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Abstract

The School of Industrial Engineering of the Universidad Politecnica de Madrid (ETSII-UPMT), in.  
cooperation with the Spanish Nuclear Safety Council, has developed a standardised methodology 
to couple and parallelise scientific codes, by means of the modular general purpose simulation 
language BABIECA and the Message Passing Paradigm, currently using the PVM library 
routines. A template suggests how a code must be written to ease the connectivity with other 
codes through BABIECA.  

The connection scheme has been successfully applied to the RELAP5/MOD3.2 code.
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Executive Summary

The modular simulation program BABIECA has been used as a general interface to couple 
scientific codes, by means of the Message Passing Paradigm, currently implemented through 
the Parallel Virtual Machine (PVM). with this approach, the connection is performed by defining 
a block topology, i.e., what output signals of each code acts as boundary or initial conditions for 
other codes.  

The nature of the individual codes is irrelevant to the connection process. Thus, connectivity is 
not restricted to the usual TH-neutronic codes. The linkage scheme also allows the user to 
undertake coarse grain parallelization of the codes, if the particular problem defined through the 
input deck so allows.  

The proposed linkage scheme has been successfully applied to the RELAP5/MOD3.2 code. A 
simple example problem has been run to demonstrate the capabilities of the modified version of 
RELAP5 to be both parallelized and connected to other codes. Effective execution speed up is 
obtained under certain circumstances.  

The trend of the results suggests that the structure of any scientific code can be standardised top 
ease the coupling with others, which is the main conclusion of the report. A proposal of such a 
standard is enclosed.
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Chapter 1 

Introduction 

Simulationists that use particular purpose scientific codes for certain disci
plines can reach their limits of scope, mainly because of the end of applicabil
ity of the models capable of handling the scenarios they try to simulate. The 
scope of application of the codes can be extended by building a full scope 
code including detailed models for all the disciplines involved. Nevertheless, 
the effort necessary to write such a code would exceed by far the benefits to 
be yielded [28, 29].  

A more feasible solution is to take advantage of already existing codes 
and couple them, in such a way that the output variables of a given code act 
as boundary or initial conditions for other codes.  

Many examples of code coupling, most of them taken from the nu
clear industry, can be found in the literature. For instance, the EUMOD 
interface [28], which allows the connection of the RELAP5 code [30] to 
external models defined by the user. Reference [29] describes the con
nections RELAP5-CONTAIN, RELAP5-COSBWR, RELAP5-PANBOX2, 
RELAP5-HECHAN2, RELAP5-COCO, TRAC-BF1-NEM-3D, CATHENA
PACE, CATHENA-ELOCA and CANSIM. Reference [24] describes the con
nection of RELAP5 to the TACCUM model. Another remarkable application 
is ESTER [19], a code that links a set of codes, with the aim of simulating 
severe accident scenarios in nuclear power plants.  

References [8, 7, 3, 20] illustrate some of the last works on code coupling 
applications in the Nuclear Safety field.  

Special attention to the code connection issue has been paid in works 
such as [5, 31, 21, 26, 1] within the frame of the OECD/CSNI Workshop on 
Transient Thermal-Hydraulic and Neutronic Requirements held at Annapolis 
in 1996.
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2 Chanter 1. Introduction

An important issue concerning the aforementioned connections is that 
they have been implemented taking into account the peculiarities of each 
individual code; no general rules are provided for code connection. Besides, 
most of the connections, with the exceptions of the code systems CANSIM 
and ESTER, link only two codes. Thus the scope of applicability is increased 
in only one direction.  

A number of drawbacks can be found in this linkage strategy: 

"* the new code that results from this type of linkage is closed, in the 
sense that the executable file is always the same once the connection 
has been established. If we want to enhance the available capabilities 
a new code must be added and the system must be recompiled to 
generate a new executable file; 

" if the transients to be simulated require only the models implemented in 
one of the codes, or a few of them, for some time, the system described 
above forces to use the global system formed by all the codes that have 
been linked.  

Parallelisation of computer codes allows shorter execution times and 
makes real time simulation more feasible. In most cases simulation codes 
are parallelised taking into account only the source code, but not the input 
file defined by the user, which may reflect in many cases an inherent parallel 
structure of the physical problem to be solved. This last strategy of paral
lelisation, that will be called problem level parallelisation, can lead to coarser 
granularities and is seldom exploited in scientific computing.  

In this report we describe a methodology that suggests how to write a 
computer code for ease of both connectivity and problem level parallelisation, 
using the same tools.

2 Chapter 1. Introduction



Chapter 2 

Code linkage 

2.1 Introduction 

In order to anticipate the behavior of a certain physical problem, a computer 
code solves a set of, in general, partial differential equations with given initial 
and boundary conditions, which can be denoted by - and it respectively. The 
components of vector 2F are independent from each other. Closely related to 
the initial state vector, we can define the extended state vector as the vector 
Y that contains all the information in f plus additional non-independent 
components, interrelated through algebraic equations solved by the code, 
i.e. Y(to) = lt((t 0 )). The set of partial differential equations is discretized 
in space and time and solved by means of a numerical algorithm. Loosely 
speaking, the algorithm consists in obtaining the extended state vector Y 
at a discrete time t + At, given both its value at time t and the vector of 
boundary conditions i. With respect to the boundary conditions, if the 
numerical method makes use of the values at time t + At it is said to be 
implicit; if all conditions are taken at time t or prior it is said to be explicit.  
In between there can exist methods with different degrees of implicitness.  
Those two schemes can be formally expressed as follows: 

i(t + At) = F(i(t),iZ(t + At)) (2.1) 

for an implicit method and 

Z(t + At)= F (:F(t), "(t)) (2.2.) 

for a totally explicit method.  

Once the extended state vector is known, output variables are computed
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by means of some ancillary function: 

X(t + At) = G (i(t + At), 0) (2.3) 

where the vector of boundary conditions it can be defined at time t or t + At.  
With this last calculation the time step is considered as finished.  

The code must be fed with the vector of initial conditions Z-, and thus 
the code must find the extended state vector :F(to) at the first time step 
from F and the algebraic equations to be solved in the code. Vector Y avoids 
recomputation of some variables in different time steps, that would be nec
essary if just F were used. The boundary conditions are specified by the user 
by means of tables, with time as abscissae and the values to be input as 
ordinates. These tables are usually linearly interpolated.  

The main objective of code linkage is to provide a code with informa
tion derived from the outputs of other codes, i.e. for the case of boundary 
conditions, 

- U(t) = --- (Y-1(t),"- gi(t),---, I Ynt) (2.4) 

while for initial conditions, 

2 (t0) = Z (Pi(to)-.. ,(t 0),. ., (to)) (2.5) 

where the subindices denote different codes.  

The linkage between codes can be established following different princi
ples. The main issues concerning code connection are described hereafter.  

2.2 Boundary conditions vs. initial condi
tions linkage 

The main purpose of code linkage is to calculate the boundary conditions of 
a given code as a function of the output variables of other codes, as shown 
in equation (2.4).  

Nevertheless, the coupling of codes via initial conditions, as set in equa
tion (2.5) may be highly interesting in the solution of certain problems. For 
instance, many times a physical process is simulated with the help of a cer
tain model. Some particular transients may drive the system into a region 
out of the scope of applicability of the model (for instance, a code for the
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simulation of transients and accidents in nuclear power plants enters the se
vere accident region), making it necessary the existence of a second model, 
usually within a separate code, capable of handling this new situation. With
out code linkage, an input deck for this particular initial conditions must be 
made for running the special code. However, code linkage makes it possible 
to deactivate the incorrect models when they are just going to leave its do
main of applicability and transfer these initial conditions 'on the fly' to the 
special code. It is very convenient to stop the calculation of the unwanted 
models both to save CPU time and to prevent loss of stability of the mod
els that are out of their domain of applicability. An undetermined number 
of transitions between both models may happen during the whole simula
tion run. A good example of coupling via initial conditions is the linkage 
TIZONA-MAAP [27]. TIZONA [17] is a thermal-hydraulic code for BWR 
Nuclear power plants transient analysis. When certain variables reach prede
fined values, which indicate the beginning of severe accident conditions, the 
simulation is transferred to the MAAP code [10]. In this case, the transition 
is made only once, since it is not feasible that the plant recovers the 'non 
severe' conditions.  

2.3 Non iterative vs. iterative linkage 

The connection of codes often yields feedback loops. If the codes involved 
in a feedback loop use an explicit algorithm the linkage may be established 
without iterations, since all the information needed to advance the solution 
one time step is available from the previous one. This fact can be realized in 
the following equations, which represent the coupling of two explicit codes: 

91 (t + At) =-- .T1 (:F1(t),'97 (92 (t))) (2-6) 

Y2(t + At) = -T2(S2 (t), i2 (91(t))) (2.7) 

If at least one of the codes in the feedback loop is explicit the coupling 
can also be solved without iterations. We must ensure that the explicit codes 
are solved in first place, to propagate forward the information available from 
the previous time step. If code 1 is explicit and code 2 is implicit: 

91 (t + At) = F1 (91 (t),6 •(V2 (t))) (2.8)

92 (t + At) = -F2(Y2 (t), i 2 (: 1(t + At)))

2.3. Non iterative vs. iterative linkage 5
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6 Chapter 2. Code linkage

We can see that the first code only needs variables from the previous time 
step. When the second code demands variables defined in the current time 
step, i.e. gl(t + At), this information is already available.  

Most of the connections mentioned in chapter 1 have overlooked this 
feature. The implicit code, which is usually the thermal-hydraulic one, is 
solved in first place. The effect is that the output vector passed to equation 
(2.9) is - 1(t) instead of - (t + At). This misuse of the output vector may 
distort the numerical algorithm.  

If all the codes in a feedback loop are solved by implicit methods the 
information necessary to advance a time step is not available, as shown in 
the following equations: 

il(t+At) = .%l(X(t),i 1(Y2(t+ At))) (2.10) 

; 2 (t + At) = -F2(i 2 (t), l2(g1(t + At))) (2.11) 

The output vector V2(t + At) needed to calculate x1 (t + At) has not been 
computed yet. The same comment applies to the calculation of Y2(t + At).  
The natural way to solve this deadlock is to use iterative methods. An 
initial guess of Y-2(t + At) is taken to evaluate Si (t + At) and subsequently 
#1 (t + At). Now we can compute X2 (t + At) and - (t + At). If this last value 
is coincident with the initial guess within a tolerance margin the solution 
is considered valid. Otherwise, another iteration is executed. This way of 
acting follows the Picard fixed point theorem, by which a sufficient condition 
for convergence is that the vector function defining Si (t + At) and Y2 (t + At) 
in terms of itself be contractive.  

The convergence of the loop can be accelerated by using traditional meth
ods for finding roots of functions, such as the secant method, bisection 
method, Aitken's A2 , etc.  

2.4 Serial vs. parallel linkage 

We say that a set of codes is coupled serially if the linkage gives raise to a 
single executable file such that all the codes belong to the same computer 
process when executed. This type of linkage must be accomplished by turn
ing into sequentially called subroutines all the main programs of the codes to 
be linked, with the exception of the code that will act as main program of the 
integrated system and will manage the time step. The information exchange
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between the codes takes place through the arguments of the subroutines or 
through a common block of memory. The exchange is performed once the 
execution of each individual code has finished. These demands compel the 
developer to maintain two versions of each source code: the original one and 
that ready to be linked to the code system. The original executable file must 
also be kept if we want to run simulations that only need models included 
in that code. The EUMOD interface [28] for the RELAP5 code [30] and the 
program SIMTRAN [23] are good examples of serial linkage.  

On the other hand, the codes are said to be coupled in parallel if they 
behave as separated computer processes. Each code has an associated exe
cutable file. There are as many main programs as codes linked. The con
nection is established via low level utilities such as the UNIX sockets or 
memory sharing or using the Message Passing paradigm, by means of higher 
level interfaces such as PVM [12, 13] or MPI [15]. These tools provide flex
ible, standardised methods for transferring information between processes.  
The simulation starts in the code that manages the time step. Each code is 
spawned when needed as an individual process and may be run on a different 
processor of a parallel machine and even on a different machine (of the same 
or of a different kind), depending on the hardware resources available and 
the communication software. Some processes can run simultaneously if the 
problem conditions so allow. However, we must remark that parallel linkage 
does not imply always an actual parallelisation of the problem, which will 
not be possible if: 

1. only one single processor machine is available, and thus only one com
puter process can be executed at the same time, 

2. the synchronisation imposed by the simulation time step does not allow 
a process to advance on its own. Hence, only one code is executed at 
a given time.  

With parallel coupling only one version of the source code and one executable 
file must be maintained per individual code, since the extra sections of code 
needed to implement the linkage will be inserted as additions to the origi
nal version and will only be entered when the code detects that it has been 
spawned by other process of the global system. All these features make par
allel coupling more versatile and recommendable than serial coupling, even 
when the different processes do not run simultaneously. The connections 
RELAP5-TACCUM [24] and RELAP5-PARCS [8], among many others, il
lustrate this kind of linkage.

2.4. Serial vs. parallel linkage, 7
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2.5 Time step control by code vs. time step 
control by a simulation driver 

In the examples mentioned in chapter 1 the simulation time step is controlled 
by one of the codes, generally the thermal-hydraulic one, embedded in the 
code system. This scheme forces to use that code in every simulation, even 
though it may not be necessary for certain transients. Moreover, it must be 
solved in first place, even if it is implicit. As it has been shown in section 
2.3, concerning iterative and non-iterative coupling, this is not a desirable 
practice.  

New code coupling applications following this approach are arising. For 
instance, the general interface used in the RELAP5/PARCS coupling [8], 
the TALINK interface [71 to couple RELAP5 to the 3D neutronics code 
PANTHER and ISAS 1 [3], used to couple the TH code CATHARE to the 
3D neutronics code CRONOS.  

A different approach is to control the time step with a modular general 
purpose simulation driver, which calls the codes to be linked as if they were 
the blocks of a block diagram. The time step of the simulation driver must 
be passed to the individual codes being part of the global system. The simu
lation driver acts then as a synchronizer of the codes. With this scheme the 
simulation is not centered in any particular code, as is the case in the pre
vious scheme. The user can choose only the codes needed for the particular 
transient and make provisions for code replacement upon exhaustion of the 
models. The modular approach permits the substitution of one of the codes 
by other code of the same type in order to make comparisons or to achieve 
different degrees of detail. Moreover, growth of the full model by addition 
of new codes may be accomplished more easily.

8 Chapter 2. Code linkaL-e



Chapter 3 

Code parallelisation 

3.1 Introduction 

Parallelisation consists basically in the concurrent execution of a set of pro
cesses that do not interchange information among them, and are part of a 
larger computer task or program, on different microprocessors (belonging 
to the same or to different machines). The information computed in each 
concurrent process is then transferred to the main task, which runs on an
other microprocessor, at a certain point of the flow diagram usually called 
synchronisation barrier. Once this point has been reached, the main task 
can proceed further with the program running it serially or spawning new 
concurrent tasks if the flow diagram so allows, until a new synchronisation 
barrier is reached. If the concurrent tasks do not interchange information 
during the execution of the whole program, i.e., there are no synchronisa
tion barriers, the term distributed computing, instead of parallelisation, is 
preferred.  

In both cases, the concurrent execution of tasks tends to decrease the real 
execution time of the whole program. On the other hand, the communication 
between the different processes increases the real execution time, which is 
the main shortcoming of parallelisation. Optimal performance is achieved 
when the three following issues are taken into account: 

9 the number of concurrent processes equals the number of available 
processors. If the former is greater than the latter no decrease of the 
real execution time is attained with respect to the optimal situation, 
since the extra tasks must be queued until a microprocessor is free.  
Moreover, the execution time will be charged due to the extra commu-

9



nication between processes.  

"* the heaviest tasks run on the most powerful microprocessors, i.e. the 
parallel tasks are balanced, 

"* the number of synchronisation barriers is minimum, hence decreasing 
the time spent in the communication between tasks.  

With respect to this last item, we say that a parallel program with few 
synchronisation barriers and large tasks running on each microprocessor has 
a coarse granularity. On the other hand, a parallel program with many 
barriers, and small tasks running on each microprocessor, is said to have fine 
granularity. As a general rule for the programmer, the larger the granularity, 
the better the program performance, i.e. the less the real computing time.  

3.2 Parallelisation techniques 

3.2.1 Introduction 

Systematic classification of the parallelisation techniques is not an easy job.  
It depends, of course, on the features we pay attention to. Many of the 
categories that would result frome each feature overlap. Nevertheless, we 
propose here a classification based on two features: the agent that performs 
the parallelization and the level at which parallelization is applied, either the 
code or the problem defined through the input level.  

3.2.2 Code driven - programmer driven - user driven 
parallelization 

The agent that undertakes the parallelization process may be a first item to 
set a classification. The degree of parallelism that can be achieved is different 
for each agent.  

The most single parallelisation techniques just try to identify parallel sec
tions in a program originally written to be run on a serial machine. Paral
lelization is performed by some ancillary tools usually called autoparallelisers 
[11]. These tools look for loop based and functional parallelism, as defined 
in [22]. With this strategy, that we shall call code driven, any chance of 
parallelisation is achieved at compilation time.

10 Chapter 3. Code parallelisation



The use of parallel environments when developing a computer program is 
another way to achieve parallelization [11]. The developer is responsible for 
exploring the chances of parallelism when writing the program. This is the 
reason why we call this strategy programmer driven parallelzation. Another 
form of programmer driven parallelization is the message passing paradigm, 
in which the developer inserts in the source code library functions to spawn 
other processes, and to send and receive data from them. PVM [2, 13, 12] 
and MPI [15] are the most popular libraries for message passing.  

An intermediate cathegory, just between the two previous ones, is the use 
of parallelized library functions that performs typical algorithms in scientific 
computing. The most spread library of this type is BLAS (Basic Linear 
Algebra Subprograms) [11]. The developer that uses these library functions 
only inserts them into the source code, but is not responsible for the embeded 
parallelism.  

A final cathegory is the so called user driven parallelization, in which the 
program allows the user to specify trhough the input file the parallelization 
strategy. This strategy is strongly dependent on the particular problem to 
be solved. The parallelisation based on hydraulic loops in the CATHARE 
code, described in [4], is a good example of user driven parallelisation.  

3.2.3 Source code level - problem level parallelization 

We define code level parallelization as the parallelization applied only to the 
source code. This kind of parallelism shows some disadvantages: 

" It usually leads to a medium-fine granularity.  

" It can only identify the parallelism embedded in the source code, but 
not the parallelism that could be eventually derived from the source 
code plus the data specified through the input file.  

" The capability of this technique to identify the parallel sections strongly 
depends on the way the serial program has been written. This task 
is much easier, as it is recognized in [22], if the developer takes into 
account the different possibilities of parallelisation when writing the 
source code and designing the computational algorithms.  

"* The parallel code, and hence the execution flow is highly machine
dependent.

3.2. Parallelisation techniques 11



As an alternative to the concept of source code level parallelisation, we 
would like to introduce the concept of problem level parallelisation. Many 
times the problem to be solved by a computer code, and defined through 
the input file, shows intrinsic parallel characteristics. In the particular case 
of a simulation program, the parallel paths of the block diagram describing 
the simulated system suggest a way of parallelisation. Those loops derive 
most times from physical parallelism. For instance, the loops in a hydraulic 
system, the parallel branches in an electric circuit, etc.  

This kind of parallelism can very hardly be attained by means of code 
driven techniques. Only programmer driven and user driven techniques are 
likely to succeed. As far as we know, only two applications have made 
use of it, both based on the message passing paradigm. The first one is 
the programmer driven parallelisation, in the terms defined in section 3.2.3, 
of the thermal-hydraulic code TRAC-B by the Polytechnical University of 
Valencia [16]. In this version of TRAC-B the code identifies, after reading the 
input data, the hydraulic loops which are concurrently simulated. The time 
steps define the natural synchronisation barriers. The second application is 
the user driven parallelization of the CATHARE code [4], which has already 
been referenced in the previous section.  

It is easy to realise that problem level parallelisation techniques may lead 
to a very coarse granularity, since it implies the concurrent simulation of large 
physical systems. However, this way of parallelisation allows in most cases 
to run only a few concurrent processes, very often less than the number of 
microprocessors available. A combination of problem level and source code 
level techniques seems to be a reasonable choice to optimize the available 
computational resources.
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Chapter 4 

A proposal of standard for 
connection and paralellisation 
of computer codes 

4.1 Introduction 

In chapter 2 we have shown that code linking has to do with the interchange 
of boundary and initial conditions between codes, but not with the particular 
method used by each code to advance the solution. The advancement of the 
solution, performed in equations (2.1) or (2.2), plus equation (2.3) is just 
what makes one code different from another. This allows us to affirm that 
the structure of any computer code based on the concept of time step can be 
standardised for ease of coupling with other codes. Reference [6] points out 
that standardization of scientific software is one of the most important issues 
for the systematic growth of the capabilities of the codes. The standard does 
not affect the advancement of the solution, and hence it does not impose any 
constraint to models or numerical schemes. It has more to do with the flow 
diagram of the code in each time step. If the standard is fulfilled, allocation 
of the library routines for sending and receiving messages is straightforward.  
Furthermore, the developers can insert the library routines in the appropriate 
places yielding executable files ready to be coupled with other codes, without 
releasing the source code.  

The library used to implement the message passing between different pro
cesses is PVM. This choice is justified because PVM can operate among nets 
of computers with heterogeneous architectures. MPI shows better perfor
mance when operating on computers of the same type, but only some imple-
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mentations (e.g. [25]) can work with heterogeneous architectures. Since the 
codes to be coupled may be eventually compiled in very different machines, 
the highest priority has been given to interoperability. The University of 
Tennessee and Oak Ridge National Laboratory are carrying out research 
to merge the advantages of both PVM and MPI in a single product called 
PVMPI [14, 9].  

The standard also assumes that the linkage will be accomplished through 
a general purpose modular simulation language acting as an intermedi
ate driver that manages the time step, as described in section 2.5. With 
the methodology introduced here, parallel iterative or non iterative linking, 
through boundary and/or initial conditions can be attained.  

The methodology also permits user driven, problem level parallelisation 
of the codes, as explained section 3.2. This is possible because code linkage 
through parallel interfaces and parallelisation both use the message passing 
paradigm between different computer processes. Linkage and parallelisation 
become then two sides of the same coin when performed through a modular 
simulation language.  

The BABIECA simulation language [18] will be used to illustrate the 
standardised methodology, although any other program with similar features, 
such as MATLAB or MATRIXx, would do the job.  

With the approach proposed here users can use as many codes as needed 
for the particular simulated transient, connecting them as if they were the 
pieces of a wrecker, even substituting different models depending on the 
course of the simulation.  

4.2 Main characteristics of BABIECA 

Here we describe the characteristics of BABIECA needed to understand its 
behavior as a simulation driver for linkage and parallelisation of different 
codes.  

BABIECA is the driver of the continuous, general purpose simulation 
language integrated in the package CAMPEADOR [18]. The simulation 
language is modular, which means that the problem to be solved is defined 
as a block diagram. Each block may be considered as a multi input-multi 
output relation between time-evolving variables, and represents a physical 
system or a mathematical procedure. The input-output relation consists of 
a set of differential equations plus a numerical solution algorithm (implicit).
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Feedback Point 
to Block 2

Figure 4.1: Example of block calculation in BABIECA.  

There is no common solution algorithm for all the blocks, as it is the norm in 
most simulation languages. Blocks are particular instances of computational 
entities called modules. The set of private data of the block defines it, while 
it is the connection among the blocks and the overall computation order 
that constitute the global numerical scheme. Modules cover a broad range 
of mathematical tools, physical models and special components, and are 
mainly oriented, but not limited to the solution of large thermal-hydraulic 
networks like those appearing in Nuclear Power Plants.  

The driver routine of BABIECA manages the time step control and calls 
the modules sequentially in a user-defined order. When all the blocks have 
been successfully computed the time step is considered to be finished, and a 
new time step calculation begins.  

The calculation order may be broken by feedback loops. These arise 
in situations when an output signal is needed and it is not yet calculated.  
Feedback loops can be solved iteratively by defining feedback points. A feed
back point checks if the values of a given output signal in two succesive 
iterations are coincident within a tolerance margin. The convergence may 
be accelerated by using numerical methods for fixed point or root finding.  
The sequence of solution used by BABIECA is illustrated with the example 
shown in figure 4.1.  

Blocks 1, 2 and 3 are computed in sequence. If the output of block 3 
does not agree with the initial guess value used as input of block 2 within 
the specified tolerance margin, blocks 2 and 3 are computed again, after 
resetting the extended state vector to the value at the beginning of the time 
step. Once the convergence criterion has been met block 4 is called, finishing 
the current time step.  

One remarkable feature of BABIECA that allows the dynamic replace
ment of blocks is that the execution of a block can be stopped, remaining in 
a stand-by state, when a certain criterion has been reached. When the block 
is restarted new initial conditions must be provided. This feature is crucial
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to the code linkage scheme via initial conditions.  

4.3 Standard specifications relating the mod
ular driver 

The linkage of codes via the BABIECA simulation driver, or any other sim
ilar, is accomplished by turning them into BABIECA modules. Despite the 
very different nature of the codes to be linked it is possible to build a sin
gle general module that constitutes the framework for the connection of any 
code, covering the code-independent operations and allowing specific tasks 
to be inserted appropriately. To be more precise two modules have been 
written, one to spawn and send data to the code and other to receive data 
from it. These modules are called sndcode and rcvcode respectively. They 
are documented in appendices A and B. This apparently artificial splitting 
into two modules is justified by parallelisation reasons, as it will be seen 
later. These two modules work together as follows: 

Although the documentation provides full explanation about the func
tioning of those modules, we will point here some general guidelines. First 
of all, the emission block spawns the remote code and sends the names of 
those variables that will act as boundary conditions and those variables that 
will act as initial conditions by using PVM library functions. The block 
sends the code the current simulation time and the BABIECA time step.  
Moreover, the block computes the boundary conditions from the block input 
signals and sends them to the remote code. Allowance is made for the case 
where the remote code was not active during the previous time step and 
needs to be initialised. The initial conditions are computed from the block 
input variables supplied for this purpose and sent to the remote code. No 
more tasks are to be done by the emission block.  

The reception block takes from its counterpart emission block the process 
identification number of the remote code, necessary to receive the output 
variables. In the time step in which the remote code is spawned the reception 
block sends the remote code the names of the output variables demanded by 
the user. At any time step, the reception block gets from the remote code 
the values of those variables.  

Since the remote code is still running even though the execution of the 
emission block has been terminated for the current time step (or iteration), 
parallelisation of problems can be easily achieved with the use of both mod
ules. As it has already been explained in section 3.2, in many cases the
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4.3. Standard specifications relating the modular driver

Figure 4.2: Parallelisation of a hydraulic circuit.

problem to be solved has intrinsic parallel characteristics, in the sense of in
formation flow, due to physical parallelism. For instance, a thermal-hydraulic 
circuit consisting of a number of loops and a central vessel where the flows 
of all the loops are mixed, may be simulated with a single thermal-hydraulic 
code. The input may be split into the parallel components of the circuit, i.e.  
the vessel plus the loops. If the loops are identical they may even share the 
same input file. The vessel will act as the physical sincronisation barrier.  
Figure 4.2 shows how the parallelisation of this system would be performed 
with BABIECA.  

The 1st block to be called is that which spawns the vessel simulation.  
The outputs which act as input signals for the loops are received by the 2nd 
block. The 3rd block is called and the process simulating the 1st loop is 
spawned. The 4th and 5th blocks are also called, spawning respectively the 
2nd and 3rd loops. At this point the three loops are running simultaneously 
in parallel, saving a considerable amount of time if each process runs on a 
different processor or in a different machine. Blocks 6, 7 and 8 are then 
called to receive the output data from the respective processes once they 
have finished their computations. Feedback points could have been defined 
between blocks 6, 7, 8 and block 1, if iterative coupling were desired. If 
the code linkage were implemented in only one BABIECA module for both 
sending and receiving data, the processes could not run simultaneously and 
hence true parallelisation of the problem would not be feasible.  

The boundary conditions linkage proposed in this paper may be done 
with any other modular simulation language, for instance, SIMULINK and 
MATRIXx. The source code of the two modules would be almost the same 
in any case. However, the coupling of codes via initial conditions cannot be
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done with these codes, since they are not capable of stopping the execution 
of a given block. Additionally, this provides a method for overriding the 
problems that arise when the physical models approach the end of their 
applicability range. This is often the case when very different situations 
arise in the course of the simulation, and very different models are needed.  
One solution is to integrate all models needed in a single code, starting them 
at its due time; however, this makes coding cumbersome and results in large 
codes. In BABIECA, the model approaching the limit would deactivate itself 
and a new code would be triggered with the appropriate model and initial 
conditions.  

4.4 Standard specifications relating the codes 
to be coupled 

Appendix C shows a documented template of a C-like program fulfilling the 
proposed standard. The template does not develope the tasks relating the 
input file reading, solution advancement and output management. We em
phasize that these code dependent tasks do not disturb the code linkage, 
which is just what makes standardization possible. If a program developer 
desires to follow this standard, he just needs to add those tasks to the tem
plate. The resulting code will be ready to be coupled to the BABJECA 
program (or a similar one) without additional effort.  

The template intends to be self-explanatory. Nevertheless, the main items 
will be explained here.  

After reading the input file, which is a code dependent task, the code 
tries to enroll into PVM and to get the task identification number of the 
parent process. If this identification number is zero, it means that the code 
has been run stand-alone. The PVM functions used to couple the code with 
BABIECA are enclosed into conditional statements that depend on wether 
the code has a been spawned by a parent process or not. In the latter case 
the conditional statements are skipped, and the code behaves as usually.  

On the other hand, if the code has been spawned by a parent process, it 
is assumed that it will be coupled with BABIECA. The code receives from 
BABLECA, if it is so demanded, the names of the initial conditions that 
will be overwritten. The names of the boundary conditions will be received 
as well. The code must obtain then pointers to the memory allocations 
of the variables represented by those names. The program developer must 
report in the program documentation the nomenclature used to refer to those
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variables. The values of the variables are received and put into the proper 
allocations, as well as the initial time, overwriting the values obtained from 
the input file. With these new boundary and initial conditions the code 
computes the extended vector and the outputs in the initial time. The code 
receives then from the BABIECA module rcvcode the names of the output 
variables that will be sent back. The memory allocation of those variables 
is searched, yielding proper pointers. The data stored in those memory 
allocations is sent to BABIECA.  

In succesive solution advancements, the code receives from BABIECA 
the current time step, which will overwrite the time step chosen in principle 
by the code. A flag indicating whether the advancement of the solution is the 
first attempt to solve the current time step, or on the other hand it is a new 
attempt to solve the same time step (i.e. an iteration), is also received. In 
the former case, the extended state vector is that obtained in the previous 
successful time step advancement. In the latter case, the extended state 
vector is the same as in the previous iteration. This feature is crucial if 
iterative coupling between codes is desired. The new values of the boundary 
conditions are received as described before, shifting the old values. The 
solution is advanced and the outputs are sent to the driver program. The 
results of the remote code are written in the corresponding file only if the 
iteration flag indicates that the previous attempt was successful. In this case 
the outputs from the previous time step are written. The outputs can not be 
written just after computation of the solution, since the remote code has no 
means to know if the overall advancement will be successful. Only the driver 
code is able to decide this. Of course, the emission and reception tasks are 
perfectly synchronized with their counterparts in the sndcode and rcvcode 
modules.  

4.5 Linkage of the RELAP5 code 

The RELAP5 code does not fulfill, of course, the standard proposed in this 
report. However, proper inclusion of PVM message passing routines into 
the original source code can make RELAP5 behave as if the standard were 
fulfilled. Searching of the places where the PVM functions must be allocated 
has been a cumbersome task that would had been avoided with standard
ization. This section gives an overview on the job undertaken to couple 
RELAP5 to the BABIECA driver.  

The standard states that the code must received the names of the bound
ary and initial conditions after reading the input file. This is accomplished
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in RELAP5 by inserting the following code at the end of subroutine inputd: 

c relap5 gets the tid of the parent process through PVM.  
call pvmfparent (partid) 

c If pvmd is not running, the parent tid is set equal 
c to "PvmNoParent".  

if(partid .lt. 0) then 
partid = PvmNoParent 

endif 
c If RELAP5 has been spawned by other process it will be 
c coupled to other codes via PVM. RELAP5 gets the names 
c of the variables that will act as boundary and initial 
c conditions.  

if (partid .ne. PvmNoParent) then 
call pvmnames 

endif 

The routine pvmnames receives the names of the boundary conditions.  
Coupling through initial conditions has not been implemented yet. By the 
moment, only boundary conditions specified through time dependent vol
umes or junctions can be modified by BABIECA. The name of each bound
ary condition comprises two fields separated by a '-'. The first field refers to 
a physical variable that can be specified through a time dependent volume 
or junction, i,e. p, uf, ug, voidg, boron, tsatt, quale, sattemp, velfj, 
velgj, mflowfj and mflowgj. Coupling through other boundary conditions 
(general tables) has not been implemented yet. The second field specifies the 
three digit number of the component that holds the boundary conditions to 
be modified by BABIECA.  

Just after calling the RELAP5 subroutine trnset, which makes RELAP5 
be ready to run the transient, the new subroutine bndset is called. This 
subroutine takes the previous variable names and component numbers and 
gets the position of the corresponding tables in array f a. bndset checks 
that each name of the physical variables is one of the variables specified in 
cards ccc0200, through digit t in word 1 for a time dependent volume, and 
through word 1 for a time dependent junction.  

Subroutine bndset calls in turn subroutine rcvbound, which receives the 
values of the boundary conditions used in initiallization phase and puts them 
into the memory areas obtained by bndset with the help of the auxiliary 
routine settdcmp. Moreover, rcvbound receives the flags that indicate if the 
attempted advancement is a new time step or a new iteration of the same 
time step and the time increment.
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Prior to the code lines 

dthy = dtmax(i) 
if (timehy + 1.ldO*dthy .ge. tspend(i)) then 

dthy = tspend(i) - timehy 
endif 
dtht = dthy 
dt = dthy 
if (chngno(15)) dtxmdt = dthy 

in subroutine dtstep, which is responsible of advancing the solution, the 
following lines have been added: 

if (partid.ne.PvmNoParent) then 
call pvmlink 

c if the parent process is going to finish, the variable tspend 
c is modified to force termination of RELAP5 by end of time 
c step cards. RELAP5 leaves PVM and the control is transferred 
c to label 1125, where RELAP5 checks if the transient is going 
c to finish.  

dtmax(i) = timestep 
if (iterflag. eq. 3) then 

tspend(filndx(2)) = timehy 
call pvmfexit(info) 
goto 1125 

endif 
endif 

As usually, the piece of code is only executed if the RELAP5 process 
has a parent. Routine pvmlink receives from module rcvcode the names 
of the output variables that will be sent to BABIECA, if this is the first 
time pvmlink is called. These names also obey the scheme variable name 
component number. The component number has the well known structure 
cccvv0000 for hydrodynamic components and cccg0nn for the heat struc
tures. In this last case, the previous field may be appended with digits 00 or 
01 to obtain the values of variables relating to the radial nodalization. The 
memory positions of the variables in array fa are obtained, and the required 
outputs sent to the parent process. At the end of routine pvmlink, the rou
tine rcvbound is called again, in order to receive the time step interval and 
the boundary conditions for the following time advancement. Just after, the 
RELAP5 requested time step dtmax(i) is overwritten with the time step
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timestep received from the parent process. If the parent process demands 
termination of the simulation, the simulation time timespend is set to the 
variable timehy to force termination of the RELAP5 process by the time 
step cards.



Chapter 5 

Application example 

5.1 Problem setup 

This chapter describes an example used to demonstrate the capability of 
RELAP5 to be coupled to other codes via BABIECA. To be precise, the 
example connects four copies of the RELAP5 code among them, solving a 
consistent simulation problem. The example also illustrates, by the way, how 
the proposed connection methodology may be used to parallelize simulation 
problems. However, it must be remarked that this is a code connection ex
ample rather than a parallelization one. The performance of the parallelised 
problem may be even worse than that of the original problem. Particularly, 
the parallelised problem is stabilized at the expense of decreasing the time 
step.  

The example consists of a three loop hydraulic circuit. The flows from 
the loops are collected in a central pipe. The flow in the system is maintained 
by three pumps, each one located in a loop. The system has been simulated 
with RELAP5/Mod3.2. The nodalization is shown in figure 5.1, where only 
the central pipe and one of the loops have been represented. The central pipe 
and the loops are attached through cross-flow junctions, indicated with a "'x" 
in the figure. A heat structure with constant temperature as a boundary 
condition has been added to the central pipe, to remove the heat supplied 
by the pumps.  

The following transient has been simulated: after 50 seconds at steady 
conditions, the pump in loop 1 is triped yielding a coastdown. After 250 
seconds of transient a second coastdown takes place as a result of the trip of 
the pump in loop 2.
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Figure 5.1: Nodalization scheme of the three loop circuit.  

In order to check the capability of RELAP5 to be linked to other codes 
through the BABIECA program, the original input file has been split into 
four files, each one containing the central pipe and the loops respectively. In 
each file, the rest of the circuit is substituted by proper boundary conditions, 
input through time dependent volumes and junctions.  

Two different splitting schemes will be checked. In the first one, depicted 
in figure 5.2, the central pipe and the loops are dettached through the cross
flow junction. In the second scheme, shown in figure 5.3, the RELAP5 file 
that contains the central pipe also includes the first node of each loop. As a 
consequence, the loops are dettached through single junctions.  

The four RELAP5 input files will perform the overall simulation of the 
circuit by linking the corresponding computer processes through the BA
BIECA program. Appendix D shows the BABIECA input file necessary to 
link the RELAP5 processes. BABIECA transfers the pressure in the first 
node of the central pipe/loop to the time dependent volume at the outlet of 
each loop/central pipe. The internal energy of the last node of the central 
pipe/loop is transferred to the time dependent volume at the inlet of each 
loop/central pipe. The outlet velocity in the central pipe/loop is sent through 
BABIECA to the time dependent junction at the inlet of each loop/central 
pipe. This information exchange is represented with dashed lines in figures 
5.2 and 5.3. The exercise will demonstrate how RELAP5 can be connected 
to other codes (in this example they are the RELAP5 code itself, but it does 
not make any difference) with the scheme proposed in this report. Moreover, 
it illustrates an example of problem level parallelization like that in figure 
4.2, since the processes that simulate the loops will run concurrently.
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Figure 5.2: Parallelization through cross-flow junctions.  

For each splitting scheme two cases will be run. In the first one the 
time dependent volumes are very short and with a very large cross-sectional 
area, as recomended in the RELAP5 guidelines. In the second case, the time 
dependent volumes have the same dimensions as the control volumes they 
substitute in the counterpart files.  

5.2 Results 

Figures 5.4 to 5.7 show the velocity in the main pipe and loops 1, 2 and 3. The 
symbol * represents the RELAP5 original case. The parallelization denoted 
as 1, and represented by the symbol 4, obeys the scheme in figure 5.2, with 
short and broad time dependent volumes. Parallelization 2, represented by 
the symbol <, obeys the scheme in figure 5.2, with time dependent volumes 
equal to those they substitute. Parallelization 3, represented by the symbol 
Q2, obeys the scheme in figure 5.3, with short and broad time dependent 
volumes. Finally, parallelization 4, represented by 4, obeys the scheme in 
figure 5.3, with volumes equal to those they substitute.  

It is easy to realize from the trend of the results that parallelization 
scheme 4 yields the closest results to those obtained in the base case. Paral
lelization 1 gives raise to particularly poor results. As a conclusion, splitting 
through cross-flow junctions is not recomended at all. Usage of time de
pendent volumes with the same dimensions as those they substitute is also
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Figure 5.3: Parallelization through single junctions.  

recomended. Figures 5.5 and 5.6 also demonstrate that the RELAP5 flow 
reversal capability is not affected by the linkage and parallelization scheme 
proposed here.  

5.3 Run statistics 

The CPU time spent to run the base case has been 4968 seconds. The cor
responding time for parallelization 4 has been 4571. Thus, no significative 
execution acceleration has been attained. Since the coupling between the 
four hydraulic components is non-iterative, the BABIECA input file can be 
modified to force execution of all the emission blocks prior to the recep
tion blocks. In this last case, all the four RELAP5 processes are executed 
simultaneously. The CPU time is then 2859 seconds.  

These results can be explained as follows: since the original circuit has 
been split into four input files, each one with a similar computational load, 
an acceleration with a factor of 4 is expected. However, the execution of 
RELAP5 takes at least a certain time, independently from the number of 
control volumes. This makes that the execution time of each partial input 
file be one half of the full one, instead of one fourth. Moreover, the loops 
are executed always after the central pipe. Hence, two serial processes, the 
central pipe and the loops, are being executed. As a result, the execution 
time of the parallelized version is comparable to that of the RELAP5 base
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case. An acceleration with an approximate factor of 2 is attained in the case 
where the central pipes and the loops are executed concurrently.  

The machine used for this work is a CONVEX SPP-2000, with 16 HP
Ultrix processors. The operating system is HP-UX, release B.10.01, version 
U. The PVM version is 3.3.11. The RELAP5 version is 3.2.



Chapter 6 

Conclusions 

Writing of scientific computer codes for simulation of transients, based on 
the concept of time step, can be standardised for ease of coupling with other 
codes (which also fulfill the standard). The coupling is achieved by means 
of a general purpose simulation program such as BABIECA, which manages 
the time step and transfers the relevant information among the different 
codes, according to a given topology defined in the BABIECA input file. The 
information transfer between the codes is performed by means of the de facto 
standard for distributed computing, which is currently PVM. Migration to 
other message passing routines can be easily done, if the standard for message 
passing changes in the future. The same executable file of each code can be 
used to be coupled to BABIECA or for stand-alone running, without using 
any special option in the input file. The scheme proposed here leads to open 
simulation models, in which new codes can be added at any time to enhance 
the system capabilities and some codes already linked may not be used in 
some cases.  

The scheme can be also used to attain problem level, user driven paral
lelisation of problems which show a sort of physical parallelism.  

A single application example has been used to demonstrate how the RE
LAP5 code can be coupled to other codes and how RELAP5 problems with 
hydraulic loops can be parallelized.
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Appendix A 

File sndcode 

A.1 Description of the module 

This module belongs to BABIECA, and is the responsible for sending its 
inputs to the remote code. Initial and/or boundary conditions can be sent 
depending on the input file spceifications. The file complies with the manda
tory structure for a BABIECA module, namely 

(Include files 0 ) 
(Functions prototypes 89) 
BABMODULE(sndcode_) { 

(Module variables 2); 
switch (control[O]) { 
case BabRead: 

{ 
(Input file reading 8); 
break; 

} 
case BabCalc: 

case BabSSCalc: 
case BabFbck: 
case BabSsFbck: 
{ 

(Calculation mode 5); 
break; 

} 
case BabSave:
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(Send save message to remote 15) 
break; 

} 
case BabRestore: { 

(Send restore message to remote 16) 
break; 

} 
case BabLastp: { 

(Termination mode 13); 
break; 

I 
default: 
} 
return errcode; 

} 
(Auxiliary functions 87): 

¶ Variable errcode will carry the error code to be returned to the calling 
routine. A zero value indicates no error, other values are set according to 
the include baberr.h. ninputs and n are dummy index variables for later 
use in for constructs.  

2(Module variables 2) 
int errcode; 
int ninputs, n; 

See also chunks 7, 22, 36, 37, 39, 46, 52, 67 and 77.  

This code is used in chunk 1.  

A.1.1 Code sections 

A.1.1.1 Calculation mode 

¶ In the calculation mode, the first input to the block is checked. If it 
is equal to one, the block will be active during the current time step. The 
remote code is started if this is the first time this occurs. Then, the code 
is executed nsteps times, and the appropriate values are stored for later
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retrieval. If the code has been executed, the driver is informed (by means 
of control[2]) of the change in the execution mode, so that it can skip the 
appropriate blocks. A copmplementary behaviour is done if the code is not 
executed. Later, the ouput of the block is set.  

5(Calculation mode 5) 
if (1.0 - ent [0]) { /* Active during this time step ,/ 

(Load variables for this time step 6) 
if (0 = rcspawnr) f 

/* If this is the first time the remote code has been active. ,/ 
(Start the remote code 34) 

} 
(Execute the remote code nsteps times 45) 
vinvar[3] = (double) 1.0; /* This is prevexec ,/ 
control[2] - (int) vinfij [0]; 

/* The code requests a change in the executing mode ,/ 
} 
else { /* Not active in this time step ,/ 

vinvar[3] = (double) 0.0; /* prevexec ,/ 

} 
sal[O] = (double) rcodetid; 
errcode = BabWAtt; /* No error occured ,/ 

This code is used in chunk 1.  

¶ Sndcode_ retrieves stored variables: 

1. Executable variables 

2. Boundary conditions variables 

3. INitial conditions variables 

4. The tid of the remote code is stored in rcodetid.  

5. The value of the execution flag in the previous time step is stored in 
prevexec.  

6. The flag that indicates if the remote code has already been spawned is 
stored in rcspawn.
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6( Load variables for this time step 6) 
(Load executable variables 21) ; 
(Load boundary conditions variables 65); 
(Load initial conditions variables 50) 
rcodetid = (hit) vinvar[O]; 
if (control[0] > 0) { 

vinvar[1] = vinvar[3]; 

prevexec = (int) vinvar[1]; 
rcspawn = (hit) vinvar[2]; 

See also chunk 44.  

This code is cited in chunk 10.  

This code is used in chunk 5.  

¶ The following vaiables need to be declared.  

7( Module variables 2) +-
int prevexec = 0, rcspawn = 0; 
int rcodetid; 

A.1.1.2 Reading of the input file 

8(Input file reading 8) { 
(Variables declarations for the input file reading section 9); 
nument = control[3]; 
(Read execmode 31); 
(Read the host name 25); 
(Read the executable name and arguments 26) 
(Read nulltrsteps 32) ; 
(Read boundary conditions 69); 
(Read initial conditions 54) ; 
(Save values for the driver 10); } 

This code is used in chunk 1.  

¶ Some variables need not be shared by the whole of Sndcode_, because 
they are only used within the reading mode. These are declared here as they 
appear.
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9( Variables declarations for the input file reading section 9) M 
int numenr-t; 

See also chunks 29 and 33.  

This code is used in chunk 8.  

¶ The driver structure needs several parameters to be stored: 

"* vinfij values that will be restored in (Load variables for this time 
step 6 ) ; 

"* The controlarray 

Sndcode- also performs some basic error checking.  

10( Save values for the driver 10) =
(Save executable information 20) 
(Save boundary conditions information 64) 
(Save initial conditions information 49); 
(Check the number of inputs 11; 
(Fill the control array 12); 

This code is used in chunk 8.  

¶ The number of inputs must be equal to the number of boundary condi
tions plus the number of initial conditions plus the activation signal.  

11( Check the number of inputs 11) 
ff (nument # (nbound + ninit + 1)) { 

errcode = -24; 
return (errcode); 

} 

This code is used in chunk 10.  

¶ Sndcode_ updates "control" array: 

• Return code, errcode, is set to 0, i.e., function has been executed cor
rectly.

e Number of outputs, i.e., control[3], is set to 1.
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" Size of vinfij array is saved in control[4], i.e, 15.  

"* Size of vinvar array is saved in control [5], i.e, 4.  

"* Size of stat array, i.e., 0, is saved in control [6] 

12(Fill the control array 12) 
errcode = 0; 
control[3] = 1; 
control[4] = 15; 
control[5] = 4; 
control[6] = 0; 

This code is used in chunk 10.  

A.1.1.3 Termination mode 

The remote code is informed that it must exit.  

13( Termination mode 13) -= 
rcodetid = (int) vinvar [0]; 
rcspawn = (int) vinvar [2]; 
if (rcspawn =- 1) { /* The code was once started */ 

initflag = 0; 
prevexec = 0; /* They will not be used in the remote code ./ 
(Obtain a buffer 79); 
(Pack control[0] 80); 
(Pack initflag 84); 
(Pack prevexec 83); 
info = pvm.send (rcodetid, TSTEPVAR); 
if (info < 0) return (babpvmerror_(info, "pvmyrsend")); 
pvrm-free (bufid); } 

This code is used in chunk 1.  

A.1.1.4 Save and restart 

15¶ (Send save message to remote 15) /* Not yet done */ 

This code is used in chunk 1.
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16¶ (Send restore message to remote 16) /* Not yet done ,/ 

This code is used in chunk 1.  

A.1.2 Particular tasks 

A.1.2.1 Driving the remote code 

A.1.2.1.1 Save/restore variables 

¶ Sndcode_ saves 

"* The execution mode in vinfij [0].  

"• The host name in vinfij [1].  

"* The pointer to the executable name in vinfi [21.  

"* The pointer to the remote code arguments in vinfij [3].  

"• The number of time steps of the null transient to be run in steady-state 
mode in vinfij[12].  

20( Save executable information 20) 
vinfij [0] = (double) execmode; 
vinfij[1] = (double) ((int) hostname); 
vinfij[2] = (double) ((int) execname); 
vinfij[3] = (double) ((int) argspt); 
vinfij [12] = (double) nulltrsteps; 

This code is used in chunk 10.  

¶ The name of the remote code stored in execname is retrieved.  

21( Load executable variables 21) =
execname = (char *) ((int) vinfij [2]); 

This code is used in chunk 6.  

¶ execname is a string, 

22( Module variables 2) ±

char * execname;
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¶ Sndcode_ reads the hostname, the executable name, the command argu
ments, the pointer to the names of the boundary conditions and the pointer 
to the names of initial conditions.  

23( Get the parameters needed for starting the remote code 23) 
hostname = (char *) ((int) (vinfij[1])); 
argspt = (char **) ((int) vinfij[3]); 
(Get the boundary conditions names 66) 
(Get the initial conditions names 51) 

This code is used in chunk 34.  

A.1.2.1.2 Read host, name and arguments of the remote code 

¶ Sndcode_ calls nextlin to read the string describing the host where the 
remote code is installed. Memory is allocated and the name is read. String 
msgl is written if an end-of-file is detected, and msg6 if the memory allo
cation fails.  

25( Read the host name 25) 
nextlin_(linea, 80, msgl , 80); 
linecount = 1; 
saltesp_(linea, & lineount , 80); 
(Obtain the pointers to the first and last non-blank characters delimiting 

the string 86) ; 
hostname = (char .) malloc((strlen(wordpt) + 1) * sizeof (char)); 
if (A =- hostname) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "); 
errmsg_ (&errcode, msg6 .msg7, 80, 80); 
return (errcode); 

} 
strcpy (hostname, wordpt); 

This code is used in chunk 8.  

¶ The wxecutable name and its arguments must also be read from the 
input file.  

26( Read the executable name and arguments 26) 
nextlin_ (linea, 80, msgl , 80); 
linecount = 1;
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42

saltesp_(Iinea, M linecount , 80); 
(Obtain the pointers to the first and last non-blank characters delimiting 

the string 86) 
execname = (char ,) malloc ((strlen (wordpt) + 1) sizeof (char)); 
if (A - exeename) { 

errcode = -24; 
strcpy(msg6, "Failtouallocateumeimory. "); 
errmsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
strcpy (execname, wordpt); 
linecount += 2; 

/, one to convert FORTRAN to C indices and another to skip the 
null character that ends the previous word in string linea. ,/ 

info = linecount; 
saltesp_(linea, &1 linecount , 80); 
argspt = (char **) malloc(sizeof (char ,)); 
for (nargs = 0; linecount > 0; nargs++) { 

(Realloc argspt 28) ; 
(Read an argument to the remote code 27); 

} 
(Realloc argspt 28); 
argspt[nargs] = A; /* Standard to end the array argspt ,/ 

This code is used in chunk 8.  

¶ Only ine argument at a time.  

27( Read an argument to the remote code 27) 
(Obtain the pointers to the first and last non-blank characters delimiting 

the string 86) ; 
argspt[rnargs] = (char ,) malloc((strlen(wordpt) + 1) * (sizeof (char))); 
if (A - argspt[nargs]) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "); 
errmsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
strcpy (argspt [nargs ], wordpt); 
linecount += 2; 

/, one to convert C to FORTRAN indices and another to skip the 
null character that ends the previous word in string linea. */
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info = linecount; 
saltesp_(linea, &linecount , 80); 

This code is used in chunk 26.  

¶ Variable argspt ia a list of strings carying the arguments. It has to be 
enlarged each time a new argument apperas, and once more for the last A 
pointer.  

28(Realloc argspt 28) 
argspt = (char **) realloc(argspt, (nargs + 1) * (sizeof (char .))); 
if (A-- argspt) { 

er'rcode = -24; 
strcpy (rsg6, "Failutouallocateumemory.t"); 
errrnsg_(&errcode, msg6, msg7, 80, 80); 
return (errcode); 

} 
This code is used in chunk 26.  

¶ We need to declare 

"* linecount is an integer to count the position read within a line 

"* wordpt is the actual pointer to the string line 

"* line is the line read by nextlin 

"* msgx are error messages 

29( Variables declarations for the input file reading section 9) ±+ 
int linecount; 
char *wordpt, linea[80]; 
char msgl [80] = "SNDCODE. uERRORuREAD INGuINPUTuLINE."; 
char msg6 [80]; 
char msg7[80] = "ull; 

A.1.2.1.3 Line by line integer parameters reading 

¶ Sndcode_ calls nextlin, and reads the value for execmode.
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31(Read execmode 31) 
nextlin_(linea, 80, msgl , 80); 
linecount = 1; 
execmode = leerint_(linea, &Ilinecount, 80); 

This code is used in chunk 8.  

¶ Sndcode_ calls nextlin to read the number of time steps of the null tran
sient that will be run in steady-state mode.  

32( Read nulltrsteps 32) =
nextlin_(linea, 80, msgl , 80); 
linecount = 1; 
nulltrsteps = leerint_ (linea, & Iinecount , 80); 

This code is used in chunk 8.  

¶ The two variables read are int.  

33( Variables declarations for the input file reading section 9) +
int nulltrsteps, execmode,; 

A.1.2.1.4 Procedure to start the remote code 

34( Start the remote code 34) 
(Enroll PVM 35) ; 
(Get the parameters needed for starting the remote code 23); 
(Connect to the specified host 38); 
(Spawn the remote code 40 ) ; 
(Send the data for the remote code 41); 

This code is used in chunk 5.  

¶ Sndcode_ enrolls in PVM.  

35(Enroll PVM 35) = 
mytid = pvmrmytid (); 
if (mytid < 0) return (babpvmerror_(mytid, "pvm..mytid"));

This code is used in chunk 34.
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¶ mytid takes the value of the task identification assigned to this code by 
the pvm daemon.  

36( Module variables 2) ±
bat mytid; 

¶ The following are the name of the host where the code will run and the 
arguments array.  

37(Module variables 2) ±
char *hostname, **argspt 

¶ Sndcode_ tries to connect to the host where the remote code will run. If 
we want to run the remote code in the current host the connection is not 
needed. In the latter case the hostname is changed from thishost to void 
string, which is the word understood by PVM.  

38( Connect to the specified host 38) -= 
if (0 0 strcmp(hostname, "thishost")) { 

info = pvm-addhosts (& hostname, 1, &infos); 
if (info < 0) return (Babpvmerror- (info, "pvmi.addhosts")); 

} 
else { 

free (hostname); 
• hostname = calloc (1, sizeof (char)); } 

This code is used in chunk 34.  

¶ For the first time, the variable info is used. It will be an bat that takes 
the error codes returned by PVM routines. Likewise, infos is also a reproting 
variable. Below, bufid will also be used in this manner.  

39( Module variables 2) +±= 
int info, infos, bufid; 

¶ Sndcode_ spawns the remote code if this is the first time the block is 
active. The remote process identification number is saved in vinvar[O].
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40( Spawn the remote code 40) _
pvmyrspawn (execname, argspt , 1, hostname , 1, & rcodetid); 
if (rcodetid < 0) return (babpvmerror.(rcodetid, "pvm..spawn")); 
vinvar[O] = (double) rcodetid; 

This code is used in chunk 34.  

¶ Sndcode_ obtains a buffer to pack the data to be transferred to the remote 
code, and packs 

1. The boundary conditions.  

2. The initial conditions.  

3. The initial and target time.  

Then, the packed data are sent, and the temporary memory used is 
freed. For later use, since the block has been activated once at least, the flag 
rcspawn is set to 1.  

41( Send the data for the remote code 41) 
( Obtain a buffer 79) ; 
(Pack the boundary conditions names 73); 
(Pack the intial conditions names 58) 
info = pvresend(rcodetid , INBNDNAM); 
if (info < 0) return (babpvmerror_(info, "pvmyrsend")); 
(Free used memory 42) ; 
vinvar[2] = (double) 1.0; /* This is actually rcsspawn ./ 

This code is used in chunk 34.  

¶ The memory used by the host name, by the arguments, by the names of 
the initial and boundary conditions. Finally, the buffer provided by PVM is 
freed.  

42( Free used memory 42) 
free (hostname); 
for (nargs = 0; argspt[nargs] : A; nargs++) free(argspt[nargsl); 
free (argspt [nargs]); 
free (argspt); 
for (ninputs = 0; ninputs < nbound; ninputs-I+) {
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for (nvars = 0; nvars < boundnumber[ninputs]; nvars-+-) 
free (boundpt [ninputs] [nvars ]); 

free (Lboundpt [ninputs]); 
} 
free (boundpt); 
for (ninputs = 0; ninputs < ninit; ninputs-H) { 

for (nvars = 0; nvars < initnumber[ninputs]; nvars++) 
free (initpt [ninputs ] [rnvars]); 

free (iinitpt [ninputs ]); 
} 
free (initpt); 
pvmjfreebuf (bufid); 

This code is used in chunk 41.  

A.1.2.1.5 Executing a transient in the remote code 

¶ In case of steady-state calculation, BABIECA will demand the execution 
of a number of time steps read from the input file and saved in vinfij [12]. It 
is given the name nsteps.  

44( Load variables for this time step 6) ±
if (abs(control[0]) - BabSSCalc) { 

nsteps = (int) vinfij[12]; } 
else { 

nsteps = 1; 
} 

¶ The execution of the remote code is demanded nsteps times.  
45( Execute the remote code nsteps times 45) 

for (n = 0; n < nsteps; n++) { 
(Obtain a buffer 79) 
(Pack control [0] 80) 
(Determine if initial conditions will be transferred and pack the 

flag 60 ) ; 
(Pack prevexec 83); 
if (initflag) { /* If initial conditions given to the remote code ,/ 

(Compute initial conditions and pack them 61); }
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(Compute boundary conditions and pack them 75); 
(Pack current time 82) ; 
(Pack the flags for output reception 76) 
info = pvmrsend (rcodetid , TSTEPVAR); 
if (info < 0) return (babpvmerror_(info, "pvm.send")); 
pvm-freebuf (bufid); 

} 

This code is used in chunk 5.  

¶ Variables needed here.  

46( Module variables 2) +
int nsteps, initflag; 
int nargs, nvars; 

A.1.2.2 Initial coditions management 

A.1.2.2.1 Save/restore initial conditions information 

¶ Sndcode_ saves 

"* The pointer to the names of the input variables for initial conditions 
in vinfij[8].  

"* In vinfij [9] the address of the array initnumber.  

"* The number of input signals from which the initial conditions will be 
derived in vinfij [10].  

"* The total number of initial conditions that will be transferred to the 
remote code in vinfij [11].  

Memory is reclaimed for the array initto and the pointer to the area 
requested saved in vinfij [14].  

49( Save initial conditions information 49) 
vinfij [8] = (double) ((int) initpt); 
vinfij[9] = (double) ((int) initnumber); 
vinfij[101 = (double) ninit; 
for (ninputs = 0, totinit = 0; ninputs < ninit; ninputs++) { 

totinit += initnumber [ninputs];
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vinfij [11] = (double) totinit; 
initto = (double *) malloc (totbound * sizeof (double)); 
vinfij[14] = (double) ((int) initto); 

This code is used in chunk 10.  

¶ The variables previously saved are restored.  

50( Load initial conditions variables 50) 
initnumber = (int *) ((int) vinfij [9]); 
ninit = (int) vinflj [10]; 
totinit = (int) vinfij [11]; 
initto (double *) ((int) vinfij [14]); 

This code is used in chunk 6.  

¶ initpt takes the pointer to the memory assigned to the names of the 
initial conditions.  

51( Get the initial conditions names 51) 
initpt = (char ***) ((int) vinfij [8]); 

This code is used in chunk 23.  

¶ Initial conditions variables needed 

52(Module variables 2) 
int *initnumber; 
int ninit, totinit; 
double *initto; 
char ***initpt; 

A.1.2.2.2 Initial conditions reading 

¶ Sndcode_ calls nextlin to read the number of input signals that will be 
used to compute the remote code initial conditions. String msgl is written 
if an end-of-file is detected. The number of input signals is stored in ninit.  
Two arrays are needed. One, initnumber, that stores the number of initial 
conditions. Other, initpt, that stores an array of arrays of strings. These 
string are the names of the variables that will act as initial conditions.
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54( Read initial conditions 54) _• 
nextlin-(linea, 80, msgl , 80); 
linecount = 1; 
ninit = leerint(linea, &lirnecount , 80); 
initnumber = (int *) mallocr(ninit * sizeof (int)); 
if (A =- initnumber) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "); 
errmsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
initpt = (char ***) malloc((ninit + 1) * sizeof (char **)); 
if (A boundpt) { 

errcode = -24; 
strcpy (msg6, "FaiJlutouallocateumemory. "); 
ermsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
initpt[ninit] - A; 
for (ninputs = 0; ninputs < ninit; ninputs-++) { 

/* Fill the array initpt */ 
nextlin_(4linea, 80, msgl , 80); 
(Read a line of variables for initial conditions 55); 

} 

This code is used in chunk 8.  

¶ In each line, a set of varibles for initial conditions is read. This needs 
allocating memory for the variables.  

55( Read a line of variables for initial conditions 55) 
initpt [ninputs] = (char **) malloc (sizeof (char ,)); 
if (A - initpt [ninputs]) { 

errcode = -24; 
strcpy(msg6, "Failutouallocateumemory. "); 
errmsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

I 
linecount = 1; /* First word in the line ,/ 
saltesp_(linea, &Iinecount, 80); /* Skip blanks ,/ 
for (nvars = 0; linecount > 0; nvars++) { 

/* Look for the names in this line ,/
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(Read an initial conditions variable name 56) } 
initnumber[ninputs] = nvars; 
initpt[ nir puts] = (char **) realloc(initpt[ninputs], 

(nvars + 1) * (sizeof (char ,))); 
if (A =- initptr[ninputs]) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. '); 
errmsg_(& errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
initpt[ninputs][rnvars] = A; 

This code is used in chunk 54.  

¶ Reading avariable implies assigning more memory to the existing array 
boundpt [ninputs], computing the pointer to the place in the line where the 
variable is and reading and storing it.  

56( Read an initial conditions variable name 56) 
initpt [ninputs] = (char **) realloc (initpt [ninputs], 

(nvars + 1) * (sizeof (char ,))); 
if (A =- initpt[ninputs]) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "); 
emnsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
btainthepointer ...  
initpt[ninputs][nvars] = (char ,) 

malloc((strlen (wordpt) + 1) * (sizeof (char))); 
if (A-= initpt[ninputs][nvars]) { 

errcode = -24; 
strcpy (msg6, "Failutoallocateumemory. "I); 
errmsg(4& errcode, msg6, msg7, 80,80); 
return (errcode); } 

strcpy (initpt [ninputs ] [nvars ], wordpt); 
linecount += 2; 
info = linecount; 
saltesp-(linea, &Mlinecount, 80); /* Prepare the next read ,7
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This code is used in chunk 55.  

A.1.2.2.3 Transfer the names of the initial conditions 

58¶(Pack the intial conditions names 58) 
info = pvm-pkint (& totinit, 1, 1); 
if (info.< 0) return (babpvmerror_(info, "pvm.pkint")); 
for (ninputs = 0; ninputs < ninit; ninputs-f-) { 

for (nvars = 0; nvars < initnumber[ninputs]; nvars++) { 
#if 0 /* Deleted code */ 

wordlen = strlen (boundpt [ninputs][nvars ]); 
info = pvmrpkint (&wordlen, 1, 1); 
if (info < 0) return (babpvmerror_(info, "pvm.pkint")); 

#endif 
info = pvmpkstr(initpt[ninputs][nvars]); 
if (info < 0) return (babpvmerror_(info, "pvm.pkstr")); 

} 
} 

This code is used in chunk 41.  

A.1.2.2.4 Transfer the initial conditions 

¶ Sndcode_ computes a flag that indicates if initial conditions will be trans
ferred to the remote code.  

60( Determine if initial conditions will be transferred and pack the flag 60) 
initflag = (0 - prevexec) A (control[O] :A BabSSCalc) A (0 =- n); 
(Pack initflag 84) ; 

This code is used in chunk 45.  

¶ The initial conditions are obtained from the input signals to the block.  
The assignment of values is deferred to an ancillary routine.  

61( Compute initial conditions and pack them 61) 
if (A O strstr(execname, Irelap5.xhl)) 

relap5_init (&( ent [nbound + 1]), ninit, initnumber , initto); 
if (A = strstr (execname, "pvmbis")) 

relap5_init (& ( ent [nbound + 1]), ninit, initnumber, initto); 
info = pvmrpkdouble (initto , totinit , 1); 
if (info < 0) return (babpvmerror_(info, "pvm.pkdouble"));
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This code is used in chunk 45.  

A.1.2.3 Boundary conditions management 

A.1.2.3.1 Save and restore variables 

¶ Sndcode_ saves 

"* The pointer to the names of the input variables in vinfij [4].  

"* In vinfij [5] the address of the array boundnumber.  

"* The number of input signals from which the boundary conditions will 
be derived in vinfij [6].  

"* The total number of boundary conditions that will be transferred to 
the remote code in vinfij [7].  

Memory is reclaimed for the array boundto and the pointer to the area 
requested saved in vinfij [13].  

64( Save boundary conditions information 64) 
vinfij [4] = (double) ((int) boundpt ); 
vinfij[5] = (double) ((int) boundnumber); 
vinfij [6] = (double) nbound; 
for (ninputs = 0, totbound = 0; ninputs < nbound; ninputs++) { 

totbound += boundnumber[ninputs]; 

} 
Ivinfij [7] = (double) totbound; 
boundto = (double *) malloc (totbound * sizeof (double)); 
vinfij [13] = (double) ((int) boundto); 

This code is used in chunk 10.  

¶ 

1. The pointer to the number of boundary conditions per input signal is 
saved in boundnumber.  

2. The number of input signals from which boundary conditions will be 
derived is stored in nbound.  

3. The total number of bondary conditions to the remote code is saved 
in totbound.
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65( Load boundary conditions variables 65) 
boundnumber = (int *) ((int) virnfij [5]); 
nbound = (int) vinfij[6]; 
totbound = (int) vinfij[7]; 
boundto = (double *) ((int) vinfij[13]); 

This code is used in chunk 6.  

¶ boundpt takes the pointer to the memory assigned to the names of the 
initial conditions.  

66( Get the boundary conditions names 66) 
boundpt = (char ***) ((int) vinfij[4]); 

This code is used in chunk 23.  

¶ Boundary conditions variables needed 

67( Module variables 2) ±

int *boundnumber; 
int nbound, totbound; 
double * boundto; 
char ***boundpt; 

A.1.2.3.2 Boundary conditions reading 

¶ Sndcode_ calls nextlin to read the number of input signals that will be 
used to compute the remote code boundary conditions. String msgl is writ
ten if an end-of-file is detected. The number of input signals is stored in 
nbound. Two arrays are needed. One, boundnumber, that stores the num
ber of boundary conditions. Other, boundpt, that stores an array of arrays 
of strings. These strings are the names of the variables that will act as 
boundary conditions.  

69( Read boundary conditions 69) 
nextlin_( linea, 80, msgl , 80); 
linecount = 1; 
nbound = leerintlinea, , linecount , 80); 
boundnumber = (int *) malloc (nbound * sizeof (int)); 
if (A =- boundnumber) { 

errcode = -24; 
strcpy(msg6, "Failutouallocateumemory. ");
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errmsg.(& errcode, msg6, msg7, 80, 80); 
return (errcode); } 

boundpt = (char ***) malloc((nbound + 1) * sizeof (char **)); 
if (A - boundpt) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory."); 
errmsg-(&,errcode, msg6, msg7, 80, 80); 
return (errcode); 

} 
boundpt[nbound] = A; 
for (ninputs = 0; ninputs < nbound; ninputs-++) { 

/* Fill the array boundpt ,/ 
nextlin(linea, 80, msgl , 80); 
(Read a line of variables for boundary conditions 70) 

} 
This code is used in chunk 8.  

¶ In each line, a set of varibles for boundary conditions is read. This needs 
allocating memory for the variables.  

70( Read a line of variables for boundary conditions 70) 
boundpt [ninputs ] = (char **) malloc (sizeof (char •)); 
if (A E boundpt[ninputs]) { 

errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "1); 
errmsg. (&•errcode msg6, msg 7, 80, 80); 
return (errcode); 

} 
linecount = 1; /* First word in the line ,/ 
saltesp_(Iinea, &linecount, 80); /* Skip blanks ,/ 
for (nvars = 0; linecount > 0; nvars++) { 

/* Look for the names in this line ,/ 
(Read a boundary conditions variable name 71) 

} 
boundnumber [ninputs] = nvars; 
boundpt[hinputs] = (char **) realloc(boundpt[rninputs], 

(nvars + 1) * (sizeof (char ,))); 
if (A-= boundpt [ninputs]) { 

errcode = -24;
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strcpy (msg6, "Failutouallocateumemory. ); 
errmsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
boundpt [ninputs] [nvars] = A; 

This code is used in chunk 69.  

¶ Reading avariable implies assigning more memory to the existing array 
boundpt[ninputs], computing the pointer to the place in the line where the 
variable is and reading and storing it.  

71( Read a boundary conditions variable name 71) 
boundpt [ninputs] = (char **) realloc (boundpt[ninputs], 

(nvars + 1) * (sizeof (char *))); 
if (A- boundpt [ninputs]) { 

errcode = -24; 
strcpy (rmsg6, "Failutouallocateumemory. "); 
errmnsg(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
btainthepointer ...  

boundpt[ninputs][nvars] = (char .) 
malloc ((strien (wordpt) + 1) * (sizeof (char))); 

if (A -= boundpt[ninputs][nvars]) { 
errcode = -24; 
strcpy (msg6, "Failutouallocateumemory. "); 
errmnsg_(&errcode, msg6, msg7, 80,80); 
return (errcode); 

} 
strcpy (boundpt [ninputs][nvars], wordpt)-; 
linecount += 2; 
info = linecount; 
saltesp_(linea, &linecount, 80); /* Prepare the next read ./

This code is used in chunk 70.  

A.1.2.3.3 Transfer the boundary conditions names 

73¶( Pack the boundary conditions names 73) 
info = pvm-pkint (& totbound, 1, 1);
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if (info < 0) return (babpvmerror_(info, "pvm.pkint")); 
for (ninputs = 0; ninputs < nbound; ninputs-f±) { 

for (nvars = 0; nvars < boundnumber[nirputs]; nvars++){ 
#if 0 /* Deleted code. Why keep it? */ 

wordlen = strlen (boundpt [ninputs][nvars ]); 
info = pvm-pkint (&wordlen, 1, 1); 
if (info < 0) return (babpvmerror._(info, "pvm.pkint")); 

#endif 
info = pvm-pkstr (boundpt [ninputs] [nvars]); 
if (info < 0) return (babpvmerror_(info, "pvm-pkstr")); } 

} 
This code is used in chunk 41.  

A.1.2.3.4 Transfer of boundary conditions in execution 

¶ Sndcode_ identifies the remote code and applies a different treatment 
of the boundary conditions for each code. The boundary conditions are 
obtained from the input signals to the block. The assignment of values is 
deferred to an ancillary routine.  

75( Compute boundary conditions and pack them 75) 
if (A h strstr(execname, "relap5.x")) 

relap5.bound (&(ent [1]), nbound, boundnumber, boundto); 
if (A $ strstr(execname, "pvmbis")) 

relap5_bound (&( ent [1]), nbound, boundnumber , boundto); 
info = pvm.pkdouble (boundto, totbound, 1); 
if (info < 0) return (babpvmerror- (info, "pvmwpkdouble")); 

This code is used in chunk 45.  

A.1.2.3.5 Outputs 

Sndcode_ sends the remote code a flag to warn it about the reception of the 
names of the output variables. This flag is set to 1 if this is the last time the 
"nsteps" loop is executed. A flag to indicate if the outputs must be sent by 
the remote code is also packed.  

76( Pack the flags for output reception 76) 
rcvouts = (n =- nsteps - 1); 
info = pvm-pkint (& rcvouts , 1, 1);
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if (info < 0) return (babpvmerror_ (info, "pvm-pkint" )); 
#if 0 /* Deleted code */ 

sndoutnm = (-Ircspawn) A rcvouts; 
info = pvm-pkint (&sndoutnm, 1, 1); 
if (info < 0) return (babpvmerror_(info, "pvm.pkint")); 

#endif 

This code is used in chunk 45.  

77¶ (Module variables 2) +
int rcvouts; 

A.1.3 Standard message passage procedures 

¶ Sndcode_ obtains a buffer to pack the variables, issuing a message and 
returning an error code in case no buffer is avaliable.  

79( Obtain a buffer 79) 
bufild = pvm.initsend (PvmDataDefault); 
if (bufid < 0) return (babpvmerror- (info, "pvm-initsend")); 

This code is used in chunks 13, 41 and 45.  

¶ Here you will find packaging of some variables that are sent to the remote 
code. Since they are essentially equal to one another, they are presented in 
a separate section. Sndcode. packs control[0].  

80(Pack control[O] 80) 
info = pvm.pkint (control, 1, 1); 
if (info < 0) return (babpvmerror_(info, "pvm.pkint")); 

This code is used in chunks 13 and 45.  

¶ Sndcode_ packs the time step.  

81( Pack the time step 81) -= 

info = pvm.pkdouble(&incrtie, 1, 1); 
if (info < 0) return (babpvmerror_(info, "pvm.pkdouble" ));
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¶ The remote code is informed of the current simulation time.  

82( Pack current time 82) 
info = pvm.pkdoule (& tiempo , 1, 1); 
if (info < 0) return (babpvmerror_(info, "pvmpkdoub1e")); 

This code is used in chunk 45.  

¶ Sndcode_ packs prevexec, the flag indicating wether the code has been 
executed during the last time step.  

83(Pack prevexec 83) 
info = pvm.pkint (&prevexec, 1, 1); 
if (info < 0) return (babpvmerror_(info, ' tpvmpkint")); 

This code is used in chunks 13 and 45.  

¶ Sndcode_ packs initflag, the flag indicating wether initial conditions are 
to be read 

84(Pack initflag 84) 
info = pvm.pkint (&initflag, 1, 1); 
if (info < 0) return (babpvmerror_ (info, "pvmpkint")); 

This code is used in chunks 13 and 60.  

A.1.4 Ancillary algorithms 

¶ A provisional pointer wordpt points to the same address as pointer linea 
+ linecount - 1. Linecount is decreased to convert FORTRAN to C indices.  
Then, linea is increased until a non-blank character is found, and a termi
nating ' \0' is appended to the name, so that the name can be read.  

86( Obtain the pointers to the first and last non-blank characters delimiting 
the string 86) -

wordpt = linea + (- linecount); 
for ( ; (-'isspace(linea[linecountj)) A (linecount < 80); linecount H.) 

linea[linecount] = 1\01;

This code is used in chunks 25, 26 and 27.
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A.1.5 Functions for initial and boundary conditions 

87( Auxiliary functions 87) 
(.Initial conditions functions for RELAP5 90) 
(Boundary conditions functions for RELAP5 88); 

This code is used in chunk 1.  

¶ The boundary conditions for RELAP5 need no preprocessing; the values 
are directly passed to RELAP5 

88( Boundary conditions functions for RELAP5 88) 
#ifdef __STDC__ 

void relap5_bound (double * entpt, int nbound, int boundnumber[], double 
*pt) 

{ 
int i, j, count; 

/- simply passes to relap5 the module input signals../ 

count = 0; 
for (i = 0; i < nbound; i++) { 

for (j = 0; j < boundnumber[i]; j-+-) { 
pt[count] = entpt[count]; 
count -+; 

} 
} 

} 
#else 

void relap5_bound (entpt, nbound, boundnumber , pt) 
double **entpt; 
int nbound; 
int boundnumber []; 
double **pt; 

{ /* - simply passes to relap5 the module input signals../ 
*pt = *entpt; 

} 
#endif 

This code is used in chunk 87.  

89¶ (Functions prototypes 89) 
#ifdef __STDC_-
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void relap5ibound (double ** entpt, at nbound, it * boundnumber, 
double **pt); 

#else 
void relap5Tbound(; 

#endif 

See also chunk 91.  

This code is used in chunk 1.  

¶ And the same for initial conditions 
90(Initial conditions functions for RELAP5 90) 

#ifdef __STDC__ 
void relap5_init (double *entpt, hit ninit, hit initnumber[], double *pt) 

mnt i, j, count; 
/*- simply passes to relap5 the module input signals../ 

count = 0; 
for (i = 0; i < ninit; i++) { 

for (j = 0; j < initnumber[i]; j++) { 
pt[count] = entpt[count]; 
count ++; 

} 
} 

} 
#else /* - Otherwise, functions must be defined as Kernigan-Ritchie 

functions. */ 
void relap5init (entpt, ninit , initnumber , pt) 

double **entpt; 
bat ninit; 
iat initnumber []; 
double **pt; 

{ /* - simply passes to relap5 the module input signals../ 
*pt = •entpt; 

} 
#endif 

This code is used in chunk 87.

91¶ (Functions prototypes 89) +-
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#ifdef __STDC__ 
void relap5_init (double ** entpt, bat nbound, bat *boundnumber, double 

**pt); 

#else 
void relap5.init (); 

#endif 

¶



Appendix B 

File rcvcode 

B.1 Description of the module 

This module belongs to BABIECA, and is the responsible for receiving a set 
of set of variables from a remote code. The file complies with the mandatory 
structure for a BABIECA module, namely 

(Include files 37) 
BAB-MODULE (rcvcode-) { 

(Module variables 6); 
switch (control[O]) { 
case BabRead: 

{ 
( Input file reading 9); 
break; 

} 
case BabCalc: 

case BabSSCalc: 
case BabFbck: 
case BabSsFbck: 
{ 

(Calculation mode 3); 
break; 

} 
default: 

} 
return BabNoError;
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B.I.1 Code sections 

B.1.1.1 Calculation mode: Remote code active 

If ent [0] is 1 the remote code is active during the current time step. rcvcode.  
will receive the output signals.  

3( Calculation mode 3) =

(Recall the number of outputs 16); 
if (1.0 - ent[0]) { 

(Recall variables for active code 21); 
if (0 =- rcspawn) { 

(Transfer the names of the variables 5); 
vinvar[0]- 1; /* Set rcspawn ,/ 

} 
(Receive and unpack the variables from the remote code 7) 

} 
else { 

(Assign dummy outputs 8); 

} 
This code is used in chunk 1.  

B.1.1.1.1 The first contact 

¶ If this is the first time the remote code is contacted, the names of the 
variables needed must be sent. packs and sends the names.  

5( Transfer the names of the variables 5 ) 
(Recall the names of the variables 18); 
(Obtain a buffer 24) ; 
(Pack the number of output signals 27); 

(Pack the names of the output signals 28); 
(Send the names of the output signals 29); 

(Free the PVM buffer 25); 
(Free used memory 35) ;

This code is used in chunk 3.
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¶ noutputs is a dummy variable for a loop 

6( Module variables 6 
int noutputs ; 

See also chunks 17, 19 and 22.  

This code is used in chunk 1.  

B.1.1.1.2 Receive the outputs 

In any case, the outputs are sent to the block outputs.  

7( Receive and unpack the variables from the remote code 7) 
(Receive the message 30) ; 
(Unpack the data into sal 31); 

This code is used in chunk 3.  

B.1.1.1.3 Inactive remote code 

If the block has not been activated, the outputs are those of the previous 
time step.  

8( Assign dummy outputs 8) 
for (noutputs = 0; noutputs < numsal; noutputs ++) 

sal [noutputs] = sal [noutputs + numsal]; 

This code is used in chunk 3.  

B.1.1.2 Reading the input file 

The first line is the number of variables to be received from the remote 
code, numsal and then the variables themselves are read. The protocol of 
communication with the driver comes next.  

9(Input file reading 9) 
(Particular declarations for the input file reading section 13); 
(Read numsal 10) ; 
(Read the names of the variables 11); 
(Save values for the driver 20) ;

This code is used in chunk 1.
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10¶(Read numsal 10) = 
nextlin_(linea, 80, msgl , 80); 
linecount = 1; 
numsal = leerinL(linea, &Mlinecount , 80); 

This code is used in chunk 9.  

11¶( Read the names of the variables 11) 
(Reclaim memory for the names and setup the array 33) 
for (noutputs = 0; noutputs < numsal; noutputs-H-) { 

(Read one line containing the variable name 12); 
} 

This code is used in chunk 9.  

12¶( Read one line containing the variable name 12) 
nextlin_( linea, 80, msgl , 80); 
linecount = 1; 
saltesp_(linea, 0linecount, 80); /* Find the first non-blank ./ 
(Obtain the pointers to the first and last non-blank characters delimiting 

the string 36) ; 
(Allocate memory for a variable name 34) 
strepy (outputpt [noutputs ], wordpt); 

This code is used in chunk 11.  

13¶( Particular declarations for the input file reading section 13) 
int wordlen, linecount; 
char linea[80], *wordpt; 
char msgl [80] = "RCVCODE. uERRORuREAD INGuINPUTuLINE."; 
char msg6 [80]; 
char msg7[80] = Puto; 

This code is used in chunk 9.  

B.1.2 Ancillary algorithms 

B.1.2.1 Load and restore

¶ The number of outputs is stored in numsal;
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16(Recall the number of outputs 16) 
numsal = (int) vinfij [0]; 

This code is used in chunk 3.  

¶ Declaration of numsal 

17( Module variables 6) ±+ 
int numsal; 

¶ rcvcode_ obtains the pointer to the names of the output variables, 

18( Recall the names of the variables 18) = 
outputpt = (char **) ((int) vinfij[lj); 

This code is used in chunk 5.  

19¶ (Module variables 6) +
char **outputpt; 

¶ rcvcode_ saves the number of output variables in vinfij[O], saves the 
pointer to the names of output variables in vinfij [1]. The control array 
is filled: 

* The number of outputs, i.e., control[3], is set to numsal.  

* The size of the vinfij array is saved in control [4], i.e, 2.  

* The size of the vinvar array is saved in control[5], i.e, 1.  

• The size of the stat array, i.e., 0, is saved in control[6].  

20( Save values for the driver 20 ) 
vinfij [0] = (double) numsal; 
vinfij[1] = (double) ((int) outputpt); 
control[3] = numsal; 
control[4] = 2; 
control[5] = 1; 
control[6] = 0; 

This code is used in chunk 9.
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¶ rcspawn tells if the code was already started and rcodetid, is the task 
identification of the code in the PVM environment.  

21( Recall variables for active code 21) 
rcspawn = (int) vinvar[0]; 
rcodetid = (int) ent[1]; 

This code is used in chunk 3.  

¶ Variables 

22( Module variables 6) +
hit rcspawn, rcodetid - 0; 

B.1.2.2 Standard message passing procedures 

¶ rcvcode- obtains a buffer to pack the variables, issuing a message and 
returning an error code in case no buffer is avaliable.  

24(Obtain a buffer 24) 
bufid = pvm-initsend (PvmDataDefault); 
if (bufild < 0) return (babpvmerror- (info, "pvmyinitsend")); 

This code is used in chunk 5.  

25¶( Free the PVM buffer 25) _ 
info = pvmrefree (bufid); 
if (info < 0) return babpvmerror_(info, "pvm-freebuf"); 

This code is used in chunk 5.  

¶ bufid is the identifier of the buffer. It also is the error code. info is the 
error code returned by the PVM routines. iModule variables= int bufid, 
info; 

¶ rcvcode_ packs the number of output signals to receive from the remote 
code.  

27( Pack the number of output signals 27) 
info = pvmrpkint (&numsal, 1,1); 
if (info < 0) return (babpvmerror_(info, "pvm-pkint")); 

This code is used in chunk 5.
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¶ rcvcode_ packs the names of the output variables.  
28( Pack the names of the output signals 28) 

for (noutputs = 0; noutputs < numsal; noutputs-+-) { 
info = pvm.pkstr (outputpt [noutputsJ); 
if (info < 0) return (babpvmerror-(info, "pvm.pkstr")); 

} 
This code is used in chunk 5.  

¶ rcvcode_ sends the packed data to the remote code.  
29( Send the names of the output signals 29) 

info = pvmysend(rcodetid , OUTNAMES); 
if (info < 0) return (babpvmerror- (info, "pvm.send" )); 

This code is used in chunk 5.  

¶ rcvcode_ receives the output variables from the remote code.  
30( Receive the message 30) = 

info = pvm-recv (rcodetid , OUTPUTS); 
if (info < 0) return (babpvmerror.(info, "pvm-recv")); 

This code is used in chunk 7.  

¶ rcvcode- unpacks the data in the sal array.  
31( Unpack the data into sal 31) 

info = pvm-upkdouble (sal, numsal, 1); 
if (info < 0) return (babpvmerror_(info, "pvm-initsend")); 

This code is used in chunk 7.  

B.1.2.3 Memory management 

¶ The array of names of output variables must end with a NULL pointer.  
33( Reclaim memory for the names and setup the array 33) = 

outputpt = (char **) malloc((numsal + 1) * sizeof (char .)); 
if (A -= outputpt) { 

m = -24; 
strcpy(msg6, "Failutouallocateumemory. "I);
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errmsg_(&m, msg6, msg7, 80,80); 
errcode =-24; 

return (errcode); 

} 
outputpt [numsal] = A; 

This code is used in chunk 11.  

34¶ (Allocate memory for a variable name 34) 
outputpt[noutputs] = (char ,) malloc((strlen(wordpt) + 1), 

(sizeof (char))); 
if (A _ outputpt [noutputs]) { 

m = -24; 
strcpy (msg6, "Failutoallocateumemory. "); 
errmsg_(&m, msg6, msg7, 80, 80); 
errcode = -24; 
return (errcode); 

I 
This code is used in chunk 12.  

¶ rcvcode- frees up the memory occupied by the names of the output vari
ables.  

35( Free used memory 35) 
for (rnoutputs = 0; noutputs < numsal ; noutputs +) { 

free (outputpt [noutputs]); 

} 
free (outputpt); 

This code is used in chunk 5.  

B.1.2.4 Strings reading 

A provisional pointer wordpt points to the same address as pointer linea + 
linecount - 1. Linecount is decreased to convert FORTRAN to C indices.  
Then, linea is increased until a non-blank character is found, and a termi
nating ' \0' is appended to the name, so that the name can be read.
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'T1

36( Obtain the pointers to the first and last non-blank characters delimiting 
the string 36) _

wordpt = linea + (- linecount); 
for ( ; (-isspace(linea[linecount])) A (linecount < 80); linecount++) ; 
linea [linecount ] = I 0 ; 

This code is used in chunk 12.  

B.1.3 Header files 

First the system header files. We need to use the memory allocation rou
tines, so stdlib .h is needed. string. h for the string manipulation routines 
together with the standard character handling from ctype.h. The pvyu rou
tines definition are taken from 

37( Include files 37) _
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 
#include <pvm3.h> 

See also chunks 38 and 39.  

This code is used in chunk 1.  

¶ Then, the BABIECA variables definition. Reading routines from lectu. h, 
error handling from baberr.h, the time variables from tiempo.h and the 
module declarations and macros from modul. h 

38( Include files 37) +
#include "utilidad/lectu.h" 
#include "utilidad/baberr. h" 
#include "common/tiempo. h" 
#include "modulos/modul.1h" 

¶ Last, specific header files: the set of tags used for vm message passing.  
39(Include files 37) +

#include "./pvmtags.h"

¶
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Appendix C 

Remote code standard 
specifications 

C.1 Code linkage 

Existing simulation tools may be combined if their structure complies with a 
common standard. The pseudocode presented here attempts to provide the 
essentials of such a standard for code linkage. The code provided is suitable 
for simple linkage as well as for tree-structured simulation. The additions 
needed for the latter case will be presented in sectionC.1.2.2.2. The routines 
referenced will have three kind of names 

get-something when the internal structures are to be searched for the infor
mation, 

rcv.something when the information is to be received from some process 

send-something when the information is to be sent to some process 

This code is often referred to as the descendant code, and the process 
that created it the parent process. This is a pseudo-code, and no care what
soever has been taken in properly declaring variables. Rather, the functions' 
arguments are solely a hint on the key parameters they will take.  

2 ¶ The standard is structured in two routines, main () and calculo(), 
and the main characteristics of both are presented. The later is the respon
sible of driving the time advancement of the simulation.
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2 (Main program 3) 
(calculoo() routine 14) 

C.1.1 Main program 

The main program, as coded here, is responsible of the top level structure of 
the program, calling the routines for reading the input file(s), setting up the 
tables for the management of the read data and call the calculo () routine.  
Then, two loops are set up. The outer loop keeps the process waiting for 
a message from the parent process telling it to exit. The inner loop (used 
for tree-structured simulation) restarts a caclulo () session when the pile of 
restart points is still occupied. During the simulation, the parent process 
will have requested some points to be saved in this private stack. In this 
case, stack.occupied () will return a non-zero value. Note that in standalone 
runs requests for restart saving will never arrive, and stack-occupied() will 
always return a 0. (Receive finish message 12) will deal with the other loop 
in case of no connections.  

3( Main program 3) 
int main() 
{ 

(Parse command line 5) 
(Setup the internal tables 6); 
do { 

do{ 
(Calculate transient mode 7); 

} while (stack.occupied()); 
get-finish-message (; 
(Receive finish message 12); 

} while (-'finish-message); 
(Results writing 8); 
close-files(; 
exit (0);

This code is used in chunk 2.
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C.1.1.1 Standalone code 

C.1.1.1.1 Starting 

The command line parsing processes the command line and sets up the files 
needed. It may also set the variable parent-process, that will be the flag 
identifying an externally driven run.  

5( Parse command line 5) 
parse-command-line (input-file, flags, parent-process); 
if (parserr) report-and-exit (parserr); 

This code is used in chunk 3.  

6 ¶ The input information has to be read from the named file. This may 
direct the code to reading further files (e.g. if this is a restart case). The 
absence of an input file means that the internal tables data are to be read 
from some other process. This will occur when within a tree simulation.  

6( Setup the internal tables 6) 
if (input-file) I 

open.file (input-file); 
read-input-file (calc.type, physical-system, initial-conditions, 

boundary-conditions, initial-trips); 
switch (calc.type) { 
case 'new': { 

setup.internal-tables (; 
get-boundary-conditions (; 
geLstate.vector (initial-conditions); 
break; 

} 
case 'restart': 

{ 
read-internaLtables-and.state.vector (restart-file); 
geLboundary-conditions (; 
break; 

} 
} 

} 
else { 

(Initialisation for tree simulation 13); 
}
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(Receive startup messages 10) 

This code is cited in chunk 17.  

This code is used in chunk 3.  

C.1.1.1.2 Transient calculation 

The transient calculation is done in the calculo () routine. It will return an 
error code in case of unsuccessful computation. Exit from the program is not 
needed, since there may be more simulations to be done. See section C.1.2 
for the details of the routine.  

7( Calculate transient mode 7) 
calcerr = calculo (; 
if (calcerr) report ("CALCULOuFUNCTIONuERROR. "); 

This code is cited in chunk 12.  

This code is used in chunk 3.  

C.1.1.1.3 Results writing 

For the case of running stand alone, the results file is written.  
8( Results writing 8) 

graphicaLoutputs (; 
statistics (); 

This code is used in chunk 3.  

C.1.1.2 Code for the linkage 

C.1.1.2.1 Linkage to an external driver 

In case the code is linked to an external driver, it will receive the same 
kind of information that was got from the input files, overwriting that. To 
enter this section, the code must have been started by other process. Then, 
parent-process will be true.  

The first messages to be received relate to the initialisation of the code 
and of the transmission variables between the two tasks involved.
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10( Receive startup messages 10) 
if (parent-process) { 

rcv-in-trips-names (parent-process); 
(Return if error 33) ; 
rcv-boundary-conditions-names (parent-process); 
(Return if error 33) ; 
rcv-statesrnames (parent-process); 
(Return if error 33) ; 
rcv.initiaLconditions-names (parentrprocess); 
(Return if error 33); 

This code is used in chunk 6.  

11 ¶ The trips received here are a sort of manual actuations over the 
models of the code. They represent discrete transitions induced from the 
parent code, and directly set the actual variables in the descendant code. The 
code in section C.1.2.1 clearly reflects this in that one of the requirements for 
the advancement routine is that a trip triggering stops the advancement of 
the continuous simulation to allow proper initialisation of the models in the 
new situation (see (Advance until the next requested time 18) ). The scheme 
for the boundary conditions is somewhat different. The values received then 
are introduced replacing the values in the interpolation tables and are used 
as needed in the advancement scheme. A corollary from this discussion is 
that the remote code must be aware of the trips occurring in the descendant 
code and treat them properly and that when the results of the descendant 
code imply a trip in the parent process, a procedure that parallels the code 
in < dvance ... has to be implemented. this is done via an iteration-flag 

(See < eceive additional ... ). These trips we call out-trips, and their names 
are received in (Receive the names of the output variables 24) 

12 ¶ When all the stored points are computed, a finish message is received 
from the parent process. If this finish message is not zero the processing will 
return to (Calculate transient mode 7) . Recall that finish-message may 
be set to 1 before entering this section (in get-finish-message()) so that the 
code properly ends when it is not connected.  

12( Receive finish message 12) 
if (parent-process) { 

transerr = rcvjfinish-message (parent-process);
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if (transerr) report-and.exit (transerr); } 
This code is cited in chunk 3.  

This code is used in chunk 3.  

C.1.1.2.2 Code for tree simulation 

When the tree simulation is in progress, the code may be initialised from an 
intermediate step of the simulation that has been computed by some other 
process. The, it has to receive the identification of the task that will provide 
the restart informations, after which the restart information is received from 
this task. if the task is this very process, the restart information will be read 
from the internal tables. A unique label identifying the run is also received 
for bookkeeping purposes. The database identifier is received and, if this 
proces is not a restart process (i.e. it is the first process), the outputs names 
are sent.  

13(Initialisation for tree simulation 13) 
if (parent-process) { 

database-id = rcv-database-id (parent.process); 
(Return if error 33) ; 
restart-process = rcv-restart-process (parent.process); 
(Return if error 33) 
if (restart-process) { 

rcv-restart-info (parent-process, remote.process); 
(Return if error 33) ; 
rcvdidentifier-of-branch (parent-process); 
(Return if error 33) ; 
(Free used restart point 31); 

else { 
sendcout~names (database-id); 

} 

This code is used in chunk 6.  

C.1.2 calculo() routine 

Is the responsible for the advance of the simulation until the final requested 
time. The numerical algorithm used is sent to another procedure, so that this
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one only holds the overall time management of the solution and of the links 
with the parent code. The flag continue-simulation is used for controlling the 
time advancement. It is set in (Get execution information from read files 16 ) 
and may be modified by the external program. Since the user (or the remote 

code) may want to stop the simulation after only the initialisation stage (the 
first (Get trips and outputs 20) ), a condition on this variable is set. Then 
the code advances until the target-time. The reason for plotting the outputs 
and managing the restart information at the beginning of the loop is that, 
because of requirements of the parent process (i.e. iterations), the solutions 
computed may be invalid even if the code has successfully computed the 
advancement. It is only when the remote process validates the advancement 
that the data are ready for use and plot-flag and save-restart-flag will be set 
appropriately. This forces additional plots and restart saves at the end of 
the function for the last point. With this mechanism, the first (initialisation) 
point is also plotted.  

14( calculo () routine 14) 
int calculo() 
{ 

do{ 
(Receive values for initial conditions 23); 
( Get execution information from read files 16) 
(Receive execution information from parent 25) 
(Get trips and outputs 20 ) ; 
(Receive the names of the output variables 24); 
(Send results 28) ; 
if (continue-simulation) { 

if (plot-flag) ploL outputs (previous-time); 
(Save restart 21) ; 
previous-time = current-time; 
(Advance until the next requested time 18); 
(Get trips and outputs 20); 
(Send results 28) ; 

} /* if (continue-simulation) ,/ 
} while (continue-simulation); 
if (plot-flag) plot- outputs (target-time); 
(Save restart 21)

This code is used in chunk 2.
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C.1.2.1 Standalone running 

The code presented here is what would be encountered in a generic simulation 
code. The structure ensures that the code can be running by itself without 
a driving process.  

C.1.2.1.1 Start the loop 

The information concerning this run is usually retrieved from the files that 
were read in the main procedure. This information sets the initial requested 
time and initialise the time variables.  

16( Get execution information from read files 16) 
previous-time - initial-time; 
requested-time - get-requested.time ); 

See also chunk 17.  

This code is cited in chunk 14.  

This code is used in chunk 14.  

17 ¶ With this, both the requested time and the starting time are set.  
In case the target time is 0, the run will continue until it is stopped by 
some external procedure, such as a request from an internal module or 
from the parent process; otherwise, the code will stop in function of the 
continue-simulation flag (see below). The initial and final times are set in 
(Setup the internal tables 6) , and may be overridden by the remote code.  
To set the model for steady or transient simulation, an steady-state flag is 
also determined from the input files information, and can be modified by the 
external program in (Receive execution information from parent 25) . The 
same applies for the other flags. continue-simulation controls the end of the 
simulation.  

17( Get execution information from read files 16) +
steady-state-flag = get-steady-state-flag (); 
save-restart-flag = get-save-restart-flag (); 
plot-flag = get-plot-flag (; 
continue-simulation = get-continue-simulation (current-time, target-time);
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C.1.2.1.2 Time advancement 

The simulation will now be advanced. This is done by means of some numer
ical scheme whose structure need not be discussed. The only requirement 
to the advancement procedure is that it stops either because requested-time 
has been reached or because a trip has been triggered. In the later case, the 
trip triggering time will be considered a plotting time and the simulation 
resumed thereafter.  

18(Advance until the next requested time 18) 
timestep-state-vector = state-vector; 
state-vector = advance-solution(steady-statejflag, timestep-state-vector); 
(Handle unrecoverable error 19) ; 
current-time = advancemenLtime; 

/. = min (trip-time, requested-time) ./ 

This code is cited in chunk 11.  

This code is used in chunk 14.  

19 ¶ In case the advancement procedure returned with an unrecoverable 
error, some actions must be made to inform the to routine and to assure a 
clean exit. Such error can be checked, for instance, if the last time reached 
by advance-solution () is not the requested time and a trip has not occurred.  

19( Handle unrecoverable error 19) =_ 
if (advancemenLtime < requested-time A -'trip-flag) { 

check-error(; 
clean-up (); 
report-and-return (req-timestep-error); 

} 
This code is used in chunk 18.  

20 ¶ Once the state vector is obtained (either from the input files or from 
the calculation of a time step), the trips and outputs vector can be obtained.  

20( Get trips and outputs 20) 
get.tripsQ(); 
geLoutputs (state-vector, boundary-conditions, trips); 

This code is cited in chunk 14.

This code is used in chunk 14.
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C.1.2.1.3 Restarts save 

The restart saving consists in two parts; one is saving the current point in 
the stack if so requested by the external driver, deferred to (Manage restart 
stack 29) ; the other is saving the point to a restart file.  

21(Save restart 21) 
(Manage restart stack 29) 
if (save-restart-flag) write-restart-to-file ( ); 

This code is used in chunk 14.  

C.1.2.2 Code for the linkage 

The following sections describe the additions needed to enable the commu
nication capacity of the code. They are inserted in the program stream so 
that the information received form the remote driving process will overwrite 
what would be normally done by the code. This section is broken up in 
two, one for module-like (this code is part of a larger simulation system) and 
for tree-like simulation (this code is driving the execution of a branch for a 
dynamically generated tree of simulations). The code remains consistent if 
the second part is not added.  

C.1.2.2.1 Linkage to an external driver 

If the code is to be linked for adding new models to an existing simulation, it 
may be required that certain initialisation be performed from data supplied 
by the parent process.  

In this case some values will be received from the external program.  
These will have to be processed to obtain the same information than in the 
non-linked case. For tree simulation, the whole tables have to be received 
prior to any other information. This section leaves the code in the same 
conditions as if initialised from the input file.  

23( Receive values for initial conditions 23) 
initiaL~conditions-flag = rcv.initiaLconditions-flag (; 
if (initiaLconditions-flag) f 

rcv.initiaLtime (parent-process); 
(Return if error 33) ; 
rcv-initiaLconditions (parent-process); 
(Return if error 33) ;
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rcv.initiaLtrips (parent-process); 
(Return if error 33) ; 
rcv.initialdboundary.conditions ); 
(Return if error 33 ); 
get-boundary-conditions 0; 
get-state-vector (initiaLconditions); 

} 

This code is used in chunk 14.  

24 ¶ The names of the outputs to be sent to the parent process are re
ceived after the outputs themselves have been computed. This allows the 
splitting of the parent code linkage routines in two: one for sending variables 
and one for receiving outputs, allowing useful work to be done in the parent 
process in parallel to the initialisation tasks of the descendant code.  

24( Receive the names of the output variables 24) 
rcv.outputrnames (parent-process); 
(Return if error 33); 
rcv-outtrips-names (); 
(Return if error 33) 

This code is cited in chunk 11.  

This code is used in chunk 14.  

25 ¶ After the initialisation tasks, the code enters in the time loop. Within 
it, the parent process will send the information that will overwrite that of 
the code itself. Each blocking signal is a barrier point for the descendant 
code, so those must be avoided as much as possible. The linkage has to be 
compatible for both module-like and tree-simulation linkage. The suitable 
common flag to both modes of linkage is the restart flag, and it. will be re
ceived in blocking mode. It is thus essential that the parent process sends 
this flag as soon as possible. The rest of the flags will be needed only in 
some cases. We have two kind of flags: 

1. Flags that do not affect the following time step.  

2. Flags that do.  

For the first type, the reception can occur anywhere. The message to send 
restart information to some other process within the tree simulation is of
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this kind. The second is the specific information for the next time request 
that is sent in mode-like connections. The messages are previously checked 
for arrival and only when actually present are they received.  

25( Receive execution information from parent 25) 
if (parent-process) { 

(Probe send-restart message 30) 
(Receive restart flag 26) ; 
arrived-message = probe (parentrprocess); 
(Return if error 33); 
if (arrived-message) { 

(Receive additional information 27); 
} 

} 

This code is cited in chunk 17.  

This code is used in chunk 14.  

26 ¶ The restart flag is the only flag that is received in blocking mode 
independently of the driving code.  

26( Receive restart flag 26) =
save-restart-flag = rcv-save-restart-flag (parent-process); 
(Return if error 33); 

This code is used in chunk 25.  

27 ¶ The information to be received is: 

"* flags driving the subsequent execution, 

"* the next requested time, 

"• the boundary conditions and trips values for the next simulation steps, 
and 

"* iteration-flag.  

The last flag tells the code to throw away the computation of the last ad
vancement and restore the simulation to the last request form the parent pro-
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cess. Because of the way it is coded, this is done restoring the old state-vector 
which was saved in timestep-state-vector1 .  

27( Receive additional information 27) 
continue-simulation = rcv-continue-simulation ); 
if (continue-simulation) { 

rcvxrequestedctime (parent-process); 
(Return if error 33) ; 
rcv-boundary- conditions (parent-process); 
(Return if error 33) ; 
rcv-trips (parent-process); 
(Return if error 33) ; 
rcvliterationrflag (parent-process); 
(Return if error 33) ; 
if (iteration-flag) state-vector = timestep.state-vector; 

} 

This code is used in chunk 25.  

28 ¶ The results requested by the parent process are sent as obtained 
in the last time step. For the tree simulation, the code standard output 
procedure cannot be used, since the tree may be built in a distributed en
vironment. All the outputs from all branches of the tree will be sent to a 
central database that will reconstruct the tree results.  

28( Send results 28) 
if (parent-process) { 

send-time (parent-process); 
(Return if error 33) ; 
send-outputs (parent-process); 
(Return if error 33) ; 
send-out-trips (parent-process); 
(Return if error 33) ; 
(Database messages 32); } 

This code is used in chunk 14.  

'Note here that it is possible that more information has to be restored, especially the 
time step value. Note also that a similar 'restart form the previous correct value' takes 
place when a step calculation is rejected and a new one is tried with a smaller timestep.

84



C.1. Code linkage

C.1.2.2.2 Code for Tree Simulation 

Restart information is to be saved into the private stack for later use. This 
information may be sent to initialise other processes or this very process, if 
the parent process sends the appropriate flag for entering < nitialisation for 
tree simulation.  

29( Manage restart stack 29) M 
if (save-restart-flag -- UpdateRestart) { 

int rcverror, restart-index; 

restart-index = rcv-restart-index (parent-process); 
(Return if error 33) ; 
update-restart (restart-index); 
(Return if error 33) 

This code is cited in chunk 21.  

This code is used in chunk 21.  

30 ¶ Restart information is to be sent to a remote process. The send 
routine will return an error if sending the tables to the process itself, so this 
section must be skipped by the sender process if the restart is from a point 
saved in < Manage restart ....  

30( Probe send-restart message 30) 
arrived-message = pvmreprobe (parent-process); 
(Return if error 33) 
if (arrived-message) { 

branch-info = rcv-branch-info (parent-process); 
(Return if error 33) ; 
remote-process = rcv.remote-process (parentrprocess); 
(Return if error 33); 
if (remote-process) { 

send-tables (branch-info, remote-process); 
(Return if error 33); 

} 
(Free used restart point 31); 

}
This code is used in chunk 25.
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31 ¶ If the parent process so demands, the point just used is freed from 
the private stack. The restart information has to be kept until all branches 
stemming form a single point are started. The parent process manages this 
via free.point.  

31( Free used restart point 31) 
free-point = rcvjfree-point (parent-process); (Return if error 33) 
if (free.point) { 

remove-point-from-stack (free-point); 
(Return if error 33); 

} 
This code is used in chunks 13 and 30.  

32 ¶ When running a tree simulation, the outputs must be sent to a 
centralised database that collects the results of each individual simulation 
step in the tree.  

32( Database messages 32) 
if (database.id) { 

send-results (database-id); 
(Return if error 33); } 

This code is used in chunk 28.  

33 ¶ 2 Error handling. In case the code returned by the receiving routines 
is less than zero it means that an error occurred in the transmission. The 
error code is returned to the main program.  

33( Return if error 33) -= 
if (somerror < 0) report-and.return (somerror); 

This code is used in chunks 10, 13, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32.

34 ¶
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BABIECA input file 

Test of modules SNDCODE and RCVCODE 
400000 0.001 0.0 
1 

Activation flag 
1 
0 
15 

2 
-10.0 1000.0 

1.0 1.0 

Mainpipe emission 
100 

1 511 611 711 512 612 712 513 613 713 
* - -------- boundary conditions 
*- -------- activation flag 

60 
*--7---'1 

-execution mode 
spp2k 

* - - remote host 
relapS.x -i mainpipe.i -o mainpipe.o -r mainpipe.r 

* ---- executable name 

1 
*- ------- null transient time steps 

9 
*- ------- number of boundary conditions 

velfj-206 
velfj-306 
velfj-406 
tsatt-205 
tsatt-305 
tsatt-405 
p- 2 0 0 

p-300 
p-400 

- ------- name of the boundary conditions 

0
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*- ------- number of initial conditions 

************** **** *** ***** ** **** *** ******** * 

Mainpipe reception 
111 

1 100 
* - ------- remote code tid 
* --------------- activation flag 

61 
----------

6 
-number of output signals 

received from the remote code 
velfj-600020000 
velfj-600030000 
velfj -600040000 
tempf-600010000 
p-500010000 
velfj-100050000 

* ------ names of output variables 

Loopi emission 
200 

1 111 114 115 
* ------ boundary conditions 
* -------- activation flag 

60 

1 

-execution mode 
spp2k 

* - - remote host 
relap5.x -i loopl.i -o loopi.o -r loopl.r 

* ---- executable name 

1 
* ------- null transient time steps 

3 
* ------- number of boundary conditions 

velfj-601 
tsatt-600 
p-500 

-------- name of the boundary conditions 

0 
- ------- number of initial conditions 

Loop1 reception 
511 
1 200 

*--------- remote code tid 
*- -------- activation flag 

61 0 10.1409 600.639 1.52511e+07 
---------- 

3 
-number of output signals 

* received from the remote code 
velfj-501000000 
tempf -205060000 
p-200010000 

* ----- names of output variables
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Loop2 emission 
300 

1 112 114 115 
* ------------- boundary conditions 
* ----------------- activation flag 

60 

1 
----------------. execution mode 
spp2k 

* ----------- remote host 
relapS.x -i loop2.i -o loop2.o -r loop2.r 

* "---- executable name 
1 
------------ null transient time steps 

3 
* ---------- number of boundary conditions 

velfj-601 
tsatt-600 
p-500 

-------- name of the boundary conditions 
0 

* ---------- number of initial conditions 

Loop2 reception 
611 

1 300 
--------- remote code tid 

- --------------- activation flag 
61 0 10.1409 600.639 1.52511e+07 

----------

3 
----------------.number of output signals 

* lreceived from the remote code 
velfj-501000000 
tempf-205060000 
p-200010000 

* --------- names of output variables 

Loop3 emission 
400 

1 113 114 115 
* ---------- boundary condition 

---------------- activation flag 
60 

1 
----------------. execution mode 
spp2k 

------------ remote host 
relap5.x -i loop3.i -o loop3.o -r loop3.r 

----- executable name 
1 
-- ------- null transient time steps 
3 

* ---------- number of boundary conditions 
velfj-601 
tsatt-600 
p-500
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* name of the boundary condition 

0 
------- number of initial conditions 

Loop3 reception 
711 

1 400 
-- ------- remote code tid 

------------------ activation flag 

61 0 10.1409 600.639 1.52511e+07 
----------

3 
-number of output signals 

* received from the remote code 
velfj-501000000 
tempf-203060000 
p- 2 0 0 0 1 0 0 0 0 

- names of output variables



NRC FORM 338 U&. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMIBER 
(2-89) (Assigned by NRC, Add Vol., Supp., Rev., NRCM 1B0AH and Addendum Numbers, If any.) 
W320. BIBUOGRAPHIC DATA SHEET 

(See khsb" an a* reverse) 

2. TITLE AND SUBTmTE NUREGAA-0179 

A Standardized Methodology for the Linkage of Computer Codes 
3. DATE REPORT PUBLISHED 

Application to RELAP5/MOD3.2 MONTH I 
March 2000 

4. FIN OR GRANT NUMBER 

s. AUTHOR(S) 6. TYPE OF REPORT 

R.H. Santos Technical 
7. PERIOD COVERED (rncikne DowS.) 

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (f ARC, provide Diviho Offie orRegion, U.S Ncuc wRegu atyComms, and meadg addk;wssf ca, 
provide neme ai d malng address).  

Polytechnical University of Madrid 
Nuclear Engineering Department 
Jose Gutierrez Abascal 2.  
E-28006 MADRID SPAIN

9. SPONSORING ORGANIZATION. NAME AND ADDRESS (ff'NRC, pe "Sameas above' if Wconbactx, provde NRC Division, Office orRegion, U.S. NuclewRegulatory Commssion, 
and n•ail addess-j

Division of System Analysis and Regulatory Effectiveness 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
Washington, DC 20555-0001

10. SUPPLEMENTARY NOTES

11. ABSTRACT gm wordes) 

The School of Industrial Engineering of the Universidad Polltecnica de Madrid (ETSII-UPM), in cooperation with the Spanish 
Nuclear Safety Council, has developed a standardised methodology to couple and parallelise scientific codes, be means of the 
modular general purpose simulation language BABIECA and the Message Passing Paradigm, currently using the PVM library 
routines. A template suggests how a code must be written to ease the connectivity with other codes through BABIECA. The 
connection scheme has been successfully applied to the RELAP5/MOD3.2 code.

12. KEY WORDS/DESCRIPTORS (List words orph&ass that wiltassisseenchers in ocating ftreport) 13. AVAILABILITY STATEMENT 

RELAP5/MOD3.2 unlimited 
Linkage of Computer Codes 14. SECURITY CLASSFCATIN 

(This Page) 

unclassified 
(This Report) 

unclassified 
15. NUMBER OF PAGES 

16. PRICE

NRC FORM 335 (2-84)



Federal Recycling Program



UNITED STATES 
NUCLEAR REGULATORY COMMISSION 

WASHINGTON, D.C. 20555-0001

SPECIAL STANDARD MAIL 
POSTAGE AND FEES PAID 

USNRC 
PERMIT NO. G-67

jf(m3'


