP is the weight percent of the isotope in the material (enter 95.65 for ²³⁸U, 0.022 for ²³⁶U, 4.306 for ²³⁵U, and 0.022 for ²³⁴U).

Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the uranyl nitrate solution are given as

SOLNUO2(NO3)2 3 195.8 0 SPG=1.254 1.0 293 92238 95.65 92236 0.022 92235 4.306 92234 0.022 END

The input data for a basic standard composition are entered as follows:

SC MX VF TEMP END

where

- SC is the standard composition component name from Table M8.2.1 (enter GD for gadolinium).
- MX is the mixture number (enter 3).
- VF is the density multiplier or the ratio of actual to theoretical density. (From Table M8.2.1, the theoretical density of gadolinium is 1.0. The density of the gadolinium is 0.184 g/L or 0.000184 g/cm^3 . Therefore, enter 0.000184/1.0 = 0.000184.)

TEMP is the temperature in Kelvin (293).

The input data for basic standard composition are entered as follows:

GD 3 0.000184 293 END

The input data for the mixture are given as:

SOLNUO2(NO3)2 3 195.8 0 SPG=1.254 1.0 293 92238 95.65 92236 0.022 92235 4.306 92234 0.022

GD 3 0.000184 293 END

M7.5.5.9 Combinations of Arbitrary Material and Solution to Define a Mixture

The solution specification is the easiest way of specifying the solutions listed in Table M8.3.1. A solution specification and an arbitrary material specification can be used to describe a mixture that contains more than just a solution as demonstrated in the following example.

EXAMPLE 1. Uranyl nitrate solution with gadolinium nitrate.

Create a 4.306% enriched uranyl nitrate solution containing gadolinium in the form of $Gd(NO_3)_3$. The uranium in the nitrate is 95.65% ²³⁸U, 0.022% ²³⁶U, 4.306% ²³⁵U, and 0.022% ²³⁴U. The uranium concentration is 195.8 g U/L and the specific gravity of the uranyl nitrate is 1.254. There is no excess acid in the solution. The concentration of the gadolinium is 0.184 g/L. The solution is defined to be mixture 3.

The input data for a solution are entered as follows:

SC MX FD AML SPG=SPGR VF TEMP (IZA_i WTP_i) END

where

- SC is the standard composition component name from Table M8.3.1 (SOLNUO2(NO3)2).
- MX is the mixture number (3).
- FD is the fuel density in grams of U or Pu per liter of solution (195.8).
- AML is the acid molarity of the solution (0 because there is no excess acid in the solution).
- SPGR is the specific gravity of the solution (SPG=1.254).
- VF is the volume fraction of the mixture that is uranyl nitrate (0.99985 = 1.254/(1.254 + 0.000184)).
- TEMP is the temperature in Kelvin (293).
- IZA is the isotope ID number from Table M8.2.1 (enter 92238 for ²³⁸U, 92236 for ²³⁶U, 92235 for ²³⁵U, and 92234 for ²³⁴U).
- WTP is the weight percent of the isotope in the material (enter 95.65 for ²³⁸U, 0.022 for ²³⁶U, 4.306 for ²³⁵U, and 0.022 for ²³⁴U). Repeat the sequence IZA WTP until the sum of the WTPs sum to 100.

The input data for the uranyl nitrate solution are given as

SOLNUO2(NO3)2 3 195.8 0 SPG=1.254 0.99985 293 92238 95.65 92236 0.022 92235 4.306 92234 0.022 END

The generic input specification for an arbitrary material is given as:

SC ROTH NEL IVIS ICP IRS (NCZA_i ATPM_i) MX VF TEMP (IZA_i WTP_i) END

where

- SC is the standard composition component name. The first four characters MUST be ARBM (enter ARBMGD(NO3)3).
- ROTH is the theoretical density of the compound. (In this case, the density of gadolinium nitrate in the solution will be used. The calculated density is 0.0004016. See the density calculation given below.)

NUREG/CR-0200, Vol. 3, Rev. 6

- NEL is the number of elements in the material. (Enter 3. This material contains gadolinium, nitrogen, and oxygen.)
- IVIS is an unused variable. A value must be entered, and 0 was chosen because it is correct for older versions of SCALE.
- ICP is the compound indicator [enter 1 because the gadolinium nitrate is defined by a chemical formula, $Gd(NO_3)_3$].
- IRS is an unused variable. A value must be entered, and 1 was chosen because it is correct for older versions of SCALE.
- NCZA is the isotope ID number from Table M8.2.1. (Enter 64000 for gadolinium, 7014 for nitrogen, and 8016 for oxygen.)
- ATPM is the number of atoms of each element in the arbitrary material (enter 1 for gadolinium, 3 for nitrogen, and 9 for oxygen).Repeat the sequence NCZA ATPM until the NEL elements in the arbitrary material have been specified.
- MX is the mixture number (enter 3).
- VF is the density multiplier [enter 1.0 for the volume fraction because the density of the $Gd(NO_3)_3$ in the solution was entered as ROTH; thus the contribution to the overall mixture was already accounted for in ROTH].
- TEMP is the temperature in Kelvin (293).
- IZA is not entered because there are no multiple-isotope nuclides in this arbitrary material.
- WTP is not entered because there are no multiple-isotope nuclides in this arbitrary material.

The density of the gadolinium is given as 0.184 g/L. To describe the arbitrary material, the density of the $Gd(NO_3)_3$ is needed. The atomic weights used by COMPOZ to create the Standard Composition Library are:

Gd	157.25
Ν	14.0033
0	15.9945

Therefore, the density of the $Gd(NO_3)_3 = 0.000184 \text{ g Gd/cm}^3 \times (157.25 + 3(14.0033 + 3(15.9945))/157.25) = 0.0004016 \text{ g/cm}^3$.

The input data for this arbitrary material are given below:

ARBMGD (NO3) 3 .0004016 3 0 1 1 64000 1 7014 3 8016 9 3 1 293 END

The input data for the mixture of uranyl nitrate and gadolinium nitrate are given as:

SOLNUO2(NO3)2 3 195.8 0 SPG=1.254 0.99985 293 92238 95.65 92236 0.022 92235 4.306 92234 0.022 END ARBMGD(NO3)3 .0004016 3 0 1 1 64000 1 7014 3 8016 9 3 1 293 END

Note: Since the default temperature (293 K) is to be used, it can be omitted from the arbitrary material standard composition. The temperature must be entered if the standard composition contains a multiple-isotope nuclide whose isotopic abundance is to be specified.

M7.5.6 EXAMPLES OF UNIT CELL SPECIFICATIONS

The data that are entered as a unit cell specification are determined by the type of calculation as discussed in Sect. M7.5.4. Examples of the unit cell data follow.

M7.5.6.1 Infinite Homogeneous Medium Unit Cell Data

Unit cell data are not required for INFHOMMEDIUM. All the materials specified in the standard composition specification data are treated as infinite homogeneous media for the cross-section processing performed by BONAMI and/or NITAWL.

Cell-weighted cross sections are created by XSDRNPM when an analytical sequence that ends in X (CSAS1X, etc.) is executed. The unit cell used by XSDRNPM is assumed to consist entirely of the smallest defined mixture number. All other materials are assumed to have a number density of 1.0E-20. The most plausible reason for using XSDRNPM for an infinite homogeneous medium is to obtain the eigenvalue for an infinite mass of material. Since XSDRNPM calculates the eigenvalue for the mixture in the cell, that mixture should contain fissile material. If the smallest mixture number in the standard composition data does not contain fissile material, the mixture for the unit cell should be specified. If the unit cell does not contain fissile material, XSDRNPM will execute and calculate the eigenvalue using the 1.0E-20 number densities for the fuel.

Warning: If unit cell data are to be entered as in example 3 below, the word CELLMIX must be spelled correctly. If it is misspelled, the code will not give an error message and will attempt to use the smallest mixture number. The input data will get out of phase for CSAS and SAS sequences that expect to read data after the unit cell specification. For example, CSAS25 expects to read KENO data after the unit cell specification. If CELLMIX is misspelled, the code assumes that it is reading the KENO title card and the data reading gets out of phase.

EXAMPLE 1. A single mixture.

Consider a cylindrical configuration of 10% enriched UO_2 having a radius of 35 cm and a height of 20 cm.

Because this problem defines only one mixture, unit cell data do not need to be specified. XSDRNPM will calculate the eigenvalue of an infinite mass of 10% enriched UO_2 .

EXAMPLE 2. Two mixtures.

Consider a cylindrical steel container filled with 10% enriched UO_2 . The inside radius is 35 cm and inside height is 20 cm. The wall thickness of the steel is 0.32 cm. The UO_2 is defined as mixture 1, and the steel is defined as mixture 2.

Because this problem defines the fuel to be the smallest mixture number, unit cell data need not be specified. XSDRNPM will calculate the eigenvalue of an infinite mass of 10% enriched UO₂.

EXAMPLE 3. Two mixtures and specify the cell.

Consider a cylindrical steel container filled with 10% enriched UO₂. The inside radius is 35 cm, and inside height is 20 cm. The wall thickness of the steel is 0.32 cm. The steel is defined as mixture 1, and the UO₂ is defined as mixture 2.

If this problem is run using an analytical sequence that does not perform a cell-weighting calculation, unit cell data need not be specified.

If this problem is run using an analytical sequence that performs a cell-weighting calculation, unit cell data should be specified so XSDRNPM can calculate the eigenvalue, fluxes, and cell-weighted cross sections for the 10% enriched UO_2 . The necessary cell data are CELLMIX 2.

M7.5.6.2 LATTICECELL Unit Cell Data

Unit cell data are always required for LATTICECELL calculations. Only one unit cell can be defined in a problem. This unit cell is always one-dimensional; infinitely long cylinders, spheres, slabs. The configuration of the unit cell is determined by the specified "type of lattice." Both "regular" and "annular" cells are allowed. The "regular" cells allow spherical, cylindrical, or symmetric slab fuel regions that are constrained to a central fuel region surrounded by an optional gap, an optional clad, and an external moderator material. The "annular" cells for spherical, cylindrical, or asymmetric slab configurations are constrained to a central (second) moderator material surrounded by a fuel region having an optional gap and optional clad on both sides of the fuel with an external (first) moderator material.

"Regular" cells are specified using SQUAREPITCH, TRIANGPITCH, SPHSQUAREP, SPHTRIANGP, or SYMMSLABCELL.

"Annular" cells are specified using ASQUAREPITCH, ASQP, ATRIANGPITCH, ATRP, ASPHSQUAREP, ASSP, ASPHTRIANGP, ASTP, or ASYMSLABCELL.

The unit cell data in a LATTICECELL problem are used (1) to provide the dimensions and shape of the lump and the moderator material for resonance cross-section processing, (2) to provide lattice

corrections for the cross-section processing, and (3) to provide information used in creating cell-weighted cross sections when XSDRNPM is executed for cross-section processing.

BONAMI and/or NITAWL perform resonance cross-section processing for the materials used in the unit cell, utilizing the shape and dimensions defined in the cell. A Dancoff correction is applied to account for lattice effects. Materials that are not used in the unit cell are treated as infinite homogeneous media. If cell-weighted cross sections are to be created by XSDRNPM, an analytical sequence ending with an X must be used. XSDRNPM calculates the eigenvalue of the cell assuming a white boundary condition. The resultant fluxes are used to weight the cross sections of the materials in the cell and to create a homogenized cell-weighted cross section having the characteristics of the heterogeneous cell configuration. This cell-weighted cross section is always labeled mixture 500. Whenever XSDRNPM is executed for cross-section processing, mixtures used in the cell description cannot be used in the heterogeneous geometry data for other codes. If they are needed in the other code, additional mixtures with identical specifications must be defined in the standard composition data.

The general input data for a LATTICECELL unit cell follow:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 CLADOD MCLAD CLADID MGAP END

where

CTP

is the type of lattice. This defines both the shape of the fuel lump and the spacing configuration of the lattice. The LATTICECELL configurations are listed below.

(1) "Regular cells"

SQUAREPITCH	- cylindrical fuel in a square-pitched array
TRIANGPITCH	- cylindrical fuel in a triangular-pitched array
SPHSQUAREP	- spherical fuel in a square-pitched array
SPHTRIANGP	- spherical fuel in a square-triangular array
SYMMSLABCELI	- fuel slabs identically moderated on each side

(2) "Annular cells"

ASQUAREPITCH	- annular cylinders in a square-pitched array
ASQP	- annular cylinders in a square-pitched array
ATRIANGPITCH	- annular cylinders in a triangular-pitched array
ATRP	- annular cylinders in a triangular-pitched array
ASPHSQUAREP	- annular spherical fuel in a square-pitched array
ASSP	- annular spherical fuel in a square-pitched array
ASPHTRIANGP	- annular spherical fuel in a triangular-pitched array
ASTP	- annular spherical fuel in a triangular-pitched array
ASYMSLABCELL	- fuel slabs moderated differently on each side

PITCH is the center-to-center spacing of the fuel lumps (in centimeters).

FUELOD is the outside dimension (diameter or thickness) of the fuel in centimeters.

NUREG/CR-0200, Vol. 3, Rev. 6
MFUEL is the mixture number of the fuel.

MMOD is the mixture number of the moderator or first moderator.

MMOD2 is the mixture number of the second moderator. ENTER ONLY FOR ANNULAR CELLS.

- TKMOD2 is the dimension (diameter or thickness) of the second moderator in centimeters. ENTER ONLY FOR ANNULAR CELLS.
- CLADOD is the outside dimension of the clad in centimeters. OMIT IF NO CLAD.
- MCLAD is the mixture number of the clad. OMIT IF NO CLAD.
- CLADID is the outside dimension of the gap or the inside dimension of the clad in centimeters. OMIT IF NO GAP.
- MGAP is the mixture number. OMIT IF NO GAP.

Examples of "regular" LATTICECELL unit cells are given in Examples 1–5, and examples of "annular" LATTICECELL unit cells are given in Examples 6–10 below.

EXAMPLE 1. SQUAREPITCH (infinitely long cylindrical pins in a square-pitched array). Consider a large array of UO₂ fuel pins having a fuel O.D. of 0.79 cm, a 0.015-cm gap, and a 0.06-cm-thick aluminum clad. The array is a square-pitched array with a center-to-center spacing of 1.60 cm and is completely flooded with water. In the standard composition data, UO₂ is defined to be mixture 1, the aluminum clad is defined to be mixture 2, and the water moderator is defined to be mixture 3.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD CLADOD MCLAD CLADID MGAP END

where

- CTP is the type of lattice (SQUAREPITCH)
- PITCH is the center-to-center spacing in cm (1.60)
- FUELOD is the outside diameter of the fuel in cm (0.79)
- MFUEL is the fuel mixture number (1)
- MMOD is the moderator mixture number (3)

CLADOD is the outside diameter of the clad in cm (0.79 + 2*0.015 + 2*0.06 = 0.94)

NUREG/CR-0200, Vol. 3, Rev. 6

MCLAD is the clad mixture number (2)

CLADID is the inside diameter of the clad or the outside diameter of the gap in cm (0.79 + 2*0.015 = 0.82)

MGAP is the gap mixture number (enter 0 for a void)

SQUAREPITCH 1.60 0.79 1 3 0.94 2 0.82 0 END

EXAMPLE 2.

TRIANGPITCH (infinitely long cylinders in a triangular-pitched array). Consider an array of UO_2 pins with a diameter of 0.635 cm. The outside diameter of the clad is 0.78 cm. There is no gap between the fuel and clad. The array is a triangular-pitched array with a center-to-center spacing of 5.0 cm and is flooded with water. In the standard composition data, the UO_2 is defined to be mixture 1, the aluminum is defined to be mixture 2, and the water moderator is defined to be mixture 3.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD CLADOD MCLAD END where

CH).

PITCH is the center to center spacing in cm (5.0).

FUELOD is the outside diameter of the fuel in cm (0.635).

MFUEL is the fuel mixture number (1).

MMOD is the moderator mixture number (3).

CLADOD is the outside diameter of the clad in cm (0.78).

MCLAD is the clad mixture number (2).

TRIANGPITCH 5.0 .635 1 3 .78 2 END

EXAMPLE 3. SPHSQUAREP (spheres in a square-pitched array).

Consider a large array of U_3O_8 spheres having a fuel O.D. of 18.6 cm, with an aluminum clad that is 0.18 cm thick. The array is a triangular-pitched array with a center-to-center spacing of 19.0 cm and is unmoderated. In the standard composition data, the aluminum is defined to be mixture 1 and the U_3O_8 is defined to be mixture 2. There is no moderator material, so 0 will be used to represent a void.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD CLADOD MCLAD END

where

	CTP	is the type of lattice (SPHSQUAREP).
	PITCH	is the center-to-center spacing in cm (19.0).
	FUELOD	is the outside diameter of the fuel in cm (18.6).
	MFUEL	is the fuel mixture number (2).
	MMOD	is the moderator mixture number (0).
	CLADOD	is the outside diameter of the clad in cm $(18.6 + 2*0.18 = 18.96)$.
	MCLAD	is the clad mixture number (1).
	SPHSQUA	REP 19.0 18.6 2 0 18.96 1 END
EXAMPLE 4.	SPHTRIAN	NGP (spheres in a triangular-pitched array).

Consider a large array of U_3O_8 spheres having a fuel O.D. of 18.6 cm, with an aluminum clad that is 0.18 cm thick. The array is a triangular-pitched array with a center-to-center spacing of 19.0 cm and is flooded with water. In the standard composition data, the aluminum is defined to be mixture 1, the U_3O_8 is defined to be mixture 2, and the water moderator is defined to be mixture 3.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD CLADOD MCLAD END

where

CTP is the type of lattice (SPHTRIANGP).

PITCH is the center-to-center spacing in cm (19.0).

NUREG/CR-0200, Vol. 3, Rev. 6

FUELOD is the outside diameter of the fuel in cm (18.6).

MFUEL is the fuel mixture number (2).

MMOD is the moderator mixture number (3).

CLADOD is the outside diameter of the clad in cm (18.6 + 2*0.18 = 18.96).

MCLAD is the clad mixture number (1).

SPHTRIANGP 19.0 18.6 2 3 18.96 1 END

EXAMPLE 5. SYMMSLABCELL (slabs repeated in a symmetric fashion).

Consider a system of alternating slabs of U_3O_8 and low-density water. Each U_3O_8 region is 1.27 cm thick, and each water region is 15.0 cm thick. In the standard composition data, the U_3O_8 is defined to be mixture 1, and the low-density water is defined to be mixture 2.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD END

where

СТР	is the type of lattice (SYMMSLABCELL).					
PITCH	is the center-to-center spacing in cm $(1.27 + 15.0 = 16.27)$.					
FUELOD	is the outside diameter of the fuel in cm (1.27) .					
MFUEL	is the fuel mixture number (1).					
MMOD	is the moderator mixture number (2).					
SYMMSLABCELL 16.27 1.27 1 2 END						

EXAMPLE 5a. SYMMSLABCELL (slabs repeated in a symmetric fashion).

Consider a system of alternating slabs of U_3O_8 and low-density water. Each U_3O_8 region is 1.27 cm thick, and each water region is 15.0 cm thick. The U_3O_8 regions have a 0.01-cm gap and 0.24-cm-thick aluminum clad on each face. In the standard composition data, the U_3O_8 is defined to be mixture 1, the aluminum is defined to be mixture 2, and the low-density water is defined to be mixture 3.

The input data for this LATTICECELL description are entered as follows:

NUREG/CR-0200, Vol. 3, Rev. 6

CTP PITCH FUELOD MFUEL MMOD CLADOD MCLAD CLADID MGAP END

where

- CTP is the type of lattice (SYMMSLABCELL).
- PITCH is the center-to-center spacing in cm (15.0 + 1.27 + 2*0.01 + 2*0.24 + 15.0 = 16.77).
- FUELOD is the thickness of the fuel in cm (1.27).
- MFUEL is the fuel mixture number (1).
- MMOD is the moderator mixture number (3).
- CLADOD is the outside dimension of the clad in cm (1.27 + 2*0.01 + 2*0.24 = 1.77).
- MCLAD is the clad mixture number (2).
- CLADID is the inside dimension of the clad in cm (1.27 + 2*0.01 = 1.29).
- MGAP is the gap mixture number (0 is used to represent a void).
- SYMMSLABCELL 16.77 1.27 1 3 1.77 2 1.29 0 END

EXAMPLE 6. ASQUAREPITCH (infinitely long annular cylindrical rods in a square-pitched array). Consider an array of uranium metal pipes having an inside diameter of 5.0 cm and an outer diameter of 6.75 cm. A gap of 0.025 cm and a clad of 0.25 cm exist on both the inner and outer surfaces of the fuel. The fuel rods are arranged in a square-pitched array. The center-to-center spacing is 8.0 cm. The array is completely flooded with water. In the standard composition data, the uranium metal is defined to be mixture 1, the clad is mixture 2, the inner moderator is Plexiglas and is mixture 3, the gap is a void, and the external moderator is water, defined to be mixture 4.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 CLADOD MCLAD CLADID MGAP END

where

CTP is the type of lattice (SQUAREPITCH).

PITCH is the center-to-center spacing in cm (8.0).

FUELOD is the outside diameter of the fuel in cm (6.75).

MFUEL is the fuel mixture number (1).

- MMOD is the moderator mixture number (4, the external moderator).
- MMOD2 is the second moderator mixture number (3, the moderator material in the innermost region).
- TKMOD2 is the diameter of the moderator in the innermost region in cm (5.0 2*0.025 2*0.25 = 4.45)).
- CLADOD is the outside diameter of the clad in cm (6.75 + 2*0.025 + 2*0.25 = 7.30).

MCLAD is the clad mixture number (2).

CLADID is the outside diameter of the gap (6.75 + 2*0.025 = 6.80).

MGAP is the gap mixture number (enter 0 for a void).

ASQUAREPITCH 8.0 6.75 1 4 3 4.45 7.3 2 6.8 0 END or ASQP 8.0 6.75 1 4 3 4.45 7.3 2 6.8 0 END

EXAMPLE 6a. ASQUAREPITCH (infinitely long annular cylindrical rods in a square-pitched array). Consider an array of uranium metal pipes having an inside diameter of 5.0 cm and an outer diameter of 6.75 cm arranged in a square-pitched array. The center-to-center spacing is 8.0 cm. The array is completely flooded with water. In the standard composition data, the uranium metal is defined to be mixture 1, and the water moderator is defined to be mixture 2.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 END

where

CTP is the type of lattice (ASQUAREPITCH).

PITCH is the center-to-center spacing in cm (8.0).

FUELOD is the outside diameter of the fuel in cm (6.75).

MFUEL is the fuel mixture number (1).

MMOD is the moderator mixture number (2).

NUREG/CR-0200, Vol. 3, Rev. 6

MMOD2 is the second moderator mixture number (2, the moderator material in the innermost region).

TKMOD2 is the diameter of the moderator in the innermost region in cm (5.0).

ASQUAREPITCH 8.0 6.75 1 2 2 5.0 END or ASQP 8.0 6.75 1 2 2 5.0 END

NOTE: This problem uses the same moderator material in the center and outside the uranium pipes. This will cause the code to print a warning message.

EXAMPLE 7. ATRIANGPITCH (infinitely long annular cylindrical rods in a triangular-pitched array). Consider an array of uranium metal pipes having an inside diameter of 8.0 cm and a wall thickness of 0.75 cm arranged in a square-pitched array. The center-to-center spacing is 9.75 cm. The array is completely flooded with water. A Plexiglas rod fills the center of the uranium pipe. In the standard compositions data, the uranium metal is defined to be mixture 1, the Plexiglas is defined to be mixture 2, and the external water moderator is mixture 3.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 END

where

CTP is the type of lattice (ATRIANGPITCH).

PITCH is the center-to-center spacing in cm (9.75).

FUELOD is the outside diameter of the fuel in cm (8.0 + 2*0.75 = 9.5).

MFUEL is the fuel mixture number (1).

MMOD is the mixture number of the first (external) moderator (3).

MMOD2 is the mixture number of the second moderator (2, the moderator in the innermost region).

TKMOD2 is the diameter of the moderator in the innermost region in cm (8.0).

ATRIANGPITCH 9.75 9.5 1 3 2 8.0 END

ATRP

or

9.75 9.5 1 3 2 8.0 END

EXAMPLE 8. ASPHSQUAREP (spherical annuli in a square-pitched array).

Consider a large array of hollow U_3O_8 spheres having a fuel I.D. of 8.0 cm and O.D. of 18.6 cm. The centers of the spheres are empty. The external moderator is water. The spheres are stacked in a square-pitched array with a center-to-center spacing of 19.0 cm. In the standard composition data, the U_3O_8 is defined to be mixture 1, and the water is defined to be mixture 2. The centers of the spheres are defined to be void, mixture 0.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 END

where

СТР	is the type of lattice (SPHSQUAREP).									
PITCH	is the center-to-center spacing in cm (19.0).									
FUELOD	is the outside diameter of the fuel in cm (18.6).									
MFUEL	is the fuel mixture number (1).									
MMOD	is the moderator mixture number (2).									
MMOD2	is the mixture number of the second moderator (0, the moderator in the innermost region).									
TKMOD2	is the diameter of the moderator in the innermost region in cm (8.0).									
ASPHSQU.	AREP 19.0 18.6 1 2 0 8.0 END									
ASSP	19.0 18.6 1 2 0 8.0 END									

EXAMPLE 9. ASPHTRIANGP (spheres in a triangular-pitched array).
 Consider a large array of hollow U₃O₈ spheres having a fuel I.D. of 8.0 cm and a fuel O.D. of 18.6 cm. A 0.18-cm-thick aluminum clad exists inside and outside the fuel. The interior of each sphere is void. The array is a triangular-pitched array with a center-to-center spacing of 19.0 cm and is flooded with water. In the standard composition data, the aluminum is defined to be mixture 1, the U₃O₈ is defined to be mixture 2, and the water moderator is defined to be mixture 3. The void in the center of

each sphere is entered as mixture 0.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 CLADOD MCLAD END

where

СТР	is the type of lattice (ASPHTRIANGP).									
PITCH	is the center-to-center spacing in cm (19.0).									
FUELOD	is the outside diameter of the fuel in cm (18.6).									
MFUEL	is the fuel mixture number (2).									
MMOD	is the moderator mixture number (3).									
MMOD2	is the mixture number of the second moderator (0, the moderator in the innermost region).									
TKMOD2	is the diameter of the moderator in the innermost region in cm $(8.0 - 2*0.18 = 7.64)$.									
CLADOD	is the outside diameter of the clad in cm $(18.6 + 2*0.18 = 18.96)$.									
MCLAD	is the clad mixture number (1).									
ASPHTRL	ANGP 19.0 18.6 2 3 0 7.64 18.96 1 END									
ASTP	19.0 18.6 2 3 0 7.64 18.96 1 END									

EXAMPLE 10.

ASYMSLABCELL (repeated slabs having different moderator conditions on the left and right boundaries).

Consider a system of slabs of U_3O_8 reflected by 8.0 cm of full-density water on the left face and 16.0 cm of low-density water on the right face. Each U_3O_8 region is 1.27 cm thick. In the standard composition data, the U_3O_8 is defined to be mixture 1, the full density water is defined to be mixture 2, and the low-density water is mixture 3.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 END where CTP is the type of lattice (ASYMSLABCELL).

PITCH is the center-to-center spacing between fuel slabs, in cm (1.27 + 8.0/2 + 16.0/2 = 13.27).

NUREG/CR-0200, Vol. 3, Rev. 6

FUELOD is the outside diameter of the fuel in cm (1.27).

MFUEL is the fuel mixture number (1).

MMOD is the moderator mixture number (2).

MMOD2 is the second moderator material (3).

TKMOD2 is the thickness of the second moderator in cm (8.0).

ASYMSLABCELL 13.27 1.27 1 2 3 8.0 END

EXAMPLE 10a. ASYMSLABCELL (repeated slabs having different moderator conditions on the left and right boundaries). Consider a system of slabs of U_3O_8 reflected by 8.0 cm of full-density water on the left face and 16.0 cm of low-density water on the right face. Each U_3O_8 region is 1.27 cm thick and has a 0.01-cm gap and 0.24-cm-thick aluminum clad on each face. In the standard composition data, the U_3O_8 is defined to be mixture 1, the full-density water is defined to be mixture 2, the low-density water is mixture 3, and the aluminum is mixture 4.

The input data for this LATTICECELL description are entered as follows:

CTP PITCH FUELOD MFUEL MMOD MMOD2 TKMOD2 CLADOD MCLAD CLADID MGAP END

where

CTP is the type of lattice (ASYMSLABCELL).

- PITCH is the distance from the center of the first moderator to the center of the second moderator in cm (1.27 + 2*0.01 + 2*0.24 + 8.0/2 + 16.0/2 = 13.77).
- FUELOD is the fuel thickness in cm (1.27).
- MFUEL is the fuel mixture number (1).
- MMOD is the first moderator mixture number (2).
- MMOD2 is the second moderator material (3).
- TKMOD2 is the thickness of the second moderator in cm (8.0).
- CLADOD is the outside dimension of the clad in cm (1.27 + 2*0.01 + 2*0.24 = 1.77).
- MCLAD is the clad mixture number (4).

CLADID is the outside dimension of the gap in cm (1.27 + 2*0.01 = 1.29).

MGAP is the gap mixture number (0).

ASYMSLABCELL 13.77 1.27 1 2 3 8.0 1.77 4 1.29 0 END

M7.5.6.3 MULTIREGION Unit Cell Data

Unit cell data are always required for MULTIREGION calculations. Only one unit cell can be defined in a problem. The LATTICECELL description is rigorously constrained as to the placement of fuel, gap, clad, and moderator. MULTIREGION allows complete freedom in the placement of the materials but is constrained by shape (i.e., only concentric regions of the same shape are allowed). With the exception of the external cell boundary, MULTIREGION is capable of describing all of the configurations available in LATTICECELL. However, it does not account for lattice effects, so it is best used for problems where lattice effects are not important.

The materials specified in the unit cell are treated according to the specified shape, zone dimensions, and the moderator conditions for each zone. The resonance cross-section processing ignores lattice geometry effects.

The general input data for a MULTIREGION unit cell follow:

CS BR BL ORGN DY DZ END (MXZ RZ XMOD) END ZONE

where

CS is the geometry shape. All regions in a MULTIREGION cell have the same shape and are one-dimensional. There are no restrictions on the placement of materials. The available geometric shapes are the following:

SLAB all regions are slabs

CYLINDRICAL all regions are infinitely long concentric cylinders

SPHERICAL all regions are concentric spheres

BUCKLEDSLAB all regions are slabs having the same finite height.

BUCKLEDCYL all regions are concentric cylinders having the same finite height.

BR is the right (outside) boundary condition. This is required data for a BUCKLEDSLAB or BUCKLEDCYL and is optional for other geometries. The default value is VACUUM. The available choices are

VACUUM Nothing returns at the boundary

NUREG/CR-0200, Vol. 3, Rev. 6

REFLECTED Provides mirror image return at the boundary. DO NOT USE FOR CYLINDRICAL OR SPHERICAL

- PERIODIC Provides periodic reflection at the boundary. DO NOT USE FOR CYLINDRICAL OR SPHERICAL
- WHITE Provides isotropic return at the boundary.

is the left (inside) boundary condition. These data are required for a BUCKLEDSLAB or BUCKLEDCYL and are optional for other geometries. The default value is REFLECTED. The available choices are the following:

VACUUM Nothing returns at the boundary

REFLECTED Provides mirror image return at the boundary. RECOMMENDED FOR CYLINDRICAL OR SPHERICAL

PERIODIC Provides periodic reflection at the boundary. DO NOT USE FOR CYLINDRICAL OR SPHERICAL

WHITE Provides isotropic return at the boundary.

- ORGN is the location of the left boundary of a slab relative to the axis that is perpendicular to the slab. The default is 0.0. DO NOT CHANGE FOR SPHERICAL OR CYLINDRICAL GEOMETRY.
- DY is the buckling height in centimeters. ENTER ONLY FOR BUCKLEDSLAB OR BUCKLEDCYL.
- DZ is the buckling depth in centimeters. ENTER ONLY FOR BUCKLEDSLAB.
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone.

RZ is the outside dimension of the zone.

- XMOD is an optional entry specifying the external moderator index. These data were required for older versions of SCALE but can be omitted for this version. If the user chooses to input this data, a valid option must be specified. The choices are
 - NOEXTERMOD There are no moderating materials in an adjacent zone.

ONEEXTERMOD There is moderating material in one adjacent zone.

TWOEXTERMOD There are moderating materials in both adjacent zones.

Repeat the sequence (MXZ RZ XMOD) until all of the zones in the geometry have been described.

NUREG/CR-0200, Vol. 3, Rev. 6

BL

END ZONE terminates the MULTIREGION unit cell data.

Examples of MULTIREGION unit cells follow:

EXAMPLE 1. SLAB.

Consider a 5-cm-thick slab of fuel (mixture 1) with 0.5 cm of aluminum (mixture 3) and 15 cm of water (mixture 2) on each face. The unit cell data for this problem could be entered as follows:

CS BR BL ORGN END (MXZ RZ XMOD) END ZONE

where

CS is the geometry shape (SLAB).

BR is the right (outside) boundary condition (VACUUM).

- BL is the left (inside) boundary condition (REFLECTED because it is easier to describe only half of the system and reflect at the mid-plane of the fuel.
- ORGN is the location of the left boundary of a slab in cm (0).
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone [1 for the first zone (fuel), 3 for the second zone (aluminum), and 2 for the third zone (water)].
- RZ is the outside dimension of the zone. (2.5 for the half thickness of fuel in the first zone, 3.0 = 2.5 + 0.5 for the outer dimension of the aluminum in the second zone, and 18.0 = 2.5 + 0.5 + 15.0 for the outer dimension of the water in the third zone.)
- XMOD is the optional external moderator index and has been omitted.

Repeat the sequence (MXZ RZ XMOD) until all of the zones in the geometry have been described.

END ZONE

The unit cell data for this problem can be entered as follow:

SL	AB	VACUU	М	RE	FLECTI	ED	0	END	
1	2.5	3	3.	. 0	2	18.	0	END	ZONE

NUREG/CR-0200, Vol. 3, Rev. 6

EXAMPLE 2. CYLINDRICAL.

Consider a large array of fuel pins. Each pin is UO_2 (mixture 1) with a radius of 0.465 cm, a 0.009-cm gap (mixture 0), and a Zircaloy clad (mixture 9) 0.062 cm thick, centered in a water (mixture 8) region surrounded by a flooded support structure represented by homogenized water and Zircaloy (mixture 10). The outer radius of the water-Zircaloy region is 0.844 cm and it is 0.037 cm thick. This problem cannot be described as a LATTICECELL problem because the LATTICECELL configuration is limited to fuel-gap-clad-cell boundary and this problem is fuel-gap-clad-moderator-outer region. A white boundary condition on the outer boundary is a reasonable representation of a large array. However, lattice effects are not accounted for when MULTIREGION is used, so the user will have to enter the appropriate Dancoff factor in the optional parameter data.

The unit cell data for this problem could be entered as follows:

CS BR BL ORGN END (MXZ RZ XMOD) END ZONE

where

- CS is the geometry shape (CYLINDRICAL).
- BR is the right (outside) boundary condition (WHITE).
- BL is omitted because the default is REFLECTED and is appropriate for CYLINDRICAL.
- ORGN is omitted because it applies only to slabs.
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone [1 for the first zone (fuel), 0 for the second zone (gap), 9 for the third zone (clad), 8 for the fourth zone (water), and 10 for the outer water-Zircalloy region].
- RZ is the outside dimension of the zone. (0.465 for the radius of the fuel in the first zone, 0.474 for the outer radius of the gap, 0.536 for the outer radius of the Zircaloy clad, 0.807 for the outer radius of the water moderator, and 0.844 for the outer radius of the outer radius of
- XMOD is the optional external moderator index and has been omitted.

Repeat the sequence (MXZ RZ XMOD) until all of the zones in the geometry have been described.

END ZONE

NUREG/CR-0200, Vol. 3, Rev. 6

The input data for this unit cell can be entered as follows:

CYLINDRICAL WHITE END 1 0.465 0 0.474 9 0.536 8 0.807 10 0.844 END ZONE

EXAMPLE 3. SPHERICAL.

Describe a bare sphere of uranium metal 8.72 cm in radius. The uranium metal is defined to be mixture 1. The unit cell data for this problem could be entered as follows:

CS END (MXZ RZ XMOD) END ZONE

where

- CS is the geometry shape (SPHERICAL). Other geometry parameters need not be entered because the defaults are sufficient.
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone (1 for the first zone (uranium)).
- RZ is the outside dimension of the zone in cm (8.72 for the radius of the uranium in the first zone).
- XMOD is the optional external moderator index and has been omitted. Repeat the sequence (MXZ RZ XMOD) until all of the zones in the input have been described.

END ZONE

The input data for this unit cell can be entered as follows:

SPHERICAL END 1 8.72 END ZONE

EXAMPLE 4. BUCKLEDSLAB.

Consider a plate of fuel 4 cm thick, reflected by 3 cm of water on both faces. The plate is 32 cm tall and 16 cm deep. The fuel is mixture 1 and the water is mixture 2.

The unit cell data for this problem could be entered as follows:

CS BR BL ORGN DY DZ END (MXZ RZ XMOD) END ZONE where

CS is the geometry shape (BUCKLEDSLAB).

NUREG/CR-0200, Vol. 3, Rev. 6

- BR is the right (outside) boundary condition (VACUUM).
- BL is the left boundary condition. (BL must be entered as REFLECTED even though REFLECTED is the default because the buckling height and depth must be entered.)
- ORGN is the location of the left boundary on the x-axis (0.0 this value must be entered even though it is the default value because the buckling height and depth must be entered).
- DY is the buckling height in cm (32.0).
- DZ is the buckling depth in cm (16.0).
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone (1 for the first zone (fuel), and 2 for the second zone (water)).
- RZ is the outside dimension of the zone (2.0 cm for the half thickness of the fuel in the first zone, and 5.0 cm (4/2 + 3) for the outer dimension of the water in zone 2).
- XMOD is the optional external moderator index and has been omitted.

Repeat the sequence (MXZ RZ XMOD) until all of the zones in the geometry have been described.

END ZONE

The unit cell data for this problem follow:

BUCKLEDSLAB VACUUM REFLECTED 0.0 32 16.0 END 1 2.0 2 5.0 END ZONE

EXAMPLE 5. BUCKLEDCYL.

Consider a solution of uranyl nitrate contained in a cylindrical stainless-steel container reflected by 33 cm of water. The inside dimensions of the steel container are 7.62 cm in radius and 130.0 cm tall. The steel is 0.15 cm thick. The uranyl nitrate is defined to be mixture 1, the steel is defined to be mixture 2, and the water is defined to be mixture 3.

The unit cell data for this problem could be entered as follows:

CS BR BL ORGN DY END (MXZ RZ XMOD) END ZONE

where

CS

is the geometry shape (BUCKLEDCYL).

NUREG/CR-0200, Vol. 3, Rev. 6

- BR is the right (outside) boundary condition (VACUUM).
- BL is the left boundary condition. (The left boundary is at the center of the cylinder and must be entered as REFLECTED even though REFLECTED is the default because the buckling height must be entered.)
- ORGN is the location of the left boundary on the x-axis (enter 0.0 even though it is the default value because data will be specified after it).
- DY is the buckling height in cm (130.0).
- END terminates the geometry parameters.
- MXZ is the mixture number of the zone [enter 1 for the first zone (fuel), 2 for the second zone (stainless steel) and 3 for the third zone (water)].
- RZ is the outside dimension of the zone in cm. (Enter 7.62 for the radius of the fuel in the first zone, 7.77 for the outer radius of the stainless container and 40.77 cm for the outer radius of the water reflector.)
- XMOD is the optional external moderator index and has been omitted.

Repeat the sequence (MXZ RZ XMOD) until all of the zones in the geometry have been described.

END ZONE

The unit cell data for this problem follow:

BUCKLEDCYL VACUUM REFLECTED 0.0 130.0 END 1 7.62 2 7.77 3 40.77 END ZONE

M7.5.7 OPTIONAL PARAMETER DATA OR MORE DATA

The optional parameter data provide a means of providing additional information or alternative data to the cross-section processing codes. The data that are provided to XSDRNPM are used only for cross-section processing. Optional parameter data will be read if the words "MORE DATA" are entered. As many parameters as are needed can be entered. Each parameter entry must be separated from the others by one or more blanks. The optional parameter data are terminated by entering the word "END." The parameter data that can be entered are listed below.

ISN= This keyword allows XSDRNPM to use an order of angular quadrature other than 8 when it is executed to perform cell-weighted cross-section processing. The value entered with this keyword is ISN, the 8th entry of the 1\$ array in XSDRNPM. Section M7.2.5.7 describes the automatic quadrature generator.

- SZF= This keyword allows the user to alter the number of XSDRNPM mesh intervals provided by the Material Information Processor. The default value of SZF is 1.0. The Material Information Processor automatically provides the mesh intervals used in XSDRNPM. See Sect. M7.2.5.6 for details about the automatic mesh generator. It is not uncommon for an excessive number of mesh intervals to be generated. The keyword SZF= allows a means of reducing or increasing the number of mesh intervals. A number between zero and 1.0 will provide more mesh intervals, and a number greater than 1.0 will reduce the number of mesh intervals. If SZF \leq 0, the user specifies the number of intervals in each zone immediately following the MORE DATA block. If SZF > 0, the interval spacing is generated as described in M7.2.5.6; while if SZF <0, the intervals are equally spaced in each zone.
- IIM= This keyword allows the user to set the maximum number of inner iterations for XSDRNPM. The value entered with this keyword is IIM, the 11th entry in the XSDRNPM 1\$ array. The default value of IIM is 20.
- ICM= This keyword is used to set the maximum number of outer iterations for XSDRNPM. The value entered with this keyword is ICM, the 12th entry in the XSDRNPM 1\$ array. The default value of ICM is 25.
- EPS= This keyword is used to set the overall convergence criteria for XSDRNPM. The default value is 0.0001. EPS is the first entry in the XSDRNPM 5* array. The convergence criteria are discussed in Sect. M7.2.5.8.
- PTC= This keyword is used to set the point convergence criteria (the scalar flux convergence criteria) for XSDRNPM. The default value is 0.0001. PTC is the second entry in the XSDRNPM 5* array.
- BKL= This keyword is used to set the buckling factor, BF, for XSDRNPM. The default value is 1.420892 and is two times the multiplier on the "extrapolation" distance used to determine where a linearly extrapolated line from the asymptotic flux shape will go to zero. For slabs, the extrapolation distance is approximately $0.71 \lambda_{rr}$ or approximately 1.42. The buckling factor, BF, is the 6th entry in the XSDRNPM 5* array.
- IUS=This keyword is used to set the upscatter scaling factor for XSDRNPM. The default value is
0. IUS=0 does not utilize upscatter scaling. IUS=1 uses upscatter scaling to accelerate the
solution and/or speed convergence. IUS= is used to set the 11th entry, IFCT, of the XSDRNPM
3\$ array.
- RES= This keyword is used to supply resonance data to BONAMI and NITAWL for cross-section processing. This option must be used if the problem needs more than one unit cell description or contains more than one fissile mixture. See Sect. M7.5.10 for an example illustrating the use of this feature.

The data are entered in the form: RES= mm fgeom dimn [rinner] where

NUREG/CR-0200, Vol. 3, Rev. 6

mm is the mixture number, fgeom is the lump shape (SLAB, CYLINDER, SPHERE), dimn is the dimension, in cm, of the lump (thickness of the slab or radius of the sphere or cylinder), and rinner is the optionally entered inner radius of an annular cylinder or sphere.

DAN(mm)= This keyword is used to supply Dancoff data to BONAMI and NITAWL for cross-section processing.

The data are entered in the form: DAN(mm)=dancoff where

mm is the mixture number and dancoff is the Dancoff factor to be applied to mixture mm. The easiest way to obtain the Dancoff factor is to run a CSASN problem and specify **PARM=CHECK**. The Dancoff is printed as part of the RESONANCE DATA. See Sect. M7.5.10 for an example demonstrating the use of this feature.

BAL= This keyword controls the balance table edits in XSDRNPM. The default value is FINE. The available options are listed below.

BAL=FINE Prints the fine-group balance tables. This corresponds to IPBT=0 in the XSDRN 2\$ array.

BAL=NONE Suppresses all balance table print. This corresponds to IPBT= -1 in the XSDRN 2\$ array.

BAL=ALL Prints the fine- and broad-group balance tables. This corresponds to IPBT=1 in the XSDRN 2\$ array.

- DY= This keyword allows the user to specify the first transverse dimension in centimeters used in a buckling correction to calculate leakage normal to the principal direction (i.e., the height of a slab or a cylinder). This correction is already included in the unit cell data for a MULTIREGION problem. Therefore, DY should only be specified for a LATTICECELL problem. DY= corresponds to DY, the 7th entry in the XSDRN 5* array.
- DZ= This keyword allows the user to specify the second transverse dimension in centimeters used in a buckling correction (i.e., the width or depth of a slab). This correction is already included in the unit cell data for a MULTIREGION problem. Therefore, DY should only be specified for a LATTICECELL problem utilizing slab geometry. DZ= corresponds to DZ, the 8th entry in the XSDRN 5* array.
- COF= This keyword is used to set the diffusion coefficient option for transverse leakage corrections in XSDRNPM. This variable corresponds to IPN, the 7th variable in the XSDRNPM 3\$ array. The default value is 0. The available options are listed below.
 - COF=0 Set a transport cross section for each zone.
 - COF=1 Use a spatially averaged diffusion coefficient for all zones.
 - COF=2 Use a diffusion coefficient for all zones that is one-third the diffusion coefficient determined from the spatially averaged transport cross section for all zones.
 - COF=3 Use a flux and volume weighting across all zones.

- FRD= This keyword is used to set the unit number from which the binary flux guess for XSDRNPM will be read. It corresponds to setting IFN, the 4th entry in the XSDRNPM 3\$ array to a value greater than 3. In SCALE, it is prudent to choose a unit number in the 30's, 40's, or 50's so other necessary data sets are not impacted. The user is responsible for supplying job control language data that are necessary for reading the flux data set.
- FWR= This keyword is used to set the unit number on which the fluxes generated by XSDRNPM will be written in binary format. It corresponds to setting ID1, the 2nd entry in the XSDRNPM 2\$ array to a value greater than 3. In SCALE, it is prudent to choose a unit number in the 30's, 40's, or 50's so other necessary data sets are not impacted. The user is responsible for supplying job control language data that are necessary for creating and saving the flux data set.
- ADJ= Adjoint mode flag for XSDRNPM. Set to 1 to cause XSDRNPM to solve the adjoint problem.
- NBU= Unit on which balance tables will be written from XSDRNPM. If the balance tables file is to be saved, enter the unit number where they are to be written. The user is responsible for supplying job control data necessary to create and save the balance table dataset.
- WGT= Cross-section weighting flag for XSDRNPM. The default is to do cross-section weighing. If a user needs to not do cross-section weighting, then a value of 0 should be entered.
- ZMD(iz)= Zone width modifiers for an XSDRNPM search problem. This allows entering a zone width modifier for zone iz in the XSDRNPM search problem. The zone width data are entered in the form: ZMD(iz)=modifier

where iz is the zone number and modifier is the width modifier.

- INT(iz)= Number of mesh intervals for zone iz in XSDRNPM. The default is to calculate the number. The data are entered as: INT(iz)=number where iz is the zone number and number is the number of mesh intervals.
- KEF= The desired value of k_{eff} for an XSDRNPM zone width search. The default is 1.0.
- KFM= The first eigenvalue modifier used in an XSDRNPM search. This value is used to make the first change in the XSDRNPM search. The default value is -0.1.

DAB= This keyword is used to set the number of direct-access data blocks for the Material Information Processor direct-access device on unit 8. The default number of direct-access data blocks is 200. This feature can be used if the problem fails with the message LMP005 DA ERROR -RELATIVE BLOCK NOT IN DATA SET. RELATIVE BLOCK NUMBER IS nnn. Set DAB= to a value larger than nnn. For example, if nnn is 201, 300 or 400 would be an appropriate value to try.

NUREG/CR-0200, Vol. 3, Rev. 6

AXS= This keyword is used to set the unit number on which the macroscopic ANISN library is written. If the unit number is input as 7, the ANISN library will be written in a free-form card-image format. For any other unit number, the library will be written in binary format. The user is responsible for supplying job control language data that are necessary for creating and saving the ANISN cross-section library. The only control sequences that can create an ANISN crosssection library are CSASI, CSASIX, and SAS3.

MSH= This keyword is used to set the maximum number of mesh points per resonance. This is the maximum number of mesh points allowed for the Simpson's rule integration in NITAWL, and is the MSCM variable in NITAWL's 1\$ array. The default value sent from the Material Information Processor to NITAWL is 2001. See Sects. F2.3.3, F2.3.4, and F2.7 for additional information.

- MLV= This keyword is used to set the highest resonance l-value for which a self-shielding calculation will be performed in NITAWL. It is passed to NITAWL as variable IQM in the 1\$ array. The default value on the Material Information Processor is 2. See Sects. F2.3.7 and F27 for additional information.
- ID1= Scalar flux print control. The default value is -1, which suppress printing the scalar fluxes in XSDRNPM. See Section F3.5, 2\$array, variable ID1 for allowed values and corresponding actions.
- COLL This keyword is used to activate the collapse of the thermal groups into one group for the shielding sequences. To activate this feature, simply enter COLL in MORE DATA. For example, MORE DATA COLL END would activate this feature. MORE DATA EPS=.00005 COLL END DATA would tighten the convergence criteria for XSDRNPM and collapse all of the thermal groups into one group.

M7.5.7.1 Sample Optional Parameter Data

Consider a problem in which it is desirable to increase the number of inner iterations in XSDRN to 30 and to tighten the overall convergence criteria to a value of 0.000075. This could be accomplished by entering the data as follows:

MORE DATA IIM=30 EPS=0.000075 END

The order of the data entry is not important. The data must start with MORE or MORE DATA and end with an END. It need not be entered as a single "card," but can be strung out across several "cards." However, a keyword cannot be separated across "card" boundaries. The terminator for the optional parameter data, END, must not begin in column 1 unless you assign a name to it. An alternative method of entering the above data is given below.

MORE DATA IIM=30 EPS=0.000075 END MORE

or

MORE DATA IIM=30 EPS=0.000075 END MORE DATA

M7.5.8 EXAMPLES OF COMPLETE MATERIAL INFORMATION PROCESSOR INPUT DATA

The Material Information Processor data consist of:

(1) TITLE

(2) CROSS-SECTION LIBRARY NAME
(3) TYPE OF CALCULATION
(4) STANDARD COMPOSITIONS SPECIFICATION DATA
(5) UNIT CELL SPECIFICATION
(6) OPTIONAL PARAMETER DATA (MORE DATA)

Items 1 through 6 have been discussed in Sects. M7.5.1 through M7.5.7.

M7.5.8.1 Infinite Homogeneous Medium Input Data

Examples of Material Information Processor input data for infinite homogeneous media problems are given below.

EXAMPLE 1. Default Cell Definition.

Consider a cylindrical billet of 20 wt % enriched UO₂, having a density of 10.85 g/cc that is 26 cm in diameter and 26 cm tall.

The average mean-free path in the uranium dioxide is on the order of 2.5 cm. Because only a small fraction of the billet is within a mean-free path of the surface, the material can be treated as an infinite homogeneous medium. The Material Information Processor data utilizing the 27-group ENDF/B-IV SCALE cross-section library follows:

20% ENRICHED UO2 BILLET 27GR INF 0.99 UO2 293 92235 1 20 92238 80 END END COMP

The volume fraction used for the UO₂, 0.99, is calculated by dividing the actual density yy the theoretical density obtained from Table M8.2.1 (10.85/10.96). Since the enrichment was specified as 20%, it is reasonable to assume that the remainder is 238 U.

An alternative input data description follows:

20% ENRICHED UO2 BILLET 27G INF UO2 1 DEN=10.85 1 293 92235 20 92238 80 END END COMP

NUREG/CR-0200, Vol. 3, Rev. 6

EXAMPLE 2. Specify the Cell Definition.

Consider a 5-1 Plexiglas bottle with an inner radius of 9.525 cm and inner height of 17.78 cm that is filled with highly enriched uranyl nitrate solution at 415 g/L, a specific gravity of 1.555, and 0.39 mg of excess nitrate per gram of solution. The uranium isotopic content of the nitrate solution is 92.6 wt % ²³⁵U, 5.9 wt % ²³⁸U, 1.0 wt % ²³⁴U, and 0.5 wt % ²³⁶U.

The size of the nitrate solution is on the order of 16 to 20 cm in diameter and height. The average mean-free path in the nitrate solution is on the order of 0.5 cm. Therefore, infinite homogeneous medium is an appropriate choice for this problem.

If the Plexiglas is defined to be mixture 1 and the uranyl nitrate solution is defined to be mixture 2, unit cell data must be entered. This is done by entering the word "CELLMIX" followed by the mixture that is to be used to define the cell. The Material Information Processor data for this problem utilizing the 16-group Hansen-Roach cross-section library is given below.

SET UP 5 LITER URANYL NITRATE SOLUTION IN A PLEXIGLAS CONTAINER HANSEN-ROACH INFHOMMEDIUM PLEXIGLAS 1 END SOLNUO2(NO3)2 2 415 9.783-3 SPG=1.555 1.0 293 92235 92.6 92238 5.9 92234 1.0 92236 0.5 END END COMP CELLMIX 2

M7.5.8.2 LATTICECELL Input Data

Examples of Material Information Processor input data for LATTICECELL problems are given below.

EXAMPLE 1. SQUAREPITCH.

Consider an infinite planar array (infinite in x and y and 1 layer in z) of 20 wt % enriched U metal rods with a 1-cm pitch. Each fuel rod is bare uranium metal, $0.75 \text{ cm OD} \times 30.0 \text{ cm}$ long. The rods are submerged in water.

Because the diameter of the fuel rod, 0.75 cm, is only slightly larger than the average meanfree path in the uranium metal, approximately 0.5, and because the configuration is a regular array, LATTICECELL is the appropriate choice for proper cross-section processing. The Material Information Processor data using the 27-group ENDF/B-IV cross-section library follows:

INFINITE PLANAR ARRAY OF 20% U METAL RODS 27GROUP LATTICECELL URANIUM 1 1 293 92235 20 92238 80 END 2 H20 END END COMP 1.0 0.75 1 2 SQUAREPITCH END

EXAMPLE 2. SQUAREPITCH.

Consider an infinite planar array (infinite in x and y and 1 layer in z) of PWR-like fuel pins of 2.35% enriched UO₂ clad with zirconium. The density of the UO₂ is 9.21 g/cc. The fuel in each pin is 0.823 cm in diameter, the clad is 0.9627 cm in diameter, and the length of each pin is 366 cm. The fuel pins are separated by 0.3124 cm of water in the horizontal plane.

Because the diameter of the fuel rod, 0.823 cm, is only slightly larger than the average meanfree path in the uranium metal, approximately 0.5, and because the configuration is a regular array, LATTICECELL is the appropriate choice for proper cross-section processing. The Material Information Processor data using the 16-group Hansen-Roach cross-section library follows:

```
PWR-LIKE
          FUEL
                BUNDLE
HANSEN-ROACH
             LATTICECELL
                    92235
                           2.35
                                 92238
                                        97.65
                                               END
UO2
      1
        .84
              293.
ZR
        1
           END
     2
            END
      3
         1
H2O
END COMP
                            1 3 .9627
                                         2
                                            END
              1.2751
                      .823
SQUAREPITCH
```

EXAMPLE 3. SPHTRIANGP.

Consider an infinite array of spherical pellets of 2.67% enriched UO_2 with a density of 10.3 g/cc and a diameter of 1.0724 cm arranged in a "triangular" pitch, flooded with borated water at 4350 WPPM. The boron is natural boron, the borated water is created by adding boric acid, H₃BO₃, and has a density of 1.0078 g/cc. The temperature is 15°C, and the pitch is 1.1440 cm. The standard composition data for the borated water are given in Example 2 of Sect. M7.5.5.7.

Because the diameter of the fuel pellet, 1.0724 cm, is smaller than the average mean-free path in the UO₂, approximately 1.5 cm, and because the configuration is a regular array, LATTICECELL is the appropriate choice for proper cross-section processing.

The density fraction for the UO₂ is the ratio of actual to theoretical density (10.3/10.96 = 0.9398). Assume that the U is all ²³⁵U and ²³⁸U.

To describe the boric acid, first calculate the grams of boric acid in a gram of solution: Boric acid, H_3BO_3 , is 61.8222 g/mol Natural boron is 10.81261 g/mol $(4350 \times 10^{-6} \text{ g B/g soln}) \times (1 \text{ mol}/10.81261 \text{ g B}) \times (61.8222 \text{ g boric acid/mol}) = 0.0248715 \text{ g}$

boric acid/g soln.

Then calculate the theoretical density of the boric acid. 1.0078 g soln/cc \times 0.024871 g boric acid/g soln = 0.025066 g boric acid/cc

Then calculate the volume fraction of the water in the solution. Each gram of solution contains 0.024871 g of boric acid, so there is 0.975129 g of water in each gram of solution.

The volume fraction of water is then given by: (1.0078 g soln/cc \times 0.975129 g water/g soln)/0.9982 g water/cc = 0.984507 The 0.9982 is the theoretical density of water from Table M8.2.1.

The temperature in degrees Kelvin is 273 + 15 = 288.

The Material Information Processor data using the 27-group ENDF/B-IV cross-section library follows:

SPHERICAL PELLETS IN BORATED WATER 27GR LATT U02 1 .9398 288 92235 2.67 92238 97.33 END ARBMH3BO3 0.025066 3 1 1 0 5000 1 1001 3 8016 3 2 1 288 END H20 2 0.984507 288 END END COMP SPHTRIANGP 1.1440 1.0724 1 2 END

M7.5.8.3 MULTIREGION Input Data

Examples of Material Information Processor input data for MULTIREGION problems are given below.

EXAMPLE 1. SPHERICAL.

Consider a small highly enriched uranium sphere supported by a Plexiglas collar in a tank of water. The uranium metal sphere has a diameter of 13.1075 cm, is 97.67% enriched, and has a density of 18.794 g/cc. The cylindrical Plexiglas collar has a 4.1275-cm-radius central hole, extends to a radius of 12.7 cm and is 2.54 cm thick. The water filled tank is 60 cm in diameter.

The density fraction of the uranium metal is the ratio of actual to theoretical density, where the theoretical density is obtained from Table M8.2.1. Thus the density multiplier is 18.794/19.05 = 0.9866. The abundance of uranium is not stated beyond 97.67% enriched, so it is reasonable to assume the remainder is ²³⁸U. The Plexiglas collar is not significantly different from water and does not surround the fuel, so it can be ignored. If it is ignored, the problem becomes a one-dimensional geometry that can be defined using the MULTIREGION type of calculation, and the eigenvalue of the system can be obtained without additional data by executing CSAS1X. However, the Plexiglas has been included in this data so it can be passed to a code such as KENO V.a which can describe the geometry rigorously. Using the 27-group ENDF/B-IV cross-section library, the Material Information Processor data follow:

SMALL WATER REFLECTED SPHERE ON PLEXIGLAS COLLAR 27GR MULT URANIUM 1 .9866 293. 92235 97.67 92238 2.33 END PLEXIGLAS 2 END H20 3 END END COMP SPHERICAL END 1 6.55375 3 30.0 END ZONE

> NUREG/CR-0200, Vol. 3, Rev. 6

EXAMPLE 2. BUCKLEDSLAB.

This example features a dense 93.2% enriched uranyl-fluoride solution inside a Plexiglas container immersed in water. The fissile solution contains 570.8 g of heavy metal per liter and has no excess acid. The critical thickness of the fuel is 5.384 cm. The finite height of the fuel slab is 147.32 cm, and the depth is 71.58 cm. The Plexiglas container is 1.905 cm thick and is reflected by 20.32 cm of water.

The half thickness of the fuel (2.692) will be used with a reflected left boundary and a vacuum right boundary. The Material Information Processor data using the 27-group ENDF/B-IV cross-section library are given below:

CRITICAL SLAB EXPERIMENT USING URANYL-FLUORIDE SOLUTION 27GR MULTIREGION SOLNUO2F2 570.8 92235 1 0 1 293 93.2 92238 6.8 END 2 PLEXIGLAS END H20 3 END END COMP BUCKLEDSLAB VACUUM REFLECTED 0 71.58 147.32 END 2.692 2 4.597 3 24.917 END ZONE

M7.5.9 THREE METHODS OF SPECIFYING A SOLUTION

The standard composition specification data offer flexibility in the choice of input data. This section illustrates three methods of specifying the same solution. Section M7.5.9.1 lists the number densities calculated by the Material Information Processor for each method.

Create a mixture 3 that is aqueous uranyl nitrate solution:

 $UO_2(NO_3)_2$, sp. gr. = 1.555 0.2669 g U/g-soln., 0.415 g U/cc; excess nitrate = 0.39 mg/g-soln Uranium isotopic content: 92.6 wt % U-235 5.9 wt % U-238 1.0 wt % U-234 and 0.5 wt % U-236

In calculating the molecular weights, use the atomic weights from SCALE, which are available in the output from COMPOZ. COMPOZ was run to create the Standard Composition Library for SCALE on your computer. The atomic weights used in SCALE may differ from some periodic tables. The SCALE atomic weights used in this problem are listed as follows:

H	1.0078
0	15.9954
Ν	14.0033
U-234	234.0406
U-235	235.0442
U-236	236.0458

NUREG/CR-0200, Vol. 3, Rev. 6

U-238 238.0510

Three methods of describing the uranyl nitrate solution will be demonstrated. Method 1 is more rigorous, method 2 is easier and is as accurate, and method 3 is approximate.

METHOD 1:

This method involves breaking the solution into its component parts [(HNO_3 , $UO_2(NO_3)_2$, and H_2O)] and entering the basic standard composition specifications for each.

- 1. Calculate the density of the HNO₃ 0.39×10^{-3} g NO₃/g soln × ((62.997 g HNO₃/mol HNO₃)/(61.990 g NO₃/mol NO₃)) × 1.555 g soln/cc soln = 6.16×10^{-4} g HNO₃/cc soln.
- 2. Calculate the density fraction of HNO3 (actual density/theoretical density). In the Standard Composition Library the theoretical density of HNO₃ is $1.0 \times 6.16 \times 10^{-4}/1.0 = 6.16 \times 10^{-4}$.
- 3. Calculate the molecular weight of the uranium

The number of atoms in a mol of uranium is the sum of the number of atoms of each isotope in the mol of uranium.

Let AU = the average molecular weight of uranium, g U/mol U GU = the density of uranium in g/cc

Then the number of atoms in a mol of uranium = $(6.023 \times 10+23 * 10-24 * GU)/AU$ or 0.6023 * GU/AU

The weight fraction of each isotope is the weight % * 100

Therefore, F235 = 0.926, the weight fraction of U-235 in the U F238 = 0.059, the weight fraction of U-238 in the U F236 = 0.005, the weight fraction of U-236 in the U F234 = 0.010, the weight fraction of U-234 in the U A235 = 235.0442, the molecular weight of U-235 A238 = 238.0510, the molecular weight of U-238 A236 = 236.0458, the molecular weight of U-236 A234 = 234.0406, the molecular weight of U-234

Then the number of atoms of isotopes in a mol of uranium = $6.023 \times 10+23 \times 10-24 \times ((GU \times F235/A235) + (GU \times F238/A238) + GU \times F236/A236) + (GU \times F234/A234))$

or

0.6023*GU * (0.926/235.0442 + 0.059/238.0510 + 0.005/236.0458 + 0.010/234.0406)

Because the number of atoms of uranium equals the sum of the atoms of isotopes,

0.6023 * GU/AU = 0.6023 * GU *(0.926/235.0442 + 0.059/238.0510 + 0.005/236.0458 + 0.010/234.0406)

1/AU = 0.926/235.0442 + 0.059/238.0510 + 0.005/236.0458 + 0.010/234.0406

AU = 235.2144

- 4. Calculate the molecular weight of the $UO_2(NO_3)_2$. 235.2144 + (8 × 15.9954) + (2 × 14.0033) = 391.184 g $UO_2(NO_3)_2$ /mol
- 5. Calculate the density of $UO_2(NO_3)_2$ 0.415 g U/cc × ((391.184 g UO_2(NO_3)_2/mol)/(235.2144 g U/mol)) = 0.69018 g UO_2(NO_3)_2/cc soln.
- 6. Calculate the density fraction (actual density/theoretical density) of UO₂(NO₃)₂.
 (In the Standard Composition Library the theoretical density of UO₂(NO₃)₂ is given as 2.2030 g/cc.) The density fraction is 0.69018/2.2030 = 0.31329
- 7. Calculate the amount of water in the solution 1.555 g soln/cc soln - 6.16×10^4 g HNO₃/cc soln - 0.69018 g UO₂(NO₃)₂LL/cc soln = 0.8642 g H₂O/cc soln.
- Calculate the density fraction (actual density/theoretical density) of water. (In the Standard Composition Library the theoretical density of water is given as 0.9982 g/cc.) The density fraction is 0.8642/0.9982 = 0.86575

The solution specification data follow:

```
HNO3
        3
            6.16 - 4
                      293
                           END
UO2 (NO3) 2
                 .31329
            3
                         293
                              92235
                                     92.6 92238
                                                   5.9
                                                         92234
                                                                1.0
     92236
             0.5 END
H20
       3
           .86575
                    293
                          END
```

METHOD 2:

This method utilizes the solution option available in the standard composition specification data. Because the specific gravity is specified in the input data, this method should yield correct number densities that should agree with method 1 except for calculational round-off. The option allowing the specific gravity to be input in the solution data was not available prior to SCALE 4.0.

- 1. Calculate the fuel density 0.415 g U/cc is 415 g U/L.
- 2. The molecular weight of nitrate NO_3 is 61.9895.

NUREG/CR-0200, Vol. 3, Rev. 6

3. Calculate the molarity of the solution.

0.39 mg nitrate/g soln × 1000 cc soln/L soln × 1 g/1000 mg × 1.555 g soln/cc soln = 0.60645 g excess nitrate/L soln

A 1-molar solution is 1 mol of acid/L of solution:

(For nitric acid 1 molar is 1 normal because there is only one atom of hydrogen per molecule of acid in HNO_{3} .)

 $(0.60645 \text{ g nitrate/L soln})/(61.9895 \text{ g NO}_3/\text{mol NO}_3) = 9.783 \times 10^{-3} \text{ mol nitrate/L is identical to mol of acid/L is identical to molarity.}$

4. The density fraction of the solution is 1.0. Do not try to use the density (specific gravity) of the solution divided by the theoretical density of $UO_2(NO_3)_2$ from the Standard Composition Library for your density multiplier. The $UO_2(NO_3)_2$ listed there is the solid, not the solution.

The solution specification data follow:

SOLNUO2(NO3)2 1 415 9.783-3 SPG=1.555 1.0 293 92235 92.6 92238 5.9 92234 1.0 92236 0.5 END

METHOD 3:

This method utilizes the solution option available in the standard composition specification data without specifying the specific gravity. Because the specific gravity is not specified in the input data, the specific gravity is approximated by the Material Information Processor. The option allowing the specific gravity to be input in the solution data was not available prior to SCALE 4.0.

- 1. Calculate the fuel density 0.415 g U/cc is 415 g U/L.
- 2. The molecular weight of nitrate NO_3 is 61.9895.
- 3. Calculate the molarity of the solution $0.39 \text{ mg pirate/g solp} \times 1000 \text{ co solp/l solp} \times 1 \text{ g/}1000 \text{ mg x 1 f}$

0.39 mg nitrate/g soln × 1000 cc soln/L soln × 1 g/1000 mg × 1.555 g soln/cc soln = 0.60645 g excess nitrate/L soln.

A 1-molar solution is 1 mol of acid/L of solution:

(For nitric acid 1 molar is 1 normal because there is only one atom of hydrogen per molecule of acid in HNO_3 .)

 $(0.60645 \text{ g nitrate/L soln})/(61.9895 \text{ g NO}_3/\text{mol NO}_3) = 9.783 \times 10^{-3} \text{ mols nitrate/L is identical to mols}$ of acid/L is identical to molarity.

4. The density multiplier of the solution is 1.0. Do not try to use the density (specific gravity) of the solution divided by the theoretical density of $UO_2(NO_3)_2$ from the Standard Composition Library for your density fraction. The $UO_2(NO_3)_2$ listed there is the solid, not the solution.

The solution specification data follow:

```
SOLNUO2(NO3)2 1 415 9.783-3 1.0 293 92235 92.6 92238 5.9
92234 1.0 92236 0.5 END
```

M7.5.9.1 Comparison of Number Densities from the Three Methods

The number densities of methods 1 and 2 should agree within the limits of the input data. The density multipliers in method 1 are 5 digits and the density multipliers in method 2 are 4 digits. Therefore, the number densities calculated by the two methods should agree to 4 or 5 digits. Methods 2 and 3 are identical except for the specification of the specific gravity. It is specified as input data in method 2 and is calculated by the Material Information Processor for method 3. The differences in the two specific gravities are responsible for the difference in the hydrogen and oxygen number densities. It is recommended that method 2 be used when the specific gravity of the solution is given.

MET	HOD 1	MET	HOD 2	METHOD 3			
NUCLIDE NO.	ATOM DENSITY	NUCLIDE NO.	ATOM DENSITY	NUCLIDE NO.	ATOM DENSITY		
92235	9.84590E-04	92235	9.84599E-04	92235	9.84599E-04		
92238	6.19407E-05	92238	6.19413E-05	92238	6.19413E-05		
92234	1.06783E-05	92234	1.06784E-05	92234	1.06784E-05		
92236	5.29380E-06	92236	5.29385E-06	92236	5.29385E-06		
7014	2.13089E-03	7014	2.13092E-03	7014	2.13092E-03		
8016	3.74127E-02	8016	3.74130E-02	8016	3.74826E-02		
1001	5.77959E-02	1001	5.77964E-02	1001	5.79356E-02		

M7.5.10 MULTIPLE FISSILE CELLS IN A SINGLE PROBLEM

Consider a problem that involves three different UO_2 fuel assemblies: a 1.98%-enriched assembly, a 2.64%-enriched assembly, and a 2.96%-enriched assembly. All fuel rods are UO_2 at 10.138 g/cc and are 0.94 cm in diameter. The Zircaloy-4 clad has an inside radius of 0.4875 cm and an outside radius of 0.545 cm. The rod pitch is 1.44 cm. Each fuel assembly is a 15×15 array of fuel pins with water holes, instrumentation holes, and burnable poison rods. For cross-section processing, the presence of the water holes, instrumentation holes, and burnable poison rods in the assemblies are ignored.

The Material Information Processor allows only one unit cell specification per problem. Therefore, a special effort must be made to provide the correct cross-section processing for the three different fuels. This can be achieved by specifying one of the fuel mixtures in the unit cell and entering the resonance and Dancoff data for the other two mixtures in the optional parameter data (MORE DATA).

To obtain the Dancoff data necessary for correct cross-section treatment of the three different fuels, run CSASN with PARM=CHECK specified. Note that **PARM=CHECK** must begin beyond column 10. Because all three fuels have the same physical dimensions (gap, clad, moderator and pitch), their Dancoff

factors will be identical. Therefore, only one CSASN run is required. Find the Dancoff factors in the output. The final Material Information Processor data will specify one of the fuel mixtures in the unit cell and the Dancoff factors for the other two fuels will be entered in MORE DATA. This is done using the keyword DAN(_)=. The correct resonance information for the two fuel mixtures that are not specified in the unit cell must also be entered in MORE DATA by specifying the mixture number, physical shape, and fuel lump dimension via the keyword RES=.

The input data used to determine the Dancoff factors are given below. It is not necessary to specify all three fuel mixtures in the data. Only mixtures that are used in the unit cell data are required for the purpose of determining the Dancoff factors. This problem will determine the Dancoff factors for mixture 3 because it is used in the unit cell data (SQUAREPITCH).

=CSASN		PARM=CH	IK								
DEMONSTRAT	ION	PROBLEN	1 WITH	MUL	TIPLE	RESC	NANCE	COI	RRECTI	ONS REC	UIRED
27GROUPNDF4	1]	LATTICEC	ELL								
UO2	1	.925	300	92	235	1.98	92238	3 9	98.02	END	
UO2	2	.925	300	92	235	2.64	92238	3 9	97.36	END	
UO2	3	.925	300	92	235	2.96	92238	3 9	97.04	END	
ZIRCALLOY	4	1.0	300	EN	D						
H2O	5	1.0	300	EN	D						
END COMP											
SQUAREPITCH END	H	1.44 .	.94 3	5	1.09	4	.975	0	END		

A portion of the computer printout from the above problem is given below. Locate the Dancoff factor for mixture 3 (2.31161E-01). The value 1092235 is the ²³⁵U of mixture 1, 2092235 is the ²³⁵U of mixture 2, 3092235 is the ²³⁵U of mixture 3. Notice that Dancoff factors are calculated ONLY for the mixtures that are used in the unit cell data.

RESONANCE	DATA	(3*	ARRAY)
-----------	------	-----	--------

ID	TEMP	GEOM	ABAR	DANCOFF	INNER RAD.	NSUB0	ITA	M1	SIGMA1	IT1	M2	SIGMA2	IT2	LUMP VOL
1092235	300.00	0 (0.00000E+00	0.00000E+00	0.00000E+00	4.53377E-04	1	15.991	3.87761E+02	: 1	238.051	6.02510E+02	2 1	1.0000
2092235	300.00	0 0	0.0000E+00	0.00000E+00	0.00000E+00	6.04497E-04	1	15.991	2.90846E+02	: 1	238.051	4.48840E+02	2 1	1.0000
3092235	300.00	24	.70000E-01	2.31161E-01	0.00000E+00	6.77765E-04	1	15.991	2.59414E+02	1	238.051	3.99001E+02	: 1	1.0000
1092238	300.00	0	0.00000E+00	0.00000E+00	0.00000E+00	2.21610E-02	: 1	15.991	7.93296E+00	1	235.044	2.43505E-01	. 1	1.0000
2092238	300.00	0 (D.00000E+00	0.00000E+00	0.00000E+00	2.20115E-02	1	15.991	7.98741E+00) 1	235.044	3.26875E-01	11	1.0000
3092238	300.00	24	.70000E-01	2.31161E-01	0.00000E+00	2.19391E-02	1	15.991	8.01408E+00	1	235.044	3.67704E-01	. 1	1.0000
4040302	300.00	2 5	5.45000E-01	4.39454E~01	4.87500E-01	4.33078E-02	1	0.000	0.0000E+00	0	0.000	0.00000E+00) (1.0000

The following Material Information Processor data will calculate the Dancoff factors and resonance data for fuel mixture 1 because they are used in the unit cell data. The Dancoff factor and resonance data provided in MORE DATA will be used for fuel mixtures 2 and 3. Thus, appropriate cross-section processing will be achieved for all three fuel mixtures. The Dancoff factor for mixtures 2 and 3 was determined above. The resonance data are determined from the problem description (cylindrical pins with a radius of 0.47 cm).

DEMONSTRATI	ION	PROBLEM	WITH	MULTIPL	E RESC	NANCE	CORRECTI	ONS	REQUIRED
27GROUPNDF4	l	LATTICEC	ELL						
UO2	1	.925	300	92235	1.98	92238	98.02	END	
UO2	2	.925	300	92235	2.64	92238	97.36	END	

UO2	3	.925	300		9223	5 2	.96	92238	9	7.04	END
ZIRCALLOY	4	1.0	300		END						
SS304	6	1.0	300		END						
H2O	5	1.0	300		END						
END COMP											
SQUAREPITCH	Ŧ	1.44	.94	1	5	1.09	4	.975	0	END	
MORE DATA											
RES=2 CYL	INDE	IR	.47	Ι	DAN (2) = 0.	2311	.61			
RES=3 CYL	INDE	IR	.47	Γ) NA) = 0.	2311	.61			
END MORE			•								

If the geometric configuration or density of the fuel or moderator for each of the three fuel cells is different, a CSASN run should be made for the two configurations that will not be specified in the final unit cell description. These two CSASN runs will provide Dancoff data to be entered in the MORE DATA portion of the final Material Information Processor data. The third configuration is specified in the unit cell data. Thus, two CSASN runs should be made with PARM=CHK specified. The first run specifies the first configuration in the unit cell. The second run specifies the second configuration in the unit cell. The Dancoff factors are located in the CSASN computer printouts and specified in MORE DATA in the final Material Information Processor data using the third fuel cell configuration in the unit cell. In addition, the shape and dimensions of those two fuel lumps must be entered in MORE DATA. In this way, the cross sections are correctly processed for the three different fuel cell configurations.

M7.5.11 MULTIPLE FISSILE MIXTURES IN A SINGLE PROBLEM

Extreme caution should be exercised when an attempt is made to treat multiple fissile mixtures in a single problem. The Material Information Processor and the SCALE cross-section processing codes do not adequately treat multiple fissile mixtures having significant interaction with each other in the resonance range.

The following problem involves large units having the bulk of their fissile material more than one mean-free path away from the surface of the unit. The interaction between the units that occurs in the resonance range is a very small fraction of the total interaction because an overwhelming percentage of the interaction occurs deep within each unit. Therefore, the resonance range interaction between the units can be ignored, and the cross-section processing in the resonance range can be considered adequate for this particular application.

Consider a problem that consists of four 20.96-kg 93.2%-enriched uranium metal cylinders, density 18.76 g/cc, and four 5-1 Plexiglas bottles filled with highly enriched uranyl nitrate solution at 415 g/L, a specific gravity of 1.555, and 0.39 mg of excess nitrate per gram of solution. The isotopic content of the uranium metal is 93.2 wt % ²³⁵U, 5.6 wt % ²³⁸U, 1.0 wt % ²³⁴U, and 0.2 wt % ²³⁶U. The uranium isotopic content of the nitrate solution is 92.6 wt % ²³⁵U, 5.9 wt % ²³⁸U, 1.0 wt % ²³⁴U and 0.5 wt % ²³⁶U. The size of the metal cylinders is between 10 and 12 cm in diameter and height, and the size of the nitrate solution is on the order of 16 and 20 cm in diameter and height. The average mean-free path in the uranium metal is on the order of 1.5 cm, and the average mean free path in the nitrate solution is on the order of 0.5 cm. Therefore, infinite homogeneous medium is an appropriate choice for this problem.

See Examples 1 and 3 of Sect. M7.5.5.1 for data input details for the Plexiglas and uranium metal. See Example 1 of Sect. M7.5.5.3 for data input details for the uranyl nitrate solution. The Material Information Processor data for this problem using the 16-group cross-section library follow:

```
UP
        4 AOUEOUS
                  4 METAL
SET
                            IN
                               CSAS25
HANSEN-ROACH
               INFHOMMEDIUM
URANIUM
          1
             0.985 293
                         92235 93.2 92238 5.6 92234 1.0 92236
                                                                  0.2 END
SOLNUO2 (NO3)2
              2 415 9.783-3 SPG=1.555
                                         1.0 293 92235
                                                         92.6 92238
                                                                     5.9
                             92234 1.0
                                         92236 0.5
                                                    END
PLEXIGLAS
           3 END
END COMP
```

M7.5.12 CELL WEIGHTING

Cell-weighted cross sections are created by XSDRNPM when an analytical sequence that ends in X (CSAS1X, CSAS2X, etc.) is executed. The unit cell description is then used by XSDRNPM to calculate the eigenvalue of the cell. For LATTICECELL problems, a white boundary condition is assumed. For MULTIREGION problems, the boundary conditions specified in the unit cell are used. The resultant fluxes are used to weight the cross sections of the materials in the cell and create a homogenized cell-weighted cross section having the characteristics of the heterogeneous cell configuration. This cell-weighted cross section is always labeled mixture 500. Whenever XSDRNPM is executed for cross-section processing, mixtures used in the cell description cannot be used in the heterogeneous geometry data for other codes. If they are needed in other codes, additional mixtures with identical specifications must be defined in the standard composition data.

M7.5.12.1 Cell weighting an infinite homogeneous problem

Cell weighting an infinite homogeneous medium has no effect on the cross sections because there is only one zone and one set of cross sections. However, mixture 500 is created, and if a subsequent code uses the mixture number utilized in the unit cell, a warning message will be printed. However, mixture 500 can be used in a subsequent code, and it is identical to the cell cross section. CSAS1X is usually run to obtain the k-infinity for the mixture and not to obtain a cell-weighted cross section.

EXAMPLE 1

This problem would probably be run to provide the k-infinity of 20%-enriched UO_2 .

20% ENRICHED UO2 BILLET 27GR INF UO2 1 0.99 293 92235 20 92238 80 END END COMP

M7.5.12.2 Cell weighting a LATTICECELL problem

Cell weighting used with a LATTICECELL problem creates cell-weighted homogeneous cross sections that represent the characteristics of the heterogeneous system. This cell-weighted cross section can then be used in a subsequent code for the overall volume where the cells are located without having to mock up the actual three-dimensional heterogeneous array of cells. This cell-weighted homogeneous mixture is always designated as mixture 500. Note that the mixtures used in the unit cell description cannot be used in a

> NUREG/CR-0200, Vol. 3, Rev. 6

subsequent code because they have been flux weighted to create mixture 500. Therefore, if a mixture used in the unit cell description is also to be used in a subsequent code, another mixture must be created that is identical except for the mixture number. Every mixture that is to be used in a subsequent code must be defined in the standard composition data.

A byproduct of the cell-weighting calculation is the eigenvalue (k-effective) of an infinite array of the cell described as the unit cell.

EXAMPLE 1

Consider a cylindrical stainless steel tank filled with spherical pellets of 2.67%-enriched UO_2 arranged in a close-packed "triangular" pitch, flooded with borated water at 4350 WPPM. The cylindrical stainless tank is sitting in a larger tank filled with borated water at 4350 WPPM.

The data for the UO_2 and borated water were developed in detail in Example 3 of Sect. M7.5.8.2. The stainless steel must be defined, and mixture 3 was chosen because mixture 1 was the UO_2 and mixture 2 was the borated water. Because the borated water will be used as a reflector for the stainless steel tank, and has been used in the unit cell data, it must be repeated with a different mixture number (in this case, as mixture 4).

In the subsequent code, mixture 500 will be used to represent the UO_2 pellets in the borated water, mixture 3 will represent the stainless steel tank, and mixture 4 will represent the borated water reflector around the stainless-steel tank.

The Material Information Processor data for creating the cell-weighted cross sections using the 27-group ENDF/B-IV cross-section library follow:

SPHERICAL PELLETS IN BORATED WATER 27GR LATT .9398 293. UO2 1 92235 2.67 92238 97.33 END ARBMH3BO3 0.025066 3 1 1 0 5000 1 1001 3 8016 3 293 2 1 END H20 2 0.984507 293 END SS304 3 1 293 END ARBMH3BO3 0.025066 3 1 1 0 5000 1 1001 3 8016 3 1 293 END 4 H20 4 0.984507 293 END END COMP SPHTRIANGP 1.1440 1.0724 1 2 END

M7.5.12.3 Cell weighting a MULTIREGION problem

A MULTIREGION problem is cell weighted primarily to obtain a cell-weighted homogeneous cross section that represents the characteristics of the heterogeneous system. The eigenvalue obtained for a MULTIREGION problem with cylindrical or spherical geometry having a white boundary condition specified on the right boundary approximates an infinite array of the cells. A vacuum boundary condition would represent a single cell. A slab with reflected boundary conditions for both boundaries represents an infinite array of slab cells. The cell-weighted cross sections for spherical or cylindrical geometries with a white right boundary condition do not have a Dancoff correction and thus may not be accurate for representing a large array of the specified units. However, the Dancoff can be specified in the optional parameter data, Sect. M7.5.7, to make the cross sections more accurately represent an array of units.

EXAMPLE 1

Consider a small, highly enriched uranium sphere supported by a Plexiglas collar in a tank of water. The uranium metal sphere has a diameter of 13.1075 cm, is 97.67% enriched, and has a density of 18.794 g/cc. The cylindrical Plexiglas collar has a 4.1275-cm radius central hole, extends to a radius of 12.7 cm and is 2.54 cm thick. The water-filled tank is 60 cm in diameter.

The Plexiglas collar is not significantly different from water and does not surround the fuel, so it will be ignored. Because this makes the problem a one-dimensional geometry, it can be defined using the MULTIREGION type of calculation and the eigenvalue of the system can be obtained without additional data by executing CSAS1X. The abundance of uranium is not stated beyond 97.67% enriched, so assume the remainder is ²³⁸U. Using these assumptions and the 27-group ENDF/B-IV cross-section library, the Material Information Processor data follow:

SMALL WATER REFLECTED SPHERE ON PLEXIGLAS COLLAR 27GR MULT DEN=18.794 URANIUM 1 1 293. 92235 97.67 92238 2.33 END 2 H20 END END COMP SPHERICAL 6.5537 END 1 2 30.0 END ZONE

M7.6 DESCRIPTION OF OUTPUT

This section describes the computer printout from the Material Information Processor. The order of the printout is the following:

- 1. Title The title of the problem is printed.
- 2. Problem Parameters The parameters used in the problem are listed.
- 3. Problem Composition Description All of the standard compositions used in describing the mixtures for the problem are listed.
- 4. Problem Geometry The data defining the unit cell for the problem is listed.
- 5. Optional Parameter Data If optional parameter data are entered, the optional parameter data table is printed.
- 6. Library Information Table A table defining data libraries is printed for quality assurance purposes.
- 7. Additional Data These data are printed only if the Material Information Processor is to check the data without executing (PARM=CHECK on the analytical sequence card). Data that will be used in cross-section processing are printed.

M7.6.1 PROBLEM TITLE

The Problem Title is the first entry printed by the Material Information Processor. It is located immediately above the problem parameters, as shown in Figure M7.6.1. See Sect. M7.4.3 for the data input requirements.

problem to generate material information processor printout

```
**** problem parameters ****
lib 44groupndf5 library
mxx 9 mixtures
msc 10 composition specifications
izm 4 material zones
ge latticecell geometry
more 1 0/1 do not read/read optional parameter data
msln 1 fuel solutions
```

Figure M7.6.1 Example of problem title and problem parameters
M7.6.2 PROBLEM PARAMETERS

The Problem Parameters is a list of the parameters entered by the user and those counted by the code as the problem input data are processed. Sample input data specifying the title, cross-section library, and type of calculation are given below.

PROBLEM TO GENERATE MATERIAL INFORMATION PROCESSOR PRINTOUT HANSEN-ROACH LATTICECELL

The resulting Problem Parameters printout is shown in Figure M7.6.1. The problem title is printed exactly as it was entered. The cross-section library, LIB, and the geometry, GE, were set by the above data. The other parameters were determined from other data entered for the problem. The left column contains the variable name associated with the data. LIB, the cross-section library, is the first parameter item and is input as data. The data input requirements for LIB are defined in Sect. M7.4.3, item 2, CROSS SECTION LIBRARY NAME. The number of mixtures, MXX, the number of composition specifications, MSC, and the number of material zones, IZM, are determined by the code. The number of mixtures are counted when the standard composition specification data are read and is the total number of mixtures defined in the standard composition specification data. The number of composition specifications is the number of standard composition definitions used in the standard composition specifications data. The geometry type, GE, is input as data and governs the type of geometry data required to define the unit cell. It also influences the type of resonance treatment applied to the cross sections. The data input requirements for GE are given in Sect. M7.4.3, item 3, TYPE OF CALCULATION. The optional parameter flag, MORE, is set by the code. It is set to 1 if optional parameter data are entered. Otherwise, it is zero. The number of fuel solutions, MSLN, is determined by the code from the standard composition specification data and is the number of standard compositions whose name begins with SOLN.

M7.6.3 PROBLEM COMPOSITION DESCRIPTION

This portion of the Material Information Processor printout lists all of the standard compositions used in the problem and their associated data, as shown in Figure M7.6.2. The standard composition data are printed in the order in which the standard compositions are entered. For example, if data for mixture 5 are entered first, and data for mixture 1 are entered last, the standard composition defining mixture 5 will be printed first, and that for mixture 1 will be printed last. Furthermore, if several standard composition specifications are required to define a single mixture, they need not be entered contiguously. They will then be printed in the order in which they were entered, interspersed exactly as they were in the input data.

In each set of data shown in Figure M7.6.2, the far left column lists the variable name or data name of the input data for each standard composition. These variable names correspond to those used in the Standard Composition input data described in Sect. M7.4.4. The middle column lists the data, and the right column contains either an explanation, or additional data.

The first set of data illustrates the data for a basic standard composition (see Sect. M7.5.5.1 for detailed input data examples) in which the user did not enter the density. The standard composition name is UO2, the mixture number is 1, the volume fraction is 0.96, and the theoretical density (obtained by the code from Table M8.2.1), is 10.96 g/cc. When the code supplies the density, the explanation to the right of the density, ROTH, is stated as THEORETICAL DENSITY. The temperature is 293 degrees Kelvin. After the temperature, the ZA number of the nuclides comprising the standard composition are listed in the center

**** problem compo	osition description ****
sc uo2	standard composition
mx 1	mixture no
vf 9600	Mixture no.
vi .9000	theoretical density
10.9600	cheorecical density
nei 2	no. elements
icp 1	0/1 mixture/compound
temp 293.0	deg kelvin
92000	1.00 atom/molecule
	92235 3.250 wt %
	92238 96 750 wt \$
9016	2 00 stome (molecule
0100	2.00 acoms/morecure
ena	
sc uo2	standard composition
mx 7	mixture no.
vf 1.0000	volume fraction
roth 10.5216	specified density
nel 2	no elements
ion 1	A/1 mintaine / norm and 3
TCD T	0/1 mixture/compound
temp 293.0	deg kelvin
92000	1.00 atom/molecule
	92235 3.250 wt%
	92238 96 750 wt *
8016	2 00 atoms/molecule
0100	2.00 acoms/morecure
enu	
sc zr	standard composition
mx 2	mixture no.
vf 1.0000	volume fraction
roth 6,4900	theoretical density
nel 1	no olomonto
ion 1	0/1 mischarge (name and 1
icp I	0/1 mixture/compound
40000	1.00 atom/molecule
end	
sc h2o	standard composition
mx 3	mixture no.
vf 1 0000	volume fraction
•= 1.0000	VOLUME HIACCION
	-1
rotn .9982	theoretical density
nel 2	no. elements
icp 1	0/1 mixture/compound
1001	2.00 atoms/molecule
8016	1.00 atom/molecule
end	
ee horon	atondowd composition
SC DOFOII	scandard composition
mx 4	mixture no.
vi .0086	volume fraction
roth 7.7600	specified density
nel 1	no. elements
icp 1	0/1 mixture/compound
=	1 00 stom/malacula
0000	1.00 acom/morecure
ena	
sc ss304	standard composition
mx 4	mixture no.
vf .9914	volume fraction
roth 7.7600	specified density

Figure M7.6.2 Example of standard composition printout

M7.6.3

nel 4 icp 0 24304 25055 26304 28304	no. elements 0/1 mixture/compound 19.000 wt% 2.000 wt% 69.500 wt% 9.500 wt%
end	
sc ss304 mx 5 vf 1.0000 roth 7.9200 nel 4 icp 0 24304 25055 26304 28304	<pre>standard composition mixture no. volume fraction theoretical density no. elements 0/1 mixture/compound 19.000 wt% 2.000 wt% 69.500 wt% 9.500 wt%</pre>
end	
sc arbmatl1 mx 6 vf 1.0000 roth 7.1500 nel 3 icp 0 6012 14000 26000 end	<pre>standard composition mixture no. volume fraction specified density no. elements 0/1 mixture/compound 3.250 wt% 1.350 wt% 95.400 wt%</pre>
sc solnuo2(no3) mx 8 fd 325.8900 aml 5300 vf 1.0000 temp 293.0 spg 1.4828 sc uo2(no3)2 92000	standard composition mixture no. solution fuel density acid molarity volume fraction deg kelvin specified specific gravity standard composition 1.00 atom/molecule 92234 .008 wt% 92235 .700 wt% 92236 .052 wt% 92238 99.240 wt% 2.00 atoms/molecule
8016 sc hno3 1001 7014	8.00 atoms/molecule standard composition 1.00 atom/molecule 1.00 atom/molecule
8016 sc h2o 1001 8016 end	standard composition 2.00 atoms/molecule 1.00 atom/molecule
sc arbmuo2puo2 mx 9 vf 1.0000 roth 11.2000 nel 3 icp 0	standard composition mixture no. volume fraction specified density no. elements 0/1 mixture/compound

Figure M7.6.2 (continued)

temp	293.0 deg	kelvin			
	8016	11.889	wt%		
	92000	44.982	wt%		
			92235	93.200	wt%
			92238	5.600	wt%
			92234	1.000	wt%
			92236	.200	wt%
	94000	43.130	wt%		
			94239	95.000	wt%
			94240	2.500	wt%
			94241	2.000	wt%
			94238	.500	wt%
end					

Figure M7.6.2 (continued)

column and the corresponding number of atoms per molecule are listed in the right column (URANIUM, 92000 at 1 atom/molecule and OXYGEN, 8016 at 2 atoms/molecule). If the nuclide is a multiple isotope nuclide, both the ZA number of the isotopes and their corresponding isotopic weight percents are listed in the right column immediately after the multiple isotope nuclide. The input data for this entry are shown below.

UO2 1 0.96 293 92235 3.25 92238 96.75 END

The second set of data illustrates the same standard composition used as mixture 7, with a user-supplied density. When the user supplies the density, the explanation to the right of the density, ROTH, is stated as SPECIFIED DENSITY. The input data for this entry are shown below.

UO2 7 DEN=10.5216 1.0 293 92235 3.25 92238 96.75 END

The third and fourth sets of data also illustrate data for basic standard compositions. The third standard composition name is ZR, the mixture number is 2, the volume fraction is 1.0, and the theoretical density, obtained from Table M8.2.1 by the code, is 6.44 g/cc. The fourth standard composition name is H2O, the mixture number is 3, the volume fraction is 1.0, and the theoretical density, obtained by the code from Table M8.2.1, is 0.9982 g/cc. The input data are shown below.

ZR 2 1.0 END H2O 3 1.0 END

The fifth and sixth sets of data illustrate the creation of a single mixture using two basic standard compositions (see Sect. M7.5.5.4 for examples). Mixture 4 is borated stainless steel with a density of 7.76 g/cc, and is 0.86 wt % natural boron. The input data for this mixture are shown below.

BORON 4 DEN=7.76 0.0086 END SS304 4 DEN=7.76 0.9914 END

> NUREG/CR-0200, Vol. 3, Rev. 6

M7.6.5

The seventh set of data is another basic standard composition, stainless steel 304. The standard composition name is SS304, the mixture number is 5, the volume fraction is 1.0, and the theoretical density, determined by the code, is 7.92 g/cc. The input data for this mixture are shown below:

SS304 5 1.0 END

The eighth set of data illustrates data for an arbitrary material standard composition. Examples of arbitrary material input data are given in Sect. M7.5.5.2. The standard composition name defined by the user is ARBMATL1; the mixture number, MX, is 6; the volume fraction, VF, is 1.0; the density, ROTH, is always entered by the user for an arbitrary material and for this problem is 7.15 gm/cc. NEL is the number of elements required to define the arbitrary material and is entered as 3. The mixture/compound indicator, ICP, is 0, indicating that the material is defined by weight percents as in an alloy, rather than by a chemical formula. The data printed after the mixture/compound indicator, ICP, lists the isotope ID numbers, NCZA, in the center column and the corresponding weight percents, ATPM, in the right column. The input data for this arbitrary material follow.

ARBMATL1 7.150 3 0 0 0 6012 3.25 14028 1.35 26000 95.4 6 END

The ninth set of data describe a solution standard composition. Examples of solution standard composition input data are given in Sect. M7.5.5.3. The standard composition name, SC, for a solution must be chosen from Table M8.3.1. The mixture number, MX, is 8; the fuel density, FD, is 325.89 g U/L soln. The acid molarity, AML, is 0.53 moles of acid/liter of solution; the volume fraction, VF, is 1.0; the temperature, TEMP, is 293 °K; and the specific gravity, SPG, is 1.4828. When the user specifies the specific gravity, it is labeled SPECIFIED SPECIFIC GRAVITY. If the code determines the specific gravity, it is labeled DEFAULT SPECIFIC GRAVITY. Following the specific gravity, the three components that make up the solution are listed. The first component listed is the salt followed by the list of elements and their atoms/salt molecule that make up the salt. If more than one isotope is in an element the isotopic breakdown and weight percents of each element follow the element. The second component listed is the acid followed by the list of elements in the acid and their atoms/acid molecule. The final component listed is the H2O in the solution followed by the list of elements in the H2O and their atoms/H2O molecule. The input data for this solution are given below.

SOLNUO2(NO3)2 8 325.89 0.53 SPG=1.4828 1.0 293. 92234 .008 92235 .700 92236 .052 92238 99.240 END

The last set of data describes an arbitrary material standard composition that contains two multiple isotope elements. The standard composition name defined by the user is ARBMUO2PUO2; the mixture number, MX, is 9; the volume fraction, VF, is 1.0; the specified density, ROTH, which is always entered by the user for an arbitrary material is 11.2 gm/cc; the number of elements used to define the arbitrary material, NEL, is 3; the mixture/compound indicator, ICP, is 0 indicating it is a mixture defined by weight percents of the elements; and the temperature, TEMP, is 293°K. Directly following the above information is the list of elements and their respective weight percents that make up the arbitrary material. Any element that has more than one isotope is immediately followed by a list of isotopes and their respective weight percents in that element. First in the list of elements is oxygen with a ZA number of 8016 comprising 11.889 wt % of the material. Next in the list of elements is uranium comprising 44.982 wt % of the arbitrary material. The ZA number 92000 specifies natural uranium. However when isotopic data is entered this data overrides the default isotopic data. The isotopic composition and weight percents for uranium immediate follows the

uranium elements ZA number and weight percent. The final element in the list is plutonium comprising 43.130 wt % of the arbitrary material. The ZA number 94000 specifies a material composed entirely of Pu-239. However when isotopic data is entered this data overrides the default isotopic data. The isotopic composition and weight percents for plutonium immediate follows the plutonium elements ZA number and weight percent. The input data for this solution are given below.

ARBMUO2PUO2 11.2 3 0 ۵ 1 8016 11.8885 92000 44.9819 94000 43.1296 1.0 293 92235 93.2 92238 5.6 92234 1.0 92236 0.2 94239 95.0 94240 2.5 94241 2.0 94238 0.5 END

M7.6.4 PROBLEM GEOMETRY SPECIFICATION

This portion of the Material Information Processor printout lists the geometry description for the problem based on the unit cell description that was entered as data. The unit cell description provides data that are used in processing the cross sections. It follows the standard composition data in the printout. The three types of unit cells are (1) infinite homogeneous medium, (2) LATTICECELL, and (3) MULTIREGION. The printout for each is shown below.

M7.6.4.1 Problem Geometry Description for an Infinite Homogeneous Medium

The mixture that is to be used to calculate the eigenvalue if XSDRNPM is to be executed is printed for an infinite homogeneous medium. An example of the printout is given in Figure M7.6.3. See Sect. M7.4.5 for input data instructions. The input data corresponding to this example are:

CELLMIX 6

**** problem geometry ****
**** infinite homogeneous medium ****
mfuel 6 mixture no. of the infinite homogeneous medium

Figure M7.6.3 Example of geometry description printout for Infinite Homogeneous Medium

M7.6.4.2 Problem Geometry Description for a LATTICECELL

Figure M7.6.4 illustrates the geometry output for a square-pitch lattice. The left column lists the data name corresponding to the input specifications as listed in Sect. M7.4.6 and examples presented in Sect. M7.5.6.2. The input data for this example are given below.

SQUAREPITCH 1.43 .9322 1 3 1.0718 2 .9498 0 END

NUREG/CR-0200, Vol. 3, Rev. 6

M7.6.7

**** problem geometry ****

ctp squarepitch	cell type
pitch 1.4300	cm center to center spacing
fuelod .9322	cm fuel diameter or slab thickness
mfuel 1	mixture no. of fuel
mmod 3	mixture no. of moderator
cladod 1.0718	cm clad outer diameter
mclad 2	mixture no. of clad
gapod .9498	cm gap outer diameter
mgap 0	mixture no. of gap

Figure M7.6.4 Example of geometry description printout for LATTICECELL

M7.6.4.3 Problem Geometry Description for a MULTIREGION Cell

Figure M7.6.5 illustrates the geometry output for a MULTIREGION cell. The left column lists the data name corresponding to the input specifications as listed in Sect. M7.4.7. Examples of MULTIREGION input data are given in Sect. M7.5.6.3. The input data for this example are given below.

BUCKLEDCYL VACUUM REFLECTED 0.0 130.0 END 1 7.62 2 7.77 3 40.77 END ZONE

The printed results for the above MULTIREGION description are given in Figure M7.6.5.

**** problem geometry ****

coordinate system cs buckledcyl br reflected right boundary bl left boundary .00 cm left boundary location orgn 130.00 cm buckling height dy dz .00 cm buckling depth end zone number 1 1 mixture no. mzx 7.62 cm right boundary location rz xmod external moderator index zone number 2 mzx 2 mixture no. rz 7.77 cm right boundary location xmod external moderator index zone number 3 mzx 3 mixture no. 40.77 cm right boundary location rz xmod external moderator index

Figure M7.6.5 Example of geometry description printout for MULTIREGION cell

NUREG/CR-0200, Vol. 3, Rev. 6

M7.6.8

M7.6.5 OPTIONAL PARAMETER DATA OR MORE DATA

The optional parameter data are printed only if the keyword MORE and optional parameters are entered after the unit cell data. The title "**** SPECIAL PARAMETERS ****" and the first 17 parameters listed in Figure M7.6.6 are always in the printout when optional parameter data are entered. See Sect. M7.4.8 for input data instructions and Sect. M7.5.7 for additional details. The following additional special data may be printed if specified: The number of direct access blocks, a message saying all thermal groups were collapsed into one group, three lines for each mixture with resonance data, and Dancoff factor data consisting of the title line "dancoff factor specification" followed by a line containing the words "mixture factor" followed by the mixture number and Dancoff factor for each Dancoff factor entered. The 3 lines of resonance data and the Dancoff factor data are included in Figure M7.6.6. The input data for an example that supplies resonance and Dancoff data for material 7 are given below:

> MORE DATA RES=7 SLAB 0.5 DAN(7) = 0.23END MORE **** special parameters **** isn 8 order of angular quadrature iim 20 inner iteration maximum icm 25 outer iteration maximum szf 1.00000e+00 size factor for spatial mesh 1.00000e-04 overall problem convergence eps 1.00000e-04 scalar flux convergence pto 1.42089e+00 buckling factor bkl ius 0 thermal upscatter scaling bal fine balance table print flag 0.00000e+00 buckling height dy dz 0.00000e+00 buckling depth ipn 0 diffusion coefficient option frd 0 logical unit number to read flux guess fwr -1 logical unit number to write flux guess msh 2001 number of intervals for res. intgrtns 2 max lvalue for res. intgrtns mlv 0 logical unit number to write anish lib axs res 7 mixture with special resonance correction * Slab geometry for special resonance correction 5.00000e-01 dimension (lbar) for special resonance correction dancoff factor specification mixture factor .23000

> > Figure M7.6.6 Example of optional parameter printout

M7.6.6 ZONE SPECIFICATIONS FOR A LATTICECELL

The zone specifications for a LATTICECELL problem are printed after the special parameters (optional parameter data or MORE DATA), described in Sect. M7.6.5. If optional parameter data are not entered in the problem, the zone specifications for a LATTICECELL are printed immediately after the problem geometry. See Figure M7.6.7 for an example of the zone specifications for LATTICECELL geometry. The input data that generated this printout are:

squarepitch 1.43 .9322 1 3 1.0718 2 .9498 0 end zone specifications for latticecell geometry

zone	1	is	fuel
zone	2	is	gap
zone	3	is	clad
zone	4	is	mod

Figure M7.6.7 Example of LATTICECELL zone specifications

M7.6.7 LIBRARY INFORMATION TABLE

The Material Information Processor provides a Library Information Table for quality assurance purposes. An example of this table is given in Figure M7.6.8. The table contains information about the Standard Composition Library, the master format cross-section library, the short problem-dependent master format cross-section library, and the direct-access dataset for saving input data. The Material Information Processor creates the short cross-section library by copying only the nuclides utilized in the problem from the master format cross-section library. It also saves input data as a direct-access dataset. For these four data libraries, the table lists (1) the unit number used to reference the library, (2) the data set name of the library, (3) the volume where the dataset resides, and (4) unit function, which is a brief description of the type of library or the library function.

Additional data provided for the Standard Composition Library include the unit number, the dataset name, the title read from the Standard Composition Library, and the date the Standard Composition Library was created. The additional cross-section library data printed in the table include the unit number, the dataset name, and the title read from the master format cross-section library.

M7.6.8 ADDITIONAL DATA

The Material Information Processor data can be checked by executing CSASN and specifying PARM=CHECK on the analytical sequence indicator. When this is done, the printout will contain additional data as discussed in this section. If PARM=CHECK is not specified, the problem printout includes only the printout preceding this section. The data included in the additional data are (1) the mixing table and a table of parameters, (2) resonance data, and (3) NITAWL, XSDRNPM, and BONAMI data.

M7.6.8.1 Mixing Table Data

The first information printed under the heading additional data is the mixing table generated by the Material Information Processor. Multiple occurrences of the same nuclide are distinguished from each other by adding $1000000 \times MIXNO$ to the nuclide ID number, where MIXNO is the mixture number. For example, in Figure M7.6.9, 1008016 is oxygen used in mixture 1 and 3008016 is oxygen used in mixture 3. The atom density is given in atoms/barn-cm. The far right column, labeled N.I.T. POINTER, is the internal code pointer to the beginning of the data needed to generate resonance processing data for NITAWL.

*** ****** *** *** *** problem to generate material information processor printout *** *** *** **** ***** *** *** *** *** *** *** *** unit *** volume number data set name name unit function *** *** *** ---------*** 89 /scale4.3p/data/scale.rev10.sclib standard composition library *** *** *** 83 /scale4.3p/data/scale.rev03.xn44 cross section library *** *** *** 11 ft11f001 *** short cross section library *** *** *** 90 ft90f001 *** input data direct access *** *** ******* ***** *** *** *** *** *** standard composition library data *** *** *** unit number : 89 *** *** *** dataset name : /scale4.3p/data/scale.rev10.sclib *** *** *** library title: scale-4 standard composition library *** *** 637 standard compositions, 490 nuclides 90 elements with variable isotopic distrbutions. *** *** *** *** creation date: 9/19/95 *** *** *** *** *** *** cross section library data *** *** -----*** ** *** *** unit number : 83 *** *** dataset name : /scale4.3p/data/scale.rev03.xn44 *** *** *** library title: scale 4.3 - 44 neutron group library based on endf-b version 5 data *** *** collapsed with a light water reactor cell flux spectrum from 238 groups *** 9/01/94 compiled for nrc *** *** last updated 8/07/95 *** *** m.d.dehart & 1.m.petrie nuclear eng. appl. - cped - ornl *** *** *** *** *** *** *** ***** *** ********

Figure M7.6.8 Example of data library information table

**** additional data ****

mixing	table from	standard comp	ositions data
mixtur	e nuclide	atom	n.i.t.
no.	no.	density	nointer
1	1092235	7 723250-04	APE
7	7092235	7 723250-04	455
ģ	8092235	5 9//9/04	455
0 0	0092235	1 202020-02	400
1	10022233	2 27011- 02	400
7	1092230	2.2/011e-02	458
,	7092230	2.2/011e-02	458
0	0092238	8.18160e-04	458
9	9092238	7.13714e-04	458
Ţ	1008016	4.69468e-02	33
7	7008016	4.69468e-02	33
3	3008016	· 3.33846e-02	33
8	8008016	3.79897e-02	33
9	9008016	5.01454e-02	33
2	2040000	4.28457e-02	171
3	3001001	6.67692e-02	6
8	8001001	6.11914e-02	. 6
4	4005010	7.39771e-04	23
4	4005011	2.97767e-03	24
4	4024304	1.69296e-02	96
5	5024304	1.74286e-02	96
4	4025055	1.68662e-03	98
5	5025055	1.73633e-03	98
4	4026304	5.76586e-02	106
5	5026304	5 935790-02	106
4	4028304	7 499670-03	117
5	5028304	7 72070-03	117
5	6006012	1.12070e-03	117
6	6014000	2 060720-02	20
ć	6026000	2.009720-03	50
0	0020000	7.35568e-UZ	100
0	8092234	6.70843e-08	454
9	9092234	1.29633e-04	454
8	8092236	4.32343e-07	456
9	9092236	2.57063e-05	456
8	8007014	1.96818e-03	30
9	9094239	1.15604e-02	466
9	9094240	3.02953e-04	467
9	9094241	2.41362e-04	468
9	9094238	6.11007e-05	465
mm+	20	nuclides from	m araga aasti
iree	20	nucliues IFO	m cross section
	20	resonance nu	crides

on library ibl 1 left bdy condition 0/1/2/3 vacuum/reflected/periodic/white ibr 3 right bdy condition 0/1/2/3 vacuum/reflected/periodic/white 38 entries in the mixing table 3 order of scattering ms isct dy 0.0000 first transverse buckling dimension dz 0.0000 second transverse buckling dimension vsc 0.0000 void streaming

Figure M7.6.9 Mixing table and parameters from the Material Information Processor data check

NUREG/CR-0200, Vol. 3, Rev. 6

M7.6.12

The second set of data lists parameters for BONAMI, ICE, NITAWL, and XSDRN. The left column contains the parameter name or variable name. The center column contains the value assigned to the parameter. The right column contains an explanation of the parameter.

M7.6.8.2 Resonance Data for NITAWL

The data shown in Figure M7.6.10 are used by NITAWL to provide the cross-section resonance processing to create problem-dependent cross sections. Only nuclides having resonance data are listed in this table. ID is the nuclide ID number. TEMP is the temperature in degrees Kelvin. GEOM specifies the geometry shape, 0/1/2/3 corresponding to homogeneous/slab/cylinder/sphere. ABAR is the absorber lump dimension in centimeters (thickness of a slab, radius of a sphere or cylinder, zero for homogeneous). DANCOFF is the calculated Dancoff factor. INNER RAD is the inner radius of the characteristic absorber lump. NSUB0 is the absorber number density in the lump. ITA, IT1, and IT2 are the type of treatment used to determine the contribution in the interior of the absorber lump to the collision density for the absorber, the first moderator, and the second moderator. The available treatment options are: no moderator (0) and Nordheim's integral method (1). M1 and M2 are the first and second moderator scattering cross section per absorber atom. LUMP VOL is the volume fraction of the absorber lump in the cell. This is used in NITAWL to provide a crude cell weighting in the resonance range. SCALE always sets this to 1.0, which eliminates this weighting in NITAWL.

resonance data, (3* array)

iđ	temp	geon	n abar	dancoff	inner rad.	nsub0	ita ml	sigmal	it	1 m2	sigma2	it2	lump vol
1092235	293.00	2	4.66100e-01	2.27234e-01	0.00000e+00	7.72325e-04	1 15.99	1 2.36274e+02	1	238.051	3.62311e+02	1	1.0000
7092235	293.00	1	5.00000e-01	2.30000e-01	0.00000e+00	7.72325e-04	1 15.99	1 2.36274e+02	1	238.051	3.62311e+02	1	1.0000
8092235	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	5.84484e-06	1 1.00	8 2.13374e+05	1	16.669	3.01473e+04	1	1.0000
9092235	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.20302e-02	1 15.99	1 1.62020e+01	1	238.989	1.25668e+01	1	1.0000
1092238	293.00	2	4.66100e-01	2.27234e-01	0.00000e+00	2.27011e-02	1 15.99	1 8.03840e+00	1	235.044	4.04941e-01	1	1.0000
7092238	293.00	1	5.00000e-01	2.30000e-01	0.00000e+00	2.27011e-02	1 15.99	1 8.03840e+00	1	235.044	4.04941e-01	1	1.0000
8092238	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	8.18160e-04	1 1.00	8 1.52432e+03	1	15.751	2.03127e+02	1	1.0000
9092238	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	7.13714e-04	1 15.99	1 2.73097e+02	1	237.023	4.00123e+02	1	1.0000
2040000	293.00	2	5.35900e-01	4.29362e-01	4.74900e-01	4.28457e-02	1 0.00	0 0.00000e+00	0	0.000	0.00000e+00	0	1.0000
4024304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.69296e-02	1 55.84	5 3.45332e+01	1	40.417	9.08934e+00	1	1.0000
5024304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.74286e-02	1 55.84	5 3.45332e+01	1	58.486	8.11545e+00	1	1.0000
4025055	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.68662e-03	1 55.84	5 3.46630e+02	1	43.529	1.35351e+02	1	1.0000
5025055	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.73633e-03	1 55.84	5 3.46630e+02	1	55.925	1.25576e+02	1	1.0000
4026304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	5.76586e-02	1 58.68	7 2.26242e+00	1	33.215	1.81728e+00	1	1.0000
5026304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	5.93579e-02	1 58.68	7 2.26242e+00	1	52.216	1.53133e+00	1	1.0000
4028304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	7.49967e-03	1 55.84	5 7.79546e+01	1	33.215	1.39715e+01	1	1.0000
5028304	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	7.72070e-03	1 55.84	5 7.79546e+01	1	52.216	1.17731e+01	1	1.0000
6026000	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	7.35568e-02	1 12.00	0 7.50921e-01	1	28.085	5.84943e-02	1	1.0000
8092234	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	6.70843e-08	1 1.00	8 1.85906e+07	1	16.675	2.62766e+06	1	1.0000
9092234	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.29633e-04	1 15.99	1 1.50358e+03	1	237.070	2.25862e+03	1	1.0000
8092236	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	4.32343e-07	1 1.00	8 2.88459e+06	1	16.675	4.07710e+05	1	1.0000
9092236	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	2.57063e-05	1 15.99	1 7.58230e+03	1	237.055	1.14390e+04	1	1.0000
9094239	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	1.15604e-02	1 15.99	1 1.68604e+01	1	235.428	1.39455e+01	1	1.0000
9094240	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	3.02953e-04	1 15.99	1 6.43378e+02	1	237.020	9.60560e+02	1	1.0000
9094238	293.00	0	0.00000e+00	0.00000e+00	0.00000e+00	6.11007e-05	1 15.99	1 3.19003e+03	1	237.051	4.80210e+03	1	1.0000

Figure M7.6.10 Resonance data for NITAWL

M7.6.8.3 Additional Data for NITAWL, XSDRNPM, and BONAMI

The data shown in Figure M7.6.11 list additional data that are provided by the Material Information Processor for cross-section processing. The NITAWL data are the 2\$ and 4* arrays. The CSAS(XSDRN) data include the zone boundaries, mixture by zone, and scatter by zone. The BONAMI data are the extra cross-section data.

	nitawl	data	csas	(xsdrn) data		bonami d	lata
	nuclide	thermal	zone	mixture	scatter	sigma h	temperature
:	identifier	scatter temp.	boundaries	numbers	by zone	by mixture	by mixture
1	1092235	2.93000e+02	0	1	3	1.12690e+00	0
2	7092235	2.93000e+02	4.66100e-01	0	0	5.81696e+00	0
3	8092235	2.93000e+02	4.74900e-01	2	3	0	0
4	9092235	2.93000e+02	5.35900e-01	3	3	0	0
5	1092238	2.93000e+02	8.06791e-01			0	0
6	7092238	2.93000e+02				0	0
7	8092238	2.93000e+02				8.76209e-01	0
8	9092238	2.93000e+02				0	0
9	1008016	2.93000e+02				0	0
10	7008016	2.93000e+02					
11	3008016	2.93000e+02					
12	8008016	2.93000e+02					
13	9008016	2.93000e+02					
14	2040000	2.93000e+02					
15	3001001	2.93000e+02					
16	8001001	2.93000e+02					
17	4005010	2.93000e+02					
18	4005011	2.93000e+02					
19	4024304	2.93000e+02					
20	5024304	2.93000e+02 .					
21	4025055	2.93000e+02					
22	5025055	2.93000e+02					
23	4026304	2.93000e+02					
24	5026304	2.93000e+02					
25	4028304	2.93000e+02					
26	5028304	2.93000e+02					
27	6006012	2.93000e+02					
28	6014000	2.93000e+02					
29	6026000	2.93000e+02	•				
30	8092234	2.93000e+02					
31	9092234	2.93000e+02					
32	8092236	2.93000e+02		•			
33	9092236	2.93000e+02					
34	8007014	2.93000e+02					
35	9094239	2.93000e+02					
36	9094240	2.93000e+02					
37	9094241	2.93000e+02					
38	9094238	2.93000e+02					

Figure M7.6.11 Additional data for NITAWL, XSDRNPM, and BONAMI

NUREG/CR-0200, Vol. 3, Rev. 6

M7.6.14

M7.7 WARNING AND ERROR MESSAGES

The Material Information Processor is responsible for reading and checking the SCALE data used to create a problem-dependent AMPX working format cross-section library. Error messages are printed if the code determines that an error has occurred. Warning messages are printed if the code recognizes a possible error.

It is the responsibility of the user to verify whether the data are correct when a warning message is encountered. The functional modules activated by the control module and related sequences will be executed even though a warning message has been generated.

When an error is recognized, an error message is written and an error flag is set so the functional modules will not be activated. The code stops immediately if the error is too severe to allow continuation of input. However, it will continue to read and check the data if it is able. When the data reading has been completed, execution will be terminated if an error flag was set when the data were being processed. The STOP codes associated with the severe error messages are listed in Sect. M7.7.2.

M7.7.1 MATERIAL INFORMATION PROCESSOR MESSAGES

The following messages originate in the Material Information Processor, that portion of the analytical sequence that reads the parameter data, standard composition specification data, and geometry data necessary for preparing the required information for the cross-section processing codes.

MP-1 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine KNIGHT indicates that the allocated computer storage will not hold the directories and isotope information tables. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 300 is executed when this message is printed.

MP-2 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine KNIGHT indicates that the allocated computer storage will not hold the directories and isotope information tables. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 310 is executed when this message is printed.

MP-3 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine KNIGHT indicates that the allocated computer storage will not hold the directories and isotope information tables. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 320 is executed when this message is printed.

MP-4 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine SETUPA indicates that the allocated computer storage will not hold the directories and isotope information tables. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 330 is executed when this message is printed.

MP-5 ***ERROR*** SYSTEM GEOMETRY NAME INCORRECT. INSTEAD OF (_____), THE USER SHOULD HAVE ENTERED LATTICECELL, MULTIREGION, OR INFHOMMEDIUM AS THE SECOND ITEM ON THE PARAMETER CARD. CHECK SPELLING.

This self-explanatory message is from subroutine SETUPB. The user has misspelled the word defining the type of calculation to be performed or the parameter data preceding it were entered incorrectly. See Sect. M7.7.3 for assistance in correctly specifying the parameter data.

MP-6 ***ERROR*** ______ NOT FOUND IN STANDARD COMPOSITION LIBRARY. MAKE SURE THE COMPOSITION NAME USED IS IN THE STANDARD COMPOSITION LIBRARY.

This self-explanatory message from subroutine STDCMP indicates that a standard composition name is misspelled, the standard composition specification data are out of order, or the "END" has been omitted from the preceding standard composition specification. Check the standard composition specification data carefully. See Sect. M7.7.4 for assistance with standard composition specification cards. See Sect. M8 for the materials available in the Standard Composition Library.

MP-7 ***ERROR*** THE USER ENTERED A VOLUME FRACTION (VF) OF 0.0 FOR ONE OF THE STANDARD COMPOSITIONS (_____). THIS INDICATES THAT HE INTENDS

TO ENTER A NUMBER DENSITY FOR THE STANDARD COMPOSITION. THAT, HOWEVER, CAN ONLY BE DONE WHEN THE STANDARD COMPOSITION NAME REPRESENTS A SINGLE NUCLIDE (LIKE H, O, PB, B-10, U-238, ETC.). CHECK THE STANDARD COMPOSITION LIBRARY.

This self-explanatory message is from subroutine STDCMP. Check the Standard Composition Library, Sect. M8, for the available standard composition names. See Sect. M7.7.4 for the correct method of specifying standard composition specification data.

MP-8 ***ERROR*** CELL TYPE NAME (_____) IS INCORRECT. CHECK THE SPELLING. THE ALLOWED NAMES ARE: SQUAREPITCH, TRIANGPITCH, SPHSQUAREP, SPHTRIANGP, SYMMSLABCELL, ASYMSLABCELL, ASQUAREPITCH, ATRIANGPITCH, ASPHSQUAREP, ASPHTRIANGP, ASQP, ATRP, ASSP, ASTP.

This self-explanatory message is from subroutine LATCEL. The data are misspelled or out of order. Some data items may be missing or extra ones may have been entered. Errors in the standard composition specification data can cause this message to be printed. See Sect. M7.7.6 for additional assistance.

MP-9 ***ERROR*** THE NUMBER OF ZONES (IZM=_____) IS INCORRECT FOR ASYMSLABCELL GEOMETRY. FOR AN ASYMMETRIC LATTICECELL CALCULATION, ONE SHOULD HAVE IZM=3, 5, OR 7, DEPENDING ON THE MATERIALS PRESENT.

This self-explanatory message is from subroutine LATCEL. See Sect. M7.7.6 for an explanation of the ASYMSLABCELL geometry data. A code error is responsible for this message.

MP-10 ***ERROR*** INSUFFICIENT DATA SUPPLIED ON THE GEOMETRY DESCRIPTION CARD.

This message from subroutine LATCEL can be caused by having an error in the standard composition specification data, thereby causing the reading routines to get out of phase. If no error messages precede this message, it may indicate that a code error exists. The number of material zones (IZM) has been destroyed or altered in some manner.

MP-11 ***ERROR*** MIXTURE _____ IN THE CSAS GEOMETRY DESCRIPTION WAS NOT SPECIFIED IN THE STANDARD COMPOSITION DATA.

This message from subroutine LATCEL indicates that a mixture number used in the geometry description was not defined in the standard composition specification data. Check the input data for consistency. If the specified mixture number is zero, and the problem is a LATTICECELL problem using mixture zero for the clad or moderator, it will be necessary to specify a low-density mixture in the standard composition data and use it in the cell specification.

MP-12 ***ERROR*** THE GAP WAS SPECIFIED AS MIXTURE _____ ON THE LATTICECELL. IT SHOULD BE ZERO OR A VALID MIXTURE NUMBER.

This message from subroutine LATCEL indicates that the mixture number used for the GAP was not defined in the standard composition specification data. Check the input data for consistency.

MP-13 **WARNING** NUMBER OF ENTRIES ON THE GEOMETRY DESCRIPTION CARD EXCEEDS THE NUMBER EXPECTED. THIS MESSAGE MAY BE GENERATED IF THE USER FORGOT TO ENTER THE END ON THE GEOMETRY DESCRIPTION CARD.

This message from subroutine LATCEL may result from a code error or from omitting the word "END" from the geometry description card.

MP-14 ***ERROR*** THE COORDINATE SYSTEM NAME (_____) IS INCORRECT. FOR THIS MULTIREGION CALCULATION, THE USER SHOULD HAVE ENTERED SLAB, CYLINDRICAL, SPHERICAL, BUCKLEDSLAB OR BUCKLEDCYL ON THE GEOMETRY DESCRIPTION CARD. CHECK SPELLING.

This self-explanatory message is from subroutine MULTRG.

MP-15 ***ERROR*** ALPHANUMERIC DESCRIPTION OF THE RIGHT-HAND BOUNDARY CONDITION (_____) IS INCORRECT. ONLY VACUUM, REFLECTED, PERIODIC, AND WHITE BOUNDARY CONDITIONS ARE ALLOWED. CHECK SPELLING. CHECK GEOMETRY DESCRIPTION CARD INPUT INSTRUCTIONS FOR ADDITIONAL ASSISTANCE.

This self-explanatory message is from subroutine MULTRG. See Sect. M7.7.6 for additional assistance.

MP-16 ***ERROR*** ALPHANUMERIC DESCRIPTION OF THE LEFT-HAND BOUNDARY CONDITION (_____) IS INCORRECT. ONLY VACUUM, REFLECTED, PERIODIC, AND WHITE BOUNDARY CONDITIONS ARE ALLOWED IN SLAB GEOMETRY. IN THE CASE OF CYLINDRICAL OR SPHERICAL GEOMETRY, ONLY THE REFLECTED BOUNDARY CONDITION IS ALLOWED ON THE LEFT. CHECK SPELLING. CHECK GEOMETRY DESCRIPTION CARD INPUT INSTRUCTIONS FOR ADDITIONAL INSTRUCTIONS.

This self-explanatory message is from subroutine MULTRG. See Sect. M7.7.6 for additional assistance.

NUREG/CR-0200, Vol. 3, Rev. 6

MP-17 ***ERROR*** MIXTURE _____ FROM THE MULTIREGION DATA WAS NOT SPECIFIED IN THE STANDARD COMPOSITION DATA.

This message is from subroutine MULTRG. It indicates that a mixture number specified in the MULTIREGION data was not defined in the standard composition specification data. Check the input data for consistency.

MP-18 ***ERROR*** USER MADE AT LEAST ____ DATA ERRORS. PROBLEM WILL NOT BE RUN. HOPEFULLY, EACH OF THESE ERRORS WILL HAVE GENERATED ITS OWN SELF-EXPLANATORY ERROR MESSAGE. IF NOT, CHECK DATA CAREFULLY BEFORE RESUBMITTING.

This self-explanatory message is from subroutine SETUPB. Check through the problem printout and correct all errors that have occurred.

MP-19 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message is from subroutine SETUPB. It indicates that the allocated computer storage will not hold the data that must be loaded to calculate the information that must be passed to BONAMI. The first number is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that is required to hold these data. The third number is the minimum additional words of storage required to hold these data. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 390 is executed when this message is printed.

MP-20 ***ERROR*** MIXTURE NUMBER _____ ON A STANDARD COMPOSITION CARD IS LESS THAN 1.

This message is from subroutine SETUPB. A mixture number specified on a standard composition specification card must always be greater than zero. This message is triggered if a MP-6 message is printed. Fixing the MP-6 error should eliminate this message. If the printed mixture number is a positive number, a code error is responsible for the message.

MP-21 ***WARNING*** STANDARD COMPOSITION CARD NUMBER _____ IMPLIES THAT MIXTURE NUMBER _____ HAS A TEMPERATURE OF _____ DEGREES KELVIN, WHEREAS STANDARD COMPOSITION SPECIFICATION CARD _____ IMPLIES THAT MIXTURE NUMBER _____ HAS A TEMPERATURE OF _____ DEGREES KELVIN. (ONE OF THESE MAY HAVE BEEN THE VALUE SPECIFIED BY DEFAULT.) THE CODE WILL ASSUME THE HIGHER OF THE TWO AND PROCEED. IF THIS IS NOT SATISFACTORY, THE USER

> NUREG/CR-0200, Vol. 3, Rev. 6

SHOULD ENTER THE CORRECT TEMPERATURE ON EACH OF THE STANDARD COMPOSITION SPECIFICATION CARDS INDICATED.

This self-explanatory message is from subroutine SETUPB.

MP-22 ****WARNING**** STANDARD COMPOSITION SPECIFICATION CARD(S) MISSING FOR MIXTURE NUMBER _____.

This message from SETUPB is printed to remind the user that the mixture numbers specified in the standard composition specification data are not contiguous. This may result in wasted storage space, but is not necessarily indicative of an error.

MP-23 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine MTABLE indicates that the allocated computer storage will not hold the nuclide ID numbers that will be processed by subroutine IDENTS. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage needed to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 340 is executed when this message is printed.

MP-24 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine MIXTAB indicates that the allocated computer storage will not hold the three mixing table arrays that will be processed by subroutine ARRAY3. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage needed to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 350 is executed when this message is printed.

MP-25 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine MIXTAB indicates that the allocated computer storage will not hold the three mixing table arrays that will be processed by subroutine ARRAY3. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage needed to hold

the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 360 is executed when this message is printed.

MP-26 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine MIXTAB indicates that the allocated computer storage will not hold the three mixing table arrays that will be processed by subroutine ARRAY3. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage needed to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 370 is executed when this message is printed.

MP-27 ***ERROR*** THE NUMBER OF MIXTURES FOUND IN THE MIXING TABLE IS INCONSISTENT WITH THE INPUT DATA. THE NUMBER FOUND IS _____, BUT THE INPUT DATA INDICATED _____.

This message from subroutine REORDR indicates that an error was found in the mixing table during operations to reorder and load it in permanent storage. The number of mixtures found in the mixing table should be the same as the number indicated by the input data. A code error is the likely cause of this message. A STOP 380 is executed when this message is printed.

MP-28 ***ERROR*** NUCLIDE ID _____ SPECIFIED IN THE INPUT DATA WAS NOT FOUND IN THE STANDARD COMPOSITION LIBRARY.

This message is from subroutine IDENTS or subroutine SLNS. A STOP 395 is printed with this message. Check the standard composition specification data, Sect. M7.7.4, and assure that the "ZA" ID numbers were entered correctly. This message is also printed if an arbitrary material specifies a value other than 0 or 1 for the MULTIPLE-ISOTOPE INDICATOR (IVIS in Sect. M7.7.4).

MP-29 ***ERROR*** AN ARGUMENT OF _____ IS INVALID FOR AN ARCSIN OR ARCCOS.

This message from subroutine ARCHK is indicative of a code error. ARCHK is called from subroutine DAN to assure that proper arguments are supplied to the ARCSIN and ARCCOS functions in determining cylinder Dancoff factors. This error can be caused by specifying a center-to-center spacing that is smaller than is physically possible.

NUREG/CR-0200, Vol. 3, Rev. 6

MP-30 ***ERROR*** THE MATRIX WAS SINGULAR WHEN THE NUMBER FRACTION OF AN ISOTOPE IN AN ELEMENT WAS BEING DETERMINED. MAKE SURE THE SPECIFIED ISOTOPE DISTRIBUTION (WEIGHT PERCENT) SUMS TO 100.0.

This message from subroutine NOFRAC is caused by an isotope distribution that does not sum to 100.0 percent for an element. Entry A7 of Sect. M7.4.4 illustrates the correct procedure for specifying the weight percent of the various isotopes in an element.

MP-31 ***ERROR*** THE CALCULATED NUMBER FRACTIONS DO NOT REPRODUCE THE WEIGHT PERCENTS ENTERED AS INPUT DATA OR OBTAINED FROM THE STANDARD COMPOSITION LIBRARY.

WTFRAC=nnnnnnnnn NOFRAC=mmmmmmmmmm MASS= 00000000

This message is printed from subroutine NOFRAC. WTFRAC, NOFRAC, and MASS are printed for each isotope in the standard composition. WTFRAC is the specified input weight percent for the isotope converted to weight fraction instead of weight percent. NOFRAC is the adjusted atom percent converted to atom fraction for the isotope corresponding to a total weight percent of 100% for the isotopes in the standard composition. MASS is the atomic weight of the isotope. The adjusted isotopic weight percents are not printed in MP-31 but can be calculated according to:

$$ADJ_{i} = \frac{NOFRAC_{i} \times MASS_{i}}{\sum_{i} NOFRAC_{i} \times MASS_{i}} \times 100$$

where

ADJ_i is the adjusted weight percent of isotope i,

NOFRAC_i is the number fraction of isotope i printed in MP-31, and

MASS_i is the atomic weight of isotope i printed in MP-31.

Message MP-31 is printed if the adjusted weight percent of any individual isotope differs by 0.4% or more from the isotopic weight percent specified for that particular isotope in the standard composition data. An error flag is set, and the problem will not execute. If the isotopic weight percents specified in the input data do not sum to 100%, the weight percent of the first isotope whose specified weight percent is greater than 0.1% is adjusted to force the total weight percent to sum to 100%. If this adjustment results in a calculated weight percent for that isotope that is less than 0.4% different from that specified in the input data, the problem is run using the adjusted data. If message MP-31 is printed, correct the isotopic weight percents specified in the standard composition input data to sum to 100 or specify the isotope with the largest weight percent first, and resubmit the problem.

MP-32 ***ERROR*** END COMP WAS EXPECTED, BUT _____ WAS READ INSTEAD.

This message from subroutine SETUPA is printed if the data are out of order or the keywords END COMP or END COMPOSITIONS are omitted after the last standard composition specification. An END followed by blanks is also allowed. Check the data and the spelling of the END COMP. See Sect. M7.4.4.

MP-33 ***ERROR*** END OF FILE WAS ENCOUNTERED WHILE READING MULTIREGION ZONE DESCRIPTION. VERIFY THAT THE END ZONE CARD WAS ENTERED.

This self-explanatory message from subroutine SETUPA is printed if the END ZONE is omitted following the MULTIREGION zone description data. See Sect. M7.4.7.

MP-34 ***ERROR*** END ZONE WAS EXPECTED, BUT _____ WAS READ INSTEAD.

This message from subroutine SETUPA is printed if data are out of order or the keywords END ZONE are omitted at the end of the MULTIREGION zone description data. Check the data and the spelling of the END ZONE. See Sect. M7.4.7.

MP-35 ***ERROR*** END OF FILE WAS ENCOUNTERED WHEN THE GEOMETRY DESCRIPTION CARD WAS EXPECTED.

This self-explanatory message from subroutine SETUPA is printed if data are omitted or out of order. See Sect. M7.4.

MP-36 ***ERROR*** ILLEGAL SOLUTION NAME _____. ALLOWED NAMES INCLUDE SOLNUO2F2, SOLNUO2(NO3)2 AND SOLNPU(NO3)4.

This self-explanatory message from subroutines SLNS and SLNAME is printed if a solution name is misspelled or data are out of order. See Sect. M7.4.4 for assistance in specifying solution names correctly.

MP-37 ***ERROR*** _____ IS AN INVALID NAME WHEN READING MORE DATA.

This message is printed from subroutine MOREDT when extra parameter data are to be entered as explained in Sect. M7.4.8. The data are out of order or a parameter name is misspelled.

MP-38 ***ERROR*** INVALID GEOMETRY WORD _____. ONLY INFHOMMEDIUM, MULTIREGION, OR LATTICECELL ARE ALLOWED.

This self-explanatory message is from subroutine SETUPA. Correct the input data and resubmit the problem. Check the spelling of the geometry word, assure that the data are in order, and resubmit the problem.

NUREG/CR-0200, Vol. 3, Rev. 6

MP-39 ***WARNING*** AN END DATA WAS READ BEFORE IT WAS EXPECTED. AN END WAS PROBABLY OMITTED FROM A STANDARD COMPOSITION.

This message from subroutine SETUPA indicates that an "END" was omitted from a standard composition specification or the END for a standard composition specification was followed by COMP. The first four characters following the END on a standard composition specification card cannot be COMP. The words END COMP terminate the standard composition specification data. Check the standard composition specification data carefully.

MP-40 ***ERROR*** NUCLIDE ID _____ IN MIXTURE _____ DOES NOT OCCUR IN THE STANDARD COMPOSITION LIBRARY.

This self-explanatory message is from subroutine REORDR. A STOP 385 is executed in conjunction with this message.

MP-41 ***ERROR*** A NUCLIDE ID OF _____ IS INVALID FOR _____ IN THE FOLLOWING STANDARD COMPOSITION SPECIFICATION.

This message from subroutine STDCMP indicates that a nuclide ID is not compatible with a standard composition name. For example: UO2 3 1 300 94240 50 94238 50 END would cause this error because plutonium is invalid for a uranium standard composition specification. If this message is printed for a solution, the specific gravity of the solution may have been entered without the required keyword SPG=.

MP-42 ***ERROR*** AN END WAS ENCOUNTERED BEFORE MORE DATA WAS COMPLETED.

This message from MOREDT indicates incomplete input for MORE DATA. See Sect. M7.4.8 for assistance.

MP-43 ***WARNING*** BAL= _____ IS AN INVALID BALANCE TABLE SPECIFICATION. ALL BALANCE TABLES WILL BE PRINTED.

This message from subroutine MOREDT indicates that the value entered following BAL= is incorrect. Available options are NONE, FINE, and ALL. If any other value is entered, this message will be printed.

MP-44 ***ERROR*** NUCLIDE _____ WAS NOT FOUND ON THE CROSS SECTION LIBRARY AND IS NOT A MULTIPLE ISOTOPE NUCLIDE IN THE STANDARD COMPOSITION LIBRARY.

ERROR

This message from subroutine SCDATA indicates that the nuclide ID specified was not found on the cross section library or in the multiple isotope table in the Standard Composition Library. An error flag is set to prevent execution, and checking is continued.

NUREG/CR-0200, Vol. 3, Rev. 6

MP-45 ***** ERROR *****

* _____ IS NOT A VALID CALCULATION TYPE. USE INFHOMMEDIUM, LATTICECELL, OR MULTIREGION. EXECUTION IS TERMINATED.

This message from subroutine CSPARM indicates that the TYPE OF CALCULATION (see entry 3 of Sect. M7.4.3) was spelled incorrectly, entered out of order, or was improperly specified.

MP-46 *** ERROR *** THE FUELOD CANNOT BE GREATER THAN THE PITCH.

This self-explanatory message from subroutine LATCEL results from an error in the UNIT CELL SPECIFICATION for a LATTICECELL problem (see Sect. M7.4.6). The value of PITCH must be at least as large as the value of FUELOD.

MP-47 *** ERROR *** THE CLADOD CANNOT BE LESS THAN THE FUELOD, NOR GREATER THAN THE PITCH.

This message from subroutine LATCEL indicates an error in the UNIT CELL SPECIFICATION for a LATTICECELL problem. See Sect. M7.4.6 and verify the values of PITCH, FUELOD, and CLADOD.

MP-48 *** ERROR *** THE GAPOD CANNOT BE LESS THAN THE FUELOD, NOR GREATER THAN THE CLADOD.

This message from subroutine LATCEL indicates an error in the UNIT CELL SPECIFICATION for a LATTICECELL problem. See Sect. M7.4.6 and verify the values of FUELOD, CLADOD, and CLADID (note that CLADID is the GAPOD and is equal to FUELOD + twice the gap thickness).

MP-49 *** ERROR *** THE ABOVE RADIUS MUST BE GREATER THAN THE PREVIOUS RADIUS.

This message from subroutine MULTRG indicates an error in the GEOMETRY SPECIFICATION for a MULTIREGION problem. See Sect. M7.4.7 and check to assure that each value of RZ is greater than the previous value of RZ.

MP-50 *** WARNING *** IN MORE DATA, RESONANCE INFORMATION (RES=) WAS SUPPLIED FOR MIXTURE ______. IT WILL NOT BE USED BECAUSE THAT MIXTURE OCCURS IN THE CELL DESCRIPTION.

This message from subroutine MOREDT is printed if resonance data (RES=) are entered for a mixture in MORE DATA (Sect. M7.4.8) and is also used in the cell description (Sects. M7.4.6 and M7.4.7).

MP-51 *** ERROR *** IN MORE DATA _____ IS AN INVALID GEOMETRY TYPE FOR USE IN SPECIFYING RESONANCE DATA. CYLINDER, SPHERE, OR SLAB MUST BE ENTERED.

This message from subroutine MOREDT is printed if resonance data (RES=) are entered in MORE DATA (Sect. M7.4.8) and an incorrect shape is specified. The correct specification for a sphere of mixture 3 having a radius of 1.5 cm is: RES=3 SPHERE 1.5

MP-52 *** WARNING *** IN MORE DATA, DANCOFF INFORMATION (DAN()=) WAS SUPPLIED FOR MIXTURE _____. THIS VALUE WILL BE USED INSTEAD OF CALCULATING THE DANCOFF FROM THE CELL DESCRIPTION.

This message from subroutine MOREDT is printed to alert the user that the Dancoff information calculated from the unit cell (Sects. M7.4.6 and M7.4.7) specification is being overridden by the value that was entered in MORE DATA (Sect. M7.4.8).

MP-54 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the volume fraction data from subroutine VERIFY. The first number printed is the amount of storage, in words, needed to hold this data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-55 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the mixing table data required for subroutine BONAMI. The first number printed is the amount of storage, in words, needed to hold this data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

NUREG/CR-0200, Vol. 3, Rev. 6

MP-56 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the mixture number, outer radii, temperature, sigma-H, and zone identifiers for each BONAMI zone. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-57 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the BONAMI control parameters. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-58 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the cross-section data required by subroutines EPSIG and XSMESH. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-59 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the data required by subroutine XSDRN. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent

> NUREG/CR-0200, Vol. 3, Rev. 6

portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-60 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine C4DATA indicates that the allocated computer storage will not hold the data required by subroutine ICE. The first number printed is the amount of storage, in words, needed to hold this data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem.

MP-61 *** ERROR *** THE CROSS-SECTION LIBRARY NAME ENTERED IN THE MATERIAL INFORMATION PROCESSOR DATA FOR THIS CSAS PROBLEM IS INCORRECT. SEE TABLE M8.2.2 OF THE SCALE MANUAL.

This message from subroutine C4DATA indicates that an invalid CROSS-SECTION LIBRARY NAME (see item 2 of Sect. M7.4.3) was entered. The name was misspelled, out of order, or improperly specified.

MP-62 ***ERROR*** A MIXTURE NUMBER IS OUT OF RANGE. ENTRY _____ IN THE MIXING TABLE IS _____. IT SHOULD FALL BETWEEN 1 AND _____, THE LARGEST NUMBER USED IN THE STANDARD COMPOSITION DATA.

This message is from subroutine EPSIG. Because the largest mixture number is determined by the code as the input data are read, this message may be the result of a code error introduced when changes were made to the code.

MP-63 ***ERROR*** A POINTER INTO THE NUCLIDE DATA IS OUT OF RANGE. ENTRY
______ IN THE MIXING TABLE IS ______. IT SHOULD FALL
BETWEEN 1 AND ______, THE NUMBER OF NUCLIDES IN THE
STANDARD COMPOSITION LIBRARY.

This message is from subroutine EPSIG. It may result from a code error introduced when changes were made to the code.

MP-64 TAPE COPY NEEDS _____ WORDS, BUT ONLY HAS _____ WORDS.

This message from subroutine SHORTX indicates that the allocated computer storage is insufficient to create the short cross-section library utilized by the Material Information Processor. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. A STOP 200 is executed when this message is printed.

MP-65 ***** ERROR ***** THE FOLLOWING NUCLIDES WERE NOT FOUND ON THE MASTER LIBRARY:

This message from subroutine SHORTX indicates that the user specified a standard composition which contains a nuclide that is not available on the specified master library. For example, nuclide ID 25304, which is stainless-steel-weighted manganese, is not available on any of the libraries but is listed in the Standard Composition Library. 25055 could be used instead.

MP-66 ***ERROR*** THE MIX. NO. (MIXZ=____) ASSIGNED TO ZONE IZ=____WAS OUTSIDE THE RANGE 0 TO MXX=____.

This message from subroutine VERIFY indicates that the mixture number is out of range. A code error is the likely cause of this error.

MP-67 **WARNING** MIXTURE _____WAS ASSIGNED TO ZONES _____AND ____ THIS MAY BE CORRECT IF THE MIXTURE HAS NO RESONANCE NUCLIDES AND HAS THERMAL SCATTERING DATA AT ONLY ONE TEMPERATURE. USUALLY, UNIQUE MIXTURE NUMBERS SHOULD BE USED IN EACH ZONE, EVEN THOUGH THE MIXTURE SPECIFICATIONS MAY BE IDENTICAL. THIS ALLOWS BONAMI AND NITAWL TO PRODUCE SEPARATE CROSS SECTIONS BASED ON THE APPROPRIATE NUMBER OF EXTERNAL MODERATORS AND THE ACTUAL MEAN CHORD LENGTH FOR EACH SPECIFIED ZONE AS WELL AS THE ACTUAL TEMPERATURE FOR THAT ZONE.

This self-explanatory message is from subroutine VERIFY. The user should verify that the multiple use of the stated mixture number was intentional and correct.

MP-68 ERRONEOUS MIXING TABLE LENGTH FOR XSDRN.

This message from subroutine XSDRN is indicative of a code error. The computed mixing table length, MS, passed to subroutine XSDRN, does not match the counted length in subroutine XSDRN.

MP-69 FIRST TWO NUMBERS ARE WORDS OF STORAGE NEEDED AND ALLOCATED. THIRD IS REQUIRED ADDITIONAL WORDS.

PERTINENT CONSTANTS

This message from subroutine XSMESH indicates that the allocated computer storage will not hold the interval boundaries and zone number for each interval. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated, and the third number is the minimum additional words of storage required to hold the data to this point. Subsequent portions of the program may require even more storage. Increase the space allocation using the "SIZE" parameter on the analytical sequence indicator (Sect. M7.4.2) and resubmit the problem. Specification (by the control module) of too many mesh intervals in a given zone is the most frequent cause of failure. In MULTIREGION calculations where one has a large zone containing a strong absorber (such as a tank of uranyl-fluoride solution), it may be necessary to reduce the number of mesh intervals by

> NUREG/CR-0200, Vol. 3, Rev. 6

increasing the size factor (SZF) in the Optional Parameter Data (Sect. M7.7.7). Making this factor large enough (SZF=10, 15, 20, 30, etc.) will generally allow any problem to run in the space allocated. Once the problem runs, one should check the number density of all strong absorbers to see if they are realistic. Occasionally a user will accidentally specify an unrealistic concentration of a strong absorber in one or more zones. Such a mistake dramatically increases the number of mesh intervals the code thinks it needs.

MP-70 ***ERROR*** MORE THAN ONE ZONE WAS ENCOUNTERED FOR THIS INFINITE HOMOGENEOUS MEDIA PROBLEM.

This self-explanatory message is from subroutine XSMESH. Correct the input data and resubmit the problem.

MP-71 ***WARNING*** THE TEMPERATURE FOR STANDARD COMPOSITION _____WAS SPECIFIED AS _____ DEGREES CELSIUS. DENSITY DATA AT 25 DEGREES CELSIUS WILL BE USED FOR THIS SOLUTION.

This message from subroutine SLNS is printed if SOLNUO2F2 or SOLNPU(NO3)4 were specified in the standard composition data with a temperature outside the range of 15 to 30 degrees CELSIUS. The Standard Composition Library does not contain data for these solutions outside that temperature range.

MP-72 *** ERROR *** KEYWORD SPG= OR DEN= TO SPECIFY THE SPECIFIC GRAVITY OF THE SOLUTION WAS EXPECTED. KEYWORD _____ WAS READ INSTEAD.

This message from subroutine STDCMP indicates an error in the specification of solution data in the standard composition specification. If the specific gravity of a solution is to be entered, it is the fourth entry after the solution name. Check the solution input data carefully.

MP-73 ***ERROR*** EXTERNAL MODERATOR INDEX IS INCORRECT IN ZONE _____OF THE MULTIREGION DATA. ENTER NOEXTERMOD, ONEEXTERMOD, OR TWOEXTERMOD INSTEAD OF _____. CHECK SPELLING.

This self-explanatory message is printed from subroutine MULTRG and subroutine RESDA or subroutine MULTRG. The user has misspelled the word defining the external moderator index of the specified zone or the MULTIREGION data are out of order. See Sect. M7.4.7.

MP-74 *** ERROR *** FIRST MODERATOR HAS NEGATIVE THICKNESS

This message from subroutine DANCOF indicates that the dimensions specified for an ASYMSLABCELL are inconsistent. The array pitch (PITCH) is smaller than the sum of the second moderator thickness (TKMOD2) and MAX where MAX is the outside diameter of the clad (CLADOD) if entered; otherwise, MAX is the outside diameter of the fuel (FUELOD). Correct the data and resubmit the problem. See Sect. M7.4.6 and Figure M7.4.3 for assistance.

This message from subroutine STDCMP indicates an error in the specification of the density in the basic standard composition data. If the density of the material is to be entered, it is the second entry after the standard composition name. The density is optional data. If the density is entered, it is multiplied by the volume fraction to obtain the density actually used for this composition.

MP-76 *** ERROR *** THE LOWER BOUND OF XSDRN INTERVAL _____ IS _____ IS _____ IS ______ IS ______ IS ______ IS _______.

This message from subroutine XSMESH indicates that the specified XSDRN mesh interval is incorrect. Each mesh interval must have a finite positive thickness. This message can be caused by an error in the unit cell data. Either a zero-thick region was specified or the unit cell dimensions were incorrectly specified. Carefully check the unit cell dimensions. If a LATTICECELL annular cell is specified, verify that the FUELOD is at least as large as TKMOD2+2(CLADOD-FUELOD).

MP-77 A NEGATIVE DIMENSION WAS ENCOUNTERED IN THE UNIT CELL DATA. CHECK AND CORRECT THE GEOMETRY DIMENSION.

This message from subroutine LATCEL is printed if a negative number is read for a cell dimension. Check the printed problem geometry and correct the input data (Sect. M7.4.6).

MP-78 THE FUEL THICKNESS IS NEGATIVE. THE ANNULAR CELL DIMENSIONS FOR TKMOD2, CLADOD, AND FUELOD ARE INCONSISTENT.

This message from subroutine LATCEL indicates an error in the description of a cylindrical or spherical annular cell. The cell description must provide a finite fuel thickness. The inside diameter of the fuel is calculated using the diameter of the second moderator, TKMOD2, and the outer diameter of the clad, CLADOD. If the calculated inside diameter of the fuel is greater than or equal to the specified outer diameter of the fuel, there is no fuel in the cell and this message is printed. The thickness of the gap and clad is $\frac{1}{2}(CLADOD-FUELOD)$, so the inside diameter of the fuel is TKMOD2+CLADOD-FUELOD. See Sect. M7.4.6 for data input instructions.

MP-79 *** ERROR *** THE ORIGIN MUST BE 0.0 FOR SPHERICAL OR CYLINDRICAL GEOMETRY.

This message from subroutine MULTRG is printed if the origin, ORGN of Table M7.4.8, Sect. M7.4.7, is nonzero for a cylinder or sphere. Either the MULTIREGION unit cell data are out of order or a nonzero number has been entered for ORGN. Correct the data and resubmit the problem.

MP-80 *** ERROR *** NOT ENOUGH STORAGE IN CLAPSE --- FIRST NUMBER IS THE AMOUNT NEEDED, SECOND IS THE AMOUNT AVAILABLE.

PERTINENT CONSTANTS

This message from subroutine CLAPSE indicates that the allocated computer storage is insufficient to allow collapsing the thermal cross sections to one group for shielding calculations. The first number printed is the amount of storage, in words, needed to hold these data. The second number is the amount of computer storage that was allocated. A STOP 201 is executed when this message is printed.

MP-81 *** ERROR *** DANCOFF FACTOR MUST BE BETWEEN 0.0 AND 1.0

This message from subroutine MOREDT is printed if DAN(n)= is specified in MORE DATA with a value greater than 1.0 or less than 0.0. Dancoff factors must lie between 0 and 1. The problem will not be run if message MP-81 is printed. Correct the data and resubmit the problem. See Sect. M7.4.7 for assistance.

MP-82 THE FIRST MODERATOR THICKNESS IS NEGATIVE. THE ASYMMETRIC SLAB CELL DIMENSIONS FOR TKMOD2, CLADOD, AND PITCH ARE INCONSISTENT

This message from subroutine LATCEL indicates an error in the description of an asymmetric slab cell. The thickness of the first moderator is not specified in the input data and is calculated as PITCH-TKMOD2/2-CLADOD. If the thickness of the first moderator is negative, this message is printed.

MP-83 *** ERROR *** AN INPUT DATA ERROR HAS BEEN ENCOUNTERED IN THE MATERIAL INFORMATION PROCESSOR DATA ENTERED FOR THIS PROBLEM.

This message from subroutine C4DATA is printed if the subroutine library routine LRDERR returns a value of "TRUE," indicating that a reading error was encountered in the Material Information Processor input data. Locate the unnumbered message stating "***** ERROR IN INPUT. CARD IMAGE PRINTED ON NEXT LINE *****." Correct the data and resubmit the problem.

MP-84 *** WARNING *** FOR MIXTURE _____ THE DANCOFF FACTOR OF _____ IS OUTSIDE THE RANGE OF 0 TO 1. IT WILL BE RESET TO THE CLOSER BOUND.

This message from subroutine RESDA is printed when the DANCOFF factor is less than 10^{-4} outside the allowed range of 0 to 1. This is usually due to roundoff in calculating the Dancoff factor.

MP-85 *** ERROR *** FOR MIXTURE _____ THE DANCOFF FACTOR OF _____ IS OUTSIDE THE RANGE OF 0 TO 1. IT WILL BE RESET TO THE CLOSER BOUND. THE PROBLEM WILL NOT BE EXECUTED.

This message from subroutine RESDA is printed when the Dancoff factor is more than 10^4 outside the allowed range of 0 to 1. Check the input data to be sure that the specified Dancoff factor is between 0 and 1. See Sect. M7.4.8 or C4.4.8 for input specifications for the Dancoff factor. If the Dancoff factor was not specified in the optional parameter data, the message is due to a code error.

MP-86 ***ERROR*** THE FUEL DENSITY FOR SOLUTION _____ IN MIXTURE _____ SPECIFIES A FUEL DENSITY OF ______ G/L, WHICH EXCEEDS THE FUEL DENSITY OF A HYDRATED CRYSTAL, AND WILL LEAD TO ERRONEOUS DENSITIES WHEN USED AS A SOLUTION

This message from subroutine SLNS is printed only for solution standard compositions (those that begin with SOLN) that are incorrectly specified. Each solution standard composition is composed of (1) a fuel-salt, fs, (2) water, H_2O , and (3) an acid. A fully hydrated fuel-salt is defined as $fs \cdot nH_2O$ where n defines the number of water molecules associated with the fuel-salt crystal (water of hydration). The values of n are:

n	Solution	Hydrated Salt
2	UO_2F_2	$UO_2F_2 \cdot 2H_2O$
6	$UO_2(NO_3)_2$	$UO_2(NO_3)_2 \cdot 6H_2O$
5	Pu(NO ₃) ₄	$Pu(NO_3)_4 \cdot 5H_2O$

If the fuel density is so large that there is not enough water in the solution to form fully hydrated crystals of fuel-salt, this message will be printed. The solution name, mixture number, and specified fuel density are printed in the error message. The problem will not run if this message is printed. Correct the input data for this solution standard composition in the specified mixture and resubmit the problem.

MP-87 ***WARNING*** THE FUEL DENSITY FOR SOLUTION ____ IN MIXTURE ___ SPECIFIES A FUEL DENSITY OF _____ G/L. THIS MAY BE GREATER THAN THE SATURATED SOLUTION FUEL DENSITY, AND MAY GIVE INCORRECT DENSITIES AS A SOLUTION. CHECK THE DENSITIES CAREFULLY.

This message from subroutine SLNS is printed because the fuel density for the specified solution standard composition may be high enough to allow precipitation of the fuel-salt. Each solution standard composition is composed of (1) a fuel-salt (fs), (2) water (H_2O), and (3) an acid. The water/fuel-salt ratio, n, is the ratio of the moles of water to moles of fuel-salt. The minimum threshold values of n used to trigger this message are:

 $\begin{array}{lll} n & Solution \\ 8 & UO_2F_2 \\ 17 & UO_2(NO_3)_2 \\ 17 & Pu(NO_3)_4 \end{array}$

The solution name, mixture number, and specified fuel density are printed in the error message. The problem will run and it is the responsibility of the user to verify that the resulting solution is correct.

MP-88 ***ERROR*** THE LIBRARY SPECIFIED IS A PRE-NITAWL-II LIBRARY

This error message from subroutine SETUPA indicates the specified library was created to be used with a version of NITAWL prior to NITAWL-II. See Table M8.2.2 of Table M4.1.1 for a list of acceptable cross-section libraries. If the library is correctly specified, its format is not consistent with the NITAWL-II format.

MP-89 THE MATERIAL SPECIFIED IN THE ____TH STANDARD COMPOSITION SPECIFICATION DOES NOT ALLOW MULTIPLE ISOTOPES. THE FOLLOWING ISOTOPE SPECIFICATIONS WERE ENTERED: <u>NCZA(i)</u> <u>ATPM(i)</u> <u>NCZA(i+1)</u> <u>ATPM(i+1)</u>....

This error message from subroutine SCDATA indicates that the <u>nth</u> standard composition specification does not contain multiple isotopic nuclides but isotopic data (NCZA and ATPM) were included. It could possibly indicate a missing END statement. When determining the <u>nth</u> specification, arbm and basic standard composition specifications count as one each and solution specifications count as three each (fuel salt, water, and an acid).

MP-90 TOO MANY ISOTOPES WERE SPECIFIED FOR ELEMENT ____OF THE ____TH STANDARD COMPOSITION SPECIFICATION.

This error message from subroutine SCDATA indicates that element _____ of the ____th standard composition specification contains more isotopes than are allowed. Reduce the number of isotopes used to describe the material. When determining the ____th standard composition specification, arbitrary materials and basic standard composition specifications count as one each and solution specifications count as three each (fuel salt, water, and an acid).

MP-91 ***ERROR*** THE USER SPECIFIED A NEGATIVE VOLUME FRACTION FOR _____.

This self-explanatory error message from subroutine STDCMP indicates a negative density multiplier or volume fraction (VF). It was entered for the standard composition named in the message.

MP-92 ***ERROR*** THE USER SPECIFIED A NEGATIVE OR 0 MIXTURE NUMBER FOR ____

This self-explanatory error message from subroutine STDCMP indicates that a negative or zero mixture number (MX) was entered for the standard composition named in the message.

MP-93 ***ERROR*** THE USER SPECIFIED A NEGATIVE OR 0 DENSITY FOR _____.

This self-explanatory error message from subroutine STDCMP indicates that a negative or zero density or specific gravity (SPGR or ROTH) was specified for the standard composition named in the message.

MP-94 ***ERROR*** THE USER SPECIFIED A NEGATIVE OR 0.0 FUEL DENSITY FOR SOLUTION _____.

This self-explanatory error message from subroutine STDCMP indicates that a negative of zero fuel density (FD) was specified for the solution standard composition named in the message.

MP-95 ***ERROR*** THE USER SPECIFIED A NEGATIVE ACID MOLARITY FOR SOLUTION

This self-explanatory error message from subroutine STDCMP indicates that a negative or zero acid molarity (AML) was specified for the solution standard composition named in the message.

MP-96 ***ERROR*** ILLEGAL ENDING KEYWORD FOR DANCOFF.)= SHOULD HAVE BEEN ENTERED, BUT _____WAS READ INSTEAD.

This error from MOREDT indicates a DAN(keyword was read, but after the mixture number, the required)= keyword was not found. Correct the Dancoff specification.

MP-97 ***ERROR*** A ZONE WIDTH MODIFIER WAS SPECIFIED FOR ZONE ____. IT MUST BE BETWEEN 1 AND ____.

This error from MOREDT indicates that a zone width search modifier was specified for a zone greater than the number of zones, or less than 1. Correct the zone number.

MP-98 ***ERROR*** THE NUMBER OF INTERVALS WAS SPECIFIED FOR ZONE _____. IT MUST BE BETWEEN 1 AND _____.

This error for MOREDT indictes that the number of intervals was specified for a zone greater than the number of zones, or less than 1. Correct the zone number.

M7.7.2 STOP CODES

The STOP codes that are utilized in the Material Information Processor are listed in Table M7.7.1 indicating the subroutine where they occur and the associated error message. A STOP is executed when a fatal error is recognized. Locate the associated message number to determine the appropriate corrective measures. A traceback may be generated whenever subroutine STOP is called to print a message. If no traceback is indicated in the STOP CODE table, a STOP is printed at the completion of the associated message.

STOP NUMBER	SUBROUTINE	TRACEBACK	ASSOCIATED MESSAGE
20			see Sect. M7.7.3
200	SHORTX	No	MP-64
201	CLAPSE	No	MP-80
300	KNIGHT	Yes	MP-1
310	KNIGHT	Yes	MP-2
320	KNIGHT	Yes	MP-3
330	SETUPA	Yes	MP-4
340	MTABLE	Yes	MP-23
350	MIXTAB	Yes	MP-24
360	MIXTAB	Yes	MP-25
370	MIXTAB	Yes	MP-26
380	REORDR	No	MP-27
385	REORDR	No	MP-40
390	SETUPB	Yes	MP-19
395	IDENTS	No	MP-28
395	SLNS	No	MP-28
396	CSPARM	No	MP-45

 Table M7.7.1 STOP Codes Utilized in Material Information Processor

M7.7.3 MESSAGES ASSOCIATED WITH STOP 20 IN CSAS

The following messages from subroutine library routines will result in a STOP 20 in the material information processor and CSAS.

LMP001 DA ERROR – INVALID UNIT NUMBER. THE LOGICAL UNIT NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that an invalid unit number was specified as a direct-access device. In CSAS, this message is indicative of a code error.

LMP002 DA ERROR – FORTRAN USING THIS UNIT. THE LOGICAL UNIT NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that the specified unit number is open as a sequential dataset rather than a direct-access dataset. In CSAS, this error may be caused by entering a direct-access unit number for FRD= or FWR= in MORE DATA. See Sect. M7.4.8.

LMP003 DA ERROR – DCB NOT OPEN. THE LOGICAL UNIT NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that the program attempted to read or write on a direct-access device but the data control block was not open. In CSAS this message is indicative of a code error.

LMP004 DA ERROR – UNABLE TO OPEN DCB. THE LOGICAL UNIT NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that the program is unable to open the data control block for the direct-access device. This message indicates that the job control language did not include proper specification of the above named unit.

LMP005 DA ERROR – RELATIVE BLOCK NOT IN DATA SET. RELATIVE BLOCK NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that the number of directaccess blocks is too small for the problem. Increase the number of direct-access blocks in MORE DATA by entering the parameter DAB=nnn where nnn is larger. For example, if the relative block number is 201, try increasing the number of direct-access blocks to 300 or more. For CSAS25, CSAS2X, CSAS4, and CSAS4X, it may also be necessary to set NB8=nnn in the KENO parameter data. See Sect. M7.4.8 or C4.4.8, entry number 18, and Sect. F11.4.3, parameter NB8.

LMP006 DA ERROR – INVALID BLOCK LENGTH. THE BLOCK LENGTH IS _____.

This message from a subroutine library direct-access routine indicates that the length of the directaccess blocks is invalid. A valid block length must be positive. In CSAS, this message is indicative of a code error.

LMP007 DA ERROR – DCB ALREADY OPEN. THE LOGICAL UNIT NUMBER IS _____.

This message from a subroutine library direct-access routine indicates that the data control block for the above named unit was previously opened and not closed.

LMP008 DA ERROR - PERMANENT I/O ERROR.

This message from a subroutine library direct-access routine indicates that a permanent I/O error has occurred.
M7.7.4 UNNUMBERED MESSAGES

Occasionally the code may terminate without printing a message that can be located via the message number. Some of these messages are contained in this section.

***** END OF FILE READ ON UNIT n *****

This message is from subroutine ENFILE in the Subroutine Library. Unit n is the device from which data are being read. This message can be caused by lack of a double blank between the END for the last standard composition and the END COMP. It can also be caused by omitting the END COMP or misspelling COMP in the END COMP entry. Other causes include incomplete or missing data. A traceback accompanies this message. Correct the data and resubmit the problem. See Sect. M7.4.4 or C4.4.4 for assistance.

***** ERROR IN INPUT. CARD IMAGE PRINTED ON NEXT LINE ***** card image is printed here ON THE ABOVE CARD, CHARACTER NUMBER m (IMAGE=c) IS NOT VALID.

This message is from the Subroutine Library free-form reading routine DREAD. The character number, m, and the character image, c, printed in the message are recognized as being invalid for the type of data being read. For example, character data were encountered when numerical data were expected. This message can be caused by missing or incomplete data and by omitting double blanks after a labeled or unlabeled END. A traceback accompanies this message. Correct the data and resubmit the problem.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.7.24

M7.8 REFERENCES

- 1. I. Bondarenko, ed., Group Constants for Nuclear Reactor Calculations, Consultants Bureau, New York, 1964.
- 2. L. W. Nordheim, "The Theory of Resonance Absorption," *Proceedings of Symposia in Applied Mathematics*, G. Birkhoff and E. P. Wigner, eds., II, 58, Am. Math. Soc. (1961).
- 3. K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron Diffusion, Los Alamos Scientific Laboratory, 1953.
- 4. P. H. Kier, and A. A. Robba, *RABBLE, A Program for Computation of Resonance Absorption in Multi-Region Reactor Cells*, ANL-7326, Argonne National Laboratory, 1967.
- 5. M. M. Anderson, The Development and Application of an Interface Currents Technique for Two-Dimensional Reactor Cell Calculations, DP-MS-74-3, E. I. du Pont de Nemours & Co., Savannah River Laboratory, 1974.
- 6. S. C. Cohen, An Improved Treatment of Scattering Resonances in Slab Geometry, GA-7144, General Atomic Division of General Dynamics, 1966.
- 7. J. R. Knight, SUPERDAN: Computer Programs for Calculating the Dancoff Factor of Spheres, Cylinders, and Slabs, ORNL/NUREG/CSD-TM-2, Union Carbide Corp., Oak Ridge Natl. Lab., March 1978.
- 8. S. M. Dancoff and M. Ginsburg, *Surface Resonance Absorption in a Close-Packed Lattice*, CP-2157, September 1944.
- 9. "Specific Gravity of Boric Acid Solutions," Handbook of Chemistry, pp.1162, Compiled and Edited by Norbert A. Lange, Ph.D, 1956.
- G. I. Bell, "A Simple Treatment for Effective Resonance Absorption Cross Sections in Dense Lattices," Nucl. Sci. Eng. 5(2), 138 (February 1959).
- J. A. Bucholz, A Method of Generating Multigroup Transfer Matrices Using an Analytic Angular Integration Free of Truncation Error, ORNL/NUREG/CSD-8, Union Carbide Corp., Oak Ridge Natl. Lab., September 1978.
- J. R. Lamarsh, Introduction to Nuclear Reactor Theory, (a) Derivation of Nordheim Integral Equation (Sect. 11-3); (b) Practical Width of a Resonance (Sect. 7-2); (c) Doppler Broadening (Sects. 2-14 and 7-3); Addison-Wesley Pub. Co., Inc., 1966.
- 13. K. M. Case, F. de Hoffman and G. Placzek, Introduction to the Theory of Neutron Diffusion, Vol. 1, U.S. Government Printing Office, Washington, DC, June 1953.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.8.1

- 14. J. M. Otter, *Escape Probability Approximations in Lumped Resonance Absorbers*, NAA-SR-9764, Atomics International, 1963.
- 15. S. F. Mughabghab, D.I. Garber, and R. R. Kinsey, *Neutron Cross Sections*, BNL-325, Brookhaven National Lab., Third Ed., Vol. 1 (June 1973) and Vol. 2 (January 1976).
- 16. L. M. Petrie and N. F. Cross, *KENO IV: An Improved Monte Carlo Criticality Program*, ORNL-4938, Union Carbide Corp., Oak Ridge Natl. Lab., November 1975.
- 17. I. I. Bondarenko, M. N. Nikolaev, L. P. Abagyan, and N. O. Bazazyants, Group Constants for Nuclear Reactor Calculations, Consultants Bureau, New York, 1964.
- 18. G. E. Hansen and W. H. Roach, Six and Sixteen Group Cross Sections for Fast and Intermediate Critical Assemblies, LAMS-2543, Los Alamos Scientific Lab., November 1961.
- 19. L. Dresner, Resonance Absorption in Nuclear Reactors, Pergamon Press, 1960.
- 20. L. Dresner, "The Effective Resonance Integrals of U-238 and Th-232," Nucl. Sci. Eng. 1, 68 (March 1956).
- 21. W. Rothenstein, *Collision Probabilities and Resonance Integrals for Lattices*, BNL-563, Brookhaven Natl. Lab. (T-151), June 1959.
- 22. S. J. Raffety and J. T. Mihalczo, "Homogeneous Critical Assemblies of 2% and 3% Uranium-235-Enriched Uranium in Paraffin," Nucl. Sci. Eng. 48, 433 (1972).
- V. I. Neeley and H. E. Handler, Measurement of Multiplication Constant for Slightly Enriched Homogeneous UO₃-Water Mixtures and Minimum Enrichment for Criticality, HW-70310, Hanford Atomic Products Operation, August 1961.
- 24. V. I. Neeley, J. A. Berberet, and R. H. Masterson, K_w of Three Weight Percent ²³⁵U Enriched UO₃ and UO₂(NO₃)₂ Hydrogeneous Systems, HW-66882, Hanford Atomic Products Operation, September 1961.
- 25. R. M. Westfall and J. R. Knight, "SCALE System Cross-Section Validation with Shipping Cask Critical Experiments," *Trans. Am. Nucl. Soc.* 33, 368 (1979).

M7.A NOTES ON SOME ELEMENTARY RESONANCE SELF-SHIELDING TECHNIQUES USED IN SCALE

M7.A.1 THE NORDHEIM INTEGRAL METHOD FOR THE TWO-REGION PROBLEM

Multigroup cross-section data must be determined from the basic nuclear data in a fashion that is consistent with the way in which the data are to be used. For most processes (absorption, fission, etc.) that means averaging the actual data over the various energy groups, with the scalar flux (of a similar system) being used as a weighting function:

$$\sigma^{g} = \frac{\int_{E^{g}}^{E^{g-1}} \phi(E) \sigma(E) dE}{\int_{E^{g}}^{E^{g-1}} \phi(E) dE} .$$
 (M7.A.1)

Even though slightly different expressions might be used for the transport cross section and/or the group-to-group scattering terms,¹¹ it is still necessary to determine the flux spectrum. In the resonance range $\phi(E)$ and $\sigma(E)$ may both vary dramatically, and this weighting, referred to as "resonance self-shielding," is most important.

To determine $\phi(E)$, it is convenient to write an expression for the collision density at energy E in terms of the scattering density at all higher energies. For energies in the resonance region, virtually all of the slowing-down source is due to elastic scattering. Thus, neutrons of energy E' may scatter down to α' , and the probability of a neutron at energy E' scattering down to some energy within dE about E is given by

$$P(E' - E)dE = \left(\frac{1}{1 - \alpha}\right) \left(\frac{1}{E'}\right) dE, \qquad (M7.A.2)$$

where

$$\alpha = \left(\frac{A-1}{A+1}\right)^2.$$
(M7.A.3)

For simplicity, let us now consider a two-zone problem with a single nuclide in each zone. In the Nordheim method,³ the flux in the fuel $\phi_F(E)$ and the flux in the moderator $\phi_M(E)$ are assumed to be spatially flat over their respective regions. Gross spatial effects are accounted for by allowing $P_{F-M}^{o}(E)$ to represent the probability that a neutron of energy E escapes from the fuel without a collision, while $1 - P_{F-M}^{o}(E)$ represents the probability that the neutron has its next interaction within the fuel. If V_F and V_M represent the volume of the fuel and moderator regions, then the total collision rate in each region is given by¹²

$$V_{F}\Sigma_{tF}(E)\phi_{F}(E) = V_{F}[1-P_{F \to M}^{o}(E)] \int_{E}^{E/\alpha_{F}} \phi_{F}(E')\Sigma_{sF}(E') \left(\frac{1}{1-\alpha_{F}}\right) \left(\frac{1}{E'}\right) dE'$$

+
$$V_M P_{M-F}^{o}(E) \int_{E}^{E/\alpha_M} \phi_M(E') \Sigma_{sM}(E') \left(\frac{1}{1-\alpha_M}\right) \left(\frac{1}{E'}\right) dE'$$
 (M7.A.4)

and

$$V_{M}\Sigma_{tM}(E)\varphi_{M}(E) = V_{F}P_{F \to M}^{o}(E) \int_{E}^{E/\alpha_{F}} \dot{\varphi}_{F}(E')\Sigma_{sF}(E') \left(\frac{1}{1-\alpha_{F}}\right) \left(\frac{1}{E'}\right) dE'$$

+
$$V_{M}[1-P_{M+F}^{\circ}(E)] \int_{E}^{E/\alpha_{M}} \phi_{M}(E') \Sigma_{sM}(E') \left(\frac{1}{1-\alpha_{M}}\right) \left(\frac{1}{E'}\right) dE'$$
. (M7.A.5)

Note that this is a coupled set of integral equations where $\phi_F(E)$ depends on $\phi_M(E)$ and vice versa. To produce self-shielded cross-section data for the fuel, one must first determine $\phi_F(E)$. Obviously, if one had additional nuclides in the fuel or moderator, one would have additional integrals whose range of integration would be defined by α_F^{25} , α_F^{28} , α_F^{oxy} , α_M^H , α_M^{oxy} and whose scattering density would depend on Σ_{sF}^{25} , Σ_{sF}^{28} , Σ_{sM}^{oxy} , Σ_{sM}^{M} , Σ_{sM}^{oxy} . Non-resonance nuclides inside the fuel are frequently referred to as "internal moderators," and all nuclides in the moderator region are frequently referred to as "external moderators." In the Nordheim method, the external moderators are accounted for only implicitly, as described below.

Before considering the detailed solution of Eqs. (M7.A.4) and (M7.A.5), it is convenient to note that the asymptotic solutions [i.e., the fluxes $\phi_F(E)$ and $\phi_M(E)$ in the absence of absorption] are identical. By direct substitution, it can be shown that

$$\phi_{\rm F}^{\infty} = \phi_{\rm M}^{\infty} = \frac{1}{\xi \tilde{\Sigma}_{\rm s} E}, \qquad ({\rm M7.A.6})$$

where

$$\xi \bar{\Sigma}_{s} = \frac{1}{V} (\xi_{F} \Sigma_{sF} V_{F} + \xi_{M} \Sigma_{sM} V_{M}) \approx \text{ constant}$$
(M7.A.7)

NUREG/CR-0200, Vol. 3, Rev. 6

and δ is defined as the average increase in lethargy per collision.¹² In the asymptotic range far from resonances, Σ_{sF} is simply the potential scattering cross section, Σ_{pF} .

Armed with knowledge of the asymptotic solution, it is then possible to invoke the Narrow Resonance (NR) approximation for the external moderator, and eliminate the integral(s) over $\phi_M(E)$ in Eq. (M7.A.4).

If the average energy loss in an elastic collision with the moderator $[1/2(1-\alpha)E_{res}]$ is much larger than the practical width of the resonance (Γ_p) , then it is very unlikely that a neutron will have a second collision within the resonance. Under these conditions, the contribution to $\Sigma_{tF}(E)\Phi_F(E)$ due to the integration of $\Phi_M(E')\Sigma_{sM}(E')$ over the narrow energy range associated with the resonance will be negligible compared to the contribution due to the integration of $\Phi_M(E')\Sigma_{sM}(E')$ over the rest of the range (from just above the resonance $[E' = E_2 \approx E]$ to $E' = E/\alpha$). Figure M7.A.1 is an attempt to illustrate this situation. For energies E' just above the resonance there is very little absorption, and the flux there assumes the asymptotic form:

$$\phi_{\rm M}({\rm E}') = \phi_{\rm M}^{\infty} = \frac{1}{\bar{\xi}\bar{\Sigma}_{\rm E} E'} \tag{M7.A.8}$$

Figure M7.A.1 Elastic scattering into dE about E when E lies inside a narrow resonance

Substituting this expression in Eq. (M7.A.4) effectively decouples it from Eq. (M7.A.5). More precisely, the expression

$$\int_{E}^{E/\alpha_{M}} \phi_{M}(E') \Sigma_{sM}(E') \left(\frac{1}{1-\alpha_{M}}\right) \left(\frac{1}{E'}\right) dE'$$

$$= \int_{E}^{E_{2}=E+\epsilon} \left[dE' + \int_{E_{2}=E+\epsilon}^{E/\alpha_{M}} \frac{1}{\xi \Sigma_{s}E'} \Sigma_{sM}(E') \left(\frac{1}{1-\alpha_{M}}\right) \left(\frac{1}{E'}\right) dE'$$

$$= \left(\frac{\Sigma_{sM}}{\xi \Sigma_{s}}\right) \left(\frac{1}{1-\alpha_{M}}\right) \int_{E}^{E/\alpha_{M}} \frac{1}{x^{2}} dx = \left(\frac{\Sigma_{sM}}{\xi \Sigma_{s}}\right) \left(\frac{1}{E}\right)$$
(M7.A.9)

is substituted in Eq. (M7.A.4) to yield

$$V_{F}\Sigma_{tF}(E)\varphi_{F}(E) = V_{F}[1 - P_{F-M}^{o}(E)] \int_{E}^{E/\alpha_{F}} \varphi_{F}(E')\Sigma_{sF}(E') \left(\frac{1}{1 - \alpha_{F}}\right) \left(\frac{1}{E'}\right) dE'$$

+
$$V_{M}P_{M \to F}^{\circ}(E)\left(\frac{\Sigma_{sM}}{\xi \overline{\Sigma}_{s}}\right)\left(\frac{1}{E}\right)$$
 (M7.A.10)

When the fuel and moderator fluxes are assumed to be flat, it can be shown using the reciprocity theorem that $P_{F \to M}^{o}(E)$ and $P_{M \to F}^{o}(E)$ are related by the equation

$$V_{M}P_{M-F}^{o}(E)\Sigma_{sM}(E) = V_{F}P_{F-M}^{o}(E)\Sigma_{tF}(E)$$
 (M7.A.11)

Substituting this expression into Eq. (M7.A.10) yields

$$\Sigma_{tF}(E)\varphi_{F}(E) = [1 - P_{F-M}^{o}(E)] \int_{E}^{E/\alpha_{F}} \varphi_{F}(E')\Sigma_{sF}(E') \left(\frac{1}{1-\alpha_{F}}\right) \left(\frac{1}{E'}\right) dE'$$

NUREG/CR-0200, Vol. 3, Rev. 6

This integral equation for the flux, $\dot{\Phi}_{\rm F}({\rm E})$, is the basis of the Nordheim method. Note that the (1/E) slowing down source coming from the external moderator is represented by a single term on the right-hand side of

+
$$\frac{P_{F-M}^{\circ}(E)\Sigma_{tF}(E)}{\xi\Sigma_{c}E}$$
. (M7.A.12)

Eq. (M7.A.12). Internal moderators (such as the oxygen in UO₂) may be accounted for by including additional integrals whose range of integration would be defined by α_F^{25} , α_F^{28} , α_F^{oxy} , etc. The Nordheim method as implemented in the NITAWL code allows up to three such integrals – one for the absorber and two for "internal moderators." To solve the Nordheim integral equation, NITAWL expands the integral in a three-point formula corresponding to Simpson's Rule and then marches from the highest to the lowest energy, developing numerical values for the energy-dependent flux and collision density as it goes. For computational efficiency, NITAWL does not carry out this process over all energy but instead it (1) assumes the resonances are well isolated, (2) uses the asymptotic solution for the flux between resonances, and (3) assumes the asymptotic value for the flux $[\Phi^{\infty} = 1/(\xi \Sigma_{c} E)]$ at the upper end of each resonance.

In the interest of clarity, it must be pointed out that the flux spectrum in an isolated fuel lump $[\Phi_F(E)]$ is independent of the material properties of the surrounding moderator and that the NITAWL code does, in fact, solve Eq. (M7.A.12) without knowledge of the properties of the surrounding moderator. At first glance, this may appear to be contradictory since the term

$$\bar{\xi}\bar{\Sigma}_{s} \equiv \frac{1}{V}(\xi_{F}\Sigma_{sF}V_{F} + \xi_{M}\Sigma_{sM}V_{M}) \approx \text{ constant}$$
(M7.A.13)

appears explicitly in the Nordheim integral equation for the flux [cf. Eq. (M7.A.12)]. That equation, you will recall, gives the collision density at energy $E[\Sigma_{tF}(E)\varphi_{F}(E)]$ in terms of the flux at all higher energies $[\dot{\varphi}_{F}(E')]$. For energies (E) near the upper end of the highest energy resonance, the flux term appearing in the integrand will correspond to the asymptotic flux given by

$$\phi_{\rm F}({\rm E}') = \phi_{\rm F}^{\infty}({\rm E}') = \left(\frac{1}{\bar{\xi}\bar{\Sigma}_{\rm s}{\rm E}'}\right) \ . \tag{M7.A.14}$$

Since the constant $\xi \Sigma_s$ appears in *both* terms on the right-hand side of Eq. (M7.A.12), the flux at all lower energies $[\phi_F(E)]$ will be directly proportional to $(1/\xi \Sigma_s)$. That constant will, of course, cancel out when the flux $[\phi_F(E)]$ is used in Eq. (M7.A.1) to obtain the group-averaged cross sections. The Nordheim integral equation solved by NITAWL is, therefore, frequently written as

$$\Sigma_{tF}(E)\dot{\Phi}_{F}(E) = [1 - P_{F \star M}^{o}(E)] \int_{E}^{E/\alpha_{F}} \dot{\Phi}_{F}(E') \Sigma_{sF}(E') \left(\frac{1}{1 - \alpha_{F}}\right) \left(\frac{1}{E'}\right) dE'$$

$$+ \left(\frac{1}{E}\right) P_{F \to M}^{o}(E) \Sigma_{tF}(E)$$
 (M7.A.15)

with the initial condition written as simply

$$\Phi_{\rm F}({\rm E}') \equiv \left(\frac{1}{{\rm E}'}\right) \text{ at } {\rm E}' > {\rm E}_{\rm res}^{\rm max} .$$
(M7.A.16)

In systems having multiple fuel lumps, the material properties of the external moderator will become important only to the extent that they affect the transmission probability through the moderator (i.e., the Dancoff factor, C) and the "effective" escape probability for a typical fuel lump, $P_{F-M}(E)$. See Sect. M7.A.2 for additional details.

M7.A.2 EXACT EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE PROBABILITY USED IN THE NORDHEIM INTEGRAL METHOD, AND THE ROLE OF THE DANCOFF FACTOR (C) IN LATTICECELL CALCULATIONS

Before leaving our discussion of the Nordheim method as implemented in the NITAWL code, a few words must be said about $P_{F-M}^{o}(E)$ and how it is calculated. Obviously, if one had a single fuel lump embedded in an infinite sea of moderator, $P_{F-M}^{o}(E)$ would simply be the first-flight escape probability for the fuel lump, $P_{FO}(E)$. Assuming a uniform source of isotropically emitted neutrons, Case, deHoffman and Placzek¹³ have derived exact analytic expressions for $P_{FO}(E)$ as a function of $\Sigma_{tF}(E)$ and the characteristic lump dimension of the fuel, where

$$\bar{a} = \begin{cases} t, t = thickness of an infinite slab, \\ r, r = radius of an infinite cylinder, \\ r, r = radius of a sphere. \end{cases}$$
 (M7.A.17a)

Letting

$$\mathbf{x} = \bar{\mathbf{a}} \Sigma_{\mathbf{tF}}(\mathbf{E}) \tag{M7.A.17b}$$

these exact analytic expressions for the first-flight escape probability may be written as

NUREG/CR-0200, Vol. 3, Rev. 6

slab:
$$P_{FO}(E) = \frac{1}{x} \left[\frac{1}{2} - E_3(x) \right]$$
 (M7.A.18)

cylinder:
$$P_{FO}(E) = \frac{4}{3} (x) \{ 2[xK_1(x)I_1(x) + K_0(x)I_0(x) - 1] + \left(\frac{1}{x}\right) K_1(x)I_1(x) - K_0(x)I_1(x) + K_1(x)I_0(x) \}$$
 (M7.A.19)

sphere:
$$P_{FO}(E) = \left(\frac{3}{8x^3}\right) [2x^2 - 1 + (1 + 2x)e^{-2x}]$$
. (M7.A.20)

Tables of these functions are given in ref. 13. These tables, along with appropriate interpolation schemes, have also been incorporated in the NITAWL code.

In the derivation of Eq. (M7.A.12), $P_{F+M}^{o}(E)$ was taken to represent the probability that a neutron born in the fuel will have its next collision in the moderator. In the usual situation where one has a lattice of fuel pins, this probability is not the same as the escape probability from a single fuel rod since some of the escaping neutrons may pass through the moderator without a collision and be absorbed in the next fuel lump or succeeding fuel lumps. Figure M7.A.2 shows the probability that a neutron escaping from a single fuel lump will enter and leave each succeeding fuel lump. It also shows the probability that a neutron escaping from a single fuel lump will experience a collision in each of the succeeding moderator regions. Using C to represent the free-flight transmission probability through the moderator and P_t to represent the free-flight transmission probability through the fuel:

$$P_{F-M}^{o}(E) = P_{FO}(1-C) \left[1 + CP_{t} + C^{2}P_{t}^{2} + ... \right]$$
 (M7.A.21)

and

$$P_{F-M}^{o}(E) = P_{FO}(1-C)\left(\frac{1}{1-CP_{t}}\right)$$
 (M7.A.22)

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M7.A.2 Transmission of an uncollided neutron through a lattice

The traditional form of Eq. (M7.A.22) is obtained by writing the transmission probability for the fuel lump, P_t , in terms of the escape probability, P_{FO} . To obtain the approximate relationship typically used, consider a monodirectional beam of neutrons impingent on a slab of thickness l. The free-flight transmission probability is simply $P_t = e^{-lt}$. Now consider a monodirectional source of neutrons (S) uniformly distributed throughout the slab. The average free-flight escape probability, P_{FO} is then given by

$$P_{FO} = \frac{\int_{o}^{\ell} S e^{-x\Sigma_{t}} dx}{\int_{o}^{\ell} S dx} = \frac{1 - e^{-\ell\Sigma_{t}}}{\ell\Sigma_{t}} . \qquad (M7.A.23)$$

Rearranging terms, we have

$$\Rightarrow e^{-\ell \Sigma_t} = 1 - \ell \Sigma_t P_{FO} . \qquad (M7.A.24)$$

$$\Rightarrow P_t = 1 - \ell \Sigma_t P_{FO} . \qquad (M7.A.25)$$

Even though this relationship is strictly valid only for a monodirectional source, a reasonable first-order approximation for other cases may be obtained by setting ℓ equal to $\overline{\ell}$, the mean chord length through the fuel lump. The mean chord length is estimated as $4*V_F/S_F$ as well. Plugging Eq. (M7.A.25) into Eq. (M7.A.22) yields the standard approximation for $P_{F-M}^{o}(E)$:

$$P_{F-M}^{o}(E) = P_{FO}\left[\frac{1-C}{1-(1-\bar{\ell}\Sigma_{tF}P_{FO})C}\right]$$
 (M7.A.26)

NUREG/CR-0200, Vol. 3, Rev. 6

where P_{FO} and Σ_{tF} are energy-dependent [$P_{FO}(E)$ and $\Sigma_{tF}(E)$] and where C, the free-flight transmission probability through the moderator (also known as the Dancoff factor), depends only on the dimensions and the (relatively constant) cross section for the moderator. Approximations for the Dancoff factor in various types of lattice-cell arrangements are described in Sect. M7.2.4. Equations (M7.A.18-20) are thus used in conjunction with Eq. (M7.A.26) when solving the Nordheim integral equation for the flux.

M7.A.3 APPROXIMATE EXPRESSIONS FOR THE FIRST-FLIGHT ESCAPE PROBABILITY, THE DEFINITION OF THE ESCAPE CROSS SECTIONS, AND THE RELATIONSHIP BETWEEN THE TWO OUANTITIES

Before developing an expression for the flux based on the NR approximation and showing how that might be used to determine self-shielding factors for use in the Bondarenko method, it is convenient to make a few additional remarks concerning the first-flight escape probability.

From Eq. (M7.A.23), it is apparent that

$$P_{FO}(E) \rightarrow \frac{1}{\bar{\ell}\Sigma_{rF}(E)}, \quad \bar{\ell}\Sigma_{rF}(E) >>1$$
 (M7.A.27)

whenever the fuel lump is very large or very black. While less obvious, it can be shown that Eqs. (M7.A.18-20) obey the same limit. On the other hand, $P_{FO}(E) \rightarrow 1$ whenever the fuel lump is very small. One convenient expression which fits both end-points is Wigner's rational approximation:

$$P_{FO}(E) \doteq \frac{1}{1 + \bar{\ell} \Sigma_{rF}(E)}$$
 (M7.A.28)

Substituting this expression into Eq. (M7.A.26) and performing a small amount of algebra yields:

$$P_{F-M}^{o}(E) \doteq \frac{1}{1 + \left(\frac{\overline{\ell}}{1 - C}\right) \Sigma_{tF}(E)}$$
(M7.A.29)

Physically this says that the effect of the additional fuel in the lattice is the same as increasing the size of a single equivalent fuel rod.

As shown in Fig. M7.A.3, Wigner's rational approximation for $P_{FO}(E)$ fits the exact results given by Eqs. (M7.A.18-20) fairly well.

Figure M7.A.3 The escape probability (P_{FO}) and Wigner's rational approximation, as functions of the characteristic dimension $[\ell \Sigma_{tF}(E)]$

Others, in an attempt to improve the Wigner rational approximation, have suggested alternate forms such as

$$P_{FO}(E) \doteq \frac{1}{1 + a\bar{\ell}\Sigma_{F}(E)}$$
(M7.A.30)

where "a" is a fitted parameter between 0 and 1 which may be a constant, or a weak function of $\bar{\ell} \Sigma_{tF}(E)$. Substituting this expression in Eq. (M7.A.26) yields

NUREG/CR-0200, Vol. 3, Rev. 6

$$P_{F \cdot M}^{o}(E) = \frac{1}{1 + a\left(\frac{\overline{\ell}}{1 - C}\right)\Sigma_{tF}(E)}$$
$$= \frac{N_{F}\left(\frac{1 - C}{N_{F}a\overline{\ell}}\right)}{N_{F}\left(\frac{1 - C}{N_{F}a\overline{\ell}}\right) + N_{F}\sigma_{tF}(E)} = \frac{\sigma_{esc}}{\sigma_{esc} + \sigma_{tF}(E)}$$
(M7.A.31)

where σ_{esc} is a constant, or a very weak, function of $\overline{\ell} \Sigma_{tF}(E)$. Otter¹⁴ has carefully fitted the modified Wigner approximation [cf. Eq. (M7.A.30)] to the exact results given by Eqs. (M7.A.18–20). He claims that using

$$a = C + \frac{1-C}{A}$$
 (M7.A.32)

[where A is a slowly varying function of $\overline{\ell} \Sigma_{tF}(E)$ as given in Table M7.A.1] will reproduce the exact escape probabilities to within ~0.5%. Substituting Eq. (M7.A.32) into the expression for the escape cross-section yields

$$\sigma_{esc} = \left(\frac{1}{N_{F}}\right) \left(\frac{1-C}{\bar{\ell}}\right) \left(\frac{A}{1+(A-1)C}\right)$$
(M7.A.33)

To account for the fact that A is a very slowly varying function of $\overline{\ell} \Sigma_{tF}(E)$, one typically uses the infinitely dilute group-averaged value, $\Sigma_{tF}^{g,\infty}$, to define a group-dependent escape cross section σ_{esc}^{g} . Hence,

$$P_{F \to M}^{o}(E) = \frac{\sigma_{esc}^{g}}{\sigma_{esc}^{g} + \sigma_{tF}(E)}$$
(M7.A.34)

where σ_{esc}^{g} is taken to be constant within any given energy group.

Range	Function	Max. error in P _{FO} (E)
Plane	$A = 4/(1.61593 - \ln(\Sigma \ell)) - \Sigma \ell - 0.225 \ (\Sigma \ell)^2$	0.4%
$0 \leq \Sigma \ell \leq 1.36$	$A = 1 + 1.2978(\Sigma \ell)^{-1} - 1.8241(\Sigma \ell)^{-2}$	0.75%
1.36 < Σℓ ≤ ∞	$+ 0.75275(\Sigma l)^{-3}$	
Infinite Cylinder		
$0 \leq \Sigma \ell < 2$	$A = 1.5013 + 0.14879 (\Sigma \ell)^{\frac{1}{2}} - 0.17226 \Sigma \ell$	0.5%
$2 \leq \Sigma \ell \leq \infty$	$A = 1 + (\Sigma l)^{-1} - (\Sigma l)^{-3}$	0.5%
<u>Sphere</u>		
$0 \leq \Sigma \ell < 1.36$	$A = 16/9 - 0.2625 \Sigma \ell + 0.0258 (\Sigma \ell)^3$	0.2%
1.36 ≤ Σℓ ≤ ∞	$A = 1 + 1.09(\Sigma \ell)^{-1} - 0.591(\Sigma \ell)^{-2}$	0.3%

Table M7.A.1 Recommended "A" factors used in the modified Wigner approximation^{ab}

"This table was taken directly from ref. 14 by J. M. Otter.

^bFor an isolated fuel lump (where $C \equiv 0$), the fitted parameter (a) used in the Modified Wigner Approximation is given by a = 1/A; in general, "a" is defined by Eq. (M7.A.32).

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.4 THE NARROW-RESONANCE APPROXIMATION FOR THE FLUX, AS DERIVED FROM A GENERALIZED FORM OF THE NORDHEIM INTEGRAL EQUATION

For the sake of argument, let the Nordheim integral equation be written as

$$\Sigma_{tF}(E) \ \varphi_{F}(E) + \left[1 - P_{F \rightarrow M}^{o}(E)\right] \int_{E}^{E/\alpha_{F}^{25}} \varphi_{F}(E') \Sigma_{sF}^{25}(E') \left(\frac{1}{1 - \alpha_{F}^{25}}\right) \left(\frac{1}{E'}\right) dE'$$

$$+ \int_{E}^{E/\alpha_{\rm F}^{28}} \phi_{\rm F}(E') \Sigma_{\rm sF}^{28}(E') \left(\frac{1}{1-\alpha_{\rm F}^{28}}\right) \left(\frac{1}{E'}\right) dE'$$

$$+ \int_{E}^{E/\alpha_{\rm F}^{16}} \phi_{\rm F}(E') \Sigma_{\rm sF}^{16}(E') \left(\frac{1}{1-\alpha_{\rm F}^{16}}\right) \left(\frac{1}{E'}\right) dE'$$

+
$$\frac{P_{F-M}^{\circ}(E)\Sigma_{tF}(E)}{\xi\bar{\Sigma}_{s}E}$$
 (M7.A.35)

where the slowing down due to the ²³⁵U, ²³⁸U, and oxygen have all been represented explicitly. Other nuclides present in the fuel could be represented in like fashion.

The most common way to proceed is to assume that the NR approximation applies to each of the nuclides in the fuel (²³⁵U, ²³⁸U, O).

If the average energy loss in an elastic collision with a particular fuel nuclide $[\frac{1}{2}(1 - \alpha_{\rm F}^{i})E_{\rm res}]$ is much larger than the practical width of the response $(\Gamma_{\rm p})$, then it is very unlikely that a neutron will have a second collision within the resonance. Under these conditions, the contribution to $\Sigma_{\rm tF}(E)\Phi_{\rm F}(E)$ due to the integration of $\Phi_{\rm F}(E')\Sigma_{\rm sF}^{i}(E')$ over the narrow energy range associated with the resonance will be negligible compared to the contribution due to the integration of $\Phi_{\rm F}(E')\Sigma_{\rm sF}^{\rm i}(E')$ over the rest of the range (from just above the resonance $[E' = E_2 \approx E]$ to $E' = E/\alpha$). Figure M7.A.4 is an attempt to illustrate this situation. For energies just above the resonance we will, wittingly or not, assume that there is very little absorption such that the flux there may be replaced by its asymptotic form:

$$\phi_{\rm F}({\rm E}') = \phi_{\rm F}^{\infty} = \frac{1}{\bar{\xi}\bar{\Sigma}_{\rm s}{\rm E}'}$$
 (M7.A.36)

NUREG/CR-0200, Vol. 3, Rev. 6

(If indeed there is very little absorption between E and E/ α , then $\Sigma_{tf}(E) = \Sigma_{sF}(E) = constant potential scattering cross section at energies above the resonance. Under these conditions, direct substitution of Eq. (M7.A.36) into Eq. (M7.A.35) will show it to be the solution for any and all energies$ *above* $the resonance). While Eq. (M7.A.8) may be valid for the flux in a nonabsorbing external moderator, Eq. (M7.A.36) is valid for the flux in the fuel only if the resonances are widely spaced. In this particular example, this "widely spaced" assumption would require that neither ²³⁵U nor ²³⁸U have another resonance in the range E to E/<math>\alpha^{25}$, E to E/ α^{28} , or E to E/ α^{16} . While this last condition is never met and the first two are met only rarely, use of the asymptotic flux [Eq. (M7.A.36)] for energies above the resonance remains a common assumption.

Using the narrow resonance approximation (see Fig. M7.A.4) and invoking Eq. (M7.A.36) for the flux at energies just above the resonance, we may write

$$\int_{E}^{E/\alpha^{i}} \phi_{F}(E') \Sigma_{sF}^{i}(E') \left(\frac{1}{1-\alpha_{F}^{i}}\right) \left(\frac{1}{E'}\right) dE'$$

$$= \int_{E}^{E_{2}=E+\epsilon} \left[\begin{array}{c} \left[\right]dE' + \int_{E_{2}=E+\epsilon}^{E/\alpha_{F}^{1}} \frac{1}{\overline{\xi}\overline{\Sigma}_{s}E'} \Sigma_{sF}^{i}(E') \left(\frac{1}{1-\alpha_{F}^{i}}\right) \left(\frac{1}{E'}\right) dE'$$

$$= \left(\frac{\Sigma_{sF}^{i}}{\overline{\xi}\overline{\Sigma}_{s}}\right) \left(\frac{1}{1-\alpha_{F}^{i}}\right) \int_{E}^{E/\alpha_{F}^{i}} \frac{1}{x^{2}} dx = \left(\frac{\Sigma_{sF}^{i}}{\overline{\xi}\overline{\Sigma}_{s}}\right) \left(\frac{1}{E}\right) \quad (M7.A.37)$$

Figure M7.A.4 Elastic scattering into dE about E when E lies inside a narrow resonance

NUREG/CR-0200, Vol. 3, Rev. 6

Substituting this result (for ²³⁵U, ²³⁸U, and O) into Eq. (M7.A.35), and recognizing that

$$I - P_{F \to M}^{o}(E) = 1 - \left[\frac{\Sigma_{esc}}{\Sigma_{esc} + \Sigma_{tF}(E)}\right] = \frac{\Sigma_{tF}(E)}{\Sigma_{esc} + \Sigma_{tF}(E)}$$
(M7.A.38)

yields

$$\Sigma_{tF}(E) \phi_{F}(E) = \left(\frac{\Sigma_{tF}(E)}{\Sigma_{esc} + \Sigma_{tF}(E)}\right) \left(\frac{\Sigma_{sF}^{25} + \Sigma_{sF}^{28} + \Sigma_{sF}^{16}}{\bar{\xi}\bar{\Sigma}_{s}E}\right)$$

$$+ \left(\frac{\Sigma_{esc}}{\Sigma_{esc} + \Sigma_{tF}(E)}\right) \left(\frac{\Sigma_{tF}(E)}{\bar{\xi}\bar{\Sigma}_{s}E}\right)$$
(M7.A.39)

$$\Rightarrow \phi_{\rm F}({\rm E}) = \left(\frac{\Sigma_{\rm sF} + \Sigma_{\rm esc}}{\bar{\xi}\bar{\Sigma}_{\rm s}}\right) \left(\frac{1}{\Sigma_{\rm tF}({\rm E}) + \Sigma_{\rm esc}}\right) \left(\frac{1}{{\rm E}}\right) . \qquad (M7.A.40)$$

constant

To the extent that one has a sequence of widely spaced narrow resonances, this expression accurately described the flux underneath any given resonance and in the region between resonances. Between resonances, for example, $\Sigma_{tF}(E) = \Sigma_{sF}(E) = \Sigma_{sF} = constant potential scattering cross section and Eq. (M7.A.40) reduces to the asymptotic solution. As a result, this expression may be used for the flux over an entire energy group.$

When $\phi_F(E)$ is used as a weighting function to produce group-averaged cross-section data, it appears in both the numerator and the denominator [cf. Eq. (M7.A.1)], such that the leading constant cancels and is of no consequence. For that reason, people frequently write $\phi_F(E)$ as simply

$$\phi_{\rm F}({\rm E}) = \left(\frac{1}{\Sigma_{\rm tF}({\rm E}) + \Sigma_{\rm esc}}\right) \left(\frac{1}{{\rm E}}\right) . \tag{M7.A.41}$$

Expressing the flux as a function of lethargy $[u = ln(E_o/E)]$, Eq. (M7.A.41) would be equivalent to saying that $\phi_F(u)$ is constant between resonances, and that $\phi_F(u)\Sigma_{tF}(u)$ is constant underneath a resonance (where $\Sigma_{esc} = 0$ for an infinite system).

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.5 THE NARROW-RESONANCE/INFINITE-MASS APPROXIMATION FOR THE FLUX, AS DERIVED FROM THE NORDHEIM INTEGRAL EQUATION

Before proceeding further, it is necessary to point out that there are instances in which the NR approximation is *not* valid, that is, instances where

$$\Gamma_{\rm P} << \left(\frac{1}{2}(1-\alpha_{\rm F}^{\rm i})E_{\rm res}\right]$$
(M7.A.42)

is *not* true, and where Fig. M7.A.4 does *not* depict the real situation. In the present example (UO₂), the upper limit of integration (E/α_F^1) for the oxygen may lie well outside the resonance where the upper limit for the ²³⁵U and ²³⁸U integrals may actually lie inside the resonance. (At E = 10 eV, for example, $E/\alpha^{16} = 12.8 \text{ eV}$, whereas $E/\alpha^{25} = E/\alpha^{28} = 10.2 \text{ eV}$). Before showing how such situations may be handled, let us diverge for a moment to define the practical width (Γ_P) and to identify key instances where the NR approximation is not valid.

The practical width of a resonance in a given mixture (Γ_P) is defined as the difference between those energies at which the anomalous cross section given by the single-level Breit-Wigner formula is equal to the potential scattering cross section for the mixture

$$\frac{N^{1}\sigma_{res}}{1 + \left(\frac{2}{\Gamma}\right)^{2} \left(E - E_{res}\right)^{2}} = \Sigma_{pF} = N^{25}\sigma_{p}^{25} + N^{28}\sigma_{p}^{28} + N^{16}\sigma_{s}^{16}$$
(M7.A.43)

where Nⁱ is the number density of the resonance nuclide (²⁵N or ²⁸N) and σ_{res} , the maximum value of the anomalous cross section, is defined by

$$\sigma_{\rm res} = 4\pi \left(\frac{2.0722 \times 10^5 \text{ eV barns}}{E_{\rm res}}\right) \left(\frac{A+1}{A}\right)^2 \left(\frac{g\Gamma_n}{\Gamma}\right)$$
(M7.A.44)

where the resonance parameters $(E_{res}, \Gamma, \text{ and } g\Gamma_n)$ may be found in BNL-325.¹⁵ [The natural width (Γ), of course, is defined as the difference between those energies at which the anomalous cross section is equal to half of its maximum value.] Substituting $E = E_{res} \pm (\frac{1}{2})\Gamma_P$ into Eq. (M7.A.43) and solving for Γ_P yields

$$\Gamma_{\rm p} = \Gamma \sqrt{\left(\frac{{\rm N}^{\rm i}\sigma_{\rm res}}{\Sigma_{\rm pF}}\right)} - 1$$
 (M7.A.45)

As a specific example, consider the 6.67-eV resonance in ²³⁸U where $\Gamma = 0.0275$ eV and $g\Gamma_n = 0.00152$ eV. Equation (M7.A.44) yields $\sigma_{res} = 21760$ barns. Noting that $\sigma_p^{25} \approx \sigma_p^{28} \approx 10$ barns and that $\sigma_s^{16} \approx 3.8$ barns yields

NUREG/CR-0200, Vol. 3, Rev. 6

$$\Gamma_{\rm P} = (0.0275 \text{ eV}) \sqrt{\frac{21760}{10 + 2(3.8)} - 1} = 0.97 \text{ eV}$$
. (M7.A.46)

Thus, $\Gamma_{\rm P}$ is considerably larger than Γ , making the narrow resonance criterion

$$\Gamma_{\rm p} << \left[\frac{1}{2}(1-\alpha_{\rm F}^{\rm i})E_{\rm res}\right]$$
(M7.A.47)

even more difficult to satisfy. Generally speaking, the practical width (Γ_P) is about 10 to 30 times larger than the natural width (Γ).¹²

Using Eqs. (M7.A.44), (M7.A.45), and (M7.A.47) in conjunction with the resonance parameters found in the third edition of BNL-325, one can determine when and where the narrow resonance approximation is applicable. As might be shown by such an exercise, it is quite good for all but the very low-energy resonances. Even then, it is usually applicable for all but the heaviest nuclides where $\alpha_F^i \rightarrow 1$. Some of the more outstanding examples of where the narrow resonance approximation is not applicable would include the 21.78- and 23.43-eV resonances in ²³²Th, the 1.79- and 10.37-eV resonances in ²³³U, the 6.67-, the 20.9-, and the 36.8-eV resonances in ²³⁸U, and the 1.056- and 20.46-eV resonances in ²⁴⁰Pu.

As noted above, many of the heavy nuclides have broad low-energy resonances for which Eq. (M7.A.47) cannot be satisfied. In many of those cases, just the reverse is true (i.e., the average energy loss in an elastic collision with a heavy fuel nuclide is much smaller than the practical width):

$$\left[\frac{1}{2}(1-\alpha_{\rm F}^{\rm i})E_{\rm res}\right] << \Gamma_{\rm P}$$
 (M7.A.48)

Fortunately, this type of situation occurs only with the heavy nuclides where $\alpha_F^i \rightarrow 1$, as illustrated in Fig. M7.A.5. Under such conditions, the range of integration, E to E/α_F^i , becomes so small that $E' \approx E$ over the entire range, and

$$\lim_{\alpha \to 1} \int_{E}^{E/\alpha} \phi_{F}(E') \Sigma_{sF}(E') \left(\frac{1}{1-\alpha}\right) \left(\frac{1}{E'}\right) dE'$$

$$= \phi_{F}(E)\Sigma_{sF}(E)\left(\frac{1}{E}\right) \lim_{\alpha \to 1} \left(\frac{1}{1-\alpha}\right) \int_{E}^{E/\alpha} dE'$$

$$= \phi_{F}(E)\Sigma_{sF}(E) \lim_{\alpha \to 1} \left(\frac{\frac{1}{\alpha} - 1}{1 - \alpha}\right) = \phi_{F}(E)\Sigma_{sF}(E)$$
(M7.A.49)

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M7.A.5 Elastic scattering into dE about E when E lies inside a broad resonance or $\alpha \rightarrow 1$

Alternatively, one may take $\phi_F(E')\Sigma_{sF}(E') \approx \text{constant}$ over the narrow range from E to E/α_F^i , and leave the (1/E') term inside the integral, in which case

$$\lim_{\alpha \to 1} \left(\frac{1}{1-\alpha}\right) \int_{E}^{E/\alpha} \left(\frac{1}{E'}\right) dE' = \lim_{\alpha \to 1} \frac{\ln\left(\frac{1}{\alpha}\right)}{1-\alpha} = 1 . \quad (M7.A.50)$$

Equation (M7.A.49) is commonly known as the infinite mass (IM) approximation. Substituting this expression into Eq. (M7.A.35), but retaining the narrow resonance approximation for the oxygen term, yields:

$$\Sigma_{tF}(E)\varphi_{F}(E) = \left(\frac{\Sigma_{tF}(E)}{\Sigma_{esc} + \Sigma_{tF}(E)}\right) \left[\varphi_{F}(E)\Sigma_{sF}^{25}(E) + \varphi_{F}(E)\Sigma_{sF}^{28}(E) + \left(\frac{\Sigma_{sF}^{16}}{\bar{\xi}\bar{\Sigma}_{s}}\right) \left(\frac{1}{E}\right)\right] + \left(\frac{\Sigma_{esc}}{\Sigma_{esc} + \Sigma_{tF}(E)}\right) \left(\frac{\Sigma_{tF}(E)}{\bar{\xi}\bar{\Sigma}_{s}}\right) \left(\frac{1}{E}\right)$$
(M7.A.51)

$$\Rightarrow \left[\Sigma_{esc} + \Sigma_{tF}(E) - \Sigma_{sF}^{25}(E) - \Sigma_{sF}^{28}(E)\right] \phi_{F}(E) = \left(\frac{\Sigma_{sF}^{16} + \Sigma_{esc}}{\bar{\xi}\bar{\Sigma}_{s}}\right) \left(\frac{1}{E}\right) \quad (M7.A.52)$$

$$\Rightarrow \phi_{\rm F}(E) = \left(\frac{\Sigma_{\rm sF}^{16} + \Sigma_{\rm esc}}{\bar{\xi}\bar{\Sigma}_{\rm s}}\right) \left[\frac{1}{\Sigma_{\rm AF}^{25}(E) + \Sigma_{\rm AF}^{28}(E) + \Sigma_{\rm tF}^{16}(E) + \Sigma_{\rm esc}}\right] \left(\frac{1}{E}\right) \quad (M7.A.53)$$

NUREG/CR-0200, Vol. 3, Rev. 6

Except for the leading constant which cancels out when $\phi_F(E)$ is used to produce group-averaged cross-section data, this expression differs from Eq. (M7.A.40) only insofar as the denominator here contains the absorption cross section (rather than the total cross section) for the heavy nuclides in the fuel. Whereas Eq. (M7.A.40) should be used for the flux underneath a narrow resonance, Eq. (M7.A.53) should be used for the flux underneath a broad resonance. Because the narrow resonance approximation was (justifiably) retained for the oxygen term, Eq. (M7.A.53) also assumes that the resonances are widely separated relative to the average energy lost in an elastic collision with the oxygen.

M7.A.6 THEORETICAL BASIS FOR THE BASIC BONDARENKO METHOD IN THE ABSENCE OF OVERLAPPING RESONANCES

Having used the narrow resonance approximation to derive an expression for the flux which is valid underneath any given resonance and in the region between resonances [cf. Eq. (M7.A.41)] the group-averaged absorption cross section for resonance nuclide i may be written as

$$\sigma_{A}^{i,g} = \frac{\int_{E^{g}}^{E^{g-1}} \sigma_{A}^{i}(E) \left(\frac{1}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \left(\frac{1}{E}\right) dE}{\int_{E^{g}}^{E^{g-1}} \left(\frac{1}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \left(\frac{1}{E}\right) dE}$$
(M7.A.54)

Since $\alpha_A^i(E) \rightarrow 0$ between resonances, the numerator may be replaced by a sum of integrals over the individual resonances of nuclide i lying in group g. In the denominator, the integrand vanishes in the vicinity of a resonance such that one need only evaluate the integral between resonances where $\Sigma_{tF}(E) = \Sigma_{sF}(E) = \Sigma_{sF} = constant potential scattering cross section.$ Provided the resonances are very narrow compared to the width of the energy group, the original limits of integration may be retained with little error. To illustrate, consider the expression for $\sigma_A^{25,g}$ in a mixture of UO₂ where, for simplicity, we assume the ²³⁵U has only two resonances in group g (cf. Fig. M7.A.6):

$$\sigma_{A}^{25,g} = \left[\frac{\Sigma_{sF} + \Sigma_{esc}}{\ell n(E^{g-1}/E^g)}\right] \quad \left\{ \int_{\substack{res \\ \#1}} \left(\frac{\sigma_{A}^{25}(E)}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \frac{dE}{E} + \int_{\substack{res \\ \#2}} \left(\frac{\sigma_{A}^{25}(E)}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \frac{dE}{E} \right\} \quad (M7.A.55)$$

NUREG/CR-0200, Vol. 3, Rev. 6

ORNL-DWG 84-48444

Figure M7.A.6 Well-separated resonances in a mixture of UO₂

If the resonances for the mixture are well separated (as required for the narrow resonance approximation to be valid), then $\Sigma_{tF}^{28}(E) \approx constant$ underneath resonance 1, and $\Sigma_{tF}^{28} \approx constant$ underneath resonance 2. [Indeed, under each of the ²³⁵U resonances, $\Sigma_{tF}^{28}(E) = \Sigma_{sF}^{28}(E) = \Sigma_{sF}^{28} = constant$ potential scattering cross section.] Under each of the ²³⁵U resonances, we may then write

$$\Sigma_{tF}(E) = \Sigma_{tF}^{25}(E) + \Sigma_{tF}^{28}(E) + \Sigma_{tF}^{16}(E) = \Sigma_{tF}^{25}(E) + \Sigma_{sF}^{28} + \Sigma_{sF}^{16}$$
(M7.A.56)

or, more generally,

$$\Sigma_{tF}(E) = \Sigma_{tF}^{i}(E) + \Sigma_{sF} - \Sigma_{sF}^{i}$$
. (M7.A.57)

Substituting Eq. (M7.A.57) into each term of Eq. (M7.A.55) (and again noting that $\sigma_A^i(E) \rightarrow 0$ between resonances) allows us to recombine the integrals as:

$$\sigma_{A}^{i,g} = \left[\frac{\Sigma_{sF} + \Sigma_{esc}}{\ell n(E^{g-1}/E^g)}\right] \int_{E^g}^{E^{g-1}} \left[\frac{\sigma_{A}^i(E)}{\Sigma_{tF}^i(E) + (\Sigma_{sF} - \Sigma_{sF}^i + \Sigma_{esc})}\right] \frac{dE}{E} \quad (M7.A.58)$$

If the concentration of the resonance nuclide (Nⁱ) is so small that

$$\Sigma_{tF}^{i}(E) \ll \Sigma_{sF} + \Sigma_{esc}$$
 at $E = E_{res}$ (M7.A.59)

then Eq. (M7.A.58) yields the "infinitely dilute" cross section, $\sigma_A^{Lg}(\infty)$: NUREG/CR-0200, Vol. 3, Rev. 6 M7.A.20

$$\sigma_{A}^{i,g}(\infty) = \frac{1}{\ln(E^{g-1}/E^{g})} \int_{E^{g}}^{E^{g-1}} \sigma_{A}^{i}(E) \frac{dE}{E} = \frac{1}{\Delta u_{g}} \langle \sigma_{A}^{i}(u) \rangle \qquad (M7.A.60)$$

where $u = ln(E_0/E)$, and <> designates the integral over lethargy. If the resonance nuclide is not infinitely dilute, its very presence affects the way the group-averaged value should be calculated [cf. Eq. (M7.A.58)]. Defining σ_0^i as a constant "background" cross section which is independent of energy,

$$\sigma_{o}^{i} = \left(\frac{1}{N^{i}}\right) \left(\Sigma_{sF} - \Sigma_{sF}^{i} + \Sigma_{esc}\right) = \text{constant}$$
(M7.A.61)

and substituting this into Eq. (M7.A.58) allows the group-averaged value of the absorption cross section to be written as

$$\sigma_{A}^{i,g} = \left[\frac{\sigma_{sF}^{i} + \sigma_{o}^{i}}{\ell n(E^{g-1}/E^{g})}\right] \int_{E^{g}}^{E^{g-1}} \left[\frac{\sigma_{A}^{i}(E)}{\sigma_{tF}^{i}(E) + \sigma_{o}^{i}}\right] \frac{dE}{E}$$
(M7.A.62)

The point to be made is that the self-shielded, group-averaged cross sections for a resonance nuclide can be tabulated as a function of a single variable (σ_o^i) , even though that nuclide may be in a mixture with other nuclides. Indeed, extensive tables of these group-averaged values do exist for various group structures. Knowing the composition of a given mixture, the user may calculate σ_o^i and then go to the appropriate table to find the self-shielded group-averaged value of $\sigma_A^{i,g}$ for that particular mixture.

The procedure described above forms the basis of the Bondarenko method which is described in more detail below. The approach, however, is certainly not new. Users of the KENO 16-group cross-section library¹⁶ will recall, for example, that it contains over 55 different sets of data for ²³⁸U — each based on a different value of σ_o (ranging from $\sigma_o = 12$ barns to $\sigma_o = 100,000$ barns). After calculating σ_o^i for the mixture at hand, one would then have to specify the ID number for the appropriate set of data.

The use of precalculated self-shielded cross-section data tabulated as a function of σ_0 has also proved to be an attractive alternative to the Nordheim integral method when performing space-time depletion analyses for certain types of reactors (LMFBR's in particular). Even though relatively inexpensive depletion calculations may be performed on a zone-averaged basis using ultra-fine time steps, it is periodically necessary to use the updated number densities to recalculate the power distribution throughout the core and blanket. Prior to performing the spatial flux calculation, it is desirable to produce new self-shielded cross-section data for each zone. The Bondarenko method described above provides a very fast (and therefore very attractive) alternative to solving the Nordheim integral equation on a point-wise basis in energy for each of the (many) spatial zones.

While the self-shielded group-averaged cross-section data for a given resonance nuclide may be tabulated as a function of the background cross section, $\sigma_A^{i,g}$ is usually expressed as the infinitely dilute value times a self-shielding factor:

$$\sigma_A^{i,g} = f_A^{i,g}(T,\sigma_o)\sigma_A^{i,g}(\infty)$$
(M7.A.63)

NUREG/CR-0200, Vol. 3, Rev. 6

where the form of the f-factor (or "Bondarenko factor") may be deduced by dividing Eq. (M7.A.62) by Eq. (M7.A.60). The explicit appearance of temperature in the self-shielding factor is in recognition of the fact that the cross sections in Eq. (M7.A.62) $[\sigma_A^i(E) \text{ and } \sigma_{tF}^i(E)]$ should be Doppler broadened to the appropriate temperature. In his 1964 book on the subject,² Bondarenko has compiled extensive tables of various self-shielding factors $[f_A^{i,g}(T,\sigma_o), f_C^{i,g}(T,\sigma_o), f_F^{i,g}(T,\sigma_o), f_T^{i,g}(T,\sigma_o), etc.]$ for most of the important resonance nuclides. In that particular work, 25 fast or epithermal groups were used in conjunction with one thermal (sink) group. A more complete discussion of these resonance self-shielding factors will be presented after some additional comments have been made regarding the limitations of the basic method and the evolution of the "Iterative Bondarenko Method" used in most current computer codes.

M7.A.7 THE EFFECT OF RESONANCE OVERLAP ON THE GROUP-AVERAGED CROSS SECTIONS

The procedure wherein one uses the potential scattering cross section of the various nuclides to calculate the background cross section (σ_o) for the mixture, and then applies the appropriate f-factor to obtain the self-shielded group-averaged cross section for the resonance nuclide of interest, might be described as the "Non-Iterative Bondarenko Method." Whereas, Eq. (M7.A.54) or Eq. (M7.A.55) show $\sigma_A^{i,g}$ to be dependent on both the number density and the energy-dependent cross section of all other nuclides in the fuel, the assumption that the resonances were "well separated" allowed $\sigma_A^{i,g}$ (or $f_A^{i,g}$) to be tabulated as a function of a single variable, σ_o^i . The effect of that assumption may be seen by writing Eqs. (M7.A.55) and (M7.A.58) in a similar format and comparing the results in a more realistic case where some resonance overlap is possible. Equation (M7.A.55), which uses the narrow resonance approximation for the flux, may be written as

$$\sigma_{A}^{25,g}|_{as in}_{Eq. M7.A.55} = \left[\frac{\Sigma_{sF} + \Sigma_{esc}}{\ln\left(\frac{E^{g-1}}{E^{g}}\right)}\right] \int_{E^{g}}^{E^{g-1}} \frac{\sigma_{A}^{25}(E)}{\Sigma_{tF}^{25}(E) + \Sigma_{tF}^{28}(E) + \Sigma_{tF}^{16} + \Sigma_{esc}} \frac{dE}{E}$$
(M7.A.64)

Equation (M7.A.58), which further assumes that the resonances are "well separated," may be written as

$$\sigma_{A}^{25,g}\Big|_{as in}_{Eq. M7.A.55} \doteq \left[\frac{\Sigma_{sF} + \Sigma_{esc}}{\ln\left(\frac{E^{g-1}}{E^{g}}\right)}\right] \int_{E^{g}}^{E^{g-1}} \frac{\sigma_{A}^{25}(E)}{\Sigma_{tF}^{25}(E) + \Sigma_{sF}^{28} + \Sigma_{esc}^{16} + \Sigma_{esc}} \frac{dE}{E} \quad (M7.A.65)$$

In the case where the resonances are well separated, we have shown these equations to yield the same result. To qualitatively illustrate the effect of resonance overlap, consider the extreme case depicted in Fig. M7.A.7 where one resonance of nuclide A directly overlaps another resonance of nuclide B. In this case, $\Sigma_{sF}^{23} << \Sigma_{tF}^{28}(E)$ underneath the ²³⁵U resonance and the subsequent use of the potential scattering cross section

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M7.A.7 Hypothetical case of resonance overlap in UO_2 .

 (Σ_{A}^{28}) in Eq. (M7.A.65) will cause it to overestimate $\sigma_{A}^{25,g}$. Moreover, such a procedure will overestimate $\sigma_{A}^{i,g}$, $\sigma_{F}^{i,g}$, $\sigma_{s}^{i,g}$, etc., whenever the resonances of one nuclide overlap the resonances of another.* Figures (M7.A.8a-d) illustrate a few classic examples of resonance overlap in some common fuel mixtures. With the fissile isotopes, the reactivity effect of overestimating $\sigma_{A}^{i,g}$ is partially offset by the fact that $\sigma_{F}^{i,g}$ is also overestimated. Fertile isotopes on the other hand do not fission at resonance energies, and the effect of overestimating $\sigma_{A}^{i,g}$ can be fairly serious. (More will be said of this later.) From this example, it is also clear that such resonance overlap effects will be more important in concentrated systems where

 $\Sigma_{tF}(E) \Big|_{resonance} \sum_{esc} + \Sigma_{tF} \Big|_{nonresonance}$ (M7.A.66)

(i.e., where σ_o^i is small), and less important in dilute systems (where σ_o^i is large). As a final point, we parenthetically note that the above conclusions were based on the NR approximation for the flux, but that one could have started with the NRIM approximation for the flux [cf. Eq. (M7.A.53)] and arrived at the same conclusions.

^{*}Whereas ²³⁵U and ²³⁸U have overlapping (or partially overlapping) resonances only at 21 and 6.4 eV, ²³⁵U ²³⁸U ²³⁹Pu systems have a number of overlapping resonances (cf. 6.4, 12, 15, 21, 66, 75, 102, 165, 190, and 275 eV, etc.). Also, ²³²Th ²³³U ²³⁵U ²³⁸U systems, typical of advanced thorium converters, have a number of overlapping resonances (cf. 3.6, 6.4, 16, 19, 21, 23.5, 37, and 462 eV, etc.). Likewise, ²³⁵U ²³⁸U ²³⁹Pu ²⁴⁰Pu ²⁴¹Pu ²⁴²Pu systems typical of LMFBRs have a larger number of overlapping resonances (cf. 0.28, 6.4, 8.8, 14.5, 18, 21, 26, 42, 66, 75, 92, 103, and 275 eV, etc.).

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.24

Figure M7.A.8a Resonance overlap for ²³²Th, ²³³U, and ²³⁸U in the 4- to 10-eV energy range

M7.A.25

NUREG/CR-0200, Vol. 3, Rev. 6

104

SIGMA-T FOR VARIOUS ISOTOPES AT 300 DEG. K.

233

-235

233

22.00

239

25.00

233-

19.00

Figure M7.A.8b Resonance overlap for ²³²Th, ²³²U, ²³⁵U, and ²³⁸U in the 10- to 25-eV energy range

ENERGY (EV)

16.00

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.26

TØTAL CROSS SECTION (BARNS)

SIGMA-T FOR VARIOUS ISOTOPES AT 300 DEG. K.

ENERGY (EV)

Figure M7.A.8c Resonance overlap for ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu in the 4- to 10-eV energy range

SIGMA-T FOR VARIOUS ISOTOPES AT 300 DEG. K.

ENERGY (EV)

Figure M7.A.8d Resonance overlap for ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu in the 10- to 25-eV energy range

M7.A.27

M7.A.8 THE ITERATIVE BONDARENKO METHOD AND HOW IT PARTIALLY ACCOUNTS FOR RESONANCE OVERLAP USING A MODIFIED DEFINITION OF THE BACKGROUND CROSS SECTION

Having used the narrow resonance approximation to derive an expression for the flux which is valid underneath any given resonance and in the region between responses [cf. Eq. (M7.A.41)], the group-averaged absorption cross section for resonance nuclide i may be written as

$$\sigma_{A}^{i,g} = \frac{\int_{E^{g}}^{E^{g-1}} \sigma_{A}^{i}(E) \left(\frac{1}{\Sigma_{tf}(E) + \Sigma_{esc}}\right) \left(\frac{1}{E}\right) dE}{\int_{E^{g}}^{E^{g-1}} \left(\frac{1}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \left(\frac{1}{E}\right) dE}$$
(M7.A.67)

If the resonances are narrow compared with the width of the energy group, if the resonances for the mixture are well separated, and if $\sigma_A^i(E) \rightarrow 0$ between resonances such that $\Sigma_{tf}^i(E) = \Sigma_{sF}^i(E) = \Sigma_{sF}^i = constant$ potential scattering cross section (between resonances), then the arguments presented in Sect. M7.A.6 are completely valid, the denominator of Eq. (M7.A.67) may be evaluated analytically, and the group-averaged value of the absorption cross section may be written as

$$\sigma_{A}^{i,g} = \left[\frac{\sigma_{sF}^{i} + \sigma_{o}^{i}}{\ln\left(\frac{E^{g-1}}{E^{g}}\right)}\right] \int_{E^{g}}^{E^{g-1}} \left[\frac{\sigma_{A}^{i}(E)}{\sigma_{tF}^{i}(E) + \sigma_{o}^{i}}\right] \frac{dE}{E}$$
(M7.A.68)

where

$$\sigma_{o}^{i} = \left(\frac{1}{N^{i}}\right) \left(\Sigma_{sF} - \Sigma_{sF}^{i} + \Sigma_{esc}\right) = \text{constant} \quad . \tag{M7.A.69}$$

This was, in fact, a matter of great calculational convenience insofar as it permitted the resonance self-shielded cross sections for a resonance nuclide to be tabulated as a function of a single variable (σ_0^i), even though that nuclide may be in a mixture with other nuclides.

NUREG/CR-0200, Vol. 3, Rev. 6

Starting with Eq. (M7.A.67), it is possible to derive expressions similar to Eqs. (M7.A.68) and (M7.A.69) which relax the assumption that $\sigma_A^i(E) \rightarrow 0$ between resonances and which replace the potential scattering cross section (Σ_{sF}^i) with a constant group-averaged value of the total cross section $(\Sigma_{tF}^{i,g})$.* Defining the background cross section for a particular energy group as

$$\sigma_{o}^{i,g} \equiv \left(\frac{1}{N^{i}}\right) \left(\Sigma_{tF}^{g} - \Sigma_{tF}^{i,g} + \Sigma_{esc}\right)$$
(M7.A.70)

Eq. (M7.A.67) can then be written as

$$\sigma_{A}^{i,g} = \frac{\int_{E^{g}}^{E^{g-1}} \left(\frac{\sigma_{A}^{i}(E)}{\sigma_{tF}^{i}(E) + \sigma_{o}^{i,g}}\right) \left(\frac{1}{E}\right) dE}{\int_{E^{g}}^{E^{g-1}} \left(\frac{1}{\sigma_{tf}^{i}(E) + \sigma_{o}^{i,g}}\right) \left(\frac{1}{E}\right) dE} = \frac{\left\langle\frac{\sigma_{A}^{i}(u)}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}}\right\rangle_{g}}{\left\langle\frac{1}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}}\right\rangle_{g}}$$
(M7.A.71)

where $u \equiv ln(E_o/E)$ and c_g designates the integral over lethargy. In the case of the simple UO₂ system used for illustration purposes,

$$\sigma_{o}^{25,g} = \left(\frac{1}{N^{25}}\right) \left(\Sigma_{tF}^{28,g} + \Sigma_{tF}^{16,g} + \Sigma_{esc}\right)$$
(M7.A.72)

and

$$\sigma_{o}^{28,g} = \left(\frac{1}{N^{28}}\right) \left(\Sigma_{tF}^{25,g} + \Sigma_{tF}^{16,g} + \Sigma_{esc} \right).$$
(M7.A.73)

Formulating $\sigma_o^{i,g}$ in terms of the group-averaged total cross section for the other nuclides in the fuel allows one to partially account for the fact that the absorption cross section in those nuclides may not be negligible compared to their potential scattering cross section. While $\sigma_A^i(E)$ is often negligible with respect to σ_s^i for

*Even though such expressions can be derived and applied as shown in this section, such a feeble attempt to account for the absorption cross section of the other nuclides in the mixture is only partially satisfying. Apart from the obvious shortcoming of having to ignore the detailed energy dependence of $\sigma_A^j(E)$ for the other nuclides (j) in the mixture [i.e., assuming that $\sigma_A^j(E) = \sigma_A^{j,g} = constant$], the validity of Eq. (M7.A.67) itself may be questioned when/if the resulting absorption rates are not negligible. Recall, for example, that the narrow resonance approximation for the flux as given by Eq. (M7.A.40) was derived by replacing the flux $[\phi_F(E')]$ in Eqs. (M7.A.35) and (M7.A.37) with its asymptotic approximation [cf. Eq. (M7.A.36)] for $E < E' < E/\alpha^{1}$. The asymptotic expression given by Eq. (M7.A.36) is, of course, rigorously valid only if the absorption in this range is completely negligible.

many of the light nuclides, this is not the case with many of the uranium and plutonium isotopes where the wings of adjacent resonances frequently overlap. Indeed, the group-averaged value of the absorption cross section $(\sigma_A^{i,g})$ may be several times the potential scattering cross section $(\sigma_s^{i,g})$ for some of the resonance nuclides, thus making the present definition of $\sigma_o^{i,g}$ much more attractive than that used in Sect. M7.A.6. While the definition of the background cross section $(\sigma_o^{i,g})$ has been modified to partially account for absorption by other nuclides, the key point to be made here is that the self-shielded group-averaged cross sections for a resonance product of Fe (M7 A 71) are still be tabulated as a function of a single write here.

sections for a resonance nuclide [cf. Eq. (M7.A.71)] can still be tabulated as a function of a single variable $(\sigma_0^{i,g})$. Indeed, this data does exist for many multigroup libraries. Typically, $\sigma_A^{i,g}$ is expressed as the infinitely dilute value [cf. Eq. (M7.A.60)] times a self-shielding factor:

$$\sigma_{A}^{i,g} = f_{A}^{i,g}(T,\sigma_{o}^{i,g})\sigma_{A}^{i,g}(\infty)$$
 (M7.A.74)

where the form of the f-factor (or "Bondarenko factor") may be deduced by dividing Eq. (M7.A.71) by Eq. (M7.A.60). The explicit appearance of temperature in the self-shielding factor is in recognition of the fact that the cross sections in Eq. (M7.A.71) $[\sigma_A^i(E) \text{ and } \sigma_{tF}^i(E)]$ should be Doppler broadened to the appropriate temperature. Even though expressions for $\sigma_A^{i,g}$ have been used thus far for illustrative purposes, similar expressions may also be written for $\sigma_t^{i,g}$, $\sigma_c^{i,g}$, $\sigma_f^{i,g}$, $\sigma_\ell^{i,g}$, etc. Thus, for example, $\sigma_t^{i,g}$ may be written * as:

$$\sigma_{t}^{i,g} = \frac{\int_{E^{g}}^{E^{g-1}} \left(\frac{\sigma_{t}^{i}(E)}{\sigma_{tF}^{i}(E) + \sigma_{o}^{i,g}}\right) \left(\frac{1}{E}\right) dE}{\int_{E^{g}}^{E^{g-1}} \left(\frac{1}{\sigma_{tF}^{i}(E) + \sigma_{o}^{i,g}}\right) \left(\frac{1}{E}\right) dE} = \frac{\left\langle\frac{\sigma_{t}^{i}(u)}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}}\right\rangle_{g}}{\left\langle\frac{1}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}}\right\rangle_{g}}$$
(M7.A.75)

or alternatively:

$$\sigma_{t}^{i,g} = f_{t}^{i,g}(T,\sigma_{o}^{i,g})\sigma_{t}^{i,g}(\infty)$$
(M7.A.76)

Using expressions similar to Eq. (M7.A.71) or Eq. (M7.A.75), multigroup Bondarenko f-factors have been tabulated for each of the various resonance reactions as a function of T and σ_0 . Given a library of pretabulated data, one need only apply the various f-factors (evaluated at the appropriate value of $\sigma_o^{f,g}$) to obtain the necessary self-shielded cross-section data characteristic of the particular fuel lump. [Note that the size of the fuel lump $(\bar{\ell})$ and the transparency of the external moderator (as measured by the Dancoff factor) are represented by the escape cross section (Σ_{esc}), which factors into the background cross section ($\sigma_o^{i,g}$)]. For systems containing more than one resonance nuclide, Eqs. (M7.A.70) and (M7.A.76) must be evaluated in an iterative fashion for each energy group. For a simple mixture of enriched UO2, the iterative procedure would proceed as follows:

*This definition of $\sigma_t^{i,g}$ preserves the total reaction rate per unit volume, such that $\sigma_t^{i,g} \varphi^g = \sigma_t^{i,g} \langle \varphi(u) \rangle = \langle \sigma_t^i(u) \varphi(u) \rangle.$

$$\begin{bmatrix} \sigma_{t}^{25,g} = f_{t}^{25,g}(T,\sigma_{o}^{25,g})\sigma_{t}^{25,g}(\infty) \\ \sigma_{t}^{28,g} = f_{t}^{28,g}(T,\sigma_{o}^{28,g})\sigma_{t}^{28,g}(\infty) \end{bmatrix}$$

$$\begin{bmatrix} \sigma_{o}^{25,g} = \left(\frac{1}{N^{25}}\right) \left(\Sigma_{tF}^{28,g} + \Sigma_{tF}^{16,g} + \Sigma_{esc} \right) \\ \sigma_{o}^{28,g} = \left(\frac{1}{N^{28}}\right) \left(\Sigma_{tF}^{25,g} + \Sigma_{tF}^{16,g} + \Sigma_{esc} \right) \end{bmatrix}$$
(M7.A.77)

Since the multigroup self-shielding factors, $f^{s}(T,\sigma_{o})$ are typically tabulated at only a few discrete values of T and σ_{o} , numerical codes employing the Iterative Bondarenko Method must interpolate to determine the f-factors at the end of each iteration. Simple interpolation formulas such as

$$f^{g}(T,\sigma_{o}) = \alpha + \beta \ell n T \quad T_{i} < T < T_{i+1}$$
 (M7.A.78)

and

$$f^{g}(T,\sigma_{o}) = \alpha' + \beta' \ln \sigma_{o} \quad \sigma_{k} < \sigma_{o} < \sigma_{k+1}$$
(M7.A.79)

are still used in some codes. Proceeding in this fashion, the background cross section(s) can be converged to any desired degree of accuracy. Adequate convergence is typically achieved after several iterations. Once the background cross sections are fully converged, the resonance self-shielded values of $\sigma_t^{i,g}$, $\sigma_c^{i,g}$, $\sigma_f^{i,g}$, $\sigma_\ell^{i,g}$, etc., may be calculated by multiplying the appropriate f-factors by the infinitely dilute values of the respective cross sections. Because the Iterative Bondarenko Method makes use of pretabulated self-shielding factors and requires only a few iterations involving a limited number of algebraic steps, it is very fast and provides an attractive alternative to the Nordheim Integral Method. Even though neither method can properly account for overlapping resonances found in many fuel mixtures, the applicability of the Bondarenko Method is somewhat more limited due to the fact that the self-shielding factors are usually generated using the narrow resonance approximation for the flux [cf. Eq. (M7.A.41)].

M7.A.9 SOME GENERAL COMMENTS ON THE GENERATION OF BONDARENKO SELF-SHIELDING FACTORS

The generation of Bondarenko self-shielding factors by codes such as ETOX, MINX, ENDRUN, or TABU is a separate calculational step completely divorced from the use and application of that data in codes such as XSRES, SPHINX, TDOWN, or BONAMI which actually generate the resonance self-shielded cross sections for a particular set of mixtures in a particular application. As we have seen in the previous section, however, the approximations that go into the generation of these f-factors ultimately limit the applicability of the method. For completeness, therefore, let us make a few additional remarks concerning the definition of the various f-factors.

Many nuclear processes involve resonance reactions; the ones of greatest importance in neutronic calculations are fission, radiative capture, and elastic scattering. In multigroup calculations, the corresponding

resonance self-shielded cross sections $(\sigma_f^{i,g}, \sigma_c^{i,g}, \sigma_\ell^{i,g})$ should be defined so as to reproduce the integrated reaction rate that one would obtain if he performed the calculation on a point-wise energy basis. Since those reaction rates are given by the product of the scalar flux times, the respective cross sections, the multigroup cross sections should be defined such that

$$\sigma_{f}^{i,g} \phi^{g} = \sigma_{f}^{i,g} \int_{E^{g}}^{E^{g-1}} \phi(E) dE = \int_{E^{g}}^{E^{g-1}} \sigma_{f}^{i}(E) \phi(E) dE \qquad (M7.A.80)$$

Using the narrow resonance approximation for the flux,

$$\phi(E) = \left(\frac{1}{\Sigma_{tF}(E) + \Sigma_{esc}}\right) \left(\frac{1}{E}\right)$$
(M7.A.81)

and writing the above expression in terms of lethargy, where

$$u \equiv \ln (E_o/E),$$
 $du = -\left(\frac{1}{E}\right)dE$ (M7.A.82a,b)

and \diamondsuit_g denotes the integral over lethargy, we obtain

$$\sigma_{f}^{i,g} \phi^{g} = \sigma_{f}^{i,g} \langle \phi(u) \rangle_{g} = \langle \sigma_{f}^{i}(u) \phi(u) \rangle, \quad \text{or} \quad (M7.A.83)$$

$$\sigma_{f}^{i,g} = \frac{\left\langle \sigma_{f}^{i}(u) \phi(u) \right\rangle_{g}}{\left\langle \phi(u) \right\rangle_{g}} = \frac{\left\langle \frac{\sigma_{f}^{i}(u)}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}} \right\rangle}{\left\langle \frac{1}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}} \right\rangle_{g}}$$
(M7.A.84)

where $\sigma_o^{i,g}$ is the (constant) background cross section defined by Eq. (M7.A.70). Since the Bondarenko factor is defined as the resonance self-shielded cross section divided by the infinitely dilute value [cf. Eq. (M7.A.60)], the corresponding f-factor would be defined as

$$f_{f}(T,\sigma_{o}) = \frac{\Delta u_{g}}{\left\langle \sigma_{f}^{i}(T,u) \right\rangle_{g}} \frac{\left\langle \frac{\sigma_{f}^{i}(T,u)}{\left\langle \sigma_{t}^{i}(T,u) + \sigma_{o} \right\rangle_{g}} \right\rangle}{\left\langle \frac{1}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}} .$$
(M7.A.85)

NUREG/CR-0200, Vol. 3, Rev. 6

Expressions for $f_c(T,\sigma_o)$ and $f_t(T,\sigma_o)$ may be derived in a similar fashion, yielding

$$f_{c}(T,\sigma_{o}) = \frac{\Delta u_{g}}{\langle \sigma_{c}(T,u) \rangle_{g}} \frac{\left\langle \frac{\sigma_{c}^{i}(T,u)}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}{\left\langle \frac{1}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}$$
(M7.A.86)

and

$$f_{el}(T,\sigma_{o}) = \frac{\Delta u_{g}}{\left\langle \sigma_{el}(T,u) \right\rangle_{g}} \frac{\left\langle \frac{\sigma_{el}(T,u)}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}{\left\langle \frac{1}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}$$
(M7.A.87)

Although a similar expression may be written for $f_A(T,\sigma_o)$, these (superfluous) values are not typically stored in the cross-section data file since, by definition, $\sigma_A^{i,g} = \sigma_f^{i,g} + \sigma_c^{i,g}$. The Bondarenko factor for the total cross section $f_t(T,\sigma_o)$ is defined differently by different codes, depending on whether $\sigma_t^{i,g}$ is ultimately to be used in a multigroup transport-theory calculation or a multigroup diffusion-theory calculation. If it is ultimately to be used in a multigroup calculation accurately reproduces should define the resonance self-shielded cross section so that the multigroup calculation accurately reproduces the total collision density per unit path length. If $\psi(\Omega)$ denotes the angular flux, $\sigma_t^{i,g}$ should be defined such that

$$\sigma_t^{i,g} \psi^g(\Omega) = \sigma_t^{i,g} \langle \psi(u,\Omega) \rangle_g = \langle \sigma_t^i(u) \psi(u,\Omega) \rangle_g \qquad (M7.A.88)$$

Integrating over all solid angles and interchanging the order of integration, this again reduces to

$$\sigma_{t}^{i,g} = \frac{\left\langle \sigma_{t}^{i}(u)\phi(u) \right\rangle_{g}}{\left\langle \phi(u) \right\rangle_{g}} = \frac{\left\langle \frac{\sigma_{t}^{i}(u)}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}} \right\rangle_{g}}{\left\langle \frac{1}{\sigma_{tF}^{i}(u) + \sigma_{o}^{i,g}} \right\rangle_{g}}$$
(M7.A.89)

and the corresponding Bondarenko factor is given by

NUREG/CR-0200, Vol. 3, Rev. 6
$$f_{t}^{i}(T,\sigma_{o}) = \frac{\Delta u_{g}}{\left\langle \sigma_{t}^{i}(T,u) \right\rangle} \frac{\left\langle \frac{\sigma_{t}^{i}(T,u)}{\left\langle \sigma_{t}^{i}(T,u) + \sigma_{o} \right\rangle_{g}}}{\left\langle \frac{1}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}$$
(M7.A.90)

Indeed, the Bondarenko factors used by BONAMI in the iterative process described by Eqs. (M7.A.77) are defined in exactly this fashion. In point of fact, Bondarenko factors as defined by Eq. (M7.A.90) are somewhat superfluous since $\sigma_t^{i,g}$ may be defined in terms of the other resonance self-shielded cross sections. Noting, for example, that

$$\sigma_t^{i,g} \phi^g = \sigma_f^{i,g} \phi^g + \sigma_c^{i,g} \phi^g + \sigma_{e\ell}^{i,g} \phi^g + \sigma^{i,g} \phi^g \qquad (M7.A.91)$$

L

all other nonresonance processes

one can write

$$\sigma_{t}^{i,g} = \sigma_{f}^{i,g} + \sigma_{c}^{i,g} + \sigma_{el}^{i,g} + \sigma^{i,g}$$
all other

| nonresonance processes

.]

Noting that the infinitely dilute total cross section is defined as

$$\sigma_t^{i,g}(\infty) = \sigma_f^{i,g}(\infty) + \sigma_c^{i,g}(\infty) + \sigma_{el}^{i,g}(\infty) + \sigma^{i,g}(\infty)$$

(M7.A.93)

all other nonresonance processes

one can combine Eqs. (M7.A.92) and (M7.A.93), and express $\sigma_t^{i,g}$ as

$$\sigma_t^{i,g} = \sigma_t^{i,g}(\infty) - \sigma_f^{i,g}(\infty) - \sigma_c^{i,g}(\infty) - \sigma_{e\ell}^{i,g}(\infty) - \sigma_{e\ell}^{i,g}(\infty)$$

all other nonresonance processes

NUREG/CR-0200, Vol. 3, Rev. 6

+
$$\sigma_{f}^{i,g}$$
 + $\sigma_{c}^{i,g}$ + $\sigma_{e\ell}^{i,g}$ + $\sigma^{i,g}$ (M7.A.94)
all other

Noting that

 $\sigma^{i,g} = \sigma^{i,g}(\infty)$ all other all other nonresonance processes processes (M7.A.95)

processes

 $\sigma_t^{1,g}$ can then be written as simply

$$\sigma_t^{i,g} = \sigma_t^{i,g}(\infty) + \left[\sigma_f^{i,g} - \sigma_f^{i,g}(\infty)\right] + \left[\sigma_c^{i,g} - \sigma_c^{i,g}(\infty)\right] + \left[\sigma_{e\ell}^{i,g} - \sigma_{e\ell}^{i,g}(\infty)\right] \quad (M7.A.96)$$

For that reason, retention of $f_t^i(T,\sigma_o)$ in the cross-section data file is somewhat superfluous. As a matter of calculational convenience, however, $f_t^i(T,\sigma_o)$ as defined by Eq. (M7.A.90) is retained in the input data file for BONAMI and used in the iterative procedure described above. Once the background cross section(s) has been adequately converged and the resonance self-shielded values of $\sigma_f^{i,g}$, $\sigma_c^{i,g}$, and $\sigma^{i,g}$ have been determined, the code actually calculates $\sigma_t^{i,g}$ using Eq. (M7.A.96). Even though this gives essentially the same value that is obtained by multiplying $f_t^i(T,\sigma_o)$ by the infinitely dilute cross section, the code uses Eq. (M7.A.96) in order to eliminate round-off discrepancies in the output data file.

If, on the other hand, the resonance self-shielding calculation is being performed in order to prepare multigroup cross-section data for use in a diffusion-theory calculation where absorption is negligible and the diffusion coefficient is defined as

$$D^{g,MIX} = \frac{1}{3\Sigma_t^{g,MIX}}$$
(M7.A.97)

the f-factor, $f_t^{1}(T,\sigma_o)$, must be defined in a somewhat different fashion. In such a situation, the quantity to be preserved is the net leakage of particles into or out of the system boundary (i.e., the multigroup calculation should reproduce the leakage rate that one would obtain if the calculation were done on a point-wise energy basis). Mathematically, this requires that

$$D^{g,MIX}\nabla^2 \phi^g(r) = \left\langle D^{MIX}(u)\nabla^2 \dot{\phi}(u,r) \right\rangle$$
(M7.A.98)

NUREG/CR-0200, Vol. 3, Rev. 6

$$\frac{1}{3\Sigma_{t}^{\text{MIX}}(u)} \left\langle -B^{2}\phi(u,r)\right\rangle = \left\langle \frac{1}{3\Sigma_{t}^{\text{MIX}}(u)} (-B^{2})\phi(u,r)\right\rangle \qquad (M7.A.99a)$$
$$\frac{B^{2}}{3} \frac{\left\langle \phi(u)\right\rangle}{\Sigma_{t}^{\text{MIX}}(u)} = \frac{B^{2}}{3} \left\langle \frac{\phi(u)}{\Sigma_{t}^{\text{MIX}}(u)}\right\rangle \qquad (M7.A.99b)$$
$$= \frac{MIX}{2} \left\langle \frac{\phi(u)}{2}\right\rangle$$

$$\Sigma_{t}^{MIX}(u) = \frac{\langle \phi(u) \rangle}{\left\langle \frac{\dot{\phi}(u)}{\Sigma_{t}^{MIX}(u)} \right\rangle}$$
(M7.A.99c)

and

$$\Sigma_{t}^{i}(u) + \Sigma_{o} = \frac{\langle \phi(u) \rangle}{\left\langle \frac{\phi(u)}{\Sigma_{t}^{i}(u) + \Sigma_{o}} \right\rangle}$$
(M7.A.99d)

Using the narrow resonance approximation for the flux, this becomes

$$\Sigma_{t}^{i}(u) + \Sigma_{o} = \frac{\left\langle \frac{1}{\Sigma_{t}^{i}(u) + \Sigma_{o}} \right\rangle}{\left\langle \frac{1}{\left(\Sigma_{t}^{i}(u) + \Sigma_{o} \right)^{2}} \right\rangle}$$
(M7.A.100)

and

$$\sigma_{t}^{i,g} = \frac{\left\langle \frac{1}{\sigma_{t}^{i}(u) + \sigma_{o}} \right\rangle}{\left\langle \frac{1}{\left(\sigma_{t}^{i}(u) + \sigma_{o}\right)^{2}} \right\rangle} - \sigma_{o}$$
(M7.A.101)

Dividing $\sigma_t^{i,g}$ by the infinitely dilute value, we then obtain the appropriate expression for $f_t^i(T,\sigma_o)$:

NUREG/CR-0200, Vol. 3, Rev. 6

$$f_{t}^{i}(T,\sigma_{o}) = \frac{\Delta u_{g}}{\left\langle \sigma_{t}^{i}(T,u) \right\rangle_{g}} \left| \frac{\left\langle \frac{1}{\sigma_{t}^{i}(T,u) + \sigma_{o}} \right\rangle_{g}}{\left\langle \frac{1}{\left\langle \sigma_{t}^{i}(T,u) + \sigma_{o} \right\rangle^{2}} \right\rangle_{g}} - \sigma_{o} \right|$$
(M7.A.102)

This, in fact, is the expression originally given by Bondarenko in his classic book on the subject.¹⁷ Indeed, it is the expression still used in many codes.

Since Bondarenko self-shielding factors have been generated for numerous multigroup libraries using various cross-section processing codes, the user should be careful to make sure that the Bondarenko factors contained in a given library were generated in a fashion that is consistent with his intended application.

M7.A.10 DERIVATION OF THE SELF-SHIELDING FACTORS FOUND IN THE ORIGINAL HANSEN-ROACH CROSS-SECTION LIBRARY (0°K)

One of the oldest and most useful multigroup libraries used in the United States for criticality analysis is the 16-group Hansen-Roach cross-section library.¹⁸ Originally developed as a six-group library for criticality analysis of fast, heavy-metal systems, the lowest energy group was later divided into ten epithermal energy groups and one thermal energy group so that critical assemblies having an intermediate neutron flux spectrum could be analyzed. Of particular interest here is the fact that the original report (December 1961) contained plots of the resonance self-shielded, group-averaged values of $\sigma_{\rm f}^{\rm g}$ as a function of the background cross section ($\sigma_{\rm o}$) for ²³³U, ²³⁵U, and ²³⁹Pu, and resonance self-shielded values of $\sigma_{\rm c}^{\rm g}$ (the radiative capture cross section) as a function of the background cross section ($\sigma_{\rm o}$) for ²³²Th, ²³³U, ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴⁰Pu. Because modified versions of this 16-group library are still in wide use today, the determination of these constants is of historical interest. The determination of the original resonance self-shielded data will be presented in this section. The Knight-Modified Hansen-Roach data currently being disseminated with the SCALE system will be discussed in Sect. M7.A.13.

While the resonance self-shielded, group-averaged constants reported by Hansen and Roach were calculated in a fashion consistent with Eqs. M7.A.85 or M7.A.86, the closed-form algebraic expression they actually used appears, at first glance, to be significantly different. To arrive at that expression, it is necessary to consider the single-level Breit-Wigner expression for an unbroadened (T=0°K) isolated resonance, insert those expressions for $\sigma_c(E)$, $\sigma_f(E)$, and $\sigma_t(E)$ into Eq. M7.A.71, and carry out the required integration over the particular energy group. In this particular case, the integration is most conveniently carried out in the energy domain rather than lethargy. Before pursuing the details of that integration, however, it is convenient to review some of the simplifying assumptions first introduced in Sect. M7.A.6.

Using the narrow resonance approximation for the flux, the resonance self-shielded value of $\sigma_f^{i,g}$ may be written as

$$\sigma_{f}^{i,g} = \frac{\int_{E^{g}}^{E^{g-1}} \left(\frac{\sigma_{f}^{i}(E)}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}}\right) \left(\frac{1}{E}\right) dE}{\int_{E^{g}}^{E^{g-1}} \left(\frac{1}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}}\right) \left(\frac{1}{E}\right) dE}$$
(M7.A.103)

In the denominator, the integrand vanishes in the vicinity of a resonance such that one need only evaluate that integral between resonances where $\sigma_t^i(E) \rightarrow \sigma_p^i$, the potential scattering cross section of nuclide i. Assuming that the resonances are very narrow compared with the width of the energy group such that one can retain the original limits of integration, the denominator can then be written as

$$\int_{E^g}^{E^{g-1}} \left(\frac{1}{\sigma_t^i(E) + \sigma_o^i}\right) \left(\frac{1}{E}\right) dE \doteq \left(\frac{1}{\sigma_p^i + \sigma_o^i}\right) \int_{E^g}^{E^{g-1}} \left(\frac{1}{E}\right) dE = \left(\frac{1}{\sigma_o}\right) \ln\left(\frac{E^{g-1}}{E^g}\right) = \left(\frac{\Delta u_g}{\sigma_o}\right) \quad (M7.A.104)$$

where

$$\sigma_{o} \equiv \sigma_{p}^{i} + \sigma_{o}^{i} \qquad (M7.A.105)$$

Assuming that the resonances are narrow compared with the width of the energy group and widely spaced such that $\sigma_{f}^{1}(E) \rightarrow 0$ between resonances, the numerator of Eq. (M7.A.103) may be replaced by a sum of integrals over the individual resonances of nuclide i in group g. Thus, Eq. (M7.A.103) may be written as

$$\sigma_{f}^{i,g} = \left(\frac{\sigma_{o}}{\Delta u_{g}}\right) \sum_{\substack{\text{res}\\j \in g}} \int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \left(\frac{\sigma_{f}^{i}(E)}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}}\right) \left(\frac{1}{E}\right) dE$$
(M7.A.106)

Use of the single-level Breit-Wigner equation for an unbroadened (T=0 K) isolated resonance then permits an analytic evaluation of each of the resonance integrals appearing in Eq. (M7.A.106). Specifically, we note that $\sigma_{f}^{I}(E)$ is given by

$$\sigma_{\rm f}^{\rm i}({\rm E_c}) = \pi \lambda_{\rm res}^2 g \left(\frac{{\rm E_{\rm res}}}{{\rm E_c}}\right)^{\frac{1}{2}} \frac{\Gamma_{\rm n} \Gamma_{\rm f}}{({\rm E_c} - {\rm E_{\rm res}})^2 + (\Gamma^2/4)}$$
(M7.A.107)

where

Eres denotes a resonance centered about $E = E_{res}$, NUREG/CR-0200, Vol. 3, Rev. 6 M7.A.38

E_c denotes the energy of the neutron in the center-of-mass system,

 Γ denotes the total width of the resonance,

 Γ_n denotes the neutron width,

 $\Gamma_{\rm f}$ denotes the fission width,

 λ_{res} denotes the reduced wavelength of a neutron at $E = E_{res}$; that is, $\lambda_1 = \bar{h}/\sqrt{2\mu E_1}$ where μ is the reduced mass of the neutron, or $\lambda_1 = 4.55 \times 10^{-10} \text{ cm}/\sqrt{E_1}$, where E_1 is in eV,

g denotes the statistical spin factor.

Likewise, the single-level Breit-Wigner formula for radiative capture (n, γ) is given as

$$\sigma_{\rm c}^{\rm i}({\rm E_c}) = \pi \lambda_{\rm res}^2 g \left(\frac{{\rm E_{\rm res}}}{{\rm E_c}}\right)^{\frac{1}{2}} - \frac{\Gamma_{\rm n} \Gamma_{\rm Y}}{({\rm E_c} - {\rm E_{\rm res}})^2 + (\Gamma^2/4)}$$
(M7.A.108)

At $E_c = E_{res}$, one obtains the maximum cross section for each of these reactions types, denoted here as $\sigma_f^{i,o}$ and $\sigma_c^{i,o}$:

$$\sigma_{\rm f}^{\rm i,o} = \sigma_{\rm f}^{\rm i}({\rm E}_{\rm res}) = 4\pi\lambda_{\rm res}^2 g\!\left(\frac{\Gamma_{\rm n}}{\Gamma}\right)\!\left(\frac{\Gamma_{\rm f}}{\Gamma}\right) \tag{M7.A.109}$$

and

$$\sigma_{\rm c}^{\rm i,o} = \sigma_{\rm c}^{\rm i}({\rm E}_{\rm res}) = 4\pi\lambda_{\rm res}^2 g\!\left(\frac{\Gamma_{\rm n}}{\Gamma}\right)\!\left(\frac{\Gamma_{\rm \gamma}}{\Gamma}\right) \tag{M7.A.110}$$

Although the Breit-Wigner formula for s-wave scattering does have an additional term that produces an asymmetric dip in $\sigma_{el}(E_c)$ at energies just below E_{res} , the maximum value of $\sigma_{el}(E_c)$ (not including the potential scattering term) is given by

$$\sigma_{e\ell}^{i,o} = \sigma_{e\ell}^{i}(E_{res}) = 4\pi\lambda_{res}^{2} g\left(\frac{\Gamma_{n}}{\Gamma}\right)\left(\frac{\Gamma_{n}}{\Gamma}\right)$$
(M7.A.111)

Noting that

$$\Gamma \equiv \Gamma_{n} + \Gamma_{y} + \Gamma_{f} \qquad (M7.A.112)$$

the maximum value of the total cross section is given by

NUREG/CR-0200, Vol. 3, Rev. 6

$$\sigma_t^{i,o} = \sigma_t^i(E_{res}) = 4\pi \lambda_{res}^2 g\left(\frac{\Gamma_n}{\Gamma}\right)$$
 (M7.A.113)

and $\sigma_t^i(E_c)$ may (for all practical purposes) be approximated as

$$\sigma_{t}^{i}(E_{c}) \doteq \pi \lambda_{res}^{2} g \left(\frac{E_{res}}{E_{c}} \right)^{\frac{1}{2}} \frac{\Gamma_{n} \Gamma}{(E_{c} - E_{res})^{2} + (\Gamma^{2}/4)} + \sigma_{p}^{i}$$
 (M7.A.114)

where σ_p^i is the potential scattering cross section for nuclide i. Before substituting the various cross sections into Eq. (M7.A.106) and evaluating the various resonance integrals, two additional simplifications can be made: (1) for collisions with intermediate and heavy nuclides, the energy of the neutron in the center-of-mass system E_c is essentially the same as the energy in the laboratory system (E); and (2) at energies underneath the (narrow) resonance and in the immediate vicinity of the narrow resonance,

$$\frac{E_{\text{res}}}{E_{\text{c}}} \doteq \frac{E_{\text{res}}}{E} \doteq 1.0$$
(M7.A.115)

Using these simplifications along with the definitions of $\sigma_f^{i,o}$, $\sigma_c^{i,o}$, and $\sigma_t^{i,o}$, the energy-dependent cross sections needed in Eq. (M7.A.106) may be written as

$$\sigma_{f}^{i}(E) = \frac{\sigma_{f}^{i,o}}{\left[\left(\frac{2}{\Gamma}\right)(E - E_{res})\right]^{2} + 1} \qquad E_{min}^{res(j)} \le E \le E_{max}^{res(j)}$$
(M7.A.116a)

$$\sigma_{c}^{i}(E) = \frac{\sigma_{c}^{i,o}}{\left[\left(\frac{2}{\Gamma}\right)(E - E_{res})\right]^{2} + 1} \qquad E_{min}^{res(j)} \le E \le E_{max}^{res(j)}$$
(M7.A.116b)

and

$$\sigma_{t}^{i}(E) = \frac{\sigma_{t}^{i,o}}{\left[\left(\frac{2}{\Gamma}\right)(E - E_{res})\right]^{2} + 1} + \sigma_{p}^{i} \qquad E_{min}^{res(j)} \le E \le E_{max}^{res(j)}$$
(M7.A.116c)

NUREG/CR-0200, Vol. 3, Rev. 6

Returning to Eq. (M7.A.106), we need to make one more approximation. Since the integration is over a very narrow band of energies where $E = E_{res}$, the (1/E) term appearing in Eq. (M7.A.106) may be replaced by (1/ E_{res}). The integrand may then be written as

$$\left(\frac{\sigma_{\rm f}^{\rm i}(E)}{\sigma_{\rm t}^{\rm i}(E) + \sigma_{\rm o}^{\rm i}}\right) \left(\frac{1}{E}\right) dE = \left(\frac{\sigma_{\rm f}^{\rm i,o}}{\sigma_{\rm t}^{\rm i,o} + (\sigma_{\rm p}^{\rm i} + \sigma_{\rm o}^{\rm i})[x^2 + 1]}\right) \left(\frac{1}{E_{\rm res}}\right) dE$$
$$= \left(\frac{\sigma_{\rm f}^{\rm i,o}}{\sigma_{\rm t}^{\rm i,o} + \sigma_{\rm o} + \sigma_{\rm o} x^2}\right) \left(\frac{1}{E_{\rm res}}\right) dE = \left(\frac{1}{E_{\rm res}}\right) \left(\frac{\sigma_{\rm f}^{\rm i,o}}{\sigma_{\rm o}}\right) \left(\frac{1}{a^2 + x^2}\right) dE \qquad (M7.A.117a)$$

where

$$x = \left(\frac{2}{\Gamma}\right) (E - E_{res})$$
 (M7.A.117b)

$$\sigma_{o} = \sigma_{p}^{i} + \sigma_{o}^{i}$$
 (M7.A.117c)

and

$$a^{2} = 1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right)$$
(M7.A.117d)

The resonance integral may then be written as

$$\int_{E_{\min}^{res(j)}}^{E_{\max}^{res(j)}} \left(\frac{\sigma_{f}^{i}(E)}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE = \left(\frac{1}{E_{res}} \right) \left(\frac{\sigma_{f}^{i,o}}{\sigma_{o}} \right) \int_{E_{\min}^{res(j)}}^{E_{\max}^{res(j)}} \frac{1}{\left(\frac{\sigma_{t}^{i,o} + \sigma_{o}}{\sigma_{o}} \right) + \left[\left(\frac{2}{\Gamma} \right) (E - E_{res}) \right]^{2}} dE$$
(M7.A.118)

To the extent that the integrand vanishes whenever

$$\left(\frac{\sigma_{t}^{i,o} + \sigma_{o}}{\sigma_{o}}\right) + \left[\left(\frac{2}{\Gamma}\right)(E - E_{res})\right]^{2} >> 1 \qquad (M7.A.119)$$

the limits of integration may be replaced by $+\infty$ and $-\infty$ with very little residual error. This is certainly true at energies more than a few half-widths away from E_{res} , that is, whenever

$$\left[\left(\frac{2}{\Gamma}\right)(E-E_{res})\right]^2 >> 1$$
 (M7.A.120)

Thus, in addition to being widely spaced, the (narrow) resonances are assumed to lie well inside the group boundaries. Defining $x = \left(\frac{2}{\Gamma}\right)(E - E_{res})$, such that $dE = \left(\frac{\Gamma}{2}\right)dx$, the integral is then of the form

NUREG/CR-0200, Vol. 3, Rev. 6

$$\int_{-\infty}^{\infty} \frac{1}{a^2 + x^2} dx = \frac{\pi}{a}, \text{ where } a^2 = 1 + \left(\frac{\sigma_t^{i,o}}{\sigma_o}\right)$$
(M7.A.121a,b)

The resonance integral may then be expressed as

$$\int_{E_{min}^{res(j)}}^{E_{max}^{res(j)}} \left(\frac{\sigma_{f}^{i}(E)}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE = \left(\frac{1}{E_{res}} \right) \left(\frac{\sigma_{f}^{i,o}}{\sigma_{o}} \right) \left(\frac{\Gamma}{2} \right) \frac{\pi}{\sqrt{1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}} \right)}}$$
(M7.A.122)

Substituting this result into Eq. (M7.A.106), the resonance self-shielded group-averaged value of $\sigma_f^{i,g}$ is then given by

$$\sigma_{f}^{i,g} = \left(\frac{1}{\Delta u_{g}}\right) \left(\frac{\pi}{2}\right) \sum_{\frac{res}{j \in g}} \frac{\left(\frac{\Gamma}{E_{res}}\right) \sigma_{f}^{i,o}}{\sqrt{1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right)}}$$
(M7.A.123)

Likewise, the resonance self-shielded, group-averaged value of $\sigma_c^{i,g}$ is given by

$$\sigma_{c}^{i,g} = \left(\frac{1}{\Delta u_{g}}\right) \left(\frac{\pi}{2}\right) \sum_{\frac{\text{res}}{j \in g}} \frac{\left(\frac{\Gamma}{E_{\text{res}}}\right) \sigma_{c}^{i,o}}{\sqrt{1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right)}}$$
(M7.A.124)

Using the resonance data available at that time (1961), Hansen and Roach used Eqs. (M7.A.123) and M7.A.124 to tabulate the resonance self-shielded, group-averaged values of $\sigma_{f}^{i,g}$ and $\sigma_{c}^{i,g}$ as a function of σ_{o} .

Despite the fact that Hansen and Roach ignored the effects of Doppler broadening, resonance scattering, and resonance overlap, their simplified approach did provide a useful set of multigroup cross-section data which accounted for the gross spectral effects of resonance self-shielding. Figure M7.A.9 shows the resonance self-shielded values of the capture cross section ($\sigma_c^{28,g}$, g = 8, 9, 10, 11, 12) for ²³⁸U as a function of σ_o . Note that the effect of the resonance self-shielding can be quite significant in certain energy groups. Whereas the group-12 cross section may have a value of 110 barns in an infinitely dilute mixture such as an aqueous solution of uranylfluoride, its value in an undermoderated UO₂ lattice would be considerably less, and its value in a thick uranium-metal shield may be as little as 6 barns.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.43

M7.A.11 THE EFFECT OF RESONANCE SCATTERING ON THE GROUP-AVERAGED CROSS SECTIONS

Somewhat distressing in the derivation of Eqs. (M7.A.123) and (M7.A.124) is the fact that Hansen and Roach ignored the effect of resonance scattering. Indeed, for an unbroadened resonance, its inclusion would have been trivial. Using the Breit-Wigner formula for s-wave scattering, $\sigma_{el}(E_c)$ may be written as

$$\sigma_{e\ell}^{i}(E_{c}) = \pi \lambda_{res}^{2} g\left(\frac{E_{res}}{E_{c}}\right)^{\frac{1}{2}} \left[\frac{\Gamma_{n}^{2}}{(E_{c}-E_{res})^{2} + (\Gamma^{2}/4)}\right]$$

+
$$4\pi\lambda_{\rm res} gR\Gamma_n \left[\frac{(E_c - E_{\rm res})}{(E_c - E_{\rm res})^2 + (\Gamma^2/4)} \right] + \sigma_p^i$$
 (M7.A.125)

where R is the effective radius of the nucleus, and

$$\sigma_{\rm p}^{\rm i} = 4\pi R^2$$
 (M7.A.126)

Incorporating the asymmetric term into the total cross section, we may write

$$\sigma_t^i(E_c) = \frac{\sigma_t^{i,o}}{1+x^2} + \frac{\sigma_t^{i,o}xd}{1+x^2} + \sigma_p^i$$
 (M7.A.127a)

where

$$d = \left(\frac{1}{\lambda_{res}}\right) \sqrt{\frac{\sigma_p^i}{\pi}}$$
(M7.A.127b)

and

$$x = \left(\frac{2}{\Gamma}\right) (E_{c} - E_{res})$$
(M7.A.127c)

Proceeding as before, the integrand in the resonance integral [cf. Eq. (M7.A.106)] may be written as

NUREG/CR-0200, Vol. 3, Rev. 6

$$\left(\frac{\sigma_{\rm f}^{\rm i}(\rm E)}{\sigma_{\rm t}^{\rm i}(\rm E) + \sigma_{\rm o}^{\rm i}}\right) \left(\frac{1}{\rm E}\right) d\rm E = \left(\frac{\Gamma}{2\rm E_{\rm res}}\right) \left(\frac{\sigma_{\rm f}^{\rm i,o}}{\sigma_{\rm t}^{\rm i,o} + \sigma_{\rm t}^{\rm i,o} x d + (\sigma_{\rm p}^{\rm i} + \sigma_{\rm o}^{\rm i})(1 + x^{2})}\right) dx$$
$$= \left(\frac{1}{2}\right) \left(\frac{\Gamma}{\rm E_{\rm res}}\right) \left(\frac{1}{x^{2} + bx + c}\right) dx \qquad (M7.A.128a)$$

where

$$\sigma_{o} \equiv \sigma_{p}^{i} + \sigma_{o}^{i}, \quad b \equiv \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right) d, \quad \text{and} \quad c \equiv 1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right)$$
 (M7.A.128b,c,d)

By "completing the square" in the denominator, the resonance integral may be put in the same standard form as the previous case. To illustrate, consider the following:

$$x^{2} + bx + c = \left[x^{2} + 2\left(\frac{b}{2}\right)x + \left(\frac{b}{2}\right)^{2}\right] + \left[c - \left(\frac{b}{2}\right)^{2}\right] = y^{2} + a^{2}$$
 (M7.A.129a)

where

$$y = x + \left(\frac{b}{2}\right)$$
 and $a^2 = c - \left(\frac{b}{2}\right)^2$ (M7.A.129b,c)

Using Eq. (M7.A.128c) for "b," Eq. (M7.A.127b) for "d," and Eq. (M7.A.113) for $\sigma_t^{i,o}$, the quantity $\left(\frac{b}{2}\right)^2$ may be written as

$$\left(\frac{b}{2}\right)^{2} = \left(\frac{\sigma_{t}^{i,o}d}{2\sigma_{o}}\right)^{2} = \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right)^{2} \left(\frac{1}{4}\right) \left(\frac{1}{\lambda_{res}^{2}}\right) \left(\frac{\sigma_{p}^{i}}{\pi}\right)$$
(M7.A.130)

Since $g \le 1$, $\Gamma n \le \Gamma$, and $\sigma_p^i \le \sigma_o$, it follows that

$$\left(\frac{b}{2}\right)^{2} \leq \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right) < \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right) + 1 \equiv c \qquad (M7.A.131)$$

Hence, the parameter a^2 , defined here as $a^2 = c - \left(\frac{b}{2}\right)^2$, is always positive and

NUREG/CR-0200, Vol. 3, Rev. 6

$$\int_{-\infty}^{\infty} \frac{1}{\left[x + \frac{b}{2}\right]^2 + \left[c - \left(\frac{b}{2}\right)^2\right]} dx = \int_{-\infty}^{\infty} \frac{1}{y^2 + a^2} dy = \frac{\pi}{a}$$
(M7.A.132a)

where

$$a = \sqrt{1 + \left(\frac{\sigma_t^{i,o}}{\sigma_o}\right) \left[1 - \left(\frac{g\Gamma_n}{\Gamma}\right)\frac{\sigma_p^i}{\sigma_o}\right]}$$
(M7.A.132b)

Thus, the resonance integral found in Eq. (M7.A.106) may be written as

$$\int_{E_{\text{max}}^{\text{res}(j)}}^{E_{\text{min}}^{\text{res}(j)}} \left(\frac{\sigma_{f}^{i}(E)}{\sigma_{t}^{i}(E) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE = \frac{1}{2} \left(\frac{\Gamma}{E_{\text{res}}} \right) \left(\frac{\sigma_{f}^{i,o}}{\sigma_{o}} \right) \frac{\pi}{\sqrt{1 + \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}} \right) \left[1 - \left(\frac{g\Gamma_{n}}{\Gamma} \right) \left(\frac{c}{c} \right) \right]}} \right)$$
(M7.A.133)

Indeed, this form of the resonance integral (for an unbroadened resonance at T = 0 K) was noted by Dresner¹⁹ some time prior to the release of the original Hansen-Roach cross-section library. Denoting the two forms of the resonance integral as I_{D} and I_{HR} , we see that they give essentially the same result whenever the resonance scattering is negligible ($gI_{n}^{1} << I$), or whenever the resonance nuclide is reasonably dilute ($\sigma_{p}^{i} << \sigma_{o}$). In a concentrated system, such as a thick uranium-metal shield (where $\sigma_{o} \approx \sigma_{p}^{i}$), the more correct form proposed by Dresner [Eq. (M7.A.133)] will yield resonance self-shielded, group-averaged cross sections which are consistently larger than those obtained using Eq. (M7.A.122). Table M7.A.2 shows the ratio of the capture integrals (I_{D}/I_{HR}) for the first few low-energy resonances in ²³⁸U. In the first case ($\sigma_{o} = 45$ b, $\sigma_{p}^{i} = 10.7$ b), the resonance integrals are within a few percent of each other; in the second case ($\sigma_{o} = \sigma_{p}^{i} = 10.7$ b), the resonance integrals are seen to be significantly different. The saving feature, of course, is that many of these low-energy resonances are reasonably broad such that one should in fact use the narrow-resonance/infinite-mass approximation for the flux underneath the resonance (cf. Sect. M7.A.5). Unlike the NR approximation for the flux which has $\sigma_{t}^{i}(E)$ in the denominator, the NRIM approximation for the flux has only the absorption cross section $\sigma_{A}^{i}(E)$ in the resonance scattering cross section is completely negligible.

NUREG/CR-0200, Vol. 3, Rev. 6

	· · · · · · · · · · · · · · · · · · ·			σ _o =45 b	σ _o =10.7 b
E _{res} (eV)	$\sigma_t^{i,o}$ (barns)	$g\Gamma_n(MeV)$	Γ(MeV)	I _D /I _{HR}	I _D /I _{HR}
6.67	21,700	1.52	27.5	1.01	1.03
20.9	32,600	8.7	34.0	1.03	1.16
36.8	39,500	32.0	57.0	1.08	2.27
66.1	20,900	26.0	48.0	1.08	1.47
102.5	19,500	70.0	96.0	1.10	1.92
116.8	10,300	30.0	52.0	1.08	1.54

Table M7.A.2 Comparison of the Dresner and Hansen-Roach resonance integrals (I_D and I_{HR}) for ²³⁸U

M7.A.12 THE EFFECT OF DOPPLER BROADENING ON THE GROUP-AVERAGED CROSS SECTIONS

M7.A.12.1 Temperature Dependence of the Doppler-Broadened, Energy-Dependent, Cross-Section Data: A Qualitative Explanation and a Mathematical Description in Terms of the ψ and χ Functions

Somewhat more distressing in the derivation of Eqs. (M7.A.123) and (M7.A.124) is the fact that Hansen and Roach ignored the Doppler broadening of the energy-dependent cross sections at elevated temperatures (T > 0 K). While the single-level Breit-Wigner equation does accurately describe the energy-dependent cross sections at 0 K, and while the energy of the neutron in the center-of-mass and laboratory systems may be taken as essentially equal, the vibratory energy associated with the thermal motion of the target nuclide (E=kT) cannot be ignored relative to the width of a narrow resonance (Γ). At room temperature, for example, the vibratory energy associated with a ²³⁸U nucleus is 0.0253 eV. By comparison, the width of the (relatively broad) 6.67-eV resonance is only 0.0275 eV. To qualitatively assess the impact of that vibratory motion on the "effective" energy-dependent cross section [$\sigma_c(E)$, $\sigma_t(E)$, $\sigma_t(E)$, etc.], let us consider the following analogy:

"Assume that a marksman is consistently firing a steady stream of bullets into a very small bull's-eye painted on a stationary target. Next, assume that the target starts vibrating back and forth with some small amplitude. While the amplitude of the vibratory motion may be very small compared with the trajectory of the bullets (i.e., $\Delta E <<< E_{res}$), it may not be negligible compared with the size of the bull's-eye ($\Delta E \approx \Gamma$). As the amplitude of that vibratory motion increases, fewer and fewer bullets traveling along the fixed trajectory (E_{res}) will end up in the bulls-eye. (In the analogy, this would correspond to a decreased absorption probability at $E = E_{res}$). On the other hand, some of the bullets which would have been 'near misses' for the stationary target now land in the bull's-eye (i.e., the absorption probability at $E = E_{res} \pm \epsilon$ tends to increase)."

Indeed, the behavior described in the analogy is characteristic of all resonance reactions. Figure M7.A.10 shows the "effective" energy-dependent capture cross section for the 6.67-eV resonance in ²³⁸U as a function of temperature. Note that the effective (Doppler-broadened) cross section, σ_c^{28} (E,T), is

substantially lower and substantially wider at elevated temperatures. Note also that it is this Doppler-broadened, energy-dependent cross section (not the Breit-Wigner energy-dependent cross section at T=0 K) that should be used in Eq. (M7.A.103) when preparing resonance self-shielded, group-averaged cross-section data for a particular application.

To obtain an expression for the Doppler-broadened energy-dependent cross section, we note that it $[\sigma(E,T)]$ should be defined so as to yield the same overall reaction rate (for neutrons of energy E) that one would obtain if he explicitly integrated over the velocity distribution [N(V)] of all the atoms in the target at temperature T. That is, $\sigma(E,T)$ should be defined such that

$$nvN\sigma(E,T) = \int n\bar{v} - \bar{V}IN(\bar{V})\sigma(E_c)d\bar{V} = \int nv_rN(V_z)\sigma(E_c)dV_z \quad (M7.A.134)$$

where $V_z = \overline{v} \cdot \overline{V}$ is the component of the target velocity parallel to the flight of the neutron, where the relative speed $v_r = |\overline{v} - \overline{V}|$ of the neutron with respect to the target nuclide is essentially the same^{*} as the speed of the neutron (v) in the lab system (such that $nv_r = nv = \phi$), and where $\sigma(E_c)$ is the energy-dependent cross section as given by the single-level Breit-Wigner equation. Assuming that the velocity distribution of the atoms in the target is Maxwellian

*For a ²³⁸U nucleus in thermal equilibrium at room temperature (293 K), its vibrational speed $|\bar{V}|$ is ~143 m/s, whereas the speed $|\bar{V}|$ of a 6.67-eV neutron is ~35,700 m/s.

$$N(V_z) = N\left(\frac{M}{2\pi kT}\right)^{\frac{1}{2}} e^{-\left(\frac{MV_z^2}{2kT}\right)}$$
(M7.A.135)

the Doppler-broadened cross section for neutrons of energy E may be written as

$$\sigma(E,T) = \left(\frac{M}{2\pi kT}\right)^{\frac{1}{2}} \int_{-\infty}^{\infty} \sigma(E_c) e^{-\left(\frac{MV_z^2}{2kT}\right)} dV_z \qquad (M7.A.136)$$

or

$$\sigma_{\rm c}({\rm E},{\rm T}) = \sigma_{\rm c}^{\rm i,o} \int_{-\infty}^{\infty} \frac{e^{-\left(\frac{MV_z^2}{2kT}\right)}}{\left[\left(\frac{2}{\Gamma}\right)({\rm E_c} - {\rm E_{res}})\right]^2 + 1} \left(\frac{M}{2\pi kT}\right)^{\frac{1}{2}} dV_z \qquad (M7.A.137)$$

Although it is usually presented in a somewhat different format and tabulated in terms of two dimensionless variables, the integral on the right is the well-known ψ function. When evaluated at a number of different temperatures, the resulting profile of $\sigma_c(E,T)$ as a function of E behaves exactly as shown in Fig. M7.A.10. Furthermore, it can be shown that the area under these curves

$$A = \int_{-\infty}^{\infty} \sigma_{c}(E,T) dE = \sigma_{c}^{i,o} \pi \qquad (M7.A.138)$$

is independent of temperature. From this result, we will later show that the resonance self-shielded, group-averaged value of $\sigma_c^{i,g}$, $\sigma_f^{i,g}$, $\sigma_t^{i,g}$, etc., will *increase* with temperature. Before proceeding along those lines, however, it is convenient to put the ψ function of Eq. (M7.A.137) into its standard form. The first step is to write V_z in terms of E and E_c . If E and E_A represent the energy of the neutron in the lab system and the vibrational energy of the target nuclide in the lab system ($\frac{1}{2}MV^2$), then the energy of the neutron in the center-of-mass system (E_c) may be written as

$$E_{c} = \left(\frac{M}{m+M}\right)E + \left(\frac{m}{m+M}\right)E_{A} - \left(\frac{mM}{m+M}\right)\bar{v}\cdot\bar{V} \qquad (M7.A.139)$$

Since $m \ll M$ and $E_A \ll E$, this may be written as

NUREG/CR-0200, Vol. 3, Rev. 6

$$E_c = E - mvV_z$$
 where $v = \sqrt{\frac{2E}{m}} \doteq \sqrt{\frac{2E_{res}}{m}}$ (M7.A.140a,b)

from which we conclude

$$dE_{c} = -mvdV_{z}$$
 and $dV_{z} = -\frac{1}{mv}dE_{c} = -\left(\frac{1}{2mE_{res}}\right)^{\frac{1}{2}}dE_{c}$ (M7.A.141a,b)

Equation (M7.A.140a) may also be rearranged and written as

$$V_{z} = \left(\frac{1}{mv}\right) (E - E_{c}) = \left(\frac{1}{mv}\right) \left[(E - E_{res}) - (E_{c} - E_{res}) \right]$$
(M7.A.142)

from which we conclude that

$$V_z^2 = \left(\frac{1}{2mE_{res}}\right) \left(\frac{\Gamma^2}{4}\right) (x-y)^2 , \qquad (M7.A.143a)$$

where

$$\mathbf{x} \equiv \left(\frac{2}{\Gamma}\right) (\mathbf{E} - \mathbf{E}_{\text{res}}) \text{ and } \mathbf{y} \equiv \left(\frac{2}{\Gamma}\right) (\mathbf{E}_{c} - \mathbf{E}_{\text{res}}) \text{ .}$$
 (M7.A.143b,c)

Noting that

$$dy = \frac{2}{\Gamma} dE_c \Rightarrow dE_c = \left(\frac{\Gamma}{2}\right) dy$$
, (M7.A.144a,b)

Eq. (M7.A.141b) may be written as

$$dV_{z} = -\left(\frac{\Gamma}{2}\right) \left(\frac{1}{2mE_{res}}\right)^{\frac{1}{2}} dy . \qquad (M7.A.145)$$

Substituting Eqs. (M7.A.143) and (M7.A.145) into (M7.A.137) yields

$$\sigma_{c}^{i}(E,T) = \sigma_{c}^{i,o} \int_{-\infty}^{\infty} \frac{\exp\left[-\left(\frac{M}{2kT}\right)\left(\frac{1}{2mE_{res}}\right)\left(\frac{\Gamma^{2}}{4}\right)(x-y)^{2}\right]}{y^{2}+1} \left(\frac{\Gamma}{2}\right)\left(\frac{M}{4\pi mE_{res}kT}\right)^{\frac{1}{2}} dy \qquad (M7.A.146)$$

NUREG/CR-0200, Vol. 3, Rev. 6

Noting that

$$A = (M/m)$$
, (M7.A.147a)

and defining

$$\Gamma_{\rm D} \equiv \sqrt{\frac{4 {\rm kTE}_{\rm res}}{{\rm A}}} \text{ and } \xi \equiv \frac{\Gamma}{\Gamma_{\rm D}}, \qquad (M7.A.147b,c)$$

Eq. (M7.A.146) can then be written as

$$\sigma_{c}(E,T) = \sigma_{c}^{i,o}\psi(\xi,x)$$
, (M7.A.148)

where the ψ function is formally defined as

$$\psi(\xi, \mathbf{x}) = \frac{\xi}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{e^{-[\xi^2(\mathbf{x}-\mathbf{y})^2/4]}}{1+\mathbf{y}^2} d\mathbf{y} . \qquad (M7.A.149)$$

Likewise, the Doppler-broadened, energy-dependent fission cross section may be written as

$$\sigma_{f}^{i}(E,T) = \sigma_{f}^{i,o}\psi(\xi,x)$$
, (M7.A.150)

where

$$\xi = \left(\frac{\Gamma}{2}\right) \sqrt{\frac{A}{kTE_{res}}}$$
 and $x = \left(\frac{2}{\Gamma}\right) (E - E_{res})$. (M7.A.151a,b)

Proceeding in the same fashion, the Doppler-broadened, energy-dependent, elastic-scattering cross section may be written as

$$\sigma_{e\ell}^{i}(E,T) = \left(\frac{\sigma_t^{i,o}\Gamma_n}{\Gamma}\right)\psi(\xi,x) + \sigma_t^{i,o}d\chi(\xi,x) + \sigma_p^{i}, \qquad (M7.A.152)$$

where $\sigma_t^{i,o}$ and d are given by Eqs. (M7.A.113) and (M7.A.127b), respectively, and the χ function is defined as

$$\chi(\xi, x) = \frac{\xi}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{y e^{-[\xi^2(x-y)^2/4]}}{1+y^2} dy , \qquad (M7.A.153)$$

NUREG/CR-0200, Vol. 3, Rev. 6

Depending upon whether or not one wishes to account for the asymmetric interference term introduced by the possible presence of resonance scattering, the Doppler-broadened, energy-dependent total cross section may then be written as

$$\sigma_{t}^{i}(E,T) = \sigma_{t}^{i,o}\psi(\xi,x) + \sigma_{p}^{i}$$
 (M7.A.154)

or

$$\sigma_{t}^{i}(E,T) = \sigma_{t}^{i,o}\psi(\xi,x) + \sigma_{t}^{i,o}d\chi(\xi,x) + \sigma_{p}^{i}$$
. (M7.A.155)

Tables of the ψ and χ functions have been around since the mid-1950's and their properties are well known.^{12,19,20}

M7.A.12.2 Temperature Dependence of the Resonance-Self-Shielded Group-Averaged Cross Sections: A Mathematical Description in Terms of the J Functions, a Qualitative Explanation Using a Simplified Model, and a Quantitative Assessment with Numerical Examples

Resonance self-shielded, group-averaged cross sections for a material at some elevated temperature may then be evaluated as in Sect. M7.A.10, except that now the energy-dependent cross sections appearing in Eq. (M7.A.106) should be the Doppler-broadened cross sections. That is,

$$\sigma_{c}^{i,g}(T) = \left(\frac{\sigma_{o}}{\Delta u_{g}}\right) \sum_{\frac{\text{res}}{j \in g}} \int_{E_{\min}^{\text{res}(j)}}^{E_{\max}^{\text{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{t}^{i}(E,T) + \sigma_{o}^{i}}\right) \left(\frac{1}{E}\right) dE \quad . \tag{M7.A.156}$$

Ignoring the interference term caused by resonance scattering, the resonance integral may then be written as

$$\int_{E_{\min}^{res(j)}}^{E_{\max}^{res(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{t}^{i}(E,T) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE = \left(\frac{1}{E_{res}} \right) \left(\frac{\Gamma}{2} \right) \int_{-\infty}^{\infty} \frac{\sigma_{c}^{i,o}\psi(\xi,x)}{\sigma_{t}^{i,o}\psi(\xi,x) + (\sigma_{p}^{i} + \sigma_{o}^{i})} dx$$

$$= \left(\frac{1}{E_{res}}\right) \left(\frac{\Gamma}{2}\right) \left(\frac{\sigma_{c}^{i,o}}{\sigma_{t}^{i,o}}\right) 2 \int_{0}^{\infty} \frac{\psi(\xi,x)}{\psi(\xi,x) + \left(\frac{\sigma_{p}^{i} + \sigma_{o}^{i}}{\sigma_{t}^{i,o}}\right)} dx$$

 $= \left(\frac{\Gamma_{c}}{E_{res}}\right) J(\xi,\beta) , \qquad (M7.A.157a)$

where

NUREG/CR-0200, Vol. 3, Rev. 6

- rec(i) (

$$\beta \equiv \left(\frac{\sigma_{o}}{\sigma_{t}^{i,o}}\right) = \left(\frac{\sigma_{p}^{i} + \sigma_{o}^{i}}{\sigma_{t}^{i,o}}\right) , \qquad (M7.A.157b)$$

and $J(\xi,\beta)$ is defined as

$$J(\xi,\beta) \equiv \int_{0}^{\infty} \frac{\psi(\xi,x)}{\psi(\xi,x) + \beta} dx . \qquad (M7.A.158)$$

Note, of course, that ξ and β vary from resonance to resonance, and that ξ also depends on the temperature (T). Thus,

$$\sigma_{\rm c}^{\rm i,g}({\rm T}_{\rm k}) = \left(\frac{\sigma_{\rm o}}{\Delta {\rm u}_{\rm g}}\right) \sum_{\substack{\rm res \ j \in g}} \left(\frac{\Gamma_{\rm c}^{\rm j}}{{\rm E}_{\rm res}^{\rm j}}\right) J(\xi_{\rm k}^{\rm j},\beta^{\rm j}) \ . \tag{M7.A.159}$$

As with the ψ and χ functions, tables of the J-function have been around since the mid-1950's and its properties are well known.^{19,20}

While Eqs. (M7.A.157a,b) are based on the narrow resonance approximation for the flux, a similar expression could be developed for those (low-energy) resonances where the narrow-resonance infinite-mass (NRIM) approximation is more appropriate. Indeed, the only real difference lies in the leading constant and the definition of β . Using the NRIM approximation for the flux, the resonance self-shielded group-averaged value of $\sigma_c^{i,g}(T)$ may be written as

$$\sigma_{c}^{i,g}(T) = \left(\frac{\sigma_{o}^{i}}{\Delta u_{g}}\right) \sum_{\substack{\text{res}\\j \in g}} \int_{E_{\min}^{\text{res}(j)}}^{E_{\max}^{\text{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{A}^{i}(E,T) + \sigma_{o}^{i}}\right) \left(\frac{1}{E}\right) dE \quad , \quad (M7.A.160)$$

and the resonance integral may be written as

$$\int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{A}^{i}(E,T) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE = \left(\frac{1}{E_{\operatorname{res}}} \right) \left(\frac{\Gamma}{2} \right) \int_{-\infty}^{\infty} \frac{\sigma_{c}^{i,o} \psi(\xi,x)}{\sigma_{A}^{i,o} \psi(\xi,x) + \sigma_{o}^{i}} dx$$

NUREG/CR-0200, Vol. 3, Rev. 6

$$= \left(\frac{1}{E_{res}}\right) \left(\frac{\Gamma}{2}\right) \left(\frac{\sigma_{c}^{i,o}}{\sigma_{A}^{i,o}}\right) 2 \int_{0}^{\infty} \frac{\psi(\xi,x)}{\psi(\xi,x) + \left(\frac{\sigma_{o}^{i}}{\sigma_{A}^{i,o}}\right)} dx$$

$$= \left(\frac{1}{E_{\rm res}}\right) \left(\frac{\Gamma \Gamma_{\rm c}}{\Gamma_{\rm f} + \Gamma_{\rm c}}\right) J(\xi,\beta) , \qquad (M7.A.161a)$$

where β is now defined as

$$\beta = \frac{\sigma_{o}^{i}}{\sigma_{A}^{i,o}} = \left(\frac{\sigma_{o} - \sigma_{p}^{i}}{\sigma_{t}^{i,o}}\right) \left(\frac{\Gamma}{\Gamma_{f} + \Gamma_{c}}\right) .$$
(M7.A.161b)

Without dwelling on the details, it should be pointed out for the sake of completeness that one can simultaneously account for resonance scattering and Doppler broadening with the tools already developed. Using the narrow resonance approximation for the flux, the resonance integral may then be written as

$$\int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{t}^{i}(E,T) + \sigma_{o}^{i}} \right) \left(\frac{1}{E} \right) dE$$

$$= \left(\frac{1}{E_{res}}\right) \left(\frac{\Gamma}{2}\right) \int_{-\infty}^{\infty} \frac{\sigma_c^{i,o} \psi(\xi,x)}{\sigma_t^{i,o} \psi(\xi,x) + \sigma_t^{i,o} d\chi(\xi,x) + (\sigma_p^i + \sigma_o^i)} dx$$

$$= \left(\frac{\Gamma_{c}}{E_{res}}\right) J(\xi,\beta,d) , \qquad (M7.A.162a)$$

where

$$\beta \equiv \left(\frac{\sigma_{o}}{\sigma_{t}^{i,o}}\right) = \left(\frac{\sigma_{p}^{i} + \sigma_{o}^{i}}{\sigma_{t}^{i,o}}\right) , \qquad (M7.A.162b)$$

NUREG/CR-0200, Vol. 3, Rev. 6

and the modified J-function, $J(\xi,\beta,d)$, is defined as

$$J(\xi,\beta,d) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\psi(\xi,x)}{\psi(\xi,x) + d\chi(\xi,x) + \beta} dx , \qquad (M7.A.163)$$

where

$$d = \left(\frac{1}{\lambda_{res}}\right) \sqrt{\frac{\sigma_p^i}{\pi}} . \qquad (M7.A.164)$$

In an early treatise on the subject, Dresner¹⁹ has shown that

$$J(\xi,\beta,d) \doteq J(\xi \rightarrow \infty,\beta,d) + J(\xi,\beta) - J(\xi \rightarrow \infty,\beta)$$

$$= j(\xi,\beta) + \left(\frac{\pi}{2}\right) \left[\left(\frac{1}{\beta^2 + \beta \left[1 - \left(\frac{g\Gamma_n}{\Gamma}\right) \left(\frac{\sigma^{i_p}}{\sigma_o}\right)\right]} \right)^{1/2} - \left(\frac{1}{\beta^2 + \beta}\right)^{1/2} \right] \text{ for } \beta << \xi^2/6, \quad (M7.A.165)$$

and

$$J(\xi,\beta,d) = J(\xi,\beta)$$
 for $\xi << 1$ and $\beta >> \xi^2/6$. (M7.A.166)

Other approximations for $J(\xi,\beta,d)$ have been developed by Rothenstein.²¹ The key facet to be noted, however, is that the effect of resonance scattering becomes less and less important at higher temperatures where the Doppler-broadening effect tends to dominate.

To assess the impact of Doppler broadening on the resonance self-shielded, group-averaged cross sections, it is necessary to examine the behavior of $J(\xi,\beta)$. In the infinitely dilute case where σ_0 is very large

[such that
$$\beta \equiv \left(\frac{\sigma_0}{\sigma_t^{i,0}}\right) >> \psi(\xi, x=0)$$
],
$$J(\xi,\beta) = \liminf_{\beta \to \infty} \int_0^\infty \frac{\psi(\xi, x)}{\psi(\xi, x) + \beta} dx = \frac{1}{\beta} \int_0^\infty \psi(\xi, x) dx$$

NUREG/CR-0200, Vol. 3, Rev. 6

$$= \frac{\xi}{2\beta\sqrt{\pi}} \int_{0}^{\infty} \left[\int_{-\infty}^{\infty} \frac{e^{-\left[\frac{\xi}{2}(x-y)\right]^{2}}}{1+y^{2}} dy \right] dx .$$
 (M7.A.167)

Interchanging the order of integration and defining

$$u = \frac{\xi}{2}(x-y)$$
, (M7.A.168)

1

.I.L.

we have

$$J(\xi, \beta \to \infty) = \frac{1}{2\beta} \int_{-\infty}^{\infty} \frac{1}{1+y^2} \left[\lim_{v \to \infty} \frac{2}{\sqrt{\pi}} \int_{0}^{v} e^{-u^2} du \right] dy$$

$$= \frac{1}{\beta} \int_{0}^{\infty} \frac{1}{1+y^2} \left[\lim_{v \to \infty} \operatorname{erf}(v) \right] dy = \frac{1}{\beta} \int_{0}^{\infty} \frac{1}{1+y^2} dy$$

$$= \left(\frac{1}{\beta}\right) \left(\frac{\pi}{2}\right) = \left(\frac{\sigma_{t}^{i,o}}{\sigma_{o}}\right) \left(\frac{\pi}{2}\right) . \tag{M7.A.169}$$

Note that $J(\xi,\beta\!\rightarrow\!\infty)$ is independent of $\xi,$ which was defined as

$$\xi = \left(\frac{\Gamma}{2}\right) \sqrt{\frac{A}{kTE_{res}}} . \tag{M7.A.170}$$

NUREG/CR-0200, Vol. 3, Rev. 6

Thus, in an infinitely dilute system, the resonance self-shielded, group-averaged cross sections given by Eq. (M7.A.159) will be independent of temperature. Indeed, if we substitute Eq. (M7.A.169) into Eq. (M7.A.159), we obtain

$$\sigma_{c}^{i,g} = \left(\frac{1}{\Delta u_{g}}\right) \left(\frac{\pi}{2}\right) \sum_{\substack{\text{res}\\j \in g}} \left(\frac{\Gamma_{c}}{E_{\text{res}}}\right) \sigma_{t}^{i,o} = \left(\frac{1}{\Delta u_{g}}\right) \left(\frac{\pi}{2}\right) \sum_{\substack{\text{res}\\j \in g}} \left(\frac{\Gamma}{E_{\text{res}}}\right) \sigma_{c}^{i,o} , \qquad (M7.A.171)$$

which is identical to the result obtained by Hansen and Roach [cf. Eq. (M7.A.124)] as $\sigma_0 \rightarrow \infty$. For all practical purposes, the numerical value thus obtained will be identical to the unshielded, infinitely dilute value given by

$$\sigma_{c}^{i,g}(\infty) \equiv \frac{1}{\ell n(E^{g-1}/E^g)} \int_{E^g}^{E^{g-1}} \sigma_{c}^{i}(E) \frac{dE}{E} = \left(\frac{1}{\Delta u_g}\right) \left\langle \sigma_{c}^{i}(u) \right\rangle . \quad (M7.A.172)$$

Note that this temperature independence will be characteristic of the fission cross section as well as the radiative capture cross section.

In more concentrated mixtures of practical interest, the resonance self-shielded, group-averaged cross sections will be slightly higher at elevated temperatures than at lower temperatures. Note that this is true for the group-averaged values of $\sigma_f^{i,g}(T)$, $\sigma_c^{i,g}(T)$, and $\sigma_t^{i,g}(T)$, despite the fact that $\sigma_f^{i}(E_{res},T)$, $\sigma_c^{i}(E_{res},T)$, and $\sigma_t^{i,g}(T)$, will be considerably lower (cf. Fig. M7.A.9). Even though the point may be proven mathematically, it is probably more instructive to resort to a simplified model of an isolated resonance as a function of temperature (cf. Fig. M7.A.11). As shown in Fig. M7.A.11a, the profile of the "effective" energy-dependent cross section [$\sigma(E,T)$] is substantially flatter at elevated temperatures (i.e., the resonance becomes much wider and the peak value at $E = E_{res}$ is substantially reduced). In the simplified model (cf. Fig. M7.A.11b), we shall approximate $\sigma(E,T)$ by a series of rectangular profiles, each becoming shorter and wider as the temperature increases. While the shape of the rectangular profile tends to flatten out at higher temperatures, the area under each profile remains constant and is independent of temperature. That is,

$$\left[E_{\max}^{res(j)} - E_{\min}^{res(j)}\right]\sigma_{c}^{\Box}(T) = \int_{E_{\min}^{res(j)}}^{E_{\max}^{res(j)}} \sigma_{c}(E,T)dE = \int_{-\infty}^{\infty} \left[\sigma_{c}^{i,o}\psi(\xi,x)\right]dx = \pi\sigma_{c}^{i,o}.$$
(M7.A.173)

Figure M7.A.11a Actual profiles of the Doppler-broadened ²³⁸U capture cross section near the 6.67-eV resonance

Figure M7.A.11b Idealized rectangular profiles for the Doppler-broadened ^{238}U capture cross section near the 6.67-eV resonance

NUREG/CR-0200, Vol. 3, Rev. 6

Since this characteristic is crucial to the arguments that follow, it may be worthwhile to prove the point. Using Eqs. (M7.A.148) and (M7.A.149),

$$\int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \sigma_{c}(E,T) dE = \int_{-\infty}^{\infty} \left[\sigma_{c}^{i,o} \psi(\xi,x) \right] dx$$

$$= \sigma_{c}^{i,o} \frac{\xi}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \frac{e^{-[\xi^{2}(x-y)^{2}/4]}}{1+y^{2}} dy \right] dx \quad .$$
 (M7.A.174)

Interchanging the order of integration and defining

$$u = \frac{\xi}{2}(x-y)$$
, (M7.A.175)

we have

$$\begin{cases} E_{\max}^{\operatorname{res}(j)} \sigma_{c}(E,T) dE = \sigma_{c}^{i,o} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} \left[\liminf_{V \to \infty} \frac{2}{\sqrt{\pi}} \int_{0}^{V} e^{-u^{2}} du \right] dy \\ = \sigma_{c}^{i,o} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} \left[\liminf_{V \to \infty} \operatorname{erf}(v) \right] dy \\ = \sigma_{c}^{i,o} \int_{-\infty}^{\infty} \frac{1}{1+y^{2}} [1] dy = \pi \sigma_{c}^{i,o} . \end{cases}$$
(M7.A.176)

Using the narrow resonance approximation for the flux and the rectangular cross-section profiles shown in Fig. M7.A.10b, the resonance integral may then be written as

$$\int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{t}^{i}(E,T) + \sigma_{o}} \right) \left(\frac{1}{E} \right) dE = \frac{1}{E_{\operatorname{res}}} \int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \frac{\sigma_{c}^{\Box}(T)}{\sigma_{t}^{\Box}(T) + \sigma_{o}} dE$$

NUREG/CR-0200, Vol. 3, Rev. 6

$$\begin{bmatrix}
E_{\text{max}}^{\text{res}(j)} \\
E_{\text{min}}^{\text{res}(j)} \\
E_{\text{min}}^{\text{res}(j)} \\
\begin{bmatrix}
\sigma_{\text{c}}^{\text{i}}(E,T) + \sigma_{\text{o}} \\
\end{bmatrix} \begin{pmatrix}
\frac{1}{E}
\end{pmatrix} dE = \frac{1}{E_{\text{res}}} \int_{\text{res}}^{\text{res}(j)} \frac{\sigma_{\text{c}}^{\Box}(T)}{\sigma_{\text{t}}^{\Box}(T) + \sigma_{\text{o}}} dE \\
= \left(\frac{1}{E_{\text{res}}}\right) \frac{\sigma_{\text{c}}^{\Box}(T) \left[E_{\text{max}}^{\text{res}(j)} - E_{\text{min}}^{\text{res}(j)}\right]}{\sigma_{\text{t}}^{\Box}(T) + \sigma_{\text{o}}} = \frac{1}{E_{\text{res}}} \frac{\pi \sigma_{\text{c}}^{\text{i},0}}{\sigma_{\text{t}}^{\Box}(T) + \sigma_{\text{o}}}. \quad (M7.A.177)$$

Since $\sigma_t^{\Box}(T)$ gets smaller and smaller at higher temperatures, the resonance integral tends to increase as the temperature increases. Since the resonance self-shielded, group-averaged value of $\sigma_c^{i,g}(T)$ is defined as

$$\sigma_{c}^{i,g}(T) = \frac{\sigma_{o}}{\Delta u_{g}} \sum_{\substack{\text{res} \\ j \in g}} \int_{E_{\min}^{\operatorname{res}(j)}}^{E_{\max}^{\operatorname{res}(j)}} \left(\frac{\sigma_{c}^{i}(E,T)}{\sigma_{t}^{i}(E,T) + \sigma_{o}} \right) \left(\frac{1}{E} \right) dE , \qquad (M7.A.178)$$

the resonance self-shielded, group-averaged value of $\sigma_c^{i,g}(T)$ tends to increase as the temperature increases. Likewise, the same is also true for $\sigma_f^{i,g}(T)$, $\sigma_t^{i,g}(T)$, etc. The reactivity of a fissile mixture may, of course, increase, decrease, or remain constant, depending on the relative change in the capture-to-fission ratio. In low-enriched thermal systems where there is a preponderance of fertile nuclides relative to fissile nuclides, the reactivity typically goes down as the temperature increases.

Having examined the effect of Doppler broadening mathematically, and having used some simplifying assumptions to gain a qualitative feel for the processes involved, it is (at last) necessary to consider some numerical results so that the magnitude of these effects may be kept in proper perspective. As noted above, the resonance self-shielded, group-averaged cross sections for capture, fission, etc., tend to increase as the temperature increases. In his book on resonance absorption¹⁹ (cf. Tables 4-8, page 106), Dresner indicates that the total capture integral for UO₂ at 300 K may be 10–15% higher than at 0 K when σ_0 is \leq 200 barns. At temperatures found near the center of a fuel pellet in an operating reactor, the difference may be larger still. In his original book on the subject, Bondarenko¹⁷ lists his 26-group self-shielding factors for capture, fission, etc., as a function of both temperature (T) and the background cross section (σ_0) given in Table M7.A.3a. Tables M7A.3b and M7.A.3c show the corresponding f-factors for ²³⁵U and ²³⁸U at 300 K, 900 K, and 2100 K. In many of the groups the self-shielding factors at 900 K are 5-10% higher than at 300 K, and another 5-10% higher at 2100 K than at 900 K. This is particularly noticeable for the ²³⁸U data in groups 12–18 when σ_0 is < 1000 barns. Obviously in the infinitely dilute case, the f-factors will be independent of temperature. In the more concentrated systems where σ_0 is small, the Doppler effect will be more noticeable. Lastly, we note that while the Doppler effect is very important (increasing $\sigma_c^{Lg}(T)$, $\sigma_f^{Lg}(T)$, etc., by several percent), it may still be regarded as a second-order effect when compared with the rather large adjustment that must be made for σ.

				U	anium	(U-235)				τ	Jraniun	n (U-238)		
Group	E _n	D.	ß	R	ರ	ې م	9	Ş	ρ	P	c	<u></u>	9	<u></u>
1	6.5-10.5 MeV	0.48	6.30	1.75	3.40	0.02	1.03	3.50	6.30	1.00	3.48	0.00	1.80	3.50
2	4.0-6.5 MeV	0.48	7.40	1.15	3.04	0.03	1.92	4.30	7.50	0.58	3.09	0.01	2.51	4.40
3	2.5-4.0 MeV	0.48	7.70	1.25	2.79	0.04	1.91	4.50	7.70	0.58	2.87	0.02	2.60	4.50
4	1.4-2.5 MeV	0.57	7.00	1.28	2.63	0.06	1.76	3.90	7.10	0.49	2.67	0.06	2.25	4.30
5	0.8-1.4 MeV	0.57	6.60	1.25	2.52	0.12	1.38	3.85	6.90	0.02	2.58	0.13	2.15	4.60
6	0.4-0.8 MeV	0.69	7.40	1.23	2.46	0.17	1.20	4.80	7.80	-	-	0.13	1.65	6.02
7	0.2-0.4 MeV	0.69	9.20	1.41	2.47	0.25	1.00	6.54	9.60	-	-	0.15	1.05	8.40
8 -	0.1-0.2 MeV	0.69	11.2	1.70	2.45	0.40	0.60	8.50	11.5	-	-	0.22	0.55	10.7
9	46.5-100 keV	0.77	12.5	2.10	2.44	0.60	0.18	9.62	12.8	-	-	0.35	0.19	12.3
10	21.5-46.5 keV	0.77	14.0	2.65	2.43	1.00	0.06	10.3	13.5	-	-	0.46	-	13.0
11	10.0-21.5 keV	0.77	16.0	3.40	2.42	1.50	-	11.1	14.0	-	-	0.60	-	13.4
12	4.65-10.0 keV	0.77	19.0	4.40	2.42	2.10	-	12.5	15.5	-	-	0.78	-	14.7
13	2.15-4.65 keV	0.77	23.0	5.40	2.42	2.75	-	14.8	16.5	-	-	1.20	-	15.3
14	1.0-2.15 keV	0.77	27.0	7.30	2.42	3.80	-	15.9	18.0	-	-	2.10	-	15.9
15	465-1000 eV	0.77	32.0	11.0	2.42	6.3	-	14.7	23.0	-	-	3.60	-	19.4
16	215-465 eV	0.77	38.0	16.0	2.42	9.5	-	12.5	18.5	-	-	4.50	-	14.0
17	100-215 eV	0.77	47.7	22	2.42	13.5	-	12.2	80.0	-	-	17.0	-	63.0
18	46.5-100 eV	0.77	69.0	35	2.42	22	-	12	40.0	-	-	15.0	-	25.0
19	21.5-46.5 eV	0.77	88.0	45	2.42	31	-	12	140	-	-	58.0	-	82.0
20	10.0-21.5 eV	0.77	111	45	2.42	54	-	12	120	-	-	82.0	-	38.0
21	4.65-10.0 eV	0.77	93.0	37	2.42	44	-	12	190	-	-	171	-	19.0
22	2.15-4.65 eV	0.77	39.0	20	2.42	7 ·	-	12	9.54	-		0.54	-	9.00
23	1.0-2.15 eV	0.77	61.0	35	2.42	13	-	13	9.47	-	-	0.47	-	9.00
24	0.465-1.0 eV	0.77	88.0	64	2.42	10	-	14	9.58	-	-	0.58	-	9.00
25	0.215-0.465 eV	0.77	205	155	2.42	35	-	15	9.90	-	-	0.90	-	9.00
Т	0.0252 eV	-	698	582	2.42	101	-	15	11.7	-	-	2.71	-	9.00

Table M7.A.3a Energy group structure used by Bondarenko, and some infinitely dilute data for ²³⁵U and ²³⁸U

.

NUREG/CR-0200, Vol. 3, Rev. 6

M7.A.62

•	Table M7.A.3b Bondarenko self-shielding factors for ²³⁵ U														
			f _f a	it σ _o equa	ıl to		f_c at σ_o equal to			$f_t at \sigma_o$	equal to		f_e at σ_o e	equal to	
Group	ТК	10 ³	10 ²	10	0	10 ³	10²	10	0	10 ²	10	0	10 ²	10	0
11	300	1.00	1.00	0.98	0.97	1.00	1.00	0.98	0.97	1.00	0.99	0.98	1.00	1.00	1.00
	900	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00
	2100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
12	300	1.00	0.99	0.96	0.94	1.00	0.99	0.96	0.94	1.00	0.98	0.96	1.00	1.00	0.99
	900	1.00	1.00	0.98	0.97	1.00	1.00	0.98	0.97	1.00	0.99	0.98	1.00	1.00	1.00
	2100	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99	1.00	1.00	0.99	1.00	1.00	1.00
13	300	1.00	0.99	0.93	0.89	1.00	0.99	0.93	0.89	0.99	0.96	0.93	1.00	0.99	0.98
	900	1.00	1.00	0.97	0.94	1.00	1.00	0.97	0.94	1.00	0.99	0.97	1.00	1.00	0.99
	2100	1.00	1.00	0.99	0.98	1.00	1.00	0.99	0.98	1.00	1.00	0.99	1.00	1.00	1.00
14	300	1.00	0.97	0.88	0.82	1.00	0.97	0.88	0.82	0.96	0.92	0.88	1.00	0.98	0.96
	900	1.00	0.99	0.95	0.91	1.00	0.99	0.95	0.91	0.99	0.97	0.94	1.00	0.99	0.97
	2100	1.00	1.00	0.98	0.97	1.00	1.00	0.98	0.97	1.00	0.99	0.97	1.00	1.00	0.98
15	300	1.00	0.94	0.82	0.75	1.00	0.94	0.81	0.74	0.93	0.88	0.82	0.99	0.97	0.95
	900	1.00	0.97	0.92	0.86	1.00	0.97	0.92	0.85	0.97	0.95	0.93	1.00	0.99	0.97
	2100	1.00	0.99	0.97	0.93	1.00	0.99	0.97	0.93	0.99	0.98	0.97	1.00	1.00	0.99
16	300	0.99	0.90	0.75	0.67	0.99	0.89	0.74	0.65	0.85	0.78	0.73	1.00	1.00	1.00
	900	1.00	0.95	0.87	0.81	1.00	0.95	0.86	0.80	0.94	0.89	0.86	1.00	1.00	1.00
	2100	1.00	0.98	0.93	0.89	1.00	0.98	0.93	0.88	0.98	0.95	0.93	1.00	1.00	1.00
17	300	0.97	0.83	0.67	0.60	0.97	0.81	0.64	0.56	0.80	0.70	0.62	1.00	1.00	1.00
	900	0.99	0.90	0.81	0.75	0.99	0.89	0.79	0.72	0.87	0.83	0.77	1.00	1.00	1.00
	2100	1.00	0.97	0.93	0.88	1.00	0.97	0.92	0.86	0.94	0.91	0.90	1.00	1.00	1.00
18	300	0.95	0.77	0.61	0.55	0.94	0.74	0.56	0.48	0.70	0.56	0.50	1.00	1.00	1.00
	900	0.97	0.82	0.71	0.64	0.96	0.80	0.68	0.59	0.75	0.64	0.58	1.00	1.00	1.00
	2100	0.99	0.87	0.80	0.73	0.98	0.86	0.78	0.70	0.80	0.72	0.66	1.00	1.00	1.00
19	300	0.91	0.70	0.56	0.52	0.90	0.65	0.48	0.43	0.57	0.42	0.39	1.00	1.00	1.00
	900	0.93	0.73	0.60	0.56	0.92	0.67	0.52	0.47	0.59	0.45	0.42	1.00	1.00	1.00
	2100	0.95	0.76	0.64	0.60	0.94	0.70	0.56	0.51	0.61	0.48	0.45	1.00	1.00	1.00
20	300	0.88	0.64	0.52	0.49	0.86	0.58	0.42	0.38	0.46	0.36	0.32	1.00	1.00	1.00
	900	0.90	0.66	0.53	0.50	0.88	0.60	0.43	0.39	0.47	0.37	0.33	1.00	1.00	1.00
	2100	0.91	0.67	0.53	0.51	0.90	0.62	0.44	0.40	0.48	0.38	0.34	1.00	1.00	1.00
21	300	0.86	0.62	0.50	0.47	0.83	0.55	0.40	0.35	0.42	0.31	0.29	1.00	1.00	1.00
	900	0.87	0.63	0.50	0.47	0.84	0.56	0.41	0.36	0.43	0.32	0.29	1.00	1.00	1.00
	2100	0.88	0.64	0.51	0.48	0.85	0.57	0.42	0.37	0.44	0.32	0.30	1.00	1.00	1.00
22	300	1.00	0.90	0.79	0.74	0.97	0.81	0.62	0.56	0.82	0.68	0.64	1.00	1.00	1.00
	900	1.00	0.90	0.79	0.74	0.97	0.81	0.62	0.56	0.82	0.68	0.64	1.00	1.00	1.00
	2100	1.00	0.90	0.79	0.74	0.97	0.81	0.62	0.56	0.82	0.68	0.64	1.00	1.00	1.00
23	300	1.00	0.87	0.74	0.70	1.00	0.86	0.69	0.64	0.80	0.65	0.63	1.00	1.00	1.00
	900	1.00	0.87	0.74	0.70	1.00	0.87	0.74	0.70	0.80	0.65	0.63	1.00	1.00	1.00
	2100	1.00	0.87	0.74	0.70	1.00	0.87	0.74	0.70	0.80	0.65	0.63	1.00	1.00	1.00

,

•

				f _c a	t σ_o equal	to		f_t at σ_o equal to			to	f_e at σ_o equal to			
Grou	IP TK	∞	104	10 ³	10 ²	10	0	10 ³	10 ²	10	0	10 ³	10 ²	10	0
	300	1.00	1.00	1.00	0.99	0.98	0.93	1.00	1.00	0.98	0.97	1.00	1.00	0.99	0.98
	900	1.00	1.00	1.00	0.99	0.98	0.96	1.00	1.00	1.00	0.98	1.00	1.00	0.99	0.98
	2100	1.00	1.00	1.00	1.00	1.00	0.99	1.00	1.00	1.00	0.99	1.00	1.00	1.00	1.00
11	300	1.00	1.00	1.00	0.98	0.89	0.80	1.00	0.99	0.96	0.92	1.00	1.00	0.97	0.93
	900	1.00	1.00	1.00	0.99	0.95	0.90	1.00	1.00	0.98	0.93	1.00	1.00	0.97	0.95
	2100	1.00	1.00	1.00	1.00	0.99	0.97	1.00	1.00	0.99	0.94	1.00	1.00	0.99	0.98
12	300	1.00	1.00	0.99	0.92	0.75	0.63	0.99	0.98	0.87	0.73	0.99	0.98	0.91	0.85
	900	1.00	1.00	0.99	0.95	0.86	0.77	1.00	0.99	0.89	0.73	1.00	0.98	0.93	0.87
	2100	1.00	1.00	1.00	0.98	0.93	0.87	1.00	1.00	0.93	0.73	1.00	1.00	0.95	0.88
13	300	1.00	1.00	0.96	0.82	0.56	0.46	0.95	0.88	0.75	0.60	0.98	0.94	0.84	0.70
	900	1.00	1.00	0.98	0.89	0.66	0.55	0.96	0.90	0.78	0.61	0.99	0.95	0.87	0.73
	2100	1.00	1.00	1.00	0.95	0.79	0.67	0.97	0.94	0.82	0.62	1.00	0.99	0.92	0.76
14	300	1.00	0.99	0.89	0.63	0.34	0.29	0.91	0.74	0.64	0.50	0.95	0.84	0.74	0.60
	900	1.00	1.00	0.93	0.74	0.43	0.36	0.92	0.78	0.65	0.51	0.97	0.86	0.77	0.63
	2100	1.00	0.99	0.97	0.82	0.51	0.42	0.93	0.82	0.68	0.53	0.99	0.91	0.82	0.66
15	300	0.99	0.97	0.81	0.42	0.23	0.17	0.84	0.60	0.53	0.43	0.86	0.66	0.56	0.48
	900	1.00	0.98	0.87	0.52	0.29	0.21	0.85	0.64	0.54	0.43	0.90	0.70	0.58	0.49
	2100	1.00	1.00	0.93	0.60	0.34	0.26	0.87	0.68	0.55	0.44	0.90	0.70	0.60	0.50
16	300	0.97	0.94	0.65	0.27	0.136	0.106	0.87	0.60	0.50	0.46	0.84	0.73	0.68	0.63
	900	0.99	0.95	0.74	0.35	0.18	0.132	0.92	0.63	0.51	0.46	0.88	0.75	0.70	0.64
	2100	1.00	0.97	0.83	0.45	0.23	0.17	0.95	0.66	0.52	0.46	0.92	0.78	0.72	0.65
17	300	0.95	0.83	0.35	0.13	0.063	0.049	0.38	0.17	0.14	0.070	0.37	0.23	0.19	0.12
	900	0.97	0.86	0.38	0.15	0.071	0.053	0.45	0.17	0.15	0.070	0.38	0.24	0.20	0.12
	2100	0.99	0.89	0.44	0.17	0.081	0.063	0.51	0.18	0.16	0.070	0.40	0.25	0.21	0.12
18	300	0.91	0.81	0.30	0.108	0.052	0.042	0.39	0.29	0.25	0.22	0.54	0.45	0.42	0.38
	900	0.93	0.87	0.33	0.12	0.055	0.044	0.44	0.30	0.25	0.22	0.54	0.45	0.42	0.38
	2100	0.95	0.94	0.37	0.13	0.061	0.049	0.48	0.30	0.26	0.22	0.54	0.45	0.42	0.38
19	300	0.88	0.60	0.19	0.058	0.029	0.023	0.15	0.096	0.078	0.047	0.29	0.17	0.14	0.10
	900	0.90	0.67	0.23	0.060	0.029	0.023	0.16	0.096	0.078	0.047	0.33	0.18	0.14	0.10
	2100	0.91	0.75	0.28	0.070	0.029	0.023	0.17	0.096	0.078	0.047	0.37	0.19	0.15	0.10
NUR 20	300	0.86	0.66	0.23	0.065	0.030	0.023	0.17	0.11	0.087	0.075	0.43	0.31	0.28	0.24
	900	0.87	0.73	0.28	0.073	0.030	0.023	0.20	0.11	0.087	0.075	0.47	0.31	0.28	0.24
	2100	0.88	0.82	0.36	0.080	0.030	0.023	0.23	0.11	0.087	0.075	0.51	0.32	0.28	0.24
21 EG/CR-02	300 900 2100	1.00 1.00 1.00	0.71 0.78 0.86	0.27 0.33 0.40	0.084 0.089 0.105	0.041 0.041 0.041	0.034 0.034 0.034	0.16 0.18 0.21	0.093 0.094 0.095	0.072 0.072 0.072	0.059 0.059 0.059	0.64 0.66 0.69	0.54 0.55 0.56	0.52 0.52 0.52	0.49 0.49 0.49
<u>, 00</u>															

,

Table M7.A.3c Bondarenko self-shielding factors for ²³⁸U

.

M7.A.63

.

Vol. 3, Rev. 6

M7.A.13 THE KNIGHT-MODIFIED HANSEN-ROACH CROSS-SECTION LIBRARY

M7.A.13.1 Modifications Made by J. R. Knight to the ²³⁸U Capture Cross Section for Concentrated Systems ($\sigma_0 < 400$ barns)

The original Hansen-Roach library was one of the first multigroup libraries used in the United States for criticality analyses. It was deemed quite useful insofar as it did account for the gross spectral effects of resonance self-shielding (cf. Sect. M7.A.10). Unfortunately, many of the resonance parameters available at that time had not yet been fully refined and, indeed, the methodology used by Hansen and Roach did not account for Doppler broadening, interference effects in resonance scattering, or resonance overlap. When used to analyze well-thermalized critical experiments at room temperature, it was not uncommon to calculate k-effective's between 0.8 and 0.9. Raffety and Mihalczo²² report one case involving a 2% enriched mixture of UF₄ in paraffin (H/²³⁵U = 195; $\sigma^{28} \approx 120$) where the measured value of k_a was 1.195 ± 0.015, but the calculated value using the original Hansen-Roach data was 1.114. Characteristically, the original Hansen-Roach data have been found to overestimate the resonance capture in ²³⁸U.* Obviously, in fast systems where the resonance escape probability is less important and the amount of ²³⁸U is somewhat reduced, this difficulty is not so apparent.

To develop a set of data that could be used with good results in the analysis of thermal systems, J. R. Knight and G. E. Whitesides modified the resonance-self-shielded, group-averaged cross sections given by Hansen and Roach as a function of σ_o (cf. Fig. M7.A.9). Given that uncertainties in the resonance parameters or improvements in the calculation of the resonance integrals would affect both the fission and capture cross sections in the same way, and the fact that the resulting changes in the calculated reactivity would tend to cancel, they decided not to modify the reported data for any of the fissile isotopes. This decision was also justified on the grounds that the Hansen-Roach data were known to give fairly good results whenever the background cross σ_o^{I} was greater than several hundred barns. Obviously in a low-enriched system where $N^{25}/N^{U} < 3\%$, the background cross section for the ²³⁵U self-shielding calculation is quite large. That is,

$$\sigma_{o}^{25} = \frac{1}{N^{25}} \left(N^{25} \sigma_{p}^{25} + N^{28} \sigma_{p}^{28} + ... \right) = (12) \left[1 + \left(\frac{N^{28}}{N^{25}} \right) + ... \right].$$
(M7.A.179)

In a 3% enriched system σ_0^{25} will be ≥ 400 barns, and the need for better self-shielding factors for $\sigma_0^{25} \leq 400$ barns was viewed as academic. Consequently, they focused their attention solely on the resonance-self-shielded capture data for ²³⁸U ($\sigma_c^{23,g}$, g = 8,9,10,11,12). Noting the good agreement between the Hansen-Roach data for ²³⁸U (at 0 K) and Dresner's data for ²³⁸U (at 300 K) whenever σ_0^{26} was ≥ 200 barns, and noting that calculated values of k_w using the Hansen-Roach data were in good agreement with a number of critical experiments whenever σ_0^{28} was ≥ 400 barns, they then decided to modify the capture data only for those cases where the background cross section (σ_0^{20}) was less than 400 barns.

To modify the Hansen-Roach data in a systematic way, Knight et al. relied on a series of experiments^{23,24} in which k-infinity (k_{w}) was measured for several different fissile mixtures as a function of the H/U ratio. The first set of experimental measurements involved relatively dry mixtures of UO₃ and water having H/U ratios between 3.7 and 7.5. The second set of measurements involved homogeneous mixtures of UO₃ and paraffin having H/U ratios between 3.6 and 30.2. The final set of measurements involved

^{*}Interestingly, if one modifies the original Hansen-Roach data to account for Doppler broadening and/or resonance scattering, the capture cross sections for ²³⁸U would tend to increase, thus making the calculated values for k_{∞} even worse. The difficulty, therefore, was assumed to lie in the resonance parameters that were used at the time the original library was compiled.

homogeneous mixtures of UO₂(NO₃)₂ and paraffin having H/U ratios between 6.1 and 31.0. In the first set of experiments, the uranium was enriched to ~1 wt % ²³⁵U, while in the other two it was enriched to ~3 wt % ²³⁵U. Table M7.A.4 shows the explicit H/U ratios that were present in each mixture and the corresponding value of the background cross section (σ_0^{28}) that should be used to determine the resonance-self-shielded, group-averaged cross sections for the ²³⁸U in each case. Attention was eventually focused on just a handful of these experiments ($\sigma_0^{28} = 109b$, 157b, 182b, 216b, 267b, 321b, and 366b). In each case, the Hansen-Roach capture data for ²³⁸U was numerically scaled up or down until the calculated value of k_w agreed with the measured value of k_w. To be more precise, these adjusted data (commonly referred to as the Knight-Modified Hansen-Roach data) were defined by multiplying the original Hansen-Roach data by a fudge factor [x(σ_0)] which was assumed to be the same for each energy group:

$$\sigma_{\rm KM}^{28,g}(\sigma_{\rm o}) = x(\sigma_{\rm o}) \sigma_{\rm HR}^{28,g}(\sigma_{\rm o}) \quad g = 8,9,10,11,12$$
 (M7.A.180)

The corresponding fudge factors $[x(\sigma_o), \sigma_o = 109b, 157b, 182b, 216b, 267b, 321b, and 366b]$ were then determined by trial and error for each of the seven different experiments, and plotted as a function of σ_o . Interestingly, simple extrapolation of $x(\sigma_o)$ to $\sigma_o = 45b$ yielded a fudge factor very close to that required (0.77) to bring the original Hansen-Roach data into agreement with that obtained using the Doppler-broadened resonance integrals computed by Dresner. That value (0.77 at $\sigma_o = 45b$) was therefore taken as an additional anchor point. For values of $\sigma_o \ge 400b$, $x(\sigma_o)$ was assumed to be 1.0.

Knowing $x(\sigma_0)$ as a function of σ_0 , Knight et al. then made plots of the resonance self-shielded, group-averaged capture cross sections for ²³⁸U, similar to those shown in Fig. M7.A.9 [$\sigma_{c,KM}^{28,g}(\sigma_{o})$, g = 8,9,10,11,12]. Based on that, they later prepared multigroup cross-section sets for many different values of $\sigma_0(\sigma_0 = 12; 15, 20, 25, ..., 100; 110, 120, 130, 140; 160, 180, ..., 300; 330, 360, etc)$. This Knight-Modified Hansen-Roach data were then released as part of the standard 16-group cross-section library packaged with the KENO IV Monte Carlo code¹⁶ for criticality analysis. Owing to the wide popularity of the code itself, the availability of the cross-section data and instructions for its use, and the good agreement that people subsequently obtained with still other experiments,²² the Knight-Modified Hansen-Roach data became even more popular and were subsequently adopted for use as one of the libraries in the SCALE system for Standardized Computer Analyses for Licensing Evaluation. At the time that it was adopted for use in the SCALE system, the infinitely dilute cross sections in each energy group were used to reduce the various background-dependent libraries to Bondarenko factors so that the appropriate resonance-self-shielded, group-averaged cross sections for a given mixture could be obtained automatically by application of the Iterative Bondarenko Method as embodied in the BONAMI code (cf. Sect. M7.A.8). Since that time, results using this library have been benchmarked against dozens of critical experiments, with excellent agreement in each case.25

M7.A.13.2 Brief Description of the Experiments Upon Which the Knight Modifications Were Based

The original experiments upon which the Knight modifications were based are well documented in refs. 23 and 24. All three sets of experiments described in the two reports were performed at the Physical Constants Testing Reactor in Hanford, Washington. Because the experimental results were reported in terms of k_{∞} (rather than k_{eff} for a finite system), the corresponding 0-dimensional spectral calculations performed by Knight were straightforward and free of geometric approximation. To achieve such a measurement, a relatively large sample of the given material was placed in the central cavity of the test reactor. The PCTR was a graphite-moderated assembly driven by highly enriched fuel. It measured 7 ft × 7 ft × 7 ft and had a central

UO ₃ /H ₂ O	UO ₃ /C ₂ H ₂	UO ₂ (NO ₃) ₂ /C ₂ H ₂
109 (3.73) ^a	110 (3.58)	
139 (5.00)		
157 (5.78) ^a		
166 (6.16)	165 (5.86)	
	177 (6.38)	
182 (6.88) ^a		
196 (7.50)		
	·	210 (6.10)
***	216 (8.01) ^a	
	230 (8.60)	
	267 (10.12) ^a	
		275 (8.81)
	321 (12.36) ^a	
		366 (13.02) ^a
	749 (30.20)	
	`´´	808 (31.00)

Table M7.A.4Values of the background cross section (σ_0^{28}) for several different experiments in which k_w of the homogeneous mixture was measured as a function of the H/U ratio (shown here in parentheses)

^a Used in generating the Knight-Modified Hansen Roach data.

cavity measuring 2 ft \times 2 ft \times 3 ft. Near the center of the reactor the flux was spatially flat, as it would be in an infinite sample of the test material. The sample section(s) consisted of a central test sample surrounded by a relatively thick "buffer" region which was a layer of material identical to that used in the central test sample. The purpose of the buffer region was to provide a medium in which the neutron spectrum could come into equilibrium with the central test sample. By making the buffer region thick enough, the resulting spectrum in the central test sample would be essentially identical to that which would exist in an infinite system. Measurements of the (infinite) multiplication factor for the central test sample were then made by comparing the behavior of the reactor with the central test sample in place and with a void in the same region. [Since a neutron entering the central void must simply pass through it and come out again, the multiplication factor of the void (k_w) is exactly 1.0.] The actual measurements were then made in the following fashion:

1. Adjust the reactor so that it is critical with the buffer and central test sample removed.

NUREG/CR-0200, Vol. 3, Rev. 6

- 2. For a given test sample with a known H/U ratio, calculate the amount of poison that is required to yield $k_{\infty}^{P} = 1.0$ [where k_{∞}^{P} denotes the infinite multiplication factor for the poisoned system (central test sample and buffer)]. Note that a nonfissile 1/v thermal absorber was used for this purpose.
- 3. Insert the buffer only, and make minor adjustments in the reactor so that it is again critical with only the buffer in place.
- 4. Insert control rods to shut down the reactor, and insert the central test sample.
- 5. Make the reactor slightly supercritical to build up the observable flux, then slowly return the control rods to position (3) and measure the resulting period.
- 6. If the resulting period is not infinite (i.e., if the reactor is not critical), remove the buffer region and the central test sample, and adjust the amount of poison in both (up or down) as required.
- 7. Repeat steps 3, 4, 5, and 6 until the multiplication factor for the poisoned test sample (k_{∞}^{P}) is 1.0.
- 8. Knowing the amount of poison required to make $k_{\infty}^{P} = 1.0$, calculate k_{∞} for the unpoisoned sample and report these values.

Because of the difficulty associated with making ultra-fine adjustments in the poison content of the test material, the amount of poison required to make k_{∞}^{P} exactly 1.0 (cf. steps 7 and 8) was ultimately interpolated using results for poisoned test samples having very long positive and negative periods. Details of the calculations required in step 8 are well documented in refs. 23 and 24.

Throughout the experiments, bare and cadmium-covered gold foils were placed at various positions in the buffer and the central test sample so as to verify that (a) the flux was spatially flat across the entire region and that (b) the flux spectrum had indeed reached the equilibrium state (corresponding to an infinite system) in the vicinity of the central test sample.

Because these experiments were performed at room temperature (293°K), and because the Knight-Modified data for ²³⁸U was based on these experiments, the 16-group Knight-Modified Hansen-Roach library now found in the SCALE system should (and does) give good results for other critical experiments at room temperatures despite the fact that much of the data for the other resonance nuclides is the original (unbroadened) Hansen-Roach data at 0 K.

M7.B ALPHABETICAL SUBROUTINE INDEX AND CROSS REFERENCE

This section provides a convenient alphabetical index of the subroutines and functions and common blocks used in the Material Information Processor.

Table M7.B.1 provides an alphabetical listing of the subroutines and functions that comprise the Material Information Processor. The first column lists the subroutine name, the second column lists the subroutine that calls it, and the third column contains a list of the subroutines it calls.

Table M7.B.2 provides an alphabetical index of the common blocks used in the Material Information Processor.

Subroutine Name	Calling Subroutine	Called Subroutine
adan	dan	gauss gdan
agauss	dan sphdan	
archk	dan	
array3	mixtab	crite inquir rite
avg1	clapse	
avg2	twodxs	mgcwrd
avgb	bond	
avgy	twodys	mgcwrd stop
axsdrn	c4data	
ball	dandad	(sqrt) sphdan
binfil	ice xsdrn	

Table M7.B.1 Alphabetical index of Material Information Processor routines

Subroutine	Calling	Called
	Subroutine	Subroutine
binrcf	bonami ice nitawl xsdrn	
binrcx	bonami ice nitawl xsdrn	
bonami	c4data	binrcf binrcx inquir lchkmx rite
bond	clapse	avgb fold io unfold
bonda	resda	(sqrt)
c4data		axsdrn bonami calcms cellmx clapse clear epsig ice knight lrderr mipchk nitawl prelps rmunit shortx smmtba stop verify xsdrn xsmesh

Table M7.B.1 (continued)

......

NUREG/CR-0200, Vol. 3, Rev. 6

M7.B.2
Subroutine	Calling	Called
Name	Subroutine	Subroutine
calcms	c4data	lchkmx
cellmx	c4data	lchkmx
cinit	setupb	clear inquir openda rite
clapse	c4data	avg1 bond clear copy dean io io4 stop twodxs twodys
csparm	setupa	aread lcompr smmtba
dan	dandad	adan agauss archk
dancof	resđa	dandad e3 shelc stop
dandad	dancof	ball dan sdan
dean	clapse	kaul
epsig	c4data	
fax	stdcmp	fread iread

Subroutine	Calling	Called
Name	Subroutine	Subroutine
faxprt	stācmp	
finner	outer	
fix	stdcmp	
fold	bond	
fox	scdata	
gauss	adan outer	
gdan	adan	ki3
gflux	prelps	
hoggie	twodys	stop
ice	c4data	binfil binrcf binrcx inquir rite volfrc
idents	mtable	iscan nofrac
iscan	idents modify nitawl reordr resda scdata slns	
kaul	dean	
knight	c4data	closda mesage openda reed setupa stop

NUREG/CR-0200, Vol. 3, Rev. 6

Name	Calling	Called
	SUNCOUCTUR	SUITORTHE
latcel	setupb	aread
	-	fread
		iread
		lcompr
		mixerr
		scanof
		scanon
lchkmx	bonami	
	calcms	
	cellmx	
	xsdrn	
logid	shortx	
minchk	c/data	wot 8
		woco
mixerr	latcel	
	moredt	
	multrg	
mixtab	setupb	array3
		modify
		mtable
		reordr
		stop
modify	mixtab	iscan
moredt	setupb	allowc
	2000.22	aread
		fread
		iread
		lread
		mixerr
		resetc
		scanof
		scanon
 mtable	mixtab	scanon idents

Table M7.B.1 (continued)

Subroutine	Calling	Called
Name	Subroutine	Subroutine
multrg	setupb	aread
3	2000222	fread
		iread
		lcompr
		lread
		mixerr
		scanof
		scanon
 nfluv		
	prerps	
nitawl	c4data	binrcf
		binrcx
		clear
		inquir
		iscan
		rite
notrac	idents	wtinv
outer	sphdan	finner
		qauss
ر بید سه خد جد جر می سه خد بنه خو هو هد د	و میں سے بین بین ہیں ہے ہی ہو، بین بین ہے میں سا بین اور اللہ بی	
patch	twodxs	
	twodys	
poke	setuph	· · · · · · · · · · · · · · · · · · ·
prelps	c4data	gflux
		nflux
reordr		
	MIACAD	ISCall
resda	setupb	bonda
		dancof
		iscan
		lcompr
adata		
scuala	scucinp	aread
		ciear
		IOX
		Iread
		iread
		iscan
		reed

Table M7.B.1 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

Subroutine Name	Calling Subroutine	Called Subroutine
sdan	dandad	e3
setupa	knight	aread creed csparm fread inquir iread lcompr lread opnfil reed scanon setupb smmtba stop
setupb	setupa	aread cinit clear inquir iread latcel lcompr mixtab moredt multrg poke resda rite stdcmp stop
shortx	c4data	closda copy dtaset iowrt logid openda opnfil reed y0trns

Table M7.B.1 (continued)

Subroutine	Calling	Called
Name	Subroutine	Subroutine
slname	stdcmp	
slns	stdcmp	iscan
smmtba	c4data csparm setupa	lcompr
sphdan	ball	agauss outer
stdcmp	setupb	aread clear fax faxprt fix fread iread lread reed scanof scdata slname slns
twodxs	clapse	avg2 clear copy io io4 patch
twodys	clapse	avgy clear copy hoggie io io4 move patch stop

Accession destance

NUREG/CR-0200, Vol. 3, Rev. 6

Subroutine Name	Calling Subroutine	Called Subroutine
unfold	bond	
verify	c4data	voljb
volfrc	ice	
voljb	verify	
wtinv	nofrac	و یو هو دو نین بنه دو می پو دی هو با دان ک
xsdrn	c4data	binfil binrcf binrcx clear inquir lchkmx rite stop
xsmesh	c4data	iread stop

Table M7.B.1 (continued)

Table M7.B.2 lists the labeled common blocks used in the Material Information Processor and an alphabetical listing of the subroutines that reference them.

Common	Referencing
Name	Subroutine
blklnc	cinit
	moredt
	setupb
	stdcmp
ccdata	c4data
	knight
	setupa
	setupb
cdata	c4data
	knight
	setupa
	setupb
celmix	cellmx
clad	dandad
	gdan
	sdan
compoz	calrho
	knight
	mtable
cunit	archk
	calrho
	csparm
	faxprt
	idents
	knight
	latcel
	mixtab
	mtable
	multra
	nofrac
	poke
	reordr
	scdata
	setupa
	setupb
	shortx
	slname
	slns
	stdcmp

Table M7.B.2 Commons used in the Material Information Processor

NUREG/CR-0200, Vol. 3, Rev. 6

Table M7.B.2 (continued)		
Common	Referencing	
Name	Subroutine	
deal	c4data dancof latcel multrg poke resda setupb	
dimen	c4data	
drtacs	array3 bonami cinit ice nitawl setupb shortx xsdrn	
flg	archk c4data dancof fax latcel moredt multrg nofrac scdata setupa shortx slns stdcmp verify xsmesh	
gin	adan ball dan dandad finner gdan outer sphdan	

NUREG/CR-0200, Vol. 3, Rev. 6

Common Name	Referencing Subroutine
liba	c4data
	epsig
	fix
	fox
	knight
	latcel
	mipchk
	mixtab
	modify
	multrg
	resda
	scdata
	setupa
	setupb
	shortx
	stdcmp
libc	c4data
	epsig
	fix
	fox
	knight
	latcel
	mipchk
	mixtab
	modify
	multrg
	resda
	scdata
	setupa
	setupb
	snortx
	stdcmp
lpnt	c4data
	cinit
	setupb
parm	c4data
	moredt
	setupa
	setupb

Table M7.B.2 (continued)

I ...IL

NUREG/CR-0200, Vol. 3, Rev. 6

Common	Referencing
Name	Subroutine
pass	c4data
	dancof
	knight
	latcel
	mipchk
	mixtab
	modify
	moredt
	multrg
	poke
	resda
	setupa
	setupb
	verify
	xsdrn
Pass2	C4uaca knight
	mixtab
	moredt
	noreat
	setupa
	vedra
pointa	c4data
	setupa
	setupb
nointh	
POTITO	cauaca seturo
	setupa
	secups
pointc	c4data
	setupa
	setupb

Table M7.B.2 (continued)

_

Common	Referencing	
Name	Subroutine	
unit	array3 bonami cinit ice nitawl resda setupb shortx xsdrn	
units	c4data	
xsdrnc	ice moredt nitawl setupb xsdrn	

Table M7.B.2 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

Computational Physics and Engineering Division

STANDARD COMPOSITION LIBRARY

L. M. Petrie P. B. Fox K. Lucius*

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

*Formerly with Oak Ridge National Laboratory.

ABSTRACT

This document provides a listing of the Standard Composition Library currently available within the SCALE system. A separate listing is also provided for available standard solutions that may be specified.

NUREG/CR-0200 Vol. 3, Rev. 6

M8.iii

CONTENTS

		<u>Page</u>
ABSTR	RACT 1	M8.iii
LIST C	DF TABLES	A8.vii
ACKN	OWLEDGMENTS	M8.ix
M 8.1	INTRODUCTION M	18.1.1
M8.2	THE STANDARD COMPOSITION LIBRARY M	I8.2.1
M8.3	TABLE OF AVAILABLE SOLUTIONS M	18.3.1
M8.4	REFERENCES M	18.4.1

LIST OF TABLES

	Page
M8.2.1	The Standard Composition Library - isotopes M8.2.6
M8.2.2	The Standard Composition Library - elements and special nuclides by symbols M8.2.15
M8.2.3	The Standard Composition Library – elements by full name
M8.2.4	The Standard Composition Library – compounds/alloys (atoms per molecule) M8.2.25
M8.2.5	The Standard Composition Library – compounds/alloy (weight percent)
M8.2.6	The Standard Composition Library – nuclide identification
M8.3.1	Table of available solutions M8.3.1

ACKNOWLEDGMENTS

This work was funded by the U.S. Nuclear Regulatory Commission through the Office of Nuclear Material Safety and Safeguards and the Office of Nuclear Regulatory Research.

M8.1 INTRODUCTION

The Standard Composition Library has been included within the SCALE system to provide the user with a simple and straightforward method of specifying the material mixtures for a given problem. The library consists of over 600 mixtures and isotopes commonly used within shielding and criticality problems. This library is tabulated in Sect. M8.2 with the various features of each composition. Additionally, a number of standard fissile solutions available for use are tabulated in Sect. M8.3.

As the need arises, the Standard Composition Library will be updated to include an even greater selection of mixtures and solutions. However, if the user has a need to specify a mixture not currently in the library, this step may be achieved using the procedures described in Sect. M7.5.5.2.

NUREG/CR-0200 Vol. 3, Rev. 6

M8.1.1

M8.2 THE STANDARD COMPOSITION LIBRARY

The Standard Composition Library describes the various isotopes, elements (both symbols and full name), and compounds/alloys that can be used to define the material mixtures for a given problem. Typically, the alphanumeric description of one or more of these materials will be used to define a material mixture, as noted in Sect. M7.4.4.

Full-name elements reference Z*1000 identifier. If this identifier is not available on the cross-section library, the isotope table is then referenced. Elements with symbol names reference the same identifier as full-name elements with a few exceptions. Elements with 100% abundance of one isotope (e.g., gold) reference that isotope. Some light elements reference the principal isotopes. (Examples O - 8016, N - 7014, C - 6012, H - 1001)

When formulating a mixture, it is often necessary to know the density (g/cc) of the various constituent materials. For convenience, the reference values given in the library have been listed in Tables M8.2.1 through M8.2.5 (at end of this section). Note that the given reference values represent the actual theoretical density, except in the case of isotopes and some individual nuclides where a default value of 1.0 g/cc was used. The actual theoretical densities are fixed values at naturally occurring or nominal conditions. These default densities should not be used for materials containing enriched isotopes, especially light elements with strong absorbers such as boron, B_4C , or lithium.

The temperature of a given material can be entered, but is not required (cf. Sect. M7.4.4). However, the temperature should be entered if resonance data or Bondarenko data are available for the material, or if thermal-scattering data are available at more than one temperature. Note that nuclides having resonance data differ from one master cross-section library to another. Section M4 (SCALE Cross-Section Libraries) addresses resonance data and Bondarenko data in more detail. Users may find this information interesting and/or helpful.

Multiple sets of iron, nickel, and chromium nuclides are available in the Standard Composition Library (see Tables M8.2.1 through M8.2.6). These sets correspond to different weighting functions used in generating the multigroup cross sections. The special weighting functions correspond to $1/E \sigma_t$ (E), where σ_t (E) is the total cross section of either stainless steel 304 or Inconel for use in mixing such alloys. These weighting functions specifically apply to the 27- and 218-group libraries generated from ENDF/B-IV data. In order for the stainless steel and Inconel standard composition identifiers to be usable with the Hansen Roach library, the 218-group library sets with the special weighting functions were collapsed to 16 groups and added to the Hansen Roach data set. For the 44- and 238-group libraries generated from ENDF/B-V data, there are two special weighting functions. One special weighting function corresponds to $1/E \sigma_t$ (E), where σ_t (E) is the total cross section of stainless steel 304. In the other special weighting, σ_t (E) is the cross section for the referenced nuclide. Two standard composition names, SS304S and INCONELS, have been added to reference the standard iron, nickel, and chromium nuclides instead of the specially weighted ones. Entries have been added to the isotopic distribution table so that standard weighted isotopes will be requested if the desired nuclide is not on the specified library.

The nuclide identifying numbers (ID) are listed in column 3 of Tables M8.2.1 through M8.2.5. Typically, the ID number is A +1000*Z, where Z and A are the charge and mass numbers for the nuclide (e.g., 1001 for hydrogen and 8016 for oxygen). Exceptions to this rule include metastable nuclides, nuclides with bound thermal scattering data, and nuclides whose cross sections have a special weighting. Also, elements with isotopic mixtures (typically natural abundance) have ID numbers of Z*1000.

The nuclide's mass, σ_t and σ_s , are shown in Table M8.2.6, the nuclide identification table. The σ_t and σ_s values are used in generating resonance self-shielding parameters and in generating the spatial mesh for XSDRN. If the nuclide occurs in the 238-group ENDF/B-V cross-section library, the values in the table are

the result of integrating the data for that nuclide over the groups between 5 eV and 5 keV using a flat in lethargy over σ_t weight function. Nuclides that do not occur in this library but do occur in a 199-group ENDF/B-VI library are generated from that library in the same fashion. Data for other nuclides are of unknown origin. If a nuclide identifier is listed in this table, it can be accessed and used in an arbitrary material. Arbitrary materials require the user to provide all the information normally found in the Standard Composition Library.

Those materials in the Standard Composition Library containing multiple isotopes of a single element are denoted in columns 4 and 5 of Table M8.2.3. For these materials, the user is free to specify the isotopic distribution using items 6a and 6b of the Standard Composition Specification Card discussed in Sects. M7.4.4 and C4.4.4. Alternatively, the user may elect not to enter this data, thereby telling the code to assume the default values shown in column 3 of Table M8.2.3. In all cases except plutonium, Table M8.2.3 lists the naturally occurring abundance of each isotope. In describing an arbitrary material, a multiple isotope ID of Z * 1000 (where Z is the nuclide charge number) can be used to denote the elements of Table M8.2.3. Then, if an isotope distribution other than the default values of Table M8.2.3 is desired, items 6a and 6b of the Standard Composition Specification Card (see Sect. M7.4.4) must be included.

Atomic masses for the isotopes were taken from ENDF/B-V1¹ where available except for ¹⁶O. The atomic masses of remaining nuclides were taken from ENDF/B-V² if available there. If not available from the above sources, the atomic masses were taken from the GE Chart of the Nuclides.³ Potassium-40 was not available in any of these sources and was taken from the Trilinear Chart of the Nuclides.⁴ The atom percents of the isotopic distribution table were taken from the GE Chart of the Nuclides. Densities were taken from the CRC Handbook.⁵ Gases and explicit isotopes were changed to all have a theoretical density of 1.0 g/cc.

To more fully document the composition of each compound and/or document the assumptions used in producing the associated cross-section data, a brief description of each material in Tables M8.2.4 and M8.2.5 is included here:

Compounds (atoms per molecule)

B4C	Boron carbide: B_4C ; natural isotopic distribution obtained by default, 2.52 g/cc
BALSA	Balsa wood: C ₆ H ₁₀ O ₅ , 0.125 g/cc
D2O	Heavy Water: D ₂ O, 1.1054 g/cc
GRAPHITE	Graphite Carbon: 2.3 g/cc
H2O	Water: cross sections developed using 1/E weighting everywhere, 0.9982 g/cc
H2O-X(E)-HR	Water: cross sections developed using fission spectrum weighting at high energies and 1/E at lower energies, 0.9982 g/cc (Hansen-Roach library only)
HFACID	Hydrafluoric acid: HF
HNO3	Nitric acid: HNO ₃
NORPAR13	Normal Paraffin 13: C ₁₃ H ₂₈ 0.76 g/cc

NUREG/CR-0200 Vol. 3, Rev. 6

M8.2.2

NORPAR(H2O)	Normal Paraffin 13: $C_{13}H_{28}$ 0.76 g/cc, uses hydrogen in water thermal kernel
OAK	Oak wood: C ₆ H ₁₀ O ₅ , 0.700 g/cc
PARA(H2O)	Paraffin: $C_{25}H_{52}$, 0.90 g/cc, uses hydrogen in water thermal kernel
PARAFFIN	Paraffin: C ₂₅ H ₅₂ , 0.90 g/cc
PLEXIGLAS, PLEXIGLASS	Plexiglas: C ₅ H ₈ O ₂ , 1.18 g/cc
POLY(H2O)	Polyethylene: CH_2 , 0.923 g/cc uses hydrogen in water thermal kernel
POLYETHYLENE	Polyethylene: CH ₂ , 0.92 g/cc
POLYVINYLCL	Polyvinyl chloride: C ₂ H ₃ Cl, 1.6 g/cc
PU(NO3)4	Plutonium nitrate: Pu(NO ₃) ₄ , 2.447 g/cc
PUC	Plutonium carbide: PuC, 13.6 g/cc
PUF4	Plutonium tetrafluoride: PuF ₄ , 7.0 g/cc
PUN	Plutonium nitride: PuN, 14.25 g/cc
PUO2	Plutonium oxide: PuO ₂ , 11.46 g/cc
PVC	Polyvinyl chloride: C ₂ H ₃ Cl, 1.6 g/cc
PVC(H2O)	Polyvinyl chloride: C ₂ H ₃ Cl, 1.6 g/cc uses hydrogen in water thermal kernel
REDWOOD	Redwood: $C_6H_{10}O_5$, 0.387 g/cc
TBP	Tributyl phosphate: (C ₄ H ₉) ₃ PO ₄ , 0.9724 g/cc
TBP(H2O)	Tributyl phosphate: $(C_4H_9)_3PO_4$, 0.9724 g/cc uses hydrogen in water thermal kernel
U3O8	Uranium oxide (yellowcake): U ₃ O ₈ , 8.3 g/cc
UC	Uranium carbide: UC, 13.63 g/cc
UF4	Uranium tetrafluoride: UF ₄ , 6.70 g/cc
UF6	Uranium hexafluoride: UF ₆ , 4.68 g/cc
UN	Uranium nitride: UN, 14.31 g/cc

UO2	Uranium dioxide: UO ₂ , 10.96 g/cc
UO2(NO3)2	Uranyl nitrate: UO ₂ (NO ₃) ₂ , 2.203 g/cc
UO2F2	Uranyl fluoride: UO ₂ F ₂ , 6.37 g/cc
UO3 ZIRCALLOY	Uranium trioxide: UO ₃ , 7.29 g/cc Zircaloy-2 is approximated by adding a 1/V capture to zirconium. The thermal capture cross section and resonance capture integrals for Zr-2 and Zr-4 are equal within the experimental measurement uncertainties and the variance allowed on the contents of the alloying agents of Zr-2 and Zr-4. ENDF/B-IV 6.56 g/cc
ZRH2 ZR5H8	Zirconium hydride: ZrH_2 , 5.61 g/cc Zirconium hydride as a mixture of ZrH and ZrH_2 , with an effective composition of Zr_5H_8 ; 5.61 g/cc
Compounds (weight p	ercent)
CARBONSTEEL	Carbon steel: 99 wt % iron, 1 wt % carbon, cross sections developed using 1/E weighting, 7.8212 g/cc
INCONEL	Inconel: 73 wt % nickel, 15 wt % chromium, 7 wt % iron, 2.5 wt % titanium, 2.5 wt % silicon, 8.3 g/cc
INCONELS	Inconel: 73 wt % nickel, 15 wt % chromium, 7 wt % iron, 2.5 wt % titanium, 2.5 wt % silicon, (standard nuclides were used instead of special weighted nuclides) 8.3 g/cc
KEROSENE	Average kerosene: 84 wt % carbon, 16 wt % hydrogen, 0.82 g/cc
KERO(H2O)	Average kerosene: 84 wt % carbon, 16 wt % hydrogen, 0.82 g/cc uses hydrogen for water thermal kernel
MGCONCRETE	Magnuson's Concrete: 49.94 wt % oxygen, 22.63 wt % calcium, 10.53 wt % carbon, 0.9445 wt % potassium, 9.420 wt % magnesium, 4.210 wt % silicon, 0.7859 wt % aluminum, 0.5595 wt % iron, 0.3319 wt % hydrogen, 0.2483 wt % sulfur, 0.148 wt % titanium, 0.1411 wt % sodium, 0.523 wt % chlorine, 0.0512 wt % manganese, 2.147 g/cc
ORCONCRETE	Oak Ridge Concrete: 41.02 wt % oxygen, 32.13 wt % calcium, 17.52 wt % carbon, 3.448 wt % silicon, 3.265 wt % magnesium, 1.083 wt % aluminum, 0.7784 wt % iron, 0.6187 wt % hydrogen, 0.1138 wt % potassium, .0271 wt % sodium, 2.2994 g/cc
PYREX	Pyrex: 53.5 wt % oxygen, 37.7 wt % silicon, 4.1 wt % sodium, 3.7 wt % boron, 1.0 wt % aluminum, 2.23 g/cc
NUREG/CR-0200 Vol. 3, Rev. 6	M8.2.4

.

.

- REG-CONCRETERegular Concrete: 53.2 wt % oxygen, 33.7 wt % silicon, 4.4 wt % calcium, 3.4 wt %
aluminum, 2.9 wt % sodium, 1.4 wt % iron, 1.0 wt % hydrogen, 2.3 g/cc
- RFCONCRETE Rocky Flats Concrete: 48.49 wt % oxygen, 23 wt % calcium, 15.5 wt % silicon, 5.52 wt % carbon, 2.17 wt % aluminum, 1.37 wt % potassium, 1.25 wt % magnesium, 1.01 wt % iron, 0.75 wt % hydrogen, 0.63 wt % sodium, 0.19 wt % sulfur, 0.1 wt % itianium, 0.02 wt % nitrogen, 2.231 g/cc
- SS304 Stainless steel-304: 68.375 wt % iron, 19 wt % chromium, 9.5 wt % nickel, 2 wt % manganese, 1 wt % silicon, 0.08 wt % carbon, 0.045 wt % phosphorus, 7.94 g/cc
- SS304S Stainless steel-304: 68.375 wt % iron, 19 wt % chromium, 9.5 wt % nickel, 2 wt % manganese, 1 wt % silicon, 0.08 wt % carbon, 0.045 wt % phosphorus (standard nuclides were used instead of special weighted nuclides) 7.94 g/cc
- SS316 Stainless steel-316: 65.375 wt % iron, 17 wt % chromium, 12 wt % nickel, 2.5 wt % molybdenum, 2 wt % manganese, 1 wt % silicon, 0.08 wt % carbon, 0.045 wt % phosphorus, 8.03 g/cc
- SS316S Stainless steel-316: 65.42 wt % iron, 17 wt % chromium, 12 wt % nickel, 2.5 wt % molybdenum, 2 wt % manganese, 1 wt % silicon, 0.08 wt % carbon, 0.045 wt % phosphorus (standard nuclides were used instead of special weighted nuclides) 8.03 g/cc
- U(.27)METAL Depleted uranium metal having a fixed isotope distribution: 0.27 wt % ²³⁵U, 99.73 wt % ²³⁸U 19.05 g/cc (to specify a different distribution, the user should use URANIUM instead of U(.27)METAL) 19.05 g/cc
- ZIRC2
 Zircaloy-2:
 98.250 wt % zirconium, 1.45 wt % tin, 0.100 wt % chromium, 0.135 wt % iron, 0.055 wt % nickel, 0.01 wt % hafnium, 6.56 g/cc

ZIRC4 Zircaloy-4: 98.23 wt % zirconium, 1.45 wt % tin, 0.1 wt % chromium, 0.210 wt % iron, 0.01 wt % hafnium, 6.56 g/cc

Alphanumeric Alphanu				anumeric		
isotope identifier	Default density	Nuclide identifier	isotope identifier	Default density	Nuclide identifier	
AG-107	1.0	47107	BR-79	1.0	35079	
AG-109	1.0	47109	BR-81	1.0	35081	
AG-111	1.0	47111	C-12	1.0	6012	
AM-241	1.0	95241	C-13	1.0	6013	
AM-242	1.0	95242	CA-40	1.0	20040	
AM-242M	1.0	95601	CA-42	1.0	20042	
AM-243	1.0	95243	CA-43	1.0	20043	
AR-36	1.0	18036	CA-44	1.0	. 20044	
AR-38	1.0	18038	CA-46	1.0	20046	
AR-40	1.0	18040	CA-48	1.0	20048	
AS-75	1.0	33075	CD-106	1.0	48106	
B-10	1.0	5010	CD-108	1.0	48108	
B-11	1.0	5011	CD-110	1.0	48110	
BA-130	1.0	56130	CD-111	1.0	48111	
BA-132	1.0	56132	CD-112	1.0	48112	
BA-134	1.0	56134	CD-113	1.0	48113	
BA-135	1.0	56135	CD-114	1.0	48114	
BA-136	1.0	56136	CD-115	1.0	48115	
BA-137	1.0	56137	CD-115M	1.0	48601	
BA-138	1.0	56138	CD-116	1.0	48116	
BA-140	1.0	56140	CE-136	1.0	58136	
BI-209	1.0	83209	CE-138	1.0	58138	
BK-249	1.0	97249	CE-140	1.0	58140	
			1			

Table M8.2.1 The Standard Composition Library - isotopes

1 I.L.

Alphanumeric Alph				Alphanumeric		
isotope	Default	Nuclide	isotope	Default	Nuclide	
identifier	density	identifier	identifier	density	identifier	
CE-141	1.0	58141	CR-54	1.0	24054	
CE-142	1.0	58142	CS-133	1.0	55133	
CE-143	1.0	58143	CS-134	1.0	55134	
CE-144	1.0	58144	CS-135	1.0	55135	
CF-249	1.0	98249	CS-136	1.0	55136	
CF-250	1.0	98250	CS-137	· 1.0	55137	
CF-251	1.0	98251	CU-63	1.0	29063	
CF-252	1.0	98252	CU-65	1.0	29065	
CF-253	1.0	98253	DY-156	1.0	66156	
CL-35	1.0	17035	DY-158	1.0	66158	
CL-37	1.0	17037	DY-160	1.0	66160	
CM-241	1.0	96241	DY-161	1.0	66161	
CM-242	1.0	96242	DY-162	1.0	66162	
CM-243	1.0	96243	DY-163	1.0	66163	
CM-244	1.0	96244	DY-164	1.0	66164	
CM-245	1.0	96245	ER-162	1.0	68162	
CM-246	1.0	96246	ER-164	1.0	68164	
CM-247	1.0	96247	ER-166	1.0	68166	
CM-248	1.0	96248	ER-167	1.0	68167	
CO-59	1.0	27059	ER-168	1.0	68168	
CR-50	1.0	24050	ER-170	1.0	68170	
CR-52	1.0	24052	ES-253	1.0	99253	
CR-53	1.0	24053	EU-151	1.0	63151	

Alphanumeric			Alphanumeric			
isotope	Default	Nuclide	isotope	Default	Nuclide	
identifier	density	identifier	identifier	density	identifier	
EU-152	1.0	63152	GE-76	1.0	32076	
EU-153	1.0	63153	H-3	1.0	1003	
EU-154	1.0	63154	HE-3	1.0	2003	
EU-155	1.0	63155	HF-174	1.0	72174	
EU-156	1.0	63156	HF-176	1.0	72176	
EU-157	1.0	63157	HF-177	1.0	72177	
FE-54	1.0	26054	HF-178	1.0	72178	
FE-56	1.0	26056	HF-179	1.0	72179	
FE-57	1.0	26057	HF-180	1.0	72180	
FE-58	1.0	26058	HG-196	1.0	80196	
GA-69	1.0	31069	HG-198	1.0	80198	
GA-71	1.0	31071	HG-199	1.0	80199	
GD-152	1.0	64152	HG-200	1.0	80200	
GD-154	1.0	64154	HG-201	1.0	80201	
GD-155	1.0	64155	HG-202	1.0	80202	
GD-156	1.0	64156	HG-204	1.0	80204	
GD-157	1.0	64157	HO-165	1.0	67165	
GD-158	1.0	64158	I-127	1.0	53127	
GD-160	1.0	64160	I-129	1.0	53129	
GE-70	1.0	32070	I-130	1.0	53130	
GE-72	1.0	32072	I-131	1.0	53131	
GE-73	1.0	32073	I-135	1.0	53135	
GE-74	1.0	32074	IN-113	1.0	49113	

Alphanumeric			Alphanumeric			
isotope	Default	Nuclide	isotope	Default	Nuclide	
identifier	density	identifier	identifier	density	identifier	
IN-115	1.0	49115	MO-100	1.0	42100	
IR-191	1.0	77191	MO-92	1.0	42092	
IR-193	1.0	77193	MO-94	1.0	42094	
K-39	1.0	19039	MO-95	1.0	42095	
K-40	1.0	19040	MO-96	1.0	42096	
K-41	1.0	19041	MO-97	1.0	42097	
KR-78	1.0	36078	MO-98	1.0	42098	
KR-80	1.0	36080	MO-99	1.0	42099	
KR-82	1.0	36082	N-14	1.0	7014	
KR-83	1.0	36083	N-15	1.0	7015	
KR-84	1.0	36084	NB-93	1.0	41093	
KR-85	1.0	36085	NB-94	1.0	41094	
KR-86	1.0	36086	NB-95	1.0	41095	
LA-138	1.0	57138	ND-142	1.0	60142	
LA-139	1.0	57139	ND-143	1.0	60143	
LA-140	1.0	57140	ND-144	1.0	60144	
LI-6	1.0	3006	ND-145	1.0	60145	
LI-7	1.0	3007	ND-146	1.0	60146	
LU-175	1.0	71175	ND-147	1.0	60147	
LU-176	1.0	71176	ND-148	1.0	60148	
MG-24	1.0	12024	ND-150	1.0	60150	
MG-25	1.0	12025	NE-20	1.0	10020	
MG-26	1.0	12026	NE-21	1.0	10021	

Alphanumeric		<u> </u>	Alphanumeric		
isotope	Default	Nuclide	isotope	Default	Nuclide
identifier	density	identifier	identifier	density	identifier
NE-22	1.0	10022	PB-206	1.0	82206
NI-58	1.0	28058	PB-207	1.0	82207
NI-59	1.0	28059	PB-208	1.0	82208
NI-60	1.0	28060	PD-102	1.0	46102
NI-61	1.0	28061	PD-104	1.0	46104
NI-62	1.0	28062	PD-105	1.0	46105
NI-64	1.0	28064	PD-106	1.0	46106
NP-237	1.0	93237	PD-107	1.0	46107
NP-238	1.0	93238	PD-108	1.0	46108
NP-239	1.0	93239	PD-110	1.0	46110
O-16	1.0	8016	PM-147	1.0	61147
0-17	1.0	8017	PM-148	1.0	61148
O-18	1.0	8018	PM-148M	1.0	61601
OS-184	1.0	76184	PM-149	1.0	61149
OS-186	1.0	76186	PM-151	1.0	61151
OS-187	1.0	76187	PR-141	1.0	59141
OS-188	1.0	76188	PR-142	1.0	59142
OS-189	1.0	76189	PR-143	1.0	59143
OS-190	1.0	76190	PT-190	1.0	78190
OS-192	1.0	76192	PT-192	1.0	78192
PA-231	1.0	91231	PT-194	1.0	78194
PA-233	1.0	91233	PT-195	1.0	78195
PB-204	1.0	82204	PT-196	1.0	78196

_

·

NUREG/CR-0200 Vol. 3, Rev. 6

M8.2.10

Alphanumeric Alphanumeric isotope Default Nuclide Default Nuclide isotope identifier density identifier identifier density identifier PT-198 1.0 78198 **RU-106** 1.0 44106 PU-236 94236 1.0 **RU-96** 1.0 44096 PU-237 1.0 94237 **RU-98** 1.0 44098 PU-238 94238 RU-99 1.0 1.0 44099 PU-239 94239 1.0 1.0 S-32 16032 PU-240 1.0 94240 S-33 1.0 16033 1.0 S-34 1.0 16034 PU-241 94241 PU-242 1.0 S-36 1.0 94242 16036 PU-243 1.0 94243 SB-121 1.0 51121 PU-244 1.0 1.0 94244 SB-123 51123 **RB-85** 1.0 1.0 51124 37085 SB-124 **RB-86** 1.0 37086 SB-125 1.0 51125 **RB-87** 1.0 37087 SB-126 1.0 51126 21045 RE-185 1.0 75185 SC-45 1.0 RE-187 1.0 75187 SE-74 1.0 34074 RH-103 1.0 45103 SE-76 1.0 34076 RH-105 1.0 45105 SE-77 1.0 34077 **RU-100** 1.0 44100 1.0 34078 SE-78 RU-101 1.0 44101 1.0 34080 SE-80 RU-102 1.0 44102 SE-82 1.0 34082 RU-103 1.0 14028 1.0 44103 SI-28 RU-104 1.0 44104 SI-29 1.0 14029 RU-105 1.0 44105 1.0 14030 SI-30

Table M8.2.1 (continued)

Alphanumeric	·	• • • • • • • • • • • • • • • • • • • •	Alphanumeric		
isotope	Default	Nuclide	isotope	Default	Nuclide
identifier	density	identifier	identifier	density	identifier
SM-144	1.0	62144	SR-86	1.0	38086
SM-147	1.0	62147	SR-87	1.0	38087
SM-148	1.0	62148	SR-88	1.0	38088
SM-149	1.0	62149	SR-89	1.0	38089
SM-150	1.0	62150	SR-90	1.0	38090
SM-151	1.0	62151	TA-180	1.0	73180
SM-152	1.0	62152	TA-181	1.0	73181
SM-153	1.0	62153	TA-182	1.0	73182
SM-154	1.0	62154	TB-159	1.0	65159
SN-112	1.0	50112	TB-160	1.0	65160
SN-114	1.0	50114	TC-99	1.0	43099
SN-115	1.0	50115	TE-120	1.0	52120
SN-116	1.0	50116	TE-122	1.0	52122
SN-117	1.0	50117	TE-123	1.0	52123
SN-118	1.0	50118	TE-124	1.0	52124
SN-119	1.0	50119	TE-125	1.0	52125
SN-120	1.0	50120	TE-126	1.0	52126
SN-122	1.0	50122	TE-127	1.0	52127
SN-123	1.0	50123	TE-127M	1.0	52601
SN-124	1.0	50124	TE-128	1.0	52128
SN-125	1.0	50125	TE-129	1.0	52129
SN-126	1.0	50126	TE-129M	1.0	52611
SR-84	1.0	38084	TE-130	1.0	52130

1

. I I.

NUREG/CR-0200 Vol. 3, Rev. 6

M8.2.12

Alphanumeric	· · · · ·		Alphanumeric			
isotope	Default	Nuclide	isotope	Default	Nuclide	
identifier	density	identifier	identifier	density	identifier	
 TE-132	1.0	52132	TI-47	1.0	22047	
TH-230	1.0	90230	TI-48	1.0	22048	
TH-232	1.0	90232	TI-49	1.0	22049	
TI-46	1.0	22046	TI-50	1.0	22050	
TI-47	1.0	22047	TL-203	1.0	81203	
TI-48	1.0	22048	TL-205	1.0	81205	
TI-50	1.0'	22050	TM-169	1.0	69169	
TM-169	1.0	69169	U-232	1.0	92232	
U-232	1.0	92232	U-233	1.0	92233	
U-233	1.0	92233	U-234	1.0	92234	
U-234	1.0	92234	U-235	1.0	92235	
TE-125	1.0	52125	U-236	1.0	92236	
TE-126	1.0	52126	U-237	1.0	92237	
TE-127	1.0	52127	U-238	1.0	92238	
TE-127M	1.0	52601	V-50	1.0	23050	
TE-128	1.0	52128	V-51	1.0	23051	
TE-129	1.0	52129	W-180	1.0	74180	
TE-129M	1.0	52611	W-182	1.0	74182	
TE-130	1.0	52130	W-183	1.0	74183	
TE-132	1.0	52132	W-184	1.0	74184	
TH-230	1.0	90230	W-186	1.0	74186	
TH-232	1.0	90232	XE-124	1.0	54124	
TI-46	1.0	22046	XE-126	1.0	54126	

Alphanumeric			Alphanumeric		
isotope	Default	Nuclide	isotope	Default	Nuclide
identifier	density	identifier	identifier	density	identifier
XE-128	1.0	54128	YB-173	1.0	70173
XE-129	1.0	54129	YB-174	1.0	70174
XE-130	1.0	54130	YB-176	1.0	70176
XE-131	1.0	54131	ZN-64	1.0	30064
XE-132	1.0	54132	ZN-66	1.0	30066
XE-133	1.0	54133	ZN-67	1.0	30067
XE-134	1.0	54134	ZN-68	1.0	30068
XE-135	1.0	54135	ZN-70	1.0	30070
XE-136	1.0	54136	ZR-90	1.0	40090
Y-89	1.0	39089	ZR-91	1.0	40091
Y-90	1.0	39090 .	ZR-92	1.0	40092
Y-91	1.0	39091	ZR-93	1.0	40093
YB-168	1.0	70168	ZR-94	1.0	40094
YB-170	1.0	70170	ZR-95	1.0	40095
YB-171	1.0	70171	ZR-96	1.0	40096
YB-172	1.0	70172			

1.1.

Alphanumeric element symbols	Density ^a	Nuclide identifier	Alphanumeric element symbols	Density ^a	Nuclide identifier 24404
1/VABSORBER	1.0	999	CRINCONEL	7.20	
ACTIVITIES	1.0	900	CRSS 7.20		24304
AC	10.07	89000	CS	1.879	55000
AG	10.5	47000	CU	8.92	29000
AL	2.702	13027	D	1.0	1002
AR	1.0	18000	DFREEGAS	1.0	1802
AS	5.73	33000	DY	8.55	66000
AT	1.0	85000	ER	9.006	68000
AU	18.88	79197	EU	5.243	63000
B	2.370	5000	F 1.0		9019
BA	3.51	56000	FE 7.86		26000
BE	1.85	4009	FE-ESIGT 7.86		26301
BEBOUND	1.85	4309	FEINCONEL 7.86		26404
BI	9.80	83209	FESS 7.86		26304
BR	3.12	35000	FISP-1 1.0		901
C	2.1	6012	FISP-2 1.0		902
C-GRAPHITE	2.3	6312	FR 1.0		87000
CA	1.55	20000	GA 5.904		31000
CD	8.642	48000	GD 7.900		64000
CE	6.657	58000	GE 5.35		32000
CL	1.0	17000	Н 1.0		1001
СО	8.9	27059	H-X(E)-HR 1.0		1301
CR	7.20	24000	H-ZRH2 1.0		1701
CR-ESIGT	7.20	24301	HFREEGAS 1.0		1801
			1		

Table M8.2.2 The Standard Composition Library - elements and special nuclides by symbols

element symbols	phanumericNuclideAlphanumericement symbolsDensity ^a identifierelement symbols		Density ^a	Nuclide identifier	
H-POLY	1.0	1901	NIINCONEL	8.90	28404
HE	1.0	2004	NISS	8.90	28304
HF	13.31	72000	NP	20.45	93000
HG	13.546	80000	0	1.0	8016
НО	8.795	67000	OS	22.48	76000
I	4.93	53000	Р	1.82	15031
IN	7.30	49000	PA	15.37	91000
IR	22.421	77000	PB	11.344	82000
K	0.86	19000	PD	12.02	46000
KR	1.0	36000	PM 7.22		61000
LA	6.145	57000	РО	9.4	84000
ĹI	0.534	3000	PR	6.773	59000
LU	9.840	71000	PT	21.45	78000
MG	1.74	12000	PU 19.84		94000
MN	7.20	25055	RA 5.0		88000
MNSS	7.20	25304	RB 1.532		37000
MO	10.2	42000	RE 20.53		75000
N	1.0	7014	RH 12.4		45000
NA	0.97	11023	RN 1.0		86000
NB	8.57	41093	RU	12.30	44000
ND	6.80	60000	S	2.07	16000
NE	1.0	10000	SB	6.684	51000
NI II	8.90	28000	SC .	2.989	21000
NI-ESIGT	8.90	28301	SE	4.81	34000

Table M8.2.2 (continued)

Alphanumeric element symbols Density ^a		Nuclide identifier	Alphanumeric element symbols	Density ^a	Nuclide identifier
SI	2.33	14000	TM	9.321	69000
SM	7.520	62000	U	19.05	92000
SN	7.31	50000	v	5.96	23000
SR	2.6	38000	w	19.35	• 74000
ТА	16.6	73000	XE	1.0	54000
TB	8.229	65000	Y	4.469	39000
TC	11.50	43000	YB	6.965	70000
TE	6.25	52000	ZN	7.14	30000
TH	11.7	90000	ZR	6.49	40000
TI	4.5	22000	ZR-ZRH2	1.0	40701
TL	11.85	81000		·	

Table M8.2.2 (continued)

Alphanumeric		Nuclide		Isotopic distributio	on ^b
element name	Density ^a	identifier	, ID	wt %	Atm. %
ACTINIUM	10.070	89000			
ALUMINUM	2.702	13000	13027	100.000	100 000
AMERICIUM	13.670	95000	15027	100.000	100.000
ANTIMONY	6.684	51000	51121	56 998	57 400
			51123	43 002	42 600
ARGON	1.000	18000	18036	0 303	0 337
			18038	0.000	0.057
			18040	99.637	99,600
ARSENIC	5.730	33000	33075	100 000	100 000
ASTATINE	1.000	85000	55075	100.000	100.000
BARIUM	3.510	56000	56130	0 100	0 106
			56132	0.100	0.100
			56134	2 360	2 420
			56135	6 477	2.420 6 502
			56136	7 769	7 850
			56137	11 106	11 720
			56138	72 001	71 700
BERKELIUM	14.000	97000	50150	72.001	/1./00
BERYLLIUM	1.850	4000	4009	100.000	100.000
BISMUTH	9.800	83000	83209	100.000	100.000
BORON	2.370	5000	5010	18 / 31	10.000
		2000	5010	81 560	19.900 80.100
BROMINE	3,120	35000	35079	50.065	50,100
		55000	35081	40.035	J0.090
CADMIUM	8 642	48000	48106	1 178	49.310
CI IDMI CIM		10000	48108	0.854	0.800
			48110	10.054	12 400
			48110	12.211	12.490
			48117	24.021	12.000
			48112	12 272	24.150
			48113	20 111	12.220
			48114	23.111 ··· 7722	20.730
CALCIUM	1,550	20000	20040	06 671	7.47U 06.041
		20000	20040	0.071 0.675	70.741 0 617
			20042	0.075	0.047
			20042	0.144 0.291	2 002
			20044	2.201	2.000
			20040	0.003	0.004
CARBON	2,100	6000	20040 6012	0.223	0.107
	2.100	0000	6012	70.009	90.900 1 100
CERIUM	6.657	58000	58126	1.191 A 104	1.100
	0.007	50000	50130	0.104	0.190
			50130	0.240	0.230
			J014U 50140	88.297	88.430
CESIUM	1 870	55000	Jõ142 55122	11.272	11.130
0101011	1.0/7	22000	22122	100.000	100.000

Table M8.2.3 The Standard Composition Library - elements by full name

NUREG/CR-0200 Vol. 3, Rev. 6

· · ·

.

.

M8.2.18
Alphanumeric		Nuclide		Isotopic distribution	b
element name	Density ^a	identifier	ID	wt %	Atm. %
CHLORINE	1.000	17000	17035	74.736	75.770
			17037	25.264	24.230
CHROMIUM	7.200	24000	24050	4.174	4.345
			24052	83.700	83.790
			24053	9.673	9.500
			24054	2.453	2.365
COBALT	8.900	27000	27059	100.000	100.000
COPPER	8.920	29000	29063	68.499	69.170
			29065	31.501	30.830
CURIUM	13,510	96000			
DYSPROSIUM	8.550	66000	66156	0.058	0.060
			66158	0.097	0 100
			66160	2,303	2 340
			66161	18 717	18 900
			66162	25 410	25 500
			66163	23.410	23.500
		•	66164	24.300	24.300
FRRIIM	9.006	68000	68162	20.440	20.200
LINDIOM	9.000	08000	69164	0.130	0.140
			60104	1.370	1.010
			00100	33.334	33.000
			68167	22.906	22.950
			68168	26.908	26.800
	5 0 10		68170	15.139	14.900
EUROPIUM	5.243	63000	63151	47.471	47.800
			63153	52.529	52.200
FLUORINE	1.000	· 9000	9019	100.000	100.000
FRANCIUM	1.000	87000			
GADOLINIUM	7.900	64000	64152	0.193	0.200
			64154	2.134	2.180
			64155	14.581	14.800
			64156	20.297	20.470
			64157	15.617	15.650
			64158	24.946	24.840
			64160	22.232	21.860
GALLIUM	5.904	31000	31069	59.422	60.110
			31071	40.578	39.890
GERMANIUM	5.350	32000	32070	19.736	20.500
			32072	27.132	27.400
			32073	7.831	7.800
			32074	37.148	36.500
			32076	8.153	7.800
GOLD	18.880	79000	79197	100.000	100.000
HAFNIUM	13.310	72000	72174	0.158	0.162
. –		• • •	72176	5.132	5,206
			72177	18.445	18,606
			72178	27 214	27,297

Alphanumeric		Nuclide		Isotopic distribution	,	·
element name	Density ^a	identifier	ID	wt %	Atm. %	
UAENII DA (continuo			70170			
TIAT NTOM (commue	u)		72179	13.664	13.629	
	1 000	0000	72180	35.387	35.100	
HELIUM	1.000	2000	2003	0.000	0.000	
	9 705	(7000	2004	100.000	100.000	
HVDDOCEN	8.795 1.000	-07000	67165	100.000	100.000	
HIDROGEN	1.000	1000	1001	99.970	99.985	
	7.000	(0000	1002	0.030	0.015	
INDIUM	7.300	49000	49113	4.228	4.300	
			49115	95.772	95.700	
IODINE	4.930	53000	53127	100.000	100.000	
IRIDIUM	22.421	77000	77191	37.056	37.300	
			77193	62.944	62.700	
IRON	7.860	26000	26054	5.699	5.900	
			26056	91.870	91.720	
			26057	2.141	2.100	
			26058	0.290	0.280	
KRYPTON	1.000	36000	36078	0.325	0.350	
			36080	2.146	2.250	
			36082	11.339	11.600	
			36083	11.378	11.500	
			36084	57.076	57.000	
			36086	17.736	17.300	•
LANTHANUM	6.145	57000	57138	0.090	0.090	
			57139	99.910	99 910	
LEAD	11.344	82000	82204	1.378	1 400	
			82206	23.955	24 100	
			82207	22.075	22,100	
			82208	52 592	52 400	
LITHIUM	0.534	3000	3006	6 500	7 500	
•			3007	93 500	92 500	
LUTETIUM	9.840	71000	71175	97 306	92.500	
		,1000	71176	2 604	2 500	
MAGNESIUM	1.740	12000	12024	79 009	2.390	
		12000	12024	10.050	78.990	
			12025	10.211	10.000	
MANGANESE	7 200	25000	25055	100.000	11.010	
MERCURY	13 546	80000	20000	0.146	100.000	
	15.540	80000	00190 90109	0.140	0.150	
			60198 80100	9.869	10.000	
			80199	16.763	16.900	
			80200	23.028	23.100	
			80201	13.225	13.200	
			80202	30.004	29.800	
MOI VDDDDIII DA	10.000	10000	80204	6.965	6.850	
MOLIDDENIUM	10.200	42000	42092	14.230	14.840	
			42094	9.053	9.250	
			42095	15.748	15.920	

Table M8.2.3 (continued)

Alphanumeric		Nuclide	Isc	otopic distribution ^b	
element name	Density ^a	identifier	ID	- wt %	Atm. %
MOLYBDENIUM (continued)		. 42096	16.673	16.680
			42097	9.646	9.550
			42098	24.623	24.130
			42100	10.028	9.630
NEODYMIUM	6.800	60000	60142	26.691	27.130
			60143	12.068	12.180
			60144	23.745	23.800
			60145	8.339	8.300
			60146	17.389	17.190
			60148	5.907	5.760
			60150	5.862	5.640
NEON	1.000	10000	10020	89.639	90,480
	•		10021	0.281	0.270
			10022	10.080	9.250
NEPTUNIUM	20.450	93000			,
NICKEL	8.900	28000	28058	67 395	68 270
MERLE		20000	28060	26.653	26 100
			28061	1,173	1 130
			28062	3 788	3 590
			28064	0 991	0.910
NIOBILIM	8 570	41000	41003	100.000	100.000
NITROGEN	1 000	7000	7014	99 604	90.630
I III KOOLI	1.000	7000	7014	0 306	0 370
OSMILIM	22.480	76000	76184	0.090	0.370
COMICINI	22.400	. 70000	76186	1 544	1.580
			76187	1.572	1.500
			76188	13 1/0	13 300
			76180	15.140	15.500
			76100	15.332	26 400
			76100	41 271	20.400
OVVCEN	. 1.000	0000	70192 9016	41.371	41.000
ÚX I ÚLIN	1.000	8000	8010 8017	99.732	99.700
			0017	0.045	0.040
	12.020	46000	6010	0.223	0.200
FALLADIUM	12.020	40000	40102	10.977	1.020
			40104	10.077	11.140
			40105	22.015	22.550
			40100	27.199	27.550
			40108	20.830	20.400
DUASDUADUS	1.000	15000	40110	12.104	11.720
THUSPHUKUS	1.620	13000	13031	100.000	100.000
FLATINUM	21.450	/8000	70190	0.010	0.010
			/8192	0.///	0.790
			/8194	32.712	32.900
	•		/8195	33.780	33.800
			78196	25.415	25,300
			78198	7.307	7.200

NUREG/CR-0200 Vol. 3, Rev. 6

Alphanumeric		Nuclide	Isoto	pic distribution ^b	······································
element name	Density ^a	identifier	ID	wt %	Atm. %
PLUTONIUMALP	19.840	94000			
PLUTONIUMDLT	15.920	94000	94239	100 000	100.000
POLONIUM	9.400	84000	J+2JJ	100.000	100.000
POTASSIUM	0.860	19000	10030	02 037	02 259
		19000	19040	0.012	93.230
			19040	7 051	6 720
PRASEODYMIUM	6.773	59000	59141	100.000	100.000
PROMETHIUM	7.220	61000	57111	100.000	100.000
PROTACTINIUM	15.370	91000			
RADIUM	5.000	88000			
RADON	1.000	86000			
RHENIUM	20.530	75000	75185	37 148	37 400
-			75187	67 857	67 600
RHODIUM	12.400	45000	45103	100 000	100 000
RUBIDIUM	1.532	37000	37085	71 601	72 160
			37087	28 309	27.840
RUTHENIUM	12.300	44000	44096	5 257	5 540
· · ·			44098	1 802	1 860
			44099	12 428	12 700
			44100	12.455	12.700
			44101	17 073	17 100
			44102	31.862	31 600
			44104	19.122	18,600
SAMARIUM	7.520	62000	62144	2.967	3 100
			62147	14.656	15 000
			62148	11.116	11.300
			62149	13.668	13,800
			62150	7.378	7 400
			62152	26.977	26 700
			62154	23.238	22.700
SCANDIUM	2.989	21000	21045	100.000	100.000
SELENIUM	4.810	34000	34074	0.842	0.900
•			34076	8,748	9.100
			34077	7.402	7.600
			34078	23.283	23.600
			34080	50.493	49.900
			34082	9.231	8.900
SILICON	2.330	14000	14028	91.873	92,230
й. Г			14029	4.818	4.670
			14030	3.308	3,100
SILVER	10.500	47000	47107	51.377	51,840
			47109	48.623	48.160
SODIUM	0.970	11000	11023	100.000	100.000

NUREG/CR-0200 Vol. 3, Rev. 6

Alphanumeric		Nuclide	Is	sotopic distribution)
element name	Density ^a	identifier	ID	wt %	Atm. %
STRONTIUM	2.600	38000	38084	0.536	0.560
			38086	9.668	9.860
			38087	6.943	7.000
			38088	82.852	82.580
SULFUR	2.070	16000	16032	94.746	95.020
			16033	0.771	0.750
			16034	4.460	4.210
			16036	0.022	0.020
TANTALUM	16.600	73000	73180	0.012	0.012
			73181	99.988	99.988
FECHNETIUM	11.500	43000			
TELLURIUM	6.250	52000	52120	0.089	0.095
	·		52122	2.475	2.590
			52123	0.872	0.905
			52124	4.652	4.790
			52125	6.970	7.120
			52126	18.680	18,930
			52128	31.778	31,700
			52120	34 485	33 870
TERBITIM	8 229	65000	65159	100.000	100,000
THALLIIM	11.850	81000	81203	29 316	29 520
	11.050	01000	81205	70 684	70.480
THORIUM	11 700	٥٨٨٨٨	01203	100.000	100.400
	0 221	60000	60160	100.000	100.000
TIULIUM	7 310	50000	50112	0.014	0.070
1114	7.510	50000	50112	0.514	0.970
			50115	0.024	0.050
			50115	0.540	14 520
			50110	14.100	14.550
			50117	1.303	7.000
			50110	24.033	24.220
			50119	0.394 22.017	8.38U 23.500
			50120	32.917	32.390
			50122	4.755	4.030
	4 500	22000	50124	0.043	5.790
IIIANIUM	4.500	22000	22046	7.078	8.000
			22047	7.158	7.300
			22048	13.903	/3.800
			22049	5.622	5.500
	10.070	.	22050	5.639	5.400
TUNGSTEN	19.350	74000	74180	0.117	0.120
			74182	26.028	26.300
			74183	14.210	14.280
			74184	30.716	30.700
		•	74186	28.928	28.600

Alphanumeric		Nuclide	Ise	otopic distribution ^b	
element name	Density ^a	identifier	ID	wt %	Atm. %
URANIUM	19.050	92000	92234	0.005	0.005
			92235	0.711	0.720
			92238	99.284	99.275
VANADIUM	5.960	23000	23050	0.245	0.250
			23051	99.755	99.750
XENON	1.000	54000	54124	0.094	0.100
			54126	0.086	0.090
			54128	1.861	1.910
			54129	25.920	26.400
			54130	4.057	4.100
			54131	21.137	21.200
			54132	27.025	26.900
			54134	10.607	10.400
			54136	9.213	8.900
YTTERBIUM	6.965	70000	70168	0.126	0.130
			70170	2.995	3.050
			70171	14.127	14.300
			70172	21.761	21.900
			70173	16.111	16.120
			70174	31.966	31.800
			70176	12.914	12.700
YTTRIUM	4.469	39000	39089	100.000	100.000
ZINC	7.140	30000	30064	47.510	48.600
			30066	28.126	27.900
			30067	4.196	4.100
			30068	19.527	18.800
			30070	0.642	0.600
ZIRCONIUM	6.490	40000	40090	50.707	51.450
			40091	11.181	11.220
			40092	17.278	17.150
			40094	17.891	17.380
			40096	2.944	2.800

LL.

Alphanumeric compound/alloy	<u></u>		Number of atoms
identifier	Density ^a	Nuclide	per molecule
B4C .	2.52	5000	4
		6012	1
BALSA	0.125	6012	6
		1001	10
		8016	5
D2O	1.1054	1002	2
		8016	1
GRAPHITE	2.3	6312	1
 H2O	0.9982	1001	2
		8016	1
 H2O-X(E)-HR	0.9982	1301	2
		8016	1
HFACID	1.0	1001	1
		9019	1
HNO3	1.0	1001	1
		7014	1
		8016	3
NORPAR13	0.76	1901	28
		6012	13
NORPAR(H2O)	0.76	1001	28
		6012	13
OAK	0.700	6012	6
		1001	10
		8016	5
PARA(H2O)	0.90	1001	52
		6012	25
PARAFFIN	0.90	1901	52
		6012	25
PLEXIGLAS	1.18	1001	8
		6012	5
	•	8016	2

Table M8.2.4 The Standard Composition Library – compounds/alloys (atoms per molecule)

Alphanumeric compound/alloy			Number of atoms
identifier	Density	Nuclide	per molecule
PLEXIGLASS	1.18	1001	8
		6012	5
		8016	2
POLY(H2O)	0.923	1001	2
		6012	1
POLYETHYLENE	0.92	1901	2
		6012	1
POLYVINYLCL	1.6	1901	3
		6012	2
		17000	1
PU(NO3)4	2.447	94000	1
		7014	4
		8016	12
٧UC	13.6	94000	1
		6012	1
PUF4	7.0	94000	 1
		9019	4
'UN	14.25	94000	1
		7014	1
PUO2	11.46	94000	 1
		8016	2
PVC	1.6	1901	. 3
		6012	2
		17000	1
 VC(H2O)	1.6	1001	3
		6012	2
		17000	1
EDWOOD	0.387	6012	6
		1001	10
		8016	5
ГВР	0.9724	1901	27
		6012	12
		8016	4
		15031	1

Table M8.2.4 (continued)

I. I. K.,

NUREG/CR-0200 Vol. 3, Rev. 6

M8.2.26

Alphanumeric compound/alloy			Number of atoms
identifier	Density	Nuclide	per molecule
TBP(H2O)	0.9724	1001	27
		6012	12
		8016	4
		15031	ـــــــــــــــــــــــــــــــــــــ
U3O8	8.30	92000	3
		8016	8
UC	13.63	92000	1
		6012	1
	6.70	92000	1
		9019	4
UF6	4.68	92000	1
		9019	6
UN	14.31	92000	1
		7014	1
 UO2	10.96	92000	1
		8016	2
UO2(NO3)2	2.203	92000	1
		7014	2
		8016	8
 UO2F2	6.37	92000	1
		8016	2
		9019	2
 UO3	7.29	92000	1
		8016	3
ZIRCALLOY	6.56 ^b	40302	1
ZRH2	5.61°	40701	1 、
		1701	2
ZR5H8	5.61°	40701	5
		1701	8

Table M8.2.4 (continued)

^aSee ref. 5.

^bSee ref. 6.

°See ref. 7.

Alphanumeric		· · · · · · · · · · · · · · · · · · ·	
compound/alloy	—		
name	Density ^a	Nuclide	Weight %
CARBONSTEEL	7.8212	26000	99.0
		6012	1.0
INCONEL	8.3	14000	2.5
•		22000	2.5
		24404	15.0
		26404	7.0
		28404	73.0
INCONELS	8.3	14000	2.5
		22000	2.5
		24000	15.0
		26000	7.0
		28000	73.0
KEROSENE	0.82	1901	16
		6012	84
KERO(H2O)	0.82	1001	
		6012	84
MGCONCRETE	2.147	26000	0.5595
		1001	0.3319
		6012	10.5321
		8016	49.9430
		11023	0.1411
		12000	9.4200
		13027	0.7859
		14000	4.2101
		16000	0.2483
		17000	0.0523
		19000	0.9445
		20000	22.6318
		22000	0.1488
		25055	0.0512
ORCONCRETE	2.2994	26000	0.7784
		1001	0.6187
		6012	17.52
		8016	41.02
		11023	0.02706
		12000	3.265
		13027	1.083

Table M8.2.5 The Standard Composition Library – compounds/alloy (weight percent)

I. . ____I.

Alphanumeric			
compound/alloy			
name	Density	Nuclide	Weight %
ORCONCRETE (continued)	14000	3.448	
		19000	0.1138
		20000	32.13
PYREX 2.23	5000	3.7	
		13027	1.0
		8016	53.5
		14000	37.7
		11023	4.1
REG-CONCRETE	2.3	26000	1.4
		1001	1.0
		13027	3.4
		20000	4.4
		8016	53.2
		14000	33.7
		11023	2.9
RFCONCRETE	2.321	26000	1.01
		1001	0.75
		6012	5.52
		7014	0.02
		8016	48.49
		11023	0.63
		12000	1.25
		13027	2.17
·		14000	15.5
		16000	0.19
		19000	1.37
		20000	23.0
		22000	0.1
SS304	7.94	6012	0.08
		14000	1.0
		15031	0.045
		24304	19.0
	•	25055	2.0
•		26304	68.375
		28304	9.5

Alphanumeric compound/alloy	· · · · · · · · · · · · · · · · · · ·		
name	Density	Nuclide	Weight %
SS304S	7.94	6012	0.08
		14000	1.0
		15031	0.045
		24000	19.0
		25055	2.0
		26000	68.375
		28000	9.5
SS316	8.03	6012	0.08
		14000	1.0
		15031	0.045
		24304	17.0
		25055	2.0
		26304	65.375
		28304	12.0
		42000	2.5
SS316S	8.03	6012	0.08
		14000	1.0
		15031	0.045
		24000	17.0
		25055	2.0
		26000	65.375
		28000	12.0
		42000	2.5
U(.27)METAL	19.05	92235	0.27
		92238	99.73
ZIRC2	6.56 ^b	40000	98.25
		50000	1.45
		26000	0.135
		24000	0.100
		28000	0.055
		72000	0.10
ZIRC4	6.56 ^b	40000	98.23
		50000	1.45
		26000	0.21
		24000	0.10
		72000	0.01

Table M8.2.5 (continued)

1 · _____

^aSee ref. 5. ^bSee ref. 6.

.

Nuclide		$\sigma_{\rm s}$ (resonance energy	σ_t (resonance energy total cross section)
identifier	Mass ^a	scattering cross section)	
900	0.6022	0.000	0.000
901	0.6022	0.000	0.000
902	0.6022	0.000	0.000
999	0.6022	0.000	0.064
1000	1.0079	20.450	20.450
1001	1.0078	20.38087	20.38782
1002	2.0141	3.39486	3.39487
1003	3.0161	1.30000	1.30000
1301	1.0078	20.450	20.450
1701	1.0078	20.450	20.450
1801	1.0078	20.38072	20.38767
1802	2.0141	3.39486	3.39487
1901	1.0078	20.38087	20.38782
2000	4.0026	0.759	0.759
2003	3.0149	1.00000	48.43520
2004	4.0026	0.75914	0.75914
3000	6.9410	1.025	4.556
3006	6.0151	0.70640	9.49837
3007	7.0160	1.05000	1.05077
4000	9.0122	6.000	6.000
4009	9.0122	6.00000	6.00023
4309	9.0122	6.00000	6.00023
5000	10.8126	4.430	41.800
5010	10.0129	2.02361	36.99886
5011	11.0093	5.03432	5.03443
6000	12.0011	4.740	4.740
6012	12.0000	4.73651	4.73658
6013	13.0034	4.400	4.400
6312	12.0000	4.73651	4.73658
7000	14.0067	9.830	10.000
7014	14.0031	9.37454	9.41251
7015	14.9999	4.26969	4.26969
8000	15.9994	3.750	3.750
8016	15.9906	3.88696	3.88696
8017	16.9991	3.74000	3.74501
8018	17.9992	3.790	3.790
9000	18.9984	3.640	3.640
9019	18.9982	3.64311	3.64331
10000	20.1800	3.520	3.520
10020	19.9924	3.540	3.540
10021	20.9938	3.400	3.400
10022	21,9914	3.260	3.260

 Table M8.2.6
 The Standard Composition Library – nuclide identification

Nuclide identifier	Mass ^a	σ_s (resonance energy	σ_t (resonance energy
		scattering cross section)	total cross section)
11000	22.9895	3.130	3,130
11023	22.9895	3.68074	3.69501
12000	24.3051	3.56188	3,56322
12024	24.1928	3.60	3.63
12025	24.9858	3.60	3.63
12026	25.9826	3.60	3.63
13000	26.9815	1.347	1.350
13027	26.9818	1.34652	1.35195
14000	28.0853	2.07886	2.08242
14028	27.9769	2.086	2.090
14029	28.9765	2.290	2.290
14030	29.9738	2.160	2.160
15000	30.9738	4.100	4.110
15031	30.9741	4.10000	4,10940
16000	32.0636	0.96801	0.98647
16032	31.9717	1.07917	1.16292
16033	32.9715	1.770	1.770
16034	33.9679	1.650	1.650
16036	35.9671	1.460	1.460
17000	35.4526	3.87615	4.09662
17035	34.9688	14.600	16.100
17037	36.9659	14.600	16.100
18000	39.9480	0.500	0.510
18036	35.9675	1.460	1.460
18038	37.9627	1.310	1.310
18040	39.9624	0.500	0.510
19000	39.1019	1.57649	1.61912
19039	38.9637	1.748	1.795
19040	39.9766	1.280	1.280
19041	40.9618	3.190	3.190
20000	40.0803	2.93420	2.94575
20040	40.0803	2.990	3.000
20042	41.9586	1.320	1.320
20043	42.9588	1.420	1.420
20044	43.9555	1.530	1.530
20046	45.9537	1.860	1.860
20048	47.9525	2.310	2.310
21000	44.9559	24.000	24.000
21045	44.9541	24.000	24.000
22000	47.8789	4.76379	4.84643
22046	45.9526	4,470	4 500

Table M8.2.6 (continued)

I . IL.

Nuclide	Mass ^a	σ _s (resonance energy	σ_t
identifier		scattering cross section)	total cross section)
22047	46.9513	4.470	4.500
22048	47.9479	4.470	4.500
22049	48.9479	2.560	2.560
22050	49.9995	3.570	3.570
23000	50.9416	6.08597	6.22050
23050	49.9448	3.080	3.080
23051	50.9416	5.000	5.250
24000	51.9957	4.80606	4.88958
24050	49.9461	3.65041	4.06749
24052	51.9402	2.93131	2.95963
24053	52.9408	11.36418	11.85856
24054	53.9394	2.59604	2.60402
24301	51.9957	4.80332	4.88691
24304	51.9957	4.80524	4.87986
24404	51.9957	4.340	4.560
25055	54.9381	4.11673	4.66220
25304	54.9380	1.620	2.510
26000	55.8447	10.14041	10.21196
26054	53.9394	0.54078	0.56419
26056	55.9345	10.34167	10.41600
26057	56.9351	2.18651	2.24484
26058	57.9337	2.93278	3.02954
26301	55.8447	10.13435	10.18683
26304	55.8447	10.13958	10.20438
26404	55.8447	11.330	11.500
27059	58,9332	4.01701	4.56253
28000	58.6868	17.40151	17.49917
28058	57.9357	22.89210	22.98659
28059	59.1179	6.160	6.160
28060	59.9308	0.60130	0.64445
28061	60.9314	7.03812	7.08748
28062	61.9280	13.83746	14.13414
28064	63.9282	0.03621	0.06739
28301	58.6871	17.39816	17.49579
28304	58.6871	17.39386	17.49143
28404	58.6871	17.850	18.170
29000	63.5456	7.67365	7.87143
29063	62.9296	4.96604	5.15628
29065	64.9278	11.04072	11.17869
30000	65.3900	3.970	4.045
30064	63.9291	3.970	4.045

Table M8.2.6 (continued)

Nuclide		σ _s (resonance energy	σ_i (resonance energy
identifier	Mass ^a	scattering cross section)	total cross section)
30066	65.9260	5.930	5.930
30067	66.9271	5.990	5.990
30068	67.9248	6.050	6.050
30070	69.9253	6.170	6.170
31000	69.7200	7.24099	7.85971
31069	68.9256	6.110	6.110
31071	70.9247	6.200	6.200
32000	72.6100	6.240	6.240
32070	69.9242	6.170	6.170
32072	71.9221	2.75260	2.79731
32073	72.9235	1.77701	2.66178
32074	73.9212	2.21790	2.23275
32076	75.9214	3.14968	3.21560
33000	74.9216	6.300	6.300
33075	74.9216	2.40061	3.05509
34000	78.9600	6.330	6.330
34074	73.9220	2.40836	3.86328
34076	75.9192	2.18392	3.89666
34077	76.9199	3.23300	4.87295
34078	77.9174	2.57555	2.70517
34080	79.9165	0.74908	0.78460
34082	81.9167	2.83395	2.83491
35000	79.9040	6.330	6.330
35079	78.9184	3.84062	5.73140
35081	80.9163	4.39900	5.12874
36000	83.8000	6.240	6.240
36078	77.9204	9.67690	10.32532
36080	79.9163	9.99815	10.87241
36082	81.9135	11.00954	12.39253
36083	82.9141	7.60811	8.90037
36084	83.9114	7.37167	7.61555
36085	84.9125	4.35119	4.42300
36086	85.9106	5.37942	5,38389
37000	85.4678	6.200	6.200
37085	84.9118	6.78018	7.12265
37086	85.9112	4.82311	6.23901
37087	86.9090	4.57199	4.67865
38000	87.6200	6.150	6.150
38084	83.9139	4.47559	4.69884
38086	85.9093	2.16458	2.27995
38087	86.9089	3.84809	4.21824

Table M8.2.6 (continued)

1 . I.L.

Nuclide		σ _s (resonance energy	σ _t (resonance energy
identifier	Mass [*]	scattering cross section)	total cross section)
38088	87.9057	3.61505	3.61518
38089	88.9075	4.20130	4.21933
38090	89.9078	3.67100	3.68981
39089	88.9058	3.48300	3.52674
39090	89.9072	5.18952	5.42417
39091	90.9074	4.66901	4.75126
40000	91.2196	6.40229	6.44668
40090	89.9043	5.63609	5.63665
40091	90.9029	9.63672	9.88639
40092	91.9015	4.60604	4.62334
40093	92.9064	5.25481	6.23552
40094	93.9027	6.39770	6.40101
40095	94.9080	4.66893	5.01030
40096	95.9049	6.63752	6.69435
40302	91.2196	6.57039	6.64760
40701	91.2196	6.40229	6.44668
41000	92.9064	5.990	5.990
41093	92.9032	6.24149	6.91965
41094	93.9073	6.37552	9.18253
41095	94.9068	5.00376	6.09320
42000	95.9402	6.66278	7.55771
42092	92.0003	4.69744	4.75108
42094	93.9051	3.60965	3.64971
42095	94.9059	3.88602	5.22943
42096	95.9047	3.12306	3.29786
42097	96.9061	4.15422	4.86886
42098	97.9055	4.05373	4.33084
42099	98.9078	4.96830	7.33397
42100	99.9075	4.12708	4.26029
43099	99.0005	8.48843	11.89032
44000	101.0700	5.650	5.650
44096	95.9079	8.15755	8.91747
44098	97.9051	8.25404	8.87823
44099	98.9060	4.85653	8.10904
44100	99.9042	4.82418	5.23917
44101	100.9058	4.16608	6.78565
44102	101.9044	4.03206	4.27401
44103	102.9060	5.35181	8.38870
44104	103.9056	4.36130	4.64186
44105	104.9082	4.79934	5.28506
44106	105.9078	4.29521	4.41311
45000	102.9055	5.560	5.560

Table M8.2.6 (continued)

		<u> </u>	
Nuclide		Us (resonance energy	σ_t
identifier	Mass ^a	scattering cross section)	total cross section)
	*******	souttering cross socion)	total cross section)
45103	102.9050	6.73505	8 47520
45105	104.9062	5.82661	12.45579
46000	106.4200	5.370	5.370
46102	101.9054	7.52110	8.21081
46104	103.9036	4.65932	5 18701
46105	104.9052	3.84954	7,39375
46106	105.9038	4.34964	4.59382
46107	106.9054	3.96261	9.22079
46108	107.9040	3.78627	5.25835
46110	109.9051	4,60048	5 24374
47000	107.8682	5.290	5.290
47107	106.9054	6.53019	8.73731
47109	108.9046	7.03860	10.78046
47111	110.9057	4.73012	8.66196
48000	112.4258	5.96439	7.35874
48106	105.9098	6.98897	7,76262
48108	107.9040	4.77742	5 02427
48110	109.9031	3.78265	4,44252
48111	110.9047	4.62964	6.82803
48112	111.9033	4.41276	4.88232
48113	112.8999	5.82412	7.65733
48114	113.9035	4.06873	4.52448
48115	114.9061	4.400	8.450
48116	115.9047	4.47517	4.62149
48601	114.9060	5.08049	12,14392
49000	113.8340	6.54499	11.55700
49113	112.9039	4.73201	8.29204
49115	114.9041	4.95874	7.68116
50000	118.6900	5.08197	5,19374
50112	111.9013	5.83299	6.40444
50114	113.8985	5.90196	6.09166
50115	114.9031	5.03967	6.20347
50116	115.9017	4.31898	4,50526
50117	116.9033	4.83833	5.54342
50118	117.9018	4.74617	4.97918
50119	118.9035	5.07381	5.41780
50120	119.9020	4.44965	4 56804
50122	121.9032	4.26749	4 31517
50123	122.9058	5.14967	5 30259
50124	123.9054	4.51436	4 61335
50125	124.9080	5.14050	5 80074
		J.170JV	J.077/4

Table M8.2.6 (continued)

1 .. _**I.**Ľ.,

NT - 11 - 1		σ _s	σι
Nuclide		(resonance energy	(resonance energy
identifier	Mass ^a	scattering cross section)	total cross section)
50126	125.9076	4.59500	4.60129
51000	121.7500	4.220	4.220
51121	120.9036	5.01859	7.95345
51123	122.9038	4.74831	6.06791
51124	123.9064	5.15754	7.73459
51125	124.9050	6.09719	7.18684
51126	125.9076	6.31921	8.93292
52000	127.6000	3.650	3.650
52120	119.9000	6.62139	7.64407
52122	121.9032	3.97031	4.63531
52123	122.9048	6.29093	9.41775
52124	123.9034	4.36331	4.82319
52125	124.9040	5.07637	6.15076
52126	125.9036	4.27202	4.40841
52127	126.9052	5.020	6.270
52128	127.9048	4.78246	4.95040
52129	128.9074	4.670	4.740
52130	129.9060	4.62586	4.64628
52132	131.9082	4.74000	4.74004
52601	126.9050	6.96475	9.34985
52611	128.9070	6.31616	6.62837
53000	126.9045	3.720	3.720
53127	126.9042	4.73310	7.40698
53129	128.9054	6.33669	8.31838
53130	129.9070	7.57110	13.76491
53131	130.9066	6.35574	6.73260
53135	134.9100	4.81200	4.81242
54000	131.2900	3.330	3.330
54124	123.9064	11.50989	14.44249
54126	125.9046	5.72483	6.14354
54128	127.9038	4.63051	4.91435
54129	128,9044	5.89874	8.14997
54130	129,9039	4.44554	4.60329
54131	130.9056	11.95602	15.37690
54132	131.9041	4.37973	4.39941
54133	132.9057	11.32614	24.91361
54134	133.9053	4.73044	4.77503
54135	134.9069	11.88843	12.58943
54136	135.9075	5.21155	5.21643
55000	132.9054	3.210	3.210
55133	132,9057	8 36492	12.39438

Table M8.2.6 (continued)

Nuclide identifier	Mass ^a	σ_s (resonance energy scattering cross section)	σ_t (resonance energy total cross section)
55134	133,9073	14 07658	27.01909
55135	134 9059	8 53004	12 40562
55136	135,9075	5 86240	6 55006
55137	136,9071	5 38316	5 40225
56000	137.3270	3 040	3.40323
56130	129 9063	3 430	3.040
56132	131 9050	3 290	3.430
56134	133,9043	4 83515	5 12520
56135	134,9059	5 16108	6 38253
56136	135.9045	5.01188	5 15380
56137	136.9051	5,63901	5 89302
56138	137.8996	7.00000	7 02446
56140	139.9109	5.07550	5 77947
57000	138.9055	3.090	3,090
57138	138.9071	3.090	3.090
57139	138.9063	6.72696	6.94693
57140	139.9099	9.42548	10.92764
58000	140.1150	3.180	3,180
58136	135.9071	3.060	3.060
58138	137.9060	3.030	3.030
58140	139.9059	5.15576	5,16960
58141	140.9085	11.89578	13.20776
58142	141.9091	5.97662	6.00512
58143	142.9127	9.02059	10.05762
58144	143.9133	5.78863	5.95060
59141	140.9075	4.05503	4.55001
59142	141.9101	16.60534	21.30440
59143	142.9107	20.29262	27.55482
60000	144.2400	4.220	4.220
60142	141.9081	4.60720	5.01585
60143	142.9097	4.49254	5.39538
60144	143.9103	1.76757	1.92650
60145	144.9129	4.74528	7.34156
60146	145.9135	1.76913	1.91672
60147	146.9161	44.77876	75.87045
60148	147.9167	0.78075	0.93393
60150	149.9209	4.55604	4.78174
61147	146.9151	29.41382	40.44508
61148	147.9177	12.63462	55.47230
61149	148.9183	19.91237	69.02393
61151	150.9215	10.23679	16.89389

Table M8.2.6 (continued)

1 1

<u>_</u>		σ.	σ,
Nuclide		(resonance energy	(resonance energy
identifier	Mass ^a	scattering cross section)	total cross section)
61548	147.9177	14.120	501.560
61601	147.9160	12.50349	84.52424
62000	150.3600	8.410	8.410
62144	143.9163	8.70659	9.12992
62147	146.9151	8.55485	14.41743
62148	147.9147	10.98818	11.54683
62149	148.9173	10.67280	26.70062
62150	149.9169	5.60014	7.41767
62151	150.9195	27.74949	91.09621
62152	151.9201	12.20033	14.96736
62153	152.9217	33.18710	61.24710
62154	153.9223	3.93533	4.45460
63000	151.9624	19.79401	77.43832
63151	150.9195	19.49246	82.69254
63152	151.9251	20.01232	97.97688
63153	152.9217	16.26340	51.92801
63154	153.9223	14.41121	52.45164
63155	154.9229	7.48674	26.34428
63156	155.9245	9.93960	16.11951
63157	156.9251	9.67766	14.05592
64000	157.2500	2.900	30.900
64152	151.9201	5.80773	9.31788
64154	153.9213	7.12720	11.55622
64155	154.9229	11.33346	42.56798
64156	155.9225	7.51759	9.00551
64157	156.9241	4.56730	10.01622
64158	157.9237	4.37880	5.12278
64160	159.9269	4.61818	4.85875
65000	158.9253	7.530	7.530
65159	158.9253	13.31429	24.24897
65160	159.9273	16.15331	28.68471
66000	162.5000	7.340	7.340
66156	155.9243	7.770	7.770
66158	157.9244	7.610	7.610
66160	159.9249	26.55838	53.53649
66161	160.9274	21.09521	50.16882
66162	161.9270	7.78376	10.77485
66163	162.9287	7.41391	12.14881
66164	163.9282	16.92097	18.10130
67000	164.9303	7.240	7.240
67165	164.9298	13.87232	26.66914

Table M8.2.6 (continued)

Nuclide identifier	Mass ^a	σ_s (resonance energy scattering cross section)	σ _t (resonance energy total cross section)
68000	167.2600	7.200	7 200
68162	161.9288	7.370	7.200
68164	163.9292	7.280	7.270
68166	165.9304	5.71682	8 14902
68167	166.9320	19.20864	36 77205
68168	167.9324	7.190	7 190
68170	169.9355	7.160	7.120
69000	168.9342	7.180	7.100
69169	168.9342	12.000	115,000
70000	173.0400	7.220	7 220
70168	167.9339	7.190	7.190
70170	169.9348	7.160	7.150
70171	170.9363	7.180	7.100
70172	171.9364	7.200	7 200
70173	172.9382	7.220	7.200
70174	173.9389	7.240	7.220
70176	175.9426	7.330	7 330
71000	174.9670	7.260	7.260
71175	174.9408	13.09388	26 00653
71176	175.9414	13.10944	30 47302
72000	178.4873	21.82691	35,23405
72174	173.9402	15.81409	30,24438
72176	175.9414	8.00761	11.52188
72177	176.9430	19.51120	39.34697
72178	177.9436	11.39213	13.77346
72179	178.9462	14.03141	23.58469
72180	179.9468	12.50468	13.34719
73000	180.9479	7.820	7.820
73180	180.9479	7.820	7.820
73181	180.9545	10.59555	18,60863
73182	181.9500	21.39445	37,89878
74000	183.8564	18.06516	21.95447
74180	179.9467	7.640	7.640
74182	181.9531	11.50250	13.36487
74183	182.9517	7.92861	11.86607
74184	183.9502	5.95709	6.30797
74186	185.9575	14.14692	17.10276
75000	186.2070	8.950	8.950
75185	184.9528	21.76644	36.67757
75187	186.9561	14.34111	22.17058
76000	190.2000	10.230	10 230

Table M8.2.6 (continued)

Nuclide		$\sigma_{\rm s}$	σ _t (resonance energy total cross section)
identifier	Mass ^a	scattering cross section)	
76184	183.9525	8.370	8.370
76186	185.9538	8.870	8.870
76187	186.9557	9.190	9.190
76188	187.9558	9.510	9.510
76189	188.9581	9.830	9.830
76190	189.9584	10.160	10.160
76192	191.9615	10.690	10.690
77000	192.2200	10.760	10.760
77191	190.9606	82.050	82.050
77193	192.9629	25.628	25.628
78000	195.0800	11.520	11.520
78190	189.9599	10.170	10.170
78192	191.9610	10.690	10.690
78194	193.9627	11.230	11.230
78195	194.9648	11.500	11.500
78196	195.9649	11.590	. 11.590
78198	197.9679	11.750	11.750
79000	196.9665	11.670	11.670
79197	196.9660	14.47990	19.48166
80000	200.5900	11.690	11.690
80196	195.9658	11.590	11.590
80198	197.9667	11.750	11.750
80199	198.9683	11.730	11.730
80200	199.9683	11.700	11.700
80201	200.9703	11.690	11.690
80202	201.9706	11.670	11.670
80204	203.9735	11.640	11.640
81000	204.3833	11.640	11.640
81203	202.9723	11.660	11.660
81205	204.9744	11.630	11.630
82000	207.2100	11.22196	11.22639
82204	203.9730	11.640	11.640
82206	205.9694	10.82533	10.83220
82207	206.9780	10.72854	10.74918
82208	207.9766	11.35993	11.35994
83209	208.9803	10.04156	10.05296
90000	232.0381	11.190	11.190
90230	230.0361	12.18722	14.73401
90232	232.0333	14.46822	16.76003
91231	231.0347	9.87229	39.59202
91233	233.0399	10.87494	28,26477

Table M8.2.6 (continued)

Nuclide		σ _s	σ _t (resonance energy total cross section)
identifier	Mass ^a	scattering cross section)	
92000	238.0289	11.480	11.480
92232	232.0333	10.87214	32.30190
92233	233.0450	12.46693	37.62292
92234	234.0405	12.18716	16.09542
92235	235.0441	11.90249	35.22383
92236	236.0458	12.27302	14.93351
92237	237.0484	14.24581	24.68619
92238	238.0510	12.32636	14.62708
93237	237.0484	12.17113	32.69289
93238	238.0510	10.85823	36.53173
93239	239.0526	12.35728	42.01463
94000	239.0526	8.950	29.040
94236	236.0458	12.87549	21.65514
94237	237.0484	11.68929	45.26585
94238	238.0500	15.70542	20.02287
94239	239.0526	11.51819	28.47182
94240	240.0542	11.11239	14.06522
94241	241.0487	12.45935	40.20634
94242	242.0584	13.03224	15.35400
94243	243.0620	12.90616	28.13765
94244	244.0647	12.60434	15.21899
95241	241.0568	13.15588	36.54988
95242	242.0594	10.69250	33.91222
95243	243.0610	11.93284	32.23324
95601	242.0600	11.69557	67.76985
96241	241.0578	11.64334	42.63003
96242	242.0584	11.78203	15.48221
96243	243.0610	12.95100	47.19994
96244	244.0626	12.98077	17.89164
96245	245.0653	10.60726	38.13534
96246	246.0669	12.09723	13.54742
96247	247.0725	10.36968	16.68160
96248	248.0721	8.59636	10.26753
97249	249.0797	27.18501	70.44259
98249	249.0797	10.98123	36.83376
98250	250.0763	13.01097	17.80937
98251	251.0799	13.62784	26.60932
98252	252.0815	11.08669	15.01721
98253	253.0841	12.37956	45.71291
99253	253.0414	19.02553	28.06653

Table M8.2.6 (continued)

M8.3 TABLE OF AVAILABLE SOLUTIONS

The Standard Composition Library (Tables M8.2.1 through M8.2.6) describes the various compounds, alloys, elements, and isotopes one may use in defining the material mixtures for a given problem. In addition to the various materials listed there, one is also free to use any of the fissile solutions listed in Table M8.3.1. Indeed, the user is encouraged to treat the solutions listed in Table M8.3.1 as he would any other standard composition. Using empirical fits to experimental data, the code will then automatically calculate the volume fraction corresponding to the heavy metal, acid, and water components of the solution.

Alphanumeric description of the solution	List of nuclides in this fissile solution (first nuclide listed is a variable isotope nuclide)
SOLNUO2F2	92000 1001 8016 9019
SOLNUO2(NO3)2	92000 1001 7014 8016
SOLNPU(NO3)4	94000 1001 7014 8016

Table M8.3.1 Table of available solutions

M8.4 REFERENCES

- 1. ENDF-201 ENDF/B-VI Summary Documentation, Compiled and edited by P. F. Rose, BNL-NCS-17541 [ENDF-201], Brookhaven National Laboratory, National Nuclear Data Center, October 1991.
- 2. ENDF-201 ENDF/B Summary Documentation, Compiled by R. Kinsey, Brookhaven National Laboratory, National Nuclear Data Center, July 1979.
- 3. "Chart of the Nuclides," Nuclides and Isotopes, Fourteenth Edition, General Electric Company, Revised 1989.
- 4. William H. Sullivan, Trilinear Chart of Nuclides, U.S. Atomic Energy Commission, January 1957.
- 5. CRC Handbook of Chemistry and Physics, 64th Edition, CRC Press, Boca Raton, Florida, 1983-1984.
- 6. International Methods Handbook, Vol. III, 10th Ed., American Society for Metals, 1990.
- 7. Atlantic Equipment Engineers, Division of Micron Metals, http://www.micronmetals.com/ zirconium_hydride.htm.

NUREG/CR-0200 Revision 6 Volume 3, Section M9 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

MARS: A MULTIPLE-ARRAY SYSTEM USING COMBINATORIAL GEOMETRY

J. T. West* M. B. Emmett

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

*Formerly with Oak Ridge National Laboratory.

ABSTRACT

MARS is a combinatorial geometry method for modeling a <u>Multiple-AR</u>ray <u>System</u>. It allows the user the ability to model many unique rectangular arrays with unlimited array nesting. In this system, arrays may contain arbitrary vacancies and may be arbitrarily positioned in space. Geometry may be modeled around an array and optionally repeated with the array. Array repetition and array nesting does not require additional computer memory; hence, MARS can model very complicated geometry systems with a minimum of computer memory requirements.

> NUREG/CR-0200, Vol. 3, Rev. 6

M9.iii

CONTENTS

		Page
ABST	RACT	М9.ііі
LIST (OF FIGUR	ES M9.vii
LIST (OF TABLI	ES M9.ix
ACKN	IOWLEDO	GMENTS
M9.1	INTROL	DUCTION
M9.2	COMBI M9.2.1 M9.2.2 M9.2.3 M9.2.4	NATORIAL GEOMETRY THEORY AND TRACKING LOGICM9.2.1BODY DESCRIPTIONSM9.2.1COMBINATORIAL OPERATORSM9.2.8COMBINATORIAL ZONE CONSTRUCTIONM9.2.11COMBINATORIAL TRACKING LOGICM9.2.12
M9.3	MARS (M9.3.1 M9.3.2 M9.3.3 M9.3.4	GEOMETRY THEORYM9.3.1THE UNIVERSE BUILDING BLOCKM9.3.1MARS "ARRAY OF ARRAYS" CAPABILITYM9.3.1ARRAY ROTATIONM9.3.4MODEL CONSTRUCTION WITH MARSM9.3.4
M9.4	ARRAY M9.4.1 M9.4.2	ANALYSIS — COLLISION EDITSM9.4.1ANALYSIS CRITERIAM9.4.1M9.4.1.1Location CriteriaM9.4.1.2Media CriteriaM9.4.1.3Response CriteriaILLUSTRATIVE EXAMPLESM9.4.2
М9.5	COMBII M9.5.1 M9.5.2 M9.5.3	NATORIAL MARS OVERVIEWM9.5.1MEDIA NOTATIONM9.5.1TERMS AND DEFINITIONSM9.5.1RULES FOR ARRAY REPETITIONM9.5.3
M9.6	MARS 7 M9.6.1 M9.6.2 M9.6.3 M9.6.4	TRACKING LOGIC, SHORTFALLS, AND CORRECTIONSM9.6.1PARTICLE NESTING TABLE FOR TRACKINGM9.6.1MARS ARRAY PITFALLSM9.6.2COMBINATORIAL MODELING PITFALLSM9.6.4COMPUTER TRACKING AND MODELINGM9.6.5

1 10 1			
M9.A	FREE-F	ORM COMBINATORIAL MARS INPUT INSTRUCTIONS	M9.A.1
	M9.A.1	TITLE* CARD	M9.A.1
	M9.A.2	OPTIONS CARD (four entries required)	M9.A.1
	M9.A.3	BODY DEFINITION CARDS	M9.A.1
	M9.A.4	INPUT ZONE DESCRIPTION CARDS	M9.A.1
	M9.A.5	REGION CARD	M9.A.3
	M9.A.6	UNIVERSE CARD	M9.A.3
	M9.A.7	MEDIA CARD	M9.A.3
	M9.A.8	ARRAY SIZE SPECIFICATIONS INPUT	M9.A.3
	M9.A.9	ARRAY CONTENT DESCRIPTION	M9.A.4
	M9.A.10	0 UNIVERSE TYPE	M9.A.6
M9.B	ILLUST	TRATIVE EXAMPLES OF MARS GEOMETRY	M9.B.1
	M9.B.1	AN UNCOMMON ARRAY SHAPE	M9.B.1
		M9.B.1.1 Explanations and Discussions	M9.B.2
	M9.B.2	OVERLAPPING PINS IN A 2 × 2 ARRAY	M9.B.7
	M9.B.3	PLEXIGLAS PIPE CROSS EXPERIMENT	M9.B.14
M9.C	COMBI	NATORIAL GEOMETRY ZONE SUMMARY TABLE DESCRIPTION .	М9.С.1
M9.D	INTERF.	FACING THE MARS SUBROUTINES MODULE	
	TO OTH	HER COMPUTER CODES	M9.D.1
M9.E	MARS D	DATA STORAGE AND PROGRAM LOGIC	M9 E 1
	M9.E.1	MARS SUBROUTINE DESCRIPTIONS	M9.E.1
M9.F	COMBI	NATORIAL GEOMETRY TRACKING	M9 F 1
	M9.F.1	COMJOM TRACKING THEORY	M9.F.1
M9.G	DIAGNO	OSTIC MESSAGES FROM MARS	M9.G 1
	M9.G.1	DIAGNOSTIC MESSAGES FROM MARS INPUT MODULE	M9 G 1
	M9.G.2	DIAGNOSTIC MESSAGES FROM MARS TRACKING EVENTS	M9.G.3

II.L.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.vi

LIST OF FIGURES

	Page
M9.2.1	Rotations defining alternative bodies BPP and WPP M9.2.7
M9.2.2	Examples of combinatorial geometry method
M9.2.3	Use of OR operators M9.2.9
M9.2.4	Illustrative input zone descriptions M9.2.12
M9.2.5	Particle trajectory moving from P1 to P2 M9.2.13
M9.3.1	A nested-array lattice M9.3.2
M9.B.1	Computer drawing of Sample Problem 1 M9.B.3
M9.B.2	Computer input and output listing of Sample Problem 1
M9.B.3	Computer drawing of Sample Problem 2 M9.B.8
M9.B.4	Computer input and output listing of Sample Problem 2
M9.B.5	Computer drawing of Sample Problem 3 M9.B.15
M9.B.6	Computer input and output listing of Sample Problem 3 M9.B.16
M9.F.1	A simple demonstration of particle tracking

NUREG/CR-0200, Vol. 3, Rev. 6

LIST OF TABLES

		Page
M9.A.1	Input required for each body type M9).A.2
M9.E.1	MARS subroutine	Э.E.5
M9.E.2	MARS storage requirements	9.E.6
M9.E.3	Layout of combinatorial geometry data M9	9.E.7
M9.E.4	Detailed layout of the FPD array MS	9.E.8
M9.E.5	Detailed layout of the MA array M9	9.E.9
M9.E.6	Definitions of variables in common GOMLOC	E.11
M9.E.7	Definitions of variables in common PAREM as found in combinatorial geometry	.E.12
M9.E.8	Definitions of variables in common ORGI M9.	E.13
M9.E.9	Definitions of variables in common TAPE M9.	E.13
M9.E.10	Definitions of variables in common MGOMV M9.	.E.14
M9.E.11	Definitions of variables in common ARAR M9.	E.15
M9.E.12	Definitions of variables in common ARK M9.	.E.15

NUREG/CR-0200, Vol. 3, Rev. 6

.

ACKNOWLEDGMENTS

The direction and guidance of L. M. Petrie in developing the MARS system were invaluable. His patience and consultation aided in overcoming programming obstacles and spawning several fresh approaches to lattice modeling. This development is an offshoot of the array lattice modeling system originally developed by G. E. Whitesides in his KENO Monte Carlo program. The efforts of R. M. Westfall and R. H. Odegaarden, formerly of the U.S.Nuclear Regulatory Commission, are appreciated for their support and encouragement in funding this work.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.1 INTRODUCTION

Rectangular lattice modeling demands as demonstrated by shipping casks, spent fuel pools, and reactor cores require a geometry system with a multiple-array capability and array manipulation techniques. The MARS geometry system has been developed to allow the nuclear analyst the ability to model complex lattice geometries efficiently and quickly with a minimum of geometric approximation and a minimum of computer memory requirements. The MARS system is a versatile system, meeting the most rigid modeling requirements in a flexible and general manner. The features the MARS system offers are as follows:

- 1. Many arrays may be modeled each being unique.
- 2. Arrays may contain other arrays embedded in their lattice positions. The user may nest arrays inside arrays with no program limitation.
- 3. Arrays may be repeated by simple reference.
- 4. Arrays may have vacant lattice positions to model irregular array shapes. A particle may enter or exit an array from any cell in an array.
- 5. Geometry may be optionally modeled around an array and repeated with the array.
- 6. Arrays may be arbitrarily oriented. An array may be rotated as well as translated when it is repeated.
- 7. User geometry is modeled in simple coordinate systems called "universes," which are separate and independent from other parts of a geometry model.
- 8. Array input is verified for logical consistency and fit during input.
- 9. Basic geometry modeling uses combinatorial geometry for ease of input and flexibility. No restrictions are placed on the shape or complexity of individual cell content provided the outer shape of the cell is rectangular.
- 10. Efficient geometry data management minimizes the computer space requirements and has no external disk requirements. All geometry data reside in computer memory. Repeating a universe, repeating an array, and nesting arrays inside arrays do not require additional memory. Computer memory requirements are primarily a function of the number of unique arrays modeled and the size of each array. This feature allows complex models to be run on small computers.
- 11. MARS runs within MORSE-SGC. MORSE-SGC supergroups both the material cross sections and the particle tracking to minimize the computer memory requirements. Extensive effort has been placed on verifying and benchmarking this version of MORSE with the MARS geometry system. This version of MORSE is in the SCALE system and may run either in a

NUREG/CR-0200, Vol. 3, Rev. 6 stand-alone mode or in a SCALE control sequence. Further description of MORSE-SGC may be found in Sect. F9 of the SCALE manual.

This document is intended to give a detailed description of the MARS geometry concepts and to illustrate some applications of the MARS modeling capability. Section M9.2 describes the rudiments of combinatorial geometry by introducing the concepts of material zone construction using basic combinatorial bodies. Section M9.3.1 discusses the MARS approach to lattice modeling and introduces the "universe concept," which is the link between combinatorial particle tracking and MARS lattice construction. In addition, Sect. M9.3.2 examines array nesting and the advantages nesting offers in lattice modeling. Section M9.3.3 recommends some broad procedures for the novice MARS user in model construction and development. Section M9.4 discusses the array analysis portion of MARS. The analysis part of MARS is a collision flux estimator with an edit feature that allows the user to obtain very specific and detailed reaction rate information from complicated models. Section M9.5 is a summary of the concepts introduced in Sects. M9.2 through M9.4. Section M9.6 discusses some subtle aspects of MARS tracking logic, including its weaknesses and some recommended corrective techniques for preventive modeling.

Appendices M9.A through M9.F give the mechanics for applying the MARS geometry system. Appendix M9.A gives the input requirements for both the combinatorial and array portions of MARS. Appendix M9.B gives three examples of problems modeled with MARS. Many of the MARS concepts are best understood in these applications. Appendix M9.C describes the combinatorial geometry zone transfer table printed at the completion of MARS tracking. Appendix M9.D describes how the MARS collection of subroutines may be interfaced into other Monte Carlo codes. Appendix M9.E discusses the MARS tracking logic and program flow. Appendix M9.F is presented as complementary information to the combinatorial ray tracing discussed in Sect. M9.2.4. A detailed numerical illustration of combinatorial tracking is given in Appendix M9.F. This appendix is a reprint of material presented in past MORSE workshops.

This document should orient the new MARS user to both combinatorial geometry modeling concepts and multiple nested-array concepts unique to the MARS system. The user should attempt to understand the geometry concepts developed in this document before generating MARS input. Users familiar with combinatorial geometry may wish to omit Sect. M9.2 and Appendix M9.C and concentrate on Sects. M9.3 and M9.6.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.1.2

M9.2 COMBINATORIAL GEOMETRY THEORY AND TRACKING LOGIC

The combinatorial geometry package in the MARS system was obtained from earlier versions of the MORSE Monte Carlo code. Combinatorial geometry allows the description of physical structures by the combination of certain basic geometric shapes (bodies) such as rectangular parallelepipeds, right circular cvlinders, etc. These basic shapes are combined using three logical operators-the AND operator using the "+" notation, the NOT operator using the "-" notation, and the OR operator using the "OR" notation. This section will introduce the concepts of simple geometric bodies, the operators to combine bodies into zones, and two types of zones-the input zone and its subset, the code zone.

M9.2.1 BODY DESCRIPTIONS

Combinatorial geometry (CG or COMJOM) describes general three-dimensional (3-D) material configurations by considering unions, differences, and intersections of simple bodies such as spheres, boxes, cylinders, etc. The description of material zones is accomplished by describing simple bodies and their relationships. This method allows space to be subdivided into unique zones of arbitrary shape. Each zone is the result of combining one or more of the following geometric bodies:

- 1. Rectangular Parallelepiped (RPP)
- 2. Box (an RPP arbitrarily rotated in space)
- 3. Sphere (SPH)
- 4. Right Circular Cylinder (RCC)
- 5. Right Elliptical Cylinder (REC)
- 6. Truncated Right-Angle Cone (TRC)
- 7. Arbitrary Convex Polyhedron of 4, 5, or 6 sides
- 8. Ellipsoid of Revolution (ELL)
- 9. Right-Angle Wedge (WED)

Body types 2-9 may be arbitrarily oriented with respect to the x, y, and z coordinate axes. Body 1, the RPP, must have its sides all parallel to coordinate planes. Alternative input descriptions for the BOX and the WED are described later in this section.

Vol. 3, Rev. 6
The information required to specify each type of body is as follows:

1. Rectangular Parallelepiped (RPP) - Specify the minimum and maximum values of the x, y and z coordinates that bound the parallelepiped.

 $x_{min} - - - z_{min}$

2. Sphere (SPH) - Specify the vertex, V, at the center and the scalar, R, denoting the radius.

ORNL DWG 74-6763

ORNL DWG 74-6762

3. Right Circular Cylinder (RCC) - Specify the vertex, V, at the center of one base; a height vector, H, expressed in terms of its x, y, and z components; and a scalar, R, denoting the radius.

ORNL DWG 74-6764

4. Right Elliptical Cylinder (REC) - Specify coordinates of the center of the base ellipse, a height vector, and two vectors in the plane of the base defining the major and minor axes.

5. Truncated Right-Angle Cone (TRC) - Specify a vertex, V, at the center of the lower base; the height vector, H, expressed in terms of its x, y, and z components; and two scalars, R₁ and R₂, denoting the radii of the lower and upper bases.

6. Ellipsoid (ELL) - Specify two vertices, V_1 and V_2 , denoting the coordinates of the foci and a scalar, R, denoting the length of the major axis.

ORNL DWG 74-6767

NUREG/CR-0200, Vol. 3, Rev. 6

7. Right-Angle Wedge (WED) or (RAW) - Specify the vertex, V, at one of the corners by giving its (x, y, z) coordinates. Specify a set of three mutually perpendicular vectors, a_i, with a₁ and a₂ describing the two legs of the right triangle of the wedge, that is, the x, y, and z components of the height, width, and length vectors are given.

8. Box (BOX) - Specify the vertex, V, at one of the corners by giving its (x, y, z) coordinates. Specify a set of three mutually perpendicular vectors, a_i, representing the height, width, and length of the box, respectively. That is, the x, y, and z components of the height, width, and length vectors are given.

9. Arbitrary Polyhedron (ARB) - Assign an index (1 to 8) to each vertex. For each vertex, give the x, y, and z coordinates. Each of the six faces is then described by a four-digit number giving the indices of the four vertex points in that face. For each face, these indices must be entered in either clockwise or counterclockwise order.

Alternative body descriptions for the BOX and the wedge (WED) are provided in the MARS version of combinatorial geometry. Presently the body data for the BOX and the WED (wedge) require the user to input a vertex and three displacement vectors for the axes of the body. An alternative method is available for entering these bodies. Very often the angle of rotation and the size of the body are known. The alternative body input is BPP for the BOX and WPP for the wedge. The "PP" refers to the parallelepiped input description used for the RPP. The BPP and WPP require the user to describe a rectangular parallelepiped, similar to the RPP, and then to enter three rotation angles. These angles are not simple Euclidean angles, but rather rotational angles. The first angle is an X-Y rotation about the Z axis and is positive in the CLOCKWISE direction. This angle defines the first rotation of the RPP. The second angle is an Y-Z rotation about the X axis and is positive in the CLOCKWISE direction. The second angle defines a rotation on the first rotation. The third angle input is an X-Z rotation about the Y axis and is positive in the COUNTERCLOCKWISE direction. The third angle is a rotation on the second rotation. These three angles are input in degrees and may be either positive or negative. It is essential to remember that each angle defines a rotation that operates on the previous rotation. Figure M9.2.1 illustrates these rotations. The input for the BPP and the WPP is then translated into the BOX and WED input description for use by combinatorial geometry. The use of the BPP and WPP is optional, and the user should use the body description that is best understood.

NUREG/CR-0200, Vol. 3, Rev. 6

 $\texttt{BPP} \texttt{ AND } \texttt{WPP}: \texttt{ xmin},\texttt{xmax},\texttt{ymin},\texttt{ymax},\texttt{zmin},\texttt{zmax},\theta_{1},\theta_{2},\theta_{3}$

Figure M9.2.1 Rotations defining alternative bodies BPP and WPP

NUREG/CR-0200, Vol. 3, Rev. 6

M9.2.2 COMBINATORIAL OPERATORS

The basic technique for the description of the geometry consists of defining the location and shape of the various zones in terms of the intersections and unions of the geometric bodies. A special operator notation involving the symbols (+), (-), and (OR) is used to describe the intersections and unions. These symbols are used by the program to construct information relating material descriptions to the body definitions.

If a body appears in a zone description with a (+) operator, it means that the zone being described is wholly contained in the body. If a body appears in a zone description with a (-) operator, it means that the zone being described is wholly outside the body. If the body appears with an (OR) operator, it means that the input zone being described includes all points in the code zone following the "OR." OR may be considered as a union operator. In some instances, an input zone may be described in terms of subzones, called code zones, lumped together by (OR) statements. Body numbers after an "OR" describe a code zone. Code zones may be thought of as subsets of an input zone.

Techniques for describing a particular geometry are best illustrated by examples. Consider an object composed of a sphere and a cylinder as shown in Fig. M9.2.2. To describe the object, one takes a spherical body (2) penetrated by a cylindrical body (3) (see Fig. M9.2.2); if the materials in the sphere and cylinder are the same, then they can be considered as one zone, say Zone I (Fig. M9.2.2, Item c). The description of Zone I would be

$$I = OR + 2 OR + 3$$

This equation means that a point is in Zone I if it is either inside Body 2 or inside Body 3.

If different materials are used in the sphere and cylinder, then the sphere with a cylindrical hole in it would be given a different zone number (e.g., J) from that of the cylinder (K).

The description of Zone J would be (Fig. M9.2.2, Item d):

$$J = +2 - 3$$
.

This equation means that points in Zone J are all those points inside Body 2 which are not inside Body 3. The description of Zone K is simply (Fig. M9.2.2, Item e):

$$K = +3$$
.

In other words, all points in Zone K lie inside Body 3.

Combinations of more than two bodies and similar zone descriptions could contain a long string of (+), (-), and (OR) operators. It is important, however, to remember that every spatial point in the geometry must be located in one and only one zone.

As a more complicated example of the use of the (OR) operator, consider the system shown in Fig. M9.2.3 consisting of the shaded zone, A, and the unshaded zone, B. These zones can be described by the two BOXes, Bodies 1 and 3, and the RCC, Body 2. The zone description would be

$$A = +1 + 2$$

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M9.2.2 Examples of combinatorial geometry method

Notice that the OR operator refers to all following body numbers until the next OR operator is reached. For example, let Body 1 be a sphere with vertex (-0.75, 0.0, 0.0) and radius 1.0.

NUREG/CR-0200, Vol. 3, Rev. 6

B = OR + 3 - 1 OR + 3 - 2.

And let Body 2 be a sphere with vertex (0.75, 0.0, 0.0) and radius 1.0.

Then, "NOT 1" consists of all points that are not in Body 1.

"1 OR 2" consists of all points that are in Body 1 or in Body 2 (or in both, the OR operation is not an exclusive or).

NUREG/CR-0200, Vol. 3, Rev. 6

M9.2.10

and

ORNL DWG 79-7903

"1 AND 2" consists of all points that are in Body 1 and are also in Body 2.

M9.2.3 COMBINATORIAL ZONE CONSTRUCTION

In combinatorial geometry the most elementary zone description is called a "code zone." The code zone description uses only the "+" and "-" operators to describe a material zone. Code zones may be combined with the "OR" operator to define an "input zone" containing more than one code zone. An input zone may be composed of only one code zone. An input zone is a material zone of only one media, containing one or more code zones. An input zone may describe volumes of space that are not continuous. Figure M9.2.4 illustrates the difference between input zones and code zones.

Figure M9.2.4-A shows the shaded zone, Input Zone 1, as all points in Body 1 "OR" all points in Body 2. Input Zone 1 in Fig. M9.2.4-A contains two code zones. The first code zone is +1, and the second code zone is +2. Alternatively, this material zone could have been described as two input zones, each with only one code zone, as illustrated by Zones 2 and 3 of Fig. M9.2.4-A. In both methods, the set of points shared by Bodies 1 and 2 have been doubly defined; this is valid since both zones contain the same media. If Bodies 1 and 2 contained different material media, then the two bodies could not be combined into a single input zone; and the overlap between the two bodies would be erroneous. Figure M9.2.4-B's shaded zone represents all

points in Body 1; and the clear zone represents all points in Body 2 which are "not" in Body 1. The shaded zone, Zone 1, is described as +1. The clear zone, Zone 2, is described as +2 -1. Figure M9.2.4-C's shaded area is all points in Body 2 and is the opposite description of Fig. M9.2.4-B. Figure M9.2.4-D's shaded zone is all points in Body 1, which are also in Body 2; that is, points which are common to both bodies. This zone is described as +1 +2. Figure M9.2.4 demonstrates the use of the "OR," the "+," and "-" operator. Note that the user is not required to use the "OR" operator (see Fig. M9.2.4-A). The "OR" operator gives the user a shorthand input notation to lump "code zones" logically together into a single "input zone." All combinatorial geometry tracking is done with "code zones." Tracking across code zones is transparent to the user. Program action occurs only when a particle track crosses an input zone boundary. Input zones are a user convenience for consolidating code zones in a more logical, understandable manner.

M9.2.4 COMBINATORIAL TRACKING LOGIC

Tracking in combinatorial geometry depends on the following criteria:

- 1. Knowing the particle location in the geometry.
- 2. Knowing the particle trajectory in the current coordinate system.
- 3. Knowing the distance a particle can travel before having a collision.
- 4. Knowing the distance to enter and the distance to exit each body of the zone in which the particle is traversing.

These four criteria determine whether the particle will undergo a collision or cross a zone boundary. If the distance to the next collision is less than the distance to exit the current input zone, then the particle will suffer a collision. If the distance to the next collision is greater than the distance to exit the current input zone, then the particle will encounter a boundary crossing and enter a new input zone. Only crossing an input zone boundary may constitute a possible change in material media. Changing code zones within the same input zone cannot constitute a media change. When combinatorial tracking determines that a boundary crossing has occurred, it then tries to determine the next zone of entry in its current universe. A universe is a collection of

NUREG/CR-0200, Vol. 3, Rev. 6

input zones sharing a unique coordinate system. It is necessary for MARS to compute the entrance and exit distances for bodies used in describing other input zones in the current universe. These entrance and exit distances used with the input zone descriptions determine the next zone the particle will enter. This procedure is demonstrated in Fig. M9.2.5.

Figure M9.2.5 Particle trajectory moving from P1 to P2

In Fig. M9.2.5 a particle is emitted from point P1 and is traveling in the trajectory defined by direction cosines, U, V, and W. The distance to the next collision for the particle is known to be DIST0. From previous computation, the location of point P1 is known. The problem is to determine the input zone containing the particle collision site. From analytical geometry relations, the entrance and exit distances for the trajectory is computed for Body 1 and Body 2. The distance to enter Body i will be RINi, and the distance to exit Body i will be ROUTi. If RINi < DIST0 < ROUTi, then the particle trajectory will terminate inside Body i. The relation of the RINis and ROUTis to DIST0 may be used to construct a "truth table" to determine which bodies contain the collision site. Knowing the bodies containing the collision site, and the code zone descriptions, the code zone containing the collision is known. Assuming the zone description for Fig. M9.2.5 is given in Fig. M9.2.4-D, the following relations will exist:

<u>BODY</u>	[Relation of RINi to ROUTi]	Collision in Body		
1	RIN1 < DIST0 < ROUT1	YES		
2	RIN2 < DIST0 < ROUT2	YES		

Knowing the bodies containing the collision site, the zone containing the collision site can be determined.

ZONE	Description	Collision in Zone?	Reason
1	+1 -2	NO	Collision is inside Body 2
2	+2 -1	NO	Collision is inside Body 1
3	+1 +2	YES	Collision is inside Body 1 and Body 2

MARS can quickly determine the input zone containing a coordinate after all bodies containing the coordinate have been determined and a comparison with the zone description table has been performed. This method is efficient and effective provided (a) all space has been uniquely defined, and (b) all points in all bodies are satisfied by a given zone description with the correct relationship of bodies to each point.

M9.2.13

NUREG/CR-0200, Vol. 3, Rev. 6

M9.2.14

M9.3 MARS GEOMETRY THEORY

M9.3.1 THE UNIVERSE BUILDING BLOCK

A universe is a separate independent dimension in space defined by a collection of input zones bounded by a special boundary media. Every input zone resides in a universe. Every input zone description must include a universe number containing the zone. A particle can be in one and only one universe at a time. A particle may not change universes at a boundary crossing between input zones without first exiting the current universe. Each universe defines a unique coordinate system. Particle coordinates used while tracking through a universe are relative to the universe. This eliminates absolute coordinate space defined in a universe from conflicting with the same absolute coordinate space defined in other universes. Each universe is a microcosm with a separate unique geometry model. The most global universe in a model is Universe 0, the absolute universe. Universe 0 must contain an array in order to enter other universes in a model. All universes with the exception of the absolute universe must be surrounded by a special boundary media, Media -1000. This special -1000 media acts as a boundary flag to signify particle translation out of the current universe. The inner body of the zone containing the -1000 media then becomes the real outer boundary of the universe. This body is referred to as the universe reference body. The universe reference body may be either an RPP or a BOX. The reference body determines the absolute coordinate system inside the universe. The ability to differentiate universes makes the actual modeling construction of universes much simpler since they do not interact, interfere, or share space with any other zones not in the universe. After universes have been modeled, they may be combined arbitrarily into geometric arrays. The contents of a universe are arbitrary, and a universe may contain an array in one or more of its input zones. These concepts are illustrated in Appendix M9.B by several examples. Studying Appendix M9.B will make the universe concepts, array construction, and array nesting more comprehensible.

There are two types of universes: the combinatorial universe and the simple universe. The simple universe is composed of input zones analogous to KENO zones, where every zone completely encompasses the previous zone. Simple universe zone descriptions are composed of two or less bodies and do not reference any negative media numbers. A simple universe input zone may contain only one code zone. Universes erroneously declared simple containing input zones with more than one code zone, or a code zone with more than two bodies, or an input zone with a negative media number will be correctly recognized by MARS as combinatorial universes, and the user will receive warning messages of the alteration. Tracking through simple universes is approximately 30% faster than tracking through combinatorial universes. The MARS user is encouraged to use simple universes in his model description wherever possible.

M9.3.2 MARS "ARRAY OF ARRAYS" CAPABILITY

MARS allows the user the ability to describe rectangular cells of arbitrary content and to combine these cells to form unique arrays. These arrays may subsequently be referenced for inclusion in a geometry model. The arrays could be referenced in an input zone in a universe, or they could be referenced in lattice cell positions in a larger array. Thus, there is a nested-array capability in the MARS system.

Arrays are assigned a numeric name as each array description is entered. Hence, the first array entered into the MARS input becomes Array 1; the second array entered becomes Array 2, etc.

It is necessary in constructing a MARS model to distinguish array names from universe names. This is accomplished by referencing universe names as positive integers and array names as negative integers.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.3.1

Therefore, Array 1 would be referenced as -1 and Universe 1 would be referenced as +1. Universes are referenced ONLY in array descriptions. Arrays may be referenced by TWO methods: (1) in the zone media input or (2) as the lattice cell content of other array descriptions.

One of the most important portions of the MARS input is the description of arrays (i.e., their dimensions and their content). The array input description in MARS combines the universes and other arrays into a complete model. Initially in the array input portion of MARS, the size of each array is entered. Array numbers (names) are assigned sequentially as each array size is entered. The size of an array is described by the number of lattice cells along each coordinate dimension, that is, the number of cells along the X-axis, the number along the Y-axis, and the number of cells along the Z-axis. Next, the content of each lattice cell position in each array must be defined. MARS allows the user three different techniques for entering this information. The technique used is strictly based on individual user preference. These array description input techniques are described in detail in Appendix M9.A. Regardless of the method chosen by the user to describe the contents of each array description portion of the MARS input. A lattice cell position in an array may contain either a universe, entered with a positive integer; an array, entered with a negative integer; or a vacancy, entered with a zero. A zero in an array description defines a vacant lattice cell position and should not be confused with the absolute universe zero. Vacant lattice positions give the user flexibility in determining the shape of an array. Vacant lattice cell positions may be located either internally or on the periphery of an array.

Since the contents of a universe are arbitrary, a universe may contain an array. This arrangement allows geometry to be built around an array and then to be automatically repeated with the universe. An array is placed in a universe by describing a zone that snugly fits the nonvacant lattice cell positions of an array. The media for the input zone is given as a negative array number. This inserts by reference the array into the input zone. The array must fit snugly in the input zone; otherwise, a gap of undefined space may exist.

The simplest method to repeat an array is to directly reference a smaller array in a lattice cell position of a larger array. This method does not require any additional input to be specified, but wherever it is referenced, this method does require the smaller array to completely fill the lattice position of the larger array. Whenever a smaller array is referenced in a lattice cell position of a larger array, the smaller array may not contain vacant lattice positions.

Two methods for nesting an array have been described: (1) an array may be referenced in any input zone of any universe, and the universe may be referenced in any array description, and (2) an array may completely fill a lattice cell position of a larger array. A third technique is made possible through the use of arbitrarily located vacancies in a larger array. This technique is illustrated in Fig. M9.3.1.

ORNL DWG 80-17837

Figure M9.3.1 A nested-array lattice

The larger array shown in Fig. M9.3.1 is a $5 \times 5 \times 1$ array with a $3 \times 3 \times 1$ array embedded in its vacant lattice locations. The lattice cell description for the larger array could be

1 2 1 2 1	
2 0 0 0 2	
2 0 0 0 2	
2 1 2 1 2	Note the 1's and 2's are positive integers referencing Universes 1 and
1 2 1 2 1	2. The 0's are array vacancies.

The actual input zone containing the two arrays would be

Every MARS model must contain one or more input zones in Universe 0. The absolute universe in MARS contains the entire MARS model. Universe 0 may be bounded by a vacuum boundary, a reflected boundary, or an albedo boundary. These special boundaries are described in Sect. M9.5.1, Media Notation. Each input zone exists in a universe. Universe 0 is the beginning or top of the geometry hierarchy in the MARS system. Transfer into an array from the absolute universe is accomplished by entering an input zone defined in the absolute universe containing a negative media.

The term "level of geometry" represents the geometry hierarchy in MARS. The level concept is necessary to understand MARS model construction and MARS tracking logic. (See Sect. M9.6.1.)

The absolute universe is in the zeroth (0th) level of the geometry hierarchy. Any array referenced in an input zone defined in the absolute universe exists in the first level of the geometry hierarchy. The level of an array establishes the level of all universes referenced in the array. The universe level is the same as the array level, and all universes in an array exist at the same level. Any subarray referenced either directly in an array or in an input zone in a universe in an array is in the next level of the geometry nesting. There is no program limit to the extent of geometry nesting in the MARS system. Furthermore, array nesting in MARS is independent of computer memory requirements. The concept of a "geometry level" allows MARS to construct a nesting table which uniquely defines each point in a multilevel geometry model. Therefore, even though particle tracking utilizes a local universe coordinate system, the nesting table constructed during tracking allows MARS to uniquely define a particle location relative to any higher geometry level. The universe coordinate system utilized during particle tracking is always in the largest geometry level number (the most local) necessary to define the particle in an input zone containing a positive media number.

M9.3.3 ARRAY ROTATION

The Combinatorial MARS System has the ability to rotate an array arbitrarily in space. An array may be referenced either by a negative media notation for an input zone or by a negative entry in an array lattice description. When an array is referenced in an input zone, the first body of the input zone description becomes the reference body for the array. The reference body determines the coordinate translation and rotation for particles entering and exiting the array. The reference body for an array may be either an "RPP" or a "BOX" body type. If the reference body for an array is an "RPP" body type, then no rotation occurs and the boundaries of the array are parallel to coordinate planes. If the reference body for an array is a "BOX" body type, then the array will be oriented according to the definition of the BOX. Section M9.2.1 describes the combinatorial body types. The "BOX" is described as the eighth body type. In the figure accompanying this description, three displacement vectors, A1, A2, and A3, are shown. For an array with a BOX reference body, vector A1 defines the X axis for the array, vector A2 defines the Y axis for the array, and vector A3 defines the Z axis for the array.

Arrays repeated with a BOX reference body may have arbitrary vacancies, just as an array referenced with an RPP reference body. The space external to the array inside the reference body must be defined by another input zone. The input zone containing the array must have the shape of the boundaries of the array.

All universes and/or arrays referenced in a rotated array are automatically rotated in space. Particle trajectories in a rotated array are in a rotated coordinate system. This requires particles entering a rotated array to have their coordinates translated and rotated and their direction cosines to be rotated. Particles exiting a rotated array must have their coordinates translated and undergo a reverse rotation and must have their direction cosines undergo the same reverse rotation. Each BOX body that is an array reference body has an orthogonal rotational matrix associated with it. The inverse rotation for an orthogonal matrix is the transpose of the original rotational matrix.

M9.3.4 MODEL CONSTRUCTION WITH MARS

Lattice array nesting is a different modeling technique from many of the conventional modeling schemes. Therefore, the following suggestions are presented to aid the novice MARS user in preparing his model.

- 1. *Examine your geometry for unique repeatable rectangular cells*. These cells will be your universes. Decide how many unique cells exist in your model and identify each.
- 2. Define combinatorial bodies for each unique type of universe in your system. Bodies are numbered by the order in which they are entered in the combinatorial input. Make marginal notations in your notes of each body type and number. These notations will be convenient for future reference when describing input zones.
- 3. *Identify a reference body for each universe.* This determines the origin of each universe. All bodies used to model input zones in a given universe will have the same coordinate system as the universe reference body surrounding the universe. This body may be either an RPP or a BOX body. Always use the RPP as your reference body unless geometry rotation is required.
- 4. Determine the number of unique, simple arrays in your system. These arrays are composed entirely of universes. Assign universe numbers for these "building blocks" to be used in forming arrays. List your simple arrays noting the array description and array number.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.3.4

- 5. Examine your system for the possibility of forming larger arrays that contain either the simple arrays and/or universes. This step may involve surrounding a simple array with its peripheral geometry features (such as a sheath surrounding a fuel assembly as in the typical PWR) to define a new universe. Then, the entire new universe can be referenced in the larger arrays as often as required. Remember to reference arrays with negative integers. Arrays may be inserted in combinatorial input zones with negative zone media designation. Arrays may be referenced in larger arrays with a negative array number for the content of a given cell in the larger array lattice descriptions.
- 6. In specifying the elements of the input, it is likely that further simplifications through array nesting as described in (5) will be recognized. It is difficult to adjust to the concept of examining a geometry model for the possibility of nesting arrays inside of larger arrays. In some models it may be apparent, but in most models nesting arrays is a subtle thought acquired after careful reflection. Thus, some iteration in the input zone and array content description may be desirable. For convenience, marginal notation of the actual description of the universe will be useful records for later reference.
- 7. Use PICTURE to check the geometry model before attempting to perform a Monte Carlo calculation.

M9.4 ARRAY ANALYSIS — COLLISION EDITS

In tracking through a complicated array, it is often necessary to obtain specific reaction rates dependent on location and/or media criteria. MARS has a generalized method of allowing the user to obtain this information without impacting on computer time requirements. MARS allows the user to specify both location criteria and media criteria to selectively sample specific collisions. The desired reaction rate is generated by multiplying the user-selected, collided flux times an arbitrary, user-defined response set. The combination of location criteria, media criteria, and response criteria allows the user to "edit" his collisions into special reaction rate bins. The criteria are general enough to cover many different lattice reaction rates of interest.

The order of the array analysis input is as follows:

- 1. The number of "edits" required is input in the first data block of the MORSE input.
- 2. For each "edit," the location criteria are entered.
- 3. For each "edit," the media criteria and the response criteria required are entered.

The location, media, and response criteria will be described in this section, along with some illustrative examples. It is important to remember that both the specified location and media criteria for each edit must be met before the collided flux is multiplied by the specified user response and banked in the appropriate edit bin.

M9.4.1 ANALYSIS CRITERIA

M9.4.1.1 Location Criteria

The location criteria are input in three parts, but only the first part is required. For each edit the location criteria input will be less than or equal to five entries. The three parts of the location criteria available for each edit are described below:

- 1. (1 REQUIRED ENTRY) The user may edit either an array or a universe. If the user is editing an array, the array name is entered as a negative entry. If the user is editing a universe, then the universe number is entered as a positive entry. If Universe "0," the absolute universe, is specified, then no additional location criteria input for the edit is required.
- 2. (1 OPTIONAL ENTRY) A larger array in which the subarray or universe resides in may be entered. If zero is entered, then collisions for this edit will be tallied at all locations where the subarray or universe occurs. If a positive array number is entered, then collisions only in the specified subarray or universe occurring in the larger array will be tallied. The subarray or universe may occur in any sublevel of the larger array. The subarray or universe does not have to be directly referenced in the larger array.
- 3. (3 OPTIONAL ENTRIES) A specific location in the larger array specified in Part 2 may be entered. If zero is entered, then the edit is not location-dependent in the larger array specified in Part 2. The location given is entered as the NX, NY, NZ coordinate of the lattice position in the larger array.

A zero input for any of the above entries terminates the location criteria for the edit being entered. After the location criteria have been entered for all edits, then the media and response criteria will be input as a pair of entries for each edit.

)

M9.4.1.2 Media Criteria

The media criteria are specified by entering a media number to selectively bank collisions by material composition. All collisions meeting the location criteria occurring in the specified media for an edit will be banked. If zero is entered, then only the location criteria will be observed and the edit will not have any media dependence.

M9.4.1.3 Response Criteria

When a collision site has met both the location and media criteria for a given edit, the collided flux is calculated and multiplied times an arbitrary response set specified in the response input for the edit. MORSE allows the user to input arbitrary response functions (NRESP). These response functions are referenced in the response input to the array analysis. The MARS array analysis system computes only one reaction rate for each edit required by the user.

For each edit, the user inputs the media criteria and response criteria. At the end of the MORSE calculation each edit is output with the reaction rate and the fractional standard deviation. If the user edit is for a universe, then only one result and deviation is output. If the user edit is for an array, then results will be given for all lattice positions in the array. The contents of the lattice positions are arbitrary and independent of the array analysis performed. Therefore, the user may obtain array-averaged reactions by editing a larger array containing the arrays to be averaged.

M9.4.2 ILLUSTRATIVE EXAMPLES

The following free form input is given for six edits:

-20, -230, -2312108, 300, 3020, 302111,

0 1, 2 3, 1 3, 2 4, 3 5, 1 2

The Location Criteria for each of the six edits were given first, followed by the Media and Response Criteria for each edit. Each edit is discussed below:

Edit 1

Location Criteria: -20 Media/Response Criteria: 01 Bank all collisions in Array 2 wherever Array 2 occurs. No media dependence. Use Response Set 1 for this edit.

Edit 2

Location Criteria: -2 3 0

Media/Response Criteria: 23

Bank collisions in Array 2 whenever Array 2 occurs inside Array 3. Bank collisions in Media 2 only; use Response Set 3 for this edit.

Edit 3

Location Criteria: -2 3 12 10 8

Media/Response Criteria: 13

Bank collisions in Array 2, whenever Array 2 occurs in the 12 10 8 position of Array 3. Array 2 may occur in any sublevel of Array 3. For example, Array 3 may reference Array 4 which references Array 2. Bank collisions only in Media 1; use Response Set 3 for this edit.

Edit 4

Location Criteria: 300

Media/Response Criteria: 24

Bank collisions occurring in Universe 30 wherever Universe 30 occurs. Bank collisions only in Media 2; use Response Set 4 for this edit.

Edit 5

Location Criteria: 30 2 0

Media/Response Criteria: 3 5

Bank collisions in Universe 30 whenever it occurs in Array 2. Bank collisions only in Media 3 and use Response Set 5 for this edit.

Edit 6

Location Criteria: 30 2 1 1 1

Media/Response Criteria: 12

Bank collisions in Universe 30 whenever it occurs in the 1 1 1 position of Array 2. Bank collisions only in Media 1; use Response Set 2 for this edit.

M9.5 COMBINATORIAL MARS OVERVIEW

Sections M9.2 and M9.3 introduced the user to combinatorial geometry concepts and MARS array logic. This section is a summary of some of the important concepts developed in previous sections. The use of media input is introduced in this section with some discussion on special combinatorial MARS media notation.

M9.5.1 MEDIA NOTATION

The input to combinatorial MARS requires the user to input a media number for each input zone. This entry may have the following definition:

- 1. If positive, it refers to a valid cross-section mixture provided it is not equal to 1000 or to MEDALB.
- 2. If negative, it refers to an array residing in the input zone, provided it is not -1000.

The absolute value of the entry is the array number. The following several special media are used in combinatorial geometry in the MARS system:

<u>Media</u>	Description
0	External void - all particles entering Media 0 leak out of the system; their history is terminated.
1000	Internal void - all particles traversing Media 1000 have no interactions; they simply pass through the input zone without any change in direction or energy.
-1000	Universe boundary flag - signals the exit of a particle from a universe. Translation and/or rotation occurs; no tracking is performed in Media –1000; this media is seen only on exiting a zone but never on entering a zone.
MEDALB	Reflection Media - can occur in any level of geometry model; specular reflection occurs; reflecting surface for MARS must be on an RPP or BOX. The body number of the RPP or

BOX must be referenced both in the zone exiting and the zone entering.

M9.5.2 TERMS AND DEFINITIONS

- 1. Bodies Nine basic geometric shapes with fully enclosed volumes. (Polyhedrals) RPP, BOX, BPP, WED, WPP, ARB, (Revolved Surfaces) SPH, ELL, RCC, TRC, REC. BPP is an alternate specification for BOX; WPP is an alternative for WED.
- 2. Operators + Include Exclude OR Combine.

- 3. Code Zones One or more bodies used to describe a portion of problem space having a single media number.
- 4. Input Zones One or more code zones used to describe a portion of problem space having a single media number. Code zones may be combined with the OR operator in forming input zones. The complete description for an input zone includes a media number, a region number, and a universe number.
- 5. Media Number Explicitly specified in the media number list. In addition to designating a crosssection mixture number, the media number can be used for five other purposes.

<u>Purpose</u>	Numerical value	Use
Α	0 < Media Number < 1000 Media Number ≠ MEDALB	Cross-section mixture number
В	Media Number = 0	External void
С	Media Number = 1000	Internal void
D	Media Number = MEDALB	Reflection media number
Е	Media Number = -1000	Universe boundary for enclosed space
F	-1000 < Media Number < 0	IABS(MEDIA) = ARRAY

- 6. Region Number Explicitly specified in the region number list. Used to designate a set of weights (Russian roulette, splitting, pathlength stretching) for each input zone.
- 7. Universe Number Explicitly specified in the universe number list. Used to designate a set of two or more input zones (in a single coordinate system) bounded by an outer input zone with the media number equal to -1000. The simple Universe (analogue to KENO BOX-TYPE) is the basic "building block" for specifying an array; however, more complicated lattice geometry may be modeled in a universe. The contents of a universe is completely arbitrary. The outer shape of a universe must conform to an RPP or BOX.
- 8. Array Number Implicitly determined from the order of arrays specified in the array size list. Explicitly referenced as a negative media number (see Purpose F under Definition 5) OR as a negative entry in the array content list. Thus, an array can contain another array. Positive entries in the array list are universe numbers. A ZERO entry in the array content list designates a vacancy described by other geometry specifications external to the array.
- 9. MEDALB Single variable specified in MORSE-SGC (SAS3) to designate a reflective boundary on an RPP surface or combination of RPP surfaces (see Purpose D under Definition 5).

NUREG/CR-0200,		
Vol. 3, Rev. 6		

M9.5.2

- 10. Internal Void Specified as Media 1000 (see Purpose C under Definition 5 listed above). All particles traversing Media 1000 have no interactions.
- 11. External Void Specified as Media Number 0 (see Purpose B under Definition 5 listed above). All particles entering Media 0 leak out of the system. Their histories are terminated.
- 12. Levels Depth of geometry nesting starting with the absolute or zero universe being Level 0. Higher levels are defined by embedded arrays. The entire system is in Level 0. Large portions of the system are in Level 1. Smaller portions are in Level 2, and so on. All universes within an array are at the same level as the array itself. Each array is at a lower level number than the level number of any arrays embedded in it. Hence, the lower the level number, the more global the level.

M9.5.3 RULES FOR ARRAY REPETITION

- 1. All arrays must fit snugly in the zone in which they are referenced.
- 2. The first body referenced in a zone containing an array is used as the array reference body. All translations for particles entering or exiting an array is performed relative to the reference body.
- 3. An array directly referenced in a lattice cell position of a larger array may not contain any vacant lattice cell positions.
- 4. A universe containing an array may not have the same reference body as the array it contains.

M9.6 MARS TRACKING LOGIC, SHORTFALLS, AND CORRECTIONS

M9.6.1 PARTICLE NESTING TABLE FOR TRACKING

During tracking in the MARS geometry system, a particle frequently changes universes and arrays. With the ability to repeat and nest arrays in MARS, it is necessary to have a method of determining the particle location relative to the complete geometry model. As each particle tracks through the geometry, a "nesting table" is continually updated on the particle's present location. This nesting table gives detailed information on where the particle is relative to each level of the geometry model. The size of the table is 6*NLEV+4, where NLEV is the total number of geometry levels in a given model. Six entries in the table are given for each geometry level:

FIRST LEVEL: SECOND LEVEL:	NBU "	LM "	NXY(1)	NXY(2) "	NXY(3) "	NLU "
	•	•				•
	•	•	•	•	•	•
NLEV LEVEL:	•		•	•	•	•

where

NBU is the reference body for the current array if the array was entered by a combinatorial input zone in a universe.

LM is the content of the lattice position of the current array. This value is positive for a universe and negative for an array. This value cannot be zero.

NXY is the current lattice position in Array NLU that is the X, Y, Z position of the lattice.

NLU is the current array number.

For example:

FIRST LEVEL:	12	-5	1	2	1	3
SECOND LEVEL:	0	6	3	1	1	5
THIRD LEVEL:	21	1	5	7	1	1

This is the nesting table for a pin in the center assembly of the typical shipping cask.

The particle location described in the above example is in the 5 7 1 position of the fuel assembly described as Array 1. Array 1 is in Universe 6 referenced at the 3 1 1 location of Array 5. Array 5 is referenced explicitly in the array description of Array 3 in the 1 2 1 position. Array 3 was entered in Input Zone 28. The reference body for Array 3 is Body 12. Input Zone 28 occurs in the absolute universe.

NBU is zero if the array for the current level was explicitly referenced in an array description for the next lowest level of the geometry. NBU cannot be zero for the first level description of the nesting array table. LM may either be positive or negative but not zero. It is positive if a universe is referenced at the NXY location of Array NLU, and it is negative if an array was referenced at the NXY location of Array NLU.

The last four locations in the nesting table after the level data are:

- NLcurrent level of the particle in the geometry.
- NLO ...last effective level change. It is +1 if the particle increased in level number; it is -1 if the particle decreased in level number; it is 0 if the particle changed array location without a change in level. For example, if the particle went from Level 2 to Level 3, NLO would be +1. If a particle went from Level 3 to Level 2, NLO would be -1.
- NLUOLD ... The last array the particle was inside before entering the current universe.
- NLU ...The current array the particle is inside. This number will be the same as the 6*NL location in the nesting table.

M9.6.2 MARS ARRAY PITFALLS

By now the user is familiar with the concepts of MARS and combinatorial geometry. The relation between MARS and combinatorial geometry is important. MARS determines the universe and the universe location in a geometry model. After the universe is known, then combinatorial geometry determines the code zone and input zone in the universe in which the particle or particle trajectory resides. MARS handles the array bookkeeping and particle translation, as described in the previous section on the MARS-generated nesting table. Combinatorial geometry knows the correct universe number from MARS, and then performs the particle tracking in the universe. MARS logic involves arrays and does not involve zone descriptions. This relationship between MARS and combinatorial geometry is essential to user understanding of the tracking process and should be understood before he ventures forward into constructing a model. Input preparation is one element of building a complex geometry model; but by far, the most difficult part is model debugging. Even the most careful users will find themselves sooner or later examining a geometry dump. Geometry tracking errors are almost inevitable. The purpose of this section is to make the user aware of the pitfalls of MARS array modeling so as to minimize the number of geometry dumps. The success or failure of the MARS combinatorial geometry will depend on the ability of its users to master its many features with reasonable effort.

Before beginning a discussion of geometry model debugging it is imperative that the user have a basic understanding of the combinatorial geometry and MARS array tracking logic. The concepts of MARS universes, arrays, and geometry levels will be essential to understanding this section. The discussion of the nesting table concept introduced in the preceding section is important to interpreting the particle location in a geometry dump. This section will further discuss how MARS enters and exits an array during tracking. This is necessary in order to understand the failures that may occur during entering or exiting arrays.

Arrays are inserted into combinatorial input zones with negative media numbers. This insertion is more of a superpositioning of one geometry model, an array model, onto (not into) a combinatorial geometry input zone. Many warnings were given that the nonvacant lattice positions of an array must fit snugly in the combinatorial input zones where the array is referenced. More exactly, the array must completely fill and preferably slightly overflow the input zone boundary. This is necessary because of the method of entering and exiting arrays. The method of entering an array is described as follows:

1. A particle trajectory in combinatorial geometry encounters an input zone with a negative media number. The negative media number is not -1000; therefore, the particle is entering an array.

- 2. The particle coordinates must be translated into the array reference system in order to determine the lattice position in the array the particle is entering. The first body in the zone description is the array reference body. The coordinates of the origin of the reference body are subtracted from the particle coordinates, yielding the particle coordinates relative to the origin of the array.
- 3. Knowing the array being entered determines the lattice cell boundaries. The particle coordinates relative to the array origin must be within a valid nonvacant lattice cell position, or the particle cannot enter the array properly.
- 4. Next are translated the particle coordinates relative to the lattice cell being entered. The vertex, or the origin, of the lattice cell, XMIN, YMIN, ZMIN, is subtracted from the particle coordinates. This gives the coordinates of the particle relative to the lattice cell position.
- 5. If the lattice cell contains a universe, the particle coordinates are added to the reference body origin of the universe to give the absolute coordinates of the particle in the universe. Tracking then continues in combinatorial geometry.
- 6. If the lattice cell contains a subarray, the result of Step 4 is analogous to Step 2 for entering an array. Therefore, Steps 3, 4, and 5 are repeated for the subarray. When entering subarrays explicitly referenced in a larger array, no absolute coordinate relative to a universe is calculated. This is efficient but may lead to roundoff problems. Tracking into or out of universes helps to reduce roundoff error by translating relative to the universe reference body. This translation gives the particle a fresh update on its coordinates and tends to stabilize the tracking.

Frequently when a particle has made an incorrect entry into an array, the error is due to computer roundoff, or by an insignificant gap between the array lattice and the code zone referencing it. The size of each array and ALL lattice cell boundaries in each array are computed at input time. The size of an array and its lattice cell boundaries are calculated from the reference body of each universe composing each lattice position. The simple arrays, containing no subarrays, in the highest geometry level are computed first, then the larger arrays in the next lower level are computed until all arrays and their respective lattice positions have been calculated. A rigid test is performed to verify the proper fitting of universe reference bodies in lattice positions and the proper fitting of arrays in their reference bodies. If the "FIT Test" fails, then the job is terminated. The figure shown on the next page illustrates an unintentional gap between an array lattice position and a combinatorial input zone.

The gap illustrated may be small, less than 1.0E-09 cm, but it would be sufficient to cause a particle track to be lost. The correction is illustrated as the "overlap fix." If the overlap is greater than 1.0E-09 cm, then Subroutine FINEFI will fatally warn the user, "THE ARRAY ... IN BODY ... REFERENCED IN CODE ZONE ... DOES NOT FIT." Therefore, the overlap applied should be small or it may itself be a fatal error. This is a rigid requirement. The overlap fix is beneficial in exiting the array correctly as well as entering the array correctly.

M9.6.3 COMBINATORIAL MODELING PITFALLS

Now that the user has some appreciation for the pitfalls in array tracking, it is necessary to discuss pitfalls in combinatorial geometry tracking. Whenever two floating-point numbers resulting from separate calculations are compared on a computer of finite precision, it is bad practice to test and depend on direct

equality. In combinatorial tracking it is not always possible to avoid this problem. User input description is the best place to avoid ambiguity on zone boundaries. When two bodies share a common surface, the user should never assume the computer is capable of recognizing the two surfaces are actually a single surface. Furthermore, try to avoid having two bodies sharing a common surface occur on an input zone boundary, especially if the two bodies are referenced in both the adjacent input zone descriptions. In your geometry model, when constructing code zones, always attempt to describe your geometry with combinatorial logic, the union or intersection of bodies, without falling into the dangerous trap of defining bodies with common surfaces. When this is not possible, a less dangerous alternative exists. A small overlap between two body surfaces is preferable to a single surface. Combinatorial geometry will unwittingly let the user double-define space. Combinatorial tracking is always happy with the first definition for a portion of space it finds. It does not check to see if any other definitions exist. The danger comes in trying to leave the doubly defined space and in depending on which definition of the space is used.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.6.4

M9.6.4 COMPUTER TRACKING AND MODELING

This section deals with the combinatorial MARS tracking logic and considerations involved in geometry model development. It is essential at this point that the user understand the following concepts and definitions before continuing:

- A. how combinatorial logic determines in which code zone a particle is located,
- B. the meaning of the following combinatorial variables: RIN, ROUT, DIST, DIST0 (see Table M9.E.6 for labelled common /PAREM/),
- C. the different roles of combinatorial geometry tracking and MARS array tracking (see Sect. M9.6.3). The complex modeling capabilities of combinatorial MARS are accompanied with a complex debugging output dump requiring user understanding of the tracking methods.

The most important questions combinatorial geometry and MARS must answer during tracking are the following:

MARS Tracking Ouestions:

- A. In which universe is the particle located?
- B. Will the particle exit the current universe? If so, then what will be the universe entered and in what array?

Combinatorial Tracking Questions:

- A. In which input zone in the current universe is the particle located?
- B. Will the particle exit the current input zone? If so, then what will be the next input zone the particle will enter?

These questions for MARS and combinatorial geometry are related in the following way. The first question in each system is asking the basic question:

Where is the particle located?

Each system, MARS and combinatorial, is answering the question from its own perspective. The second question in each system is asking the basic question:

Where is the particle going?

This question cannot be answered without knowing the answer to the first question in both the combinatorial and MARS systems. In changing lattice locations in an array, the dialogue between combinatorial tracking and MARS tracking may go:

M9.6.5

Combinatorial: The particle is entering Media -1000; therefore, the particle is exiting the current universe.

- MARS: The lattice cell being entered is in the same array as the current lattice cell location; therefore, the new universe being entered is NLU. The new coordinates are computed as X, Y, Z for the new universe.
- Combinatorial: The particle is in input zone IR in the current universe. The particle will be entering input zone IRPRIM in the new universe.
- MARS: The lattice cell being entered is in the same array as the current lattice cell location; therefore, the new universe being entered is NLU. The new coordinates are computed as X, Y, Z for the new universe.
- Combinatorial: The particle is in input zone IRPRIM in the new universe. The particle will be entering input zone IR in the new universe.

Computer tracking in the MARS/combinatorial geometry system is very often a combination of both questions in both systems. A very definite flow exists between the MARS and combinatorial tracking systems which is essential to a nested multiple-array geometry logic. This flow is best understood in the purpose of some of the more important subroutines in both systems. The MARS subroutines discussed will be CALI and PILOT. The combinatorial subroutines discussed will be LOOKZ, G1, and GG. Question A in MARS logic is answered by Subroutine CALI. It calls Subroutine LOOKZ to answer question A in combinatorial logic to answer question B for the combinatorial system. MARS subroutines CALI and PILOT call combinatorial subroutines do not call MARS subroutines. Both MARS routines CALI and PILOT call LOOKZ, but only PILOT calls combinatorial routine G1. PILOT must call LOOKZ when a particle has entered a new universe to determine the particle input zone location.

Both combinatorial subroutines G1 and LOOKZ call subroutine GG to compute RIN, the distance to enter a body, and ROUT, the distance to exit a body. This information is stored in a floating point array called FPD for the body. This array contains the body definition data as well as the RIN and ROUT for each body. The address in the FPD array for each body information set is stored in the MA array. During a calculation RIN and ROUT are continually updated. The particle position and direction will be referred to as the particle trajectory. Many times during a particle track, the trajectory will change as a result of collisions and entering new universes. The RIN and ROUT computed in one universe are not valid in other universes. To know the current trajectory, a trajectory index is maintained called KLOOP. This index gives each trajectory a unique identifier. Each time RIN and ROUT are calculated for a body, a body trajectory variable called LOOP is updated. LOOP is set to KLOOP when RIN and ROUT are reset in the FPD array. LOOP is stored in the MA array. The detailed description of the FPD and MA array is given in Tables M9.E.3 and M9.E.4 of Appendix E. These arrays will be dumped out whenever a particle gets lost. The combinatorial MARS user should thoroughly understand the contents of the MA and FPD arrays. Unfortunately, by the time a particle is lost in tracking, many important variables in the MA and FPD array have been destroyed by subsequent calculations. The MA and FPD array should be examined in a broad sense in a dump, for detailed information may not exist at the time of the dump.

The MARS subroutines determine the universe a particle is inside and the particle coordinates relative to that universe. The level nesting table in MARS gives the universe location relative to all lower levels of the

MARS geometry. The nesting table is dumped when a particle is lost in tracking through array geometry. The combinatorial geometry routines are called from the MARS routines for tracking inside of a universe.

Most geometry errors fall into two broad categories:

- A. undefined space, making it impossible to determine a particle location or impossible to determine the next zone of entry (a particle trajectory is trying to enter undefined space)
- B. roundoff gap problems between arrays and lattice cells or between common surfaces of two or more bodies. The gap problem may create an undefined gap in a model.

Errors of type A are discovered in FINEFI (during array input), CALI, or LOOKZ. Errors of type B are discovered by PILOT or G1 during tracking. Whenever an error is discovered, eventually subroutine PR is called. PR dumps the MA and FPD arrays, a few label commons, and calls DIPR. Subroutine DIPR calls DUPR which dumps all relevant array storage information. The nesting table and the local particle coordinates are the last few lines DUPR dumps.

Most of the error messages indicate the subroutine calling for the error dump. It will be helpful to examine the subroutine listing to determine the initiating event causing the error dump. If the message is from PILOT, it probably relates to an array description error or reference. If the message is from G1, the error is probably due to a confusing or contradictory code zone description. The particle coordinates printed out in a geometry dump are either the coordinate of the last collision site or the coordinates where the particle entered the current universe. The value DIST is the trajectory distance from the coordinate site in the direction WB, where WB(1), WB(2), and WB(3) are the particle direction cosines. Examine KLOOP and all the bodies where LOOP is the same as KLOOP. These bodies were the last bodies where RIN and ROUT were computed. The only bodies combinatorial geometry considers the particle trajectory to be located in are those bodies in which RIN is negative and ROUT is positive. Combinatorial geometry considers the particle trajectory is external to all other bodies in which this combination of RIN and ROUT does not exist.

There are normally many combinations of bodies for describing a geometric material zone. Combinatorial logic makes body possibilities very flexible. Frequently, the quickest and most efficient attempt at correction may simply be to try another zone description. It is important to understand geometry errors, but frequently it is more important to obtain results from a geometry model. After examining RIN and ROUT for the current KLOOP, determine if a code zone exists fitting the combination of included and excluded bodies. If the body combination can exist, then an undefined volume of space may exist. If the body combination cannot exist, then G1 will have a roundoff problem in tracking. The user may correct this problem by describing a code zone with the nonexistent combination of bodies. Be careful not to doubly define the geometry model with a second contradictory zone description.

No danger exists in describing an input zone with a nonexistent body description that may not exist. If such a description is necessary to avoid a tracking error, it will not be encountered at any other time during the tracking process.

M9.A FREE-FORM COMBINATORIAL MARS INPUT INSTRUCTIONS

M9.A.1 TITLE* CARD

FORMAT (15A4)

M9.A.2 OPTIONS CARD (four entries required)

IVOPT – Volume option not implemented - enter 0.

- IDBG Debug print option if positive; otherwise, enter 0.
- IBOD Body numbers are assigned by the user if IBOD is greater than zero; otherwise, enter 0.
- NAZ Number of zones to be added to the data storage for next zone of entry memory table. Enter any large number if extra storage is required. Default value allows for five zones to be entered from any single code zone. This option is normally not required; enter 0.

M9.A.3 BODY DEFINITION CARDS

Each new body must start on a new card. The allowable body types are given in Table M9.A.1 along with the required input variables to describe each body. An END card must be used to signify the end of the body definition cards. For each body, the following input is required:

- ITYPE Specifies the alphanumeric body type or END to terminate reading of body data (for example, BOX, RPP, ARB, RCC, etc.)
- IALP Body number assigned by the user if IBOD is greater than zero; otherwise, it is not entered.
- FPD(I) Real data required for the given body as shown in Table M9.A.1. These data must be in cm.

M9.A.4 INPUT ZONE DESCRIPTION CARDS

Each new zone must start on a new card. A three-character title should be given for each new input zone (not necessarily unique) which must start with an alpha-type character. An END card must be used to signify the end of the input zone description cards. For each input zone, the data needed are the title and zone data. Input zone numbers are assigned sequentially.

IALP – The three-character title for the zone where the first character is a letter.

NUREG/CR-0200, Vol. 3, Rev. 6

Body type	ITYPE	IALP		R	eal data defir	ing particula	r body	
Box	BOX	IALP is assigned by the user or by	Vx H2x	Vy H2v	Vz H27	H1x H3v	H1y	H1z
Right parallelepiped	RPP	the code if left	Xmin	Xmax	Ymin	Ymax	Zmin	Zmax
Sphere	SPH	Dank.	Vx	Vy	Vz	R	-	
Right circular cylinder	RCC		Vx R	Vy 	Vz 	Hx 	Ну 	Hz
Right elliptical cylinder	REC		Vx R1x	Vy R1y	Vz R1z	Hz R2x	Hy R2y	Hz R2z
Ellipsoid	ELL		V1x R	V1y 	V1z	V2x	V2y 	V2z
Truncated right cone	TRC		Vx R1	Vy R2	Vz 	Hx 	Hy 	Hz
Right angle wedge	WED or RAW		Vx H2x	Vy H2y	Vz H2z	H1x H3x	H1y H3y	H1z H3z
Arbitrary polyhedron	ARB		V1x V3x V5x V7x	V1y V3y V5y V7y	V1z V3z V5z V7z	V2x V4x V6x V8x	V2y V4y V6y V8y	V2z V4z V6z V8z
			Face des	criptions (see	e note below)		
Alternative body	BPP		$\substack{Xmin\\\theta_i}$	Xmax θ _z	\mathop{Ymin}_{θ_3}	Ymax	Zmin	Zmax
Descriptions	WPP		$Xmin \\ \theta_1$	Xmax θ _z	$\begin{array}{c} Ymin\\ \theta_3 \end{array}$	Ymax	Zmin	Zmax
Termination of body input data	END							

Table M9.A.1 Input required for each body type^a

1

^ANOTE: The arbitrary polyhedron input contains a four-digit number for each of the six faces of an ARB body.

NUREG/CR-0200, Vol. 3, Rev. 6

IIBIAS(I) – Specify the "OR" operator if required for the JTY(I) body.

JTY(I) - Body number with the (+) or (-) sign as required for the zone description.

Example: PEL +1 CLD +2 -1 H2O +3 -2 END

M9.A.5 REGION CARD

One entry is required for each input zone. This entry specifies the importance region each input zone is inside. This step determines which set of weights for splitting, Russian roulette, and pathlength stretching to use in each zone during tracking.

M9.A.6 UNIVERSE CARD

This array specifies which universe each input zone is inside. One entry is required for each input zone. The entry must be either a zero or a positive integer. A negative entry is not valid. Each universe, with the exception of the absolute universe, must contain one and only one zone with a -1000 media. The absolute universe cannot contain any -1000 media zone.

M9.A.7 MEDIA CARD

This array specifies the media contained in each input zone. One entry is required for each input zone. If the entry is positive, it references a valid cross-section mixture or a reflected boundary, MEDALB. If the entry is negative, it references a valid array number as the absolute value of the entry. If the entry is -1000, it references a universe external boundary media. If the entry is 1000, it references an internal void. If the entry is 0, it references an external void.

M9.A.8 ARRAY SIZE SPECIFICATIONS INPUT

An array is a regular rectangular lattice composed of rectangular cells of arbitrary content. The size of each array should be entered as NXMAX, NYMAX, by NZMAX. Arrays are sequentially named as they are entered, starting with 1. The array size entered should include any vacant cells in the array, if any are present. After the size of the last array has been entered, a zero should be entered to terminate the entries. Zero is an illegal entry for an array size. After the zero terminator has been entered, a single integer parameter is entered to determine the means of entering the array specification list. If no array is to be described, only the zero terminator is required.

 $NXMAX^{i}$ – the number of cells along the x-axis of array i

NUREG/CR-0200, Vol. 3, Rev. 6

NYMAX' –	the number of cells along the y-axis of array i
NZMAX ⁱ –	the number of cells along the z-axis of array i followed by a "0 terminator"
IOP –	 array specification input option (required) = 0 Free-Form Input, FFREAD, type specification = 1 Standard KENO Mixed Cell (BOX) Orientation Cards = 2 Standard FIDO Integer Array Input Specification

Example: 15 15 1 6 5 2 7 7 1 0 0

This example describes three arrays. Array 1 will be a $15 \times 15 \times 1$ array. Array 2 will be a $6 \times 5 \times 2$ array. Array 3 will be a $7 \times 7 \times 1$ array. Zero terminates the array size entries. The last zero entered selects the free-form input specification method of describing the array contents.

--End of Geometry Input if no Arrays are Modeled--

M9.A.9 ARRAY CONTENT DESCRIPTION

The contents of each cell of each array must be defined. All contents of Array 1 are defined, then Array 2, etc. The method of entering these data is determined by IOP in Sect. M9.A.8 input. There are three possibilities for each cell entry. These numbers are distinguished by either a positive, zero, or negative entry. A positive entry is a universe number. The universe must fit snugly in the lattice cell position it is referenced inside. The contents of a universe are completely arbitrary. A negative entry is an array entry. The absolute value of the entry is the array being referenced. It must completely fill the lattice position in which it is referenced. It cannot contain any vacancies in its lattice cell positions. Repeating a subarray in a larger array in this manner does not require any additional input. The array must, however, fit snugly in the lattice cell position. The means of entering these data is selected by the user to give flexibility in describing his arrays. The options are the following:

1. IOP = 0 - Free-Form Input Option

Free-form input is entered using the FFREAD notation. This allows an "*" repeat feature. Data are entered as:

DO 10 M = 1, NAR (NAR is the number of arrays entered)

DO 10 K = 1, NZMAX

DO 10 J = 1, NYMAX

DO 10 I = 1, NXMAX

... enter the contents of the ith, jth, and zth cell location for array m...

NUREG/CR-0200, Vol. 3, Rev. 6

10 CONTINUE

All entries must be separated by a blank, and data may be entered in all columns 1 through 80. Entries of the form "L*N" means enter the value N into the input L times. This could also be done with the "R" option by entering "LRN." In either case, blanks within an entry are not allowed.

Example: 2 1 2 2 1 2 2 1 2

This could be the description of a 3×3 array of the form,

2.

IOP = 1 - Mixed-Cell Orientation Cards

The first field contains the entry followed by three sets of three fields that are treated like FORTRAN DO loops, followed by a field that indicates whether another set of data is to be read. The arrangement of lattice cells may be considered as consisting of a 3-D matrix of numbers, with the cell position increasing in the positive X, Y, and Z directions, respectively. Each set of orientation data consists of the following parameters, separated by one or more blanks.

- LTYPE The cell entry. LTYPE may be negative (array #), zero (empty cell), or positive (universe #).
- IX1 The starting point in the X direction. IX1 must be at least 1 and less than or equal to NXMAX.
- IX2 The ending point in the X direction. IX2 must be at least 1 and less than or equal to NXMAX.
- INCX The number of cells by which increments are made in the positive X direction. INCX must be greater than zero and less than or equal to NXMAX.
- IV1 The starting point in the Y direction. IV1 must be at least 1 and less than or equal to NYMAX.
- IY2 The ending point in the Y direction. IY2 must be at least 1 and less than or equal to NYMAX.
- INCY The number of cells by which increments are made in the positive Y direction. INCY must be greater than zero and less than or equal to NYMAX.
- IZ1 The starting point in the Z direction. IZ1 must be at least 1 and less than or equal to NZMAX.

^{2 1 2} 2 1 2 2 1 2
- IZ2 The starting point in the Z direction. IZ2 must be at least 1 and less than or equal to NZMAX.
- INCZ The number of cells by which increments are made in the positive Z direction. INCZ must be greater than zero and less than or equal to NZMAX.
- ISTP = 0, read another set of data,

 \neq 0, do not read any more mixed-cell orientation data.

An important feature of this type of data description is that, if any portion of an array is defined in a conflicting manner, the last card to define that portion will be the one that determines the array's cell type configuration. To utilize this feature, one can fill an entire array with the most prevalent cell type and then superimpose the other cell types in their proper places to accurately describe the array. The last set of mixed-cell orientation data must have a nonzero entry in the last field.

3. IOP = 2 - Standard FIDO Array Input

The array being entered is integer; therefore, it is a "\$" or "\$\$" array. The array may be entered in the standard free-form FIDO format. The description for each lattice array is entered as a single array block with FIDO. The FIDO integer array number entered is the array number being described plus 100. The data are entered, and each array description is terminated with a "T." All standard FIDO repeat options are available for entering the data. Array 1 would be entered as the "101\$\$" FIDAS array terminated with a "T." The process would continue until all array descriptions have been entered. The format for the data entry is the same as the description for free-form input. All x entries for the first y row and first z level are entered, then all x entries for the second y row and first z level are entered. This process continues until the entire first z level has been described. Then the second z level is described until the entire array has been described. Then the geometry array description or a given array is terminated with a "T."

M9.A.10 UNIVERSE TYPE

One entry is required for each universe modeled in the combinatorial geometry, starting with Universe 1. The entries should be either a zero or a 1: a zero if the universe is "combinatorial" and a 1 if the universe is "simple." A "simple" universe is a universe composed of concentric zones, where every zone completely surrounds the zone inside of it. Furthermore, input zones in a simple universe may be only one code zone and may be described by only one or two bodies. Tracking through "simple" universes is about 30% or more faster than through regular combinatorial geometry tracking, although the modeling capability is limited. Simple universes may be combined with regular combinatorial universes in arrays without any problems.

--- End of Geometry Input ---

M9.B ILLUSTRATIVE EXAMPLES OF MARS GEOMETRY

M9.B.1 AN UNCOMMON ARRAY SHAPE

Figure M9.B.1 illustrates the geometry being described. The input and some of the output edit are given in Fig. M9.B.2. The MARS input is Cards 2 through 27 in the input list. The remaining input is solely for the JUNEBUG graphics program, which is no longer distributed with the SCALE system. The following correspondence exists between the MARS input instructions and the card image list:

Card number	Input requirement
2	A.1, Title Card
3	A.2, Options Card
4-14	A.3, Body Definition Cards
15–21	A.4, Input Zone Description Cards
22	A.5, Region Card
23	A.6, Universe Card
24	A.7, Media Card
25	A.8, Array Size Specification Input
26	A.9, Array Content Description
27	A.10, Universe Type

The model consists of:

10 Bodies using

3 Body Types (RPP, RCC, and SPH)

6 Input Zones described by

12 Code Zones

1 Universe

1 Array of size $3 \times 3 \times 1$

1 Level of Geometry Nesting

Special attention should be given to:

1. Body 6 is the Reference Body 1 for Universe 1.

2. Input Zone 4 is the Universe 1 boundary zone with the -1000 media,

3. Body 1 is the reference body for Array 1.

4. Input Zone 3 references Array 1 in the media list by a - 1 media.

5. Input Zone 3 is described with two code zones, Code Zones 8 and 9.

6. Body 1 is the first body given in the zone description list for Code Zones 8 and 9.

NUREG/CR-0200, Vol. 3, Rev. 6

- 7. Array 1 is a $3 \times 3 \times 1$ array with vacant cell positions on each corner.
- 8. Array 1 is described with FIDAS input because IOP is 2 on Card 25.

M9.B.1.1 Explanations and Discussions

Universe 1 consists of Input Zones 4, 5, and 6. Input Zone 4 is the universe boundary since it references Media -1000. Zone 6 is described as "+8 -6." The reference body for a universe is the first excluded body in the universe boundary zone description. No tracking occurs in a -1000 media. This acts only as a flag to signify exiting the universe. It is encountered only on exiting a universe. Body 6 not only is the reference body used to translate into and out of Universe 1, but it also defines the size of Universe 1. A universe cannot be referenced in array cells that do not correspond in length, width, and height to the universe's reference body.

Array 1 is referenced in Input Zone 3 which is made up of Code Zones 8 and 9. The reference body for an array is always the first positive body mentioned in the code zone description where the array is referenced.

It must be a positive body reference. An array referenced in an input zone composed of more than one code zone can have only one reference body. Body 1 is the reference body for Array 1. Notice it is the first body mentioned in the descriptions for Code Zones 8 and 9 of Input Zone 3. The reference body for an array must have the same delta x width, delta y depth, and delta z height as the full array. The reference body should be the size of the full array, even though vacancies may exist in the description of the array. The input zone where an array is referenced must fit snugly with the nonvacant lattice positions of the array. It is not necessary to combine Code Zones 8 and 9 into a single input zone as long as they both correctly reference the same reference body.

Notice that, since IOP is 2 on Card 25 of the A.8 input, the array content requirement, A.9, is accomplished with the FIDO input specifications on Card 26.

The nonmaterial media used in this model are the following:

<u>Media number</u>	Description
1000	Internal Void
-1000	Universe Boundary Media
-1	Reference to array 1

The absolute universe, Universe 0, in this model is described with Input Zones 1, 2, and 3. Code Zones 1 through 5 were lumped together into Input Zone 1 since they all contained the same media. This zone definition was done with the "OR" operator. This step is not a requirement. It was done only for logical consistency in the input description. The best way to model any problem is in a manner that the user best understands.

Array 1 contents are

FOR $Z = I$	
X 1 2 3 Y	
3 0 1 0	Array 1 is a $3 \times 3 \times 1$ array
2 1 1 1	"0" is a vacant cell position
1 0 1 0	"1" refers to Universe 1

AN IRREGULAR ARRAY

Figure M9.B.1 Computer drawing of Sample Problem 1

the following is a list of card image input card no. data 1 10 100 10 100 2 1 0 0 0 1.0 .40 2 an uncommon array shape 3 3*0 100 4 0.0 12.0 0.0 12.0 -10.0 10.0 rpp 5 \mathbf{rcc} 6.0 6.0 -11.0 0.0 0.0 22.0 7.0 6 rcc 6.0 6.0 -12.0 0.0 0.0 23.0 9.0 4.0 8.0 0.0 12.0 -10.0 10.0 0.0 12.0 4.0 8.0 -10.0 10.0 7 rpp 8 rpp 9 -2.0 2.0 -2.0 2.0 0.0 20.0 rpp rcc 0.0 0.0 1.0 0.0 0.0 18.0 1.0 rpp -1.e+08 1.0e+08 -1.0e+08 1.0e+08 -1.0e+08 1.0e+08 10 11 12 sph 6.0 6.0 11.0 7.0 13 sph 6.0 6.0 11.0 9.0 14 end spc +8 -3 -10 or +9 -2 or +2 -4 -5 or +4 -1 or +5 -1 cyl +3 -2 or +10 -9 -3 15 16 17 ar1 +1 +4 or +1 +5 18 bdy +8 -6 19 rod +7 20 fil +6 -7 21 end 22 6*1 23 24 3*0 3*1 1000 1 -1 -1000 2 3 25 33102 26 101\$\$ 0 1 0 3r1 0 1 0 t 27 1 28 -1 29 1 an irregular array\$ 10.0 7.5 -10.0 20.0 -10.0 20.0 -15.0 25.0 30 31 32 33 8.5e+03 6.5e+03 5.0e+03 34 0 1 0 35 0 1

end of card input list

Figure M9.B.2 Computer input and output listing of Sample Problem 1

NUREG/CR-0200, Vol. 3, Rev. 6

an uncommon array shape

ivopt = 0 idbg = 0

				body	/ data		
rpp	1	0.000000E+00	0.1200000E+02	0.000000E+00	0.1200000E+02	-0.100000E+02	0.100000E+02
rcc	2	0.6000000E+01 0.7000000E+01	0.600000E+01	-0.1100000E+02	0.000000E+00	0.000000E+00	0.2200000E+02
rcc	3	0.6000000E+01 0.9000000E+01	0.600000E+01	-0.1200000E+02	0.000000E+00	0.000000E+00	0.2300000E+02
rpp	4	0.400000E+01	0.800000E+01	0.000000E+00	0.1200000E+02	-0.1000000E+02	0.100000E+02
rpp	5	0.000000E+00	0.1200000E+02	0.4000000E+01	0.800000E+01	-0.1000000E+02	0.100000E+02
rpp	6	-0.2000000E+01	0.2000000E+01	-0.2000000E+01	0.200000E+01	0.000000E+00	0.200000E+02
rcc	7	0.0000000E+00 0.1000000E+01	0.000000E+00	0.1000000E+01	0.000000E+00	0.000000E+00	0.1800000E+02
rpp	8	-0.100000E+09	0.100000E+09	-0.100000E+09	0.100000E+09	-0.100000E+09	0.1000000E+09
sph sph number	9 10 of	0.6000000E+01 0.6000000E+01 bodies 10	0.6000000E+ 0.6000000E+	01 0.1100000E+0 01 0.1100000E+0	0.7000000E+ 02 0.9000000E+	-01 -01	

length of fpd-array 79

											input	zone	data
5	input	zone	e cod	e z	one		1	oody	num	bers			
spc		1		1			8		-3	-	10		
-				2		or	9		-2				
				3		or	2		-4		-5		
				4		or	4		-1				
				5		or	5		-1				
cyl		2		6			3		-2				
-				7		or	10		-9		-3		
ar1		3		8			1		4				
				9		or	1		5				
bdy		4		10			8		-6				
rod		5		11			7						
fil		6		12			6		-7				
number	of i	nput	zones		6								
number	of	code	zones		12								
length	of i	ntege	er arra	У	602								

code zone	input zone	zone data loc.	no. of bodies	region no.	media no.	box input zone	box code zone
1	1	71	3	1	1000	0	0
2	1	87	2	1	1000	0	0
3	1	98	3	1 .	1000	0	0
4	1	114	2	1	1000	0	0
5	1	125	2	1	1000	0	0
6	2	136	2	1	1	0	0
7	2	147	. 3	1	1	0	0
8	3	163	2	1	-1	0	0
9	3	174	2	1	-1	0	0
10	4	185	2	1	-1000	1	1
11	5	196	1	1	2	1	1
12	6	202	2	1	3	1 ·	1

krl(i)	kr2(i)
1	5
6	7
8	9
10	10
11	11
12	12

i 123456

Figure M9.B.2 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

morse region in input zone(i) array (mriz(i),i=1, 6) 1 1 1 1 1 1 morse media in input zone(i) array (mmiz(i),i=1, 6) 1 -1-1000 1000 2 3 morse universe in input zone(i) array (nbiz(i),i=1, 6) 0 0 0 1 1 1 option 0 was used in calculating volumes, for 1 regions 0-set volumes = 1, 1-concentric spheres, 2-slabs, 3-inputvolumes. volumes (cc) used in collisions density and track length estimators. reg 1 volume 1.000E+00

101\$ array 9 entries read t

array no. 1 array size is 3 by 3 by 1

Figure M9.B.2 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

M9.B.2 OVERLAPPING PINS IN A 2 × 2 ARRAY

Figure M9.B.3 illustrates the geometry described. The input and some of the output edit are given in Fig. M9.B.4. The MARS input is Cards 2 through 55 in the input list. The remaining input is solely for the JUNEBUG graphics program which is no longer distributed with the SCALE system. The following correspondence exists between the MARS input instructions and the card image list:

Card number	Input requirements
2	A.1, Title Card
3	A.2, Options Card
4–18	A.3, Body Definition Card
1945	A.4, Input Zone Description Cards
46	A.5, Region Card
47	A.6, Universe Card
48-52	A.7, Media Card
53	A.8, Array Size Specification Input
54	A.9, Array Content Description
55	A.10, Universe Type

The model consists of:

14	Bodies using
2	Body Types (RCC and RPP)
26	Input Zones described by
26	Code Zones
4	Universes
1	Array of size $2 \times 2 \times 1$
1	Level of Geometry Nesting

Special attention should be given to:

1. Body 11 is the reference body for Universe 1.

- 2. Body 12 is the reference body for Universe 2.
- 3. Body 10 is the reference body for Universe 3.
- 4. Body 9 is the reference body for Universe 4.
- 5. Input Zone 6 is the universe boundary zone for Universe 1.
- 6. Input Zone 12 is the universe boundary zone for Universe 2.
- 7. Input Zone 18 is the universe boundary zone for Universe 3.
- 8. Input Zone 24 is the universe boundary zone for Universe 4.

Figure M9.B.3 Computer drawing of Sample Problem 2

NUREG/CR-0200, Vol. 3, Rev. 6

card	no	data
Caru	no.	Gala
1	10	30 10 30 5*0 0.3 0.3
2	3*() 100
4	rcc	8.0 12.0 0.0 0.0 0.0 10.0 1.5
5	rcc	8.0 12.0 0.0 0.0 0.0 10.0 2.0
6 7	rcc	
8	rcc	8.0 4.0 0.0 0.0 0.0 10.0 1.5
9	rcc	8.0 4.0 0.0 0.0 0.0 10.0 2.0
10	rcc	
12	rcc	4.0 8.0 0.0 0.0 0.0 10.0 2.0 0.0 8.0 0.0 8.0 0.0 10.0
13	rpp	8.0 16.0 0.0 8.0 0.0 10.0
14	rpp	0.0 8.0 8.0 16.0 0.0 10.0
15 16	rpp	-8.0 8.0 -8.0 8 0 -5 0 5.0
17	rpp	-1.0e+07 1.0e+07 -1.0e+07 1.0e+07 -1.0e+07 1.0e+07
18	enc	1
19	p11	+1 +11
21	pi4	+7 +11
22	pc4	+8 -7 +11
23	fil	+11 -2 -8 +14 -31
25	pi1	+1 +12
26	pc1	+2 -1 +12
27	pi2	+3 $+12+4 -3 +12$
29	fi2	+12 -2 -4
30	fb2	+14 -12
32	p12	+3 +10 +4 -3 +10
33	pi3	+5 +10
34	pc3	+6 -5 +10
35	fi3 fb3	+10 -4 -6 +14 -10
37	fi3	+5 +9
38	fc3	+6 -5 +9
39 40	114 fc4	+/ +9 +8 -7 +9
41	fi4	+9 -6 -8
42	fb4	+14 -9
43 44	arl	+13 +14 -13
45	end	d
46	6*:	1 6*2 6*3 6*4 2*5
47 48	6*. 1	L 5*2 5*3 5*4 2*0 2 1 2 3 -1000
49	ī	2 1 2 3 -1000
50	1 :	2 1 2 3 -1000
51	1. -1	1000
53	2	2 1 0 0
54	4	3 1 2
55 56	4	- 1 1
57	-	1
58	a	weird 2 by 2 array\$
60	-	10.0 10.0 -10.0 10.0 -10.0 10.0
61	8.5	e+03 6.5e+03 5.0e+03
62 63	0	
64	ŏ	
65	0	10100
66 67	0	U 1
5.	e	nd of card input list

the following is a list of card image input

Figure M9.B.4 Computer input and output listing of Sample Problem 2

overlapping pins in a 2 by 2 array, jim west ornl

ivopt = 0 idbg = 0

				body d	ata		
rcc	1	0.8000000E+01 0.1500000E+01	0.1200000E+02	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	2	0.8000000E+01 0.2000000E+01	0.1200000E+02	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	3	0.1200000E+02 0.1500000E+01	0.800000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	4	0.1200000E+02 0.2000000E+01	0.800000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	5	0.8000000E+01	0.4000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	6	0.800000E+01	0.4000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	7	0.400000E+01	0.8000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rcc	8	0.400000E+01	0.8000000E+01	0.000000E+00	0.000000E+00	0.000000E+00	0.1000000E+02
rpp	9	0.0000000E+00	0.8000000E+01	0.000000E+00	0.800000E+01	0.000000E+00	0.1000000E+02
rpp	10	0.8000000E+01	0.1600000E+02	0.000000E+00	0.800000E+01	0.000000E+00	0.1000000E+02
rpp	11	0.000000E+00	0.8000000E+01	0.800000E+01	0.1600000E+02	0.000000E+00	0.1000000E+02
rpp	12	0.800000E+01	0.1600000E+02	0.800000E+01	0.1600000E+02	0.000000E+00	0.1000000E+02
rpp	13	-0.800000E+01	0.8000000E+01	-0.8000000E+01	0.800000E+01	-0.5000000E+01	0.5000000E+01
rpp	14	-0.1000000E+08	0.1000000E+08	-0.1000000E+08	0.1000000E+08	-0.1000000E+08	0.1000000E+08
number length	of of	bodies 14 fpd-array 120					

1

11

Figure M9.B.4 (continued)

					input	zone	αατα
	input zone	code zone	bod	y numb	ers		
pi1	1	1	1	11			
pc1	2	2	2	-1	11		
pi4	3	3	7	11			
pc4	4	4	8	-7	11		
fil	5	5	11	-2	-8		
fbl	6	6	14	-11			
pil	7	7	1	12			
pc1	8	8	2	-1	12		
pi2	9	9	3	12			
fc2	10	10	4	-3	12		
fi2	11	11	12	-2	-4		
fb2	12	12	14	-12			
pi2	13	13	3	10			
pc2	14	14	4	-3	10		
pi3	15	15	5	10			
pc3	16	16	6	-5	10		
fi3	17	17	10	-4	-6		
fb3	18	18	14	-10			
fi3	19	19	5	9			
fc3	20	20	6	-5	9		
fi4	21	21	7	9			
fc4	22	22	8	-7	9		
fi4	23	23	9	-6	-8		
fb4	. 24	24	14	-9			
arl	25	25	13				
air	26	26	14	-13			
number	of input z	ones 26					
number	of code z	ones 26					
length	of integer	array 1129					

Figure M9.B.4 (continued)

.....

. . .

code 2	one	input	zone	zc	one	data	loc	•	no.	of	bod	ies	reg	ion no	».	media	no.	box	inpu	t zo	ne	box	code	zon	e
1		1				99				2				1			1			1				1	
2		2			1	.10				3				1			2			1				1	
3		3			1	26				2				1			1			1				1	
4		4			1	.37				3				1			2			1				1	
5		5			1	53				3				1			3			1				ī	
6		6			1	.69				2				1		-100	00			1				1	
7		7			1	.80				2				2			1'			2				2	
8		8			1	91				3				2			2			2				2	
9		9			2	07				2				2			1			2				2	
10		10			2	18				3				2			2			2				2	
11		11			2	34				3				2			3			2				2	
12		12			2	50				2				2		-100	50 00			2				5	
13		13			2	61				2				3			1			ž				5	
14		14			2	72				3				3			2			2				2	
15		15			2	88				2				ž			ĩ			2				3	
16		16			2	99				3				ž			2			2				3	
17		17			3	15				3				ž			2			2				3	
18		18			3	31				2				2		-100	<u>,</u>			2				3	
19		19			Ř	42				2				Å		-100	1							<u>د</u>	
20		20			3	53				2				4			2			4				4	
21		21			3	69				2				4			2			4				4	
22		22			2	80				5				4			-			4				4	
23		23			3	96				2				4			2			4				4	
24		24			4	12				2				4		10/	<u>,</u>			4				4	
25		25			4	23				1				4		-100	10			4				4	
26		26			1	20				5				5		1.07	-1			0				0	
20		20			-	23				2				5		100	00			0				0	
	mor	se regi	on in	input	zo	ne(i) ar	ray	(mr	iz(i),i	1, 2	:6)											•	
		1 1	1	1		1	1	2	2		2	2	2	2	3	з	3	3	3	3	4	4	4		4
		4 4	5	5																					
	mor	se medi	a in	input	zon	e(i)	arr	av (r	nmiz	(i).	i=1.	. 26)													
				•											_										
		1 2	1	2		3-10	00	1	2		1	2	3-1	1000	1	2	1	2	3-10	000	1	2	1		2
		3-1000	-1	1000																					
	mor	se univ	erse	in inp	ut	zone	(i)	array	y (ni	biz(i),:	i=1,	26)												
		1 1	1	1		1	1	2	2		2	2	2	2	3	3	3	3	3	3	4	4	4		4
		а а	ń	ň																					

Figure M9.B.4 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

option 0 was used in calculating volumes, for 5 regions 0-set volumes = 1, 1-concentric spheres, 2-slabs, 3-inputvolumes. volumes (cc) used in collisions density and track length estimators. 1 2 3 4 5 reg 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 volume array no. 1 array size is 2 by 2 by 1 level 1 of array no. 1 x = 1 2 У 2 1 2 1 4 3 universe specifications universe 1-simple/0-comjom code zone 2 in universe 1 cannot be a simple universe 1 0 code zone 8 in universe 2 cannot be a simple universe 2 0 code zone 14 in universe 3 cannot be a simple universe 3 0 code zone 20 in universe 4 cannot be a simple universe 4 0

Figure M9.B.4 (continued)

- 9. This model has one code zone for each input zone.
- 10. The same bodies may be used in more than one universe description, thereby reducing the number of bodies needed to model a given geometry. Notice the cylinders overlap the universe boundaries and each cylinder is referenced in two universes.
- 11. This model has one array of size $2 \times 2 \times 1$.
- 12. The reference body for Array 1 is Body 13.
- 13. The array content description on Card 54 used the free-form specification option with IOP set to 0 on Card 53.

The reference body for a universe is the excluded body in the universe boundary zone description. Everything inside the universe reference body comprises the universe model. This model demonstrates the importance of positioning the universes correctly in an array. If the array content input was reversed, what would the picture look like? Actually, for this model there was not a real need to use the array feature of MARS. This could have been modeled completely in the absolute universe. Notice in the output listing that the universes in this problem are combinatorial and not simple. The input declared the universes as simple, but MARS changed the input to combinatorial and issued warning messages accordingly.

M9.B.3 PLEXIGLAS PIPE CROSS EXPERIMENT

Figure M9.B.5 illustrates the geometry being described. The input and some of the output edit is given in Fig. M9.B.6. The MARS input is Cards 2 through 38 in the input list. The remaining input is solely for the JUNEBUG graphics program which is no longer distributed with the SCALE system. The following correspondence exists between the MARS input instructions and the card image list:

Card number	Input requirements
2	A.1, Title Card
3	A.2, Options Card
4–19	A.3, Body Definition Cards
20–34	A.4, Input Zone Description Cards
35	A.5, Region Card
36	A.6, Universe Card
37	A.7, Media Card
38	A.8, Array Size Specification Input
	Note: Since no arrays were specified, Input A.9 was not entered.

The model consists of:

- 15 Bodies using
- 3 Body Types (RPP, RCC, & BOX)
- 14 Input Zones described by
- 15 Code Zones
- 0 Universes
- 0 Arrays
- 0 Level of Geometry Nesting

Figure M9.B.5 Computer drawing of Sample Problem 3

the following is a list of card image input

card no. data 10 100 10 100 1 4*0 1 0.5 0.5 2 plexiglas pipe cross critical experiment 3 3*0 10 4 rcc 0.0 0.0 3.175 0.0 0.0 207.01 13.97 5 rcc 0.0 0.0 3.175 0.0 0.0 207.01 16.51 rcc 0.0 0.0 91.44 88.160559 0.0 3.076759 13.97 6 rcc 0.0 0.0 91.44 88.160559 0.0 3.076759 16.51 7 8 rcc 0.0 0.0 91.44 -88.160559 0.0 3.076759 13.97 -9 rcc 0.0 0.0 91.44 -88.160559 0.0 3.076759 16.51 rcc 0.0 0.0 0.0 0.0 0.0 3.175 20.32 10 rcc 0.0 0.0 210.185 0.0 0.0 3.175 20.32 rcc 88.150000 0.0 94.518635 3.173066 0.0 0.110806 20.32 11 12 13 rcc -88.160559 0.0 94.518635 -3.173066 0.0 0.1108-6 20.32 box 0.0 -1.27 -10.80 102.24 0.0 102.24 0.0 2.54 0.0 -102.24 0.0 102.24 rpp -300.0 300.0 -300.0 300.0 -300.0 113.175 rpp -350.0 350.0 -350.0 350.0 -350.0 350.0 14 15 16 17 rpp -1.0e+05 1.0e+05 -1.0e+05 1.0e+05 -1.0e+05 1.0e+05 18 rpp -90. 90. -10.0.10.0 0.0 213.36 19 end 20 pg1 +2 -1 -4 -6 -7 -8 pg2 +6 -5 -10 -1 21 22 pg3 +4 -3 -9 -1 pg4 +7 23 24 pg5 +8 25 pg6 +9 pg7 +10 26 27 pg8 +11 -2 -4 -6 -7 -8 -9 -10 +15 28 ufl +12 +1 29 uf2 +12 +5 -1 30 uf3 +12 +3 -1 31 vod +1 -12 fil +13 -2 -4 -6 -7 -8 -9 -10 -11 or +13 +11 -15 -9 32 33 rfl +14 -13 34 end 35 14*1 14*0 36 37 8*2 3*1 1000 3 0 38 0 39 -1 40 1 41 pipe cross exp.\$ 42 10.0 7.5 -100.0 100.0 -130.0 130.0 -10.0 220.0 43 44 8.5e+03 6.5e+03 5.0e+03 45 3*0 4*1 0 3*1 4*0 46 0

end of card input list

4. Y

Figure M9.B.6 Computer input and output listing of Sample Problem 3

plexiglas pipe cross critical experiment

ivopt = 0 idbg = 0

				body (data		
rcc	1	0.0000000E+00 0.1397000E+02	0.000000E+00	0.3175000E+01	0.000000E+00	0.000000E+00	0.2070100E+03
rcc	2	0.0000000E+00	0.000000E+00	0.3175000E+01	0.000000E+00	0.000000E+00	0.2070100E+03
rcc	3	0.0000000E+00	0.000000E+00	0.9144000E+02	0.8816056E+02	0.000000E+00	0.3076759E+01
rcc	4	0.1397000E+02 0.0000000E+00	0.0000000E+00	0.9144000E+02	0.8816056E+02	0.000000E+00	0.3076759E+01
rcc	5	0.1651000E+02 0.0000000E+00	0.000000E+00	0.9144000E+02	-0.8816056E+02	0.0000000000000000000000000000000000000	0.3076759E+01
	6	0.1397000E+02	0.0000000000000000000000000000000000000	0.91440005+02	-0.9916056F±02	0.00000005+00	0.20767505:01
ree	-	0.1651000E+00	0.0000002+00	0.91440002+02	-0.8816036E+02	0.0000002+00	0.30787392+01
rcc	7	0.0000000E+00 0.2032000E+02	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.3175000E+01
rcc	8	0.0000000E+00 0.2032000E+02	0.000000E+00	0.2101850E+03	0.000000E+00	0.000000E+00	0.3175000E+01
rcc	9	0.8815000E+02	0.000000E+00	0.9451864E+02	0.3173066E+01	0.000000E+00	0.1108060E+00
rcc	10	-0.8816056E+02	0.000000E+00	0.9451864E+02	-0.3173066E+01	0.000000E+00	0.1108000E-06
box	11	0.000000E+02	-0.1270000E+01	-0.1080000E+02	0.1022400E+03	0.000000E+00	0.1022400E+03
rpp	12	0.0000000E+00 -0.3000000E+03	0.2540000E+01 0.3000000E+03	0.0000000E+00 -0.3000000E+03	-0.1022400E+03 0.3000000E+03	0.0000000E+00 -0.3000000E+03	0.1022400E+03 0.1131750E+03
rpp	13	-0.3500000E+03	0.3500000E+03	-0.3500000E+03	0.3500000E+03	-0.3500000E+03	0.3500000E+03
rpp	14	-0.100000E+06	0.1000000E+06	-0.100000E+06	0.10000005+06	-0.100000E+06	0.10000005+06
		0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.100100002:00	0.0000000000000000000000000000000000000	0.010000002:00	0.0000000000000000000000000000000000000
rpp	12	-0.900000E+02	0.900000E+02	-0.1001000E+02	0.0000000000000000000000000000000000000	0.2133600E+03	0.0000002+00
number	of	bodies 15					

length of fpd-array 136

							inp	ut zone	e data			
	input zone	code zo:	ne	body nur	nbers							
pg1	1	1		2	-1	-4	-6	-7	-8			
pg2	2	2		6	5	-10	-1					•
pg3	3	3		4	-3	-9	-1					
pg4	4	4		7								
pq5	5	5		8								
pg6	6	6		9								
pg7	7	7		10								
pg8	8	8		11	-2	-4	-6	-7	-8	-9	-10	15
ufl	9	9		12	1		•.					•
uf2	10	10		12	5	-1						
uf3	11	11		12	3	-1						
vod	12	12		1	-12							
fil	13	13		13	-2	-4	-6	-7	-8	-9	-10	-11
		14	or	13	11	-15	-9					
rfl	14	15		14	-13							
numbe	r of input :	zones	14									

number of code zones 15 length of integer array 620

Figure M9.B.6 (continued)

code 20 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15	ne in	aput zone 1 2 4 5 6 7 8 9 10 11 12 13 13 13	: 201	e data 106 137 158 179 185 191 197 203 249 260 276 292 303 349 370	loc.	no.	of	bodie 6 4 1 1 1 1 2 3 3 2 9 4 2	es :	regio	on no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	me	edia no 2 2 2 1 1 1000 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D. E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	input	20ne 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box	code	zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0	<pre>krl(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 15 Decree</pre>	kr2(i 1 2 3 4 5 6 7 8 9 9 10 11 12 14 15)																Ū	
0	norse i	l : media in	1 1 input 2	1 :one(i)	1 array	1 : (mmi:	1 2(i),	1 i=1,	1, 14 1 14)	1	1	1	1							
0	2 morse	2 universe	2 2 in inpu	2 It zone	2 (i) ar	2 : ray (1	2 nbiz(1 (i),i	1 =1, 1	11 .4)	000	3	0							
1 option 0-set vo	0 0 was u lumes =	0 sed in ca 1, 1-coa	0 0 alculati ncentric	0 .ng vol : spher	0 .umes, :es, 2-	0 (for : slabs,	0 1 reg , 3-i	0 ions nput	0 volum	0 Nes.	0	0	0							

volumes (cc) used in collisions density and track length estimators. reg 1 volume 1.000E+00

array data requires

8 locations, leaving 13921 locations

Figure M9.B.6 (continued)

COMBINATORIAL GEOMETRY ZONE TRANSFER SUMMARY TABLES

EXIT	EXIT	LOC. IN	ENTERING	NO* OF	LOC. FOR
ZONE	BODY	MA ARRAY	ZONE	ENTRIES	NEXT ZONE
1	2				
1	2	100	10	755	473
		109	13	/55	411
1	-	411	8	89	0
T	-1	114	10		
		114	12	508	396
•		396	9	491	0
1	-4		-		
	~	119	3	153	0
1	-6		•		
	_	124	2	188	0
1	-7				
_		129	4	138	0
1	-8				
		134	0	0	0
2	6				
		140	13	437	405
		405	8	80	408
		408	1	77	0
2	-5				
		145	10	580	0
2	-10				
		150	7	57	0
2	-1				-
		155	9	74	0
3	4				
		161	13	320	399
		399	1	177	402
		402	8	73	420
		420	2	33	0
3	-3		-		v
-	-	166	11	612	0
3	-9	200		UIL	v
•	2	171	0	0	٥
3	-1		v	v	Ŭ
•	-	176	٩	152	0
4	7	1,0	2	132	v
•	,	192	13	167	420
		102	13	407	430
5	0	430	74	00	U
5	o	100	10	5.6.6	^
6	٩	100	12	000	U
v	9	104	10	400	
		174	12	409	414
		414	3	253	423
		423	11	181	426
7	10	420	8	7	0
,					

Figure M9.B.6 (continued)

COMBINATORIAL GEOMETRY ZONE TRANSFER SUMMARY TABLES

EXIT ZONE	EXIT BODY	LOC. IN MA ARRAY	ENTERING ZONE	NO* OF ENTRIES	LOC. FOR NEXT ZONE
7	10				
		200	13	182	444
		444	14	12	0
8	11				
0	2	206	13	893	0
8	-2	211	1		•
8	-4	211	1	44	0
•	•	216	з	114	0
8	-6			*13	Ŭ
		221	2	90	0
8	-7				
0	•	226	0	0	0
8	-8	221	0	<u>^</u>	
8	-9	231	U	0	0
0	2	236	0	Ο	0
8	-10			v	0
		241	7	1	0
8	15				
•	10	246	0	· 0	0
9	12	252	0	•	
9	1	252	U	0	0
•	-	257	4	258	391
		381	2	186	384
		384	1	157	387
		387	10	75	390
		390	3	52	393
		393	11	36	0
10	12				
	_	263	0	0	0
10	5		_		
		268	7	165	429
		429	13	151	432
		432	2	94	435
	_	435	8	48	0
10	-1				
		273	9	8	0
11	12				
**	12	279	٥	0	0
11	3	613	v	. U	U
	5	284	٦	176	717
		417	6	70	4T1
11	-1		•	~~	U
		289	9	23	0

Figure M9.B.6 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

COMBINATORIAL GEOMETRY ZONE TRANSFER SUMMARY TABLES

 EXIT ZONE	EXIT BODY	LOC. IN MA ARRAY	ENTERING ZONE	NO. OF ENTRIES	LOC. FOR NEXT ZONE
12	1	205	-		
12	-12	295	1	218	0
13	13	300	9	241	0
13	-2	306		300	0
13	-4	311		2033	0
13	-6	316	3	1016	0
13	-7	321	2	1050	0
13	-8	326	4	377	0
13	-9	331	5	509	0
13	-10	336	6	939	0
13	-11	341	7	334	0
		346 447	8 14	1504	447
14	13	352		147	õ
14	11	352	13	176	0
14	-15	441	13	176	441 0
14	0	362	0 .	0	0
14	-9	367	6	11	0
 15	. 14	373	0	0	0
15	-13	378	13	6976	0

Figure M9.B.6 (continued)

Special attention should be given to:

- 1. This model does not use the MARS array feature; therefore, Input Requirement A.9 is not entered. Input A.8 consisted only of the terminating zero input.
- 2. All input zones are in the absolute universe, and no other input zones are described.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.C COMBINATORIAL GEOMETRY ZONE SUMMARY TABLE DESCRIPTION

Input zones are described by one or more code zones. The code zone description consists of the union or the intersection of bodies. If a body is totally included in a code zone, then a particle could exit the zone by exiting the body. If a body is an excluded body referenced with a negative sign in a code zone description, then a particle could exit the zone by entering the body. Every time a particle exits a zone, it does so by entering or leaving one or more bodies used in the zone description. To save time in determining the next zone of entry, combinatorial geometry builds a table of the zones entered when a particle exits a given zone by way of a specific body in the zone description. To make this process more useful, combinatorial geometry counts the number of times it enters a given zone from a given body in an adjacent zone. At the end of a batch or generation of particles, this table is sorted in order of the most frequent zone of entry. This sorting enables the geometry tracking system to check the more probable zones of entry before checking the less probable zones of entry. For most problems, this process will not accelerate the tracking significantly. It will, however, provide the user with a detailed account of where his tracking took place and with how much frequency. The zone transfer summary table is printed out at the end of each calculation. It is a good way to check geometry models for inconsistencies. The zone summary table gives the frequency of each zone transfer and by what body the zone transfer took place.

The following zone transfers are from the plexiglas pipe (Sect. M9.B.3). The exit and entry zone refers to code zones. We shall discuss the transfers out of Code Zone 3. This code zone's body description is 4-3-9-1. For each body in Zone 3's description, there will be an exit table giving the zones entered upon exiting Zone 3 from each body and the frequency each was entered. For example, histories exiting Code Zone 3 by way of Body 4 entered Code Zone 13 320 times; Zone 1 was entered 177 times; Zone 8 was entered 73 times; Zone 2 was entered 33 times. All of these entries were exits from Code Zone 3 by way of exiting Body 4. The user should examine his zone summary table and decide if the transfers were correct for the model he intended to design. Very often the intended model is not the model input. It is easy in three-dimensional (3-D) geometry modeling to leave a small crack in the model. The code zone transfer summary table is designed to verify and assist in the proper construction of a geometry model.

M9.D INTERFACING THE MARS SUBROUTINES MODULE TO OTHER COMPUTER CODES

MARS has been developed in a modularized system so that it may be easily adapted with minimal effort into other computer codes. There are only a very few subroutines the user needs to communicate with inside the MARS system. For input the user will have to call subroutines JOMIN1, JOMIN2, and AZIP in MARS. Examples of this may be found in Subroutine RINPUP in the SCALE SAS3 control program, and in Subroutine RINPU1 in MORSE-SGC. For asking the location of a particle given a coordinate in the absolute universe, Level 0 of the geometry model, the user needs to call Subroutine CALI. Examples of this can be found in Subroutines SOURCE and GETNT in MORSE-SGC. Knowing a particle location, trajectory, and distance it may travel, the user needs to call Subroutine PILOT to determine the next zone of entry. Examples of calls to PILOT may be found in Subroutines GOMST and EUCLID in MORSE-SGC. Notice that labeled common ARAR contains NAR, the number of arrays in a model and NLEV, the number of geometry levels present in a model. Occasionally, the user will have the nesting table for a particle and need the particle coordinate either in a lower or higher geometry level. Subroutine RISK was written to take a particle coordinate in Geometry Level NL1 and translate it to Geometry Level NL2, given the nesting array. For calling RISK, NL2 must be greater than or equal to NL1. The opposite may be accomplished by calling Subroutine CLEV. That is, CLEV takes a coordinate in Level NL1 and translates the coordinate to Level NL2. CLEV is in the MARS subroutine library. PILOT in MARS and GETNT in MORSE call CLEV.

The user should be careful in using MARS to protect the particle nesting table during tracking. The user should be aware that, when a particle enters a rotated coordinate system, the particle direction cosines, WB in labeled common PAREM, are automatically rotated.

M9.E MARS DATA STORAGE AND PROGRAM LOGIC

Subroutine CALI answers the question: What is the particle location? It is given particle coordinates, usually in the absolute universe, although this is not a requirement. It proceeds to determine if the particle is in an array or in a valid material media. If the particle is in a valid media, it determines this and returns. If the particle is in an array, it then checks the next level of the geometry as described in the array description. It repeats the process until it determines a valid positive material media the particle coordinates are inside. In this process, it starts from a lower, more global level of the geometry hierarchy, and checks from there to a higher, more local geometry level. The process is completed when the particle is located in a positive real media.

During the process of checking successive levels of a geometry model, the nesting table is always updated as the particle coordinates are translated. Therefore, as MARS goes from a lower global level to a higher, local geometry level, MARS always maintains the knowledge of where the particle is located relative to the lower, more global geometry levels.

Subroutine PILOT goes through the same process during tracking, except it has the logic to translate from higher levels to lower levels as well as from lower levels to higher levels. This is necessary for tracking. PILOT uses the nesting table generated by CALI when the particle initial location was determined. Both PILOT and CALI call Subroutine STORA to update the nesting table.

M9.E.1 MARS SUBROUTINE DESCRIPTIONS

ABEND - ABEND is called for an abnormal termination of a calculation. It calls RCOVER.

ABOX - ABOX is called from JOMIN1. It reads the BPP and WPP body data and converts the data to the BOX and WED body input format. The BPP and WPP are alternative ways of describing the BOX and WED.

ALBERT - ALBERT is called from GENI to construct the floating-point data to be stored in the FPD table for the ARB body, the arbitrary polyhedron body.

ARGEN - ARGEN is called from AZIP. It generates the size of each array from the array content tables and NLV table. It must compute the size of the simplest arrays first. These arrays are the arrays that contain only universes that do not contain subarrays. ARGEN comes from the term "array generator." The x-width, y-length, and z-height of each array is stored in the WLH array. This array is not needed in tracking or particle locating. It is needed to verify the fit of each array in each reference location.

AZIP - AZIP reads the combinatorial MARS array size and content input. It calls several other subroutines and generates a series of tables from the input data that are needed for MARS array tracking. It is called after JOMIN2 and GENI have set up the combinatorial data tables in memory. It uses much of the combinatorial input data from memory to construct the MARS data tables.

BOD - BOD is called from CELL after the lattice cell position of a particle has been determined. It returns the cell contents. If the contents of a cell is vacant, it sets a flag. This is legal for exiting an array but fatal for entering an array. A particle cannot enter a vacant lattice position of an array.

M9.E.1

CALI - CALI is called from outside the MARS subroutine module to determine a particle location. It first determines the universe and array the particle is inside. Frequently this requires checking several levels of the geometry model. CALI calls LOOKZ to determine the combinatorial geometry input zone a particle is inside for each universe or array. When CALI has checked several levels of geometry logic and determines the positive media the particle is inside, it then returns the information in labeled common PAREM, with the nesting table set by calls to STORA.

CELL - CELL is called from both CALI and PILOT. It is the guts of entering or exiting an array. It is called for a particle inside of or moving through an array. It returns the lattice cell position and content for the current particle position. CELL serves a dual role. It indicates the location of a particle in an array when the particle is not moving, and it says the next cell the particle will enter when the particle is moving. CELL calls subroutines SORT and BOD.

CLEV - CLEV is called from PILOT to translate a particle coordinate from a larger level, more local coordinate system to a lower, more global geometry level number given the nesting table. Because of the presence of several labeled commons in CLEV, it changes quite a few variables in a few commons. The user should be careful before calling CLEV so as not to inadvertently change some important information needed for tracking.

CORNER - CORNER is called from TRENTE and RTEXIT. It returns the origin or vertex for a reference body. This information is essential to particle translation for both entering and exiting a universe or an array.

CTRAN - CTRAN is called to determine the particle coordinate relative to either a lattice cell in an array or given the lattice position and the particle coordinate, it can determine the coordinate of the particle relative to the origin of the array. It requires the array number, the lattice position, and the particle coordinate to perform the proper translation. The argument NX determines the proper translation to perform.

DELTA - DELTA is called from ARGEN. It computes the size of each dimension of each lattice cell from the reference body of the cell. This dimension is summed in ARGEN to compute the total array size on each dimension.

DIPR - DIPR is called from several subroutines to dump MARS array information after an error has been detected. It calls DUPR. DIPR is called to simplify the call to DUPR from the error detecting coding.

DUPR - DUPR is called from DIPR. It dumps the MARS array tables from memory and the nesting table of the current particle location. It generates quite a bit of output and should not be called frequently during debugging. The argument IXD in DUPR can suppress much of the geometry dump to allow frequent printouts of the nesting array during model debugging.

FINEFI - FINEFI is called from AZIP. It checks the MARS array input with the combinatorial input for snug fit. Most of the MARS input error messages regarding array content, reference, or fit comes from FINEFI. It is essential to have exact geometry fits before successful tracking can be initiated.

GENI - GENI is called from JOMIN2. It reads the binary file generated by JOMIN1 and stores the data into memory in the combinatorial geometry array tables. It edits and prints the output edit of the combinatorial input.

GG - GG is called from LOOKZ and G1. It is the guts and essence of the combinatorial geometry system. It computes, given the body number, the RIN and ROUT for the body.

GTVLIN - GTVLIN is called from JOMIN2 to calculate input zone volumes. If IVOPT = 0, it sets all the volumes equal to 1.

G1 - G1 is called from PILOT to determine the next input zone a particle may enter. It is in three parts. The first part of G1 determines the distance to exit the present zone if the zone will be exited. The second part of G1 determines the next zone of entry by checking those previous zones the particles entered when exiting the current zone by way of the body causing the particle to exit. If a new zone of entry is not determined from this table, then the third part of G1 proceeds to check all other possible zones of entry in the current universe. Errors in combinatorial geometry tracking come from G1.

IPACK - IPACK is called from JOMIN1 to pack several integers into one integer.

JOMIN1 - JOMIN1 reads the free-form combinatorial input for the body data, zone description data, region data, universe data, and media data. The input is written on a scratch file for later use by GENI.

JOMIN2 - JOMIN2 is called during combinatorial geometry input processing. It sets up the combinatorial geometry array pointers from information determined by JOMIN1. It then calls GENI, and the input data are stored in the proper arrays. JOMIN2 can call GTVLIN but usually does not.

LEVEL - LEVEL is called from AZIP. It determines the highest level number each array is referenced inside. These data are placed in the NLV table for later use in AZIP. The NLV table is not used for tracking or locating a particle.

LOOKZ - LOOKZ is called from CALI and PILOT to determine the particle location in a universe. It calls GG to determine RIN and ROUT for each body in a zone description table. It then determines the code and input zone the particle is inside. This information is returned in labeled common PAREM.

ORTHOM - ORTHOM is called from AZIP. It computes the rotational matrices of each BOX body, which references either an array or a universe. A BOX can be arbitrarily positioned in space. When a particle enters a universe or an array and when the reference body is a BOX, then both the particle coordinates and direction cosines must be rotated. Subroutine ROTA is the only routine that makes use of these matrices constructed by ORTHOM.

PILOT - PILOT is called from outside the MARS subroutine module to determine the next input zone a particle may enter. The first zone the particle enters with a positive media number is returned. PILOT cannot be called without first knowing the particle location as determined by calling CALI.

PR - PR is called from combinatorial geometry errors discovered in LOOKZ or G1. It generates even more output.

RCOVER - RCOVER is called from ABEND. If MORSE is the program being run, RCOVER calls NRUN to normalize and print results for the batches completed prior to the error, and then executes a 'STOP 6135'. If PICTURE is being run, only the 'STOP 6135' is executed.

RESTOR - RESTOR is called by JOMIN when RINPU2 calls JOMIN. When executed in SCALE, the geometry and array data are written out on a binary file for later recovery. RESTOR reads labeled commons REPEAT, ARAR, GOMLOC, and PAREM. It also reads the MA, FPD arrays and all of the MARS array storage from the binary file. The file read by RESTOR is written by RINPUP in the SAS3 control module in SCALE or by RINPU1 in MORSE-SGC.

RISK - RISK translates coordinates defined on geometry level NL1 to geometry level NL2 using the nesting table stored in array LP. This translation is from a global coordinate to a local coordinate system. NL2 must be greater than NL1.

ROTA - ROTA performs particle and direction cosine rotation upon entering or exiting a coordinate system defined by a BOX reference body. It is called from TRENTE and RTEXIT. It uses the rotational matrices constructed by ORTHOM during input processing.

RTEXIT - RTEXIT is called on exiting either a universe or an array. The "RT" means rotate, then translate. The rotation must be performed first, and then the translation can occur. RTEXIT is given the reference body for the universe or the array. If the body is an RPP, only translation of coordinates is required. If the body is a BOX, then both rotation and translation are required.

SAZAR - SAZAR is called by JOMIN if NDSN, the number of array analysis collision edits (input in MORSE-SGC) required, is > 0. SAZAR reads the location, media, and response criteria for each edit. This allows the user to selectively sample specific collisions.

SKPBLK - SKPBLK is called from JOMIN1 to skip blanks while reading free-form input cards.

SORCER - SORCER is called after completion of a batch of histories. It sorts the next zone of entry table in the order of most probable entry. This is a simple, fast routine used to speed up tracking through a complex geometry model.

SORT - SORT is called from CELL. It is called for each dimension of an array. It determines the cell position on each dimension for the particle location. It determines when a particle is exiting an array lattice and sets a flag for CELL to take appropriate action.

STORA - STORA is called from CALI and PILOT. It updates the nesting table during array tracking and locating. This is one of the most important aspects of array nesting logic. It is essential to the MARS logic.

TRENTE - TRENTE is called on entering either a universe or an array. The "TR" means translate, then rotate. The translation of the particle coordinate must occur and then the rotation. TRENTE is the opposite of RTEXIT. It requires the reference body of the universe or the array to determine the appropriate coordinate transformation.

UNIS - UNIS is called by AZIP to read, to verify, and to edit the universe type input. If a universe is erroneously declared simple, UNIS changes the universe type specification to combinatorial and writes warnings to the user.

ZEXITS - ZEXITS is called to dump the combinatorial summary of zone transfers at the end of a calculation. In MORSE-SGC, it is called by NRUN.

	Model								
Inp	ut routines	Trac	cking routines						
Combinatorial	MARS array input	Combinatorial	MARS array tracking						
JOMIN1 JOMIN2 GENI ABOX GTVLIN	AZIP LEVEL ARGEN DELTA ORTHOM FINEFI UNIS SAZAR	LOOKZ G1 GG PR SORCER ZEXITS ALBERT NORML	CALI PILOT CELL SORT BOD ROTA CORNER RTEXIT TRENTE CTRAN STORA CLEV RISK DIPR						
			DIPR						

Table M9.E.1 MARS subroutine

Address pointer	Array name	Length of the array	Description
	NI V	NAP	Description
11 (141)	IVE V	NAK	inside; there are NAR arrays in a model
IP(NP+1)	WLH	3*NAR	The width on X, the length on Y, and the height on Z of each array $% \left({{{\mathbf{x}}_{i}}_{i}} \right)$
IP(NP+2)		INACTIVE	
IP(NP+3)	NCMAX	3*NAR	The size of each array lattice NXMAX ₁ by NYMAX ₁ by NZMAX ₁
IP(NP+4)	NI4	NAR	Pointer for the array content description for each array
IP(NP+5)	NBN	$\sum_{j=1}^{NAR} NXMAX_j * NYMAX_j * NZMAX_j$	Lattice cell content for each array as pointed to by NI4
IP(NP+6)	NBOD	IBOD	Body No. that defines each universe; there are IBOD universes
IP(NP+7)	NCN	NAR*3	Address for the cell boundaries for each array in each dimension
IP(NP+8)	RBY	$\sum_{j=1}^{NAR} NXMAX_j + NYMAX_j + NZMAX_j + 3$	The lattice cell boundary for each array as pointed to by NCN
IP(NP+9)	NBA	NUMB	Address for BOX rotation matrices for all BOX bodies that reference either arrays or universes
IP(NP+10)	ORT	NF	Rotation matrices as pointed to by NBA
IP(NP+11)	LP	6*NLEV+4	Particle nesting table for tracking

Table M9.E.2 MARS storage requirements

Starting location	Information	Size
NGEOM=NADD	Length of geometry array	1
KMA	MA - Integer array	LTMA
KFPD	FPD - Floating point array	LFPD
KLCR	LOCREG - Indices to correlate MA array data with code zone data	NUMR
KNBD	NUMBOD - Number of bodies for each code zone	NUMR
KIOR	IROR - Indices to correlate input zone to code zone	NUMR
KRIZ	MRIZ - Indices to correlate MORSE region to input zone	IRTRU
KRCZ	MRCZ - Indices to correlate MORSE region to code zone	NUMR
KBIZ	NGIZ - Indices to correlate MORSE universe to input zone	IRTRU
KBCZ	NGCZ - Indices to correlate MORSE universe to code zone	NUMR
KMIZ	NMIZ - Indices to correlate MORSE media to input zone	IRTRU
KMCZ	NMCZ - Indices to correlate MORSE media to code zone	NUMR
KKR1	KR1 - Indices to correlate first code zone to input zone	IRTRU
KKR2	KR2 - Indices to correlate last code zone to input zone	IRTRU
KNSR	NSOR - Indices of code zones in which source particles have been found	NUMR
KVOL	VNOR - Volume of each MORSE region	NIR
IP(1)	Array storage for MARS	IP(12)-IP(1)

Table M9.E.3 Layout of combinatorial geometry data

Position in Blank Common	Information stored	Size	Description
KFPD	RIN for Body 1	1	Path length data for last
KFPD + 1	ROUT for Body 1	1	
KFPD + 2	First six words of real data for Body 1	6	Read from first card of Body 1 card set
KFPD + 8	Remaining words of real data for Body 1	N ₁	N ₁ depends on body type (see Table M9.A.1)
$KFPD + 8 + N_1$	RIN for Body 2	1.	
	ROUT for Body 2	1	Same information as above but for Body 2
	Remaining data for Body 2 (N ₂ words) Repeat for NUMB bodies	N ₂	·

Table M9.E.4 Detailed layout of the FPD array^a

×

"NOTE: Eight words are set aside at the end of the FPD array but are not used.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.E.8

Position in Blank Common	Information stored	Size	Description
KMA	Body 1		
KMA + 1	LOOP for Body 1		
KMA + 2	Body type (ITYPE)		
KMA + 3	LRI	7	Body 1 data (each body requires seven words of information)
KMA + 4	LRO		
KMA + 5	LL - Last universe body was referenced inside		
KMA + 6	Beginning location in FPD body data on		
KMA + 7	Body 2	7	Same information and order as for Body 1
KMA + 14			
KMA + (L-1)*7	Body (L)	7	Body L is the last body
KMA + L*7	Code Zone 1	1	Beginning of code zone information
	Number of first body in this zone	5 words per body per code zone reference	Beginning of information about bodies defining Code Zone 1. Integer data location is given by: 7*(body number) - 6
	Location of integer data for this body		
	First zone to search upon exiting this body		
	Number of entries into the zone		
	Location of next zone to be searched		

Table M9.E.5 Detailed layout of the MA array

Position in Blank Common	Information stored	Size	Description
	Data on second body in this zone	5	The last three words in each set of body data initiate the "leap frog" process by which the code stores possible zones which can be entered upon exiting this body in that particular zone. These zones are checked by the code when the next zone entered is being determined. If the next zone is not located from this stored data cill
	Data on last body is the zone	5	zones are searched.
	Zone 2	<u> </u>	· ·
	Body information	1	Same information as above except for Code Zone 2
	Zone data of the last zone		Code zone information about the last zone input on cards
KMA + LDATA	Code search information KMA+LTMA - 1	2*NAZT	Storage set aside for determining the zone to be searched and where the next zone number is located

Table M9.E.5 (continued)

1

Table M9.E.6 Definitions of variables in common GOMLOC

Variable	Definition
KMA	Starting location for the array MA containing integer data for each code zone
KFPD	Starting location for the array FPD containing real data for each code zone
KLCR	Starting location for the array LOCREG(I) that contains the starting location in the MA array for the lth code zone data
KNBD	Starting location for the array NUMBOD(I) that contains the number of bodies for the Ith code zone
KIOR	Starting location for the array IROR(I) that contains the index of the corresponding input zone for the <i>lth</i> code zone
KRIZ	Starting location for the array MRIZ(I) that contains the index of the MORSE region corresponding to the <i>lth</i> geometry input zone
KRCZ	Starting location for the array MRCZ(I) that contains the index of the MORSE region corresponding to the <i>lth</i> geometry code zone
KMIZ	Starting location for the array MMIZ(I) that contains the index of the MORSE media corresponding to the <i>Ith</i> geometry input zone
KMCZ	Starting location for the array MMCZ(I) that contains the index of the MORSE media corresponding to the <i>Ith</i> code zone
KKR1	Starting location for the array KR1(L) contains the first code zone which was made from the Lth input zone
KKR2	Starting location for the array KR2(L) contains the last code zone which was made from the Lth input zone
KNSR	Starting location for array NSOR that contains the code zones in which source particles have been found
KVOL	Starting location for the array VNOR(I) which contains the volume for MORSE region (I)
NADD	Starting location for the geometry data and changed in JOMIN2 to the total number of words required for geometry data
LDATA	Length of the integer data in the MA array excluding the words set aside for zone search information
LTMA	Total length of the MA array
LFPD	Length of the FPD array
NUMR	Number of code-produced zones
IRTRU	Number of input zones
NUMB	Number of bodies
NIR	Number of MORSE geometry regions
KBIZ	Starting location for the array NGIZ(I) that contains index of the MORSE universe corresponding to the Ith geometry input zone
KBCZ	Starting location for the array NGCZ(I) that contains index of the MORSE universe corresponding to the Ith geometry code zone

·
Variable	Definition
XB(3)	Coordinates of the starting point of the present path. Changed in EUCLID, GOMST, and LOOKZ
WB(3)	Direction cosines of particle trajectory. Equal to U, V, and W. Changed in EUCLID, GOMST, and LOOKZ
WP(3)	Temporary storage of WB(3)
XP(3)	Temporary storage of XB(3). Changed in NORML
RIN	Distance to entry calculated in GG
ROUT	Distance to exit calculated in GG
PINF	Machine infinity (1.0E + 20)
DIST	Distance from XB(3) to present point
IR	Combinatorial zone of present particle position
IDBG	Set nonzero to initialize a debug printout
IRPRIM	Next region to be entered after a call of G1
NASC	Body number of last calculated intersection. Set negative to indicate source or collision point not on a body surface
LSURF	Surface of body NASC where intersection occurred. Positive if particle is entering the body and negative when exiting
NBO	Body number and a sign used to define zones. Input in zone description as positive when zone is contained in body and as negative if zone is outside body
LRI	Entry surface calculated in GG
LRO	Exit surface calculated in GG
KLOOP	Trajectory index of present path incremented in G1
LOOP	Index of last trajectory calculated for body NBO. If LOOP is equal to KLOOP, GG returns immediately with old values in RIN, ROUT, LRI, and LRO
ITYPE	Body type of Body NBO (indicated BOX, SPH, etc.)
NOA	Not used

Table M9.E.7 Definitions of variables in common PAREM as found in combinatorial geometry

Variable	Definition
DIST0	Distance from point XB(3) to next scattering point. Used in G1 to avoid calculating the next zone if a scattering event occurs before the intersection
MARKG	Set 1 in G1 if trajectory end point is reached before next intersection. Otherwise set to 0
NMEDG	Input zone number for current collision from a LOOKZ call
NBLZ	Packed word containing both input zone and code zone numbers for current collision stored in LOOKZ
BLZOLD	Packed word containing code and input zone numbers for previous collisions
IRPOLD	Input zone number for previous collision

Table M9.E.8 Definitions of variables in common ORGI^a

"Variable names are not the same in all routines.

Table M9.E.9 Definitions of variables in common TAPE

Variable name	Definition
INT	Logical number of standard input unit
IOT	Logical number of standard output unit
IOUT	Logical number of scratch unit for geometry data
IOU2	Logical number of second scratch unit
IDM(4)	Not used at present

Variable	Definition
MUS	Pointer for array indicating type of universe - simple or comjom
MUZ	Pointer for array indicating last zone for a given universe
LL	Current universe number
IPRET	Signal - when = 1 PILOT returns at every boundary crossing rather than tracking until media changes
IFLOW	Signal indicating direction of crossing. Inward if =0, outward if =1
IECT	Error counter - prints messages first 10 times. MORSE-SGC abends on error number 11
NLO	Signal when changing levels - = 0 means same level = -1 means down one level = +1 means up one level
IGX	Signal indicating entry to array if 0, or exit from array if 1

Table M9.E.10 Definitions of variables in common MGOMV

I ... IL

Variable	Definition
NBY	Body number
NLEV	Number of geometry levels
NAR	Number of arrays
NQ	= 1 for MORSE
IAW	Number of universes
ΙΑΥ	Length of lattice cell array
NF	Maximum size of array lattice
NX1(1)	Current x lattice position
NX1(2)	Current y lattice position
NX1(3)	Current z lattice position
	NX1(1-3) = 0 if outside of array

Table M9.E.11 Definitions of variables in common ARAR

Table M9.E.12 Definitions of variables in common ARK

Variable	Definition		
LM	Content of lattice position of current array > 0 for a universe; < 0 for an array		
NLU	Current array number		
NBB	Reference body for current array		
NZY(1-3)	Current lattice position in array NLU (i.e., X, Y, Z position)		
XD(1-3)	Current X, Y, Z of particle		

M9.F COMBINATORIAL GEOMETRY TRACKING

M9.F.1. COMJOM TRACKING THEORY

Tracking a particle in MARS consists of:

1. determining the array, universe, and code zone in which a point is located,

2. finding the distance along a given direction to the exit point from this code zone,

3. determining the next code zone the ray will enter in the same universe, and

4. finding the distance to the exit point of this code zone.

This process is continued until the next collision point is encountered, the particle leaks from the system, or an albedo surface is encountered.

Given a starting point (x, y, z) a direction (specified by direction cosines u, v, and w) and a body (one of the basic geometric shapes mentioned earlier), the basic tracking Subroutine GG in the combinatorial geometry package will determine whether the ray from the starting point and the specified direction will intersect the given body. If it does, the subroutine will calculate RIN, the distance to the entry point into the body, and ROUT, the distance to the exit point from the body. A number of orientations are possible:

1. The ray starts at a point outside the body and intersects the body in the positive direction.

In this case, $ROUT \ge RIN > 0$. (ROUT) may equal RIN if the ray grazes the body.

2. The ray starts at a point outside the body and intersects the body in the negative direction.

ORNL Dwg. 79-7907

In this case, $0 > ROUT \ge RIN$.

3. The ray starts at a point inside the body.

ORNL Dwg. 79-7908

In this case, ROUT > 0 > RIN.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.F.2

ORNL Dwg. 79-7909

In this case, ROUT is set equal to –PINF, and RIN is usually set equal to PINF, where PINF is a large number (the computer's approximation of infinity).

To demonstrate how tracking is performed, as shown in Fig. M9.F.1, consider the following description:

Bodies

1. RPP	$-1.0 \le x \le 0.5$,	$-1.0 \le y \le 1.0$,	$-1.0 \le z \le 1.0$
2. RPP	$-0.5 \le x \le 1.0$,	$-1.0 \le y \le 1.0$,	$-1.0 \le z \le 1.0$
3. RPP	$-2.0 \le x \le 2.0$,	$-2.0 \le y \le 2.0$,	$-2.0 \le z \le 2.0$
4. RPP	$-3.0 \le x \le 3.0$,	$-3.0 \le y \le 3.0$,	$-3.0 \le z \le 3.0$

Input Zones

1.	1	-2	, media 1, region 1
2.	2	+1	, media 2, region 1
3.	-1	+2	, media 3, region 1
4.	3	-1	-2, media 1000, region 1
5.	4	-3	, media 0, region 1

Since all input zones in this example are described without OR operators, the input zones and code zones will be the same. Let 'a' be the starting point (-1.5, 1.0, 0.0) with direction cosines (.8, -.6, 0).

NUREG/CR-0200, Vol. 3, Rev. 6

M9.F.3

ORNL Dwg. 79-7910

00014

Figure M9.F.1 A simple demonstration of particle tracking

NUREG/CR-0200, Vol. 3, Rev. 6

M9.F.4

The determination of the location of the starting point is made by attempting to calculate an exit distance for each code zone. If a valid distance is found for a code zone, then the point is in that code zone. The code zones are initially examined in the order of their description.

To see if the starting point is in Code Zone 1, the bodies in the zone are tested. Body 1 is the first body in Zone 1. RIN and ROUT for Body 1 are calculated giving

$$RIN = .625, ROUT = 2.5$$

Since RIN > 0, the point is not in Body 1 and therefore cannot be in Zone 1. The next body in Zone 1 does not need to be checked. To check Zone 2, the first body is Body 2. (The bodies are checked in the order given in the input description.) RIN and ROUT for Body 2 are calculated giving

$$RIN = 1.25, ROUT = 3.125$$

Again, RIN > 0, and the point is not in Body 2 and cannot be in Zone 2. To check Zone 3, the first body is Body -1. RIN and ROUT are retrieved for Body 1 giving

$$RIN = .625, ROUT = 2.5$$

Since RIN > 0, the point is not in Body 1 and therefore is in Body -1. The next body in Zone 3 must then be checked. The data for Body 2 are retrieved giving

$$RIN = 1.25, ROUT = 3.125$$

Since RIN > 0, the point is not in Body 2 and is not in Zone 3. To check Zone 4, the first body is Body 3. RIN and ROUT for Body 3 are calculated giving

$$RIN = .625, ROUT = 4.375$$

Since RIN < 0 and ROUT > 0, the point is in Body 3. The next body in Zone 4 is Body -1. RIN and ROUT are retrieved for Body 1 giving

$$RIN = .625, ROUT = 2.5$$

Since RIN > 0, the point is not in Body 1 and therefore is in Body -1. The next body in Zone 4 is Body -2. RIN and ROUT are retrieved for Body 2 by giving

$$RIN = 1.25, ROUT = 3.125$$
.

Since RIN > 0, the point is not in Body 2 and therefore is in Body -2. The point is in all the bodies in Zone 4 and therefore is in Zone 4.

At the same time that the RINs and ROUTs are checked to see if the point is in the various bodies of a zone, the exit distance, DIST, is also calculated. The exit distance from the zone is the smallest of the distances to leave Body 3 (ROUT = 4.375); to enter Body 1 (RIN = .625), or to enter Body 2 (RIN = 1.25); therefore,

$$DIST = .625$$
 .

Once the exit distance for a given zone is found, the number of mean-free paths that the particle travels in the zone is calculated to see if a collision occurs in the zone, and if so, at what point. The total number of mean-free paths traveled to the next collision point will have previously been selected. For this example, it will be assumed that the number of mean-free paths selected is large enough so that a collision will not occur, and the particle will leak from the system.

The next step then is to determine which code zone the particle enters next. Zone 1 will be checked first. The first body in Zone 1 is Body 1. RIN and ROUT are retrieved for Body 1 giving

$$RIN = .625, ROUT = 2.5$$
.

If the particle is to be in (or enter) Body 1 after traveling this far, then $DIST \ge RIN$ and DIST < ROUT. Since DIST = RIN = .625 and DIST = RIN < ROUT, the tests are passed and the particle has entered the Body 1. The next body in the zone is Body -2. RIN and ROUT are retrieved for Body 2 giving

$$RIN = 1.25, ROUT = 3.125$$

If the particle is to be in Body -2 (not in Body 2), then either DIST < RIN or DIST \ge ROUT. Since DIST < RIN, the particle is in Body -2. The particle has therefore entered Zone 1.

The exit distance from Zone 1 is found next by picking the smallest of the ROUTs for the positive bodies and the RINs of the bodies which are negative. For Body 1 ROUT = 2.5, and for Body 2 (which is negative in the zone) RIN = 1.25. Therefore, the exit distance from Zone 1 is

$$DIST = 1.25$$
 .

The total distance in mean-free paths is again calculated and compared against the predetermined number of mean-free paths which the particle is to travel to see if a collision occurs in Zone 1. If not, then tracking continues as above to determine the next zone the particle enters and the exit distance from that zone. When the particle reaches Zone 5, the medium number of 0 is used as a flag to indicate that the particle has leaked, and the tracking can be terminated. If a collision occurs, then the weight of the particle will be multiplied by the nonabsorption probability, a new energy is selected, a new direction is selected, etc. The tracking of the particle then continues from this point in the new direction if it has not been killed by some process such as Russian roulette or an energy cutoff (where the particle has scattered down to an energy range that is not of interest in the problem). If an albedo surface is encountered during tracking (this is determined by specifying a special medium number to indicate an albedo surface), then a problem-dependent subroutine will be called which will specify the new particle parameter needed for continuation of the tracking.

NUREG/CR-0200, Vol. 3, Rev. 6

M9.G DIAGNOSTIC MESSAGES FROM MARS

Numerous error messages are printed out by the MARS geometry package. These messages aid the user in determining the cause of the trouble when an error is detected by MARS during the input step or during particle tracking. Sections M9.G.1 and M9.G.2 give the actual message that is printed, the subroutine name where the error was detected, and an explanation of the message and/or its cause.

Subroutine printing		
message	Message	Meaning
ARGEN	ARRAY NO IS IMPROPERLY DEFINED - FATAL ERROR IN ARGEN	The array size exceeds the size of the array lattice (NCMAX)
ARGEN	ARGEN IXY=IX=MR=NA=NE= NMAX=	Error was detected in DELTA. See message from DELTA.
AZIP	FATAL ERROR - UNIVERSE NO IS NOT DEFINED	Either the universe number is incorrect or the media number is not -1000.
DELTA	IN DELTA.UNIVERSE REFERENCE BODY TO RPP OR BOX IBOD= IBO= MA INDEX= ITYPE= ND=	Self-explanatory. Check the input data. IBO is body number.
FINEFI	WARNING - IN FINEFI NO REFERENCE WAS MADE TO ARRAY NO	One of the arrays specified is not referenced.
FINEFI	IN FINEFI INVALID ARRAY REFERENCE IN ARRAY POSITION TO NONEXISTENT ARRAY	Array number exceeds maximum (NAR).
FINEFI	FINEFI FATAL ERROR - ARRAY POSITION REFERS TO AN INVALID OR UNDEFINED UNIVERSE -	Universe number exceeds number of universes (IBOD) in system.
FINEFI	IN FINEFI ARRAY NO POSITION REFERS TO UNIVERSE DEFINED BY BODY WHICH IS NOT AN RPP OR BOX FATAL ERROR	The reference body for an array must be either a BOX or an RPP. Check input data.
FINEFI	FINEFI - FATAL ERROR IN ARRAY ELEMENT POSITION CONTAINS UNIVERSE MISFIT IN POSITION	Self-explanatory. Check input.
FINEFI	IN FINEFI ARRAY HAS NO VALID ELEMENTS - VERY FATAL	This message is usually in addition to one of the others from FINEFI. All lattice cell positions have been checked for fits prior to this message.

M9.G.1 DIAGNOSTIC MESSAGES FROM MARS INPUT MODULE

Subroutine printing		
message	Message	Meaning
FINEFI	FINEFI - CODE ZONE CONTAINS ARRAY BUT IS DEFINED WITH MORE THAN ONE BODY WARNING FIRST BODY WILL BE REFERENCE BODY	Self-explanatory. Check input.
FINEFI	FINEFI FATAL ERROR - CODE ZONE REFERENCES AN INVALID ARRAY	The array number is > number of arrays (NAR) in the system.
FINEFI	FINEFI FATAL ERROR - CODE ZONE CONTAINS ARRAY INSIDE BODY REFERENCED BODY IS NOT AN RPP OR BOX	The reference body for an array must be either a BOX or an RPP. Check input data.
FINEFI	FINEFI FATAL ERROR - ARRAY IN BODY REFERENCED IN CODE ZONE DOES NOT FIT	The overlap of lattice cell boundary and input zone boundary is too large.
FINEFI	FINEFI FATAL ERROR - YOU HAVE AT LEAST ONE ARRAY BUT NO ARRAY WAS REFERENCED IN A LEVEL ZERO ZONE	Self-explanatory. Probable input error
GTVLIN	*********ERROR IN VOLUME CALCULATION******** JF= NIR=	The number of regions for which volumes were calculated does not equal the number in the geometry.
JOMINI	ITYPE DOES NOT EQUAL ANY OF THE FOLLOWING	The body type given does not exist in the code.
JOMINI	EXCEEDED CORE DURING CG INPUT ISTR= N=NADD= LIM= LTMA=LFPD= NUMR=IRTRU= NAZT=IBODT=	The space allocated for the data is insufficient. ISTR $+ N + 1$ is amount required up to this point. LIM is space available.
SAZAR	NMOST INCREASED TO BY SUBROUTINE SAZAR	An array edit was requested, but there was inadequate space to save it. Space was added.
UNIS	WARNING UNIVERSE IS NOT SIMPLE CODE ZONE CONTAINS ARRAY	A negative media number was found in a simple universe. UNIS changes it to combinatorial universe.
UNIS	CODE ZONE IN UNIVERSE CANNOT BE A SIMPLE UNIVERSE	The number of bodies in this code zone is >2, so it is not simple. UNIS changes it.
UNIS	BODY IN UNIVERSE IS NOT REFERENCED POSITIVE IN THE UNIVERSE	Fatal error.

.

Subroutine printing message	Message	Meaning
CALI	CALI NL,NLU,IR,IRPRIM,NMED,NLEV	Printed only if debug switch IDBG is on (>0).
CALI	ERROR IN CALI FROM CELL * LZ= LU= IER=	Either CELL has set the error signal IER>0 or lattice cell is vacant (LZ>0) on entering array.
CALI	ERROR IN CALI * NMED,IPS,LZ,IER,LU,IR,IRPRIM,LM,LL,NL	When this message follows one above see that explanation. If IPS>2, there is error on exiting array.
CLEV	ERROR IN CLEV * NL1= NL2= NGY=	Level NL1 is lower than level NL2. It should be higher because code translates from a higher to a lower level.
Gl	NO VALID DISTANCE IN G1 * IR,XB,WB,DIST=	G1 could not determine the next body that the ray will intersect. There is a probable error in user's geometry specifications, or he may have written over his geometry data.
Gl	**************************************	In order to same some computer time, user may want to increase the value of NAZ in his input. Only harm done is an increase in computer time which is often insignificant.
Gl	IR= XB= $WB= $ $MB= $ $IR= DIST= LL= $ $MA ARRAY$ $IRTE MA array printed.$ $IRED APP AY$	G1 could not find the next zone that the particle would enter. It checked all zones and is saying that the particle won't enter any of them.
	Entire FPD array printed. ****EXIT BEING CALLED FROM G1. NEXT ZONE NOT FOUND	Probable error in zone specifications. Subroutine PR called to print values from commons GOMLOC, DBG, and PAREM. Among the variables printed the following apply to the maximum body number and therefore have no significance - NBO,N,NUM,ITYPE,SIN,IRP, and LOCAT. The most important variable is NASC which is the number of the next body the ray will intersect. That is, the code cannot find what zone this body is in. Check zone specification for this body.

M9.G.2 DIAGNOSTIC MESSAGES FROM MARS TRACKING EVENTS

Subroutine printing		
message	Message	Meaning
GG	IN GG ITYPE= IR= NBO=	ITYPE is not one of the body types (1-9) allowed. User has either overstored MA array or has used a body number out of range in the zone description.
LOOKZ	IR= XB= WB= DIST=LL= MA ARRAY Entire MA array printed. FPD ARRAY Entire FPD array printed. *****EXIT BEING CALLED FROM LOOKZ	Zone has not been found. Check the zone specifications for error.
NORML	INVALID REGION OR BODY IN NORMAL. IR= NASC=	NASC is not in region IR. Check whether IR or NASC has been overwritten.
NORML	ROUND-OFF ERROR IN NORMAL NBO= LSURF= XP=,	Self-explanatory. Applies only to ELL and BOX.
PILOT	PROBLEM ENCOUNTERED IN ARRAY PROCESSING, PARTICLE WILL BE TERMINATED AS ESCAPE.	Printed when PILOT is in a loop when processing an array. Particle is probably unable to enter or leave an array. May be input error.
PILOT	PILOT CRASH	Printed only if debug switch IDBG is on (>0).
PILOT	ERROR IN PILOT ON ENTERING ARRAY	If IER>0, previous error message from SORT explains error. If LZ>0 or LM=0, lattice cell is vacant or cell position is out of range (<0 or > maximum).
PILOT	ERROR IN PILOT ON EXITING ARRAY	If IER>0, previous error message from SORT explains error. IF IEXIT=1 or LM=0, lattice position is out of range. NL<0 means error in level number.
SORT	FATAL ERROR IN SORT *** PARTICLE LOST ON ENTERING OR EXITING ARRAY. M,NMAX,IGX,LX1,LX2,NXY XB,RBY(LX2),SML,SMALL	On entering array, particle position is ot at a lattice cell boundary (RBY) for array; on exiting array, either lattice position is $>$ size of array lattice or is < 0 or particle position is not at lattice cell boundary.
STORA	IN STORA EITHER AN ILLEGAL LEGAL TRANSFER WAS ATTEMPTED OR AN INCORRECT ARRAY REQUEST WAS MADE *NLO=NL=NLU=LM=	The level number NL is wrong. Either it is greater than the number of levels (NLEV) or it is 0.

L_____.

NUREG/CR-0200 Revision 6 Volume 3, Section M10 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

FIDO INPUT SYSTEM

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

This document provides a description of the FIDO input system being used in conjunction with several SCALE functional modules. The FIDO system is a widely used method of entering or modifying large data arrays with minimum effort. Special advantage is taken of patterns of repetition or symmetry whenever possible.

CONTENTS

ABSTRACT	M10.iii
ACKNOWLEDGMENTS N	v110.vii
M10.1 INTRODUCTION M	410.1.1
M10.2 FIXED-FIELD INPUT M	410.2.1
M10.3 FREE-FIELD INPUT M	410.3.1
M10.4 USER-FIELD INPUT M	410.4.1
M10.5 CHARACTER INPUT	410.5.1

This document was funded by the Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, for inclusion within the SCALE manual.

NUREG/CR-0200, Vol. 3, Rev. 6

M10.vii

M10.1 INTRODUCTION

The FIDO input method is specially devised to allow entering or modifying large data arrays with minimum effort. Advantage is taken of patterns of repetition or symmetry wherever possible. The FIDO system was patterned after the input method used with the FLOCO coding system at Los Alamos and was first applied to the DTF-II code. Since that time, numerous features requested by users have been added, a free-field option has been developed, and the application of FIDO has spread to innumerable codes.

The data are entered in units called "arrays." An array comprises a group of contiguous storage locations that are to be filled with data at the same time. These arrays usually correspond on a one-to-one basis with FORTRAN arrays used in the program. A group of one or more arrays read with a single call to the FIDO package forms a "block," and a special delimiter is required to signify the end of each block. Arrays within a block may be read in any order with respect to each other, but an array belonging to one block must not be shifted to another. The same array can be entered repeatedly within the same block. For example, an array could be filled with "0" using a special option, and then a few scattered locations could be changed by reading in a new set of data for that array. If no entries to the arrays in a block are required, the delimiter alone satisfies the input requirement.

Three major types of input are available: fixed-field input, free-field input, and user-field input.

M10.1.1

M10.2 FIXED-FIELD INPUT

The fixed-field input option is documented here for completeness. The use of fixed-field input is NOT recommended. Use the free-field input option documented in Sect. M10.3.

Each card is divided into six 12-column data fields, each of which is divided into three subfields. The following sketch illustrates a typical data field. The three subfields always comprise 2, 1, and 9 columns, respectively.

To begin the first array of a block, an array originator field is placed in any field on a card:

Subfield 1: An integer <u>array identifier</u> <100 specifying the data array to be read in.

Subfield 2: An <u>array-type indicator</u>:

"\$" if the array is integer data "*" if the array is real data "#" if the array is double-precision data

Subfield 3: Blank

Data are then placed in successive fields until the required number of entries has been accounted for. In entering data, it is convenient to think of an "index" or "pointer" as a designator that is under the control of the user and which specifies the position in the array into which the next data entry is to go. The pointer is always positioned at array location #1 by entering the array originator field. The pointer subsequently moves according to the data operator chosen. Blank fields are a special case in that they do not cause any data modification and do not move the pointer.

A <u>data field</u> has the following form:

- Subfield 1: The <u>data numerator</u>, an integer <100. We refer to this entry as N_1 in the following discussion.
- Subfield 2: One of the special <u>data operators</u> listed below.
- Subfield 3: A nine-character <u>data entry</u>, to be read in F9.0 format. It will be converted to an integer if the array is a "\$" array or if a special array operator such as Q is being used. Note that an exponent is permissible but not required. Likewise, a decimal is permissible but not required. If no decimal is supplied, it is assumed to be immediately to the left of the exponent, if any; and otherwise to the right of the last column. This entry is referred to as N₃ in the following discussion.

A list of data operators and their effect on the array being input follows:

"Blank" indicates a single entry of data. The data entry in the third subfield is entered in the location indicated by the pointer, and the pointer is advanced by one. However, an entirely blank field is ignored.

"+" or "-" indicates exponentiation. The data entry in the third field is entered and multiplied by

 $10^{\pm N_1}$, where N₁ is the data numerator in the first subfield, given the sign indicated by the data operator itself. The pointer advances by one. In cases where an exponent is needed, this option allows the entering of more significant figures than the blank option.

"&" has the same effect as "+".

"R" indicates that the data entry is to be repeated N_1 times. The pointer advances by N_1 .

"I" indicates linear interpolation. The data numerator, N_1 , indicates the number of interpolated points to be supplied. The data entry in the third subfield is entered, followed by Nj interpolated entries equally spaced between that value and the data entry found in the third subfield of the next nonblank field. The pointer is advanced by $N_1 + 1$. The field following an "I" field is than processed normally, according to its own data operator. The "I" entry is especially valuable for specifying a spatial mesh. In "\$" arrays, interpolated values will be rounded to the nearest integer.

"L" indicates logarithmic interpolation. The effect is the same as that of "I" except that the resulting data are evenly separated in log-space. This feature is especially convenient for specifying an energy mesh.

"Q" is used to repeat sequences of numbers. The length of the sequence is given by the third subfield, N₃. The sequence of N₃ entries is to be repeated N₁ times. The pointer advances by N₁*N₃. If either N₁ or N₃ is 0, then a sequence of N₁ + N₃ is repeated one time only, and the pointer advances by N₁ + N₃. This feature is especially valuable for geometry specification.

The "N" option has the same effect as "Q," except that the order of the sequence is reversed each time it is entered. This feature is valuable for the type of symmetry possessed by S_n quadrature coefficients.

"M" has the same effect as "N," except that the sign of each entry in the sequence is reversed each time the sequence is entered. For example, the entries

1 2 3 2M2

would be equivalent to

123-3-223.

This option is also useful in entering quadrature coefficients.

"Z" causes $N_1 + N_3$ locations to be set at 0. The pointer is advanced by $N_1 + N_3$.

"C" causes the position of the last array entered to be printed. This is the position of the pointer, less 1. The pointer is not moved.

"O" causes the print trigger to be changed. The trigger is originally off. Successive "O" fields turn it on and off alternately. When the trigger is on, each card image is listed as it is read.

"S" indicates that the pointer is to skip N_1 positions leaving those array positions unchanged. If the third subfield is blank, the pointer is advanced by N_1 . If the third subfield is nonblank, that data entry is entered following the skip, and the pointer is advanced by $N_1 + 1$.

"A" moves the pointer to the position, N₃ specified in the third subfield.

"F" fills the remainder of the array with the datum entered in the third subfield.

NUREG/CR-0200, Vol. 3, Rev. 6

M10.2.2

"E" skips over the remainder of the array. The array length criterion is always satisfied by an E, no matter how many entries have been specified. No more entries to an array may be given following an "E," except that data entry may be restarted with an "A."

The reading of data to an array is terminated when a new array origin field is supplied, or when the block is terminated. If an incorrect number of positions has been filled, an error edit is given; and a flag is set which will later abort execution of the problem. FIDO then continues with the next array if an array origin was read. Otherwise, control is returned to the calling program.

A <u>block termination</u> consists of a field having "T" in the second subfield. Entries following "T" on a card are ignored, and control is returned from FIDO to the calling program.

Comment cards can be entered within a block by placing an apostrophe (') in column 1. Then columns 2–80 will be listed, with column 2 being used for printer carriage control. Such cards have no effect on the data array or pointer.

M10.3 FREE-FIELD INPUT

With free-field input, data are written without fixed restrictions as to field and subfield size and positioning on the card. The options used with fixed-field input are available, although some are sightly restricted in form. In general, fewer data cards are required for a problem, the interpreting print is easier to read, a card listing is more intelligible, the cards are easier to keypunch, and certain common keypunch errors are tolerated without affecting the problem. Data arrays using fixed- and free-field input can be intermingled at will within a given block,

The concept of three subfields per field is still applicable to free-field input; but if no entry for a field is required, no space for it need be left. Only columns 1-72 may be used, as with fixed-field input. A field may not be split across cards.

The <u>array originator field</u> can begin in any position. The array identifiers and type indicators are used as in fixed-field input. The type indicator is entered twice to designate free-field input (i.e., "\$\$," "**," or "##"). The blank third subfield required in fixed-field input is not required. For example,

31**

indicates that array 31, a real-data array, will follow in free-field format.

Data fields may follow the array origin field immediately. The data field entries are identical to the fixed-field entries with the following restrictions:

- 1. Any number of blanks may separate fields, but at least one blank must follow a third subfield entry if one is used.
- 2. If both first- and second-subfield entries are used, no blanks may separate them (i.e., 24S, but not 24 S).
- Numbers written with exponents must not have imbedded blanks (i.e., 1.0E+4, 1.0-E4, 1.0+4, or even 1+4, but not 1.0 E4). A zero should never be entered with an exponent. For example, 0.00-5 or 0.00E-5 will be interpreted as -5 × 10⁻².
- 4. In third-subfield data entries only 9 digits, including the decimal but not including the exponent field, can be used (i.e., 123456.89E07, but *not* 123456.789E07).
- 5. The Z entry must be of the form: 738Z, not Z738 or 738 Z.
- 6. The + or data operators are not needed and are not available.
- 7. The Q, N, and M entries are restricted: 3Q4, 1N4, M4, but not 4Q, 4N, or 4M.

M10.4 USER-FIELD INPUT

If the user follows the array identifier in the array originator field with the character "U" or "V," the input format is to be specified by the user. If "U" is specified, the FORTRAN FORMAT to be used must be supplied in columns 1–72 of the next card. The format must be enclosed by the usual parentheses. Then the data for the entire array must follow on successive cards. The rules of ordinary FORTRAN input as to exponents, blanks, etc., apply. If the array data do not fill the last card, the remainder must be left blank. "V" has the same effect as "U," except that the format read in the last preceding "U" array is used.

M10.5 CHARACTER INPUT

If the user wishes to enter character data into an array, at least three options are available. The user may specify an arbitrary format using a "U" and reading in the format. The user may follow the array identifier by a "/". The next two entries into subfield 3 specify the beginning and ending indices in the array into which data will be read. The character data are then read starting with the next data card in an 18A4 format.

Finally, the user may specify the array as a free-form "*" array and then specify the data entries as "nH" character data where n specifies how many characters follow H.

NUREG/CR-0200 Revision 6 Volume 3, Section M13 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

PICTURE: A 2-D PLOTTING PROGRAM FOR MARS GEOMETRIES

Margaret B. Emmett

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

ABSTRACT

The PICTURE program was written to provide aid in preparing correct input data for the MARS geometry package, which is a multiple-array system using combinatorial geometry. It provides a printed view of arbitrary two-dimensional slices through the geometry. By inspecting these pictures one may determine if the geometry specified by the input cards is indeed the desired geometry. This report describes PICTURE, its options, and its input.

CONTENTS

Page

ABSTRACT
LIST OF FIGURES
LIST OF TABLES M13.ix
ACKNOWLEDGMENTS M13.xi
M13.1 INTRODUCTION M13.1.1
M13.2 ROUTINES
M13.3 INPUT DATA M13.3.1
M13.4 OPTIONS M13.4.1
M13.5 PICTURE SAMPLE PROBLEM M13.5.1
APPENDIX M13.A – THE LEGEND PROGRAM

LIST OF FIGURES

Figure	Page
M13.5.1	Input data for PICTURE sample problem printer plot option
M13.5.2	Output of PICTURE sample problem printer plot option
M13.5.3	Input data for PICTURE sample problem color display option M13.5.6
M13.5.4	Printer output from color display option
M13.5.5	Black and white print of color display M13.5.13

LIST OF TABLES

<u>Table</u>		Page 1
M13.2.1	Definition of Variables in common PNIT	M13.2.1
M13.2.2	Definition of variables in common PICT	M13.2.6
M13.3.1	Default color specifications for the color plot display method	M13.3.6

ACKNOWLEDGMENTS

The PICTURE program makes use of two freeware packages, PBMPLUS and GD, in generating a color display. The following copyright notices apply to these packages.

The PBMPLUS package:

** Based on GIFENCOD by David Rowley <mgardi@watdscu.waterloo.edu>. A

** Lempel-Zim compression based on "compress".

**

** Modified by Marcel Wijkstra <wijkstra@fwi.uva.nl>

**

** Copyright (C) 1989 by Jef Poskanzer.

**

** Permission to use, copy, modify, and distribute this software and its

** documentation for any purpose and without fee is hereby granted, provided

** that the above copyright notice appear in all copies and that both that

** copyright notice and this permission notice appear in supporting

** documentation. This software is provided "as is" without express or

** implied warranty.

**

** The Graphics Interchange Format(c) is the Copyright property of

** CompuServe Incorporated. GIF(sm) is a Service Mark property of

** CompuServe Incorporated.

*/

The GD package:

gd 1.2 is copyright 1994, 1995, Quest Protein Database Center, Cold Spring Harbor Labs. Permission granted to copy and distribute this work provided that this notice remains intact. Credit for the library must be given to the Quest Protein Database Center, Cold Spring Harbor Labs, in all derived works. This does not affect your ownership of the derived work itself, and the intent is to assure proper credit for Quest, not to interfere with your use of gd. If you have questions, ask. ("Derived works" includes all programs that utilize the library. Credit must be given in user-visible documentation.)

NUREG/CR-0200, Vol. 3, Rev. 6

M13.xi

M13.1 INTRODUCTION

The PICTURE program was written to help the user determine whether his MARS input data correctly describe his geometry. PICTURE displays, as printed output or on the computer screen, two-dimensional (2-D) slices through the specified geometry. A regularly spaced array of points is generated, and each point is plotted as a symbol or a color related to either media, region, or zone, depending on the option selected by the user. By printing out this array, a rough picture of one view of the geometry is produced. The user may then look at the picture and determine if the geometry is as intended. A sample problem is described in Sect. M13.5.

Running PICTURE requires the routines described in this report plus those making up the MARS geometry package described in Sect. M9. MARS also uses routines from the SCALE subroutine library and the SCALE unix library. The color plot display requires the LEGEND program described in Appendix A, and the freeware package PBMPLUS, which includes PPMTOGIF and RAWTOPPM, is also used. Both LEGEND and PBMPLUS are distributed with the SCALE package. In order to look at the color display, a plot viewer such as XV on workstations or LVIEW on PCs is required.

NUREG/CR-0200, Vol. 3, Rev. 6

M13.1.1

M13.2 ROUTINES

M13.2.1 Main Programs

The executive routine for the PICTURE program, MAIN or O00016, sets the dimension for blank common, the I/O unit numbers, the signal indicating what type of PICTURE run, and the ratio of the number of characters per inch down the page to the number across the page for printer plots, and calls subroutine PICTUR. See Table M13.2.1 for content of common PNIT which contains I/O unit numbers.

Subroutines called:	PICTUR, OPNFIL, IONUMS, MESAGE	
Commons required:	Blank, PNIT	
Variables changed:	INT, IOT, RAYX, NDIM, N16, N17, N93, N95, KTYPE	
IOT, RAYX, NDIM, N16, N17, N93 and N95 are the same for both cases.		

$\mathbf{KTYPE} = 0$	for standalone PICTURE (MAIN)
KTYPE = 1	for PICTURE run from within SAS4 (000016)
INT = 5	set by MAIN
INT = 93	set by O0O016

the second se	
Variable	Definition
INT	Input unit number
IOT	Standard output unit
N16	Scratch unit used by MARSLIB
N17	Scratch unit used by MARSLIB
N93	Input unit for PICTURE data if $KTYPE = 1$
N95	Binary input unit for MARS data if data was preprocessed

M13.2.2 Subroutines

Subroutine PRINT (KXX, KYY, ATABLE, IOT)

This routine controls the printing of the picture or the writing of a GIF-format file. First some variables are initialized depending on whether this is a screen plot or a printer plot. If it's a screen plot, a command is passed to the operating system to execute the programs in the freeware PBMPLUS that are necessary to produce the final GIF-format plot. The code determines if the picture is more than one "page" (130 columns) wide. Then for each line of the picture the information to be printed is determined by calling "MESH" and is printed with a 130A1 format for printer plots or written to unit I1 for a screen plot. This process continues until that "page" is finished. Note that a page refers to the width, not length. Thus as much detail as necessary may be obtained in both directions by piecing together printer output.

Screen plots contain a legend identifying the color used for each material (or zone or region). PRINT determines the legend by sorting the materials used and counting them. After writing the plot to a file on unit I1 and calculating the materials used, the unit is closed; a new dataset containing the title of the plot, the number of materials used, the name of the gif picture to which the legend is added, the external and internal voids, and the material numbers and corresponding red, green, and blue components is written to the same unit. The output plot data file is then closed, and the system is called to execute the RAWTOPPM program which pipes its output to the PPMTOGIF program which then pipes its output to the LEGEND program.

Called from:	PICTUR
Subroutine called:	MESH, SYSTEM, OPNFIL
Commons required:	PICT, PCOLOR, JOMN2, GOMLOC, blank
Variables required:	
KXX -	number of intervals in the U direction (direction of paper movement through the printer),
KYY -	number of intervals in the V direction (line),
LTYPE -	logical variable which is a signal indicating type of plot, True = screen plot; False = printer plot
X0, Y0, Z0 -	coordinates
ATABLE -	table of characters to be printed,
IOT -	output logical unit.

Variables changed:

MTRLUSED - array of material numbers used,

MAXMATRL - maximum number of materials used.

Significant internal variable:

NPAGES -	number of subpictures required to cover the width of the total picture,
NV -	number of characters per line (characters/page width).

Subroutine MESH (XS, YS, ZS, NV)

Subroutine MESH is used by the PICTURE package to set up one line of print in the array NSTOR. Both for efficiency and to debug the MARS array geometry data, this version has been modified to work exactly like particle tracking. CALI is first called to determine the zone of the first grid point. A trajectory to the last grid point is then initialized, and successive calls to PILOT, which calls 'G1,' "track" a particle to the last point, setting the region of each grid point in NSTOR. By setting IRG negative, zero, or positive, either NREG, IR, or NMED will be stored in the print array NSTOR.

Called from:	PRINT
Subroutines called:	CALI, RESET, PILOT
Commons required:	PICT, GOMLOC, PAREM, ORGI, REPEAT, ARAR, MGOMV, SS, JOMN2, blank.

Variables required:

XS, YS, ZS -	coordinates of first grid point,
NV -	number of grid points,
DELV -	distance between grid points,
IRG -	flag to print NREG, IR, or NMED if IRG is negative, zero, or positive.

Variables changed: NSTOR - print array.

Significant internal variables:

Γ-	grid point index,	

ISTOR - value to be stored in NSTOR between successive boundary crossings,

IROLD - present input zone number,

M13.2.3

SUMS1 -	distance traveled on current line (DIST),
DLINE -	total distance to end of current line (DIST0).

Subroutine PICTUR (NDIM, RAYX, KTYPE)

Subroutine PICTUR reads in the input, calculates the coordinates of the picture to be plotted, and controls the calls to other routines. There are several different ways in which a 2-D slice through the geometry may be obtained. These different options are discussed in Sect. M13.4 with discussions of the input. For printer plots, the characters to be printed for corresponding media or regions may be changed by altering the values in ATABLE as given in the data statement. For screen plots, the default colors may be changed by specifying new colors using the CLR= option on input.

Called from:	Main Program (MAIN or O00016)
Subroutines called:	JOMIN, PRINT, AREAD, IREAD, FREAD, CLEAR, SCANON, SCANOF, RCOLOR, CLRNIT
Commons required:	PICT, MGOMV, JOMN2, JOMK, PCOLOR, Blank, PNIT (see Table M13.2.1)
Variables required:	Input data is read based on the value of KTYPE which indicates whether PICTURE is being run from MAIN or from 000016.
Variables changed:	All variables in common PICT (see Table M13.2.2) except MTRLUSED and NSTOR
IPRET in MGO	MV

RAYX - reset to "1" if it's a screen plot,

LTYPE - logical variable denoting type of plot.

If IXS is read in, the direction cosines required are set equal to 1; otherwise, cosines are part of input data.

Significant internal variables:

NADD(1) - first location in blank common for storage of geometry data,

NCK - flag to indicate which set of input options was used to define the 2-D slice.

M13.2.4
Subroutine RCOLOR(RED, GREEN, BLUE, IRET, BNDX, ENDX)

This routine reads the input data specifying the red, green, and blue components of the colors being selected for the current plot. When IRET is not equal to 0, RCOLOR reads the keyword "END COLOR" or "END" that terminates this part of the input data.

Called from:	PICTUR
Subroutines called:	AREAD, IREAD
Variables required:	
IRET -	signal indicating whether more integer data is to be read. If $IRET > 0$, then the next data is character data,
BNDX -	integer indicating lower limit of range of RED, GREEN, BLUE,
ENDX -	integer indicating upper limit of range of RED, GREEN, BLUE
Variables changed:	RED, GREEN, BLUE

Subroutine CLRNIT

This routine sets up the default colors for a screen plot as indicated in Table M13.3.1.

Called from: PICTUR

Commons required: PICT, PCOLOR

Variables changed: RED, GREEN, BLUE

Variable	Definition
X0,Y0,Z0	The coordinates in geometry units defining the first point (upper-left-hand corner) of the picture.
X1,Y1,Z1	The coordinates in geometry units defining the last point (lower-right-hand corner) of the picture.
XU,YU,ZU	The length (in direction U) of the picture in geometry units.
XV,YV,ZV	The width (in direction V) of the picture in geometry units.
DELU	The increment in geometry units between lines in the picture in the U direction.
DELV	The increment in geometry units between lines in the picture in the V direction.
IRG	A flag indicating that region, zone, or medium geometry parameter should be printed if IRG is negative, zero, or positive, respectively.
NU	Number of intervals to print along U axis.
NV	Number of intervals to print along V axis.
ICNT	A flag indicating whether this is last plot (and if not, whether next plot is of a different geometry).
LTYPE	Logical variable indicating printer plot if "FALSE" or plot to screen if "TRUE."
TITLE(18)	Title for plot.
MTRLUSED(256)	An array of material or region or zone numbers used in the picture.
NSTOR(2048)	An array used to store the medium, region, or zone number for one line of the picture.

Table M13.2.2 Definition of variables in common PICT

M13.3 INPUT DATA

The format of the input data for PICTURE has been revised to use free form with a system of keywords to identify the variables. Following is a description of the data.

- 1. Card PA:
 - NUSE: The number of characters to be read on Card B to replace the standard values of ATABLE. Specify a 0 and omit Card B if the standard ATABLE is desired or for a screen plot. NUSE ≤ 50 .
- 2. Card PB: Format (50A1) (omit if NUSE = 0)

ATABLE(I), I=1, NUSE: The list of characters that are to be printed for each medium. For medium N, ATABLE (N+1) is printed. If $N \ge 47$, ATABLE (48) is printed. The standard values of ATABLE are:

<u>Medium Number</u>	Character Printed
0 (external void)	
1 through 9	1 through 9
10 through 35	A through Z
36 through 46	Various special characters
≥47 (including	(blank)
internal voids)	

3. GEOM input: MARS combinatorial geometry input.¹

4. Remaining data uses keywords, and multiple values can appear on a line.

TTL =	title in 18A4 TITI	format E(I),I=1,18.		72 characters to be printed as a title.
İCN =	inam(18)	ICNT {	= -1 = 0 = 1	There is only one plot. Default. After this picture, return to step 4 for another picture with the same geometry. After this picture, read in a new GEOM input. (step3 above)
IRG =	inam(17)	IRG {	= -1 = 0 = 1	Display the region geometry. Display the zone geometry. Display the material geometry. Default.

¹See description of geometry input in Sect. M9.A.

NUREG/CR-0200, Vol. 3, Rev. 6

M13.3.1

IXS = inam(22) option to allow code to set the direction cosines for a plot.

The corresponding direction cosines are set equal to 1.

Enter X0, Y0, and Z0 the X, Y, and Z coordinates in the combinatorial geometry of the upper left corner of the picture. Data must be entered for all three coordinates unless all three values from the previous plot are to be used.

XUL = fnam(1) YUL = fnam(2) ZUL = fnam(3)

Enter X1, Y1, and Z1 the X, Y, and Z coordinates in the combinatorial geometry of the lower-right corner of the picture.

XLR = fnam(4) YLR = fnam(5) ZLR = fnam(6)

Note: These six coordinates partially describe the plane of the slice by defining two points in the plane and designate the top, bottom, left and right sides of the picture. Default values are those from the previous plot.

Enter XU, YU, and ZU the direction numbers proportional to the direction cosines for the U axis of the picture. The U axis points down the printed page in the direction the page moves through the printer.

UAX = fnam(7) VAX = fnam(8) WAX = fnam(9)

Enter XV, YV, and ZV the direction numbers for the V axis of the picture. The V axis points to the right across the page.

UDN = fnam(10)

VDN = fnam(11)

NUREG/CR-0200, Vol. 3, Rev. 6

M13.3.2

WDN = fnam(12)

Note: These values complete the description of the plane of the slice by giving a line in the plane and also specify the orientation of the picture on the output.

Enter DELU, DELV, NU, and NV the spacing and number of intervals.

DLX = fnam(13)	DELU:	Spacing (in GEOM units) of intervals along the U axis.	
DLD = fnam(14)	DELV:	Spacing (in GEOM units) of intervals along the V axis.	
NAX = inam(15)	NU:	Number of intervals to print along the U axis (overrides	DELU).
NDN = inam(16)	NV:	Number of intervals to print along the V axis (overrides	DELV).

For printer plots, NV, which is input as keyword NDN, is the number of characters across the page (i.e., along the V axis); for a 132-character-per-line printer, NDN=130 is a good choice. NU, which is input as keyword NAX, is the number of characters down the page (along theU axis). For screen plots, NV is the number of pixels across the screen. The lower the value, the faster the program executes, but the smaller the picture is. NV should be chosen based on the resolution of the monitor being used. NDN=640 will produce a good picture in most cases.

Note: All four entries are not required as input; see Sect. M13.4 for an explanation.

Enter SCR the method of plot display.

SCR= wrd The plot display method is specified by entering either YES or NO for wrd. The default value is NO. SCR=NO utilizes the printer plot display method. SCR=YES utilizes the color plot display method. If SCR is entered more than once for a plot, the last value entered is the one that is used. Also, if more than one plot is being done in a run and SCR is not specified for the second or subsequent plots, the value for the previous plot will be used.

NOTE: It is possible to mix printer plots and color plots in the same run; however, SCR must be defined for each one (i.e., the default value will not be implemented except for the first plot in the run).

Enter CLR if SCR=YES and colors other than the default are desired.

CLR= num(i) red(num(i)) green(num(i)) blue(num(i)) END COLOR

enter only if plots are to be made utilizing the color plot display method (SCR=YES).

After entering the keyword **CLR=**, 4 numbers are entered i times.

The first number, num(i), represents a media (mixture) number, region number, or zone number. The next three numbers, whose values can range from 0 through 255, define the red, green, and blue components of the color that will represent this num(i) in the plot. The sequence num(i) red(num(i)) green(num(i)) blue(num(i)) is repeated until the colors associated with all of the media (mixture) numbers, region numbers, or zone numbers used in the problem are defined. The smallest number that can be entered for num(i) is -1, representing the internal void. A num(i) of 0 represents the external void, num(i) of 1 represents the smallest numbered media, region or zone, num(i) of 2 represents the next larger numbered

media, region or zone used in the problem, etc. The color plot definition data is terminated by entering the keywords END COLOR or END. A total of 256 default colors are provided in Table M13.3.1. Two of those colors represent void regions, num(-1) as gray for internal voids (media 1000); and num(0) as black for external void (media 0). The remaining 254 colors represent the default values for mixtures, regions, or zones used in the problem.

If num is entered as -1 or 1000, the next three numbers define the color that will be used to represent internal void regions of the plot. The default color for internal void is gray, represented as 200 200 200. If num is entered as 0, the next three numbers define the color that will represent external void regions in the plot. The default color for external void is black, represented by 0 0 0.

For example, suppose a color plot is to be made for a problem that utilizes void regions and media numbers 1, 3, and 5. By default, the internal void regions (Index -1) will be gray; external void regions (Index 0) will be black; the first mixture, mixture 1 (Index 1), will be medium blue; the next larger mixture, mixture 3 (Index 2), will be turquoise; and the last mixture, mixture 5 (Index 3) will be green2. If these values are acceptable, data need not be entered for **CLR=**. If the user decides to define internal void to be white (255 255 255), mixture 1 to be red (255 0 0), mixture 3 to be bright blue (0 0 255), and mixture 5 to be green (0 255 0), the following data could be entered:

CLR=1000 255 255 255 1 255 0 0 2 0 0 255 3 0 255 0 END COLOR or CLR=-1 255 255 255 1 255 0 0 2 0 0 255 3 0 255 0 END

In this example, the first number (1000 or -1) defines the internal void and the next three numbers are the red, green and blue components that combine as the color white. The fifth number (1) represents the smallest mixture number (mixture number (mixture 1) and the next three numbers are the red, green, and blue components of red. The ninth number (2) represents the next larger mixture number (mixture 3), and the next three numbers are the red, green, and blue components of bright blue. The thirteenth number (3) represents the next larger mixture number (mixture 5), and the next three numbers are the red, green, and blue components of green. The END COLOR or END terminates the color definition data. Because color data were not entered for num(i) of 0, external void regions will be represented by the color black, the default specification from Table M.13.3.1. The red, green, and blue components of some bright colors are listed below.

<u>Display Color</u>	<u>red</u>	green	<u>blue</u>
black	0	Ō	0
white	255	255	255
"default void gray"	200	200	200
red	255	0	0
green	0	255	0
brightest blue	0	0	255
yellow	255	255	0
brightest cyan	0	255	255
magenta	255	0	255

The 256 default colors are listed in Table M13.3.1.

Signal the end of data for this plot.

END

If there are more plots, set up the data according to the value of ICNT and specify parameters that need changing. REMINDER: See the note on the SCR parameter above.

NUREG/CR-0200, Vol. 3, Rev. 6

M13.3.5

Index	Red	Green	Blue	Color Name(s)	Index	Red	Green	Blue	Color Name(s)
-1	200	200	. 200	"default void gray"	32	176	224	230	powder blue
Ū	Ŭ	0	v	grav0	33	0	206	209	PowderBlue dark turguoiso
				grey0	•••	v	200	200	DarkTurquoise
1	0	0	205	medium blue	34	72	209	204	medium turquoise
				blue3	35	95	159	160	MediumTurquoise
2	0	229	238	turquoise2	55	55	100	100	CadetBlue
3	0	238	0	green2	36	102	205	170	medium aquamarine
5	205	205	0	yellow3					MediumAquamarine
. 6	145	44	238	purple2	37	127	255	212	aquamarines
7	150	150	150	gray59					aquamarine1
8	240	200	220	grey59 white	38	0	100	0	dark green
Ū		200	220	gray100	39	85	107	47	dark olive green
	_			grey100		•••			DarkOliveGreen
9	0	191	255	deep sky blue	40	143	188	143	dark sea green
				DeepSkyBlue1	41	60	179	113	DarkSeaGreen
10	224	255	255	light cyan		00	1,2	11.5	MediumSeaGreen
				LightCyan	42	32	178	170	light sea green
11	0	255	127	Spring green	43	152	251	150	LightSeaGreen
	•			SpringGreen	•5	132	231	152	PaleGreen
				SpringGreen1	44	0	255	0	green
12	255	255	224	light yellow	45	107	055	•	green1
				LightYellow1	40	127	255	0	chartreuse chartreusel
13	255	0	0	red	46	0	250	154	medium spring green
14	255	٥	255	redl	47	1 7 7			MediumSpringGreen
14	255	v	2.7.7	magental	47	1/3	455	47	green yellow
15	67	110	238	RoyalBlue2	48	50	205	50	lime green
16	174	238	238	PaleTurquoise2					LimeGreen
18	238	220	130	LightGoldenrod2	49	154	205	50	yellow green
19	238	99	- 99	IndianRed2					OliveDrab3
20	238	122	233	orchid2	50	34	139	34	forest green
21	25	25	112	Midnight blue	E1	107	140	25	ForestGreen
22	0	0	128	navy	51	107	142	35	OliveDrab
				navy blue	52	189	183	107	dark khaki
23	100	1/19	237	NavyBlue	53	240		1.0	DarkKhaki
20	100	145	237	CornflowerBlue	54	240	230	140	KDAK1
24	72	61	139	dark slate blue				1.0	PaleGoldenrod
25	106	00	205	DarkSlateBlue	55	250	250	210	light goldenrod
25	100	90	205						yellow LightColdonrodVollow
26	123	104	238	medium slate blue	56	255	255	224	light vellow
				MediumSlateBlue					LightYellow
27	30	144	255	dodger blue DodgerBlue	57	255	255	•	LightYellow1
				DodgerBlue1	57	200	200	U	Vellow1
28	135	206	235	sky blue	58	255	215	0	gold
20	175	205	250	SkyBlue			e		gold1
47	123	200	200	LightSkyBlue	59	238	221	130	light goldenrod
30	70	130	180	steel blue	60	184	134	11	dark goldenrod
51	170	206		SteelBlue				-	DarkGoldenrod
75	110	130	222	Light Steel Blue					
				3					

Table M13.3.1 Default color specifications for the color plot display method

..... الم

NUREG/CR-0200, Vol. 3, Rev. 6

M13.3.6

Table M13.3.1 (continued)

Index	Red	Green	Blue	Color Name(s)	Index	Red	Green	Blue	Color Name(s)
61	188	143	143	rosy brown RosyBrown	97	138	43	226	blue violet BlueViolet
62	205	92	92	indian red	0.0	160	30	240	
02	203		22	IndianPed	90	147	112	210	pulpie pulpie
63	120	60	10	anddlo brown	33	7.41	++4	619	Medium Dumple
05	133	0.5	1)	Saddle Drown	100	216	101	216	mediumrdipie
				shoeslate	100	210	191	210	LHISCIE
C A	100		46	chocolate4	101	238	233	233	snow2
64	160	82	45	sienna	102	238	229	242	seasnellz
65	205	133	63	peru	103	238	223	204	AntiqueWhite2
				tanj	104	238	213	183	bisque2
66	222	184	135	burlywood	105	238	203	173	PeachPuff2
67 .	245	245	220	beige	106	238	207	161	NavajoWhite2
68	245	222	179	wheat	107	238	233	191	LemonChiffon2
69	244	164	96	sandy brown	108	238	232	205	cornsilk2
				SandyBrown	109	238	238	224	ivory2
70	210	105	30	chocolate	110	224	238	224	honeydew2
71	178	34	34	firebrick	111	238	224	229	LavenderBlush2
72	165	42	42	brown	112	238	213	210	MistyRose2
73	233	150	122	dark salmon	113	224	238	238	azure2
-				DarkSalmon	114	122	103	238	SlateBlue2
74	250	128	114	salmon	115	67	110	238	RovalBlue2
75	255	160	122	light salmon	116	Ó	0	238	blue2
••				LightSalmon	117	28	134	238	DodgerBlue2
				Light Salmon1	118	92	172	238	SteelBlue?
76	255	165	0	Orange	119	10	179	238	DeenSkyBlue?
		200	•	orangel	120	125	192	239	SkyBlue?
77	255	140	0	dark orange	121	164	211	238	Light SkyBlue?
			v	DarkOrange	122	105	211	239	SlatoCray?
79	255	127	80	coral	102	100	210	230	LightSteelBlue?
79	240	128	128	light coral	124	172	223	239	Light Blue?
	240	120	120	LightCoral	125	209	238	230	LightCyan?
80	255	99	71	tomato	126	174	230	230	Palemirmoi se?
00	233	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,	tomatol	127	142	230	230	Cadet Blue?
91	255	69	0	orange red	129	142	223	230	cuterbillez
01	235	05	v	Orange Ted	120	1 4 1	230	230	DarkelatoCray?
				OrangeRed	120	110	230	100	DaikSidleGidyz
82	255	0	0	red	121	100	230	190	Dark Coa Croon?
02	233	Ū	v	rodi	132	70	230	149	Socroon?
83	255	105	1 20	hot nink	132	1 4 4	230	140	light groop
05	433	105	100	Not pink Wot Pink	135	144	250	744	light Green
84	255	20	117	deen nink					PaloCroop?
04	235	20	74/	DoopPink	124	•	220	110	EnringCroop?
				DeepFink	126	Ň	220	110	Spi inggi eenz
85	255	100	203	Deeprinki	176	110	230	Ň	greenz abartrouco?
0.5	200	192	103	light mink	122	170	230	E 0	Oliver Drobb
00	255	102	192	Light pink	130	100	230	104	Dambol income and
07	210	110	1 47	bighterink	130	220	230	172	khaki?
07	219	112	741	pale violet leu	139	230	230	122	Klickiz LiebbColdenwod2
00	170	40	0.0	Paleviolecked	140	230	220	130	LightGoldeniodz
88	1/0	48	122	maroon	141	238	238	209	Lightrellow2
63	133	21	100	Medium Violet red	142	238	238	0	yerrowz
90	200	22	144	Mediumvioieckeu	143	230	201	24	goldz
90	200	32	744		144	230	100	34	goidenrouz
01	220	120	220	violetked	145	238	1/3	14	DarkGoldenrodz
91	230	150	230		140	230	100	100	ROSYBIOWN2
92	241	110	221	prum	147	230	101	99	IndianRedz
53	153	112	214	dark orchid	140	238	107	145	steinigz
24	100	50	204	DarkOrchid	150	230	221	174	ngrata Moods
05	140	^	211	dark molet	150	238	210	1/4	wheat2
30	140	v	211	DarkVielet	152	230	10	22	caus shagelatel
96	196	95	211	parvioter	152	230	110	33	chocolacez fi robriek?
30	700	60	211	MediumOrchid	153	238	44	44	LILEDIICK2
				Meurumorchiu	134	238	23	23	DIOWIIZ

Table M13.3.1	(continued)
---------------	-------------

.

Index	Red	Green	Blue	Color Name(s)	Index	Red	Green	Blue	Color Name(s)
155	238	130	98	salmon2	198	202	225	255	LightSteelBluel
156	238	149	114	LightSalmon2	199	191	239	255	LightBlue1
157	238	154	0	orange2	200	224	255	255	light cyan
158	238	118	0	DarkOrange2					LightCvan
159	238	106	80	coral2					LightCvan1
160	238	92	66	tomato2	201	187	255	255	PaleTurguoisel
161	238	64	0	OrangeRed2	202	152	245	255	CadetBluel
162	238	0	0	red2	203	0	245	255	turminisel
163	238	18	137	DeepPink2	204	151	255	255	DarkSlateGrav1
164	238	106	167	HotPink2	205	127	255	212	amamarine
165	238	169	184	pink2					amamarinel
166	238	162	173	LightPink2	206	193	255	193	DarkSeaGreen1
167	238	121	159	PaleVioletRed2	207	84	255	159	SeaGreen1
168	238	48	167	maroon2	208	154	255	154	PaleGreen1
169	238	58	140	VioletRed2	209	0	255	127	spring green
170	238	0	238	magenta2		-	200		SpringGreen
171	238	122	233	orchid2					SpringGreen1
172	238	174	238	plum2	210	127	255	0	chartrense
173	209	95	238	MediumOrchid2			200	v	chartreuse
174	178	58	238	DarkOrchid2	211	192	255	62	OliveDrah1
175	145	44	238	purple2	212	202	255	112	Dark(liveGreen1
176	159	121	238	MediumPurple2	213	255	246	143	kbakil
177	238	210	238	thistle2	214	255	236	130	LightColdonrod1
178	255	250	250	SNOW	215	255	255	224	light wellow
-				snowl	225	200	233	464	Light Volley
179	139	137	137	snow4					LightVollow
180	255	245	238	seashell	216	255	215	^	bightiellowi
				seashelll	210	200	213	v	gold
181	255	228	196	bisme	217	255	107	27	goldi
				bisme1	218	255	195	15	DarkCaldennedi
182	255	218	185	peach puff	219	255	193	1 9 2	BacuBrown1
				PeachPuff	220	255	106	106	IndianPodi
				PeachPuff1	221	255	130	71	cionnal
183	255	250	205	lemon chiffon	222	255	211	155	burlywoodl
				LemonChiffon	223	255	231	186	wheat1
				LemonChiffon1	224	255	165	79	tanl
184	255	248	220	cornsilk	225	255	127	36	chocolate1
				cornsilk1	226	255	48	48	firebrickl
185	255	255	240	ivory	227	255	64	64	brown1
				ivorv1	228	255	140	105	salmoni
186	240	255	240	honeydew	229	255	160	122	lightsalmon
				honevdew1			200		LightSalmon
187	255	240	245	lavender blush					LightSalmon
				LavenderBlush	230	255	165	0	orange
				LavenderBlush1			200	Ŷ	orangel
188	255	228	225	misty rose	231	255	127	0	DarkOrangel
				MistyRose	232	255	114	86	coral1
				MistyRose1	233	255	99	71	tomato
189	240	255	255	azure			•••		tomatol
				azurel	234	255	69	0	orangered
190	131	111	255	SlateBlue1		-,			OrangeRed
191	72	118	255	RovalBlue1					OrangeRedi
192	30	144	255	dodger blue	235	255	20	147	deep nink
				DodgerBlue			20		DeepPink
				DodgerBlue1					DeenPink1
193	99	184	255	SteelBlue1	236	255	110	180	Hot Pink1
194	0	191	255	deep sky blue	227	255	181	197	ninki
		-		DeepSkyBlue	218	255	174	185	Light Pink1
				DeepSkyBlue1	239	255	130	171	PaleViolotPodi
195	135	206	255	SkyBluel	240	255	52	170	marcoul
196	176	226	255	LightSkyBlue1	241	255	62	150	VioletRedl
197	198	226	255	SlateGray1	242	255	137	250	orchidl
			-		510		201	250	ve v

NUREG/CR-0200, Vol. 3, Rev. 6

M13.3.8

Table M13.3.1 (continued)

Index	Red	Green	Blue	Color Name(s)	Index	Red	Green	Blue	Color Name(s)
243	255	187	255	plum1	250	139	0	0	dark red
244	224	102	255	MediumOrchidl					darkRed
245	191	62	255	DarkOrchid1					red4
246	155	48	255	purple1	251	0	139	0	green4
247	171	130	255	MediumPurple1	252	ň	0	139	dark blue
248	255	225	255	thistlel		-	-		darkBlue
249	139	0	139	dark magenta					hlue4
		-		darkMagenta	. 253	0	139	139	dark cyan
				magenta4		•			darkCvan
				•					cvan4
					254	139	139	0	vellow4

1. $X_{LR} = Y_{LR} = Z_{LR} = 0.$

For this case, NU and NV must be specified. In addition, either DELU or DELV must be specified. If the other is left blank, the code will produce an undistorted picture. If both DELU and DELV are specified, the picture is likely to be distorted. Because printers typically give more characters per inch across a line than down the page, DELU = RAYX*DELU is necessary to produce an undistorted picture (see Sect. M13.2.1).

2. X_{LR} or Y_{LR} or $Z_{LR} \neq 0$.

If any one of the variables X_{LR} , Y_{LR} , or Z_{LR} is specified, the code will calculate the others to produce an undistorted picture.

If both NU and DELU (or both NV and DELV) are specified, DELU (or DELV) will be ignored.

The U and V axes may have arbitrary orientation. (If they are not orthogonal, the resulting picture will be distorted.) In Option 1, the first point will be at $(X, Y, Z)_{UL}$, and the remaining points in the directions and at the distances specified. In Option 2, the range from X_{UL} to X_{LR} is divided into intervals and the calculated points will be at the midpoints of the intervals. The first point will be 1/2 interval past $(X, Y, Z)_{LR}$ and the final point will be within 1/2 interval of $(X, Y, Z)_{LR}$. If $(X, Y, Z)_{LR}$ does not lie on the U-V plane, or if the U and V axes are not orthogonal, the location of the final point is not readily predictable.

The simplest method to obtain the correct results is to specify two diagonal corners of the plane of the slice, with the top having the short dimension. Then specify the U axis to be parallel to the edge of the slice with the large dimension (left or right side), and the V axis to be parallel to the edge of the slice with the small dimension (top or bottom). Finally, do not specify NU, DELU, or DELV, but let NV be equal to the maximum number of characters per line on your printer; this arrangement will provide the largest undistorted picture.

M13.5 PICTURE SAMPLE PROBLEM

This problem illustrates the use of the PICTURE program for looking at the geometry of a given problem. Two geometries are being demonstrated, one as a printer plot and the other as a color display.

The first geometry being illustrated is a tank. This tank model was constructed purely as an illustration of the combinatorial geometry and is in no way accurate or detailed. The use of the OR operator and the ARB body is demonstrated in a plot of the zone geometry. The input data for the printer plot option are listed in Fig. M13.5.1, and the output and picture produced by this option are shown in Fig. M13.5.2.

The second geometry being illustrated is a spent fuel shipping cask with 7 assemblies. This geometry model which demonstrates the use of arrays is from sample problem 4 for the SAS4 code. The input data for a color plot display of the **material** geometry are listed in Fig. M13.5.3. The printer output produced by the color display option is contained in Fig. M13.5.4. Figure M13.5.5 is a black and white copy of the color screen display. To see the colors, users should view the GIF file on a color monitor.

=picture 7

.1eta0

combinat	orial	geomet	ry ta	nk sa	mple	probl	em				
0.001	.0	_		_	_						
arb	1.2	5	-1.2	5	.5		1.25	-2	. 0	0.0	
	1.2	5	2.0		0.0		1.25	1.2	25	.5	
	-1.	25	-1.2	5	.5		-1.25	-2	. 0	0.0	
	-1.	25	2.0		0.0		-1.25	1	.25	.5	
	123	4.	4158		658	7.	2673.	562	21.	4378.	
ell	0.0		5		.5		0.0	.5		.5	
	1.5										
tro	0.0		0 0		8		0 0	2 1	-	0.0	
010	1		0.0		.0		0.0	4	2	0.0	
	; <u> </u>	-	.05		• •			-	-	_	
arb	1.2	5	-2.0		0.0		1.25	-1.	. 8	8	
	1.2	5	2.0		0.0		1.25	1.	. 8	8	
	-1.2	5	2.0		0.0		-1.25	1.	. 8	8	
	-1.2	5	-2.0		0.0		-1.25	-1.	. 8	8	
	124	3.	7135		875	6.	2864.	783	21.	3465	
box	1.2	5	-1.97	79	- 6	895	0.0	2	8	179	
	0.0	-				075	3 F			.1/5	
how	1 2	c	1 070	`	• * ,	005	-2.5	0.0		0.0	
DOX	1.4	2	T.9/3			892	0.0		58	.179	
	0.0	_	.2		.4		-2.5	0.0)	0.0	
rcc	1.2	5	-2.0		2		-2.5	0.0)	0.0	
	. 2										
rcc	1.2	5	-1.8		6		-2.5	0.0)	0.0	
	.2										
rcc	1.2	5	2.0		- 2		-2 5	0.0	`	0 0	
		•			•••		2.5	0.0	•	0.0	
~~~	1 1	c	1 00		~		0 5				
166	1.2	2	1.00		0		-2.5	0.0	)	0.0	
	.2	_									
rcc	1.2	5	9		6		-2.5	0.0	)	0.0	
	.2										
rcc	1.2	5	45		2		-2.5	0.0	)	0.0	
	.2										
rcc	1.2	5	0.0		- 6		-2 5	0.0	<b>`</b>	0.0	
		•	0.0				2.5	0.0	•	0.0	
~~~~	1 2	£	45		2		25			~ ~	
ree	1.2	2	.45		2		-2.5	0.0	,	0.0	
	.2	_									
rcc	1.2	5	.9		6		-2.5	0.0)	0.0	
	.2										
rpp	-10		10.		-10		10.	-10)_	10.	
end									-		
		+1									
		10	1								
-2		74									
23		+3	-2	_							
z 4	or	+4	-7	-8		-9	-10	-11	-12	-13	-14
		-15or	+5	-	7	-8or	+6	-9	-10		
z5	or	+7or	+80r	+9-	or	+10or	+11or	+12or	+13or	+14or	+15
zб	+	16	-1	-2		-3	4	-5	-6	-7	-8
		-9	-10			-	-	-	·	•	Ŭ
end		-									
1	-		-	-	,						
C + 0 +	т	т т	. 1	T							
5*0	-	· .									
1	2	3 4	5	1000							
0											
ttl=						,					
this i	s a co	mbinat	orial	aeom	etrv	tank					
icn= 1	irg=0			300.00	1						
$v_{1} = -3$	211]=	-2 1	-1r= 3	71 m	= 2	172 V-	1	- 1			
ndn- 120	241-	2. Y	J.		- 2.	van-	r. wan	- 1.			
	- CHU										

Figure M13.5.1 Input data for PICTURE sample problem printer plot option

NUREG/CR-0200, Vol. 3, Rev. 6

combinatorial geometry tank sample problem

ivopt = 0 idbg = 0

			body data	
arb	1	0.1250000E+01 0.1250000E+01 -0.1250000E+01 -0.1250000E+01 0.1234000E+04	-0.1250000E+01 0.500000E+00 0.1250000E+01 0.200000E+01 0.000000E+00 0.1250000E+01 0.1250000E+01 0.500000E+00 -0.1250000E+01 0.200000E+01 0.000000E+00 -0.1250000E+01 0.4158000E+04 0.6587000E+04 0.2673000E+04 -0.100000E+01 0.0000000E+00 0.000000 0.000000E+00 0.000000E+00 0.000000 0.1000000E+00 0.000000E+00 0.100000 0.000000E+00 0.5547002E+00 -0.832050 0.000000E+00 0.5547002E+00 -0.832050 0.000000E+00 0.5547002E+00 -0.832050 0.000000E+00 0.5547002E+00 -0.832050	-0.2000000E+01 0.000000E+00 0.1250000E+01 0.500000E+00 0.1250000E+01 0.500000E+00 0.1250000E+01 0.5000000E+00 0.5521000E+04 0.4378000E+04 0E+01 0.500000E+01 0E+01 0.1250000E+01 0E+01 0.1250000E+01 3E+00 0.1109400E+01 3E+00 0.1109400E+01
ell	2	0.0000000E+00 0.1500000E+01	-0.5000000E+00 0.5000000E+00 0.000000E+00	0.5000000E+00 0.5000000E+00
trc	3	0.0000000E+00 0.1000000E+00	0.0000000E+00 0.8000000E+00 0.0000000E+00 0.5000000E-01	0.2500000E+01 0.0000000E+00
arb	4	0.1250000E+01 0.1250000E+01 -0.1250000E+01 -0.1250000E+01 0.1243000E+04	-0.2000000E+01 0.000000E+00 0.1250000E+01 0.2000000E+01 0.000000E+00 0.1250000E+01 0.2000000E+01 0.0000000E+00 -0.1250000E+01 0.7135000E+01 0.875600E+04 0.2864000E+04 -0.100000E+01 0.000000E+00 0.000000 0.000000E+01 0.000000E+00 0.000000 0.000000E+01 0.000000E+00 0.000000 0.000000E+01 0.000000E+00 0.000000 0.000000E+00 0.000000E+00 0.242555 0.0000000E+00 0.9701425E+00 0.242535	-0.1800000E+01 -0.800000E+00 0.180000E+01 -0.800000E+00 0.180000E+01 -0.800000E+00 -0.1800000E+01 -0.800000E+00 0.7821000E+04 0.3465000E+04 0E+00 0.125000E+01 0E+01 0.125000E+01 0E+00 0.125000E+01 6E+00 0.1940285E+01
bor	5	0 12500008+01	0.8246211E+00 0.6000000E+01 0 1979000E+01 -0 6895000E+00 0 000000E+00	0 35800008+00 0 17800008+00
201	-	0.0000000E+00	-0.2000000E+00 0.4000000E+00 -0.2500000E+01	0.0000000E+00 0.000000E+00
pox	6	0.1250000E+01	0.1979000E+01 -0.6895000E+00 0.0000000E+00	-0.3580000E+00 0.1790000E+00
***	7	0.0000000E+00	0.2000000E+00 0.4000000E+00 -0.2500000E+01 -0.200000E+01 -0.2000000E+00 -0.2500000E+01	0.0000000E+00 0.0000000E+00
100	'	0.2000000E+00	-0.200000E+01 -0.200000E+00 -0.2500000E+01	0.0000002+00 0.0000002+00
rcc	8	0.1250000E+01 0.2000000E+00	-0.1800000E+01 -0.6000000E+00 -0.2500000E+01	0.0000000E+00 0.000000E+00
rcc	9	0.1250000E+01 0.2000000E+00	0.2000000E+01 -0.2000000E+00 -0.2500000E+01	0.000000E+00 0.000000E+00
rcc	10	0.1250000E+01	0.1800000E+01 -0.6000000E+00 -0.2500000E+01	0.000000E+00 0.000000E+00
		0.200000E+00		
rec	τı	0.1250000E+01	-0.900000E+00 -0.600000E+00 -0.2500000E+01	0.000000E+00 0.000000E+00
rcc	12	0.1250000E+01	-0.4500000E+00 -0.2000000E+00 -0.2500000E+01	0.000000E+00 0.000000E+00
T CC	13	0.2000000E+00 0.1250000E+01	0 000000000000 -0 60000000000 -0 250000000000	0.0000008+00 0.0000008+00
100		0.2000000E+00	0.0000002+00 -0.0000002+00 -0.2500000E+01	0.0000002+00 0.0000002+00
rcc	14	0.1250000E+01	0.4500000E+00 -0.2000000E+00 -0.2500000E+01	0.000000E+00 0.000000E+00
rcc	15	0.1250000E+01	0.9000000E+00 -0.6000000E+00 -0.2500000E+01	0.0000000E+00 0.000000E+00
rpp	16	0.2000000E+00 -0.1000000E+02	0.1000000E+02 -0.1000000E+02 0.1000000E+02	-0.1000000E+02 0.1000000E+02
number length	of of	bodies 16 fpd-array 252		
			input zone data	
	inpı	at zone code :	one body numbers	

Figure M13.5.2 Output of PICTURE sample problem printer plot option

NUREG/CR-0200, Vol. 3, Rev. 6

code zone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	input zone 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	zone data loc. 113 119 130 141 192 208 224 230 236 242 248 254 260 266 272 278	no. of bodies 1 2 2 10 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i kr1 1 2 3 4 5 6 1 0	(i) $kr2(i)$ 1 1 2 2 3 3 4 6 7 15 6 16 representation						
0 mo:	l l l l rse media in ir	1 1 1 1 nput zone(i) array	y (mriz(i),i=1, (mmiz(i),i=1, 6)	6]			
0 mo: 1 option 0 w	1 2 3 rse universe ir 0 0 0 as used in calc	4 5 1000 n input zone(i) ar 0 0 0 culating volumes,	ray (nbiz(i),i=1, for 1 regions	6)			
volume 1.00	es = 1, 1-conce olumes (cc) u 1 00E+00	entric spheres, 2- used in collisions	slabs, 3-inputvolu density and track	mes. Clength estim	ators.		
array data : lthis is a co Ozone geometr Othe selected	requires ombinatorial ge ry d atable values	8 locations, le cometry tank. s are	aving 13889 lo	ocations			
0 upper coord: 0x 0.000 y -0.300 z -0.200 0 u (0 0x 0 y 1 z 0 0nu= 157 z	L e t a left 1 inates c 00E+00 0 00E+01 0 axis v ax 10000 0.0 .00000 0.0 00000 1.0 nv= 130 de	U Lower right coordinates 0.0000E+00 0.3000E+01 0.2000E+01 cis coss) 00000 00000 00000 clu= 0.3846E-01	delv= 0.3077E-01				

Figure M13.5.2 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

Figure M13.5.2 (continued)

sas4d shipping cask with 7 heterogeneous fuel assemblies $0 \quad 0 \quad 1 \quad 20$

		A AA	~ ~~				
rcc	T	0.00	0.00	-2.29870e+02	0.00 0.00	4.59740e+02	4.58200e+01
rcc	2	0.00	0.00	-2.37490e+02	0.00 0.00	4.74980e+02	5.34400e+01
ree	٦	0 00	0.00	-2 374900+02	0 00 0 00	4 740000.00	5.3441001
100		0.00	0.00	-2.374900+02	0.00 0.00	4.749000+02	2.244106+01
rcc	4	0.00	0.00	-2.37490e+02	0.00 0.00	4.74980e+02	5.34420e+01
rcc	5	0.00	0.00	-2.41300e+02	0.00 0.00	4.82600e+02	5.72500+01
700	6	0 00	0 00	-2 412700+02	0 00 0 00	4 0054000	5.725002.01
100	ž	0.00	0.00	-2.412/0e+02	0.00 0.00	4.825400+02	5./2600e+01
rcc	7	0.00	0.00	-2.41280e+02	0.00 0.00	4.82560e+02	5.72700e+01
rcc	8	0.00	0.00	-2.37490e+02	0.00 0.00	4 74980e+02	4 582000+01
	ā	0.00	0.00	0.07401-00	0.00 0.00	4.745006+02	4.382000401
ree	9	0.00	0.00	-2.3/491e+02	0.00 0.00	4.74982e+02	4.58200e+01
rcc	10	0.00	0.00	-2.37492e+02	0.00 0.00	4.74984e+02	4.58200e+01
rcc	11	0 00	0 00	-2 413100+02	0 00 0 00	A 826200+02	5 726000.01
	10	0.00	0.00	2.415106+02	0.00 0.00	4.020206702	5.72600e+01
ree	12	0.00	0.00	-2.41290e+02	0.00 0.00	4.82580e+02	5.72600e+01
rcc	13	0.00	0.00	~2.37492e+02	0.00 0.00	4.74984e+02	5.34420e+01
rcc	14	0 00	0 00	-3 413100+02	0 00 0 00	6 926200102	1 5707000
	10	0.00	0.00	-5.41510e+02	0.00 0.00	0.020200702	1.5/2/08+02
rcc	72	0.00	0.00	-4.41310e+02	0.00 0.00	8.82620e+02	2.57270e+02
rcc	16	0.00	0.00	-5.41310e+02	0.00 0.00	1.08262e+03	3.57270e+02
ree	17	0 00	0 00	-2 241310+03	0 00 0 00	4 492620102	0.052024.02
TCC		0.00	0.00	-2.241510+03	0.00 0.00	4.482020+03	2.05/2/e+03
rcc	18	0.00	0.00	-2.34131e+03	0.00 0.00	4.68262e+03	2.15727e+03
rcc	19	0.00	0.00	-2.28600e+02	0.00 0.00	4 572000+02	4 455000+01
	20	0 00	0.00	3 3850002	0.00 0.00	4.572000.02	4.455000000
TCC	20	0.00	0.00	-2.285998+02	0.00 0.00	4.571986+02	4.45490e+01
rcc	21	0.00	0.00	-1.82880e+02	0.00 0.00	3.65760e+02	3.99349e-01
TCC	22	0 00	0 00	-1 828800-02	0 00 0 00	2 657600402	1 26660- 01
200		0.00	0.00	-1.020000+02	0.00 0.00	3.03700e+02	4.200000-01
rcc	23	0.00	0.00	-1.82880e+02	0.00 0.00	3.65760e+02	4.53971e-01
rcc	24	0.00	0.00	0.00000e+00	0.00 0.00	1.82890e+02	4.539710-01
****	25	0 00	0 00	1 03000-03	0 00 0 00	1 0000000	4.535712-01
TCC	25	0.00	0.00	-1.020900+02	0.00 0.00	1.828906+02	4.53971e-01
rpp	26	-6.30	00e-01	6.3000e-01	-6.3000e-01	6.3000e-01	-1.8288e+02
		1.82	88e+02				
	27	6 20	00- 01	C 2000- 01	C 3000 . 01	c	
трр	21	-0.30	006-01	0.30006-01	-6.3000e-01	6.3000e-01	1.8288e+02
		1.82	89e+02				
mn	28	-6 30	000-01	6 30000-01	-6 30000-01	6 2000-01	.1 9399-103
*PP		1.00		0.00006-01	-0.30006-01	0.30006-01	-1.02090+02
		~1.82	88e+02				
rpp	29	-1.07	10e+01	1.0710e+01	-1.0710e+01	1.0710e+01	-1.8289e+02
		1 82	890+02				
		1.02	056402				
rpp	30	-1.07	15e+01	1.0715e+01	-1.0715e+01	1.0715e+01	-1.8289e+02
		1.82	89e+02				
	21	-1 07	250+01	1 07250.01	1 0725-101	1 0000-00	
rpp	2T	-1.07	236401	1.0/250+01	-1.0/250+01	1.0/25e+01	-1.8289e+02
		1.82	89e+02				
700	32	-1.23	25e+01	1 2325 + 01	-1 23250+01	1 23250+01	-1 9299-102
- 55		1 00		1.10100.01	1.23236101	1.23236401	-1.02090+02
		1.85	89e+02				
rpp	33	-2.46	50e+01	2.4650e+01	-3.6975e+01	-1.2325e+01	-1.8289e+02
		1 92	890+02				1101050.01
		1.02	096702				
rpp	34	-3.69	75e+01	3.6975e+01	-1.2325e+01	1.2325e+01	-1.8289e+02
		1.82	89e+02				
	26	2 46	50.01	2 4650- 02	1 0305		
трр	35	-2.40	206+01	2.46500+01	1.2325e+01	3.6975e+01	-1.8289e+02
		1.82	89e+02			•	
en	d						
inn	· •						
TITT							
rsi	4	-10					
rs2	3	-2					
re?							
130							
our	5	-13					
wtr	e	i -5					
		e e	E				
Jac		-0	-5				
asl	8	· -1					
as2	c						
202							
ass	10	-9					
imp	11	5	-12				
hol	17	-4	-10				
4.0			÷.			-	
aez	or	14	-5	-/ -11 or	12 -5	-/	
de3	15	-14					
de4	14	-15					
		م م					
ınv	17	-16					
exv	18	-17					
0217	10						
. av	12	-20					
ins	20	-33	-34	-35			
fue	21						
~~~~							
yap	44	-21					
cla	23	-22					
fcl	26	-23					
	10						
		- 16					

Figure M13.5.3 Input data for PICTURE sample problem color display option

NUREG/CR-0200, Vol. 3, Rev. 6

hr2	24	-23											
hc2	27	-24											
uv2	18	-27											
hr3	25	-23											
hc3	28	-25											
uv3	18	-28											
arl	29												
spa	30	-29											
can	31	-30											
unt	32	-31											
uv4	18	-32											
ar2	33												
ar3	34												
ar4	35												
end													
12r1 2	12	23r1	L										
19*0	5*1	3*2 3*	3 5*4	3r0									
4	5	1000	1000	4	1000	1000	5 10	00 1	000	1000 10	000	4*1(	000
	0.	1000	1000		1	2	2	10	00	-1000	100	0	1000
-100	0	1000	1000	-10	00	~1	1000	10	00	1000			
-1000		-2	-3	-4									
17	17	3	2	1	1	3	1	1	2	1	1	0	0
289*	3	289*1	1 28	9*2	7*4								
4r0													
ttl≍	sas4	d samp	ole pro	blen	1 I								
icn=	-1	irg=	=1										
scr=y	es												
clr=	1 25	500	202	:55 0	) 3 (	0 2 5	5,1000	00	205	end col	lor		
xul=	-75.	0 yu]	l= 58.0	) zul	=0.0	xlr=	75.0 y	'lr=-	58.0	zlr=0.	. 0		
uax=	1 va	x≃0 wa	ax=0 uć	ln=0	vdn=-	-1 wdn	<b>=</b> 0						
ndn=	600	end											
end													

Figure M13.5.3 (continued)

# sas4d shipping cask with 7 heterogeneous fuel assemblies

ivopt = 0 idbg = 0

				body	data		
rcc	1	0.0000000E+00	0.000000E+00	-0.2298700E+03	0.000000E+00	0.0000000E+00	0.4597400E+03
rcc	2	0.000000E+00	0.000000E+00	-0.2374900E+03	0.000000E+00	0.000000E+00	0.4749800E+03
rcc	3	0.5344000E+02 0.0000000E+00 0.5344100E+02	0.0000000E+00	-0.2374900E+03	0.000000E+00	0.000000E+00	0.4749800E+03
rcc	4	0.000000E+00	0.000000E+00	-0.2374900E+03	0.000000E+00	0.000000E+00	0.4749800E+03
rcc	5	0.000000E+00	0.000000E+00	-0.2413000E+03	0.000000E+00	0.000000E+00	0.4826000E+03
rcc	6	0.0000000E+00	0.000000E+00	-0.2412700E+03	0.000000E+00	0.000000E+00	0.4825400E+03
rcc	7	0.5726000E+02 0.0000000E+00	0.000000E+00	-0.2412800E+03	0.000000E+00	0.000000E+00	0.4825600E+03
rcc	8	0.5727000E+02 0.0000000E+00	0.000000E+00	-0.2374900E+03	0.000000E+00	0.000000E+00	0.4749800E+03
rcc	9	0.4582000E+02 0.0000000E+00	0.000000E+00	-0.2374910E+03	0.0000000E+00	0.000000E+00	0.4749820E+03
rcc	10	0.4582000E+02 0.0000000E+00	0.000000E+00	-0.2374920E+03	0.000000E+00	0.000000E+00	0.4749840E+03
rcc	11	0.4582000E+02 0.0000000E+00	0.000000E+00	-0.2413100E+03	0.000000E+00	0.000000E+00	0 4826200E+03
rcc	12	0.5726000E+02 0.0000000E+00	0.000000E+00	-0.2412900E+03	0.0000000E+00	0.0000000000000	0 49258005+03
rcc	13	0.5726000E+02 0.000000E+00	0.0000000000000000000000000000000000000	-0 2374920E+03	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.43408408-03
		0.5344200E+02			0.000000E+00	0.0000000000000000000000000000000000000	0.47498402+03
ree	14	0.1572700E+03	0.000000E+00	-0.3413100E+03	0.000000E+00	0.0000000E+00	0.6826200E+03
rcc	15	0.0000000E+00 0.2572700E+03	0.000000E+00	-0.4413100E+03	0.000000E+00	0.000000E+00	0.8826200E+03
rcc	16	0.0000000E+00 0.3572700E+03	0.000000E+00	-0.5413100E+03	0.000000E+00	0.000000E+00	0.1082620E+04
rcc	17	0.0000000E+00 0.2057270E+04	0.000000E+00	-0.2241310E+04	0.000000E+00	0.000000E+00	0.4482620E+04
rcc	18	0.0000000E+00 0.2157270E+04	0.000000E+00	-0.2341310E+04	0.000000E+00	0.000000E+00	0.4682620E+04
rcc	19	0.0000000E+00 0.4455000E+02	0.000000E+00	-0.2286000E+03	0.000000E+00	0.000000E+00	0.4572000E+03
rcc	20	0.0000000E+00	0.000000E+00	-0.2285990E+03	0.000000E+00	0.000000E+00	0.4571980E+03
rcc	21	0.0000000E+00	0.000000E+00	-0.1828800E+03	0.000000E+00	0.0000000E+00	0.3657600E+03
rcc	22	0.0000000E+00	0.000000E+00	-0.1828800E+03	0.000000E+00	0.000000E+00	0.3657600E+03
rcc	23	0.000000E+00 0.4539710E+00	0.000000E+00	-0.1828800E+03	0.000000E+00	0.000000E+00	0.3657600E+03
rcc	24	0.000000E+00	0.000000E+00	0.000000E+00	0.000000E+00	0.0000000E+00	0.1828900E+03
rcc	25	0.000000E+00	0.000000E+00	-0.1828900E+03	0.000000E+00	0.000000E+00	0.1828900E+03
rpp	26	-0.6300000E+00	0.6300000E+00	-0.6300000E+00	0.6300000E+00	-0.1828800E+03	0.1828800E+03
rpp	27	-0.6300000E+00	0.6300000E+00	-0.6300000E+00	0.6300000E+00	0.1828800E+03	0.1828900E+03
rpp	28	-0.6300000E+00	0.6300000E+00	-0.6300000E+00	0.6300000E+00	-0.1828900E+03	-0.1828800E+03
rpp	29	-0.1071000E+02	0.1071000E+02	-0.1071000E+02	0.1071000E+02	-0.1828900E+03	0.1828900E+03
rpp	30	-0.1071500E+02	0.1071500E+02	-0.1071500E+02	0.1071500E+02	-0.1828900E+03	0.1828900E+03
rpp	31	-0.1072500E+02	0.1072500E+02	-0.1072500E+02	0.1072500E+02	-0.1828900E+03	0.1828900E+03
rpp	32	-0.1232500E+02	0.1232500E+02	-0.1232500E+02	0.1232500E+02	-0.1828900E+03	0.1828900E+03
rpp	33	-0.2465000E+02	0.2465000E+02	-0.3697500E+02	-0.1232500E+02	-0.1828900E+03	0.1828900E+03
rpp	34	-0.3697500E+02	0.3697500E+02	-0.1232500E+02	0.1232500E+02	-0.1828900E+03	0.1828900E+03
rpp	35	-0.2465000E+02	0.2465000E+02	0.1232500E+02	0.3697500E+02	-0.1828900E+03	0.1828900E+03
number length	of of	bodies 35 fpd-array 305					

# Figure M13.5.4 Printer output from color display option

NUREG/CR-0200, Vol. 3, Rev. 6

					inp	ut zone data	a		
	input zone	code zone	b	ody numb	ers				
inn rel	1	1	1	-19		•			
rs2	3	3	3	-10					
rs3	4	4	4	-3					
our	5	5	5	-13					
vtr	57	5	5 7	-5	_5				
asl	8	8	8	-1	-5				
as2	9	9	9	-8					
as3	10	10	10	-9			•		
1mp bol	11	11	11	~5	-12				
de2	13	13	14	-5	-10	-11			
		14 or	12	~5	-7				
de3	14	15	15	-14					
de4	15	10	15	-15					
exv	17	18	18	-17					
cav	18	19	19	-20					
ins	19	20	20	-33	-34	-35			
gan	20	22	22	-21					
cla	22	23	23	-22					
fcl	23	24	26	-23					
uvl hr2	24	25	18	-26					
hc2	25	20	27	-23					
uv2	27	28	18	-27					
hr3	28	29	25	-23					
ncs	29	30	28	-25					
ar1	31	32	29	-20					
spa	32	33	30	-29					
can	33	34	31	-30					
unc uv4	35	35	32 18	-31					
ar2	36	37	33						
ar3	37	38	34						
		**							
ar4 number	38 of input zon	39 165 38	35						
ar4 number number length	38 of input zon of code zon of integer a	39 Nes 38 Nes 39 Nrray 1319	35						
ar4 number number length code zc	38 of input zon of code zon of integer a	39 Nes 38 Nes 39 Nerray 1319 Ne zone dat	35 a loc.	no. of	bodies	region no.	media no.	box input zone	box code zone
ar4 number number length code zc 1 2	38 of input zon of code zon of integer a me input zor 1 2	39 nes 38 nes 39 nrray 1319 ne zone dat 246 257	35 a loc.	no. of	bodies 2 2	region no. 1 1	media no. 4 5	box input zone 0 0	box code zone 0 0
ar4 number number length code zc 1 2 3	38 of input zon of code zon of integer a one input zor 1 2 3	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268	35 a loc.	no. of	bodies 2 2 2	region no. 1 1	media no. 4 5 1000	box input zone 0 0	box code zone 0 0 0
ar4 number number length code zc 1 2 3 4 5	38 of input zon of code zon of integer a one input zor 1 2 3 4 5	39 Les 38 Les 39 Lirray 1319 ne zone dat 246 257 268 279 290	35 a loc.	no. of	bodies 2 2 2 2 2 2	region no. 1 1 1 1	media no. 4 5 1000 1000 4	box input zone 0 0 0 0 0	box code zone 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6	38 of input zon of code zon of integer a one input zor 1 2 3 4 5	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301	35 a loc.	no. of	bodies 2 2 2 2 2 2 2	region no. 1 1 1 1 1	media no. 4 5 1000 1000 4 1000	box input zone 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 7 8	38 of input zon of code zon of integer a me input zor 1 2 3 4 5 6 7 8	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 3 2	region no. 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 5	box input zone 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 7 7 8 9	38 of input zon of code zon of integer a pme input zor 1 2 3 4 5 6 7 7 8 9	39 les 38 les 39 irray 1319 ne zone dat 246 257 268 279 290 301 312 328 339	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1	media no. 5 1000 1000 4 1000 1000 5 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 7 8 9 9 10	38 of input zon of code zon of integer a pme input zor 1 2 3 4 5 6 7 8 9 10	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 51	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 5 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 4 5 6 7 8 9 9 10 11 12	38 of input zon of code zon of integer a 2 3 4 5 6 6 7 8 9 10 11 12	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 5 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length 2 3 4 5 6 6 7 8 9 10 11 12 13	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 377	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 2 2	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 9 10 11 12 13 13 13	39 les 38 les 39 lirray 1319 me zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 430	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 3 3 4 3 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 100	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 312 328 339 350 361 377 393 414 430 441	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 3 3 4 3 2 2 2 3 3 4 3 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2	media no. 4 5 1000 1000 1000 5 1000 1000 1000 100	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18	38 of input zon of code zon of integer a 2 3 4 5 6 7 7 8 9 10 11 12 13 13 14 15 16 17	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 452 463	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 3 3 3 4 3 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000 0000 0000 0000 0000 0000 0000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number length code zc 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19	38 of input zon of code zon of integer a 2 3 4 5 6 7 7 8 9 10 11 12 13 13 14 15 16 17 18	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 361 377 393 414 430 441 452 463 474 474 474 474 474 474 474 47	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 16 16 17 18 19 20 21	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 14 15 15 16 17 18 19 20	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 3414 430 441 452 463 474 485 506	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 3 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 6 6 7 7 8 9 9 10 11 12 2 13 14 15 16 17 18 19 20 20 21 222	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 14 15 16 17 18 19 20 21	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 341 414 430 441 452 463 474 485 506	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 3 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 2 13 14 15 16 17 18 19 20 21 221 223 23	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13 14 15 16 17 18 19 20 21 22 22	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 430 441 452 463 474 455 506 512 512 512 512 512 512 512 512	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 6 7 8 9 9 10 11 12 2 13 14 15 16 17 18 19 200 21 22 23 24 25	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13 13 14 15 16 17 18 19 20 21 21 22 23 24	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 430 441 452 463 474 455 506 512 523 534	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 1 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14 15 16 17 17 18 19 200 21 22 23 24 25 26 26	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 25 25	39 les 38 les 39 lirray 1319 me zone dat 246 257 268 279 299 301 312 328 339 350 361 414 425 463 474 430 441 452 463 474 455 506 512 523 534	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 8 9 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 3 24 25 26 27 28	38 of input zon of code zon of integer a one input zor 1 2 3 4 5 6 7 7 8 9 10 11 12 13 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 27	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 312 328 339 350 361 377 393 414 452 463 474 463 474 465 506 512 523 534 556 557	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 16 15 16 16 17 17 18 19 20 21 22 23 24 25 26 27 27 28 28	38 of input zon of code zon of integer a one input zor 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 361 377 393 350 351 352 354 355 356 356 357 358 358 359 350 356 357 358 359 350 351 377 393 350 350 351 351 357 357 358 356 357 357 358 356 357 357 358 356 357 356 357 356 357 356 356 357 356 356 356 357 356 356 356 356 356 356 356 356	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14 15 16 16 16 16 17 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30 31	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 28 29 30	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 361 377 393 354 359 350 351 377 393 354 355 356 357 377 393 357 357 358 359 350 350 351 357 357 357 357 357 357 357 357	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 117 12 21 22 23 24 25 26 27 28 29 30 31 322	38 of input zon of code zon of integer a me input zor 1 2 3 4 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 24 25 26 27 7 8 9 9 10 11 12 13 13 13 14 15 16 17 18 19 20 20 21 22 23 24 26 27 28 29 30 31	39 les 38 les 39 lirray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 344 410 421 452 463 474 485 506 512 523 534 545 556 567 578 589 600 611 622	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>media no.</pre>	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 7 8 9 9 10 11 12 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 322 33 33	38 of input zon of code zon of integer a 2 3 4 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	39 les 38 les 39 lirray 1319 ne zone dat 257 268 279 290 301 312 328 339 350 361 377 393 414 430 441 452 463 474 485 506 512 523 534 545 555 657 578 589 600 611 622 628 628 628 628 628 628 628	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>media no.</pre>	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3 24 25 26 27 28 29 300 31 32 33 34 35	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 13 13 13 14 15 16 17 18 19 20 21 21 21 22 23 24 25 26 26 27 28 29 30 31 32 33 34	39 les 38 les 39 lrray 1319 ne zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 430 441 452 463 474 455 506 512 523 534 545 557 578 589 600 611 622 628 639 650	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 7 7 8 9 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 3 3 14 25 26 27 28 29 30 31 32 33 33 34 35 36	38 of input zon of code zon of integer a 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 16 17 18 19 20 21 22 23 24 25 26 26 27 28 29 30 31 32 33 34 35	39 les 38 les 39 lirray 1319 me zone dat 246 257 268 279 290 301 312 328 339 361 377 393 414 430 441 452 463 474 485 506 512 523 534 545 556 567 578 589 600 611 622 628 639 650 661	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ar4 number number length code zc 2 3 4 5 6 6 7 7 8 8 9 9 10 11 12 13 14 15 16 16 17 13 14 15 16 16 17 17 18 20 21 22 23 23 24 25 26 27 27 22 30 31 31 31 32 24 25 26 29 30 31 33 34 35 36 36 37 37 38	38 of input zon of code zon of integer a me input zor 1 2 3 4 5 6 7 7 8 9 10 11 12 13 13 14 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28 29 30 31 32 33 34 35 36 37	39 les 38 les 39 lirray 1319 me zone dat 246 257 268 279 290 301 312 328 339 350 361 377 393 414 430 441 452 463 474 455 506 512 523 334 455 556 557 578 889 600 611 622 628 639 650 661 672 672 672 672 683 661 672 672 673 661 672 673 661 672 673 673 661 672 673 673 673 673 673 673 673 673	35 a loc.	no. of	bodies 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	region no. 1 1 1 1 1 1 1 1 1 1 1 1 1	media no. 4 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	box input zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	box code zone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure M13.5.4 (continued)

0	i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 18 9 10 11 12 13 14 15 16 7 18 9 10 11 12 13 14 15 16 7 18 9 10 11 12 13 14 15 16 7 18 19 10 11 12 13 14 15 16 7 18 19 10 11 12 13 14 15 16 17 18 19 20 12 22 22 22 22 22 23 33 33 33 3	kr1(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24 25 27 28 20 30 31 32 33 35 36 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 38 37 37 38 37 37 38 37 37 38 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 37 38 37 38 37 38 37 38 39 Morechall (Morechall	Teg	kr22	(1234567890122455739)L23455739)L23455739)	in	ni f	200										20																
		morse 1	reg.	10n 1	1n.	ınţ	1	zon 1	ie (1	.)a 1	rra	y 1	(mr 1	12	(1) 1	,i=	1,	38	) 1			,			•			1						
		1	:	1	1		1	1		1		1	1		1		1		1	,		1		1	1	1		-	1		+	-	T	1
0		morse	med	ia j	in i	.npu	it z	one	:(i)	ar	ray	(m	miz	:(i)	),i	=1,	31	3)	_	-	_	-		-	-	-								
		4	:	5 10	000	100	0	4	10	000	100	0	5	; 10	000	10	00	10	00	1000	) 1(	000	100	0 1	000	1000		0 1	1000	1(	000	1	2	2
		1000-	-100	0 10	000	100	0-1	.000	10	000	100	0-1	000	)	-1	10	00	100	00	1000	)-1(	000	-	2	-3	-4								
0		morse	uni	vers	se i	n i	ກຼວນ	nt z	one	:(i)	ar	ray	(n	bi:	z(i	),i	=1,	, 31	8)															
		0	I	0	0		0	0	)	0		0	0	)	0		0		0	c	)	0		0	0	0		0	0		0	1	1	1
1 oj 0-:	ption set vo	1 0 was u olumes =	sed	in 1-0	2 cal	cul	2 ati ric	2 ing : sp	vol vol	3 ume es,	s, 2-	3 for sla	3 2 bs,	re 3-	4 egi in	ons put	4 vo3	Lume	4 ≥s.	4	I	4		0	0	0								
vo 1	reg lume	volum 1 1.000E4	es -00 arra leve	(co 1. ay r el	:) .000 10.	use 2 E+0 1 o	eđi 1 fa	in c	arr y n	isi ay	ons siz	de e i 1	nsi s	.ty 17	an 7 b;	d t: Y	17	sk : 7 by	len	gth 3	esi	tima	tor	s.			·							
	У	- 1 2		4	2	ь	'	8	y	10	11	12	13	14	15	16	17	,																
	17	33	3	3	3	з	3	3	3	3	3	з	3	3	3	3	3	3																
	16	33	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3																
	15	3 3	: 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3																
	14	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3				•												
-	13	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3																
	11			3 7	د ۲	د د	3	3	د	د م	د د	د د	2	3	3	3	3	3																
•	10	3 3	3	3	3	3	3	3	2	2	2	2	2	2	2	2	-	2																
	9	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	-	,																
	8	33	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3																
	7	33	3	3	3	3	3	3	3	3	3	3	з	3	3	3	2	3																
											•				-	-																		

Figure M13.5.4 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6

6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	3	3	З	3	3	3	3	3	
4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
		1	eve	1		2 6	of a	~~,	w r	10		1						
x =	1	2	3	- 4	5	6	7	8	- <u>-</u> 9	10	11	12	13	14	15	16	17	
У	-	-	•	-	-	•		-	-									
17	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
14	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
13	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
12	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
2	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	T	1	1	1	T	Ŧ	Ŧ	T	T	T	T	T	T	T	T	1	1	
		1	eve	1		3 (	of a	rra	y r	<u>.</u>		1						
x = Y	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
17	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
16	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
15	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
14	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
13	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
12	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
11	2	2	2	2	2	2	[′] 2	2	2	2	2	2	2	2	2	2	2	
10	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
8	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
6	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
5	. 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
4	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
1	2	2 a	2 rra	2 y n	2 0.	2	2 2	2	2 ari	2 ay:	2 si:	2 ze :	2 is	2	2 2 b;	2	2 1	by

Figure M13.5.4 (continued)

1

NUREG/CR-0200, Vol. 3, Rev. 6

```
level
                         1 of array no.
                                            2
     x =
           12
   У
   1
            4
              4
1
               array no.
                            3
                                  array size is
                                                   3 by
                                                          1 by
                                                                 1
               level
                         l of array no.
                                            3
     x =
           1 2 3
   У
   1
            4
              4
                 4
1
               array no.
                            4
                                  array size is
                                                  2 by
                                                          1 by
                                                                  1
                         1 of array no.
               level
                                            4
     x =
           12
   У
           4 4
   1
1
                   universe specifications
              universe
                                1-simple/0-comjom
                  1
                                        0
                  2
                                        0
```

array data requires 1152 locations, leaving 11449 locations

3

4

1sas4d sample problem Omaterial geometry 0 upper left lower right coordinates coordinates 0x -0.7500E+02 0.7500E+02 y 0.5800E+02 -0.5800E+02 z 0.0000E+00 0.00000E+00 0 u axis v axis (down) (across) 0x 1.00000 0.00000 y 0.00000 -1.00000 z 0.00000 0.00000 Onu= 776 nv= 600 delu= 0.1933E+00 delv= 0.1933E+00

0

0

Figure M13.5.4 (continued)

NUREG/CR-0200, Vol. 3, Rev. 6



### **APPENDIX M13.A**

### THE LEGEND PROGRAM

LEGEND is a C program that receives a GIF-formatted two-dimensional (2-D) plot piped through a standard input buffer. LEGEND uses routines from the GD freeware package. LEGEND also accesses a data file containing information to be added to the plot in the form of a legend in the upper right corner of the plot. A larger GIF-formatted plot is generated that includes this legend.

LEGEND has been compiled, linked, and executed on the IBM RS/6000, HP and SUN workstations, and on a PC. This program is distributed with the SCALE package.

NUREG/CR-0200 Revision 6 Volume 3, Section M14 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

### **COMPOZ DATA GUIDE**

J. R. Knight* and L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

^{*}Formerly with Oak Ridge National Laboratory.

## ABSTRACT

The COMPOZ program used to create the Standard Composition Library is described. Of particular importance is documentation of the COMPOZ input data file structure. Knowledge of the file structure allows users to edit the data file and subsequently create their own site-specific composition library.

# CONTENTS

ABSTRACT	M14.iii
ACKNOWLEDGMENT	M14.vii
M14.1 INTRODUCTION	M14.1.1
M14.2 INPUT DATA DESCRIPTION M14.2.1 COMPOZ MODE SELECTOR M14.2.2 LIBRARY HEADING INFORMATION M14.2.3 STANDARD COMPOSITION TABLE M14.2.4 NUCLIDE INFORMATION TABLE M14.2.5 ISOTOPIC DISTRIBUTION TABLE	M14.2.1 M14.2.1 M14.2.1 M14.2.2 M14.2.2 M14.2.2

This work was funded by the Office of Nuclear Material Safety and Safeguards of the U.S. Nuclear Regulatory Commission.

#### M14.1 INTRODUCTION

COMPOZ is the program that creates (writes) the SCALE Standard Composition Library (see Sect. M8). Data are input in free form using the AREAD, FREAD, and IREAD functions in SCALE (see Sects. M2–M3). A card-image data file containing the input to COMPOZ (and the Standard Composition Library) is available with the SCALE system. Execution of COMPOZ using this data file creates the Standard Composition Library currently available with the SCALE package. This section provides documentation of the data file structure. Knowledge of the data file structure allows users to edit the data file and subsequently create their own site-specific or user-specific composition library.

COMPOZ is intended to create or make *permanent changes* to and/or to print the composition library and should not be used for any other purpose. To avoid confusion with the Standard Composition Library provided with SCALE, it is strongly recommended that only *new* keywords and compositions be used in any site-specific or user-specific library.

> NUREG/CR-0200, Vol. 3, Rev. 6

M14.1.1

### M14.2 INPUT DATA DESCRIPTION

COMPOZ input data are entered in free form (see Sect. M3). All data must be followed by at least one blank. The COMPOZ input data file contains *five* data records or blocks:

- 1. COMPOZ mode flag selects whether a new standard composition library will be created, or an old standard composition library will be listed. Only if a new library is being created are the following data records entered.
- 2. The head record contains the library identification, a set of parameters describing the size of the library, and a three-line library title with 80 characters per line.
- 3. The standard composition table contains the name, theoretical density, number of elements, and other information about each standard composition. Individual nuclides, mixtures, and compounds are all included in the table.
- 4. The nuclide information table contains the nuclide identification number, atomic mass, resonance energy cross sections, and a resonance flag for each nuclide.
- 5. The isotopic distribution table contains the nuclide identification number and the atom percent of each isotope used in specifying the default enrichment.

Note that for executing COMPOZ via SCALE, an =COMPOZ is required in the first eight columns of a record preceding the mode flag, and an END is required in the first three columns of a record inserted after the last data record.

### M14.2.1 COMPOZ MODE SELECTOR

1 LGEN = 0 - create a new library and list it

1 - list an existing library

If LGEN is 0, then input the following data to create a new standard composition library.

### M14.2.2 LIBRARY HEADING INFORMATION

- 1 IDT library identification number
- 2 NSC number of standard compositions
- 3 NNUC number of entries in the Nuclide Information Table

NUREG/CR-0200, Vol. 3, Rev. 6

M14.2.1

- 4 NELV number of variable isotope definitions
- 5 MXELSC maximum number of elements in a standard composition

6 MXISEL - maximum number of isotopes in a variable isotope element definition

7 AVOGAD - Avogadro's constant (atoms/b-cm)

8 TITLE - 3 lines of 80 characters used to identify the library

### M14.2.3 STANDARD COMPOSITION TABLE

- 1. SCID Composition name, maximum of 12 characters.
- 2. NEL Number of elements.
- 3. ROTH Theoretical density, gm/cm³.
- 4. IVIS Does first element have variable isotope distribution? (As of the current version of SCALE, this is no longer used, but a value must be present.)
  0, no;
  1, yes.
- 5. ICP 0 for a mixture, 1 for a compound.
- IRS No longer used, but a value must be present.
   0 for no resonance data,
   1 for resonance data in any constituent.

7. NCZA Element or nuclide ID

8. ATPM Weight percent if ICP = 0. Number of atoms per molecule if ICP = 1.

For each composition, items 7 and 8 are repeated until all components of the composition are described. There should be NEL pairs of entries. Items 1 through 8 are entered in a similar fashion for all compositions. There should be a total of NSC composition descriptions. The number of elements per composition can not exceed MXELSC.

### M14.2.4 NUCLIDE INFORMATION TABLE

1. NZA Nuclide ID. This should be the mass number + 1000 * the atomic number.

2. AM Atomic mass, C-12 scale.

NUREG/CR-0200, Vol. 3, Rev. 6

M14.2.2

- 3. SIGS Resonance energy scattering cross section, barns.
- 4. SIGT Resonance energy total cross section, barns.
- JRS Resonance nuclide identification. Not used, but must be present.
   0, no resonance data;
   1, resonance data.
- 6. MTS Multiple thermal scatter identifier. Enter 1. Not used, but must be present.

The resonance energy cross sections are averaged over the appropriate energy range for the nuclide. Items 1–6 are repeated for all nuclides. There should be a total of NNUC sets of entries. Entries should be made in order of increasing nuclide ID.

### M14.2.5 ISOTOPIC DISTRIBUTION TABLE

- 1. NZN 1000 * atomic number of variable isotope elements.
- 2. NISO Number of isotopes in the default abundance.
- 3. ISZA Isotope ID.
- 4. ABWP Default abundance, atom percent.

The default abundance is generally the naturally occurring abundance. For each element, items 3 and 4 are repeated until 100% total abundance is described, making a set for this element. The next element is described in the same fashion in the next set, etc. There should be a total of NELV sets. The number of isotopes per element cannot exceed MXISEL.

NUREG/CR-0200 Revision 6 Volume 3, Section M15 ORNL/NUREG/CSD-2/V3/R6

Computational Physics and Engineering Division

### **USER'S GUIDE FOR AMPX UTILITY MODULES**

N. M. Greene

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

### ABSTRACT

The purpose of this section is to document selected AMPX-77 modules that can benefit the analyst interested in editing, converting, or combining cross-section libraries normally used by the SCALE system modules.

NUREG/CR-0200, Vol. 3, Rev. 6

M15.iii
# CONTENTS

m

		Page
ABSTR.	ACT	M15.iii
M15.1	INTRODUCTION	M15.1.1
M15.2	AIM—MODULE TO CONVERT MASTER CROSS-SECTION LIBRAR FROM BCD TO BINARY FORMAT (OR VICE VERSA) M15.2.1 AIM Input Data	IES M15.2.1 M15.2.1
M15.3	AJAX—MODULE TO MERGE, COLLECT, ASSEMBLE, REORDER, JAND/OR COPY SELECTED DATA SETS FROM AMPX MASTER INT M15.3.1 AJAX Input Data	OIN, TERFACES M15.3.1 M15.3.1 M15.3.2
M15.4	ALE-MODULE TO LIST INFORMATION FROM MASTER OR WORKING LIBRARIES	M15.4.1 M15.4.1 M15.4.3
M15.5	ALPO (ANISN LIBRARY PRODUCTION OPTION) M15.5.1 ALPO Input Data M15.5.2 ALPO I/O Specifications	M15.5.1 M15.5.1 M15.5.2
M15.6	CORECTOL—MODULE TO CONVERT PRE-AMPX-77 MASTER LIBRARIES TO THE AMPX-77 FORM M15.6.1 CORECTOL Input Data M15.6.2 CORECTOL I/O Specifications	M15.6.1 M15.6.1 M15.6.2
M15.7	LAVA—AMPX MODULE TO MAKE AN AMPX WORKING LIBRARY FROM AN ANISN LIBRARY	M15.7.1 M15.7.1 M15.7.3
M15.8	MALOCS —MODULE TO COLLAPSE AMPX MASTER CROSS-SECT LIBRARIES M15.8.1 MALOCS Input Data M15.8.2 MALOCS Input/Output Specifications M15.8.3 Upscatter Truncation	TION M15.8.1 M15.8.1 M15.8.3 M15.8.3
M15.9	PERFUMEMODULE TO CORRECT LEGENDRE POLYNOMIAL FITS TO SCATTERING MATRICES	M15.9.1 M15.9.1 M15.9.1
		NUREG/CR-0200,
	M15.v	Vol. 3, Rev. 6

M15.10	RADE-MODULE TO CHECK AMPX MASTER	
	CROSS-SECTION LIBRARIES	M15.10.1
	M15.10.1 RADE Input Data	M15.10.1
	M15.10.2 RADE I/O Specifications	M15.10.3
M15.11	WAX-MODULE TO MERGE, COLLECT, ASSEMBLE, RE-ORDER, JOIN,	
	COPY SELECTED NUCLIDES FROM AMPX WORKING INTERFACES	M15.11.1
	M15.11.1 WAX Input Data	M15.11.1
	M15.11.2 WAX I/O Specifications	M15.11.2
M15.12	REFERENCE	M15.12.1

NUREG/CR-0200, Vol. 3, Rev. 6

M15.vi

)

#### M15.1 INTRODUCTION

Previous releases of the SCALE system did not include the utility modules discussed in this section, although in practice they perform invaluable operations for edit and special use of cross-section libraries in the SCALE system. For example, AIM is absolutely necessary to move the binary-formatted cross sections between different computer hardware. AJAX and WAX are modules to extract and combine sets of data from different libraries. ALE produces listings of data on cross-section libraries. ALPO converts SCALE cross sections to ANISN formats, whereas LAVA performs the reverse operation. RADE is a cross-section checking module that makes simple tests on SCALE cross-section libraries.

All of the modules in this section are shared by the SCALE and AMPX systems. Their input uses the FIDO procedures described in Sect. M10. In the descriptions on the following pages, the number of items to be input into an array is given in square brackets, []; the default values for parameters are given in parentheses, (). As with SCALE input data for its various calculational sequences, the input data for a module must be terminated by an "END" on a separate line.

NUREG/CR-0200, Vol. 3, Rev. 6

M15.1.1

## M15.2 AIM-MODULE TO CONVERT MASTER CROSS-SECTION LIBRARIES FROM BCD TO BINARY FORMAT (OR VICE VERSA)

AIM (<u>AMPX</u> Interchangeable <u>Masters</u>) is a module whose primary purpose is to be able to pass AMPX master cross-section libraries between computers. All AMPX cross-section files are written in binary formats, which are not compatible between machines of different manufacturers. AIM has the capability to either read a binary-formatted master library and to "unload" it to the card image format or to read a file written in this same card image format and create a master library. Because all machines can read textual files, this file serves to transmit data between computers. Alternatively, it is possible, though not necessarily efficient, to use AIM to create a master library using card image input because a user can independently create data in the special card image format.

#### M15.2.1 AIM Input Data

#### Block 1

- 0\$ Logical Unit Assignments [2]*
  1. MBIN Binary master (1)**
  2. MBCD BCD master (18)
- Option Selection Trigger [1]
   1. IOPT
   0 Binary to BCD conversion
  - 1 BCD to binary conversion
- 2\$ Data Edit Triggers [4]
  - 1. IP1D (0)
    - 0 No 1-D edit 1 - Edit 1-D cross sections
  - 2. IP2D (-1)
    -1 No 2-D edit
    L Edit through P_L of 2-D arrays
  - IPRES (0)
     0 FIDAS print master library data as processed
     1 FIDAS print suppressed
  - 4. IPBOND Not used, enter zero (0)
- T Terminate Block 1.

The number of entries in the array is given in square brackets.

^{**}Default values are given in parentheses.

If, and only if, the BCD data are to be read from cards, continue with the following input; otherwise, the input to AIM is complete. Note that the following input corresponds to the AMPX master interface specification (see Sect. F2.3.8).

#### Block M1

- 2\$ Tape Identification [10]
  - 1. IID Library identification number
  - 2. NNUC Number of nuclides in this library
  - 3. IGM Number of neutron energy groups
  - 4. IFTG First thermal group
  - 5. MSN Nordheim treatment revision level required for this library. (A value of 2 is used when the cross sections are intended for NITAWL-II.)
  - 6. IPM Number of gamma-ray energy groups
  - 7. I7 Zero
  - 8. I8 Zero
  - 9. I9 Zero
  - 10. I10 Zero

#### T Terminate Block M1.

Five Title Cards, each in (20A4) format. The five cards of Hollerith information can be used to describe the library.

#### Block M2

Word(a)

Input Block M2 NNUC times.

TITLE card in (18A4) format. This information is the title for the nuclide.

т.

3\$ ID(19-50)Refer to the following table for a description of the ID(19), ID(20, ..., ID(50) entries. Note that floating-point entries can be entered using the 3* designation, whereas the integers are input in a 3\$ array. Simply input both 3\$ and 3* arrays, and use the "skip" or "address" options to make the input to the proper place in the array.

11010(5)	
1-18	18 words of text describing the set
19	Identifier of the set
20	Number of 6-parameter sets of resolved resonance data
21	Zero
22	Number of 1-D neutron processes
23	Number of 2-D neutron processes
24	Zero
25	Number of 1-D gamma processes
26	Number of 2-D gamma processes
27	Number of 2-D neutron-to-gamma processes

# NUREG/CR-0200,

Vol. 3, Rev. 6

28	(Maximum order of scattering)*32768 + (total number of separate 2-D arrays for this set)
29	A - neutron equivalent mass number
30	ZA - 1000*Z + A
31	Zero
32	Zero
33	Zero
34	Power per fission in watt-s/fission
35	Energy release per capture in watt-s/capture
36	Maximum length of any 2-D record in the set
37	Number of sets of Bondarenko data
38	Number of $\sigma_0$ s in Bondarenko data (the $\sigma_0$ s are the background cross-section values)
39	Number of temperatures available in Bondarenko data
40	Maximum number of groups in Bondarenko data
41	Zero
42	Zero
43	$\sigma_p$ -potential scattering cross section
44	Żero
45	ENDF MAT for fast neutron data
46	ENDF MAT for thermal neutron data
47	ENDF MAT for gamma data
48	ENDF MAT for gamma production data
49	Nuclide symbol (4 characters of text)
50	Number of records in this set

T Terminate Block M2.

Block M3

7* Neutron energy group boundaries. [IGM + 1] The group boundaries are input high to low in eV.

8* Gamma-ray group boundaries. [IPM + 1] The group boundaries are input high to low in eV.

T Terminate Block M3.

Follow with NNUC sets of Blocks M4-M15 data described as follows:

## **Block M4**

TITLE card in (18A4) format. Use the same title card entered in data block M2 above for the nuclide title.

3\$ ID(19-50) Enter the same data for the appropriate nuclide as described in block M2 above.

T Terminate Block M4.

M15.2.3

#### Blocks M5, M6. Bondarenko data

If ID(37) > 0, enter the Bondarenko data.

In the following arrays, the array dimensions are taken from the ID values (3\$ array).

ID(37) = NBOND, number of Bondarenko processes ID(38) = NSIG0, number of  $\sigma_0$  values ID(39) = NTEMP, number of temperatures

#### **Block M5**

9* Bondarenko Table Ordinates [NTEMP + NSIG0 + 2]

Specify NSIG0  $\sigma_0$  values (high-to-low), followed by NTEMP temperatures in K (low-to-high), followed by ELO and EHI, the lower and upper limits of the energy range for which Bondarenko factors apply, respectively.

10\$ Bondarenko Table Directory [6* NBOND]

The directory array consists of six strings of numbers, stacked one after the other. The first NBOND numbers are the process identifiers (MT-numbers); for example, 2 for elastic scattering and 18 for fission. (See Sect. F3.B for list of MT identifiers.) The next NBOND numbers are the first energy groups for which Bondarenko factors are given for each of the processes; the next NBOND numbers are the last energy group for which the factors are given. The fourth string will contain all zeroes, except for the case of self-shielding transfer matrices, in which case it contains the order of scattering for the process (i.e., 0 for  $P_0$  terms, 1 for  $P_1$ , etc.). The fifth string will contain all zeroes except for transfer matrix shielding, in which case it contains the position of the term to be shielded, relative to the "magic word" in the transfer matrix array (e.g., for the case of only downscatter, a 1 would normally point to the within-group term, a 2 to the first downscatter term). The sixth string contains zeroes.

T Terminate Block M5.

## Block M6

This data block will be repeated NBOND times. It consists of two arrays: the infinite dilution values for the process and the corresponding Bondarenko factors. Let NF be the first group for which Bondarenko data are given and NL be the last group. (These groups are taken from the second and third strings from the directory array discussed earlier.)

- 11* Infinite Dilution Cross Sections [NL NF + 1] ( $\sigma_m(i)$ , i = NF, NL)
- 12* Bondarenko Factors [NSIG0*NTEMP*(NL NF + 1)] (((BF(i,j,k),i = 1,NSIG0),j = 1,NTEMP),k = NF,NL)

T Terminate Block M6.

NUREG/CR-0200, Vol. 3, Rev. 6

#### Block M7. Resonance Parameter and Other Neutron Cross-Section Data

In this block, the following definitions are used:

NRES = ID(20) = number of resolved resonances N1D = ID(22) = number of temperature-independent averaged neutron cross sections N2D = ID(23) = number of neutron-neutron scattering processes

13* Resonance data array; enter if NRES is nonzero [6*NRES + 9]

The first nine words contain parameters used in both the resolved and unresolved resonance calculations:

- 1. A, the mass ratio for the isotope or mixture of isotopes
- 2.  $\sigma_p$ , the potential scattering cross section

3. Zero

- 4. NRES, the number of six-parameter resonance sets
- 5. s, a factor used in the Nordheim calculation to determine the range over which the calculation will be made
- 6. Zero
- 7. Zero
- 8. Zero
- 9. Zero

The next 6*NRES words consist of six-word sets of data used in the Nordheim calculation. The first six words are:

- 1. Zero
- 2. NBLK, the number of blocks of resolved data
- 3. Zero
- 4. Zero

5. TREF, the reference temperature at which the infinite dilution arrays on this library were calculated

6. Zero

Following these six words are NBLK six-word groups that are used to specify information concerning blocks of resonance data that apply to, for example, different isotopes, different energy regions, different kinds of data (s-wave or p-wave resonances), etc. These groups are stacked as follows:

- 1. AWRI, the mass ratio associated with the block of data
- 2. ABUN, the abundance for the block of data
- 3. NRE, the number of resonances in the block
- 4.  $\ell$ , the value of spin for the resonances in the block
- 5. EL, the low-energy cut-off for resonances in the block
- 6. EH, the upper-energy cut-off for resonances in the block

NUREG/CR-0200, Vol. 3, Rev. 6

After these NBLK groups of six words, the six-word sets of resonance parameters are arranged as follows:

- 1.  $E_0$ , the resonance energy
- 2.  $\Gamma_n$ , the neutron width of the resonance
- 3.  $\Gamma_{y}$ , the gamma width of the resonance
- 4.  $\Gamma_{\rm f}$ , the fission width of the resonance
- 5. r, a factor used in the Nordheim treatment for determining the range of calculation
- 6.  $g_J$ , the statistical factor for the resonance

The following chart illustrates the structure just described schematically:

	<u>1 ·</u>	2	3	4	5	6
	0	NBLK	0	0	TREF	0
	AWRI ₁	ABUN ₁	NRE ₁	l,	EL ₁	EH,
	AWRI ₂	ABUN ₂	NRE ₂	$l_2$	$EL_2$	EH ₂
	•				_	_
	• .					
	•					
	AWRI _{NBLK}	ABUN _{NBLK}	NRE _{NBLK}	l _{NBLK}	EL _{nblk}	EH _{nblk}
~	E ₀	$\Gamma_{n}$	$\Gamma_{\gamma}$	$\Gamma_{ m f}$	r	g
first	•	•	•	•	•	•
DIOCK	•	•	•	·	•	•
	•	•	•		•	

## 14* Averaged neutron cross sections [N1D*(IGM + 1)]

Enter process identifier for first process followed by averaged cross sections for all groups (highest energy group to lowest); enter second process identifier followed by its cross sections, etc.

16\$ Directory for Neutron-Neutron Scattering Data [N2D*4]

Enter the process identifiers for all processes (N2D values), followed by the corresponding length of the "magic-word" (Sect. M9) compressed arrays, followed by the order of the Legendre fit to each process, followed by the number of temperatures at which the cross sections for each process are given; that is,

 $(MT_i, i = 1, N2D),$  $(L_i, i = 1 N2D),$  $(NL_i, i = 1, N2D),$  $(NT_i, i = 1, N2D).$ 

T Terminate Block M7.

#### Blocks M8 and M9. Neutron-Neutron Scattering Matrices

Each scattering process has an M8 and M9 block. Processes where NL is greater than zero have NL + 1 repeats. When  $NT \ge 1$ , the number of repeats is  $NT^*(NL + 1)$ . Data for all arrays for the first temperature are given first, etc.

#### **Block M8.** Parameters and Temperatures

17* Temperatures at which the cross sections are given [NT]

#### 18\$ Parameters [2]

- 1. NMW-number of "magic words" embedded in the transfer matrix
- 2. LPL length of the compressed scattering matrix (including space for magic words)

T Terminate Block M8.

#### Block M9. Scattering Matrix

19\$ Magic Words [NMW]. Specify the "magic words" that are included in the transfer matrix.

20* Scattering Matrix [LPL]. Specify the transfer matrix as in the master library format described below. Include zeroes in the positions that will contain magic words.

T Terminate Block M9.

#### **Scattering Matrix Structure**

This record type is used to store scattering matrix data (sometimes called 2-D data). As will be illustrated, it has provisions for truncating zero and/or impossible elements from the array. It exists in two forms: (1) a self-defining form used for gamma production data on a master library and (2) a form that is not self-defining. The only difference is that the self-defining form has the array length as the first word in the record, while the other does not; that is,

or

$$L, (X(I), I = 1, L)$$

(X(I), I = 1, L).

The structure of the X-array is as follows:

magic word for a group, terms for scattering to the group, magic word for the next group, terms for scattering to this group, etc.

In some cases, a negative or zero magic word is used to specify the end of data in the record.

NUREG/CR-0200, Vol. 3, Rev. 6

A magic word is used to define:

- 1. the sink group number, III,
- 2. the first group number, JJJ, which scatters to group III, and
- 3. the last group number, KKK, which scatters to group III.

The magic word is then defined as

#### MW = 1000000*JJJ + 1000*KKK + III

such that it is composed of three 3-digit integers:

#### MW: JJJKKKIII

The scattering terms following a magic word are in reverse order (following the typical practice for transport theory programs); that is, the scattering term for scattering from the last group is first, etc.

# MW for group III $\sigma(KKK \rightarrow III)$ $\sigma(KKK - 1 \rightarrow III)$ .

#### $\sigma(JJJ \rightarrow III)$

The scattering matrix record will contain one  $P_t$  matrix for a process.

Consider an elastic scattering matrix for hydrogen that will be a full triangular matrix and assume three energy groups. The scattering matrix will look as follows:

 $\begin{array}{c}
1001001 \\
\sigma(1 \rightarrow 1) \\
1002002 \\
\sigma(2 \rightarrow 2) \\
\sigma(1 \rightarrow 2) \\
1003003 \\
\sigma(3 \rightarrow 3) \\
\sigma(2 \rightarrow 3) \\
\sigma(1 \rightarrow 3)
\end{array}$ 

Note that the record is a mixture of integer and real terms.

#### Data Blocks M10, M11, M12. Gamma-Production Data

These blocks are required only when N2DY[=ID(27)] is greater than zero, where N2DY is the number of processes requiring gamma production data.

#### **Block M10. Gamma-Production-Data Directory**

21\$ Enter the gamma-production process identifiers [N2DY values], followed by the maximum length of the scattering matrices for a process, followed by the order of scattering for the processes, followed by a trigger (0/1-yields/cross sections) that specifies whether the gamma-production matrices are in cross section or yield units; that is,

 $(MTY_i, i = 1, N2DY),$  $(LY_i, i = 1, N2DY),$  $(NLY_i, i = 1, N2DY),$  $(NTY_i, i = 1, N2DY),$  $(NTY_i, i = 1, N2DY).$ 

T Terminate Block M10.

#### Blocks M11, M12. Gamma-Production Data

These blocks are repeated NLY + 1 times for each gamma-production process. (Note that NLY is a function of the process.)

## Block M11. Parameters

22\$ Gamma-Production Matrix Parameters [2]

- 1. NWDY number of magic words in the scattering matrix.
- 2. LPLY length of the scattering matrix.

T Terminate Block M11.

## **Block M12. Scattering Matrix**

23\$ Magic Words [NMWY]

Specify the magic words that will be placed in the scattering matrix.

24* Scattering Matrix [LPLY]

Specify the scattering matrix. Enter zeroes in the words that will contain magic words.

T Terminate Block M12.

NUREG/CR-0200, Vol. 3, Rev. 6

#### Blocks M13, M14, M15. Gamma-Ray Cross Sections

These blocks will only be used if either of the following two parameters is a nonzero value.

N1DZ = ID(25) = number of gamma-ray averaged cross sections N2DZ = ID(26) = number of gamma-gamma scattering processes

#### **Block M13. Gamma Cross Sections and Directories**

25* Gamma Averaged Cross Sections [N1DZ*(IPM + 1)]

Specify the identifier for the first process, followed by its cross sections, followed by the second process identifier and its cross sections, etc.

#### 26* Gamma-Gamma Scattering Directory [N2DZ*4]

Specify the identifiers of all scattering processes [N2DZ processes], followed by the lengths of the scattering matrices for the corresponding processes, followed by the orders of scattering for the processes, followed by a zero for each process; that is,

 $(MTZ_i, i = 1, N2DZ)$  $(LZ_i, i = 1, N2DZ)$  $(NLZ_i, i = 1, N2DZ)$  $(NTZ_i, i = 1, N2DZ)$ 

T Terminate Block M13.

#### Block M14, M15. Gamma-Gamma Scattering Matrices

These blocks are repeated NLZ + 1 times for each of the gamma-ray scattering processes.

#### **Block M14. Gamma Parameters**

27\$ Gamma-Gamma Matrix Size and Order

- 1. NMWZ number of magic words in the scattering matrix
- 2. LPLZ length of scattering matrix

T Terminate Block M14.

## **Block M15. Gamma Scattering Matrix**

28\$ Magic words [NMW2]

Specify the magic words for the scattering matrix.

NUREG/CR-0200, Vol. 3, Rev. 6

29* Scattering Matrix [LPL2]

Specify the scattering matrix.

T Terminate Block M15.

NUREG/CR-0200, Vol. 3, Rev. 6

# M15.3 AJAX—MODULE TO MERGE, COLLECT, ASSEMBLE, REORDER, JOIN, AND/OR COPY SELECTED DATA SETS FROM AMPX MASTER INTERFACES

AJAX (Automatic Joining of AMPX X-Sections) is a module to combine data from AMPX master interfaces. Options are provided to allow merging from any number of files. You can even determine the final nuclide ordering by accessing the same file multiple times. Any form of master interface (neutron, gamma-ray, or neutron-gamma) can be accessed.

#### M15.3.1 AJAX Input Data

#### Block 1

- -1\$ Core Size [1]
  1. LENG Number of words to allocate to AJAX (100,000)
- 0\$ Logical Unit Assignments [2]
  - 1. MMT Logical number of new library (default = 1)
  - 2. NMAX Not used
- 1\$ Number of Files [1]
  - 1. NFILE Number of files to be used in constructing the new library. (When "reordering" operations are performed that required the same file to be accessed several times, each access is counted in determining the value of NFILE.)

T Terminate Block 1.

Blocks 2 and 3 are stacked, one after the other, NFILE times.

#### Block 2

2\$ File and Option Selection [2]

- 1. NF Logical unit number of file considered (A negative value for NF says to use the title information from this file on the library which will be written onto logical MMT; otherwise, the title is taken from the first file accessed.)
- 2. IOPT
  - = -N Delete N nuclides from those on logical NF and add the others to the new file.
  - = 0 Add all nuclides on logical NF to the new file.
  - = +N Add N nuclides from logical NF to the new file.

Note that in any case, once an identifier is used, all subsequent sets which use that identifier are skipped.

T Terminate Block 2.

#### Block 3 {Enter only when IOPT $\neq 0$ }

3\$ Nuclides Selected [IIOPTI]

Identifiers of nuclides that are to be added or deleted from NF.

(When IOPT is +N, the use of a zero in the 3\$ array says to select all nuclides from the file. If other identifiers are entered, they can be used to change the sets of data with these identifiers.)

4\$ New Identifiers [IIOPTI] {Enter only if an identifier is to be changed.}

This array allows changing the identifier given in the 3\$ array for the set of data on the new library. If a zero is entered in the 3\$ array, a corresponding zero should be entered here.

T Terminate Block 3.

Note that AJAX operates sequentially to construct the new library. Once an identifier is selected for a nuclide on the new file, the occurrence of a set of data with that identifier on any new library will be ignored. Normally, the identifiers will remain the same as those used on the libraries from which data are selected. The 4\$ array provides a way to override these identifiers.

#### M15.3.2 AJAX Input/Output (I/O) Specifications

The following devices are normally needed to execute AJAX:

Logical No.	Purpose
5	Card input
6	Standard output
15	Scratch device
16	Scratch device
18	Scratch device
19	Scratch device
MMT(1)	Master file to be created
NF	File(s) to be merged onto MMT

## M15.4 ALE-MODULE TO LIST INFORMATION FROM MASTER OR WORKING LIBRARIES

ALE is a module that will produce listings of information contained on an AMPX master or working library. It also has provisions for controlling the spacing of the output.

#### M15.4.1 ALE Input Data

#### Block 1

- 0\$ Logical assignments [2]
  - 1. MMT master library
  - 2. MWT working library
- 1\$ Selection option [1]
  - 1. NEDIT number of nuclides for which listings are to be produced (a zero selects all nuclides on a library).
- 2\$ Block edit option [10]
  - (A nonzero value selects editing the data.)
  - 1. NLDN 1-D neutron arrays
  - 2. NLDG 1-D gamma arrays
  - 3. NRES resonance data (including Bondarenko data)
  - 4. IOPT4 not used
  - 5. IOPT5 not used
  - 6. IOPT6 not used
  - 7. IOPT7 not used
  - 8. IOPT8 not used
  - 9. IOPT9 not used
  - 10. ICORE number of words allocated to this module (default = 50000)
- 3 Block carriage control characters [25]

The entries have the following effect on how the header line for a particular kind of data is printed: all values are 0, by default, which says to skip a line before printing the block; a 1 can be used to start a block on a new page.)

- 1. Nuclide directory information
- 2. One-dimensional cross sections (absorption, fission, etc.)
- 3. Two-dimensional cross sections (scattering matrices)
- 4. Bondarenko data
- 5. Unassigned
- 6. Unassigned
- 7. Unassigned
- 8. Unassigned

- 9. Unassigned
- 10. Unassigned
- 11. Unassigned
- 12. Unassigned
- 13. Unassigned
- 14. Unassigned
- 15. Unassigned
- 16. Unassigned
- 17. Unassigned
   18. Unassigned
- 19. Unassigned
- 20. Unassigned
- 21. Unassigned
- 22. Unassigned
- 23. Unassigned
- 24. Unassigned
- 25. Unassigned
- 4\$ Scattering Matrices to be edited [100]

Enter the MT numbers of the processes for which edits are desired.

5\$ Order of Scattering Matrices to be edited [100]

The 4\$ and 5\$ arrays are entered in one-to-one correspondence. The entries in the 5\$ array give the maximum order of Legendre coefficient to be listed (e.g., a value of 2 would cause the  $P_0$ ,  $P_1$ , and  $P_2$  scattering matrices to be listed).

T Terminate Block 1.

**Block 2** (Enter only if NEDIT > 0)

11\$ Nuclide identifiers [NEDIT]

These are the identifiers for the nuclides for which listings are to be made.

T Terminate Block 2.

M15.4.2

# M15.4.2 ALE I/O Specifications

ALE requires the following I/O devices.

Logical No.	Purpose
5	Standard input
6	Standard output
MMT	Master library
MWT	Working library

#### M15.5 ALPO (ANISN LIBRARY PRODUCTION OPTION)

ALPO is a module for producing ANISN libraries from AMPX working libraries. Several working libraries can be accessed in a given run. The ANISN library can be produced in either binary or BCD format.

#### M15.5.1 ALPO Input Data

#### Block 1

-1\$ Process Identifiers by Position in the ANISN Library [100].

This array can be used to override the normal arrangement of cross-section types in ANISN¹-formatted libraries or can be used to produce special cross-section sets; for example, dose factor sets that contain several processes. The identifier for the process to be placed in row 1 of the ANISN tables is input first; row 2, second; etc. Note that nuclides that do not contain the processes noted in this table will revert to the normal ANISN ordering, namely,  $\sigma_T$  in position IHT,  $\overline{v\sigma_f}$  in position IHT-1, etc.

- 0\$ Logical Assignments [2]
  - 1. MAN logical unit for ANISN library (Use a 7 when a punched card output-textual-is desired.) (default = 20)
  - 2. MAX not used
- 1\$ Primary Options [8]
  - 1. NFILE number of working libraries to be accessed
  - 2. IHT position of the total cross section in the ANISN tables (3)
  - IHS position of the within-group cross-section in the ANISN tables IHT + IGM - IFTG + 1, where IGM is the number of neutron energy groups, and IFTG is the first thermal group
  - 4. ITL table length of the ANISN tables, IHS + IGM + IPM 1, where IPM is the number of gamma-ray groups
  - 5. MAXPL the maximum order of scattering to be written on the ANISN library (20)
  - 6. IOPT1D option to print group averaged cross sections (0). A 1 selects printing
  - 7. IOPT2D option to print scattering matrices (0). A 1 selects printing.
  - 8. ITRANS transport correction option (0)
    - -N, truncate  $P_N$  and higher matrices and correct all lower ordered within-group terms by  $2(2\ell + 1) \times \sigma_N(g \rightarrow g')/(2N + 1)$ 
      - 0, no transport correction
      - 1, replace  $\sigma_t$  with  $\sigma_{tr} = \sigma_a + (1 \mu)\sigma_s$ , where  $\mu$  is calculated by summing the P₁ matrix and dividing by the P₀ sum, or by  $2/(3 \times A)$  when P₁ is not given.

(The within-group term is also adjusted.)

T Terminate Block 1.

Data Blocks 2 and 3 are repeated NFILE times.

## Block 2

2\$ File Selection Options [2]

1. NF – logical number of the working library

2. IOPT - nuclide selection

- -N, accept all nuclides from the working library except the N designated in the 3\$ array below.
- 0, accept all nuclides from the working library
- +N accept all of the N nuclides from the working library that are designated in the 3\$ array below.

T Terminate the data block.

#### Block 3 $\{IOPT \neq 0\}$

3\$ Nuclides to be selected or ignored [IIOPTI]

T Terminate the data block.

#### M15.5.2 ALPO I/O Specifications

The following devices are normally needed to execute ALPO:

Logical No.	Purpose
5	Card input
6	Standard output
7	Punched card output
14	Scratch device
MAN(20)	ANISN binary library
MAX(4)	AMPX working library

NUREG/CR-0200, Vol. 3, Rev. 6

M15.5.2

## M15.6 CORECTOL—MODULE TO CONVERT PRE-AMPX-77 MASTER LIBRARIES TO THE AMPX-77 FORM

Prior to AMPX-77, the implementation of the Nordheim Integral Treatment in the NITAWL module assumed that the cross sections in the master library would be split into two parts:

- 1. cross sections for the bodies of the resonances (weighted over a reference spectrum), and
- 2. the wing cross sections, which included correction values, values for l = 1, 2, etc., resonances (i.e., everything in the cross sections which the Nordheim calculation was not going to calculate)

This arrangement allows one to simply add these pieces together if an infinite dilution set is desired, or to perform a resonance self-shielding calculation and add the shielded values to the second set to obtain self-shielded values. This procedure requires that the processing code know exactly where the bodies of the resonances will be located, and, thereby, precludes the use of the Nordheim treatment with libraries not based on this knowledge.

It was recognized that a better way to implement the Nordheim treatment would be to reference the self-shielded values to infinite dilution values. The Nordheim calculation would then have to make two calculations: (1) the regular calculation, just as before, and (2) a calculation to weight the cross sections over a 1/E flux. The difference in the two values is then simply added to a reference infinite dilution set to obtain shielded values. This new approach has several advantages: (1) it allows the Nordheim calculation to be performed with any library that used 1/E weighting in the resonance range, a commonly used scheme; (2) it allows one to always refine (or unrefine) a calculation by adding (for example, l = 1) or deleting resonance parameters; and (3) it inherently makes the procedure more accurate, since the difference is made using the same integration procedures.

Clearly, the library needed for the two approaches is different. The task of taking the earlier AMPX master libraries and converting them to the new format by adding together the resonance body values and the wing values and discarding the wing values is the purpose of the CORECTOL (<u>CORFECT Old Libraries</u>) module. It is a very simple module to use and requires essentially that the user define where the files are located. Obviously, CORECTOL has no counterpart module for converting newer libraries to the older form, as it is this complicated task that the newer procedures have been designed to eliminate.

#### M15.6.1 CORECTOL Input Data

#### Block 1.

- -1\$ Core Assignment [1]
  - 1. ICORE Number of words of core to assign to this module (100000)
- 0\$ Logical Assignments [4]
  - 1. NT1 Old AMPX master (1)
  - 2. NT2 New AMPX master (2)
  - 3. NS Scratch device (18)
  - 4. NT Scratch device (19)
- T Terminate Block 1.

# M15.6.2 CORECTOL I/O Specifications

CORECTOL uses the following I/O devices:

Logical No.	Purpose
5	Card input
6	Printed output
NT1(1)	Old AMPX master library
NT2(2)	New AMPX master library
NS(18)	Scratch device
NT(19)	Scratch device

بنا ا

NUREG/CR-0200, Vol. 3, Rev. 6

M15.6.2

## M15.7 LAVA—AMPX MODULE TO MAKE AN AMPX WORKING LIBRARY FROM AN ANISN LIBRARY

LAVA (Let ANISN Visit AMPX) is a module that can convert an ANISN library (neutron, gamma, or coupled neutron-gamma) to an AMPX working library that can be used in XSDRNPM. ANISN cross sections can be input on cards (fixed- or free-form FIDO format) or on a binary library.

#### M15.7.1 LAVA Input Data

#### Block 1

- -1\$ Core Allocation [1]
  - 1. NWORD number of words to allocate to LAVA (50000)
- 0\$ Logical Definitions [6]
  - 1. N1 ANISN library (20)
  - 2. N2 AMPX working library (4)
  - 3. N3 Scratch (18)
  - 4. N4 Scratch (19)
  - 5. N4 Input (5)
  - 6. N6 Output (6)
- 1\$ ANISN Library Parameter Data [8]
  - 1. NNUC Number of isotopes to be put on new library
  - 2. IGM Number of neutron groups
  - 3. IHT Position of  $\sigma_t$
  - 4. IHS Position of  $\sigma_{g-g}$
  - 5. IHM Table length
  - 6. IFTG First thermal group
  - 7. IPM Number of gamma groups
  - 8. IFM Format of ANISN library
    - -1, binary
    - 0, free-form BCD
    - 1, formatted BCD
  - 9. IFLAG A flag that selects the method for calculating scattering cross sections from scattering matrices-0 or 1 (default = 1). ANISN matrices are the sum of all the individual scattering matrices (elastic, inelastic, n2n, n3n, etc.) for processes possible for the particular nuclide. LAVA attempts to arbitrarily determine values for an elastic (MT = 2) and an n2n (MT = 16) cross section, recognizing that elastic scattering is generally the most dominant scattering process, and that n2n is the most common scattering process that yields more than a single exit neutron. To accomplish this, the absorption cross section in the ANISN data must be the true absorption value (not an energy absorption cross section as in some older gamma-ray sets or whatever alternative value). When IFLAG = 1, requiring the correct absorption, the elastic value is taken as

M15.7.1

$$\sigma_{e\ell}^{g} = \sigma_{t}^{g} - \sigma_{a}^{g},$$

but the n2n is taken from

$$\sigma_{n,2n}^{g} = \sum_{g'} \sigma_{0}(g \rightarrow g') - \sigma_{e\ell}^{g} .$$

When IFLAG = 0, no attempt is made to calculate an n2n value and the elastic value is simply

$$\sigma_{\ell}^{g} = \sum_{g'} \sigma(g \rightarrow g')$$

T Terminate Block 1.

Block 2

- 2\$ Identifiers of the P₀ Block of Data for a Nuclide on the ANISN Library (see Ref. 1) [NNUC]
- 3\$ Order of Scattering For the Nuclide on the ANISN Library [NNUC]

If an order of scattering for a nuclide is negative, the  $P_{\ell}(\ell > 0)$  matrices for the nuclide will be multiplied by  $(2\ell + 1)$  when they are written to the working library. This option is needed because Oak Ridge codes include the  $(2\ell+1)$  factor in their cross sections, whereas almost no other code does.

4\$ AMPX Identifiers for the Nuclides Selected From ANISN Library [NNUC]

5\$ MT of each 1-D position in the ANISN Library [IHT]

The order is from position IHT to position 1. Note, MT numbers of frequently used data appearing in the 1-D positions are as follows:

Reaction	<u>MT</u>
$\sigma_{t}$	1
$\overline{\nu\sigma_{f}}$	1452
σ	27
īv	452
χ	1018
$\sigma_{\rm f}$	18
	÷

M15.7.2

## 6* Fission Spectrum [IGM]

If a nuclide has a nonzero fission cross section and either no fission spectrum (MT = 1018) is specified in the 1-D positions of the ANISN library or the fission spectrum flag for that nuclide has been appropriately set in the 9\$ array, then the fission spectrum specified by the 6* array is included for that nuclide.

7* Neutron Energy Group Boundaries^{*} [IGM + 1]

8* Gamma-Ray Energy Group Boundaries* [IPM + 1]

9\$ Nuclide CHI Flags [NNUC]

0/1 – Use the fission spectrum from the ANISN library/use the fission spectrum from the 6* array

T Terminate Block 1.

## M15.7.2 LAVA I/O Specifications

The following devices are normally needed in running the LAVA module:

Logical No.	Purpose
N2	AMPX working library written by LAVA (4)
N5	Card input (5)
N6	Standard output (6)
N3	Scratch device (18)
N4	Scratch device (19)
N1	ANISN library (20)

*Read high-to-low in energy (eV).

## M15.8 MALOCS-MODULE TO COLLAPSE AMPX MASTER CROSS-SECTION LIBRARIES

MALOCS (Miniature AMPX Library Of Cross Sections) is a module to collapse AMPX master cross-section libraries. The module can be used to collapse neutron, gamma-ray, or coupled neutron-gamma master libraries.

#### M15.8.1 MALOCS Input Data

## Block 1

- -1\$ Core Allocation [1]
  - 1. NWORD Number of words of core to allocate to MALOCS (100000)
- 0\$ Case Description [6]*
  - 1. NNEUT Number of neutron fine groups
  - 2. IGMF Number of neutron broad groups
  - 3. NGAMM Number of gamma-ray fine groups
  - 4. IPMF Number of gamma-ray broad groups
  - 5. IWN Neutron weighting option (0)**
    - N1, Use the 1-D data identified with an MT number of IOPT2 (see 3\$ array) from the IOPT1 master data set on logical unit N1 for the neutron weighting spectrum for all neutron data sets being collapsed.
      - 0, Input neutron weighting spectrum in the 5* array.
      - 1, Use MT=1099 1-D neutron data from each fine-group master data set for the neutron weighting spectrum.
  - 6. IWG Gamma-ray weighting spectrum option (0)
    - N2, Use the 1-D data identified with an MT number of IOPT6 from the IOPT5 master data set on logical unit N2 for the gamma-ray weighting spectrum for all gamma-ray data sets being collapsed.
      - 0, Input gamma-ray weighting spectrum in the 7* array.
      - 1, Use MT=1009 1-D gamma-ray data from each master data set for the gamma-ray weighting spectrum.
- 2\$ Library Logical Unit Numbers [2]
  - 1. NOLD Logical number of device containing fine-group AMPX master library (1)
  - 2. NNEW Logical number of device containing broad-group AMPX master library (22)

^{*}Number of entries in array.

^{**}Default values are given in parentheses.

3\$ Option Triggers [10]

- 1. IOPT1 Auxiliary neutron weighting spectrum trigger (IWN = -N1) (0)
  - 0, No effect
  - ID, Identification number of master data set from which the neutron weighting spectrum (IOPT2 data) will be obtained
- 2. IOPT2 Process identifier (MT number) of neutron weighting spectrum in IOPT1 master data set (used when IWN = N1) (0)
- 3. IOPT3 Trigger to print broad-group 1-D cross section (1)
  - 0, Print the data
  - 1, Do not print
- 4. IOPT4 Trigger to print broad-group transfer matrices (1)
  - 0, Print the data
  - 1, Do not print
- 5. IOPT5 Auxiliary gamma-ray weighting spectrum trigger (used when IWG = N2) (0)
  - 0, No effect
  - ID, Identification number of master data set from which the gamma-ray weighting spectrum (IOPT6 data) will be obtained.
- 6. IOPT6 Process identifier (MT number) of gamma-ray weighting spectrum in IOPT5 master data set (IWN = -N2) (0)
- 7. IOPT7 Trigger to collapse out upscatter terms if nonzero (0). (A discussion of the available options is given in Section M15.8.3.)
  - 0, No upscatter truncation (recommended)
  - 1, XSDRNPM method of upscatter truncation
  - 2, ANISN method of upscatter truncation
  - 3, Simple sum method of upscatter truncation
  - 4, Non-negative ANSIN method of upscatter truncation.
- 8. IOPT8 Trigger to truncate downscatters to a maximum of IOPT8 terms below the within group if IOPT8 is nonzero (0)
- 9. IOPT9 Not used. Enter zero (0)
- 10. IOPT10 Not used.

T Terminate Block 1.

#### Block 2

4\$ Neutron broad-group numbers by fine group* [NNEUT]

- 5* Neutron weighting spectrum [NNEUT] {Enter only if IWN=0}
- 6\$ Gamma-ray broad-group numbers by fine group^{**} [NGAMM]

[&]quot;A zero "suppresses" a fine group.

[&]quot;When collapsing the gamma groups in a coupled master library, the 6\$ entries are the actual group numbers and do not need to include the number of neutron groups.

7* Gamma-ray weighting spectrum [NGAMM] {Enter only if IWG=0}

T Terminate Block 2.

#### M15.8.2 MALOCS Input/Output Specifications

MALOCS generally requires the following input/output assignments:

Logical No.	Purpose
NOLD(1)	Fine-group AMPX master library
5	Card input
6	Standard output
17	Scratch device
18	Scratch device
19	Scratch device
NNEW(22)	Broad-group AMPX master library produced by MALOCS
N1(0)	Logical number of master library containing data that are to be used as a weighting spectra for neutron cross sections
N2(0)	Logical number of master library containing data that are to be used as weighting spectra for gamma-ray cross sections

#### M15.8.3 Upscatter Truncation

If one counts the option of "no upscatter truncation", MALOCS provides five different schemes for dealing with upscatters. We will preface our description of these options with the observation that the only desirable procedure is to *not* collapse out upscattering terms. Collapsing out these terms produces cross sections that work well in only two situations:

- 1. Satisfactory cross sections will be generated when the fluxes that are used to collapse the cross sections are very close to those in which these data will be used. In other words, if your application generates fluxes that are very different from those used to remove the terms, your results will be suspect.
- 2. If your application is not sensitive to what goes on in the thermal energy region, it may not matter what you do in that region. For example, if you are doing shielding calculations, the thermal range is rarely of any importance, such that carrying upscattering terms, along with the extra computational burden, may make it prudent to collapse out these terms.

MALOCS provides 4 options for upscatter truncation. These options are selected by inputing a value of 1 through 4 in IOPT7 in the 3\$ array mentioned above. In describing these options, we will use the

NUREG/CR-0200, Vol. 3, Rev. 6

M15.8.3

convention of talking of a group i which is higher in energy than a group j. We are, therefore, setting the  $\sigma(j \rightarrow i)$  terms to zero.

#### IOPT7=1 XSDRNPM Method

The rationale of this approach is to note that if we set a  $\sigma(j \rightarrow i)$  term to zero, we can account for the loss of the scattering to group i by adjusting the within-group term by an amount  $\sigma(j \rightarrow i) \phi(j) / \phi(i)$ , i.e.;

$$\sigma(\mathbf{i} \rightarrow \mathbf{i}) * = \sigma(\mathbf{i} \rightarrow \mathbf{i}) + \sigma(\mathbf{j} \rightarrow \mathbf{i}) \phi(\mathbf{j}) / \phi(\mathbf{i})$$

This approach has the advantage of never yielding negative values, so long as all the data used are physical. It also introduces few changes to the scattering matrices. A cosmetic drawback to the approach is that it obviously leaves the cross sections for groups i and j out-of-balance.

#### IOPT7=2_ANISN-Method

The rationale of this approach is to note that if we set a  $\sigma(j \rightarrow i)$  term to zero, we can account for the loss of the scattering to group i by reducing the downscattering term  $\sigma(i \rightarrow j)$  term by an amount  $\sigma(j \rightarrow i) \phi(j) / \phi(i)$ , i.e.;

$$\sigma(i \rightarrow j) * = \sigma(i \rightarrow j) - \sigma(j \rightarrow i) \phi(j) / \phi(i)$$

Because we have lost the upscattering from j to i, we must make the same adjustment to the withingroup term to group i as made by the XSDRNPM method. But now we must also adjust the within-group term for group j to account for the reduction in the scattering from group i to group j.

 $\sigma(j \rightarrow j)^* = \sigma(j \rightarrow j) + \sigma(j \rightarrow i)$ 

This approach has the advantage of preserving the cross section balance in both energy groups, but sometimes yields negative downscattering values, which makes the numbers unusable for codes, such as the KENO and MORSE multigroup Monte Carlo codes.

#### **IOPT7=3 Simple Sum Method**

This is the simplest of the options provided. Here one simply increases the within-group term in group j by the upscattering term; i.e., we use the last expression shown in the ANISN Method just discussed. This has the advantage of preserving cross section balances, but it obviously does nothing to adjust the scattering source to group i for its lost contribution. In this case, the flux in group i is reduced, since it sees no source from group j, and, conversely, the flux in group j is increased, because it sees an additional within-group scattering source. This is, of course, somewhat offset, since the source from group i to group j is also reduced, because the flux in group i is reduced, which will reduce the flux in group j.

#### **IOPT7=4 Non-Negative ANISN Method**

This approach is the same as the ANISN approach, except in the case where a downscattering term goes negative. In this case, the downscattering term is set to zero, and the within-group term in group j is set to

$$\sigma(j \rightarrow j)^* = \sigma(j \rightarrow j) + \sigma(i \rightarrow j) \phi(i) / \phi(j).$$

This operation obviously does not preserve balance in either group, but it does attempt to adjust the scattering source to group j to account for the new zero term, and it will let Monte Carlo procedures use the data. This argument, along with noting that negative terms are only infrequently encountered in the ANISN scheme, can be used to justify its use.

#### **Re-iteration of Caveat**

As stated above, the whole area of truncating upscatters is questionable and should be used as a last resort, to avoid the calculational penalty associated with treating upscatters, or when the thermal region does not contribute to the results of your analysis.

## M15.9 PERFUME-MODULE TO CORRECT LEGENDRE POLYNOMIAL FITS TO SCATTERING MATRICES

PERFUME (<u>PERmute FaUlty Moment Expansions</u>) is a module that examines scattering matrices to locate those matrices that yield nonphysical fits and adjusts them to produce acceptable distributions. The procedure involves an examination of the moments of the cross section, as described in Appendix F9.D.2 of the SCALE documentation. With these prescriptions, a range of possible coefficients is determined, after which PERFUME arbitrarily picks the value at the midpoint of the range.

#### M15.9.1 PERFUME Input Data

- -1\$ Core Assignment [1]
  - 1. NWORD Number of words to allocate to PERFUME (100000)

#### 0\$ Logical Assignments [3]

- 1. NTP Input master library (23)
- 2. NOP Output master library (1)
- 3. NER Error message output file (6)
  - Assign this to a unit other than 6 to suppress the voluminous error message listing that may be produced by some libraries, if you do not wish to view this information.

#### 1\$ Output Suppression Factor [1]

1. EPS – Information concerning bad moments is edited when the zeroeth moment of the transfer term (i.e.,  $\sigma_0$ ) satisfies the following expression (default = 0.0001):

$$\sigma_0 > \epsilon * N^3$$

where N is the order of Legendre fit to the cross section. [Warning: For a library with a large number of energy groups and nuclides, the amount of output can be substantial.]

T Terminate Block 1.

#### M15.9.2 PERFUME I/O Specification

PERFUME uses the following I/O assignments:

Logical No.	Purpose
5	Card input
6	Printed output
NTP(23)	Input master library
NOT(1)	Output master library

M15.9.1

## M15.10 RADE-MODULE TO CHECK AMPX MASTER CROSS-SECTION LIBRARIES

RADE (<u>Rancid AMPX Data Exposer</u>) is provided to check AMPX- and ANISN-formatted multigroup libraries. It will check neutron, gamma, or coupled neutron-gamma libraries.

Some of the more important checks are made to ensure that:

1.  $\sigma_t = \sigma_a + \sigma_s$ 

2. 
$$\sigma_{in} = \Sigma \sigma_{in}^{partial}$$

- 3.  $\sigma_a = \sigma_c + \sigma_f$
- 4.  $\sigma_{c} = \sigma_{n\gamma} + \sigma_{n\alpha} + \sigma_{np} + \sigma_{nd} + \dots$
- 5.  $\sigma_{el}^{g} = \sum_{\sigma} \sigma_{el,0}(g \rightarrow g')$  (also made on any process with a scattering matrix)
- 6.  $\sigma_{0(g-g')} > 0$
- 7.  $\sigma_t, \sigma_a, \sigma_f, \sigma_{n\gamma}, \sigma_{np}, ... > 0$
- 8.  $f_{\ell}^{\min} \leq f_{\ell}(g \rightarrow g^{*}) \leq 1.0$

where 
$$f_{\ell}(g \rightarrow g') = \frac{\sigma_{\ell}(g \rightarrow g')}{(2\ell + 1)\sigma_0(g \rightarrow g')}$$

and  $f_{\ell}^{\min} = -1.0$  for all odd  $\ell$ , and is given in the following table for even f:

l	$f_{\varrho}^{\min}$
2	-0.5
4	-
6	-0.419
8	-0.414

In addition to these checks, the code will compute an estimate of the capture-binding energy for each neutron group in a coupled neutron-gamma set. On option, one can request a display of differential cross sections.

#### M15.10.1 RADE Input Data

#### Block 1

-1\$ Core Assignment [1]

1. NWORD - number of words to allocate RADE (100000)

NUREG/CR-0200, Vol. 3, Rev. 6

M15.10.1

- 1\$ Checking Commands [4]
  - 1. MMT Check the AMPX Master Interface on logical MMT. This can be a neutron, gamma, or a coupled neutron-gamma library.
  - 2. MWT Check the AMPX Working Interface on logical MWT.
  - 3. MAN Check the ANISN binary-formatted library on logical MAN.
  - 4. IFM –1, ANISN library is binary formatted.
    - 0, ANISN library is BCD free form.
    - 1, ANISN library is BCD fixed form.
- 2\$ Options [20]
  - IOPT1 Number of angles at which a display of differential cross sections is desired. These angles will be equally spaced in the cosine range, -1 to +1. These edits are for the groupintegrated cross sections and not for each group-to-group transfer.
  - 2. IOPT2 The  $\epsilon$ , in thousandths of a percent, to which checks are made (e.g., IPT2 = 1) is equivalent to 0.001% checking. This is the default value when IOPT2 is not input or when a zero value is input.
  - 3. IOPT3

Future checking options; skip or input zeros

- 20. IOPT20
- 3\$ ANISN Options [7] {MAN  $\neq$  0}
  - 1. NSET Number of ANISN sets to check
  - 2. IHT Position of  $\sigma_t$
  - 3. IHS Position of  $\sigma_{gg}$
  - 4. ITL Table length
  - 5. NL Maximum order of scattering
  - 6. IGM Number of neutron groups
  - 7. IPM Number of photon groups
- T Terminate Block 1.
- **Block 2** {Input only when MAN > 0}
- 4\$ Identification Numbers of P₀ Sets on ANISN Binary Library on Logical MAN [NSET]
- 5\$ Order of Scattering of Sets of ANISN Data on Logical MAN [NSET]
- 7* Neutron Group Structure, high-to-low in eV [IGM + 1]
- 8* Gamma Group Structure, high-to-low in eV [IPM + 1]

NUREG/CR-0200, Vol. 3, Rev. 6

M15.10.2

# T Terminate Block 2.

# M15.10.2 RADE I/O Specifications

RADE requires the following I/O assignments:

Logical unit	Purpose
5	Card input
6	Printed output
18	Scratch device
19	Scratch device
MMT	Master library
MWT	Working library
MAN	ANISN library

## M15.11 WAX – MODULE TO MERGE, COLLECT, ASSEMBLE, RE-ORDER, JOIN, COPY SELECTED NUCLIDES FROM AMPX WORKING INTERFACES

WAX (Working Libraries AJAX) is a module to combine data on AMPX working libraries. Options are provided to allow merging from any number of files in a manner which allows the user to determine the final nuclide ordering, if desired.

#### M15.11.1 WAX Input Data

#### Block 1

- -1\$ Core assignment [1]
  1. NWORD Number of words to allocate to WAX (100000)
- 0\$ Logical assignments [2]
  - 1. MWT Logical number of new library (default = 1)
  - 2. NWAX Not used
- Number of files [1]
   NFILE Number of files from which data will be selected from

T Terminate Block 1.

Blocks 2 and 3 are stacked, one after the other, NFILE times.

## Block 2

- 2\$ File and option selection [2]
  - 1. NF Logical number of file considered
  - 2.  $IOPT^* = -N$  Delete N nuclides from NF to create the new file on MWT
    - = 0 Add all nuclides to the new file on MWT
    - = N Add N nuclides from NF to create the new file on MWT

T Terminate Block 2.

**Block 3** (Enter only when IOPT  $\neq 0$ )

3\$ Nuclides selected [IIOPTI]

Identifiers of nuclides which are to be added or deleted from NF

^{*}Sets with duplicate identifiers will not be entered on MWT. The first occurrence of an identifier selects that set for the new library.
# 4\$ New identifiers [IIOPTI]

This array allows changing the identifier given in the 3\$ array when it is selected for the new library.

# T Terminate Block 3.

# M15.11.2 WAX I/O Specifications

The following devices are normally needed to execute WAX.

Logical unit	Purpose
5	Card input
6	Standard output
15	Scratch device
16	Scratch device
18	Scratch device
19	Scratch device
MWT(1)	Working file to be created
NF	File(s) to be merged onto MWT

## M15.12 REFERENCE

1. W. W. Engle, Jr., A User's Manual for ANISN, USAEC Report K-1693, Union Carbide Corp., Nucl. Div., Oak Ridge Gaseous Diffusion Plant, March 1967.

NUREG/CR-0200, Vol. 3, Rev. 6

M15.12.1

Computational Physics and Engineering Division

### **COMMENT DATA GUIDE**

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

## ABSTRACT

The COMMENT program is a utility program that selectively tailors FORTRAN source code for different machines and operating systems.

# CONTENTS

BSTRACT	. M16.iii
116.1 INTRODUCTION	M16.1.1
16.2 DESCRIPTION AND INPUT GUIDE	M16.2.1

NUREG/CR-0200, Vol. 3, Rev. 6

Page

## LIST OF TABLES

<u>Table</u>		<u>Page</u>
M16.1.	COMMENT language flags	M16.2.1

NUREG/CR-0200, Vol. 3, Rev. 6

M16.vi

The COMMENT program is used to selectively tailor FORTRAN source code for different machines and operating systems.

NUREG/CR-0200, Vol. 3, Rev. 6

M16.1.1

## M16.2 DESCRIPTION AND INPUT GUIDE

The COMMENT program is a utility program that selectively comments and uncomments lines of FORTRAN source code to provide a source code tailored to different machines and operating systems.

		Tabl	e M16.1.	COMME	NT langua	ge flags		
				Convers	sion type			
Comment	IBM	VAX	MFE	LANL	UNIX	UNICOS	ULTRIX	AIX
CSHR	X	х			X		X	x
CLNG			Х	Х		х		
CIBM	Х							
CUNI					Х	Х	Х	Х
CULT							Х	
CUCS						х		
CAIX								Х
CLANL				Х				
CMFE			Х					
CRAY			Х	Х		Х		
CVAX		х						
CQOT	Protect	s the case	of quote	d strings b	etween pai	rs of CQOT I	ines.	

A list of comments and conversion types is given in Table M16.1.

The input/output (I/O) files utilized by COMMENT are listed below:

<u>I/O File</u>	Function
sysprint	Dataset containing error messages
sysin	Dataset specifying conversion type, (type)
input	Dataset to be converted
output	Converted dataset

type is the desired conversion type, chosen from the following list:

<u>_type</u>	Result
IBM	- Produces upper-case source tailored for MVS systems
VAX	- Produces upper-case source tailored for VAX
MFE	- Produces lower-case source tailored for CTSS on LLNL Cray
LANL	- Produces lower-case source tailored for CTSS on LANL Cray
UNIX	- Produces lower-case source tailored for UNIX
UNICOS	- Produces lower-case source tailored for UNICOS
ULTRIX	- Produces lower-case source tailored for ULTRIX
AIX	- Produces lower-case source tailored for AIX

To utilize COMMENT, compile and load the program into an executable and assign the I/O files as appropriate for the operating system.

COMMENT is called automatically when SCALE is made on a Unix workstation. The language flags must be set in the make configuration file. See the Unix README file distributed with SCALE for details.

NUREG/CR-0200, Vol. 3, Rev. 6

M16.2.2

NUREG/CR-0200 Revision 6 Volume 3, Section M17 ORNL/NUREG/CSD-2/R6

Computational Physics and Engineering Division

### MISCELLANEOUS SCALE UTILITY MODULES

L. M. Petrie

Date Published: March 2000

Prepared for the Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555 Under Interagency Agreement DOE 1886-C000-9B NRC JCN No. B0009

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464

## ABSTRACT

This section documents several utility codes for performing different functions within SCALE. GENWGTS and GWAS were developed to generate KENO weights libraries. KMART is a postprocessor for KENOV.a that generates nuclide activity tables and collapses fluxes. Two utility programs, K5TOK6 and C5TOC6, are available for use in converting KENO V.a and CSAS input files to KENO-VI and CSAS6 format, respectively. The Q0RDPN program is a utility program used to convert FIDO-type binary input files to ASCII format. AWL, MAL, and WGT convert AMPX working format libraries, KENO albedo libraries, and KENO weights libraries, respectively, between ASCII and binary formats.

NUREG/CR-0200, Vol. 3, Rev. 6

M17.iii

## CONTENTS

	<u>Page</u>
ABSTRACT	M17.iii
LIST OF FIGURES	M17.vii
LIST OF TABLES	/17.viii
M17.1 GENWGTS N	A17.1.1
M17.1.1 INTRODUCTION M	<b>A</b> 17.1.1
M17.1.2 DESCRIPTION AND INPUT GUIDE N	<b>A17.1.1</b>
M17.2 GWAS N	<b>A17.2.</b> 1
M17.2.1 INTRODUCTION M	<b>A17.2.1</b>
M17.2.2 DESCRIPTION AND INPUT GUIDE M	<b>M17.2.1</b>
M17.2.3 SAMPLE CASE N	<b>M</b> 17.2.3
M17.3 KMART - KENO V.a POSTPROCESSOR N	<b>A</b> 17.3.1
M17.3.1 INTRODUCTION N	<b>M</b> 17.3.1
M17.3.2 KMART INPUT DATA N	A17.3.1
M17.3.3 KMART I/O SPECIFICATIONS N	417.3.2
M17.4 K5TOK6 AND C5TOC6: INPUT FILE CONVERSION	
PROGRAMS FOR KENO AND CSAS N	<b>v</b> 117.4.1
M17.4.1 INTRODUCTION N	<b>v117.4.1</b>
M17.4.2 DESCRIPTION AND INPUT GUIDE N	<b>M17.4.1</b>
M17.5 QORDPN: AN INPUT FILE CONVERSION PROGRAM N	<b>v</b> 117.5.1
M17.5.1 INTRODUCTION M	M17.5.1
M17.5.2 DESCRIPTION AND INPUT GUIDE N	<b>v</b> 117.5.1
M17.6 AWL	M17.6.1
M17.6.1 AWL INPUT GUIDE M	M17.6.1
M17.6.2 AWL INPUT N	M17.6.1
M17.7 MAL N	M17.7.1
M17.7.1 MAL INPUT GUIDE N	M17.7.1
M17.7.2 MAL INPUT N	M17.7.1
M17.8 WGT M	M17.8.1
M17.8.1 WGT INPUT GUIDE M	M17.8.1
M17.8.2 MAL INPUT M	M17.8.1

## LIST OF FIGURES

<u>Figure</u>		Page
M17.2.1	Sample case	M17.5.3
M17.2.2	Converted ASCII input file for XSDRNPM	M17.5.4
M17.2.3	Sample input file for modified CSAS1X sequence	M17.5.5

# LIST OF TABLES

1.____1

<u>Table</u>		<u>Page</u>
M17.2.1	Q0RDPN module table	M17.5.1

NUREG/CR-0200, Vol. 3, Rev. 6

ί,

### M17.1 GENWGTS

### M17.1.1 INTRODUCTION

GENWGTS is a program to read the balance tables from an XSDRNPM adjoint calculation, and convert the fluxes to weights for use in a KENO reflector. It produces a weighting library by writing the weights in a format suitable for use with the WGT code.

### **M17.1.2 DESCRIPTION AND INPUT GUIDE**

GENWGTS is a functional module written to convert adjoint XSDRNPM fluxes from the balance table into weights for use by KENO. It was written to primarily function as a module under the GWAS control module, but is capable of being run standalone. Because it was primarily designed to perform a single function in a control sequence, it has some limiting assumptions built in. The first two zones must be fuel zones, the second zone is a constant width. The input to GENWGTS consists of a record with three numbers to be read as list directed input. The input/output (I/O) units utilized by GENWGTS are given in the table below.

<u>I/O File Number</u>	<u>Filename</u>	<b>Function</b>
6	_prt <i>nnnn</i> ª	Messages
5	ingenwgt	Program Input
7	_pun <i>nnnn</i> ª	Weights Output
NB	ft <i>nb</i> f001 ^b	Balance Table Unit Number

^a"*nnnn*" is numbered sequentially beginning with 0000. ^b"*nb*" is a two-digit representation of NB.

The input consists of the following three items.

NB NUMINC THICK Unit number from which the balance tables are read Number of intervals for weights Thickness of an interval

### M17.2 GWAS

#### M17.2.1 INTRODUCTION

GWAS is a program that creates a set of weights for a reflector for use by the KENO series of codes. It uses input similar to other SCALE control modules, and generates weights for a series of user specified cross section libraries. GWAS generates the weights by running an adjoint XSDRNPM case, and then using the adjoint fluxes to produce the weights.

#### M17.2.2 DESCRIPTION AND INPUT GUIDE

GWAS is a utility control program for generating sets of reflector weights for the KENO series of codes. It runs an adjoint XSDRNPM, and uses adjoint fluxes to generate the weights. It produces weights for a user specified series of cross section libraries. The input to GWAS starts with a title record, which is followed by a record of data defining the geometry to be used for generating the weights. This data is then followed by the mixture definitions, input in standard SCALE materials input format. This data is followed by a series of double records. The first record of each series is used to define whether or not this is the last pair in the series, the second record contains the cross section library name for which a set of weights is to be generated. The input/output (I/O) files utilized by GWAS are given below.

<u>I/O File Number</u>	<u>Filename</u>	Function
6	_prt <i>nnnn</i> ª	Messages
94	input	Program Control Input
5	infile	Scratch File where input sequences are constructed
92	savefile	Scratch File where data is saved between passes
95	ingenwgt	Input File for GENWGTS
96	ft96f0001	Input File for BONAMI
97	ft97f001	Input File for NITAWL
98	ft98f001	Input File for XSDRNPM
7	_pun <i>nnnn^a</i>	Output File containing the new Weights
11	ft11f001	File containing the Short Cross Section Library
8	ft08f001	Scratch random access unit
16	ft16f001	Scratch Unit
17	ft17f001	Scratch Unit used in Collapsing the Cross Sections
18	ft18f001	Scratch Unit
19	ft19f001	Scratch Unit used in Collapsing the Cross Sections
89	ft89f001	Standard Composition Library

^a"*nnnn*" is numbered sequentially beginning with 0000.

The input to GWAS consists of two types of data blocks. The first data block is read only once, and defines everything about the problem except the cross section library. The second data block is repeated as often as the user needs, and defines the cross section library to be used for a particular set of weights. The data for the first data block is given below.

~~ •

IIILE	an 80 character title to identify the problem output
CALTYPE	up to 12 characters identifying the type of geometry to be used in doing the adjoint calculation. This is read in freeform, and must be enclosed in single quotes.
IDWGT	the identification number to be assigned to the weights. This is the number used by KENO to select a set of weights. This number is an integer read in free form.
THICK	the interval thickness of reflector material for a set of weights. One weight for each group will be generated for an interval.
NUMINC	number of intervals for which a set of weights will be generated. The total reflector thickness will be NUMINC*THICK. One extra interval will be added to the outside of the reflector to reduce effect of leakage on the weights.
HALFFUEL	the radius or half thickness of the fuel zone that will be used as a source for generating the weights. XSDRNPM will use this as a first guess, and search for a radius or half thickness that yields a user specified $k_{eff}$ (the default is 1.0).
WTTITL	up to 12 characters used as identification for the weights.

Standard Composition Data - data defining the mixtures in the problem in standard SCALE material information format, ending with the keywords END COMP. Mixture 1 will be used for the fuel, and mixture 2 will be used as the reflector material. This completes data block 1, which is then terminated with a record containing the keyword END.

The second data block has a record flagging whether or not there will be more data blocks after this one. If more data blocks will follow, then the record should be blank. If it is the last data block, then the first 8 characters of the record must contain the keyword LAST. The next record then contains the cross section library name to be used to generate the next set of weights.

## M17.2.3 SAMPLE CASE

```
#shell
 ln -fs $DATA/scale.rev04.xn218 ft70f001
 end
 #gwas
generate weights for a concrete slab
'slab' 301 5. 20 0.25 'concrete'
 uranium 1 1 300 92235 100 end
 mgconcrete 2 end
 end comp
 end
 hansen-roach
 end
 27group
 end
 44group
 end
 last
 218group
 end
 #clec_out
 end
 #gwas
 generate weights for a graphite slab
'slab' 6100 20. 10 0.001 'graphite'
 uranium 1 1 300 92235 100 end
 c-12 2 den=2.2 end
end comp
 end
 hansen-roach
 end
 27group
 end
 44group
 end
 218group
 end
 last
```

238group end

## M17.3 KMART - KENO V.a POSTPROCESSOR

### M17.3.1 INTRODUCTION

KMART (Keno Module for Activity-Reaction Rate Tabulation) is a new module whose primary purpose is to postprocess a KENO V.a restart file with the corresponding working cross section library to generate nuclide activity tables. It also allows collapsing and printing fluxes calculated by KENO V.a. The KENO V.a problem must have a mixing table, must calculate the fluxes, and must write a restart file containing the calculated data.

### M17.3.2 KMART INPUT DATA

Input data for KMART is read into the program using free form blocked input similar to KENO V.a. The data blocks are started with a READ *BLOCK NAME* and ended with an END *BLOCK NAME*. There are three data blocks that KMART can read. The first data block is named INITIAL, and the input starts with the keywords READ INITIAL. There are three possible keyworded entries in this block that may be entered in any order.

<u>Keyword</u>	<u>Variable</u>	Description
PRTVOLS	PRINT_VOLUMES	a flag to cause the volumes calculated by KENO V.a to be printed by KMART.
KUNIT= XUNIT=	KUNIT XUNIT	The logical unit number of the KENO V.a restart file. The logical unit number of the cross section library.

A sample data block is given below.

READ INITIAL KUNIT=35 XUNIT=4 END INITIAL

One of the next two blocks is required, but it could be either one, or both can be specified if desired. If both are entered, they can be either one first. The next data block specified is named ACTIVITY, and the input starts with the keywords READ ACTIVITY. It contains the data specifying which activities are to be calculated. The activities are specified by pairs of numbers giving the nuclide identifier and the reaction type identifier desired. A list of reaction types, also known as MT numbers, can be found in Sect. F3.B. These pairs are repeated until all the desired activities have been specified. If the nuclides are identified by the SCALE scheme, then the nuclide can be specified most explicitly by using the mixture prefix defined by CSAS, or, by omitting the mixture prefix, the activity will be calculated for each region in which the nuclide occurs. If the nuclide specifies a natural element identifier (1000*Z) and individual isotopes occur on the cross section library, the isotope activities will be summed to produce the total activity for the element. The data pair is described below.

<u>Variable</u>	Description
NUCLIDE	The nuclide identification number on the cross section library for this activity request.
REACTION	The reaction type identifier for this activity request.

If no activities are desired, then the block can be omitted. A sample block is given below.

READ ACTIVITY 92235 18 92235 27 92235 1452 END ACTIVITY

The other input block is named COLLAPSE, and starts with the keywords READ COLLAPSE. There are two keyworded entries that may be input in this block. A flux factor to normalize the fluxes by can be specified. It defaults to 1. The last fine group in the current broad group is the other entry. The broad groups are specified sequentially starting with group one. If the flux factor is specified more than once, the last value given is used. The data is specified as below.

<u>Keyword</u>	<u>Variable</u>	Description
FACTOR	FACTOR	A flux multiplier used to scale the fluxes before printing (default 1.0)
LASTG=	LAST_GROUP	The last fine group to be included in the current broad group. The broad groups are input sequentially starting with group one.

If no collapsed fluxes are desired, then the block can be omitted. A sample block is given below.

READ COLLAPSE FACTOR 1.0 LASTG=10 LASTG=20 LASTG=30 LASTG=44 END COLLAPSE

### **M17.3.3 KMART I/O SPECIFICATIONS**

KMART requires the following I/O devices.

Logical Unit Purpose

5Standard definition input6OutputKUNITKENO V.a restart fileXUNITAMPX working cross section library16scratch file

NUREG/CR-0200, Vol. 3, Rev. 6

M17.3.2

The following is a sample input data stream for KMART:

#kmart read initial kunit=64 xunit=4 prtvols end initial read activity 1001 27 6012 27 8016 27 92235 18 92235 27 92235 1452 92238 18 92238 27 92238 1452 94238 18 94238 27 94238 1452 94239 18 94239 27 94239 1452 94240 18 94240 27 94240 1452 94241 18 94241 27 94241 1452 94242 18 94242 27 94242 1452 92000 18 92000 27 92000 1452 94000 18 94000 27 94000 1452 end activity read collapse lastg=10 lastg=20 lastg=30 lastg=44 end collapse end

## M17.4 K5TOK6 AND C5TOC6: INPUT FILE CONVERSION PROGRAMS FOR KENO AND CSAS

#### M17.4.1 INTRODUCTION

Program K5TOK6 can be used to automatically convert a KENO V.a input file to a KENO-VI input file. Program C5TOC6 can be used to automatically convert a CSAS input file to a CSAS6 input file. This functionality can be useful when converting a KENO V.a validation sequence to a KENO-VI validation sequence. It removes the problem of introducing a mistake or inadvertently changing the data when remodeling a geometry to the KENO-VI format. For some cases, however, the converted model may be a very inefficient KENO-VI model.

#### M17.4.2 DESCRIPTION AND INPUT GUIDE

Program K5TOK6 is a utility program that can be used to automatically convert a KENO V.a input file to a KENO-VI input file. Program C5TOC6 is a utility program that can be used to automatically convert a CSAS input file to a CSAS6 input file. For program K5TOK6, the "=KENOVA" record in the input stream is replaced by "=K5TOK6". The output file is then named _geomnnn where nnn is a unique 3-digit number. This allows a string of KENO V.a problems to be converted in one job. For program C5TOC6 the "=CSASBB" record in the input stream (where the BB is 25 or 2x) is replaced by "=C5TOC6 PARM=CSASBB", where PARM begins in column 11 or later, with optionally a SIZE field. The output file is named geomnn where nnn is a unique 3-digit number.

For large problems, the output file may need to be edited to specify an increased value for parameter NB8 in KENO-VI and also an increased value for parameter DAB in CSAS6. The conversion makes no attempt to optimize the output file, so it almost surely will be inefficient in its use of storage, and in its use of bodies. This can lead to models that are very inefficient in their running time also.

The input/output (I/O) files for K6TOK6 and C5TOC6 are given below. Note that K5TOK6 requires the cross-section library designated by the "LIB=" parameter in the KENO V.a input file.

### I/O File Function

5 KENO V.a (or CSAS) input	t file
----------------------------	--------

- 6 Output
- 7 Input file generated for KENO-VI (or CSAS6)

#### Sample K5TOK6 Problem

#k5tok6 93.2% uo2f2 h/u-235=337 read param npg=600 fdn=yes nub=yes lib=4 end param read geom cuboid 1 1 2p3.81 2p60.325 25.50 0 reflector 2 1 4r.318 0 .318 1 cuboid 0 1 2p4.128 2p65. 150. -1. core 0 1 -12.384 -65. -29. cylinder 0 1 142.8 212. -60. cylinder 3 1 144.8 212. -62.

cuboid 0 1 275.5 -638.9 475. -744.2 588. -62. reflector 4 1 5r0 .32 1 reflector 5 1 5r0 1.27 1 reflector 3 1 5r0 .64 1 reflector 0 1 5r0 365 1 reflector 6 2 6r5 6 reflector 6 8 0 5 4r0 6 end geom read bias id=301 2 13 end bias read array nux=3 nuy=1 nuz=1 end array end data end #shell cp _geom000 \$RTNDIR/k6.inp end

# Sample Converted KENO-VI Input File

.I.____II._

#kenovi	
93.2% uo2:	f2 h/u-235=337
read para	n npg=600 fdn=yes nub=yes lib=41 end param
read geome	etry
cuboid	
Capora	381000000-381000000000000000000000000000
	-6.032500E+01 2 550000E+01 0 00000E+01
media	
cuboid	2
	4.128000E+00 -4.128000E+00 6.064300E+01
	-6.064300E+01 2.550000E+01 -3.180000E-01
media	2 1 2 -1
cuboid	3
	4.128000E+00 -4.128000E+00 6.500000E+01
	-6.500000E+01 1.500000E+02 -1.000000E+00
media	0 1 3 -2 -1
alobal	3
unit	2
cuboid	1
042014	1,238399E+01 -1 238399E+01 -6 A00003E+01
	-6.499993E+01 1.219999E+02 -2 899997E+01
array	1 1
-	place 1 1 1 -8.256000E+00 0.000000E+00 -2.800000E+01
cylinder	2
	1.428000E+02 2.120000E+02 -6.000000E+01
	origin x= 0.000000E+00 y= 0.000000E+00
media	0 1 2 -1
cylinder	
	1.448000E+02 2.120000E+02 -6.200000E+01
modia	rigin x = 0.000000E+00 y = 0.000000E+00
cubaid	
CUDOIQ	$\frac{3}{2}$ 2 755000F+02 -6 389000F+02 4 750000F102
	-7.442000E+02 5.880000E+02 -6.200000E+02
media	0  1  4  -3  -2  -1
cuboid	5
	2.755000E+02 -6.389000E+02 4.750000E+02
	-7.442000E+02 5.880000E+02 -6.232000E+01
media	4 1 5 -4 -3 -2 -1
cuboid	6
	2.755000E+02 -6.389000E+02 4.750000E+02
	-/.442000E+02 5.880000E+02 -6.359000E+01

media cuboid	5 7	1	6	-5	-4	-3	-2	-1					
media	3	2.755000 -7.442000 1	DE+02 DE+02 7	-6. 5. -6	.3890 .8800 -5	000E+ 000E+ -4	+02 +02 -3	4.750000 -6.423000 -2 -1	)E+02 )E+01				
cuboid	8	2.75500	DE+02 DE+02	-6. 5.	. 3890 . 8800	000E+	+02 +02	4.750000 -4.292300	)E+02 )E+02				
media cuboid	0 9	1 2.80500(	8 DE+02	-7 -6.	-6 .439(	-5 000E4	-4 +02	-3 -2 4.800000	-1 )E+02				
media cuboid	6 10	-7.492000 2	0E+02 9	5. -8	. 9300 -7	000E4 -6	-02 -5	-4.342300 -4 -3	)E+02 -2 -1				
media	6	2.855000 -7.542000 3	DE+02 DE+02 10	-6. 5. -9	.4890 .9800 -8	000E+ 000E+ -7	+02 +02 6	4.850000 -4.392300 -5 -4	)E+02 )E+02 -3 -2	-1			
cuboid	11	2.905000	DE+02 DE+02	-6. 6.	. 5390 . 0300	)00E+	-02 -02	4.900000	)E+02				
media cuboid	6 12	4	11 -	10 -6	-9	-8	-7	-6 -5	-4 -3	-2	-1		
media cuboid	6 13	-7.642000	DE+02 12 -	6. 11 -	.0800 -10	-9	-02 -8	-4.492300 -7 -6	)E+02 -5 -4	-3	-2	-1	
media	6	3.005000 -7.692000 6	DE+02 DE+02 13 -	-6. 6. 12 -	.6390 .1300 -11 -	)00E+ )00E+ -10	+02 +02 -9	5.000000 -4.542300 -8 -7	)E+02 )E+02 -6 -5	-4	-3	-2	-1
cuboid	14												
media	6	3.055000 -7.742000 7	DE+02 DE+02 14 -	-6. 6. 13 -	.6890 .1800 -12 -	)00E+ )00E+ -11 -	-02 -02 -10	5.050000 -4.592300 -9 -8	)E+02 )E+02 -7 -6	-5	-4	-3	-2
cuboid	15	2 05500	-1	~	7200	005		5 05000					
media	6	-7.742000	DE+02 DE+02 15 -	-6. 6. 14 -	. 1390 . 1800 -13 -	00E4 00E4 -12 -	-02 -11	-4.592300 -10 -9	)E+02 )E+02 -8 -7	-6	-5	-4	-3
cuboid	16	3.055000	- DE+02	-6.	. 7890	)00E+	+02	5.050000	)E+02				
media	6	-7.742000 9	DE+02 16 - -3	6. 15 - -2	.1800 -14 - -1	000E+ -13 -	-02 -12	-4.592300 -11 -10	)E+02 -9 -8	-7	-6	<del>-</del> 5	-4
cuboid	17	3.05500	DE+02	-6.	. 839(	000E+	-02	5.050000	)E+02				
media	6	-7.742000	DE+02 17 - -4	6. 16 - -3	.1800 -15 - -2	)00E+ -14 - -1	-02 -13	-4.592300	)E+02 -10 -9	-8	-7	-6	-5
cuboid	18	3.05500	DE+02	-6.	. 8890	)00E+	-02	5.050000	)E+02				
media	6	-7.742000	18 - -5	6. 17 - -4	-16 - -3	-15 - -2	-02 -14 -1	-4.592300	)E+02 -11 -10	-9	-8	-7	-6
cuboid	19	3.05500	DE+02	-6.	. 9390	- 000E+	-02	5.050000	)E+02				
media	6	-7.742000 12	DE+02 19 - -6	6. 18 - -5	.1800 -17 - -4	)00E+ -16 - -3	+02 -15 -2	-4.592300 -14 -13 - -1	)E+02 -12 -11	~10	-9	-8	-7
cuboid	20	3.05500	DE+02 DE+02	-6. 6.	.9890 .1800	)00E+	+02 +02	5.050000 -4.592300	)E+02 )E+02				

media 6 13 20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 boundary 20 end geometry read bias id=301 2 13 end bias

```
read array nux=3 nuy=1 nuz=1 end array
end data
```

### Sample C5TOC6 Problem

parm='csas25,size=500000' #c5toc6 tmi 1500 ppm boron 27groupndf4 latticecell uo2 1 .925 583 92235 1.98 92238 98.02 end 583 92235 2.64 92238 97.36 end uo2 2.925 3.925 uo2 583 92235 2,96 92238 97.04 end zircalloy 4 1.0 583 end 10.17 5 0 0 1 arbmcrod 47107 41.088 47109 38.912 49113 0.632 49115 14.368 48000 5.0 5 1.0 583 end ss304 6 1.0 583 end 3.70 2 0 1 0 13027 2 8016 3 arbmpois1 7 0.97952 583 end 7 2.048-2 583 end b4c arbmpois2 3.70 2 0 1 0 13027 2 8016 3 8 0.98150 583 end b4c 8 1.85-2 583 end arbmpois3 3.70 2 0 1 0 13027 2 8016 3 9 0.98444 583 end b4c 9 1.556-2 583 end arbmbacid 8.5788-3 3 1 1 0 5000 1 1001 3 8016 3 10 .7707 583 5010 18.32 5011 81.68 end h2o 10 .7707 583 end end comp squarepitch 1.44272 .9398 3 10 1.0922 4 .97536 0 end more data .4699 res=1 cylinder dan(1)=0.2858256 .4699 res=2 cylinder dan(2)=0.2858256 res=5 cylinder .5588 end more tmi critical core 1500wppm-11/83 (fn=critical)--ti-2 583 deg kelvin homog. read param plt=yes gen=203 npg=500 tme=120 end param read geom unit 20 com='layer 2 oriface rod unit' cylinder 6 1 .60906 210.34 -210.34 cuboid 10 1 4p0.72136 210.34 -210.34 unit 21 com='layer 2 2.96% enr. fuel rod' cylinder 3 1 .4699 2p182.88 cylinder 0 1 .48768 2p182.88 cylinder 0 1 .48768 199.84 -206.24 cylinder 4 1 .5461 199.84 -206.24 cylinder 6 1 .5461 210.34 -210.34 cuboid 10 1 4p0.72136 210.34 -210.34 unit 22 com='layer 2 2.64% enr. fuel rod' cylinder 2 1 .4699 2p182.88 0 1 .48768 2p182.88 cylinder 0 1 .48768 cylinder 199.84 -206.24 cylinder 4 1 .5461 199.84 -206.24

NUREG/CR-0200, Vol. 3, Rev. 6

```
cylinder
            6 1 .5461
                         210.34 -210.34
cuboid
            10 1 4p0.72136 210.34 -210.34
unit 23
com='layer 2 1.98% enr. fuel rod'
cylinder
             1 1 .4699
                         2p182.88
cylinder
             0 1 .48768
                         2p182.88
cylinder
             0 1 .48768
                         199.84 -206.24
cylinder
            4 1 .5461
6 1 .5461
                          199.84 -206.24
cylinder
                           210.34 -210.34
            10 1 4p0.72136 210.34 -210.34
cuboid
unit 25
            5 1 .5588
cylinder
                          2p45.72
            6 1 .6121
cylinder
                           210.34 -49.82
cylinder
            0 1 .6121
                           210.34 -210.34
           10 1 4p.72136 2p210.34
cuboid
unit 26
com='layer 2 1.395% lumped burnable poison rod (lbp1)'
                         2p160.02
cvlinder
            7 1 .5461
           0 1 .5461 260.487
4 1 .635 260.58
10 1 4p0.72136 260.58
cylinder
                           260.4875 -160.02
cylinder
                           260.58 -160.10
                                  -160.10
cuboid
unit 27
com='layer 2 1.260% lumped burnable poison rod (lbp2)'
            8 1 .5461
cylinder
                         2p160.02
            0 1 .5461
4 1 .635
cylinder
                           260.4875 -160.02
cylinder
                           260.58
                                   -160.10
           10 1 4p0.72136 260.58
cuboid
                                    -160.10
unit 28
com='layer 2 1.060% lumped burnable poison rod (lbp3)'
            9 1 .5461
cylinder
                         2p160.02
            0 1 .5461
4 1 .635
                           260.4875 -160.02
cylinder
cylinder
                           260.58
                                   -160.10
            10 1 4p0.72136 260.58
cuboid
                                  -160.10
unit 29
com='layer 2 central water unit in each assembly (instrumentation)'
cuboid
           10 1 4p0.72136 260.58 -160.10
* . . . . . . . . . . . . . . .
             com='z-layer 2--intact pins--no_rubble'
unit 231
com='layer 2 2.96% enr. fuel and orfice rod assembly'
            20 -10.824 -10.824 -210.34
array
cuboid
            10 1 4p10.90549
                                   2p210.34
unit 232
com='layer 2 2.96% enr. fuel and control rod assembly--out'
array
            21 -10.824 -10.824 -210.34
            10 1 4p10.90549
cuboid
                                  2p210.34
unit 233
com='layer 2 2.64% enr. fuel and 1.395% lbp1 rod assembly'
            22 -10.824 -10.824 -210.34
arrav
            10 1 4p10.90549
                                   2p210.34
cuboid
unit 234
com='layer 2 2.96% enr. fuel and 1.260% lbp2 rod assembly'
            23 -10.824 -10.824 -210.34
array
            10 1 4p10.90549
                                   2p210.34
cuboid
unit 235
com='layer 2 1.98% enr. fuel and control rod assembly--out'
            24 -10.824 -10.824 -210.34
array
            10 1 4p10.90549
cuboid
                                   2p210.34
unit 236
com='layer 2 2.64% enr. fuel and 1.260% lbp2 rod assembly'
array
            25 -10.824 -10.824 -210.34
            10 1 4p10.90549
cuboid
                                   2p210.34
unit 237
com='layer 2 2.64% enr. fuel and 1.060% lbp3 rod assembly'
```

array 26 -10.824 -10.824 -210.34 cuboid 10 1 4p10.90549 2p210.34 unit 238 com='layer 2 1.98% enr. fuel and axial power shaping rod assembly--out' 27 -10.824 -10.824 -210.34 arrav cuboid 10 1 4p10.90549 2p210.34 unit 239 com='layer 2 2.64% enr. fuel and control rod assembly--out' 28 -10.824 -10.824 -210.34 array cuboid 10 1 4p10.90549 2p210.34 1 *.... unit 300 30 -54.52745 -21.81098 -210.34375 arrav cuboid 6 1 2p54.528 21.811 -23.716 2p210.3438 unit 310 31 -54.52745 -21.81098 -210.34375 array 6 1 2p54.528 cuboid 23.716 -21.811 2p210.3438 unit 320 array 32 -21.81098 -10.90549 -210.34375 unit 330 33 -21.81098 -54.52745 -210.34375 array cuboid 6 1 21.811 -23.716 2p54.528 2p210.3438 unit 340 array 34 -21.81098 -54.52745 -210.34375 cuboid 6 1 23.716 -21.811 2p54.528 2p210.3438 unit 350 35 -10.90549 -21.81098 -210.34375 array com='units for ss core form' unit 400 cuboid 6 1 2p11.85 2p.9525 2p210.34 unit 410 cuboid 6 1 2p.9525 2p20.85 2p210.34 unit 420 cuboid 6 1 2p.9525 2p9.94 2p210.34 unit 430 cuboid 6 1 2p22.76 2p.9525 2p210.34 unit 440 cuboid 6 1 2p.9525 2p10.91 2p210.34 unit 500 100 -119.961 -119.961 array -210.34 10 1 179.07 2p220.34 cylinder hole 300 0.0 -141.78 0.0 0.0 hole 310 141.78 0.0 hole 320 -76.34 -130.87 0.0 hole 320 76.34 -130.87 0.0 -76.34 hole 320 130.87 0.0 hole 320 76.34 130.87 0.0 hole 330 -141.780.0 0.0 hole 340 141.78 0.0 0.0 hole 350 -130.87 76.34 0.0 hole 350 130.87 76.34 0.0 hole 350 -130.87 hole 350 130.87 -130.87 -76.34 0.0 -76.340.0 hole 400 -153.65 -55.50 0.0 hole 400 153.65 -55.50 0.0 hole 400 -153.65 55.50 0.0 hole 400 153.65 55.50 0.0 hole 400 131.84 -99.13 0.0 hole 400 -131.84 -99.13 0.0 hole 400 131.84 99.13 0.0 hole 400 -131.84 99.13 0.0 hole 400 -110.03 0.0 120.93

NUREG/CR-0200, Vol. 3, Rev. 6

hole 400 110.03

120.93

0.0

```
hole 400 -110.03
hole 400 110.03
                   -120.93
                             0.0
                   -120.93
                             0.0
hole 410 142.74
                    -77.31
                             0.0
hole 410 -142.74
                   -77.31
                             0.0
hole 410 142.74
                    77.31
                             0.0
hole 410 -142.74
                    77.31
                             0.0
hole 420 120.92
                   -110.03
                             0.0
hole 420 -120.92
hole 420 120.92
                   -110.03
                             0.0
                    110.03
                             0.0
hole 420 -120.92
                   110.03
                             0.0
hole 420
         99.11
                   -131.83
                             0.0
hole 420 -99.11
                   -131.83
                             0.0
hole 420
         99.11
                   131.83
                             0.0
hole 420
         -99.11
                    131.83
                             0.0
hole 430
          77.29
                   -142.74
                             0.0
hole 430
         -77.29
                   -142.74
                             0.0
hole 430
         77.29
                   142.74
                             0.0
hole 430
         -77.29
                   142.74
                             0.0
hole 440
hole 440
         55.49
                   -154.61
                             0.0
         -55.49
                   -154.61
                             0.0
hole 440
         55.49
                   154.61
                             0.0
hole 440
         -55.49
                   154.61
                             0.0
           6 1 184.15 2p220.34
10 1 186.69 2p220.34
6 1 191.77 2p220.34
10 1 217.77 250.82 -220.34
6 1 239.17 250.82 -220.34
cylinder
cylinder
cylinder
cylinder
cylinder
           0 1 4p239.17 250.82 -220.34
cuboid
unit 600
hemisphe-z 10 1 217.17
hemisphe-z 61
                 239.17
           01
cuboid
                 6p239.17
global unit 700
array
           200 -239.17 -239.17 -478.34
end geometry
read array
ara=20 nux=15 nuy=15 nuz=1
com='level 2 array describing 2.96% enriched fuel oriface rod assembly'
fill 30r21 5r21 20 2r21 1b7 3r21 20 4r21 1b7 15r21
2r21 20 2r21 20 2r21 1b7 15r21 7r21 29 1b112 end fill
ara=21 nux=15 nuy=15 nuz=1
com='level 2 array describing 2.96% enriched fuel control rod assembly'
fill 30r21 5r21 29 2r21 1b7 3r21 29 4r21 1b7 15r21
2r21 29 2r21 29 2r21 1b7 15r21 7r21 29 1b112 end fill
 ara=22 nux=15 nuy=15 nuz=1
com='level 2 array describing 2.64% enriched fuel lbpl(1.395%) rod assembly'
fill 30r22 5r22 26 2r22 1b7 3r22 26 4r22 1b7 15r22
2r22 26 2r22 26 2r22 1b7 15r22 7r22 29 1b112 end fill
'....ara=23 nux=15 nuz=1
com='level 2 array describing 2.96% enriched fuel lbp2(1.26%) rod assembly'
fill 30r21 5r21 27 2r21 lb7 3r21 27 4r21 lb7 15r21
2r21 27 2r21 27 2r21 1b7 15r21 7r21 29 1b112 end fill
*.....
ara=24 nux=15 nuy=15 nuz=1
com='level 2 array describing 1.98% enriched fuel control rod assm with rubble' fill 30r23 5r23 29 2r23 1b7 3r23 29 4r23 1b7 15r23
2r23 29 2r23 29 2r23 1b7 15r23 7r23 29 1b112 end fill
ara=25 nux=15 nuy=15 nuz=1
com='level 2 array describing 2.64% enriched fuel lbp2(1.26%) rod assembly' fill 30r22 5r22 27 2r22 lb7 3r22 27 4r22 lb7 15r22
```

2r22 27 2r22 27 2r22 1b7 15r22 7r22 29 1b112 end fill ara=26 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel lbp3(1.06%) rod assembly' fill 30r22 5r22 28 2r22 1b7 3r22 28 4r22 1b7 15r22 2r22 28 2r22 28 2r22 1b7 15r22 7r22 29 1b112 end fill ara=27 nux=15 nuy=15 nuz=1 com='level 2 array describing 1.98% enr. fuel axial power shaping rod assembly' fill 30r23 5r23 25 2r23 1b7 3r23 25 4r23 1b7 15r23 2r23 25 2r23 25 2r23 1b7 15r23 7r23 29 1b112 end fill ara=28 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel control rod assembly'
fill 30r22 5r22 29 2r22 1b7 3r22 29 4r22 1b7 15r22 2r22 29 2r22 29 2r22 1b7 15r22 7r22 29 1b112 end fill ara=30 nux=5 nuy=2 nuz=1 fill 5*231 232 233 232 1b2 end fill 1...... ara=31 nux=5 nuy=2 nuz=1 fill 232 233 232 233 232 5*231 end fill ara=32 nux=2 nuy=1 nuz=1 fill 2*231 end fill ara=33 nux=2 nuy=5 nuz=1 fill 231 232 231 233 231 232 1b4 end fill ara=34 nux=2 nuy=5 nuz=1 fill 232 231 233 231 232 231 233 231 232 231 end fill ara=35 nux=1 nuy=2 nuz=1 fill 231 231 end fill . ..... ara=100 nux=11 nuy=11 nuz=1 com='tmi critical core 1500wppm ' fill 231 234 235 236 235 236 1b5 234 235 237 238 236 235 1b5 235 237 235 237 235 236 1b5 236 238 239 235 233 235 1b5 235 236 235 233 235 233 1b5 236 235 236 235 233 234 1b60 end fill. ara=200 nux=1 nuy=1 nuz=2 gbl=200 fill 600 500 end fill end array read plot ttl='x-y slice through z=50.0' scr=yes lpi=10 yul=180.00 zul=50.0 xul=-180.0 xlr=180.00 ylr=-180.0 zlr=50.0 uax=1.0 vdn=-1.0 nax=1024 nch=' 123456789*' end plot end data end #shell cp _geom* \$RTNDIR end

NUREG/CR-0200, Vol. 3, Rev. 6

### Sample Converted CSAS6 Output File

#csas26 parm='size=00500000' tmi 1500 ppm boron 27groupndf4 latticecell uo2 1 .925 583 92235 1.98 92238 98.02 end 2.925 uo2 583 92235 2.64 92238 97.36 end uo2 3.925 583 JL 583 92235 2.96 92238 97.04 end zircalloy 4 1.0 10.17 5 0 0 1 arbmcrod 47107 41.088 47109 38.912 49113 0.632 49115 14.368 48000 5.0 583 end 583 end 5 1.0 ss304 6 1.0 3.70 2 0 1 0 13027 2 8016 3 arbmpois1 7 0.97952 583 end b4c 7 2.048-2 583 end arbmpois2 3.70 2 0 1 0 13027 2 8016 3 8 0.98150 583 end 8 1.85-2 583 end b4c 3.70 2 0 1 0 13027 2 8016 3 arbmpois3 9 0.98444 583 end 9 1.556-2 583 end b4c arbmbacid 8.5788-3 3 1 1 0 5000 1 1001 3 8016 3 10 .7707 583 5010 18.32 5011 81.68 end 10 .7707 583 end h2o end comp squarepitch 1.44272 .9398 3 10 1.0922 4 .97536 0 end more data .4699 res=1 cylinder dan(1)=0.2858256 res=2 cylinder .4699 dan(2)=0.2858256 res=5 cylinder .5588 end more read param plt=yes gen=203 npg=500 tme=120 end param read geometry 20 unit com=^layer 2 oriface rod unit^ cylinder 1 6.090600E-01 2.103400E+02 -2.103400E+02 origin x= 0.000000E+00 y= 0.000000E+00 6 media 1 cuboid 2 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.103400E+02 -2.103400E+02 10 media 2 -1 1 boundary 2 unit 21 com=^layer 2 2.96% enr. fuel rod^ cylinder 4.699000E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 3 1 1 2 cylinder 4.876800E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 0 2 -1 1 cylinder 3 4.876800E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 0 3 -2 -1 media 1 cylinder 4 5.461000E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 4 -3 -2 -1 media 4 1

> NUREG/CR-0200, Vol. 3, Rev. 6

cylinder 5 5.461000E-01 2.103400E+02 -2.103400E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 5 -4 -3 -2 -1 media 6 cuboid 6 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.103400E+02 -2.103400E+02 6 -5 -4 -3 -2 -1 media 10 1 boundary 6 unit 22 com=^layer 2 2.64% enr. fuel rod^ cylinder 1 4.699000E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 2 media 2 cylinder 4.876800E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 0 2 -1 media 3 cylinder 4.876800E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 3 -2 -1 media 0 cylinder 4 5.461000E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 4 4 -3 -2 -1 cylinder 5 5.461000E-01 2.103400E+02 -2.103400E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 5 -4 -3 -2 -1 6 media cuboid 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.103400E+02 -2.103400E+02 6 -5 -4 -3 -2 -1 media 10 1 boundary 6 23 unit com=^layer 2 1.98% enr. fuel rod^ cylinder 1 4.699000E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 1 1 1 cylinder 2 4.876800E-01 1.828800E+02 -1.828800E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 2 -1 media 0 3 cylinder 4.876800E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 Δ 3 -2 -1 media 1 cylinder 4 5.461000E-01 1.998400E+02 -2.062400E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 4 -3 -2 -1 media 4 cylinder -5 5.461000E-01 2.103400E+02 -2.103400E+02 origin x= 0.000000E+00 y= 0.000000E+00 5 -4 -3 -2 -1 media 6 cuboid 6 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.103400E+02 -2.103400E+02

NUREG/CR-0200, Vol. 3, Rev. 6

media 10 6 -5 -4 -3 -2 -1 1 6 boundarv 25 unit cylinder 1 5.588000E-01 4.572000E+01 -4.572000E+01 origin x= 0.000000E+00 y= 0.000000E+00 media 5 7 1 cylinder 2 6.121000E-01 2.103400E+02 -4.982000E+01 origin x= 0.000000E+00 y= 0.000000E+00 2 -1 media 6 1 cylinder 3 6.121000E-01 2.103400E+02 -2.103400E+02 origin x= 0.000000E+00 y= 0.000000E+00 3 -2 -1 0 media 1 cuboid - 4 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.103400E+02 -2.103400E+02 media 10 4 -3 -2 -1 1 boundary Δ 26 unit com=^layer 2 1.395% lumped burnable poison rod (lbp1)^ cylinder 5.461000E-01 1.600200E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 7 media cylinder 2 5.461000E-01 2.604875E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 0 2 -1 1 cylinder 3 6.350000E-01 2.605800E+02 -1.601000E+02 origin x= 0.000000E+00 y= 0.000000E+00 3 -2 -1 media 4 1 cuboid 4 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.605800E+02 -1.601000E+02 media 10 1 4 -3 -2 -1 boundary 4 27 unit com=^layer 2 1.260% lumped burnable poison rod (lbp2)^ cylinder 1 5.461000E-01 1.600200E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 8 media 1 1 2 cylinder 5.461000E-01 2.604875E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 2 -1 media 0 1 cylinder 3 6.350000E-01 2.605800E+02 -1.601000E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 3 -2 -1 4 1 cuboid 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.605800E+02 -1.601000E+02 4 -3 -2 -1 media 10 1 4 boundary 28 unit com=^layer 2 1.060% lumped burnable poison rod (lbp3)^ cylinder 1 5.461000E-01 1.600200E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 9 media 1 1

cylinder 2 5.461000E-01 2.604875E+02 -1.600200E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 0 2 -1 1 cylinder 3 6.350000E-01 2.605800E+02 -1.601000E+02 origin x= 0.000000E+00 y= 0.000000E+00 3 -2 -1 media 4 1 cuboid 4 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.605800E+02 -1.601000E+02 4 -3 -2 -1 media 10 ·1 4 boundary 29 unit com=^z-layer 2--intact pins--no rubble^ cuboid 1 7.213600E-01 -7.213600E-01 7.213600E-01 -7.213600E-01 2.605800E+02 -1.601000E+02 media 10 1 1 boundary 1 unit 231 com=^layer 2 2.96% enr. fuel and orfice rod assembly^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 20 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 cuboid 2 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 2 -1 1 2 boundary unit 232 com=^layer 2 2.96% enr. fuel and control rod assembly--out^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 21 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 2 cuboid 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 2 -1 1 boundary 2 unit 233 com=^layer 2 2.64% enr. fuel and 1.395% lbp1 rod assembly^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 array 22 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 cuboid 2 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 2 -1 media 10 1 2 boundary unit 234 com=^layer 2 2.96% enr. fuel and 1.260% lbp2 rod assembly^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01. 2.103398E+02 -2.103398E+02 array 23 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00

NUREG/CR-0200, Vol. 3, Rev. 6

cuboid 2 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 2 -1 1 2 boundary 235 unit com=^layer 2 1.98% enr. fuel and control rod assembly--out^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 24 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 2 cuboid 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 2 -1 media 10 1 2 boundary unit 236 com=^layer 2 2.64% enr. fuel and 1.260% lbp2 rod assembly^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 25 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 2 cuboid 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 1 2 -1 boundary 2 237 unit com=^layer 2 2.64% enr. fuel and 1.060% lbp3 rod assembly^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 array 26 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 2 cuboid 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 2 -1 1 2 boundary unit 238 com=^layer 2 1.98% enr. fuel and axial power shaping rod assembly--out^ cuboid 1 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 27 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00 cuboid 2 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 media 10 2 -1 1 2 boundary 239 unit com=^layer 2 2.64% enr. fuel and control rod assembly--out^ 1 cuboid 1.081679E+01 -1.082399E+01 1.081679E+01 -1.082399E+01 2.103398E+02 -2.103398E+02 28 array 1 place 1 1 1 -1.010264E+01 -1.010264E+01 0.000000E+00

> NUREG/CR-0200, Vol. 3, Rev. 6

cuboid 2 1.090549E+01 -1.090549E+01 1.090549E+01 -1.090549E+01 2.103400E+02 -2.103400E+02 2 -1 media 10 1 boundary 2 unit 300 cuboid 1 5.452740E+01 -5.452740E+01 2.181096E+01 -2.181096E+01 2.103360E+02 -2.103435E+02 array 30 1 place 1 1 1 -4.362196E+01 -1.090549E+01 -3.753662E-03 cuboid 2 5.452800E+01 -5.452800E+01 2.181100E+01 -2.371600E+01 2.103438E+02 -2.103438E+02 media 6 2 -1 1 2 boundary 310 unit cuboid 1 5.452740E+01 -5.452740E+01 2.181096E+01 -2.181096E+01 2.103360E+02 -2.103435E+02 array 31 1 place 1 1 1 -4.362196E+01 -1.090549E+01 -3.753662E-03 cuboid 2 5.452800E+01 -5.452800E+01 2.371600E+01 -2.181100E+01 2.103438E+02 -2.103438E+02 media 6 2 -1 1 2 boundary 320 unit cuboid 1 2.181096E+01 -2.181096E+01 1.090548E+01 -1.090548E+01 2.103360E+02 -2.103435E+02 32 array 1 place 1 1 1 -1.090549E+01 0.000000E+00 -3.753662E-03 1 boundary 330 unit cuboid 1 2.181096E+01 -2.181096E+01 5.452740E+01 -5.452740E+01 2.103360E+02 -2.103435E+02 33 array 1 place 1 1 1 -1.090549E+01 -4.362196E+01 -3.753662E-03 cuboid 2 2.181100E+01 -2.371600E+01 5.452800E+01 -5.452800E+01 2.103438E+02 -2.103438E+02 2 -1 media 6 1 2 boundary 340 unit cuboid 1 2.181096E+01 -2.181096E+01 5.452740E+01 -5.452740E+01 2.103360E+02 -2.103435E+02 array 34 1 place 1 1 1 -1.090549E+01 -4.362196E+01 -3.753662E-03 cuboid 2 2.371600E+01 -2.181100E+01 5.452800E+01 -5.452800E+01 2.103438E+02 -2.103438E+02 2 -1 media 6 1 boundary 2 350 unit com=^units for ss core form^ cuboid 1 1.090548E+01 -1.090548E+01 2.181096E+01 -2.181096E+01 2.103360E+02 -2.103435E+02 35 array 1 place 1 1 1 0.000000E+00 -1.090549E+01 -3.753662E-03 boundary 1

NUREG/CR-0200,

Vol. 3, Rev. 6

cuboid 1 1.185000E+01 -1.185000E+01 9.525000E-01 -9.525000E-01 2.103400E+02 -2.103400E+02 media 6 1 1 boundary 1 410 unit cuboid 1 9.525000E-01 -9.525000E-01 2.085000E+01 -2.085000E+01 2.103400E+02 -2.103400E+02 media 6 1 1 1 boundary 420 unit cuboid 1 9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 media 6 1 1 boundary 1 unit 430 1 cuboid 2.276000E+01 -2.276000E+01 9.525000E-01 -9.525000E-01 2.103400E+02 -2.103400E+02 media 6 1 1 1 boundary 440 unit cuboid 1 9.525000E-01 -9.525000E-01 1.091000E+01 -1.091000E+01 2.103400E+02 -2.103400E+02 media 6 1 1 1 boundary 500 unit cuboid 1 1.199597E+02 -1.199609E+02 1.199597E+02 -1.199609E+02 2.103398E+02 -2.103398E+02 100 arrav 1 place 1 1 1 -1.090555E+02 -1.090555E+02 0.000000E+00 cylinder 2 1.790700E+02 2.203400E+02 -2.203400E+02 x= 0.000000E+00 y= 0.000000E+00 origin 10 2 -1 media 1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 cuboid 9 5.452800E+01 -5.452800E+01 2.181100E+01 -2.371600E+01 2.103438E+02 -2.103438E+02 origin x= 0.000000E+00 y= -1.417800E+02 z= 0.000000E+00 hole 300 9 -1 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52 origin x= 0.000000E+00 y= -1.417800E+02 z= 0.000000E+00 cuboid 10 5.452800E+01 -5.452800E+01 2.371600E+01 -2.181100E+01 2.103438E+02 -2.103438E+02 origin x= 0.000000E+00 y= 1.417800E+02 z= 0.000000E+00 hole 310 10 -1 -9 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52

> NUREG/CR-0200, Vol. 3, Rev. 6

M17.4.15

400

unit
	origin	x=	0.00000E+00	y= 1.4	17800E+02	z=	0.000000E+00
cubold	11 2.18	1096E	+01 -2.181096	E+01 1.	090548E+01		
hole	-1.09 origin 320 11 -1 -21 -22 -34 -35 -47 -48	0548E x= - -9 -23 -36 -49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E+02 -2. $y= -1.3$ $14 -15 -27 -28 -40 -41 -5$	103435E+02 308700E+02 -16 -17 -18 -29 -30 -31 -42 -43 -44	z= -19 -32 -45	0.000000E+00 -20 -33 -46
cuboid	origin 12	x= -	7.634000E+01	y= -1.3	08700E+02	z=	0.00000E+00
cuboru	2.18	1096E	+01 -2.181096	E+01 1.	090548E+01		
hole	-1.09 origin 320 12 -1 -21 -22 -34 -35 -47 -48	0548E x= -9 -23 -36 -49	+01 2.103360 7.634000E+01 -10 -11 -13 - -24 -25 -26 - -37 -38 -39 - -50 -51 -52	E+02 -2. y= -1.3 14 -15 - 27 -28 - 40 -41 -	103435E+02 08700E+02 16 -17 -18 29 -30 -31 42 -43 -44	z= -19 -32 -45	0.000000E+00 -20 -33 -46
cuboid	origin 13	X=	7.634000E+01	y= -1.3	08700E+02	z=	0.00000E+00
hole	2.18 -1.09 origin 320 13 -1 -21 -22 -34 -35 -47 -48	1096E 0548E x= - -9 -23 -36 -49	+01 -2.181096 +01 2.103360 7.634000E+01 -10 -11 -12 - -24 -25 -26 - -37 -38 -39 - -50 -51 -52 7 634000E+01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	090548E+01 103435E+02 08700E+02 16 -17 -18 29 -30 -31 42 -43 -44	z= -19 -32 -45	0.000000E+00 -20 -33 -46
cuboid	14	<b>x-</b> -	7.0340002+01	y= 1.3	08/008+02	z=	0.000000E+00
hole	2.18 -1.09 origin 320 14 -1 -21 -22 -34 -35 -47 -48 origin	1096E 0548E x= -9 -23 -36 -49	+01 -2.181096 +01 2.103360 7.634000E+01 -10 -11 -12 - -24 -25 -26 - -37 -38 -39 - -50 -51 -52 7 634000E+01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	090548E+01 103435E+02 08700E+02 16 -17 -18 29 -30 -31 42 -43 -44	z= -19 -32 -45	0.000000E+00 -20 -33 -46
cuboid	15	<b>~</b>	7.034000E+01	y- 1.3	08700E+02	Z=	0.000002+00
hole	2.18 -5.45 origin 330 15 -1 -21 -22 -34 -35 -47 -48 origin	1100E 2800E x= - -9 -23 -36 -49 x= -	+01 -2.371600 +01 2.103438 1.417800E+02 -10 -11 -12 - -24 -25 -26 - -37 -38 -39 - -50 -51 -52 1.417800E+02	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	452800E+01 103438E+02 00000E+00 16 -17 -18 29 -30 -31 42 -43 -44 00000E+00	z= -19 -32 -45 z=	0.000000E+00 -20 -33 -46 0.000000E+00
cuboid	16						
hole	2.37 -5.45 origin 340 16 -1 -21 -22 -34 -35 -47 -48 origin	1600E 2800E x= -9 -23 -36 -49 x=	+01 -2.181100 +01 2.103438 1.417800E+02 -10 -11 -12 - -24 -25 -26 - -37 -38 -39 - -50 -51 -52 1.417800E+02	E+01 5. E+02 -2. y= 0.0 13 -14 - 27 -28 - 40 -41 - y= 0.0	452800E+01 103438E+02 00000E+00 15 -17 -18 29 -30 -31 42 -43 -44 00000E+00	z= -19 -32 -45 z=	0.000000E+00 -20 -33 -46 0.000000E+00
cuboid	17	0540P	+01 -1 0005 40		1010000-00		
hole	-2.18 origin 350 17 -1 -21 -22	-23	+01 -1.090548 +01 2.103360 1.308700E+02 -10 -11 -12 - -24 -25 -26 -	E+01 2. E+02 -2. y= 7.6 13 -14 - 27 -28 -	181096E+01 103435E+02 34000E+01 15 -16 -18 29 -30 -31	z= -19 -32	0.000000E+00 -20 -33

NUREG/CR-0200,

Vol. 3, Rev. 6

..

·· .,

••••••••

.

• • •

• •

•

	-34 -35 -47 -48	-36 -37 -38 -49 -50 -51	-39 -40 -41 -52	-42 -43 -44	-45	-46
cuboid	origin 18	x= -1.30870(	0E+02 y= 7.	634000E+01	z=	0.000000E+00
hole	1.090 -2.181 origin 350 18 -1 -21 -22 -34 -35 -47 -48	548E+01 -1.0 096E+01 2.3 x= 1.308700 -9 -10 -11 -23 -24 -25 -36 -37 -38 -49 -50 -51	090548E+01 2 103360E+02 -2 0E+02 y= 7. -12 -13 -14 -26 -27 -28 -39 -40 -41 -52	2.181096E+01 2.103435E+02 634000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -19 -32 -45	0.000000E+00 -20 -33 -46
cuboid	origin 19	x= 1.308700	)E+02 y= 7.	634000E+01	z=	0.000000E+00
hole	1.090 -2.181 origin 350 19 -1 -21 -22 -34 -35 -47 -48	548E+01 -1.( 096E+01 2.1 x= -1.30870( -9 -10 -11 -23 -24 -25 -36 -37 -38 -49 -50 -51	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.181096E+01 2.103435E+02 634000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -20 -33 -46
cuboid	origin 20	x= -1.308700	0E+02 y= −7.	634000E+01	z=	0.00000E+00
hole	1.090 -2.181 origin 350 20 -1 -21 -22 -34 -35 -47 -48	548E+01 -1.0 096E+01 2.1 x= 1.308700 -9 -10 -11 -23 -24 -25 -36 -37 -38 -49 -50 -51	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.181096E+01 2.103435E+02 634000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	origin 21	x= 1.308700	DE+O2 y= −7.	634000E+01	z=	0.000000E+00
hole	1.185 -9.525 origin 400 21 -1 -20 -22 -34 -35 -47 -48	000E+01 -1.1 000E-01 2.1 x= -1.536500 -9 -10 -11 -23 -24 -25 -36 -37 -38 -49 -50 -51	185000E+01 9 103400E+02 -2 DE+02 y= -5. -12 -13 -14 -26 -27 -28 -39 -40 -41 -52	.525000E-01 .103400E+02 550000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	origin 22	x= -1.536500	DE+02 y= −5.	550000E+01	z=	0.000000E+00
hole	1.185 -9.525 origin 400 22 -1 -20 -21 -34 -35 -47 -48	000E+01 -1.1 000E-01 2.1 x= 1.536500 -9 -10 -11 -23 -24 -25 -36 -37 -38 -49 -50 -51	185000E+01 9 103400E+02 -2 DE+02 y= -5. -12 -13 -14 -26 -27 -28 -39 -40 -41 -52	525000E-01 103400E+02 550000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	origin 23	x= 1.536500	0E+02 y= −5.	550000E+01	z=	0.000000E+00
hole	1.185 -9.525 origin 400 23 -1 -20 -21 -34 -35 -47 -48	000E+01 -1.1 000E-01 2.3 x= -1.536500 -9 -10 -11 -22 -24 -25 -36 -37 -38 -49 -50 -51	185000E+01 9 103400E+02 -2 DE+02 y= 5. -12 -13 -14 -26 -27 -28 -39 -40 -41 -52	0.525000E-01 2.103400E+02 550000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	origin 24	x= -1.536500	0E+02 y= 5.	550000E+01	z=	0.000000E+00
302010	1.185	000E+01 -1.1	185000E+01 9	.525000E-01		
hole	-9.325 origin 400 24 -1 -20 -21 -34 -35	x= 1.536500 -9 -10 -11 -22 -23 -25 -36 -37 -38	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	550000E+01 -15 -16 -17 -29 -30 -31 -42 -43 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46

NUREG/CR-0200, Vol. 3, Rev. 6

		-47 -48 origin	-49 x=	-50 1.53	-51 6500	-52 DE+02	2 y=	= 5	.550	000E+	01	z=	0.000000E+00
cuboid	2	25	5000E	+01	-1.3	18500	00E+0	)1	9.525	5000E	-01		
hole	400	-9.525 origin 25 -1 -20 -21 -34 -35 -47 -48	5000E x= -9 -22 -36 -49	-01 1.31 -10 -23 -37 -50	2.2 .8400 -11 -24 -38 -51	10340 DE+02 -12 -26 -39 -52	00E+( 2 y= -13 -27 -40	)2 - = -9 -14 -28 -41	2.103 .913( -15 -29 -42	3400E 000E+ -16 -30 -43	+02 01 -17 -31 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	2	26	x=	1.31	.0400	JE+02	<u>∠</u> y=	= -9	.9130	1006+	01	Z=	0.0000002+00
hole	400	1.185 -9.525 origin 26 -1 -20 -21 -34 -35 -47 -48	0000E x= - -9 -22 -36 -49	2+01 -01 -1.31 -23 -37 -50	-1.2 2.2 -8400 -11 -24 -38 -51	L850 L034 DE+02 -12 -25 -39 -52	00E+( 00E+( 2 y= -13 -27 -40	)1 )2 - -9 -14 -28 -41	9.525 2.103 .913( -15 -29 -42	5000E 3400E 000E+ -16 -30 -43	-01 +02 01 -17 -31 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	2	origin 27	x= -	.1.31	.8400	)E+02	2 у=	= -9	.913(	000E+	01	z=	0.000000E+00
hole	400	1.185 -9.525 origin 27 -1 -20 -21 -34 -35 -47 -48	0000E 0000E x= -9 -22 -36 -49	2+01 2-01 1.31 -10 -23 -37 -50	-1. 2. 8400 -11 -24 -38 -51	L8500 L0340 DE+02 -12 -25 -39 -52	00E+0 00E+0 2 y= -13 -26 -40	)1 )2 - - 9 -14 -28 -41	9.523 2.103 .9130 -15 -29 -42	5000E 3400E 000E+ -16 -30 -43	-01 +02 01 -17 -31 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	2	origin 28	X=	1.31	.8400	)E+02	2 y=	= 9	.913(	000E+	01	2=	0.00000E+00
hole cuboid	400	1.185 -9.525 origin 28 -1 -20 -21 -34 -35 -47 -48 origin	0000E x= - -9 -22 -36 -49 x= -	2+01 -01 -1.31 -23 -37 -50 -1.31	-1.1 2.1 .8400 -11 -24 -38 -51 .8400	1850( 1034( 0E+02 -12 -25 -39 -52 0E+02	00E+0 00E+0 2 y= -13 -26 -40 2 y=	)1 )2 - 9 -14 -27 -41	9.525 2.103 .913( -15 -29 -42 .913(	5000E 3400E -16 -30 -43	-01 +02 01 -17 -31 -44	z= -18 -32 -45 z=	0.000000E+00 -19 -33 -46 0.000000E+00
	-	1.185	5000E	C+01	-1.1	18500	)0E+(	)1	9.525	5000E	-01		
hole	400	origin 29 -1 -20 -21 -34 -35 -47 -48	x= - -9 -22 -36 -49	-101 -10 -23 -37 -50	-11 -24 -38 -51	DE+02 -12 -25 -39 -52	-13 -26 -40	-14 -27 -41	2.103 .2093 -15 -28 -42	-16 -30 -43	+02 02 -17 -31 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46
cuboid	3	30 1 1 0 1	~- 	1.10			- y-	- 1	.209		02	2-	0.000002+00
hole	400	-9.525 origin 30 -1 -20 -21 -34 -35 -47 -48 origin	-22 -36 -49 x=	1.10 -10 -23 -37 -50 1.10	-11 2.3 -0300 -11 -24 -38 -51 00300	18500 10340 0E+02 -12 -25 -39 -52 0E+02	00E+0 00E+0 -13 -26 -40 2 y=		9.52 2.10 .2093 -15 -28 -42 .2093	5000E 3400E 300E+ -16 -29 -43 300E+	-01 +02 02 -17 -31 -44	z= -18 -32 -45 z=	0.000000E+00 -19 -33 -46 0.000000E+00
cuboid	3	31 1.185	5000E	2+01	-1.3	18500	)0E+(	)1	9.525	5000E	-01		
hole	400	-9.525 origin 31 -1 -20 -21 -34 -35	5000E x= - -9 -22 -36	-01 -1.10 -10 -23 -37	2.2 00300 -11 -24 -38	1034( DE+02 -12 -25 -39	00E+0 2 y= -13 -26 -40	)2 - = -1 -14 -27 -41	2.103 .2093 -15 -28 -42	3400E 300E+ -16 -29 -43	+02 02 -17 -30 -44	z= -18 -32 -45	0.000000E+00 -19 -33 -46

•

-----

NUREG/CR-0200, Vol. 3, Rev. 6

	-47 -48 -49 -50 -51 -52 origin x= -1.100300E+02 y= -1.209300E+02	z=	0.000000E+00
cuboid	32 1.185000E+01 -1.185000E+01 9.525000E-01		
hole	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	z= -18 -31 -45	0.000000E+00 -19 -33 -46
cuboid	origin x= 1.100300E+02 y= -1.209300E+02 33	2=	0.00000E+00
hole	9.525000E-01 -9.525000E-01 2.085000E+01 -2.085000E+01 2.103400E+02 -2.103400E+02 origin x= 1.427400E+02 y= -7.731000E+01 410 33 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin $x = 1.427400E + 02$ $y = -7.731000E + 01$	z=	0.00000E+00
hole	9.525000E-01 -9.525000E-01 2.085000E+01 -2.085000E+01 2.103400E+02 -2.103400E+02 origin x= -1.427400E+02 y= -7.731000E+01 410 34 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= -1.427400E+02 y= -7.731000E+01 35	z=	0.000000E+00
hole	9.525000E-01 -9.525000E-01 2.085000E+01 -2.085000E+01 2.103400E+02 -2.103400E+02 origin x= 1.427400E+02 y= 7.731000E+01 410 35 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -36 -37 -38 -39 -40 -41 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= 1.427400E+02 y= 7.731000E+01 36	z=	0.00000E+00
hole	9.525000E-01 -9.525000E-01 2.085000E+01 -2.085000E+01 2.103400E+02 -2.103400E+02 origin $x = -1.427400E+02$ $y = 7.731000E+01$ 410 36 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 33 -34 -35 -37 -38 -39 -40 -41 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= -1.427400E+02 y= 7.731000E+01 37	z=	0.00000E+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin x= 1.209200E+02 y= -1.100300E+02 420 37 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30	z= -18	0.000000E+00 -19 -32
cuboid	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-45 z=	-32 -46 0.000000E+00
	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2 103400E+02 -2 103400E+02		
hole	origin x= -1.209200E+02 y= -1.100300E+02 420 38 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -39 -40 -41 -42 -43 -44	z= -18 -31 -45	0.000000E+00 -19 -32 -46

NUREG/CR-0200, Vol. 3, Rev. 6

cuboid	-47 -48 -49 -50 -51 -52 origin x= -1.209200E+02 y= -1.100300E+02 39	z=	0.00000E+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin x= 1.209200E+02 y= 1.100300E+02 420 39 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -38 -40 -41 -42 -43 -44	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	-47 -48 -49 -50 -51 -52 origin x= 1.209200E+02 y= 1.100300E+02 40	Z=	0.000000E+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin $x = -1.209200E+02$ $y = 1.100300E+02$ 420 40 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -38 -39 -41 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= -1.209200E+02 y= 1.100300E+02 41	z=	0.000000E+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin x= 9.911000E+01 y= -1.318300E+02 420 41 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -38 -39 -40 -42 -43 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= 9.911000E+01 y= -1.318300E+02	z=	0.00000E+00
CUDOID	42 9.525000E-01 -9.525000E-01 9.940000E+00		
hole	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	z= -18 -31 -45 z=	0.000000E+00 -19 -32 -46
cuboid	43	2-	0.0000005+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin x= 9.911000E+01 y= 1.318300E+02 420 43 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -44 -47 -48 -49 -50 -51 -52	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	origin x= 9.911000E+01 y= 1.318300E+02 44	z=	0.000000E+00
hole	9.525000E-01 -9.525000E-01 9.940000E+00 -9.940000E+00 2.103400E+02 -2.103400E+02 origin x= -9.911000E+01 y= 1.318300E+02 420 44 -1 -9 -10 -11 -12 -13 -14 -15 -16 -17 -20 -21 -22 -23 -24 -25 -26 -27 -28 -29 -30 -33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -47 -48 -49 -50 -51 -52 origin x= -9.911000E+01 y= 1.210200E+02	z= -18 -31 -45	0.000000E+00 -19 -32 -46
cuboid	45	Z=	0.00000E+00
hole	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	z= -18 -31 -44	0.000000E+00 -19 -32 -46

____

_____

NUREG/CR-0200, Vol. 3, Rev. 6

	origin	x= 7.7290	00E+01 y= -1.	427400E+02	z=	0.000000E+00
cuboid	46 2 27	6000E+01 -2	2760005+01	5250008-01		
hole	-9.52 origin 430 46 -1 -20 -21 -33 -34 -47 -48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2.103400E+02 427400E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
euboid	origin	x= -7.7290	00E+01 y= -1.	427400E+02	z=	0.000000E+00
Cuboru	2.27	6000E+01 -2	.276000E+01	.525000E-01		
hole	-9.52 origin 430 47 -1 -20 -21 -33 -34 -46 -48	5000E-01 2x = 7.7290-9 -10 -1-22 -23 -2-35 -36 -3-49 -50 -5	.103400E+02 -2 00E+01 y= 1. 1 -12 -13 -14 4 -25 -26 -27 7 -38 -39 -40 1 -52	2.103400E+02 427400E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
cuboid	origin	x= 7.7290	00E+01 y= 1.	427400E+02	z=	0.000000E+00
hole	2.27 -9.52 origin 430 48 -1 -20 -21 -33 -34 -46 -47	6000E+01 -2 5000E-01 2 x= -7.7290 -9 -10 -1 -22 -23 -2 -35 -36 -3 -49 -50 -5	.276000E+01 9 .103400E+02 -2 00E+01 y= 1. 1 -12 -13 -14 4 -25 -26 -27 7 -38 -39 -40 1 -52	0.525000E-01 2.103400E+02 427400E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
	origin	x= -7.7290	00E+01 y= 1.	427400E+02	z=	0.000000E+00
cubold	49	5000E-01 -9	.525000E-01 1	.091000E+01		
hole	-1.09 origin 440 49 -1 -20 -21 -33 -34 -46 -47	1000E+01 2 x= 5.5490 -9 -10 -1 -22 -23 -2 -35 -36 -3 -48 -50 -5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.103400E+02 546100E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
cuboid	origin 50	X= 5.5490	00E+01  y= -1	546100£+02	z=	0.00000E+00
hole	9.52 -1.09 origin 440 50 -1 -20 -21 -33 -34 -46 -47 origin	5000E-01 -9 $1000E+01 2$ $x = -5.5490$ $-9 -10 -1$ $-22 -23 -2$ $-35 -36 -3$ $-48 -49 -5$ $x = -5.5490$	.525000E-01 .103400E+02 -2 00E+01 y= -1 1 -12 -13 -14 4 -25 -26 -27 7 -38 -39 -40 1 -52 00E+01 y= -1	2.091000E+01 2.103400E+02 546100E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43 .546100E+02	z= -18 -31 -44 z=	0.000000E+00 -19 -32 -45 0.000000E+00
cuboid	51		E2E000D 01 7	0010007.01		
hole	9.52 -1.09 origin 440 51 -1 -20 -21 -33 -34 -46 -47	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	.525000E-01 .103400E+02 -2 00E+01 y= 1 1 -12 -13 -14 4 -25 -26 -27 7 -38 -39 -40 0 -52	2.103400E+02 .546100E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
cuboid	52	x= 3.3490	005+01 Y= 1.	5461UUE+UZ	Z=	0.0000005+00
hole	9.52 -1.09 origin 440 52 -1 -20 -21 -33 -34 -46 -47	5000E-01 -9 $1000E+01 2$ $x = -5.5490$ $-9 -10 -1$ $-22 -23 -2$ $-35 -36 -3$ $-48 -49 -5$	.525000E-01 .103400E+02 -2 00E+01 y= 1 1 -12 -13 -14 4 -25 -26 -27 7 -38 -39 -40 0 -51	L.091000E+01 2.103400E+02 .546100E+02 -15 -16 -17 -28 -29 -30 -41 -42 -43	z= -18 -31 -44	0.000000E+00 -19 -32 -45
•	origin	x= -5.5490	00E+01 y= 1.	546100E+02	z=	0.000000E+00

NUREG/CR-0200, Vol. 3, Rev. 6

.

.

cylinder 3 1.841500E+02 2.203400E+02 -2.203400E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 3 -2 -1 media 6 cylinder Δ 1.866900E+02 2.203400E+02 -2.203400E+02 origin x= 0.000000E+00 y= 0.000000E+00 10 media 4 -3 -2 -1 cylinder 5 1.917700E+02 2.203400E+02 -2.203400E+02 origin x= 0.000000E+00 y= 0.000000E+00 1 5 -4 -3 -2 -1 media 6 cylinder 6 2.177700E+02 2.508200E+02 -2.203400E+02 origin x = 0.00000E+00 y = 0.00000E+001 6 -5 -4 -3 -2 -1 media 10 cylinder 2.391700E+02 2.508200E+02 -2.203400E+02 origin x= 0.000000E+00 y= 0.000000E+00 media 6 7 -6 -5 -4 -3 -2 -1 1 cuboid 8 2.391700E+02 -2.391700E+02 2.391700E+02 -2.391700E+02 2.508200E+02 -2.203400E+02 0 1 media 8 -7 -6 -5 -4 -3 -2 -1 boundary 8 unit 600 sphere 1 2.171700E+02 origin x= 0.000000E+00 y= 0.000000E+00 z= 0.000000E+00 chord -z = 0.000000E + 0010 media 1 1 sphere 2 2.391700E+02 origin x= 0.000000E+00 y= 0.000000E+00 z= 0.000000E+00 chord -z = 0.00000E + 00media 61 2 -1 cuboid 3 2.391700E+02 -2.391700E+02 2.391700E+02 -2.391700E+02 2.391700E+02 -2.391700E+02 media 0 3 -2 -1 1 boundary 3 global 700 unit cuboid 1 2.391698E+02 -2.391698E+02 2.391698E+02 -2.391698E+02 4.711595E+02 -4.783395E+02 arrav 200 1 place 1 1 1 0.000000E+00 0.000000E+00 -2.391700E+02 boundary 1 end geometry read array ara=20 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.96% enriched fuel oriface rod assembly' fill 30r21 5r21 20 2r21 1b7 3r21 20 4r21 1b7 15r21 2r21 20 2r21 20 2r21 1b7 15r21 7r21 29 1b112 end fill NUREG/CR-0200,

Vol. 3, Rev. 6

ara=21 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.96% enriched fuel control rod assembly' fill 30r21 5r21 29 2r21 1b7 3r21 29 4r21 1b7 15r21 2r21 29 2r21 29 2r21 1b7 15r21 7r21 29 1b112 end fill • ara=22 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel lbp1(1.395%) rod assembly' fill 30r22 5r22 26 2r22 1b7 3r22 26 4r22 1b7 15r22 2r22 26 2r22 26 2r22 1b7 15r22 7r22 29 1b112 end fill '..... ara=23 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.96% enriched fuel lbp2(1.26%) rod assembly'
fill 30r21 5r21 27 2r21 lb7 3r21 27 4r21 lb7 15r21 2r21 27 2r21 27 2r21 1b7 15r21 7r21 29 1b112 end fill ara=24 nux=15 nuy=15 nuz=1 com='level 2 array describing 1.98% enriched fuel control rod assm with rubble' fill 30r23 5r23 29 2r23 1b7 3r23 29 4r23 1b7 15r23 2r23 29 2r23 29 2r23 1b7 15r23 7r23 29 1b112 end fill ara=25 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel lbp2(1.26%) rod assembly' fill 30r22 5r22 27 2r22 lb7 3r22 27 4r22 lb7 15r22 2r22 27 2r22 27 2r22 1b7 15r22 7r22 29 1b112 end fill *..... ara=26 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel lbp3(1.06%) rod assembly' fill 30r22 5r22 28 2r22 1b7 3r22 28 4r22 1b7 15r22 2r22 28 2r22 28 2r22 1b7 15r22 7r22 29 1b112 end fill *......... ara=27 nux=15 nuy=15 nuz=1 com='level 2 array describing 1.98% enr. fuel axial power shaping rod assembly' fill 30r23 5r23 25 2r23 1b7 3r23 25 4r23 1b7 15r23 2r23 25 2r23 25 2r23 1b7 15r23 7r23 29 1b112 end fill 1..... ara=28 nux=15 nuy=15 nuz=1 com='level 2 array describing 2.64% enriched fuel control rod assembly'
fill 30r22 5r22 29 2r22 1b7 3r22 29 4r22 1b7 15r22 2r22 29 2r22 29 2r22 1b7 15r22 7r22 29 1b112 end fill ara=30 nux=5 nuy=2 nuz=1 fill 5*231 232 233 232 1b2 end fill ara=31 nux=5 nuy=2 nuz=1 fill 232 233 232 233 232 5*231 end fill ara=32 nux=2 nuy=1 nuz=1 fill 2*231 end fill ara=33 nux=2 nuy=5 nuz=1 fill 231 232 231 233 231 232 1b4 end fill ara=34 nux=2 nuy=5 nuz=1 fill 232 231 233 231 232 231 233 231 232 231 end fill *....* ara=35 nux=1 nuy=2 nuz=1 fill 231 231 end fill • *..... ara=100 nux=11 nuy=11 nuz=1 com='tmi critical core 150.0wppm ' fill 231 234 235 236 235 236 1b5 234 235 237 238 236 235 1b5 235 237 235 237 235 236 1b5

236 238 239 235 233 235 1b5 235 236 235 233 235 233 1b5 236 235 236 235 233 234 1b60 end fill ara=200 nux=1 nuy=1 nuz=2 gbl=200 fill 600 500 end fill end array read plot ttl='x-y slice through z=50.0' scr=yes lpi=10 xul=-180.0 yul=180.00 zul=50.0 xlr=180.00 ylr=-180.0 zlr=50.0 uax=1.0 vdn=-1.0 nax=1024 nch=' 123456789*' end plot end data end . I.L.

## M17.5 QORDPN: AN INPUT FILE CONVERSION PROGRAM

#### M17.5.1 INTRODUCTION

Program Q0RDPN can be used to convert a SCALE FIDO-type binary input file for a functional module to an ASCII format. This ASCII file can then be modified with a text editor, and the control sequence run with modified data.

### **M17.5.2 DESCRIPTION AND INPUT GUIDE**

QORDPN is a utility program that can be used to convert a binary input file for a functional module to an ASCII file. This file can then be edited so that the functional module can be executed easily using slightly modified data. While a binary input file for any code using FIDO-type input can be converted, this program is primarily geared toward the functional modules in the neutronic modules of the SCALE system. A list of the modules for which default array definitions and unit numbers are built into the code is given in Table M17.2.1. If a name is given that is not in the table, then the user must specify the types of all arrays, the number of title records at the beginning of the binary file, and the logical unit number of the binary file.

Table M17.2.1 QORDPN module table								
Module	Input Unit (NIN)	Maximum Array No.						
BONAMI	96	12						
NITAWL	97	6						
XSDRN	98	52						
COUPLE	93	83						
ORIGEN	94	84						
ICE	92	11						

The input/output (I/O) files utilized by Q0RDPN are listed below.

<u>I/O File</u>	<b>Function</b>
5	Program control input
6	Messages
NIN	Input binary file
NOUT	Output ASCII file

The input consists of the following items (input in free-form).

ASCII name of the module for which the binary file was created. If the name is in Table M17.2.1, then only this item and the next need to be specified. Otherwise all the input items must be specified.
The logical unit number to which the ASCII will be written.
The logical unit number for the binary input file.
Number of title records beginning the binary input file.
wing items until all the data are specified: Array number for data on the binary file.

ITYPE Numeric data type for IAR. 0 - integer (default)

1 - real

- 2 double precision
- 3 both integer and real

Only non-integer arrays must be specified, as everything else is defaulted to integer.

Data reading is finished by specifying IAR = -10, or reaching the end-of-data.

NOTE: The 3** record for NITAWL as written by a SCALE control module will contain the nuclide ID numbers as integers. This will cause them to be converted to very small real numbers. The 3\$\$ record will follow the 3** record and will contain the nuclide ID numbers in integer format.

In the sample case in Fig. M17.2.1, the module specified in the Q0RDPN input is "O0O001," the control sequence alias for XSDRNPM. If "XSDRN" had been specified, none of the data following "32" (nout) would have been required. The input is presented here in this manner to illustrate the specification of all input items. The resulting ASCII file generated by Q0RDPN is shown in Fig. M17.2.2.

The CSAS1X sequence executes BONAMI, NITAWL, and XSDRNPM, whose aliases are O00008, O00002, and O00001, respectively. When called in SCALE by its alias, the module reads its input from the binary input file created by the control module. To run the problem specified in Fig. M17.2.1 using a modified version of the XSDRNPM input file in Fig. M17.2.2, an input file such as that shown in Fig. M17.2.3 would be used.

```
#csas1x
              parm=(check, size=600000)
.
  problem id --
  citation id --
                       exp. no.
                                  ---
' 2.35% u-235 enriched uo2 rods, 1.27cm od al clad, 1.1176 cm id,
' 1.1176 cm od uo2 91.44 cm long, rod 97.79 cm long.
' lead walls (10.2 x 164.0 x 123.4) on floor reflecting in h2o.
' 3-19x16 clusters, 2.032 cm square pitch. 13.72 cm separation
' between clusters. 0.66 cm from fuel clusters to wall
' reference: pnl-2827 pg.14
' scale module: csas25
0.8 in pitch lattice cell,2.35 wt% enriched fuel.
44g latticecell
uo2 1 0.84 293 92235 2.35 92238 97.65 end uo2
al 2 1.0 end al
h2o 3 1.0 end h2o
plexiglass 4 1.0 end plexiglass
h2o
              5
                      end
pb
            6 .97533 end
end comp
squarepitch 2.032 1.1176 1 3 1.27 2 end
end
#q0rdpn
 000001
 32 98 1
 5 1 15 1 31 1 32 1 33 2 34 2 35 1 38 1 41 1 42 1 43 1 47 1
 48 1
end
#shell
cp ft32f001 $RTNDIR/000001.input
end
```

#### Figure M17.2.1 Sample case

```
0.8 in pitch lattice cell,2.35 wt% enriched fuel.
  -155
600000
е
   1$$
2 3 32 1 2r 3 12 8 3 1 20 25 3r 0
 е
   2$$
-2 -1 4r 0 -1 3r 0
 е
   3$$
1 11r 0
 е
   4$$
-1 44 0 -2 5r 0
е
   5**
2r 1.00000-04 1.00000+00 2r 0.00000+00 1.42089+00 3r 0.00000+00
е
 t
 13$$
3r 1 3 2r -3 2 3 4r -3
 е
 14$$
1092235 1092238 1008016 3008016 4008016 5008016 2013027 3001001 4001001
5001001 4006012 6082000
 е
 15**
 4.88650-04 2.00485-02 4.10743-02 3.33846-02 2r 1.00000-20
 6.03066-02 6.67692-02 4r 1.00000-20
 e
 t
  33##
1408r 7.81250-03
 e
 t
 35**
 0.00000+00 3.09291-02 7.25427-02 1.36380-01 2.79400-01 4.22420-01
                                       5.68692-01 5.96900-01 6.25108-01
 4.86257-01 5.27871-01 5.58800-01
 6.35000-01
             6.45474-01 6.57039-01
                                       6.69951-01 6.84563-01 7.01394-01
                                       8.19435-01 8.90717-01 9.61999-01
1.08004+00 1.09687+00 1.11148+00
 7.21238-01
              7.45418-01
                          7.76371-01
 1.00506+00 1.03602+00 1.06019+00
 1.12439+00 1.13596+00 1.14643+00
 e
 36$$
8r 1 4r 2 20r 3
 е
 39$$
123
 е
  51$$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
е
 t
```

Figure M17.2.2 Converted ASCII input file for XSDRNPM

#000008
end
#000002
end
#xsdrnpm
.
.
.
modified ASCII input file
.
.
end

Figure M17.2.3 Sample input file for modified CSAS1X sequence

## M17.6 AWL

### M17.6.1 AWL INPUT GUIDE

AWL is a program to convert AMPX working libraries between ASCII format and binary format. It reads three numbers from logical unit 5 and prints output to logical unit 6.

## M17.6.2 AWL INPUT

- (1) NITP logical unit number for the input working library.
- (2) NOTP logical unit number for the output working library.

(3) MODE - mode defining type of conversion:

ASCII to Binary
 Binary to ASCII

## M17.7 MAL

### M17.7.1 MAL INPUT GUIDE

MAL is a program to convert a KENO albedo library between ASCII format and binary format. It reads three numbers from logical unit 5 and prints output to logical unit 6.

### M17.7.2 MAL INPUT

- (1) NITP logical unit number for the input working library.
- (2) NOTP logical unit number for the output working library.

(3) MODE - mode defining type of conversion:

1 - ASCII to Binary

2 - Binary to ASCII

#### M17.8.1 WGT INPUT GUIDE

WGT is a program to convert a KENO weights library between ASCII format and binary format. It reads three numbers from logical unit 5 and prints output to logical unit 6.

### M17.8.2 MAL INPUT

- (1) NITP logical unit number for the input working library.
- (2) NOTP logical unit number for the output working library.
- (3) MODE mode defining type of conversion: 1 ASCII to Binary

2 - Binary to ASCII

NRC FORM 335 (2-89) NRCM 1102 3201, 3202	U.S. NUCLEAR REGULATORY COMMISSION BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	I 1. REPORT NUMBE (Assigned by NRC Rev., and Addend	R C, Add Vol., Supp., um Numbers, if any.)				
2. TITLE AND SUBTITLE SCALE: A MOD	2. TITLE AND SUBTITLE       ORNL/NUREG         SCALE: A MODULAR CODE SYSTEM FOR PERFORMING       Vol. 3         STANDARDIZED COMPUTER ANALYSES FOR LICENSING       3. DATE REPORT F         EVALUATION       Month         Miscellaneous       May         M1 - M17       4. FIN OR GRANT NUL						
STANDARDIZED							
EVALUATION							
M1 – M17							
5. AUTHOR(S) S.M. Bowman, B.L. Bi M.B. Emmett, P.B. Fo	6. TYPE OF REPOR Technical	т					
D.F. Hollenbach, W.C L.M. Petrie, J.C. Rym	D.F. Hollenbach, W.C. Jordan, J.R. Knight,* N.F. Landers,* L.C. Leal, K. Lucius,* C.V. Parks, L.M. Petrie, J.C. Ryman, J.S. Tang,* J.C. Turner,* J.T. West,* R.M. Westfall, P.T. Williams						
8. PERFORMING ORGANIZA if contractor, provide nam	TION — NAME AND ADDRESS (if NRC, provide Division, Office or Region, U.S. Nuclear R te and mailing address.)	egulatory Commission, a	nd mailing address;				
Oak Ridge National Post Office Box 2005 Oak Ridge, Tenness	Laboratory 8 see 37831-6370						
9. SPONSORING ORGANIZA Commission, and mailing	TION — NAME AND ADDRESS (If NRC, type "Same as above"; If contractor, provide NRC address.)	> Division, Office or Regio	on, U.S. Regulatory				
Spent Fuel Project Office of Nuclear M U.S. Nuclear Regu Washington, DC 2	Office Material Safety and Safeguards latory Commission 0555-0001						
10. SUPPLEMENTARY NOTES	3	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	·····				
11. ABSTRACT (200 words or SCALE, a modular by Oak Ridge Nati system utilizes well input format design between modules, a problem-dependen depletion/decay pre- evaluation of nucle	^{<i>less</i>)} r code system for Standardized Computer Analyses Licensing E ional Laboratory at the request of the U.S. Nuclear Regulatory <i>l</i> -established computer codes and methods within standard analy ned for the occasional user and/or novice, (2) automate the data and (3) provide accurate and reliable results. System developm at cross-section processing and analysis of criticality safety, shiel oblems. Since the initial release of SCALE in 1980, the code sys- ar fuel facility and package designs. This revision documents V	valuation, has bee Commission. The 7sis sequences that processing and co ent has been direct ding, heat transfer stem has been heav ersion 4.4 of the sy	en developed SCALE t (1) allow an upling ted at t, and vily used for ystem.				
12. KEY WORDS/DESCRIPTO	RS (List words or phrases that will assist researchers in locating the report.)	13. AVAILABIL Un	LITY STATEMENT				
SCALE, cross sect spent fuel, KENO.	ons, criticality safety, shielding, heat transfer, depletion, decay, ORIGEN, XSDRNPM, MORSE, NITAWL, XSDRN, SAS1,	14. SECURITY	CLASSIFICATION				
SAS2, SAS3, SAS4	4, CSAS, ORIGEN-ARP, QADS, HEATING, HTAS1	(This Page)	Unclassified				
		(This Report)	Unclassified				
·		15. NUMBER	OF PAGES				
16. PRICE							



Federal Recycling Program